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ABSTRACT 
The superior colliculus (SC) is a paired and layered structure located on the dorsal 

surface of the midbrain playing an important role in auditory, visual, motor control, and 

multisensory integration. The small size of the nuclei, the composition of the midbrain, and 

the proximity of the SC to the brain vascular and ventricular formations are major 

hindrances in the way of studying human SC in-vivo. However, recent advances in 

magnetic resonance imaging (MRI) in terms of resolution, acquisition time, and signal-to-

noise ratio (SNR) which are the products of the improved sequences and stronger magnets 

e.g. Ultra-High-Field (UHF) MRI has enabled the possibility of studying brain areas such 

as SC as a region of interest (ROI). 

In the first phase of this project, we estimated the global functional connectivity 

network (FCN) of the SC. To this end, we used 3T functional MRI (fMRI) data acquired 

by the Human Connectome Project (HCP) consortium. The data was preprocessed by the 

HCP pipeline and was corrected for motion artifacts and was registered to a standard space 

template. Driven by the limitation imposed by the SNR and the resolution, we studied all 

the SC layers of each hemisphere combined. Our results were following major animal 

studies while introducing unnoticed connections to frontal attentional and motor control 

areas. Importantly and in general, we mapped the entire functional network of the alive 

human brain SC, in-vivo; provide the chance for a direct comparison with previously 

detected structural connections of the SC in mammalians' brains. 

In the second phase of the project, we examined a layer-wise connectivity pattern 

of the human SC function in-vivo, using the 7T fMRI dataset from the HCP database. Our 

goal in the second phase was to identify the functional sub-networks that the SC is involved 

in by breaking the previously estimated network into smaller regions groups based on 

depth-dependent SC FCN. By spatial upsampling of the SC region and the use of k-means 

clustering, we discovered six sub-networks with unique characteristics. These networks 

comprised areas associated with vision, the oculomotor system with an emphasis on the 

peripheral vision, and planning goal-directed actions. Also, we identified clusters that are 

representing the areas of no functional connection to SC. 

In the third phase of this project, we developed a solution for human midbrain 
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segmentation with a particular focus on SC. Creating an in-vivo map of the human midbrain 

nuclei in a standard space is essential to encourage further functional and structural studies 

of the regions within this area. To this end, we used a UHF MRI dataset of ten subjects 

including R2* and Quantitative Susceptibility Mapping (QSM), preprocessed, resliced, and 

standardized spatially. By fusing the information of two modalities and ten subjects and 

using manually selected image features we successfully mapped major midbrain nuclei 

including SC. Calculated features were fed into a deep learning network to create the 

compressed feature representation of the data and was used in hybrid with a k-means 

clustering machine to improve the clustering assignment confidence simultaneously with 

the relevance of the deep features representation. We identified the borders of SC, pars 

reticulata, pars compacta, and pars lateralis of the substantia nigra, magnocellular and 

parvocellular red nucleus, corticospinal, corticopontine and fronto-pontine crus cerebri 

tracts, periaqueductal grey, and inferior colliculus (IC). 

Our results reveal the widespread pattern of the human SC neural correlates in the 

resting state and the relative transformation of the function with respect to the SC depth 

orthogonal to the tectal plate. Data-driven segmentation of the SC connectivity map splits 

it up into sub-networks, each comprising areas mainly known for their involvement in 

peripheral vision, oculomotor system, goal-directed hand actions, and planning. We found 

no evidence of the human SC being functionally connected to the focal primary visual area 

in the resting-state. Furthermore, using the UHF structural MRI data we could delineate the 

borders of the human SC together with the borders of the SN pars reticulata, pars compacta, 

and pars lateralis, magnocellular and parvocellular areas of the RN, corticospinal, 

corticopontine, and fronto-pontine crus cerebri tracts, PAG and IC. Keywords: superior 

colliculus, midbrain, depth-dependent, fMRI, clustering, deep learning, quantitative 

structural mapping.
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CHAPTER 1   INTRODUCTION 

1.1 The Superior Colliculus (SC) 
The superior colliculus is a small bilaterally symmetric nucleus located at the top 

of the midbrain. In mammals, SC is structured in six alternating gray and white layers while 

an additional layer of fiber called stratum zonale covers the surface of the nuclei (Figure 

1.1). Different anatomical characteristics of the layers are the key to describe and 

understand the functional organization of SC. Each layer, namely, superficial, intermediate, 

and deep layer consists of a gray layer at the top and follows by a deeper white layer. 

Moreover, these layers are different in the organization of their inputs and outputs and also 

in the arrangement and density of the neurons and the fiber distribution (May, 2006). The 

distinction between different SC layers is clear in the lateral and middle SC where the layers 

are thick and contain large neurons. However, the layers gradually become thinner in more 

medial parts of the SC and they become barely distinguishable near the surface (Tardif and 

Clarke, 2002). The thickness of each layer in humans is poorly studied. However, few 

studies reported an approximate thickness of 1mm for the superficial SC, although variable 

across subjects (White and Munoz, 2011). 

The superficial layers mainly process visual information conveyed by afferents 

from the retina, visual cortex, and the frontal eye fields (FEF) (Schneider & Kastner, 2005). 

In monkeys, the retina sends signals directly to the neurons in the dorsal part of the 

superficial layers, however, the inputs from the visual cortex arrive at the areas at more 

depth in the superficial layers (Lund, 1972a). These patterns might be different in other 

mammals, including humans. 

The major inputs to the intermediate layers of the SC are mainly from the superficial 

layers, and also from those regions of the cortex which are known to be involved in 

oculomotor control including the lateral intraparietal area of the parietal cortex and the 

frontal eye field of the frontal cortex. Substantia nigra pars reticulata also provides major 
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subcortical inputs for the SC. Intermediate layers have a distinguished output that crosses 

from one side of the brain to the other (the pre-dorsal bundle) and conveys the collicular 

output to the neurons in the deeper midbrain including regions of the pontine and medullary 

reticular formation, regions near and possibly within the abducens nucleus, subnucleus B 

of the medial accessory nuclei of the inferior olive, and cervical spinal cord (Wurtz & 

Albano, 1980). The critical point is that the pathway crosses the midline at this point so 

that activity in and above the SC is related primarily to saccades made in contralateral 

direction, whereas neuronal activity below the SC is related to saccades made in ipsilateral 

direction. A major ascending output of the intermediate layers is also the frontal cortex 

through the medial dorsal nucleus of the thalamus. 

Deep layers contain multisensory and visuomotor neurons. Neural activation in 

these layers is associated with eye and head movements based on electrophysiology and 

behavioral studies in small animals and non-human primates. In general, we can expect a 

similar neural architecture of the macaque and the human SC, however, many functional 

features that are currently known from the macaque SC have never been examined in 

humans. Moreover, a comparison of the result of other studies on different mammalian 

species SC proves incongruence in their anatomy, afferents, and efferents to a certain 

degree which cast doubt over the complete analogy of macaque and human SC (May, 

Figure 1.1 - Midbrain Anatomy. Sagittal overview of the brainstem (left) and; on the right, transversal sections of the 
midbrain at the medial part of the superior colliculus (SC) level (indicated by the dotted line on top): 1) SC: a. stratum 
zonale (StZ), b. stratum griseum superficiale (SGS), c. stratum opticum (SO), d. stratum griseum medium (SGM), e. 
stratum lemnisci (SL), f. stratum griseum profundum (SGP). (adapted from (Naidich, 2009; Nieuwenhuys et al., 2007) 
with permission from “Springer Nature”) 
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2006). 

1.2  SC Functional Networks 
Animal studies reveal a lot about SC functional roles however, it has not been 

confirmed that the human SC live up to the same purposes. Studies on SC show that its 

superficial and intermediate layers are involved in visual and auditory orienting as well as 

visuospatial discrimination and oculomotor functions (Lomber, Payne, & Cornwell, 2001). 

The deeper layers of the SC including the intermediate and the deep layers are known to be 

multimodal function units, responding to a manifold of sensory inputs triggered by visual, 

acoustic, and somatosensory stimulation (Groh & Sparks, 1996; Jay & Sparks, 1987). More 

specifically, the deep layer is part of a network that establishes goal-directed hand actions. 

The structural connectivity of the SC is also pretty well studied, however more in animals 

rather than human subjects. Since there is not much knowledge about the existing SC 

functional networks, its structural connectivity together with behavioral studies provides a 

good overview of the expected functional correlates of SC. The location and the size of SC 

are accountable for its unpopularity as a topic of research. With current imaging and brain 

signal acquisition instruments, it is very difficult if not impossible to record the SC activity, 

while it requires an acceptable SNR and proper resolution at brain deep locations. Tectal 

signals are also pretty contaminated with respiration and heart pulsation noises because of 

their position relative to the ventricles and the brain vascular system. 

It would be even more valuable to capture the dynamic of the SC functional 

connectivity network against its structure. Despite the complexity of in-vivo SC layers 

examination, recent advances in magnetic resonance imaging have led to some 

improvement in midbrain image acquisition, by increased SNR as well as enhanced 

resolution. This gives the opportunity of gaining a detailed understanding of structures like 

SC. To further analyze the findings pertaining to the SC functional connectivity networks 

it is worth figuring out if there is any depth-dependent alteration of connectivity measures. 

It is also possible to explore whether these alterations follow specific patterns. This would 

be worthwhile as different articles noted similar brain areas to be connected to different 

layers of SC. Such cases raise different questions about the fundaments, reasons, and the 

function of such connections; are all regions connected to SC part of a larger cognitive 

network designed for a particular behavior, or are they components of smaller sub-networks 

with distinct functional roles? Does the functional contribution of each SC layer vouch for 

its specific known structural connections? And does the patterns found explain more about 
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the specific contribution of SC and its layers to observed human behaviors? Possible 

answers to such questions are not only valuable for the sake of science and a better 

understanding of the human brain, but they would also be important for clinical purposes 

by giving a better picture of brain processes and the reasons for their failure helping with 

neural disorders prognosis and diagnosis as well as suggesting effective treatments. 

1.3  Human SC segmentation 
Accurate conclusions about the functional role of brain regions or their axonal 

connections can be made only if their boundaries are defined precisely. As the outcome of 

the seed-based studies is reflecting the average voxels behavior, the amount of imprecision 

in regions definition that an analysis tolerates varies by the size of the region and the total 

number of voxels that it includes; as an instance, 10 faulty assignment of voxels might be 

negligible for an area of size 2000 voxels while it is considerable for an area of size 100 

voxels. This is the main reason that turns the image resolution into an important factor in 

mapping relatively tiny brain areas such as SC. In a regular structural MR imaging with 

isotropic voxels of size 1mm, each SC, approximately, includes 150 voxels. In the case of 

ultra-high-field MRI (UHF MRI), it is possible to decrease the voxel volumes by 8 to 300 

folds which leads to a range of 1200 to 45000 voxels that build each SC. Consequently, by 

keeping a good balance between the resolution and signal to noise ratio (SNR), UHF MRI 

makes it possible to map tiny areas like SC with unparallel details and higher precision. 

UHF helps with precision in two ways; first, the enhanced properties of the image make it 

easier to correctly classify the voxels into ROI and non-ROI and second, they reduce the 

confusion at the borders. The border voxels, inevitably, include lumps of both ROI and 

non-ROI, and smaller voxels can help with improving separation in these areas. On the 

other hand, depending on the imaging sequence we may capture different properties of the 

brain areas. That would result in different contrasts that emphasize different features of the 

tissues. Therefore, to capture more brain structures it is important to consider acquiring 

images with different adjusted sequences or modalities. A combination of multiple high-

resolution MRI modalities is a way to map those brain structures that were formerly 

difficult to discern, because of their size, location, or tissue type. Our effort here is to map 

out midbrain nuclei, and SC in particular with the help of UHF MRI and advanced statistics 

and machine learning methods to encourage future studies of brainstem structures that have 

remained neglected because of the lack of standardized definition of their location in the 

human brain. 
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1.4  Scope and Main Goals 
 
In this thesis, we estimate the functional connectivity network of the human SC and 

the depth-dependent variation of the functional connectivity that gives rise to the 

functional sub-networks that the human SC is part of. Besides, we employ advance 

deep learning methods to map the SC structure and a few more midbrain nuclei. We 

can divide the goals of this project threefold: 

1. Estimating the global brain functional connectivity network (FCN) of the 

human SC, using a 3T fMRI dataset of the human connectome project (HCP), 

evaluating the laterality  of the SC neural correlates and the depth-dependent 

analysis of SC FCN at 3T (CHAPTER 2); 

2. Evaluating the SC depth-dependent FCN at 7T,  using clustering methods to 

identify the existing patterns in the global brain connections to different layers 

of SC and define SC functional sub-networks, accordingly. (CHAPTER 3); 

3. Segmenting the human midbrain, using UHF structural MRI modalities at 

9.4T, and delineating the human SC by utilizing a deep clustering method 

(CHAPTER 4). 
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CHAPTER 2   GLOBAL BRAIN FUNCTIONAL CONNECTIVITY 

OF THE HUMAN SC AT 3T 

2.1  Introduction 
The laminated structure of the superior colliculus (SC) has been known for decades. 

Numerous studies on non-human subjects have illustrated the role of SC in attention and 

goal-directed motor function by the means of controlling eye movements and posture. The 

pieces of evidence of functions depth association that have been deducted from primates’ 

studies reveal the necessity of layer-level focus in SC probes. Superficial and intermediate 

layers of SC are involved in visual and auditory orienting as well as visuospatial 

discrimination and oculomotor functions (Lomber et al., 2001). The deep layer, in the 

meantime, is part of a network that establishes goal-directed hand actions. It is not possible 

to attribute a function to a specific layer alone since each of them is a recipient of a diversity 

of similar sensory inputs. Accordingly, depth-dependent specialization is acceptable only 

to a limited extent. Finding out about the layer-specific cortical and subcortical connections 

of SC is a way to better understand how SC functions. 

Studies in non-human primates show the superficial layer of the SC receives 

afferents from the striate cortex (Fries & Distel, 1983), extrastriate cortex (Fries, 1984a), 

retina (Perry & Cowey, 1984; Rodieck & Watanabe, 1993), and the frontal eye fields 

(Künzle, Akert, & Wurtz, 1976). The contralateral visual field is mapped on the superficial 

SC neurons with retinotopically organized receptive fields (Lund, 1972b; Sparks, 1986). 

There is evidence of the existing connections conveying visual information from the 

superficial SC to both pulvinar and lateral geniculate nucleus (Huerta, 1984; Stepniewska, 

QI, & Kaas, 2000), which, in turn, are well-known for their connections to the primary and 

the secondary visual areas. It has been shown that injection into monkeys brain MT and V3 

establishes disynaptic projections from SC (Lyon, Nassi, & Callaway, 2010b). 
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The deeper layers of the SC including the intermediate and the deep layers are 

known to be multimodal function units, responding to a manifold of sensory inputs 

triggered by visual, acoustic, and somatosensory stimulation (Groh & Sparks, 1996; Jay & 

Sparks, 1987). The deep SC inputs arise from the primary and secondary sensory and the 

motor cortices is rather sparse and the majority of connections are associated by prefrontal 

and lateral intraparietal cortex (Clower, West, Lynch, & Strick, 2001; Fries, 1984a; 

Goldman & Nauta, 1976) involved in the goal-directed hand movements (Borra, Gerbella, 

Rozzi, Tonelli, & Luppino, 2012a) maintained by the deep SC role in eye-hand 

coordination (Lünenburger, Kleiser, Stuphorn, Miller, & Hoffmann, 2001), the frontal and 

supplementary eye fields (Fries, 1984a; Komatsu & Suzuki, 1985; Künzle & Akert, 1977; 

Künzle et al., 1976; Leichnetz, Spencer, Hardy, & Astruc, 1981; Segraves & Goldberg, 

1987; Sommer & Wurtz, 2000), and parietal cortex (Fries, 1984a; Lynch, Graybiel, & 

Lobeck, 1985) while using thalamic relays to project back to the cortical areas (Harting, 

Huerta, Frankfurter, Strominger, & Royce, 1980). Auditory information is also mapped 

within the deep SC layers where inferior colliculus projections converge with visual 

representation (Huerta, 1984; Sparks, 1986). Macaque brain inferior parietal (PFG and 

anterior intraparietal [AIP]), ventral premotor (F5p and F5a), and ventrolateral prefrontal 

(rostral 46vc and intermediate 12r) areas forming a network involved in controlling 

purposeful hand actions all have relatively dense projections to the intermediate and deep 

gray layers of the ipsilateral SC (Borra et al., 2012a). 

Besides all aforementioned, there are inhibitory interlaminar connections between 

the cells in the superficial and deep SC with similar receptive fields (Moschovakis, 

Karabelas, & Highstein, 1988), possibly integrating visual and auditory fields. The 

nigrotectal pathway has also been described (Beckstead & Frankfurter, 1982; Huerta, Van 

Lieshout, & Harting, 1991) as well as collicular input to the substantia nigra in a few 

primate species (May, 2006). 

While SC has been extensively studied in non-human animal models with the 

application of different invasive and non-invasive approaches, the number of studies with 

human subjects has remained far less. Ethical codes prevent the application of invasive 

brain-mapping techniques. In addition, the location of the SC makes it a challenge for in-

vivo neuroimaging methods to acquire high-quality information from the region of interest. 

Deep brain signals acquired via Event-Related Potential (ERP) or magnetic resonance 

imaging technics degrade tremendously compared to the signals coming from less deep 
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areas. Magnetic resonance imaging in particular is pretty susceptible to CSF and vascular 

pulsation noises and SC as a deep brain structure is located in the exact adjacency of CSF 

cavities and the main brain vascular port. However, fMRI approaches are among the best 

solutions to study the deep brain nuclei as they have been improved a lot in recent years. 

Early task-based human fMRI studies suggested that activity in SC increases by the 

presence of an exploratory contingency and signal in the SC correlates with the frontal eye 

field (FEF), posterior parietal cortex, and visual association regions (Gitelman, Parrish, 

Friston, & Mesulam, 2002). “A generalized form of context-dependent 

psychophysiological interaction analysis unraveled increased illusion-dependent functional 

connectivity between the SC and some of the main brain areas previously involved in 

bodily self-consciousness: right temporoparietal junction (rTPJ), bilateral ventral premotor 

cortex (vPM), and bilateral postcentral gyrus” (Olive, Tempelmann, Berthoz, & Heinze, 

2015). Tractography analysis of human DTI consistently identified an approximately 

ventrodorsally pathway oriented from SC to the parietal cortex (Rushworth, Behrens, & 

Johansen-Berg, 2006). Probabilistic DTI tractography revealed a streamlined path that 

passes dorsolaterally through the pulvinar before connecting to the lateral amygdala in both 

humans and rhesus monkeys (Rafal et al., 2015). Intrinsic connections within superficial 

layers and radial superficial-layers to deep-layers exist in human SC. These connections 

are claimed to play role in visual receptive field organization, as well as visuomotor and 

multisensory integration (Tardif, Delacuisine, Probst, & Clarke, 2005). 

We estimated the cortical functional correlates of SC by using the resting-state 

functional magnetic resonance images. We used a high-quality dataset of 3T rs-fMRI 

images taken from the human connectome project (HCP) including more than 140 subjects 

to estimate robust SC neural correlates on the entire cortex. The objective was to estimate 

the SC functional connectivity with cortical areas independent from any prior knowledge.  

2.2  Methods 

2.2.1  Participants 
We analyzed the magnetic resonance imaging data of 141 subjects (51 males, mean 

age 27.71 ± SD 3.53; 90 females, mean age 30.66 ± SD 2.66) from the Human Connectome 

Project (HCP). For a complete description of the inclusion and exclusion criteria of 

participants in the HCP, please see (Van Essen et al., 2012). Briefly, all participants were 

between 22 and 35 years old, with no previously documented history of psychiatric, 
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neurological, or medical disorders known to influence brain function. The selected group 

for our analysis included 5 left-handed participants, 124 right-handed, and 12 bilateral-

handed participants according to Edinburgh Handedness Inventory scores. Subjects’ 

datasets comprised T1-weighted structural and resting-state functional MR images. We 

chose subjects that had denoised and pre-processed images of all four resting-state fMRI 

runs available on the HCP database. 

2.2.2  MR data specification 
T1-weighted images have been acquired using an MPRAGE sequence with 0.7mm 

isotropic resolution, FOV=224x224 mm, 256 sagittal slices, TR=2400 ms, TE=2.14 ms, 

TI=1000 ms, FA=8°, Bandwidth (BW)=210 Hz/pixel, Echo Spacing (ES)=7.6 ms, IPAT 2 

Acceleration. 

Resting-state fMRI data were collected for each subject in 2 sessions, each session 

consisted of two runs with TE=33.1ms, TR=720ms, and opposite phase encoding directions 

(left-to-right and right-to-left). Multiband multi-slice-EPI (Feinberg et al., 2010) sequence 

with experiment specific properties has been used to acquire 1200 volumetric images in 

each run and multiband factor equal to 8. Please see (Glasser et al., 2013) for further 

specifications of HCP data acquisitions. 

2.2.3  SC seed region definitions 
We defined masks of the SC on the 1mm ICBM152 template image in MNI space 

following the same guidelines as Loureiro et al. (Loureiro et al., 2017). The superior border 

of the SC is defined by the imaginary line that connects the mammillary body to the 

superior edge of the tectal plate. The inferior border is identified by a line which is parallel 

to the one connecting the superior pontine notch to the inferior edge of the tectal plate and 

starts from the inferior edge of the SC in para-sagittal slices. Finally, we defined an anterior 

border by the neuroaxis adjacent to the posterior boundaries of the periaqueductal grey 

(Fig. 1). The volumes of the resulting left and right SC ROIs were 158 mm³ and 141 mm³, 

respectively. 

The entire SC ROI was then segmented into 2 ROIs on each hemisphere. A dorsal 

SC ROI starts from the surface of the tectal plate on its border with the quadrigeminal 

cistern and extends 2mm in depth (0-2 mm from the posterior surface of the SC), 

perpendicular to the surface. The volumes of the resulting left and right dorsal SC ROIs 

were 79 mm³ and 71 mm³. A ventral SC ROI was constructed by subtracting the dorsal SC 
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ROI from the whole SC ROI, resulting in ROI volumes of 79mm³ for the left ventral and 

70mm³ for the right ventral SC mask. 

 
Figure 2.1 - Delineation of the superior colliculus. Reproduced from (Loureiro et al., 2017) with permission of “John 
Wiley and Sons” 
 

2.2.4  MRI data preprocessing 
We analysed images in a combined cortical surface and subcortical volume 

coordinate system (CIFTI) and used minimally preprocessed HCP datasets which included 

spatial artifact/distortion removal, surface generation, cross-modal registration, and 

alignment to standard space (please see Glasser et al., 2013 for details). In short, the 

structural pipeline includes 3 steps. The first produces an undistorted native structural 

volume space for each subject, aligns the T1w images, performs B1 bias field correction, 

and registers the subject's native structural volume space to MNI space. Next, volumes are 

segmented into predefined structures (including the subcortical parcels used in CIFTI) 

using FreeSurfer (Fischl et al., 2002). White matter and pial cortical surfaces have been 

reconstructed. The resulting surfaces are then registered to the Freesurfer’s fsaverage 

surface atlas (Fischl, Sereno, Tootell, & Dale, 1999). The final structural pipeline, 

PostFreeSurfer, produces all of the NIFTI volume and GIFTI surface along with applying 

the surface registration (to the Conte69 surface template (Van Essen, Glasser, Dierker, 

Harwell, & Coalson, 2011)), down-sampling registered surfaces for connectivity analyses, 

creating the final brain mask, and creating myelin maps. The 91,282 vertices standard 

grayordinate (CIFTI) space which is used in our analyses is made up of a standard 

subcortical segmentation in 2 mm MNI space (from the Conte69 subjects) and the 32k 

Conte69 mesh of both hemispheres. 

The “first functional pipeline, fMRIVolume, removes spatial distortions, realigns 

volumes to compensate for subject motion, registers the fMRI data to the structural, reduces 

the bias field, normalizes the 4D image to a global mean, and masks the data with the final 

brain mask”. Volumes are then transferred into “CIFTI grayordinate standard space by 
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mapping the voxels within the cortical gray matter ribbon onto the native cortical surface, 

transforming them according to the surface registration onto the 32k Conte69 mesh, and 

mapping the set of subcortical gray matter voxels from each subcortical parcel in each 

individual to a standard”. For more information please see Glasser et al. (2013). 

Signals from the SC are potentially contaminated by respiratory and pulsation 

artifacts, which would be particularly detrimental for resting-state correlation analyses. 

Therefore, we used the FIX-denoised fMRI images which come with the HCP preprocessed 

dataset package. The small size of the SC and its location in the adjacency of the 

quadrigeminal cistern and air cavities make SC signals particularly vulnerable to the 

propagation of noise through spatial smoothing. Therefore, we left all subcortical 

structures, including SC, unsmoothed. To increase detection power for cortical areas, we 

used a geodesic Gaussian smoothing kernel of 3 mm to smooth just surface registered 

cortical areas. 

2.2.5  Seed-based grayordinate-wise functional connectivity 
To minimize the field inhomogeneity bias caused by the scans phase encoding 

direction, we used all four fMRI runs from each subject. Before performing the correlation 

analysis, time-series of grayordinates from each run were demeaned and normalized. Then, 

the normalized images of all four runs were concatenated to calculate the average of the 

preprocessed BOLD time-series across all voxels in each SC ROI. For every subject, the 

bivariate zero-order (Pearson) correlation was calculated between these seeds’ average 

time-series and each cortical and subcortical grayordinate and converted using Fishers’ 

transform. 

To increase the sensitivity of our analyses we tested the resulting correlation values 

against a physiologically meaningless correlation baseline, i.e. the average of the voxel-

wise CSF correlations with the SC ROIs. To this end, we used the probabilistic CSF masks 

of every individual and rejected any voxel with a probability lower than 1. Next, we 

calculated Fisher’s transform of every CSF voxel’s correlation with the SC ROIs average 

timecourses and used the average of all CFS voxels’ z-values within each subject for further 

statistical analysis. 

2.2.6  Statistical analysis 
In our first analysis, we calculated two-tailed one-sample t-tests for the Fisher Z-

value correlation maps. We used random permutations of the Z-value signs to estimate a 
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null distribution of maximum t-statistics to control for the family-wise error rate (Blair & 

Karniski, 1993; Nichols & Holmes, 2002). The null hypothesis rejection threshold (𝛼𝛼) was 

set to 0.05 after 10,000 random permutations. 

In our second analysis, we took the abovementioned baseline correlation values 

between SC ROIs and CSF masks into account And used a paired-sample t-test to test the 

connectivity values against each subject’s average SC-CSF connectivity z-scores which in 

turn gives the grayordinates with a correlation value that differed significantly from the 

average CSF correlation. To compare the connectivity patterns between ROI sub-volumes 

(Left and right, dorsal, and ventral SC) we conducted paired-sample t-tests, using the same 

maximum t-statistic permutation method to control family-wise error rates. 

We mapped significant results of the correlation analyses on the multi-modal 

parcellation of cortex provided by Glasser et al. (2016) for cortical correlations, on the 

cerebellum parcellation by Buckner, Krienen, Castellanos, Diaz, & Yeo, (2011); Holmes 

et al. (2011) for cerebellar correlations, and on the 3D Morel stereotactic atlas of the human 

thalamus (Krauth et al., 2010) for thalamic correlations. 

2.3  Results 
In our first analysis, left and right SC revealed widespread bilateral significant 

correlations with almost the entire medial and lateral occipital cortex, occipito-parietal 

areas, intraparietal sulcus, superior temporal cortex, and the majority of the lateral and 

medial frontal cortex (Fig. 2.2 A and 2.3 A). The subtraction of CSF baseline correlations 

values before statistical testing provided more confined results. While the entirety of the 

lateral and medial occipital cortex was still significant, suprathreshold results at the parietal, 

temporal, and frontal cortex were reduced to distinct, smaller clusters (Fig. 2.2 B and 2.3 

B). In both analyses, findings based on the left and right SC ROI were mostly equivalent 

with apparently slightly higher correlation Z-values and resulting t-scores for the left SC 

(but see the section on laterality below for a direct comparison between correlations with 

the left and right SC). While significant results in visual, attentional, and oculomotor 

regions were largely expected, we also observed significant results along the posterior bank 

of the central sulcus and the ventral bank of the middle frontal gyrus. The comparison 

between CSF-controlled suprathreshold t-maps in (Figures 2.2 and 2.3) B with Fisher-

transformed correlation maps in the respective panels C shows that higher, significant t-

values corresponded with higher correlation values. In the following, we will first focus on 
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ipsilateral correlations of either colliculus with the cerebral cortex, basal ganglia, thalamus, 

and cerebellum based on our second statistical analysis, taking CSF correlation baseline 

into account. Then, we will look at laterality effects and conclude with the results of a 

comparison between dorsal and ventral SC ROI correlation maps. 

2.3.1  Occipital cortex 
Looking at the cortical surface connectivity map, the layout of V1 clearly stands 

out. The hotspot patterns also follow the layout of V6 and the dorsal visual transitional area 

(DVT). A less strong co-activation, yet neatly delineated, with visual areas V2, V3, V4, 

ventromedial visual areas 1 and 3 (vmv1 and vmv3) and pro-striate cortex (ProS) is also 

discernible. There is also an extensive cluster of the occipital cortex in the lateral view 

which mainly encompasses ROIs V3CD, V3A, V6A, V7, and lateral occipital area 3 (LO3). 

2.3.2  Parietal cortex 
Even more pale connectivity to the posterior cingulate visual area (PCV) is existent. 

It is also possible to find another weak connection to area 23c. The fact that the activation 

pattern completely matches the elongated geometry of the ROI makes it more considerable. 

Reaching out from the occipital cortex to the posterior part of the parietal cortex, 

we would notice patches at the inferior parietal cortex (PGp, IP0). Looking at the inferior 

parietal cortex, the co-activation in medial, dorsolateral, ventral, and anterior intraparietal 

areas is evident. Extending to the medial surface, we can trace the connectivity to a lesser 

extent in the 7AM area. Inferior to the AIP and moving towards the central sulcus we can 

also find portions of PF complex and PF opercular (mostly right SC), area 2, and PFt 

(mostly left SC). 

We found significant correlations along the somatosensory areas 3a and 3b, 

essentially reaching from a frontal superior FEF and area 4, and parietal area 3a/3b eye-

related complex in ventral direction to the face and tongue representations, where 

significant correlations are mostly confined to 3a/3b 

2.3.3  Temporal cortex 
Examining the temporal cortex connectivity, one cluster reaches from lateral 

occipital areas into temporal areas FST and the medial superior temporal gyrus (MST) 

while it does not include MT. We can also recognize another cluster with slightly stronger 

connectivity at the border of posterior inferotemporal (PIT) and area PH. The temporo-
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parieto-occipital junction areas 2 and 3 (TPOJ3 & TPOJ2) and PHT also show a faint 

correlation with SC. While all these areas extend from significant findings in instantly 

neighbored occipital areas, a delineated cluster located almost exactly in the superior 

temporal visual area STV stands out from a surrounding of non-significant, lower 

correlations. 

2.3.4  Frontal cortex 
At the lateral premotor cortex, we found the expected clusters of significant, higher 

correlations at the frontal and premotor eye fields (areas FEF and PEF), while area 55b in-

between showed contrasting lower correlations. In both hemispheres, we found significant 

correlations in the primary motor cortex area 4 posterior to FEF and extending into the 

posteriorly neighbored parietal somatosensory areas 3a and 3b. 

Anterior and inferior to PEF, we found a ribbon of slightly higher, significant 

correlation peaks in inferior frontal areas IFJp, IFJa, IFSp, and IFSa, which stand out from 

a neighborhood of lower correlations in the ventro- and dorsolateral cortex with the only 

exception of smaller significant spots in dorsolateral area 46. We also found dispersed 

smaller spots in the medial anterior cingulate areas and supplementary and cingulate eye 

fields (SCEF). 

 
Figure 2.2 - The entire left SC cortical map of: A) correlation z-score one-sample t-test with critical-t equal to 4.6, B) 
correlation z-score paired-sample t-test with critical-t equal to 5.2 for testing the connectivity values against the 
distribution of each subject’s average SC-CSF connectivity z-scores, C) group average of SC connectivity z-scores. 
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Figure 2.3 - The entire right SC cortical map of: A) correlation z-score one-sample t-test with critical-t equal to 4.66, B) 
correlation z-score paired-sample t-test with critical-t equal to 5.21 for testing the connectivity values against the 
distribution of each subject’s average SC-CSF connectivity z-scores, C) average subjects’ SC connectivity z-scores 
 

2.3.5  Thalamus and basal ganglia 
The results show a strong connection between SC and almost the entire body of the 

thalamus with a predisposition towards its medial and posterior parts (Figs. 4 and 5). The 

thalamus nuclei that fall into these areas are central lateral (CL), centre median (CM), 

Habenular nucleus (Hb), Limitans (Li), anterior and medial pulvinar (PuA and PuM), 

Parvocellular part of the mediodorsal nucleus (MDpc), posterior and the lateral posterior 

nuclei (Po and LP). 

SC also appears to have connections to relatively small parts of the basal ganglia. 

There we found clusters at the dorsal wall of the caudate nuclei in addition to the less 

significant group of voxels at the posterior tip of the putamen. 
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Figure 2.4 - The entire left SC sub-cortical map of: A) correlation z-score one-sample t-test with critical-t equal to 
4.6, B) correlation z-score paired-sample t-test with critical-t equal to 5.2 for testing the connectivity values against 
the distribution of each subject’s average SC-CSF connectivity z-scores, C) average subjects’ SC connectivity z-
scores 
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Figure 2.5 - The entire right SC sub-cortical map of: A) correlation z-score one-sample t-test with critical-t equal to 4.66, 
B) correlation z-score paired-sample t-test with critical-t equal to 5.21 for testing the connectivity values against the 
distribution of each subject’s average SC-CSF connectivity z-scores, C) average subjects’ SC connectivity z-scores 

2.3.6  Cerebellum 
Consistent with the nature of our analysis, we used the cerebellum parcellation by 

(Holmes et al., 2011). to assess cerebellar SC correlates. This atlas was estimated based on 

the cerebral functional connectivity of the cerebellum. The connectivity pattern at the 

cerebellum is pretty symmetrical with an ipsilateral predisposition in terms of strength and 

spatial distribution extent of the significant clusters. SC shows strong connectivity to a 

large patch of voxels including parts of areas 5, 6, and 12 located in VIIB lobule with an 

approximate center at (8, -74, -44) MNI coordinates. We detected another cluster in the 

lowermost rostral region of the cerebellum in the sagittal plane comprises portions of areas 

6 and 7 laid at VIIIB and also VIIIA to a smaller extent, roughly centered at (14, -46, -48). 
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The next group of voxels, spanning from the left to right side of the cerebellum, covers the 

entire lobule VI which makes the superior part of area 7. The remaining voxels with 

significant correlation are encompassing parts of areas 16 (lumps of lobules Crus II, VIIB, 

and IX) and small pieces of areas 4 and 11 that correspond accordingly to lobules V and 

VIIIB. 

2.3.7  Laterality 
The results of the individual left and right SCs showed abundant identical 

connections between the cortex and the respective SC. Any difference between left and 

right SC connectivity could only be found with uncorrected statistics (Fig. 6). These results 

showed a predominance of the left SC connectivity strength over the right SC in areas 

inferior frontal gyrus, a large extension of the Broadmann area 8 and superior and inferior 

parietal gyrus (PGi and PGs), supramarginal gyrus (PFm), superior temporal sulcus (STSdp 

and STSvp), posterior temporal cortex (TE1p), and area 9m. Left SC does not keep 

overruling right SC on the right hemisphere except for the minute scatters on PGi and 

primary sensory-motor cortex. 

Figure 2.6 - Connectivity dominance (left SC > right SC) uncorrected statistics A) left hemisphere, B) right 
hemisphere. 
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Looking at the connectivity of the right SC, the general co-activation pattern is very 

similar to the one from the left SC connectivity map while the correlations are less 

significant and of lower values in most areas (Figure 2.5). 

2.3.8  Depth-dependent connectivity 
Exploring the connectivity of the dorsal and ventral zones on each hemisphere 

showed that the DZ correlation layout is more widespread where no exclusive connectivity 

exists for the VZ. To further investigate the observation we performed a permutation test 

based on maximum t-statistics (Figures 2.7 and 2.8) and it reveals the connectivity layout 

of the VZ is a subset of the DZ connectivity map, while no independent cortical functional 

correlation could be found at the ventral zone. 

 
Figure 2.7 - Comparison of left DZ > left VZ after controlling for family-wise error rate, using the Tmax permutation test. 
A) left hemisphere, B) right hemisphere. 
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Figure 2.8 - Comparison of right DZ > right VZ after controlling for family-wise error rate, using the Tmax permutation 
test. A) left hemisphere, B) right hemisphere. 

2.4  Discussion 
We successfully demonstrated a coherent network of neuronal nodes formed around 

superior colliculus. Zero-order correlation analysis enabled us to create a picture of the SC 

neural correlates during the so-called brain resting state, in which fMRI measures 

spontaneous blood-oxygen-level-dependent (BOLD) signals. So far, the power and the 

precision of in-vivo imaging instruments and analysis tools were insufficient to record and 

extract a clear signal from a small and deep structure as SC in whole-brain volume 

measurements. Recent advances in MR imaging quality and image preprocessing methods 

developed by the human connectome project provided us with the possibility of studying 

SC of a living human brain. 

Most we know about human SC function heretofore is based on extensive non-

human species SC neural wiring or functional studies. Most prominently from the 70’s, the 

distinctive functional behavior of the SC zones started to receive more attention 

(Casagrande, Harting, Hall, Diamond, & Martin, 1972; Harting, Hall, Diamond, & Martin, 

1973; Lund, 1969; Mohler & Wurtz, 1976; Wurtz & Mohler, 1976). The study of the 

cortical projections to the SC of macaque monkeys by Fries (1984a) is a great showcase of 
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neural distribution of the cortical synapses ending up in SC in which it shows that the 

injections into the different depth of SC result in different, but consistent dispersion patterns 

of the labeled cells. Likewise, by conducting functional connectivity analysis of the SC 

average signal, we found a widely distributed, meanwhile, sound cortical coactivation 

pattern. A comparison between human and macaque SC connectivity reveals fundamental 

analogy in most cortical areas and concurrently major dissimilarity in others. 

2.4.1  Cortex 
We showed that the whole body of the SC is significantly correlated with clearly 

delineated sub-volumes of the visual cortex. Laterally, it extends from lateral occipital areas 

to the inferior parietal cortex and the temporo-parieto-occipital junction, while the superior 

temporal visual area also stands out more like an isolated patch. On the medial surface, it 

includes visual areas 1 to 4 beside visual area 6 and ventromedial visual areas and dorsal 

transitional visual area in addition to the pro-striate cortex and it ends at the parieto-

occipital sulcus. It has been known that SC is densely connected to the primary visual area 

for decades. There is also evidence of SC projections to the dorsal visual stream, which is 

known for a high temporal frequency and sensitivity to motion and capability of fast 

response by circumventing the primary visual area (Collins, Lyon, & Kaas, 2005; Kaas & 

Lyon, 2007; Lyon et al., 2010b; Wang & Burkhalter, 2013). Our study result pictures SC 

beside the principal elements of the dorsal stream on the occipital cortex together with the 

posterior parietal cortex. Major correlated areas on the parietal cortex are interparietal 

complex and medial area 7 which together are involved in attention, locating object position 

in space, reaching, and grasping the located object. All aforementioned evidence supports 

the assumption that human SC, as well as in many non-human species, serves the role in 

fast visual responses (Boehnke & Munoz, 2008; Courjon, Olivier, & Pélisson, 2004; Dean, 

Redgrave, & Westby, 1989; Morris, Öhman, & Dolan, 1999) and visually guided behavior 

(Sprague, 1966; Werner, 1993). 

Furthermore, our investigations show functional connections between SC and 

frontal eye fields (FEF), premotor eye fields (PEF), and supplementary eye fields (SCEF). 

The same network has been detected in different studies, showing a multitude of projections 

from mentioned cortical eye fields to SC in non-human primates; together, playing role in 

the control of visual attention and generation and control of eye movements (Huerta & 

Kaas, 1990; Luppino, Rozzi, Calzavara, & Matelli, 2003; Parthasarathy, Schall, & 

Graybiel, 1992; Small et al., 2003). 
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An interesting and unexpected piece of the puzzle is the significant correlations 

between SC and primary hand motor and inferior frontal areas. Goal-directed hand 

movement has been widely studied. The major cortical areas contributing during reaching 

and grasping trials in primates are known to be inferior parietal, dorsal and ventral 

premotor, ventrolateral prefrontal, and primary motor cortex (Borra et al., 2012a; Castiello 

& Begliomini, 2008). Borra and colleagues found projections from anterior intraparietal 

(AIP), ventral premotor (PMv), and ventrolateral prefrontal areas to the intermediate and 

deep layers of ipsilateral macaque monkeys SC. They suggested that the information 

provided for SC through these areas is used to facilitate the control over orienting behavior 

toward targets of the visually informed object-oriented hand actions. Beforehand, Fries and 

colleagues studied cortical projections to the SC (Fries, 1984a). They observed projections 

from the primary motor (area 4) and premotor (area 6) hand areas as well as the prefrontal 

cortex (area 9) to the intermediate and deep layers of the SC. They could also detect 

projections from FEF and posterior parietal cortex. Looking back at our functional 

connectivity maps, SC connection to the primary hand motor area is evident, while 

connections to the premotor cortex, in particular, the corresponding area 6 of macaque’s 

brain are present, but with relatively noticeable less strength. We are also able to find a 

very clear patch stretched along the inferior frontal junction and inferior frontal sulcus, 

covering four functionally distinct areas. As we still do not know much about the human 

brain homolog of the ventrolateral prefrontal area of the macaque’s brain, the interpretation 

of our findings pertinent to the SC functional correlates in inferior frontal areas would 

remain debatable. These later observed differences between our study results and non-

human brain findings could be simply explained by the incongruity of different species 

brains, while the dissimilarity might not only be caused by the heterogeneity of the 

structural organization, but also discordant functional properties. We should also keep in 

mind that what we have investigated here is the systematical functional accordance of the 

signals which does not necessarily match the underlying structural configuration. 

2.4.2  Thalamus 
We found an extensive connection between SC and many thalamus nuclei, which 

are mostly located in the caudal and lateral parts of the thalamus. There were significant 

correlations with non-specific nuclei of the intralaminar thalamus which has widespread 

connections to the cortex. The connectivity map shows SC being strongly connected with 

posterior intralaminar nuclei (CM and PF) which are known to receive inputs from the 
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premotor and motor cortex (Akert & Hartmann-von, 1980; Chiba, Kayahara, & Nakano, 

2001; Künzle & Akert, 1977). CM also projects to most of the sensorimotor area of the 

striatum in dorsolateral caudate and putamen (Sadikot, Parent, & Francois, 1992). SC has 

been also connected with part of the anterior intralaminar thalamus including CL where the 

motor cortex and parietal cortex provide inputs to the area (Akert & Hartmann-von, 1980; 

Künzle & Akert, 1977). It has been proposed that the anterior intralaminar nuclei are part 

of the oculomotor thalamus and play a role in arousal and visual awareness (Purpura & 

Schiff, 1997). As an instance, anterior intralaminar neurons have shown motor-related or 

both visual and motor-related responses (Wyder, Massoglia, & Stanford, 2003).  

Our findings also show a strong connection between SC and parvocellular 

mediodorsal nuclei. MD influences multiple cognitive abilities via its interactions with 

areas of the frontal lobe, such as dorsolateral PFC and anterior cingulate cortex (Dermon 

& Barbas, 1994; Ouhaz, Fleming, & Mitchell, 2018; D. Xiao, Zikopoulos, & Barbas, 2009). 

It has been shown that there is a direct connection between parvocellular MD and the 

DLPFC (Klein et al., 2010). The human counterpart of monkey DLPFC is thought to be 

found right above the inferior frontal gyrus (Rajkowska & Goldman-Rakic, 1995), which 

could be the match for our significant finding, as SC correlated voxels stretching from 

posterior inferior frontal junction to the anterior inferior frontal sulcus. We are still not able 

to confirm whether the connection between SC and the inferior frontal stripe is direct or it 

is being facilitated or regulated by thalamic substructures like MDpc (Pergola et al., 2018). 

(Figures 2.2 and 2.3) also show connections to the anterior and medial pulvinar. 

Pulvinar is best known for its role in regulation and synchrony of the signals reaching the 

visual cortex and also its involvement during saccadic eye movements, but interestingly, 

another action has also been reported which is signaled by cells of the pulvinar nuclei and 

that is reaching by arm to a target. Cells that are active during such activity are found in 

essentially all of the pulvinar nuclei, although they have been reported to be more 

concentrated in oral (ventral) and upper part of the lateral nuclei (Acuña, Gonzalez, & 

Dominguez, 1983; Hardy & Lynch, 1992). And binocular eye-movement-signaling is 

transmitted to the SC from parietal cortical area LIP (Gnadt & Beyer, 1998), perhaps via 

fibers that also synapse within the lateral or medial pulvinar (Rockland, 1998). Alongside, 

we detected significant correlations to the Po and LP nuclei which appear to be important 

in various visual functions such as visually guided behaviors and reflex responses to 

threatening/fear-related stimuli (Goossens, Schruers, Peeters, Griez, & Sunaert, 2007; 
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Grieve, Acuña, & Cudeiro, 2000; Morris et al., 1999; Wei et al., 2015; Wurtz, McAlonan, 

Cavanaugh, & Berman, 2011). We were not able to find enough evidence that explains the 

circumstances upon which Hb and Li nuclei are connected to SC. 

2.4.3  Cerebellum 
Utilizing the functional cerebellum parcellation, made it possible to find the cortical 

correlates of the cerebellum areas having a significant correlation with SC. By looking at 

the cortical correlates of the mentioned cerebellar regions altogether, its resemblance with 

the SC cortical connectivity map is immediately discernible. Out of thirteen cerebellar 

lobules, SC appeared to be fully or partially connected to seven,  which were located in the 

posterior lobe, excluding lobule V. Out of all correlated cerebellum ROIs, only ROI 16 

showed a cortical connectivity pattern inconsistent with the SC cortical connectivity map. 

Parcellation area 16 which covers part of lobules CrII, VIIB, and IX is functionally 

connected to inferior and superior PG (angular gyrus), 7m (precuneus), posterior part of 

area 31 (posterior cingulate cortex), posterior and anterior parts of area 24 (ventral anterior 

cingulate) and rostral and dorsal parts of area 10 (dorsomedial prefrontal cortex), which are 

parts of default mode network (Long et al., 2008), The rest of the co-activated cerebellar 

areas show the same cortical connectivity pattern as SC. 

2.4.4  Correlation analysis 
The results presented here might raise an important question. How could very 

minute coefficients values of correlation be statistically significant? And where these were 

significant in a large group analysis, would these values and differences have any 

meaningful and ecologically valid interpretation. The value of the 98% percentile of the 

Fisher-transformed correlation values did not exceed 0.03 in our study, which from the 

mathematical point of view would be interpreted as uncorrelated. On the other hand, by 

applying the popularly accepted p-value thresholds one can notice that every tiny effect 

would become significant because of its consistency across the large group. Panels A in 

(Figure 2.5) shows what an uncontrolled big data analysis would result in by exerting 

conventional statistical analysis. We can better understand this phenomenon by looking at 

other examples of big data analyses. The advantage of a large population, high-dimensional 

data is that it provides enough power to disclose subtle underlying effects in the data which 

could not be detected in smaller samples. At the same time, high-dimensional data 

introduces some unique statistical challenges including noise accumulation, spurious 
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correlation, and incidental endogeneity which need to get addressed (Fan, Han, & Liu, 

2014). All these together would leave us with many significant outcomes, which might 

simply result from the aforementioned effects.  

From another perspective, it is not possible to deal with large samples using the 

conventional rules of statistical inference. Statistical inference is based on the notion of the 

null hypothesis, and by picking a particular number representing the “no effect” state for 

testing high-dimensional data result, the estimates become so precise that every minute 

effect would have significant distance from the “no effect” state (Lin, Lucas Jr, & Shmueli, 

2013). Hence, choosing the p-value in the common range of 0.01-0.05 is simply not 

discriminative. This is the reason why some studies have chosen very small p-values (Lin 

et al., 2013) which, first, is computationally very expensive to calculate and second, is not 

helpful, since there is no gold standard to choose a particular threshold for p-value when it 

comes with so many floating points. 

Another issue is that the calculated correlation coefficient distribution 

characteristics vary by dataset; depending on the level of residual noise, as well as the brain 

region under study. In a former study on 24 HCP subjects by Vu et al. (2017) they showed 

that the correlation values for a cortical seed at posterior parietal cortex would lie within 

the range of 0.5 and below where with the same analysis for the sub-cortical seed at 

putamen, correlation values hardly reached beyond 0.1. It is imaginable that the maximum 

correlation value would fall even more for a deep tiny region such as SC located in the 

adjacency of different noise sources contributing to the respective correlation seed signal. 

To be able to tackle the high-dimensional data analysis issues we corrected our 

statistical test by choosing a very conservative method to select a varying null-hypothesis 

for every subject instead of zero, which was equal to the average of the correlation values 

between the chosen SC ROI and every voxel in the subject-specific CSF mask. Since this 

latter correlation should have no physiological meaning, we chose it as the state of “no 

effect” and filtered out the values which did not have a significant distance from that value.  

2.5  Conclusions 
Studying human mesencephalic nuclei and structures has been an implausible job 

with a variety of obstacles that need to be overcome. With the help of state-of-art fMRI 

sequences, improved preprocessing algorithms, and improved statistics, we provide a map 

of human superior colliculus global circuitry.  
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The SC connectivity map widely agrees with the findings from animal studies. 

However, significant correlations were also found in the prefrontal, posterior temporal, 

premotor, and primary motor cortex, i.e. in locations with little evidence of connections to 

the SC from animal models. These findings confirm recent observations that functions of 

the SC reach far beyond vision and oculomotor control. The parallel connectivity between 

SC and inferior/middle frontal area, posterior superior temporal visual area, and neck and 

shoulder tail of the primary motor cortex demonstrates the involvement of the SC in a 

multiplicity of cortical networks and functions. These include responses to moving objects, 

target selection, and postural control. 

Being able to study such a deep structure with the use of non-invasive methods is a 

promising achievement. Besides, the resting-state functional network of the human SC can 

usher future SC-related researches with additional evidence for better experiment designs, 

which might eventually lead to a better understanding of the role of SC and the 

consequences of its dysfunction. We believe that higher quality data, together with a large 

enough sample size and proper analysis methods would provide a chance to further increase 

our knowledge about SC functional circuitry. Simultaneous use of other modalities is 

another key to reach a better understanding of the SC role in maintaining vital human brain 

functions.  
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CHAPTER 3   DEPTH DEPENDENT FUNCTIONAL NETWORKS 

OF THE HUMAN SC 

3.1  Introduction 
It has been known for decades that the superior colliculus (SC) anatomical structure 

is laminar. Six layers of the grey matter and the white matter one after the other, positioned 

in parallel with the tectal plate are forming the structure of the SC (May, 2006). Meanwhile, 

SC is known to be one of the early locations in the brain involved in multimodal integration 

of the sensory inputs. Multimodal integration is important to all living species, as it helps 

to perceive a coherent representation of surroundings and come up with a timely and 

appropriate behavior or reaction. It has been shown that SC collects visual, auditory, and 

tactile inputs and sends motor efferent, essentially, posture-related motor commands and 

enforcing specific eye movements, simultaneously. Many studies show that the functional 

compartments of SC are not randomly distributed over the structure, and each resides in a 

particular anatomical location. The mentioned fact suggests the plausibility of the SC 

functional properties inherent correlation with its laminar structure. 

A comprehensive study on macaque monkey by injections restricted primarily to 

the superficial layers of the SC has found labeled cells in the visual cortex and both in the 

frontal eye field and the adjacent part of the premotor cortex (Fries, 1984b). The same study 

reported that the injection to the intermediate and deeper layers of the SC projects to the 

posterior parietal cortex, inferotemporal cortex, auditory cortex, the somatosensory 

representation SII, upper insular cortex, motor cortex, premotor cortex, and prefrontal 

cortex. 

The intermediate layers of SC show sensory and saccade-related responses. The 

motor map in the intermediate layers corresponds to the visual sensory map on the 

superficial layers (Sparks, 1981). A dense fiber projection from the inferior bank of the 

intraparietal sulcus to the intermediate and deep layers of the superior colliculus was 
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observed. In contrast, only faint labeling was seen in the superior colliculus following 

injections into area PGc on the convexity (Lynch et al., 1985). Deep SC layers are centers 

for multimodal integration. There are numerous pieces of evidence of the presence of a 

map of auditory space in the deep layers of the SC (Gaese & Johnen, 2000; Jay & Sparks, 

1987). Intermediate and deep layers are also being mentioned as part of the lateral grasping 

network, having connections to the dorsolateral prefrontal cortex (DLPFC), ventral 

premotor area, and the anterior intraparietal lobule (AIP) (Borra, Gerbella, Rozzi, Tonelli, 

& Luppino, 2012b). 

The superficial layers of the SC are receiving retinal information (Sparks, 1981). 

They provide disynaptic input to dorsal areas MT and V3, not V2 or ventral area V4 (Lyon, 

Nassi, & Callaway, 2010a). The retinotectal projection is distributed primarily to the 

superficial layers (Lund, Land, & Boles, 1980; Pollack & Hickey, 1979), it has been 

observed that an indirect pathway via the cortex also sends visual sensory information to 

this layer (Marrocco, 1978). Observations in monkey studies indicate that primary and 

secondary visual areas are all providing retinotopic inputs only to the superficial SC and 

not the layers beneath (Lui, Gregory, Blanks, & Giolli, 1995; Tigges & Tigges, 1981), 

while the distribution of this connections must be pretty uniform over the area, according 

to an older study (Wilson & Toyne, 1970). However, in macaque, the area 19 projection 

extends into the intermediate layers (Lui et al., 1995). 

One of the most well-characterized connections of the superficial SC is to the dorsal 

lateral geniculate nucleus (Wilson, Hendrickson, Sherk, & Tigges, 1995). The lower 

sublamina of the superficial SC also provides a major projection to the pulvinar/lateral 

posterior (Pul/LP) complex of the thalamus (Benevento & Standage, 1983; Huerta & 

Harting, 1983). 

Some studies suggest that there is a close bind between SC and the components of 

the oculomotor system including frontal eye field (FEF), premotor eye field (PEF), 

precuneus, and lateral intraparietal area (LIP) (Büttner & Büttner-Ennever, 1988; Lynch & 

Tian, 2006; Müri, 2006). The SC is well-connected with the cortical eye fields to 

collaboratively control the gaze movement. Corresponding areas in the monkey brain 

include FEF, the supplemental eye field (SEF), and the parietal eye field which includes 

area 7A and lateral intraparietal cortex (LIP) (see Leichnetz et al., 1981; Leichnetz and 

Gonzalo-Ruiz, 1996; Moschovakis et al., 2004; for a broader interpretation), its human 

brain homolog presumably are areas 7A, LIPv, and VIP (Müri, 2006; Müri, Iba-Zizen, 
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Derosier, Cabanis, & Pierrot-Deseilligny, 1996; Van Essen et al., 2001). These connections 

are terminating in the intermediate SC with some reporting a scattered projection to the 

superficial layers (Huerta, Krubitzer, & Kaas, 1986; Komatsu & Suzuki, 1985; Leichnetz 

et al., 1981).  

It has been noted that different areas of the FEF project to different layers of SC are 

based on saccade amplitudes. The area responsible for large saccades is only connected to 

the intermediate and deep layers and the connections from FEF areas responsible for small 

saccades terminate at the intermediate layers (Komatsu & Suzuki, 1985; Stanton, Goldberg, 

& Bruce, 1988). Observations about the SEF are more inconsistent, termination of its 

connections to the SC was observed both in the intermediate layers (Huerta & Kaas, 1990) 

and superficial layers for contralateral SC and intermediate layers for the ipsilateral SC 

(Shook, Schlag‐Rey, & Schlag, 1990). Studies also show that the parietal eye field 

projections converge on the deeper sublamina of the intermediate SC, where the saccade-

related neurons are located (Lynch et al., 1985). 

SC relation to the eye fields is rather reciprocal. It means that it provides them with 

information through thalamic nuclei as well as receiving input signals (Harting et al., 1980; 

Yamasaki, Krauthamer, & Rhoades, 1986). Central lateral nucleus (CL) and the 

parvocellular medial dorsal nucleus (MDpc) are among the most important thalamic 

regions which facilitate the connection between SC and the cortical eye fields (Beckstead, 

1979; Huerta & Kaas, 1990; Huerta et al., 1986). 

According to previous studies, SC is involved in stimulus-driven and also goal-

driven attention and embedded in corresponding cortical networks (Bell, Fecteau, & 

Munoz, 2004; Fecteau, Bell, & Munoz, 2004; Rafal, Posner, Friedman, Inhoff, & 

Bernstein, 1988; Sapir, Soroker, Berger, & Henik, 1999). The dorsal attention network 

enables the goal-driven attention and links it to appropriate motor responses and the ventral 

attention network maintains the stimulus-driven attention (Corbetta, Patel, & Shulman, 

2008). A dorsal attention network includes the parietal cortex, particularly intraparietal 

sulcus (IPS) and superior parietal lobule (SPL), and the dorsal frontal cortex along the 

precentral sulcus, near or at the frontal eye field (FEF). And the core regions of the ventral 

network are the temporoparietal junction (TPJ), the posterior sector of the superior 

temporal sulcus (STS) and gyrus (STG), the ventral part of the supramarginal gyrus (SMG), 

and the ventral frontal cortex (VFC), including parts of middle frontal gyrus (MFG), 

inferior frontal gyrus (IFG), frontal operculum, and anterior insula (Corbetta et al., 2008).  
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Precuneus visual area which is known to be involved in visually guided reaching 

(Caminiti et al., 1999; Ferraina et al., 1997) is also showing a strong connection to the SC 

(Leichnetz, 2001; Yeterian & Pandya, 1993). 

Despite all the knowledge about the SC being accumulated over the years, what is 

lacking today is a comprehensive map of the variety of functional connections of this 

structure in the human brain. Obtaining this knowledge can be very complicated 

considering all the obstacles on the way of studying human SC which is mainly caused by 

its anatomical properties. We, for the first time, have carried out a full study over the human 

SC functional correlates. Unlike preceding studies and instead of focusing on a single 

connection or limited, hypothesis-driven networks of connections, we identified the pattern 

of all likely sub-networks that the human SC takes part in, including the entire cortical and 

subcortical areas. Based on the characteristics of the SC connectivity depth profile (SCDP) 

we assigned each brain image voxel to a cluster in which it has the most in common with 

the other cluster members. Therefore, we divided the brain volume into individual clusters 

(SC-depth-specific functional sub-networks) that each reflect a certain type of SCDP 

behavior. This gives a clearer picture of how SC, as a multimodal integration unit, 

organizes its wide variety of interactions with the other brain functional areas. Learning 

about the SC functional correlates helps with making more reliable assumptions about its 

cognitive role and contribution to neural deficits and guides future experimental researches. 

3.2  Methods 

3.2.1  Participants 
Resting-state data from 171 subjects (104 females, age = 30.41±2.68; 67 males age 

= 27.75±3.35) were chosen from the publicly available Human Connectome Project (HCP) 

dataset (Van Essen et al., 2012). Only those subjects whose complete set of 4 denoised and 

pre-processed runs of resting-state fMRI were available were chosen from the full HCP 

dataset. Briefly, all participants were between 22 and 35 years old, with no previously 

documented history of psychiatric, neurological, or medical disorders known to influence 

brain function. The selected group included 7 left-handed participants, 145 right-handed, 

and 18 bilateral-handed participants according to Edinburgh Handedness Inventory scores. 

Subjects’ dataset comprised T1-weighted structural images and resting-state functional MR 

data.  
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3.2.2  MR data specification 
Resting-state fMRI data were collected for each subject in four runs with 

TE=22.2ms, TR=1000ms, and opposite phase encoding directions (two anterior-posterior 

and two posterior-anterior). Gradient-echo EPI sequence with a multiband factor of 5 iPAT 

equal to 2, partial Fourier sampling ratio of 7/8, and echo spacing of 0.64 ms was used to 

acquire 900 volumetric images in each run with an approximate total sum of 15 minutes. 

3.2.3  MRI data preprocessing 
Functional images were processed using the HCP minimal preprocessing pipeline 

(Glasser et al., 2013), similar to the description of section 2.2.4, including head motion 

correction, intensity normalization, bias field correction, and transformation to an isotropic 

1.6-mm MNI atlas space. To map the volumetric data onto a 59k surface, the volume data 

was first mapped to the native freesurfer mesh of the subject with approximately 140k 

vertices, which was the surface that contained the original folding details. Afterward, the 

mesh was down-sampled to the more sensible resolution of 59k. 

3.2.4  Seed-based grayordinate-wise functional connectivity 
To evaluate the functional connectivity between SC seeds and cortical and 

subcortical grayordinates, acquired brain signals were first demeaned and normalized 

separately for each run. Then, the 4D images of all 4 runs were concatenated along the time 

dimension. Then, we calculated the zero-order correlation coefficient (Pearson correlation) 

between each SC ROI concatenated signal and every brain grayordinates to determine each 

ROI functional connectivity map. 

To control the false-positive rate and avoid significant findings originated from 

spurious noise correlations, a baseline of meaningful correlation values had to be defined. 

The CSF mask that had been previously estimated by the SPM12 segmentation module, 

was thresholded to accept only those voxels with a probability percent of 1. Then, we 

calculated correlations between SC ROIs and the average signal under the thresholded CSF 

mask. 

Every calculated correlation value was then transformed into the z-space by using 

Fisher’s transform function, to map the data onto the normal distribution function. 

 

 

https://www.sciencedirect.com/science/article/pii/S2211124718311537#bib19
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3.2.5  Statistical analysis 
We calculated two-tailed one-sample t-tests for the Z-score maps. We used random 

permutations of the Z-score signs to estimate a null distribution of maximum t-statistics to 

control for the family-wise error rate (Blair & Karniski, 1993; Nichols & Holmes, 2002). 

The null hypothesis rejection threshold (𝛼𝛼) was set to 0.05 after 10,000 random 

permutations. 

We repeated the same procedure to find correlation values in which their difference 

from the average CSF correlation was significant. To compare the connectivity patterns 

between ROI subvolumes we conducted paired-sample t-tests, using the maximum t-

statistic permutation method to control family-wise error rates. 

3.2.6  SC connectivity depth profile 
Since each anatomical layer of SC is known to have particular functional 

characteristics, it is expected that each layer plays a unique role in different brain functional 

networks. For further investigation, we created an SC correlation profile for each brain 

grayordinate representing its functional bond to different depths of SC. To avoid any bias 

caused by an ill-defined anatomical delineation of the 3 SC gray matter layers while 

histological information on layer boundaries are not available, we up-sampled the SC 

region by decreasing its voxel sizes to isotropic 0.7mm utilizing spline interpolation. Then, 

we divided SC into voxel-wide surfaces parallel to the tectal plate. The outcome was 12 

parallel surfaces of width 0.7mm on both right and left SC. Finally, for every brain 

grayordinates, a depth profile of a total number of 24 correlation values was created. Share 

of each colliculus was 12 values ordered by the distance of the surface to the tectal plate; 

starting first with the correlation to the nearest layer to the tectal plate. 
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3.2.6.1  Depth effect 
Using ranova function (MATLAB release R2018b), we calculated repeated 

measures ANOVA for each grayordinate SCDP across subjects to detect any non-constant 

pattern. The repeated measures ANOVA reveals grayordinates with a significant depth 

effect in their left or right SCDP 

 

P-values were corrected for family-wise error with Bonferroni criteria. The result 

showing the grayordinates with significant depth effect is displayed in F-value mapped 

over a standard surface. 

3.2.7  SCDP functional networks 

3.2.7.1  SCDP clustering 
We explored brain grayordinates to cluster the ones with similar SCDP pattern. We 

preferred the quantitative clustering approach over descriptive methods since the immense 

number of grayordinates makes it impossible to manually classify all SCDPs or detect the 

prevalent SCDP patterns. Thus, we implemented the k-means clustering algorithm to detect 

Figure 3.1 - 12 parallel SC layers of width 0.7mm on each hemisphere, used 
to create SC connectivity depth profile for each brain vertex 
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and cluster grayordinates which were the most similar in sense of their connectivity to the 

different layers of their ipsilateral and contralateral SC. K-means is an unsupervised 

learning approach that tries to minimize the summation of euclidean distances between the 

data points and the cluster mean to which they belong (Hartigan & Wong, 1979). The 

euclidean distance is being defined in an N-dimensional feature space that is being used for 

the clustering purpose. 

In the current study, we selected the SCDP and its gradient as discriminants 

providing information for the learning algorithm. To build the feature vector for each 

grayordinate we combined the previously calculated vectors of 24 correlation values (12 

for each SC) with their gradients (11 for each SC). The average of these 46 values (feature 

vector) across subjects was used in a K-means machine to learn the most common SCDP 

patterns among the studied grayordinates. These feature vectors were also normalized to 

avoid any bias towards a particular feature. We decided to include the gradient values to 

emphasize depth-dependent changes in correlations. 

We excluded cerebellum grayordinates before running the clustering over the 

dataset since the descriptive data showed that the histogram of the SC-cerebrum 

correlations has a different median and shape compared to the histograms of the SC 

correlation with the cortex and the midbrain. The fact that the k-means result would be 

affected by the correlation magnitudes due to the nature of the chosen features suggests 

that any magnitude bias might impose a change in the final structure of the clustering 

outcome. 

The initial number of clusters on each hemisphere was specified based on the 

clustering dispersion and the clustering error probability. Clustering dispersion is the 

summation of the euclidean distances between each grayordinate feature vector and the 

mean feature vector of the cluster that the grayordinate belongs to. In case of having the 

discriminative features properly chosen the dispersion value would constantly decrease by 

increasing the number of clusters (k) until it converges to zero as k becomes equal to the 

number of data points. On the other hand, the clustering error probability keeps decreasing 

when the number of clusters decreases. As described, each measure alone suggests 

choosing a k value at one or the other end of the possible range of values; however, this 

contradictory behavior provides a rather descriptive hint to choose an optimal value for the 

k. 
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To better estimate the optimal k value, we randomly divided the dataset into five 

groups of 33 subjects and ran the clustering for each group, on by one. Clustering error 

probability measures the chance of a single grayordinate not falling into the same cluster 

in all five repetitions. We calculated these two measures for each k between 1 to 20 and ran 

the clustering for the grayordinates on the left and the right hemispheres, independetly. 

After choosing the optimal number of clusters, k-means was conducted over the 

entire dataset average feature vectors. Since the clustering is done for each hemisphere 

independently and the resulting labels are not concordant, we used the Dice coefficient to 

find the most similar clusters on the left hemisphere to each cluster on the right side and 

then assigned each pair a same label. 

3.2.7.2  Clustering reproducibility 
To evaluate the reproducibility of the clustering results, we randomly selected 60 

subjects out of 170 and reapeated that thousand times. Then we carried out clustering for 

every 1,000 samples with the chosen optimal number of clusters for each hemisphere. At 

the end of each run, the resulting clustering labels were matched to the original labeling. 

Eventually, we calculated the clustering reproducibility probability for each grayordinate 

by counting the number of times that a grayordinate fell into the original cluster. 

We evaluated the contribution of the features to form the clustering outcome by 

conducting the same clustering procedure for the entire dataset by limiting the features once 

to the correlation values and then to the correlation vectors gradient. The comparison 

between the resulting clusters helps to understand whether the clustering uses the 

information from both the correlation and the gradient values to calculate the clusters or it 

is relying upon only one of these two vectors; Knowing  that has a fundamental effect on 

the interpretation of the estimated sub-networks. 

As the dataset under study is acquired in the resting-state, the SC functional sub-

networks would share characteristics with the underlying global functional networks at the 

resting-state. Similarly, the outcome of data-driven analysis of any geometrically alike 

ROIs might be quite similar to the geometry of the well-known resting-state networks. To 

address the concern of the SC sub-network genuineness, we preserved the geometrical 

shape of the original ROIs and placed them symmetrically within the thalamic area, and 

performed the clustering for the newly calculated depth profiles. Any noticeable change in 

the clustering result for the new ROIs is a prove of the association between the ROIs' 
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location and the resulting clusters. 

3.3  Results 

3.3.1  Functional Connectivity Networks 
We performed seed-based grayordinate-wise functional connectivity analyses for 3 

ROIs depicting 3 anatomical zones of SC for both the right and the left hemispheres. This 

resulted in 6 whole-brain connectivity maps. The resulting maps represent the functional 

networks in which each SC anatomical layer takes part in. The voxel size of the images 

used in this study is 1.6mm isotropic where the approximate width of the first two layers 

of the SC is 1 mm each. As a result, the content of the mid-layer would be the weighted 

summation of the three actual anatomical layers of the SC. Thus, instead of using the term 

intermediate layer, we would refer to the middle ROI as the transition layer. Indeed, the 

signals within the first and the third layers are not purely coming from the superficial and 

the deep layers and each has a share of the information within the intermediate SC. 

Consequently, the apparent resemblance between the transition layer connectivity map and 

the two other layers map was very much expected. The important question here is, how 

much of the information within each layer is being smeared out with the adjacent layers 

signals. Looking at the results of the paired t-test between ipsilateral layers connectivity 

maps show the areas in which the functional connectivity effect is more pronounced for 

one layer comparing to another (Figure 3.2). Our results show that the more superficial the 

layer is the stronger effect it has, in a way that no layer shows a stronger effect than its 

higher layers in any brain region. The interpretation of this finding is not necessarily that 

we do not have any unique information in deeper layers. It seems by traveling to deeper 

layers, the functional correlations get smaller. This can happen because of the reduced SNR 

as the density of the cell bodies decreases by depth. Thereby it might not only be the quality 

of the data that results in lower correlation values to the depth of SC, but also the intrinsic 

characteristics of the region with less dense neuronal endings which result in less 

pronounced effect size. 
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3.3.2  Depth effect 
The analogy between the functional connectivity maps of different layers raised the 

question of whether the FCN of SC layers is carrying unique information, and if yes, does 

a set of correlation values from SC layers to a single grayordinate tells us about the 

functional characteristics of that neural unit. 

To trace the depth-dependent correlation changes for each grayordinate, we 

spatially up-sampled the original functional data at the SC location by decreasing the voxel 

size to isotropic 0.7mm using a spline interpolation. We have chosen 0.7 mm since the 

simultaneously acquired anatomical scans had an isotropic resolution of 0.7 mm. One 

essential assumption is that the transition between new SC layers is rather smooth without 

any unpredictable changes in the signal behavior. This must hold since every new layer is 

still representing one layer or the combination of the 3 anatomical layers of SC. 

After calculating the functional connectivity for all 12 layers for each SC, we 

calculated repeated-measures ANOVAs for each grayordinate, separately for the left and 

the right SCDP to figure out whether a significant depth-dependent correlation effect exists 

at the grayordinate level. Corrected for FWE, we created an F-map for each SC that shows 

grayordinates with significant fluctuations in their SCDP (Fig. 3.3). We observed 

significant variations of vertex-wise correlations with 12 SC ROIs across occipital, parietal, 

temporal, and frontal cortex. Significant effects were absent in the middle and anterior 

Figure 3.2 - 3 left SC layers ROI cortical correlation z-score paired-sample t-test for testing the connectivity values against 
the distribution of each subject’s average SC-CSF connectivity z-scores. 
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temporal lobe, the inferior and dorsal frontal cortex, and the lateral inferior parietal cortex. 

The areas with a significant depth effect are pretty identical to the areas which have 

a significant correlation with at least one of the SC layers from the FC maps (shown in 

Figure 3.2). For the left SC 96.3% of all grayordinates were also significant in the FC maps 

(see section 3.3.1 and Figure 3.2), i.e. showed a positive correlation significantly above 

CSF baseline correlations. This means 3.7% of all grayordinates showed a significant 

variation in correlation values with ROIs in different depths of the SC, but did not have a 

significant correlation above the CSF baseline and the FC analysis. On the other hand and 

on the right SC, 92% of all grayordinates were also significant in the FC maps; while, the 

ratio of the grayordinates with a significant correlation to at least one of the SC layers, and 

a significant depth effect was 0.95 for the left SC and 0.986, for the right SC.  

3.3.3  SCDP Clustering 
To further investigate the influence of the SCDP pattern of each grayordinate and 

search for cortical areas of similar SCDP patterns we used k-means clustering of 

grayordinate-wise SCDPs. 

A general, gradual correlation reduction with increasing depth was the most 

prominent characteristic among the majority of the grayordinates’ SCDPs. First inspections 

showed that variation of the rate of this general, gradual decrease of correlation coefficients 

provides important distinctive information. Therefore, we added SCDP gradients to each 

profile to create the feature vectors required to learn the properties of the clusters by k-

means algorithm. To make the selection of a proper value for the number of clusters ‘k’ 

more objective, we repeated the clustering of the grayordinates for each hemisphere 20 

Figure 3.3 - F-maps corrected for family-wise error (𝛼𝛼<0.05) showing significant depth-dependent correlation effects, 
both for the left SC (left) and the right SC (right) 
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times, changing the k value from 1 to 20 and calculating the clustering dispersion (Fig. 3.4) 

and the clustering error probability (Fig. 3.5). We chose k=6  as a number of clusters to be 

calculated on each hemisphere since it is on the mid way to the location of the elbow of the 

clustering dispersion plot (k=4) and the location of the lowest accumulative clustering 

error. The reason that we selected the same number of clusters for both hemispheres is that 

there is no evidence supporting the existence of any functional lateralization of either SC. 

By initializing our k-means algorithm we avoid inducing artificial lateralization into the 

final result. 

 

 

Figure 3.4 - Cluster dispersion plot shows how the mean distance from the cluster centroids decreases by 
increasing the value of  k. for the left and the right hemispheres the elbow locations are at  (k=3) and (k=4), 
respectively. This means that k values below those numbers are not recommended. 
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By selecting the initial number of clusters, we ran k-means clustering on the entire 

dataset to identify the main functional networks on each hemisphere based on the updated 

connectivity profiles. To make the labels concordant between the two hemispheres we 

made use of the dice coefficient to find the pairs of contralateral clusters which share the 

largest number of grayordinates. In the following we describe the functional clusters 

identified by these procedures (Fig. 3.6), we refer to the Glasser multimodal parcellation 

(Glasser et al., 2016) in the labeling of cortical areas: 

Cluster #1: This cluster completely overlapped with areas with no significant FC 

and/or depth effects in the preceding analyses. It mainly comprises areas from the lateral 

temporal gyrus, including the temporal polar cortex, inferior temporal gyrus, inferior 

temporal sulcus, and the middle temporal gyrus, excluding PHT. Furthermore, patches of 

the left frontal cortex belonging to areas 44 and 45 represented one of the few asymmetrical 

patterns from our clustering outcome. Patches of grayordinates on the right anterior 

Figure 3.5 - The Mean error probability plot reveals the probability of inconsistent clustering increases by 
increasing the value of k. k=6 seems to be a suitable value to be far enough from the elbow values of the last 
figure and low enough to have proper mean error probability on both hemispheres. 
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superior temporal gyrus were also appended to this cluster. Orbitofrontal cortex (OFC and 

pOFC), along with areas 25, s32, and 10v, representing the tip of the anterior cingulate 

cortex and also lateral and anterior parts of area 47 and a stripe on the dorsolateral prefrontal 

cortex (DLPFC) including SFL and 8BL were parts of cluster 1. In the subcortical volume, 

the posterior head of the caudate nucleus and lower section of the globus pallidus, as well 

as the entire amygdala, were the prominent nuclei included in this cluster. 

Cluster#2: This cluster was composed of the lateral and medial parts of the 

secondary visual cortex, ventrolateral intraparietal cortex (LIPv), FEF, left PEF, the 

supposed trunk representation in areas 1 and 2, and the upper limb representation of areas 

3a and 3b of the primary somatosensory cortex. It included parts of the posterior cingulate 

area together with parietal areas 5mv and 7Am, the medial section of the hippocampal area, 

right substantia nigra, and LGN. 

Cluster#3: This is one of the largest clusters in terms of the surface area and, like cluster#1 

it mainly comprised areas that had no or marginally significant FC or depth effects. It 

covered auditory association areas including A4, A5, TA2, and the superior temporal sulcus 

on both hemispheres, except for the anterior parts on the right side. This cluster also 

overlapped with the medial parts of the inferior parietal areas including anterior parts of 

PGs and PGi, PFm and posterior PF, large portions of the DLPFC (8C, 8Av, i6-8, s6-8, 9p, 

9a, 8Ad, p9-46v, a9-46v, posterior 46, and anterior 9-46d), supplementary motor areas 6ma 

and 6mp, premotor areas 6v, 6r, 6a and 6d, frontal opercular areas FOP2 and FOP3, 

posterior, middle and anterior ventral Insular (PoI1, PoI2, MI and AVI), areas 10r, 10d, 

a10p and p10p, area 24dd, Peri-Sylvian Language area (PSL), area 55b and finally upper 

and lower limb areas of the primary motor cortex and the upper limb area of the primary 

somatosensory cortex 3a. The upper part of the Globus Pallidus, as well as Putamen, is part 

of the subcortical portion of this cluster. It comprises the entire area of the upper putamen 

and ends up in the middle section of the lower putamen.  
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     Cluster#4: is yet another extensive cluster that unlike cluster 3 was located in areas with 

significant FC and depth effect. The entire TPOJ2-3 and the superior temporal visual area 

(STV) were part of this cluster. The MT+ complex (MT, MST, FST, and V4t) was divided 

between clusters 2, posteriorly, and cluster 4 anteriorly. Ventral stream visual cortex was 

Figure 3.6  - Clustering divides the brain (Cortex on top, sub-cortex below) into 6 areas separately on the right and the 
left hemispheres 
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another complex being divided between clusters 2 and 4 where cluster 4 included the larger 

portion of the Fusiform Face Complex (FFC), Ventral Visual Complex (VVC) and the 

Ventromedial Visual areas 2 and 3 (VMV2-3), while V8, PIT complex and VMV1 were 

located mostly in cluster 2. Cluster 4 also comprised areas from the medial bank of the 

intraparietal sulcus (MIP, LIPd, and AIP), as well as IP1 on the lateral bank of the 

intraparietal sulcus and partially IPS1. Areas 5L and 5m together with the cingulate motor 

area 24dv and area 7PC and PFt complex were further parts of cluster 4. The primary 

somatosensory cortex belonged almost entirely to cluster 4, excluding the presumed trunk 

representation and presumably neck and shoulder representations for most of area 3a, 3b, 

and partially for area 2. The upper limb area, however, was not part of the area 3a, and the 

primary motor cortex contribution to cluster 4. The lower limb and parts of the trunk 

representation of the primary motor cortex were also not part of this cluster. Besides, the 

entire posterior opercular cortex (43, FOP1, OP4, OP1, OP2-3, and PFcm) and parts of the 

early auditory cortex, including the A1 lateral belt (L-Belt) and the retro-Insular cortex (RI) 

are parts of cluster#4. We also found patches in Anterior Cingulate and Medial Prefrontal 

Cortex, as well as Supplementary and Cingulate Eye Field (SCEF). The premotor and 

frontal eye fields as well as area 6a also shared some areas with cluster 4. This cluster also 

covered large portions of the lateral and anterior parts of the hippocampus. The last and 

possibly one of the most interesting parts of this cluster was located in the middle section 

of the posterior and anterior parts of the inferior frontal sulcus and inferior frontal junction 

together with areas 8C and p9-46v, covering an area ranging from the inferior frontal gyrus 

to middle frontal gyrus. This cluster had no significant subcortical components. 
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Figure 3.7  - Thresholded probability maps overlayed on top of the clustering result map. Shaded areas show locations 
where the chance of reproducing the clustering result was less than 85% (top) or 50% (bottom). 
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Cluster#5: The most noticeable area assigned to this cluster is the foveal part of the 

primary and the secondary visual cortex. Cluster 5 also included a major part of the 

posterior cingulate cortex, except for the dorsal visual transitional cortex and the prostriate 

cortex, and the posterior cingulate visual area. Parietal-occipital sulcus and the medial part 

of area 7 were included in this cluster. Scattered parcels were located in the anterior 

cingulate cortex, superior frontal gyrus, and the posterior part of areas PGs and PGi which 

together with the posterior cingulate areas are forming the default mode network. The trunk 

representation of area 3b was also a fragment of this cluster. There was a comparably large 

and complex network of subcortical volumes appended to cluster 5. This included a sizable 

portion of the caudate nuclei, mostly toward their head sections. Anterior and posterior part 

of the lower putamen, anterior thalamus, and ventral parts of the mid-brain, including left 

substantia nigra and the red nuclei. 

Cluster#6: This last cluster was mainly made up of the primary visual cortex 

extending from the parafoveal visual area to the peripheral visual cortex. There were also 

blobs in the adjacency of the foveal part of V2 and V3 and the posterior cingulate visual 

areas which were more accentuated on the left hemisphere. This cluster also had major 

subcortical components. These included reticular formation, the inferior colliculus, and the 

entire thalamus except for its anterior parts and dorsal and lateral sections of the inferior 

thalamic areas. 
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Figure 3.8  - Entropy map which shows the chance of clustering result replication for each grayordinate running the k-
means clustering after random selection of subsets of 60 subjects for 1000 times and matching the resulting cluster 
numbers to the original full set clustering result (shown in Fig. 3.6). 
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3.3.4  Characteristics of identified clusters 
The clustering was run over the normalized extended feature vectors of each 

grayordinate. K-means clustering tries to gather the most similar grayordinates regarding 

their SCDP. This implies that K-means maximizes the distance between the clusters’ mean 

feature vectors or so-called centroids based on a cost function, which in this case is the 

euclidean distance. Therefore, looking at the centroids vector reveals how the algorithm 

has formed the clusters and how much different each cluster is from the others. However, 

the normalized vectors do not tell us about the true origin of the differences. To understand 

the cluster members' profiles we need to look at their non-normalized centroid vector. 

(Figure 3.8) shows the original clusters’ centroid vectors. Due to the different value ranges 

of correlation coefficients and their gradients, each set of values is shown in a separate 

panel although both groups of values belonged to the same centroid vector. For both panels, 

the first twelve correlation values, respectively first eleven gradient values refer to the 

ipsilateral SC, the following values refer to the contralateral SC. As such, the left plots 

belong to the left hemisphere clusters and the plots on the right side show the centroids 

vector for the right hemisphere clusters. The correlation vectors are shown at the plots on 

the top row and the gradient vectors are on the second row. 

The SCDPs of corresponding clusters in the ipsilateral and contralateral 

hemispheres were pretty similar. At the first glance, SCDPs from different clusters also 

Figure 3.9 - Cluster profile plots showing the mean grayordinate (centroid) correlation depth profile (top) and the gradient 
of the depth profile (bottom) for the left SC (left panels) and the right SC  (right panels). In each plot in the top row, the 
first 12 values are the centroids correlation with twelve ipsilateral SC ROIs and the second 12 values are the centroids 
correlation with twelve contralateral SC ROIs. The bottom plots can be interpreted in a similar way. 
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resembled each other with the magnitude of the correlation values across different depths 

being the main difference. The highest correlation always occurred in the superficial ROIs 

and then it declined with increasing depth. The gradient profiles added substantial 

information to these correlation profiles, showing that the steepness of correlation values 

decreases with depth varied considerably between clusters. 

Cluster 1 stood out among the other clusters because of the lowest correlation values 

at each depth and a rather flat correlation vector with a gradient vector close to zero. 

Comparing cluster 1 SCDP to the mean CSF SCDP revealed that this profile originated 

from the fact that this cluster had no significant correlation with any of the SC depth ROIs. 

Cluster 2 showed a relatively high correlation with SC and one of the most dramatic 

changes in gradient and the second most negative local minima, i.e. a relatively sharp 

decrease of correlation values with increasing depth. This cluster together with clusters 3 

and 4 showed an increase from the first to the second SC depth on both ipsilateral and 

contralateral sides. Cluster 3, pretty similar to cluster 1, had a very low correlation to the 

SC with not much of an alteration across layers. This pattern once again is pretty much 

comparable to the CSF SCDP behavior, just barely exceeding CSF correlation values. The 

correlation vectors of clusters 4 and 5 were very similar in their values, while they had 

different gradient characteristics. Cluster 4 maintained the same negative correlation 

reduction rate, thus it fell continuously with the SC depth. Cluster 5 gradient, however, got 

close to zero from the intermediate to the deeper ROIs, i.e. the correlation values in the 

intermediate and deep ROIs were similar. Finally, cluster 6, which was located at the 

parafoveal primary visual cortex and in the thalamic nuclei, had the highest correlation 

values among all clusters, while exhibiting the highest reduction rate and also the fastest 

gradient recovery. 

3.3.5  Features Contribution 
The observed distinction between the clusters, looking at their correlation levels in 

(Figure 3.9) raised this question, whether it id possible to obtain the same clustering results 

after exclusion of the gradient features. The clustering outcome would then mostly reflect 

the general magnitude of correlations between the whole SC and other areas and structures 

with little if any influence of depth-dependent effects on the clustering outcome. 
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(Figures 3.10 and 3.11) show how the changes in the reduction rate play an 

important role in forming the clusters. While the general reduction pattern might be 

associated with the underlying anatomy, the gray matter density, the ratio of connections 

Figure 3.10 - Maps above show the clustering result when using the correlation depth-profile only (without its gradient). 
The same procedure suggests (k=8) on each hemisphere. 



 
 52   
 

to different sub-networks, or even an inhomogeneous signal acquisition, the differences 

between the clustering results with and without the gradient features confirm that it matters 

how this reduction rate behaves.  

 

Figure 3.11 - Maps above show the clustering result when using the correlation depth-profile gradient only (without 
correlation depth profile). The same procedure suggests (k=7) on each hemisphere. 
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3.3.6  Specificity of SC depth-related clustering 
Using thalamic ROIs (Figure 3.12) instead of anatomically informed SC depth 

ROIs resulted in a dramatic change of the previously reported clusters. (Figure 3.13) shows 

the shape of the thalamic clusters where all the clustering analysis parameters were kept 

the same as in the original run with SC depth ROIs. 

The similarity between the maps for the clustering result using the thalamus and SC 

ROIs is striking at the first glance. the parafoveal area delineation, the ventral attention area 

on the medial surface, and the cluster including somatomotor areas all share similarities 

with clusters 6 and 4. Nevertheless, the segmentation of the primary visual area on thalamus 

clustering could be expected. Despite the similarities between the Null-correlation clusters 

of the SC sub-networks map (1 and 3) and the clusters including similar areas on the 

thalamus sub-networks map (red and green), we observe a large overlap of those thalamus 

map clusters with clusters of significant correlation in the SC map. Such inconsistencies in 

the organization of the anatomical areas into the sub-networks in two maps refute the 

possibility of replicability of the clusters. 

The physiologically plausible structure of the thalamus clustering map and the 

analogy between the SC and thalamus clustering results do not come as surprise. The semi-

random placement of the SC ROIs within the thalamus results in the superposition of 

signals from adjacent thalamic areas. Therefore, the resulting ROI signals are quite 

structured and likely to show a significant correlation with various brain functional areas. 

Figure 3.12 – Thalamic ROIs 
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A realistic expectation from the clustering algorithm is to reorganize the resting-state 

networks and functional sub-units in a way that it expresses the distinction of the functional 

roles of the ROIs. The unique details in the way that the clusters are organized in each case 

reflect the functional capacity of the ROI that the clustering result is directed by. The 

coverage of the peripheral vision areas and the oculomotor system in cluster 2 of the SC 

clustering and the salient delineation of the inferior frontal gyrus/sulcus and the STV in 

cluster 4 are examples of such distinctive details. 

Figure 3.13 - Maps above shows the clustering results for the relocate ROIs in thalamus. 

Figure 3.14 – Comparison between the clusters for the ROIs in thalamus (left) and the ROIs in SC (right) from the 
posterior view. 
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3.4  Discussion 

3.4.1  Functional connectivity 
The FCN from 7T data resembled very much the results that we previously obtained 

from the 3T data. In the previous chapter, we illustrated the complete cortical, subcortical, 

and cerebellar functional connectivity network of the human SC. The higher number of 

subjects and more importantly, higher SNR of the 7T images increased the analysis 

sensitivity to the degree that the slightest pattern, even those from the undesirable structured 

noises are being captured to some extent. We used the correlation between SC and the CSF 

as a baseline estimate to eliminate the effects of the unstructured noises. However, 

conventional statistical inference is not sufficient to discriminate between the true-positive 

results and false alarms because of spurious noise correlations when we are dealing with 

such a large dataset and a weak signal from a minuscule structure. As a consequence, any 

deduction from the current outcome must be partially based on scientific judgment. 

Looking at the functional connectivity maps indicated that correlation values per se 

did not reflect the underlying functional properties of the SC layers, however, slight 

differences in their general FCN patterns were evident. This means although the correlation 

values are descending with depth, the reduction rate was not the same in all areas. In other 

words, the level of deep SC contribution to some functional networks was preserved while 

its presence in other networks faded. 

3.4.2  SC functional brain networks 
Cluster 1 together with cluster 3 included major areas of the inferior, medial and 

lateral temporal cortex, auditory association cortex/ superior temporal areas, insular cortex, 

inferior parietal cortex, Brodmann areas 2, and 3a upper limb as well as area 4 upper limb 

w.o. hand and lower limb, premotor cortex, paracentral lobule, anterior and midcingulate, 

medial prefrontal cortex and DLPFC, and inferior orbital and polar frontal cortex. 

According to (Figure 3.8), these two clusters show CSF-like behavior and they are neither 

associated with any significant depth effect nor any significant correlation with any layer 

of SC. 

Cluster 2 had a very neat delineation of the areas which are known to be part of the 

oculomotor system. It included the entire FEF on the right and the superior FEF on the left 

side associated with saccades and smooth pursuit (Rosano et al., 2002) where the inferior 

FEF becomes activated by combined eye and head movements (Müri, 2006), ventral LIP 
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and the VIP were other areas included in the cluster 2 map. These two areas are located in 

the area called the parietal eye field (Müri, 2006; Müri et al., 1996; Van Essen et al., 2001). 

The parietal eye field is involved in triggering of reflexive saccades to suddenly appearing 

peripheral visual stimuli (Pierrot-Deseilligny, Milea, & Müri, 2004) which becomes more 

interesting when considering that the parieto-occipital junction labeled as V6 and V6A, 

lateral posterior area 7 (7PL) posterior IPS and only the peripheral V1 together with the 

peripheral visual areas of the secondary visual cortex (V2, V3, and V4) were the other parts 

of this cluster. POJ and the sections of the visual cortex perceiving the peripheral vision 

were identified as a part of the network responsible for peripheral reaching (Prado et al., 

2005). The same locations, namely the posterior area 7 and the posterior IPS were also 

claimed to be a part of the peripheral reaching module (Martin, Karnath, & Himmelbach, 

2015). Besides all the aforementioned, cluster 2 covers PreCuneus Visual Area  PCV and 

area 5mv. The trunk section of the primary somatosensory cortex areas 1, 2, and 3a, as well 

as a fragment of the trunk area in the primary motor cortex, also belonged to this cluster. 

Another interesting observation was that the pro-striate cortex (ProS) was also detected as 

a part of the cluster 2. This area was repeatedly described as a fast responder to moving 

stimuli in the peripheral visual field (Mikellidou et al., 2017; Rockland, 2012; Yu, Chaplin, 

Davies, Verma, & Rosa, 2012), which is in line with the other cluster members 

functionality. It is not coming as a surprise that the magnocellular LGN is also another part 

of the cluster; a low latency part of LGN which distributes the essential and basic 

information of the preceived image (Cheng, Eysel, & Vidyasagar, 2004; Jeffries, Killian, 

& Pezaris, 2014). Interestingly, the clustering algorithm put the MT+ complex and the 

superior temporal visual area (STV) into a different cluster. We know from the literature 

that the MT+ and the STV are parts of the ventral-dorsal pathway processing complex 

visual motion related to locomotion and pursuit (Lappe, Bremmer, Pekel, Thiele, & 

Hoffmann, 1996; Nassi & Callaway, 2009; Siegel & Read, 1997). MT, in particular, does 

not respond to peripheral motion (Huk, Dougherty, & Heeger, 2002). All shreds of 

evidence are pointing at the fact that cluster 2 is pretty much involved in the fast perception 

of peripheral visual field stimuli as well as the trunk sensory input and triggering the 

commensurate trunk and eye movement. It is noteworthy that the dorsal visual transitional 

area (DVT) is also located in this cluster, but it is not much known about it since it is a 

newly defined area. The speculation is that it plays an important role in planned 

movements, spatial reasoning, and attention (Baker, Burks, Briggs, Conner, Glenn, Sali, et 

al., 2018). 
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Cluster 4 is a combination of functionally diverse areas. One patch located anterior 

to the occipital cortex comprises parts of the ventral-dorsal stream and the ventral stream 

pathways; these two complexes help with the object recognition and analyzing the location 

and the trajectory of moving objects (Ajina, Kennard, Rees, & Bridge, 2014; Katsuyama, 

Usui, & Taira, 2016; Strong, Silson, Gouws, Morland, & McKeefry, 2016). Anterior to this 

patch we have the TPO junction and the STV; these are cortical multimodal integration 

units, being involved in a variety of cognitive functions including visuospatial recognition, 

working memory, musical memory, and face and body recognition (Baker, Burks, Briggs, 

Conner, Glenn, Taylor, et al., 2018; De Benedictis et al., 2014). Another more extensive 

patch of cluster 4 expands from the lateral parietal lobe, anterior to the lateral secondary 

visual area, to the anterior cingulate cortex and medial prefrontal areas. It covers a manifold 

of areas in between, such as vast areas of the primary sensory-motor cortex, premotor area, 

insular, and orbitofrontal cortices. Area PFt being located on the posterior bank of the 

postcentral sulcus is important in grasping objects under visual guidance (Mars et al., 

2011). This region is also activated when individuals observe the use of tools to move 

objects (Passingham, Chung, Goparaju, Cowey, & Vaina, 2014). The same is true for area 

PFop, plus this latter is also involved in motor planning and action-related functions (Mars 

et al., 2011). Area IPS1 on the posterior, superior bank of the intraparietal sulcus, has shown 

to be important in mentally visualizing the process of grasping objects as well as action 

associations and object function (Mruczek, von Loga, & Kastner, 2013). Likewise, area 

AIP is involved in shaping the hand for visually guided grasping activity, as well as object 

recognition (Fogassi et al., 2001; Galletti & Fattori, 2018). LIPd, located centrally on the 

superior bank of the intraparietal sulcus, is implicated in the control of attention and eye 

movements (Grefkes & Fink, 2005). Another area on the parietal cortex which is also part 

of cluster 4 is MIP. This region is found in the posterior portion of the superior bank of the 

intraparietal sulcus and is involved in the control of arm-reaching movements and grasping 

(Galletti & Fattori, 2018). It receives proprioceptive signals (Prevosto, Graf, & Ugolini, 

2009), transforms visual information into motor action for precise movement, adjusts 

reaching movements, and corrects movement errors (Grefkes & Fink, 2005). MIP together 

with area 5L has the lowest clustering reproducibility chance among regions belonging to 

cluster 4, which nevertheless, is over 60% on average. Cluster 4 covers almost the entire 

somatosensory cortex, except for certain areas belonging to the upper limb region of area 

2 and 3a. We cannot confirm to what extent the upper limb was excluded, but a comparison 

with motor task studies suggests it to be arm and hand areas. Meanwhile, the trunk areas of 
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the entire somatosensory and motor cortex are also kept out of this cluster. At the motor 

cortex, the lower limb is also excluded as well as almost the entire upper limb and a small 

section of the trunk area. Operculum areas that are known for integrating sensory responses, 

especially tactile information into motor actions were also parts of this extensive cluster. 

In addition, there is an apparent presence of the auditory cortex sections and posterior 

insular areas, involved in processing sensory inputs in a close relationship with the primary 

and the secondary motor areas (Chen et al., 2016). Areas 5L and 5m contribute to goal-

oriented hand movements like reaching and pointing, specifically when the movement is 

not based on visual cues (Scheperjans, Palomero-Gallagher, Grefkes, Schleicher, & Zilles, 

2005). Against our expectation, the premotor cortex is not part of cluster 4 or any other 

cluster with significant correlation, except for the eye fields and a part of area 6a of the 

dorsal premotor area. The precise function of area 6a is unknown. The dorsal premotor 

cortex, however, is involved in associating informational cues with a particular body 

movement. The ventral premotor area, however, is involved in more complex cortical 

functions such as when individuals learn actions or movements while observing others 

performing a task (Chouinard & Paus, 2006). Area 24dv located in the anterior inferior 

paracentral lobule has been implicated in complex motor planning and regulation of 

muscles in the upper limb and upper trunk (Vogt & Vogt, 2003). Located anterior to the 

dorsal-lateral 24 region, area p32pr is involved in stimulus and response selection in 

movement planning (Devinsky, Morrell, & Vogt, 1995). The last major patch of this cluster 

was a distinct stripe stretched along the inferior frontal sulcus and was slightly diffused into 

the MFG areas 8C and p9-46v. In the right hemisphere, this stripe starts from the premotor 

eye field. IFJ is known to be associated with cognitive control, goal-directed and stimulus-

driven attention, and feature-based attention which is necessary for identifying an 

attentional target in a complex scene (Asplund, Todd, Snyder, & Marois, 2010; Brass, 

Derrfuss, Forstmann, & von Cramon, 2005; Sundermann & Pfleiderer, 2012; Zhang, 

Mlynaryk, Ahmed, Japee, & Ungerleider, 2018); as well, the MFG areas are involved in 

interpretation of complex visual information and attention and goal-directed higher-order 

cognitive processes (Nitschke, Köstering, Finkel, Weiller, & Kaller, 2017; Petrides, 2005; 

Reser et al., 2012). 

The functional properties of the areas in cluster 4 indicated that as a network this 

cluster is the location of sensory inputs integration to assist with planning goal-oriented 

hand action. The existence of such a network in association with SC had been suggested in 
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animal studies (Borra, Gerbella, Rozzi, & Luppino, 2017; Borra et al., 2012b; Mikulić, 

2010; Song, Rafal, & McPeek, 2011), but there was no comprehensive human study that 

could thoroughly address this question that whether a homolog SC network exists in the 

human brain. Nevertheless, (Borra et al., 2017) prediction suggests the involved areas in 

the human lateral grasping network, which has many areas in common with cluster 4. 

Cluster 5 is mainly localized at the posterior cingulate cortex and medial superior 

parietal cortex. It is pretty difficult to assume a clear function for this part of the brain since 

it is involved in a diverse range of functions. Dorsal PCC plays a role in spatial processing 

and visuospatial/body orientation, while ventral PCC is suggested to be part of object 

processing in perceived and imagined stimuli (Vogt, Vogt, & Laureys, 2006). The 

precuneus portions also support a variety of cognitive tasks. The entire PCC was also 

repeatedly identified as part of the default mode network (DMN). Areas 7Al and 7Am are 

involved in space, vision shape and motion, working memory, and execution information 

processing. They are also involved in self-centered mental imagery and attentional 

processes (Scheperjans et al., 2008; Wang et al., 2015). Another noteworthy part of this 

cluster is the entire foveal area of the primary and the secondary visual cortex. The fact that 

the rest of the areas belonging to this cluster are scattered in DLPFC, orbital and polar 

frontal, and medial prefrontal cortex which all are also parts of the DMN raise the question 

of why the foveal visual cortex has been assigned to this cluster. 

The major part of cluster 6 was the parafoveal area of the primary visual cortex. 

Other patches, more pronounced on the left hemisphere, were also visible on the lower 

parafoveal representation of V2 and the V3 as well as the precuneus visual area (PCV). 

Together with nearly the entire thalamic area, it seems this cluster is representing the pure 

visual functional network of the superior colliculus which has been well-described in the 

literature. 

3.4.3  Networks SCDP characteristics 
The clusters mean SCDP or so-called centroids SCDP generally followed a 

descending trendline. They all reached their local maxima at one of the first two layers, and 

the correlation values decreased by depth, afterward. What made the centroids SCDPs 

distinct were the averages of their correlation values across the depth and the steepness of 

correlation value changes from one layer to the next. A comparison of the centroids SCDP 

correlation values suggested that the same results might be obtained by feeding our 
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clustering algorithm only the correlation values and leaving the gradients out. However, 

conducting the same analysis on this suggestive feature set led to a different outcome, with 

a different spatial distribution of clusters and accordingly, different centroids. The same 

was true using only the gradients as a feature set. Therefore, the gradient values and the 

correlation values both played an important role in the main clustering result. Therefore, 

what we observed reflected both the strength of the grayordinates functional connection to 

SC and the depth-dependent behavior of those connections. 

On the way of interpreting the clustering results, another major concern was the fact 

that the SCDPs might not reflect the true characteristics of the SC anatomy. SC is a 

midbrain structure, thus the value of the correlations is dependent on the average signal of 

the SC ROI; this value is prone to the ratio of the neuronal cell body volume to the total 

volume of an ROI. Less density might lead to smaller correlation values comparing to 

another ROI while it does not necessarily mean that the actual neural population of the first 

ROI is smaller. In our analysis, we passed the samples to the k-means clustering after 

normalizing them across subjects, so it will not be vulnerable to such anatomical 

misinterpretations. 

According to Borra et al. (2012b) macaque inferior parietal (PFG and anterior 

intraparietal [AIP]), ventral premotor (F5p and F5a), and ventrolateral prefrontal (rostral 

46vc and intermediate 12r) areas are parts of a network involved in controlling purposeful 

hand actions, which is pretty similar in function to cluster 4. We do not know the exact 

homolog of all these areas in humans. However, cluster 4 included areas that indicate the 

corresponding regions e.g. PEF in ventral premotor, IFJ, IFS, and p9-46v in the lateral 

frontal area as well as AIP. All of these areas were predicted as the possible human 

counterparts of the nodes of the macaque lateral grasping network (Borra et al., 2017). It 

was shown that injecting a tracer into these macaque brain areas would project onto 

intermediate and deep layers of SC (Borra et al., 2012b). The abovementioned can be a 

probable explanation of why we observed a correlation elevation in the second layer 

relative to the other clusters centroids SCDP. Table 3.1 shows a summary of a study by 

Fries (1984b). It shows the connection between layers of the SC and the Brodmann areas 

in which they could find labeled cells. Here X means the connection is exclusive and XX 

means that the connection does not necessarily exist, because the contrast was not 

exclusively injected to that specific layer. This table suggests that the clusters which do not 

have areas connected to the superficial layer must show a relatively lower correlation in 
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more superficial layers. This assumption holds as in our results, cluster 2 and 6 had the 

highest correlation values in superficial layers. On the other hand, cluster 4 had the lowest 

correlation value in the superficial layers among the clusters with significant correlation 

levels. This cluster included areas which only have connection to the deep SC, according 

to the table. This is in line with the fact that this cluster has the lowest correlation reduction 

rate in the intermediate layers among the clusters with significant correlation value. 
 
Table 3.1 - Summary of (Fries, 1984a) results. The table demonstrates whether there is conclusive evidence for a 
connection between an SC layer and a Brodmann area (X), the connection is probable but not definitive (XX) or there is 
no connection. 

 2 6 7 8 9 14 17(V1) 18(V2) 19(V3-5) 20 ITG 21 MTG 22 STG 
Superficial SC  X  X   X X X    
Intermediate SC  XX X XX   XX XX XX    
Deep SC XX XX XX XX XX XX XX XX XX XX XX XX 

  

The pattern of cluster 6 SCDP revealed that the parafoveal visual area of V1 had an 

exclusively low correlation with the intermediate layer of the SC, while the SCDP gradient 

becomes positive in deeper areas. However, Fries study could not predict this behavior, 

accurately, their report agrees with our new findings. 
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CHAPTER 4   STRUCTURAL MAPPING OF THE HUMAN 

MIDBRAIN (SC) 

4.1  Introduction 
The brainstem is a huge neuroanatomical hub and it connects the essential parts of 

the human central nervous system. It is not only a highway of processed neural information, 

but also home to many processing and control units that regulate vital human functions 

(Nicholls & Paton, 2009), including respiration and cardio-vascular functions (Cechetto & 

Shoemaker, 2009; Faull, Jenkinson, Clare, & Pattinson, 2015; Pattinson et al., 2009; 

Topolovec, Gati, Menon, Shoemaker, & Cechetto, 2004) as well as other vital nodes of all 

functional systems in the central nervous system, such as the visual, auditory, gustatory, 

vestibular, somatic, and visceral senses, and the somatomotor pathways (Beissner & 

Baudrexel, 2014). The brainstem also contains cholinergic, dopaminergic, noradrenergic, 

and serotonergic nuclei which are essential to the regulation of arousal, behavior, and 

cognition (Florian Beissner & Baudrexel, 2014). Despite its undeniable role in maintaining 

vital nervous system functions and its involvement in many known neurological disorders, 

the brainstem remains understudied in the human neuroimaging field. Multiple factors 

make it challenging to perform imaging of the human brainstem with the current in-vivo 

techniques: its location relative to large arteries and ventricles; the small size of its 

substructures; and the fact that, unlike the cerebral cortex, in the brainstem, there is no clear 

boundary between white-matter and grey-matter (Nicholls & Paton, 2009).  

Recent technical advancements in the magnetic resonance imaging (MRI) sequence 

development field and the increased availability of high-field MRI scanners opened a new 

door into the study of the human brainstem anatomy. However, because the tissue magnetic 

properties of the human brainstem are still not fully known, the MRI sequences currently 

available are not optimally developed to capture the brainstem topology. Consequently, the 

acquisition of multi-modal MR imaging is essential to build a more comprehensive map of 
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the human brainstem anatomy and its underlying tissue architecture. In particular, there is 

an increasing interest in the acquisition of quantitative MR imaging sequences, which allow 

more precise mapping of the tissue architecture. The most widely used quantitative 

sequences for brain anatomy mapping are R1, R2*, diffusion imaging, and quantitative 

susceptibility mapping (QSM) while the sequences used to acquire each of these modalities 

are varying among different articles (Iglesias et al., 2015; Sclocco, Beissner, Bianciardi, 

Polimeni, & Napadow, 2018; Soria et al., 2011; Straub et al., 2019; Weiskopf, 

Mohammadi, Lutti, & Callaghan, 2015).  

The midbrain, or mesencephalon, as the most rostral part of the brainstem, sits 

above the pons and is adjoined rostrally to the diencephalon. The principal regions of the 

midbrain are the tectum, the cerebral aqueduct, tegmentum, and the cerebral peduncles. 

The tectum is comprised of the inferior and superior colliculus (SC). The tegmentum (Latin 

for "covering") is the phylogenetically-old part of the brainstem and runs through the pons 

and medulla oblongata and located ventral to the cerebral aqueduct. In the adult brain, it 

contains most of the brainstem nuclei. Cerebral peduncles are placed anterior to the 

tegmentum and are composed of large tracts that run to and from the cerebrum. The crus 

cerebri usually refers to the most anterior, semilunar shaped bundle of white matter fibers 

in the midbrain, including the corticospinal tract centrally (3/5 intermediates) as well as the 

corticopontine (fronto-pontine and temporo-pontine fibers) and corticobulbar tracts. The 

substantia nigra is located anterior to the crus cerebri, and the mesencephalic tegmentum is 

posterior to that. "Cerebral peduncle" is commonly used synonymously with the crus 

cerebri alone, but most traditionally refers to the cylindrical shaped combination of the crus 

cerebri, substantia nigra, and tegmentum (Hirsch et al., 1989; Standring, 2015). The 

cerebral aqueduct surrounded by the periaqueductal grey (PAG) are other structures within 

the midbrain. 

The brainstem nuclei are densely located adjacent to each other which induce 

several challenges at the image processing level. In particular, relatively small errors in the 

co-registration procedure can lead to increased variance or decreased sensitivity in structure 

detection (Napadow, Dhond, Kennedy, Hui, & Makris, 2006). Additionally, low sharpness 

at the sub-structure borders makes the co-registration step more challenging, specifically 

for the nuclei far from the surface and deep within the brainstem. Napadow et al. (2006) 

developed co-registration algorithms optimized to be used in the brainstem and its nuclei. 

Nonetheless, besides high-quality images and efficient registration technics, novel 
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quantitative approaches to deduct complex dependencies out of MR images, are still 

required to better understand the biological underpinnings of MR contrast and brainstem 

tissue architecture. Modern segmentation methods founded upon deep learning algorithms 

are powerful toolkits to produce homogeneous results based on the feature space they have 

been trained over. By building a smart feature space we can improve our learning function. 

In particular, for the case of structural MR image segmentation, it is possible to define 

various features related to the voxels intensity or its spatial position which intuitively are 

capable of characterizing brainstem sub-structures. Deep networks are capable of coming 

up with a linear or nonlinear combination of the original handcrafted features that best 

characterize the midbrain structures and discriminate between each of them. Consequently, 

this approach might enable us to distinguish between two unrelated sub-structures that 

share the same range of intensity or are in close vicinity of each other. One effective way 

of controlling the behavior of the deep network when creating the abstract representation 

of the original feature space is to use labeled data to inform the network of the desired final 

result That means the network needs ground truth labeled data to optimize the network 

weights and biases to learn how to assign each observation to the corresponding label, as 

each observation is characterized by the original hand-crafted feature space. Despite the 

benefits that a labeled data offers, it could also bring in disadvantages or have certain 

shortcomings. Labeled data needs to be prepared by a specialist using the original dataset, 

or needs to be adapted from the current existing atlases. Both of these methods would 

introduce human-induced or analytical bias in the analysis. Fully unsupervised clustering 

can detect any homogenous physical pattern within the data without being prone to the 

abovementioned biases. Inspired by many successful applications of deep learning in both 

supervised and unsupervised problems, many of the recent works on clustering are utilizing 

deep neural network ideas to improve the feature representation simultaneous with the 

clustering results. This pairing is commonly referred to as deep clustering (Min et al., 

2018). The number of recently developed deep clustering algorithms is immense, but the 

entire deep clustering procedure is defined by three choices: 1) selection of the neural 

network architecture, 2) selection of the loss function, and 3) choosing the performance 

evaluation metric. However, the use of deep learning is becoming more prevalent in MRI 

studies, yet the application of that has remained limited in human brain segmentation, and 

especially in brainstem areas (Litjens et al., 2017). Among all deep clustering methods, 

deep embedded clustering (DEC) (Xie, Girshick, & Farhadi, 2016) is one of the first yet 

novel algorithms that attracted attention toward the application and implementation of deep 
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neural networks in unsupervised learning (Min et al., 2018). 

In a previous study, it was shown that it was possible to identify unique features in 

quantitative MRI data acquired at 9.4T (Loureiro et al., 2018). However, it was also found 

that the exact boundaries of the SC are difficult to delineate. In the present work, we 

explored the possibility to exploit specific MRI-features within the human brainstem and 

use that information for tissue segmentation by the use of a deep clustering method based 

on a deep neural network and unsupervised learning approach. By using a novel approach 

that differentiated subtle features in the midbrain from multimodal high-resolution MR 

maps acquired at 9.4T, we investigated the plausibility of in-vivo human brainstem 

segmentation with a focus on the superior colliculus (SC). We optimized the algorithms in-

use to fully exploit all parameters necessary to best identify the SC, however, we could still 

recognize some other prominent sub-structures in the midbrain. Therefore, besides the SC, 

we also identified the boundaries of other midbrain sub-structures such as the substantia 

nigra (SN), red nuclei (RN), periaqueductal grey matter (PAG), and the inferior colliculus 

(IC). 

4.2  Methods 

4.2.1  Participants 
Ten subjects from the study of Loureiro et al. (2018) had quantitative MRI data 

with satisfactory coverage along the rostrocaudal axis (including both the superior and the 

inferior colliculi) age between 27 to 34 were used in the present study. 

4.2.2  MR data specification 
All measurements were conducted on a 9.4T whole-body MRI scanner (Siemens, 

Erlangen, Germany), using an in-house-built head-coil with a 16-element dual-row 

transmit array and a 31-element receive array (Shajan et al., 2012). 

Four main sequences were acquired: 1) a whole-brain MP2RAGE (Marques et al., 

2010), used to compute R1 maps (Hagberg et al., 2017); TI1/TI2=900/3500 ms; FA=4/6°; 

TR=6ms; volume TR=9 s; TE=2.3ms; 0.8 mm isotropic voxel size; GRAPPA=3; partial 

Fourier factor (PF)=6/8; and TA=9 min 40 s; 2) a zoomed 3D FLASH multi-echo sequence 

(ME FLASH), used to calculate the R2* maps; FA=5o; TR=41 ms; TE=6-30 ms in steps 

of 6 ms, 0.4 mm isotropic voxel size, GRAPPA=2; PF=6/8; and TA=13:34 min; 3) a 

zoomed acquisition weighted sequence (AW) (Budde et al., 2014a) with FA=8o, TR=24 
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ms, TE=16.5 ms, voxel size=0.132x0.132x0.6 mm³, matrix=1024x1024x16, and 

TA=14:45 min, which was processed to obtain susceptibility maps; 4) a zoomed 2D 

FLASH sequence (FLASH orient) was used for optimized slice positioning of the 

acquisition weighted sequence with FA=10o, TR=2:14 min, TE=6-42 ms in steps of 6ms, 

voxel size=0.4x0.4x1.0 mm³, and TA=14:45 min that. We optimized the TE of the AW 

sequence for higher contrast in the midbrain region and to increase stability phase values 

in this region after visual inspection of the phase evolution at different echo times, (for 

more details about the sequence parameters see (Loureiro et al., 2018)). 

4.2.3  MRI data preprocessing 
Data used in this project was originally preprocessed by Loureiro et al. (2018) and 

the next three sections (4.2.3.1 – 4.2.3.3) are directly taken from their work. 

4.2.3.1  Relaxometry: R1 and R2* maps 
MP2RAGE images were reconstructed and T1 maps were calculated offline using 

a custom-built script in Matlab, as described previously, and included correction for both 

flip angle and inversion efficiency deviations (Hagberg et al., 2017). The T1 maps were 

used for normalization into a standard brain space (described below), whereas the 

longitudinal relaxation rate was used for the depth profiles and CNR calculations and was 

computed as the inverse of the T1maps. 

Maps of the effective transverse relaxation rate (R2*) were generated by non-linear 

fitting (based on a steepest-descent Loevenberg-Marquardts algorithm) of a mono-

exponential signal decay to the square of the signal intensity in the multi-echo images 

(McGibney and Smith, 1993; Miller and Joseph, 1993). 

4.2.3.2  Susceptibility Mapping (QSM) 
AW GRE images were reconstructed offline as described in (Budde et al., 2014a). 

The phase images obtained from the 31 receiver channels were combined using a phase-

sensitive coil combination algorithm. 
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To avoid background noise a brain mask was generated from the magnitude images 

of the AW sequence using BET from FSL and applied to the phase images. In a first step, 

we corrected for phase aliasing using a fast phase unwrapping method from the MEDI 

toolbox based on the 3D Laplacian algorithm (Li et al., 2014). The phase images were then 

demeaned (i.e the median phase value inside the brain mask was subtracted from each 

voxel). The masked phase images were then background corrected using the RESHARP 

algorithm (Sun and Wilman, 2014) with a Tikhonov parameter (TP) of 10-6 and a kernel 

size of 2 times the third dimension of the voxel size. These parameters were chosen since 

they yielded the best performance in terms of a low standard deviation and high CNR 

measures in the SC, then 23 other settings tested (increasing TP from 10-1 to 10-6 and 

increasing kernel sizes for each TP from 2 times the voxel size to 6 times the voxel size in 

the third dimension). After background removal, the QSM maps were obtained by applying 

the iterative least-squares approach (Li et al., 2015). 

4.2.3.3  Multi-modal Co-registration and Image Resampling in Native Brain Space 
The three modalities were co-registered using SPM12 for direct comparison. For 

all the steps the average distance between sampled points was a vector with increasingly 

finer points from 4 to 0.2mm (4, 2, 1, 0.5, 0.2mm) to increase precision. Due to the small 

field of view of the zoomed sequences, the co-registration included four main steps: 1) The 

3rd echo of the ME FLASH sequence (source image) was co-registered to the magnitude 

of the AW sequence (reference image) and this transformation was applied to the remaining 

echoes of the ME FLASH sequence; 2) The T1map (source image) was co-registered to the 

third echo of the ME FLASH sequence (reference) and the transformation was further 

applied to the T1 weighted contrast obtained from the MP2RAGE sequence and to both 

Figure 4.1 - Example axial slice of R2* map (left) and QSM (right) of the same subject at the level of inferior 
colliculus 
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inversion times (Figure 9 A, B); 3) The R2* maps were upsampled to a 0.15mm isotropic 

grid using linear interpolation and all the images were resliced to the same grid. This step 

guaranteed that all the sequences have the same FOV as the ME FLASH sequence, which 

enabled us to improve the co-registration between the T1maps and the high resolution 

zoomed images; 4) automatic co-registration was applied in the new resliced images using 

the T1maps as the reference image and the R2s maps as the source. This transformation 

was applied to all the other contrasts. 

To bring all the subjects into a common space, we normalized the data to MNI space 

using DARTEL from SPM12. A DARTEL template was created from 45 subjects acquired 

with the same MP2RAGE sequence at the 9.4T in Tübingen. All the upsampled co-

registered images were then wrapped to MNI space with a resolution of 0.3 mm isotropic 

using the flow fields generated for each subject from the transformation of the segmented 

whole-brain T1maps to MNI space. The images of the different contrasts were then 

averaged across subjects in this common brain space (Figure 9 E, F). The R1 maps were 

relevant as they were the only whole-brain maps acquired so they were used mostly to aid 

in the registration process. However, due to their low resolution compared to the R2* and 

QSM maps the R1 maps were not included as features in the DEC approach (described 

below). 

4.2.4  Deep unsupervised clustering 
To reveal the hidden features of our data and to segment the midbrain area in an 

unsupervised fashion, we used DEC to learn the anatomical properties of our unlabelled 

data. To restrict our analysis to the target regions, we used a 3-dimensional box of size 

110x110x34 mm³ (length x width x height) on the midbrain, placed symmetrically around 

the mid-sagittal plane which includes the SC, SN, RN, IC, PAG, and crus cerebri. We 

treated each voxel within this box as an observation of our learning system. The second 

dimension of the input matrix refers to the feature vectors of the observations that were 

generated from the two quantitative MR maps acquired for each subject as described below  

4.2.4.1  Original feature set 
A total of 16 different, subject-specific spatial features were generated from R2* 

and QSM for each voxel. As such a feature space consisting of 160 dimensions, made up 

of the 16 features from every 10 subjects was obtained. Including features for each subject 

was important to account for the between-subject variability of the anatomical areas.  
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For each of the two quantitative MRI-maps (R2* and QSM) the following 8 subject-

specific features were generated: 1) The voxels intensity value; 2) the sum of the squared 

values of the image gradient calculated in all 3 directions; 3) the mean intensity and 4) 

standard deviation values of neighboring voxels, allowing us to reduce the effect of any 

intrinsic variability for each voxel; 5) product of the distance from the central plane and 

mean of the neighbors' intensity values and 6) product of the distance from the central plane 

and standard deviation of the neighbors' intensity values, to account for the mid-sagittal 

plane symmetry; 7) product of the distance from the most posterior plane and the mean of 

the neighbors' intensity values and 8) product of the distance from the most posterior plane 

and the standard deviation of the neighbors' intensity values. These eight values were 

calculated for each voxel in each modality (R2* and QSM) for each of the 10 subjects, 

which builds up to 160 features for the primary feature space. 

4.2.4.2  Number of clusters 
One common dilemma while using unsupervised learning approaches is choosing 

the correct number of clusters (k-value), a problem that we also came across in chapter 3 

(please see sections 3.2.7.1 and 3.3.3). Since no ground truth labeling exists, a decision on 

the k value is made intuitively most of the time. To achieve a more objective choice of the 

number of clusters here, we measured the reproducibility of the clustering results for 

different values of k. 

We employed a leave-one-out approach and normalized mutual information (NMI) 

as a reproducibility measure. In the case of every single subject, we performed two 

clustering analyses resulting in two midbrain segmentation maps; one deduced from the 

data of the individual and the other obtained from the accumulative data of the other nine 

subjects. Then we calculated the subject-level normalized mutual information (sNMI) 

between the two resulting maps and repeated as such for every 10 subjects, respectively. 

As a result, we calculated an average of 10 sMNI scores for each value of k which reflects 

the reproducibility of the clustering result for every k value ranging between 10 to 200 

incrementing in steps of 5. 

In the approach explained above, we used conventional k-means instead of DEC 

which helps to reduce the analysis duration by a factor of 10 and from an estimated 1600 

hours down to 160 hours. The fact that the core clustering algorithm in DEC is the 

conventional k-means suggests that it provides an estimation of DEC behavior for different 

k-values. However, we lose the benefit of feature optimization provided by the hybrid use 
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of autoencoder in DEC to save time. 

4.2.4.3  Clustering validation 
After coming up with the proper value for k (kfin) and running the final clustering 

analysis, it is necessary to evaluate the consistency of the resulting segmentation for kfin. 

NMI is one popular method to determine the quality of clustering in comparison with the 

map of ground truth labels. Since the midbrain data at hand is not labeled, we used NMI to 

measure the quality of the clustering results by employing a leave one out approach. As 

explained in the previous section we calculated sNMI scores for each subject ending up 

with 10 sNMI values for the chosen main k-value. To investigate whether these values are 

not randomly obtained and the clustering of every single subject was indeed carrying 

meaningful anatomical information, we took advantage of a self-customized randomization 

approach. We randomly permuted the cluster labels of each voxel of the individuals’ 

clustering result and calculated the sNMI value between the permuted segmentation and 

the segmentation based on the other nine subjects’, un-permuted, clustering (sNMIrand). By 

repeating the permutation 10,000 times and calculating 10,000 sNMIrand scores, we created 

a distribution of sNMIrand scores that helped to measure the information present in a single 

subject clustering result. 

4.2.4.4  Deep Embedded Clustering 
DEC trains a deep neural network (DNN) to build an optimized nonlinear 

translation of the original feature space, called Z and the parameters θ of the DNN that 

maps data points into Z. DEC initializes the parameters by a deep autoencoder and 

optimizes the parameters based on the high confidence predictions of the clustering results 

based on the embedded points z ∈ Z (please see (Xie et al., 2016)). 

Additionally, we used the early stopping method to help against overfitting. We 

split the dataset at the pretraining stage to 75% training and 25% validation to keep tracing 

the validation loss after each epoch. The pretraining stops in case the validation loss does 

not improve in 10 consecutive epochs. Normally, the slope of the training loss function is 

always negative, and the networks keep improving the discriminative function that 

describes the training set. However, the loss function of the validation set starts to grow 

after the networks begin to overfit the training set and therefore the validation loss function 

is a good indicator of when the pretraining has to stop (Prechelt, 1998). 

The advantage of this method is that unlike standard k-means it has access to the 
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nonlinear combination of the features. This transformed feature space is also optimized 

throughout clustering by relying on the high confidence clustering results of the last 

iteration. Therefore, the transformation of the embedded point also improves for the ones 

with low assignment confidence. 

DEC vs. k-means 
To measure the advantage that DEC offers in comparison to k-means considering 

its much longer runtime, we calculated sNMI for every subject twice, using DEC and k-

means. This would show whether there is a significant difference between the quality of 

each method. 

4.3  Results 

4.3.1  Optimal number of clusters 
To choose the optimal number of clusters (k) we repeated the clustering for k in a 

range from 10 to 200 in steps of 5 using a leave-one-out method and normalized mutual 

information (NMI) as a reproducibility measure. We calculated the NMI of the clustering 

result for subject i and the group clustering result for the entire dataset without subject i. 

Accordingly, 10 NMI values were calculated at each k, and the average of those 10 values 

was used to estimate the reliability of the clustering outcome for each selected k. As for 

running this analysis using DEC was tremendously time-consuming we used the simple k-

means algorithm instead. We can see the average NMI vs. k plot in figure 4.2. The plot 

reaches its local plateau at k=95 and k=150. However, it is only after k=145 that the average 

NMI values keep remaining over the median of 0.44. Accordingly, we chose k=150 as the 

basis for the clustering analysis. 
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4.3.2  DEC vs. k-means 
We ran DEC with k=150 over a 3D MR image window of 110x110x34 (x,y,z) 

isotropic voxels of size 0.3x0.3x0.3 mm³. This window was placed on the midbrain, with 

its top plane covering the most superior extent of the tectum (MNI z = -2.1) and extended 

inferiorly, along the main axis of the brainstem for 10.2mm (z = -12.3). The box was 

centered on the mid-sagittal plane with a symmetrical extend of 16.5 mm to the left and 

right. It extended from y = -39 to y = -6 in the coronal direction and thereby included the 

entire tectal plate and the tegmentum. That provided the learning machine with 411,400 

observations where each was explained with 160 primary features. The 160 primary 

features were later reduced to 120 latent features with the help of a pretrained encoder. The 

120 latent features were further optimized by the clustering result after each optimization 

iteration until the algorithm converged by reaching a state in which less than 0.01 percent 

of the labels of the total number of voxels changed relative to the previous iteration. Since 

the centroids of the clusters were initialized randomly, the clustering was repeated 20 times 

in each DEC optimization iteration and the clustering result with the minimum k-means 

error (total sum of the euclidean distance of the observations from their clusters) was 

selected as the clustering outcome of that iteration. 

Figure 4.2 - The plot on the top shows the average NMI value after applying a leave-one-out method on each 10 subjects 
for values of k between 10 and 200 with increments of 5. The blue line shows the median value of 0.44. The plot on the 
bottom is the gradient of the one above. The orange line indicates zero. 
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To evaluate the performance of DEC we compared its results with k-means 

clustering outcomes for k=150. We quantified the predictability of a single subject 

clustering from the clustering result of the group of nine other subjects. Accordingly, we 

calculated 10 normalized mutual information (NMI) values for each subject for both DEC 

and conventional clustering methods. The distribution of these values in each approach 

showed that DEC is a more powerful method to build more reproducible results, as the 

mean NMI of DEC distribution was significantly higher than the k-means distribution 

mean. 

4.3.3  Identified midbrain nuclei 
To create an anchor point to show the advantages of choosing higher k we represent 

the results for k=15, where for the first time (among the selected series of k values) the 

borders between different anatomical structures and areas, including tectal plate and the 

CSF cavity becomes visible. In comparison with the outcome of DEC(150), DEC(15) 

Figure 4.3 - Comparison between individuals NMI values between DEC and k-means. 



 
 75   
 

contained much less detail and unveiled only the very general formations of the selected 

area. However, the estimated clusters appeared to be less cluttered, with neat delineations 

and uniform segmentations. The most salient features in these images were the clear extent 

of the red nuclei in red, substantial nigra also in red, the tectum, and the midbrain 

tegmentum in dark blue. The crus cerebri was also identifiable in pink immediately anterior 

to the substantia nigra. A crude estimation of the periaqueductal grey matter was detectable 

in light blue. However, it was combined with the quadrigeminal cistern and the cerebral 

aqueduct.  

Both RN and the SN appeared first at z = -4.8 and extended caudally to the most 

inferior slice. We were unable to confirm the caudal end of these structures due to the 

limited FOV of the MRI acquisitions. Crus cerebri, as well, was a quite noticeable structure, 

however, we could not determine the entire extent of it caudally because of the limited 

acquisition FOV and laterally, since the selected box did not include the outer parts of the 

crus. 

Figure 4.4 - Clustering result overlayed on top of 0.5mm MNI template in 3 axial (left) and sagittal (right) slices. 
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Figure 4.5 - D
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 clustering result for k=15. Each box show
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Figure 4.6 -  D
EC

 clustering result for k=150. Each box show
s an axial slice w

ith slice 1 corresponding to z = -2.1 and 34 to z = -12.3. Each pair of values on the x- and y-axis  corresonds to 
the position of a single voxel w

ith respect to the reference anatom
ical position. 



 
 78   
 

DEC(150) relative to DEC(15), exhibited a greater amount of detail. The segmentation 

maintained its uniformity while it revealed the anatomy of more sub-structures. For 

instance, the RN was divided caudally and rostrally into two parts from DEC(15) to DEC(150). 

RN body is indeed known to comprise caudal magnocellular and rostral parvocellular 

components. The structure of SN identified in DEC(15) was also further divided into 3 areas 

in DEC(150), which pretty much followed the geometry of the three known components of 

SN. The pale green patch located ventrally relative to RN delineated the shape of the pars 

compacta. The red cluster, laterally adjacent to the former patch mapped out pars reticulata 

and the dorsal light blue tail of pars reticulate and pars compacta clusters delineated the 

pars lateralis component of SN. Crus cerebri was divided into three subregions in DEC(150). 

The most ventral part of crus in salmon pink depicted corticopontine (fronto-pontine) tracts, 

described in previous literature. The middle area in lavender violet depicted pyramidal 

(corticospinal) tracts and the dorsal tail in amber orange outlined the corticopontine 

(parieto, temporo, and occipital-pontine) tracts. The dorsal midbrain tegmentum and tectum 

had also been further divided into anatomically meaningful areas. Unlike DEC(15), there was 

a clear line between PAG and the quadrigeminal cistern. PAG in yellow encompassed a 

green cylinder that described the topology of the cerebral aqueduct. Another very 

interesting cluster was the green patch that covered the rostral part of the tectum. This patch 

got detached from the tectal plate at z = -7.2 and its caudal tail extended ventrally toward 

RN. The rostral part of the cluster adjacent to the tectal plate agrees very well with the 

geometrical definition of the superior colliculus (SC). The inferior tectum cluster in light 

violet, encompassing laterally the PAG, defined the boundaries of the inferior colliculus. 

4.3.4  Reproducibility and validation 
We analyzed the individual level reproducibility of the clustering for DEC(150), 

separately for each subject. The average NMI between 𝐷𝐷𝐷𝐷𝐷𝐷(150)
(𝑖𝑖)  and 𝐷𝐷𝐷𝐷𝐷𝐷(150)

(~𝑖𝑖)  (while ~i 

corresponds to the entire sample size excluding subject i) of all individuals was equal to 

0.611. Keeping the cluster sizes in each 𝐷𝐷𝐷𝐷𝐷𝐷(150)
(𝑖𝑖)  case, we permuted the order of the dataset 

observations – which in 3D space can be interpreted as a permutation of voxel positions – 

1000 times, and each time we calculated the NMI between the permuted set and the 

corresponding 𝐷𝐷𝐷𝐷𝐷𝐷(150)
(~𝑖𝑖) .  
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However, the comparison between this distribution and the NMI value calculated from the 

actual clustering outcome suggested that it is possible to predict the single subject 

clustering by having the clustering result provided by a group of unassociated data. In other 

words, the distributions based on permutations show that it is unlikely to randomly arrive 

at the NMI values of the actual data. 

4.4  Discussion 
The current study pioneered the use of deep clustering for human brainstem 

segmentation. In our approach, without using any labeled MRI data and by relying on the 

information in the MR images, we successfully identified the human superior colliculus 

anatomy in-vivo. We partially identified the parvocellular and magnocellular components 

of the red nuclei, the substantia nigra triplex of pars compacta, pars reticulata and pars 

laterialis, the periaqueductal gray and the crus cerebri, divided into two bundles of 

corticopontine tracts and a single bundle of corticospinal tracts. However, due to the limited 

FOV, it was only possible to spot the more rostral parts of these structures located at the 

upper part of the midbrain. We built this study upon an earlier report by Loureiro et al. 

(2018), in which they showed that the values of the MRI quantitative maps in 3 different 

modalities (T1w, R2* and QSM) change systematically as we move from the surface of the 

superior colliculus toward its depth. Based on this observation and the same dataset we 

investigated whether there is any learnable intensity-associated pattern in the combination 

of all three MR modalities. However, we were compelled to discard the T1 dataset as it was 

originally acquired in a lower resolution and was upsampled later. We observed that using 

T1w images induced plenty of artifacts at the edges because of its low sharpness at those 

regions induced by data interpolation. Using only R2* and the QSM data for 10 subjects, 

we manually selected a set of primary features, based on which we could train a stacked 

autoencoder (SAE) to create features of more depth for clustering purpose. The feature set 

included the voxel value, gradient value, mean of 27 neighboring voxel values, and their 

standard deviation. The latter two were multiplied with the voxel distance from the mid-

sagittal plane and with the voxel distance from the first (top) plane in the coronal view. We 

built a collection of these features for each voxel of both modalities. Then, we stacked the 

same feature set from each subject. A total number of over 400,000 voxels with an 

individual volume of only 0.027 mm3 was available for the learning stage. We used deep 

unsupervised clustering, with SAE and k-means working in hybrid to update the clustering 

result and the trained features in each iteration. Therefore, instead of keep training the 
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clustering algorithm with the primary hand-crafted features, we optimized a learned feature 

set of SAE based on the high confidence predictions of the clustering results at the end of 

each iteration.  

To evaluate the performance of DEC we compared its results with k-means 

clustering outcomes. We quantified the predictability of a single subject clustering from 

the clustering result of the group of nine other subjects and calculated 10 normalized mutual 

information (NMI) values for both DEC and conventional k-means clustering methods. The 

distribution of these values in each approach showed that DEC is a more powerful method 

to build more reproducible results, as the mean NMI of the DEC distribution was higher 

than the k-means distribution mean.  

One important advantage of an unsupervised clustering approach is that it does not 

require the labeling of the data. Labeling depends on specialists’ opinions based on their 

subjective judgment. Entirely relying on computer vision and statistics, the final output of 

an unsupervised clustering approach would be free of any possible fallacious subjective 

biases. However, neuroanatomist inspections are essential to confirm the final findings of 

the automatic data labeling. 

One of the most recent attempts to map the human brainstem by Straub et al. (2019) 

used different structural MRI modalities in 3T and 7T. They manually labeled images of 5 

subjects in different modalities, comparing each image to histological Loyez stains of a 36‐

year‐old male. The criterion for structure depiction was that a structure could be delineated 

in the different contrasts with respect to the surrounding tissue based on the knowledge of 

its location from histology slices. They claimed that QSM in comparison with relaxation 

measurements R*2, R1, diffusion tensor imaging (DTI) and T2‐and proton density (PD)‐

weighted imaging is the contrast with which the highest number of structures could be 

identified. However, the reliance on structure identification by a neuroradiologist might 

result in subjective misinterpretations. In contrast, we used cutting-edge deep learning 

algorithms to eliminate human intervention in detecting the boundaries of brainstem nuclei 

and tracts. 

Among all brainstem nuclei, RN and SN received much attention due to their salient 

structures in MR images. There have been many attempts to locate and delineate these 

structures (Grossman & Yousem, 1994; Naidich et al., 2009; Schuenke, Schulte, & 

Schumacher, 2010). However, in most cases, the authors were unable to differentiate 
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between different components of these structures with conventional MRI technics 

(Fitzgibbons & Salamon, 2016). One of the most recent efforts (Guo et al., 2018) used a 

seed point discontinuity-based method to delineate these two structures in 3D QSM data. 

However, their result was prone to misregistration of images across subjects. They also 

mentioned manual segmentation as a source of bias in the final evaluation of their results. 

Several authors (Haegelen et al., 2013; Kim, Lenglet, Duchin, Sapiro, & Harel, 

2013; Y. Xiao et al., 2012; Y. Xiao et al., 2014) described different methods for automatic 

segmentation of the substantia nigra, subthalamic nucleus, and red nucleus. Although all of 

these studies used T2- or T2*-weighted MRI data, imaging resolution and MR contrasts 

varied between studies. The dice score is the most commonly reported measure to compare 

the segmentation result to the histological map reference, but a comparison of such scores 

between studies is problematic due to differences in field strength and acquisition 

parameters, as well as in the manual segmentations that are used. Visser, Keuken, 

Forstmann, & Jenkinson (2016) used a multimodal image segmentation tool (MIST) for 

segmentation of the abovementioned structures using FLASH magnitude images and QSM 

data. Despite all efforts, all methods used were unable to further segment SN and SN into 

their components. Additionally, another issue might be the use of the right modality to 

capture the anatomy of the structures. Langley et al. (2015) demonstrated that the 

delineation of the SN depends on the modality used for the analysis, where susceptibility-

weighted images were the better choices for the detection of some midbrain structures such 

as RN and STN. 

We used multimodal data to identify brainstem substructures while treating all 

modalities equally. It was essentially the deep network that decided how to value each 

selected image feature from either modality to improve the segmentation function. This 

approach needs no information about the magnetic quality of the sub-structures or the 

expected intensity/value of the voxels within them. Nevertheless, such information could 

further improve the clustering outcome. We successfully identified the human SC for 

unprecedented detail as well as RN and SN with their sub-components. These together 

show the power of deep clustering combined with ultra-high-field MR images. Possibly 

adding more MR modalities as well as more subjects with a wider field of view, covering 

more volume of the brainstem would be a way to consistently map the entire human 

brainstem sub-structures that are visible through the acquired images.  
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CHAPTER 5   CONCLUSION AND FINAL REMARKS 

 
For over a decade, MRI modalities have been the predominant neuroimaging data 

type in-use for in vivo studies of human brain function and structure. Together with 

powerful statistical toolsets, MR images substantially improved our knowledge of the 

human brain. However, that is not entirely including the functional units of the human 

brainstem. Neither MRI nor any other imaging instrument captured clean and clear signals 

from most of the tiny brainstem nuclei. Most of the available denoising approaches failed 

to extract the critical signal of interest from the raw noisy data. This lack of effective 

techniques caused a huge gap between the little published knowledge over human 

brainstem function comparing to a large number of studies on human cerebral, cerebellar, 

and subcortical areas. 

Recent efforts to improve functional and structural MR image quality as well as the 

development of advanced preprocessing pipelines added to the popularity of brainstem and 

midbrain as a topic of research. Any successful research in the field proves the possibility 

of further investigation of the human brainstem in-vivo. Our study of the human superior 

colliculus function and anatomy as exemplar nuclei located on the dorsal surface of the 

midbrain is a showcase of this area of research potentials. 

In the first phase of the project, we depicted the general view of the functional 

cortical and subcortical connectivity network of human SC. To achieve this goal we used 

a 3T fMRI dataset with a total of 143 human subjects, preprocessed with the HCP pipeline. 

Our findings widely agreed with our knowledge of animal studies. Also, we found 

significant correlations between SC and prefrontal, posterior temporal, premotor, and 

primary motor cortex, at locations with little prior evidence of connections to the SC from 

animal models. This observation is in line with recent claims that the functions of the SC 

reach far beyond vision, attention, and oculomotor control. The wide range of areas 
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contributing to the SC FCN comprising inferior/middle frontal area, posterior superior 

temporal visual area, and neck and shoulder representations of the primary motor cortex is 

a sign of possible multiplicity of cortical networks and functions that the SC plays a role in 

e.g. responses to moving objects, target selection, and postural control. The results of the 

first phase provided no clear evidence of SC FCN laterality. We were also unable to detect 

any sign of systematic depth-dependent alteration of the FCN. Even though we acquired 

solid evidence of the involvement of SC in a diversity of functional networks in our initial 

analyses, detection of the depth-dependent networks was not possible except with the help 

of higher quality data. 

Based on the results of phase I, we used the HCP 7T fMRI dataset of 170 human 

subjects. This new dataset included the former subjects from phase I plus 26 more subjects. 

Our analysis showed that not only the early results from the first phase were replicable, but 

that also in-detail depth-dependent functional connectivity analysis of the SC was feasible. 

Information within the latter dataset of 7T fMRI proved to be adequate to separately 

recognize the functional networks that the human SC is part of. The Extrapolation of a 

higher resolution of the SC mask empowered the employed clustering algorithm for a fairly 

stable assignment of the global brain voxels to the clusters. This assignment was based on 

the voxel behavior pertinent to the plot of its signal correlation with the average signals 

from different layers of the SC. By employing this idea, we segmented the brain into 6 

functional networks based on their correlation profiles with different SC layers. Except for 

one, all the estimated clusters could be related to the existing knowledge or predictions 

about the human SC function, e.g. our method identified the SC visual network as a unique 

cluster. Besides, it detected the oculomotor system as a separate cluster including areas that 

are typically involved in peripheral vision and attention. The clustering algorithm also 

suggested a wide combination of areas as a single cluster which plays a role in visual 

attention and planning goal-directed hand actions. It also provided a clear delineation of 

those brain areas which carry no significant functional connection to SC. 

During the analyses of the first two phases of the project, one of the main concerns 

was our limited understanding of the SC anatomy from structural MR imaging. An accurate 

map of an ROI is essential for any functional connectivity analysis. Any excessive violation 

of the true ROI boundaries would result in inaccurate results and conclusions. To build the 

first in-vivo map of the human SC we piloted the 3rd phase of the project based on 

previously acquired and preprocessed UHF MRI quantitative maps by (Loureiro et al., 
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2017). We used a 9.4T structural MRI dataset of 10 subjects with two modalities per subject 

for the automatic segmentation of the human SC. With 0.3mm isotropic voxels, we 

described the anatomy of the SC with 40 times more voxels compared to conventional 

structural images with 1mm isotropic voxels. The simultaneous use of QSM and R2* 

relaxometry maps resulted in a better-informed segmentation in comparison to the use of a 

single modality. By selecting the entire midbrain voxels as a seed, we utilized unsupervised 

deep learning methods for the automatic identification of prominent anatomical areas of 

the midbrain, including SC, based on their location and image-related characteristics which 

were hidden in the two quantitative maps. The use of 10 subjects, previously co-registered 

with an MNI brain template, also helped to generalize the outcome of the clustering to a 

supposed average human brain anatomy. Deep learning was the key tool to handle 

clustering over 400,000 voxels with 160 features for each voxel, which is impossible to 

perform manually or with conventional learning algorithms. Within the chosen anatomical 

frame, our method successfully delineated the boundaries of human SC. Besides, it 

estimated the extent of the boundaries for other know nuclei within the brainstem with 

unparalleled details, e.g. parvocellular and magnocellular areas of the red nuclei, pars 

reticulata, pars compacta, and pars lateralis sections of the substantia nigra, the 3 major 

tract bundles of the crus cerebri, periaqueductal grey and the inferior colliculus. Our 

findings suggest that UHF MRI could be a major contributor to a better understanding of 

the human brain anatomy, specifically for the less explored regions of the brainstem which 

is home to many significant nuclei and tracts. 

In conclusion, the advances in MRI technology and mathematical tools are creating 

significant opportunities to investigate previously unexplored regions of the brain. Our in-

vivo study of the human SC function and anatomy is a showcase for such possibilities, 

which in turn introduces many benefits in the field of healthcare with clinical applications 

based on a better understanding of neural disorders and personalized treatments.
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