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Abstract 

Human-machine interactions (HMIs) are constantly evolving in complexity, while 

human cognitive resources remain limited. Ample evidence demonstrates an association 

between cognitive load and human performance, suggesting that the number of human 

errors might be reduced by using intelligent interfaces capable of keeping operators’ 

cognitive load at medium degrees. The development of such systems primarily requires an 

appropriate measurement method for cognitive load, which should be (1) easily 

generalizability to similar situations, (2) capable of tracking cognitive load over time without 

impairing performance on the primary task, and (3) as discrete and unobtrusive as possible 

to be suitable for real-world and commercial developments. This dissertation attempts to 

address these challenges by presenting a novel theoretically-grounded approach for 

measuring cognitive load in situations involving managing resources under time pressure. In 

a series of three studies, the initial temporal action density decay metric (TADD) was 

derived relying on the time-based resource-sharing (TBRS) model (Barrouillet, Bernardin, & 

Camos, 2004) and validated using behavioral data, cortical hemodynamics, and eye-

tracking features. In summary, it is consistently demonstrated that narrow theoretically-

determined time periods can be used for predicting cognitive load and user performance 

and such a targeted approach may have an advantage over data-driven bottom-up 

methods. By using different measurement methods, a consistent picture of the method is 

elaborated and conclusions could be drawn about the cognitive processes occurring during 

the investigated time periods. Taken together, the presented dissertation provides evidence 

for the applicability of the TBRS model as a theoretical basis for measuring cognitive load in 

realistic time pressure situations and suggests that time pressure and attentions play a role 

in the development of cognitive load. Furthermore, it also provides an indication of which 

features are more likely to be useful for assessing cognitive load. Although further research 

is needed to refine the method, it seems promising for the development of HMI systems 

capable of adapting to the cognitive load of their operators. 
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Zusammenfassung 

Die Komplexität der Mensch-Maschine-Interaktion (HMI) nimmt ständig zu, während 

die kognitiven Ressourcen des Menschen begrenzt bleiben. Es gibt zahlreiche Belege für 

einen Zusammenhang zwischen kognitiver Beanspruchung und menschlicher Leistung, was 

darauf hindeutet, dass die Anzahl menschlicher Fehler dadurch verringert werden könnte, 

dass man intelligente Schnittstellen, die die kognitive Beanspruchung der Bediener auf 

einem mittleren Niveau halten können, einsetzt. Die Entwicklung solcher Systeme erfordert 

in erster Linie eine geeignete Messmethode für die kognitive Beanspruchung, die (1) leicht 

auf ähnliche Situationen verallgemeinert werden kann, (2) in der Lage ist, die kognitive 

Beanspruchung über die Zeit zu verfolgen, ohne die Leistung bei der primären Aufgabe zu 

beeinträchtigen, und (3) so diskret und unauffällig wie möglich ist, um für kommerzielle 

Entwicklungen geeignet zu sein. Diese Dissertation versucht, diese Herausforderungen zu 

adressieren, indem sie einen neuartigen, theoretisch fundierten Ansatz zur Messung der 

kognitiven Beanspruchung in Situationen vorstellt, in denen es um das Management von 

Ressourcen unter Zeitdruck geht. In einer Reihe von drei Studien wurde die initial temporal 

action density decay Metrik (TADD) auf der Grundlage des time-based resource-sharing 

Modells (TBRS) von Barrouillet et al. (2004) entwickelt und anhand von Verhaltensdaten, 

kortikaler Hämodynamik und Eye-Tracking Korrelaten validiert. Zusammenfassend, konnte 

es gezeigt werden, dass spezifische Zeiträume für die Vorhersage der kognitiven 

Beanspruchung und der Benutzerleistung verwendet werden können und dass ein 

theoretisch fundierter Ansatz einen Vorteil gegenüber datengesteuerten Bottom-up 

Methoden haben kann. Durch den Einsatz verschiedener Messmethoden wurde ein 

konsistentes Bild der Methode erarbeitet und es konnten Rückschlüsse auf die kognitiven 

Prozesse gezogen werden, die in den untersuchten Zeiträumen ablaufen. Insgesamt liefert 

die vorliegende Dissertation erste Belege für die Einsetzbarkeit des TBRS-Modells als 

theoretische Grundlage für Messungen der kognitiven Beanspruchung in realistischen 

Situationen unter Zeitdruck und untermauert die Rolle der Aufmerksamkeit als 

entscheidenden Aspekt bei der Einschränkung des Arbeitsgedächtnisses (WM). Obwohl 

weitere Forschung zur Verfeinerung der Methode erforderlich ist, scheint sie 

vielversprechend für die Entwicklung von computerbasierten Systemen, die sich an die 

kognitive Beanspruchung ihrer Benutzer anpassen können. 
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1 Introduction and Theoretical Framework 

Human-machine interactions (HMIs) are constantly evolving in complexity. For 

example, whereas in 1983 the driver of an average passenger car operated about seven 

functions, in 2014 the number of functions already exceeded 60 (Ruck & Stottan, 2014). At 

the same time, computer-based systems such as autopilots, speed and lane assistants, etc. 

are taking on increasingly complex tasks, while monitoring these systems is becoming more 

sophisticated (Stapel, Mullakkal-Babu, & Happee, 2019).  

However, human cognitive resources are limited (Cowan, 2010; G. A. Miller, 1956). 

According to the definition of Paas and Van Merriënboer (1994), cognitive load is a 

multidimensional construct and represents demands that a particular task imposes on the 

cognitive system. Despite the long history of research (e.g., Barrouillet et al., 2004; 

Eggemeier, Shingledecker, & Crabtree, 1985; Linton, Jahns, & Chatelier, 1978; Meshkati, 

1988; Sheridan & Simpson, 1979; Sweller, Van Merrienboer, & Paas, 1998; Welford, 1978), 

studying cognitive load still represents a vibrant area of interest with critical relevance to 

real-life environments. Evidence indicates that different tasks can require different cognitive 

resources to varying degrees, depending on task difficulty, whereas at the same time 

different individuals may experience different levels of cognitive load when conducting a 

task even when achieving the same performance on it (cf. Babiloni, 2019). 

 Ample evidence has demonstrated an association between cognitive load and 

human performance in a variety of realistic settings such as transportation (Fan & Smith, 

2017; G. Hancock, Hancock, & Janelle, 2012; P. Hancock, 1989), e-learning (Oviatt, 2006; 

Walter, Rosenstiel, Bogdan, Gerjets, & Spüler, 2017), office work (Aasted et al., 2015; 

Smith-Jackson & Klein, 2009) and medicine (Yurko, Scerbo, Prabhu, Acker, & Stefanidis, 

2010). This relation seems to be shaped like an “inverted-U” (Yerkes & Dodson, 1908) with 

the highest performance under medium cognitive load. Importantly, this observation 

corresponds to Csikszentmihalyis’ concept of “flow” (Csikszentmihalyi, 1975; Kiili, Lindstedt, 

& Ninaus, 2018), which characterizes a state of total concentration on the task at hand and 

assumes that  performance usually declines when cognitive demands are boring or 

overstraining, as well as to the “zone of proximal development” proposed by Vygotsky 
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(1980) in his theory of cognitive development, assuming the strongest training effects at 

moderately challenging conditions.  

 Thus, to optimize operators’ performance and prevent errors during HMIs, cognitive 

load should be kept at a medium level, while avoiding states of over- and underload, which 

are likely to lead to reduced performance and increased errors (Orru & Longo, 2019). 

Specifically in critical emergencies, human errors might lead to dramatic consequences and 

should therefore be addressed. For instance, in Germany in 2016, 57% of the accidents 

involving goods vehicles with personal injury were due to human errors 

(Statistisches Bundesamt, 2017). One possible way to reduce the number of such errors 

might be to develop intelligent human-computer interfaces capable of capturing operators’ 

cognitive load and adapting their appearance to it (e.g., by reducing displayed information 

when the operator is cognitively overloaded). 

Indeed, empirical evidence indicates that cognitive load may be influenced by 

interface design. For instance, Oviatt (2006) found that students demonstrated significantly 

better performance in solving mathematical problems when using a digital pen and paper 

interface compared to graphical tablet interfaces. Another example was provided by the 

study of Charabati, Bracco, Mathieu, and Hemmerling (2009), who compared differently-

designed interfaces for monitoring anesthesia parameters during a surgery and reported 

that participants perceived significantly lower cognitive load when using a mixed numerical-

graphical interface compared to the numerical and advanced-graphical interfaces. At the 

same time, online adaptation of task difficulties to the cognitive load has been shown to 

significantly improve performance in a variety of realistic settings (see Section 1.1). Taken 

together, these examples indicate that the online adaptation of HMI to cognitive load is 

practicable and can indeed improve operators’ performance. This raises the question of 

which measurement methods are best suited for assessing cognitive load in such systems.  

This dissertation addresses precisely this point by presenting a theory-based method 

for measuring cognitive load in time-critical situations, with the aim of contributing to the 

development of realistic adaptive HMIs.  Accordingly, the remainder of this dissertation is 

structured as follows. I first provide an overview of the modern research landscape on 

adaptation to cognitive load (Section 1.1) and describe four classes of measurement 

methods, particularly concentrating on the methods used in this dissertation (Section 1.2). 
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Subsequently, I present the theoretical framework for cognitive load (Section 1.3) and 

describe in detail the TBRS model (Barrouillet et al., 2004), which was used as a foundation 

for the temporal action density decay (TADD) metric (Section 1.4) developed and 

investigated in the course of the project. Closing the first chapter, objectives and research 

questions are specified (Section 1.5). In the next three chapters, I provide author 

manuscripts, describing three studies conducted as part of this dissertation (Chapters 2-4). 

Finally, the results of the studies are summarized (Section 5.1), scientific contribution of this 

dissertation is discussed (Section 5.2), strengths and limitations are outlined (Section 5.3), 

and an outlook for future research is provided (Section 5.4). 

 

1.1 Adaptation to cognitive load 

Adaptive interaction systems, which can change their appearance and/or behavior 

depending on the operators’ cognitive load to improve performance and avoid errors, are 

increasingly becoming the focus of modern research and development. Evidence indicates 

that such systems might be used to optimize performance and motivation in a variety of 

realistic contexts, such as education, gaming, emergency management, automotive and 

aviation.  

In the educational context, efforts are underway to develop adaptive systems that 

can continuously monitor a learners’ cognitive load in realistic settings (Grissmann et al., 

2017; Spüler et al., 2016). In educational video games (for review see: Nebel & Ninaus, 

2019; Ninaus & Nebel, 2021), adaptation to cognitive load has been found to be associated 

with increasing learning outcomes. As one example, Yuksel et al. (2016) used near-infrared 

spectroscopy (NIRS) to identify states of cognitive underload in pianists during a musical 

learning task and responded by increasing the difficulty of the respective lessons. In this 

way, a significantly better learning performance compared to a control group could be 

achieved. Walter et al. (2017) developed a closed-loop EEG-based environment to detect 

learners’ cognitive load and adopt the complexity of the learning content accordingly. It is 

worth noting that the optimal load was defined based on small pilot sample data and was 

not individually calibrated. Nevertheless, the use of this system resulted in performance 

improvements comparable to those obtained when using conventional error-based 
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adaptation. Thus, adaptive learning environments represent a very promising research field, 

whereas, as Kalyuga (2007) highlighted, the design of such systems must simultaneously 

take into account the notion that techniques used in adaptive learning environments can 

also create additional load on learners. 

Medicine, and especially emergency medicine in the context of surgical procedures, 

recognizes the importance of online assessment of cognitive load to avoid intraoperative 

errors in clinical settings and achieve better training effects in medical education  (for review 

see: Dias, Ngo-Howard, Boskovski, Zenati, & Yule, 2018). As one example of an attempt to 

develop adaptive simulations for training purposes to improve the learning outcomes of 

emergency physicians, Sarkar et al. (2019) designed a multitasking deep neural network to 

classify high and low cognitive load in experts and novices while performing a trauma 

simulation based on electrocardiogram (ECG) signals from both novices and experts. At the 

same time, efforts are undertaken to make existing measurement methods fit for realistic 

use, e.g., by developing novel artifact filtering algorithms for EEG data (e. g. Rosanne et al., 

2021). 

Again in the context of emergency management, it is increasingly recognized that 

many critical errors are caused by cognitive overload and are avoidable through the use of 

intelligent methods (Croskerry & Sinclair, 2001; Vella, Hall, van Merrienboer, Hopman, & 

Szulewski). At the same time, suitable ways to determine the cognitive load of managers in 

emergencies are being sought, which might form the basis for intelligent adaptive systems 

in the future. Whereas such practical solutions as the analysis of linguistic features 

(Khawaja, Chen, Owen, & Hickey, 2009), or eye-tracking features (Appel et al., 2019) are 

proposed, at the same time attempts are being made to develop adaptive computerized 

systems to reduce the cognitive load of operation managers. For example, Mirbabaie and 

Fromm (2019) aimed to support the emergency management decision-making process 

during realistic emergency situations by developing an augmented reality support system. 

In the automotive field, the vision of an adaptive HMI for optimal driver support is not 

new and was already expressed by Michon (1993). Since then, several attempts have been 

made to develop an in-car system adaptive to cognitive load. One example is phones’ 

adaptive system developed by BMW (Piechulla, Mayser, Gehrke, & König, 2003), which 

redirects incoming calls to the mailbox in cases of detected cognitive overload, based on 
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traffic situation and driving dynamics. Toyotas’ adaptive messaging system adopts the 

same approach, postponing voice messages when the driver is overloaded. The estimation 

of cognitive load was developed based on accelerator pedal operation. Comparatively, 

researchers from Daimler (Riener & Noldi, 2015) investigated the relationship between the 

drivers’ cognitive load and his or her motion dynamics in the car seat. Another way to 

reduce drivers’ cognitive load comprises optimizing intervals between messages coming 

from in-vehicle systems (Wu, Tsimhoni, & Liu, 2008). If messages appear too often or even 

simultaneously, it can increase drivers' cognitive load and impair performance, whereas 

adaptive increasing the intervals between messages, based on driving conditions and task 

properties, was found to reduce drivers’ cognitive load and enhance performance (Lin & 

Wu, 2010). As another example, Kohlmorgen et al. (2007) could significantly improve 

driving performance during a real driving task on a highway that included executing 

secondary tasks unrelated to driving. Thereby, driver overload states were detected using 

electroencephalography (EEG) and the difficulty of the secondary task was reduced 

accordingly. These examples represent interesting but punctual application areas for a 

system adaptive to a drivers’ cognitive load and demonstrate the variability of the 

approaches. One can extend the vision and think about systems that can e.g., completely 

take over the driving task in the future if a cognitive overload of the driver is detected. 

However, there is still a long way to go and there remains much research to be conducted 

to develop comprehensive generic intelligent driver support, as envisioned by Michon 

(1993), and accurate detection of cognitive load in the vehicle context remains a vibrant 

area of research.  

Another area in which research of cognitive load has a long tradition is aviation. The 

first studies aiming to detect cognitive states in pilots date back to the 1980s and 1990s. For 

example, Wilson, Purvis, Skelly, Fullenkamp, and Davis (1987) investigated associations 

between heart rate, blink count and duration as well as EEG data and cognitive load in 

pilots during simulated and real flights. Ten years later, J. Veltman and Gaillard (1996) 

investigated respiratory activity, blood pressure and blink count during simulated flight. More 

such studies followed in subsequent years, with the idea of developing intelligent assistive 

systems adapted to cognitive load coming to the foreground. As one example, adaptive 

cognitive agent (Roth, Schulte, Schmitt, & Brand, 2019; Strenzke et al., 2011) was 

developed to support helicopter crew members individually.  Based on task load and 
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behavioral data, a cognitive load estimator detects states of cognitive overload and decides 

whether the particular crew member needs help and which of two available levels of help to 

offer. Another cognitive agent was developed to help with air traffic management. In a 

simulator study using an EEG-based brain-computer interface, Aricò et al. (2016) showed 

that the adaptive condition (BCI system activates help in detecting cognitive overload) led to 

significant improvement in operator performance. As another example, Wilson and Russell 

(2007) found that adaptive aiding may significantly enhance pilots’ performance. 

Researchers used neural network to detect states of high cognitive load during a simulated 

uninhabited aerial vehicle task based on (neuro-) psychophysiological data (EEG, 

electrocardiogram, electrooculography, and eye-tracking) and adapted the task difficulty 

through reducing the velocity of the vehicle and displaying helpful status messages. 

Summarizing this brief literature overview on the topic of adaptation to cognitive load, 

one can draw two main conclusions. First, adaptation to cognitive load remains a very 

nascent research field (for review, see: Fontaine et al., 2019; Ninaus & Nebel, 2021), with 

no common theoretical framework yet established and most attempts in this regard often 

based on data-driven probabilistic performance evaluations (Magerko, Stensrud, & Holt, 

2006; Spronck, Ponsen, Sprinkhuizen-Kuyper, & Postma, 2006; Zook & Riedl, 2012). 

Second, the presented results appear very promising for a variety of realistic contexts and 

the online adaptation of HMI to cognitive load is practicable and can indeed improve 

operators’ performance. This raises the question of which measurement methods are best 

suited for assessing cognitive load in such systems.  

 

1.2 Measuring cognitive load in adaptive systems  

Evidence suggests that cognitive load can rapidly change during the processing of a 

task, which means that a measurement procedure suitable for online adaptation should be 

able to respond sensitively to these variations without causing external disturbances to 

performance on the primary task (Orru & Longo, 2019). In the literature, there is no overall 

consensus on the classification of measurement methods of cognitive load. Usually, three 

or four main categories are distinguished, with some methods, such as self-reported 
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questionnaires, being consistently categorized as subjective measures, while other methods 

(e.g., 

 eye-tracking, analysis of speech patterns) can be found in different classes 

depending on the aspects on which the authors focus. Based on the literature research, in 

the following I introduce four categories of cognitive load measures (Brünken, Seufert, & 

Paas, 2010; F. Chen et al., 2016; Eggemeier, Wilson, Kramer, & Damos, 1991; Johannsen, 

1979; Scerbo, 1996) and discuss their strengths and limitations with respect to the use in 

realistic adaptive systems.  

 

1.2.1 Subjective measures 

Subjective measures are grounded in the assumption that people are able to 

accurately interpret and adequately describe the cognitive load they have experienced while 

performing a task (Gopher & Braune, 1984). These self-reports are collected using 

predefined scales in questionnaires such as SWAT (Reid & Nygren, 1988) and NASA-TLX 

(Hart & Staveland, 1988). Whereas, for best recall and, thus, the most accurate ratings 

completion of the questionnaire should occur immediately after finishing a task. 

Subjective measures do not require expensive equipment, they are easy to collect, 

and are usually well validated, hence widely accepted (O’Donnell & Eggemeier, 1986). 

Unfortunately, filling in questionnaires would interrupt task processing and therefore can 

only be done after the task has been completed, which leads to several limitations. First, 

fading memory may distort the rating. Second, memories of perceived cognitive load may 

be biased by experienced successes or failures, that is, experienced failure may lead 

participants to rate their cognitive load higher compared to experienced success (P. 

Hancock, 1989). Third, ratings obtained in this way represent only a rough summary of 

experience, which is particularly unfortunate when evaluating complex tasks that take a 

considerable amount of time. Finally and most importantly, subjective measures are unable 

to capture variations in cognitive load over time, which makes these measurements hardly 

practicable for online adaptation systems.  
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1.2.2 Performance-based measures 

Performance-based measurement methods evaluate variations in human 

performance. Empirical evidence indicates that performance declines in response to 

cognitive under- or overload (Babiloni, 2019; J. Veltman & Jansen, 2005; Yerkes & Dodson, 

1908). Accordingly, a drop of performance may help to identify these undesirable cognitive 

load states.  

As a main objective of assessing cognitive load in adaptive systems is prediction and 

subsequent improvement of operators’ performance, this class seems most obvious and 

direct to apply. Performance-based measurements are unobtrusive and relatively simple to 

implement. However, these measures yield no independent assessments of cognitive load, 

because it is not possible to determine whether the observed fluctuations in performance 

are actually due to changes in cognitive load or to other relevant factors such as arousal, 

motivation (Brünken et al., 2010), or emotions (Grissmann, Faller, Scharinger, Spüler, & 

Gerjets, 2017). In addition, it is usually not possible to obtain performance data online 

during actual task execution, so performance-based measurements are often computed and 

analyzed retrospectively, while “dual-task” measurements (Kerr, 1973) can be performed 

online but burden the operator with an additional task. Thus, also this class of measures 

appears impractical for widespread use in online adaptation systems. 

 

1.2.3 Behavioral measures 

Behavioral measurements attempt to estimate cognitive load based on variations in 

the users’ interaction behavior during task processing, such as mouse and keyboard usage, 

or speech and voice patterns, etc. (e. g. Berthold & Jameson, 1999; Ikehara & Crosby, 

2005; Lim, Ayesh, & Stacey, 2015; Magnusdottir, Borsky, Meier, Johannsdottir, & 

Gudnason, 2017; Ruiz, Liu, Yin, Farrow, & Chen, 2010). Because digital systems allow for 

recording of individual behavior during HMI, behavioral measures can be implemented in a 

cost-effective and unobtrusive manner that does not distract participants from the task at 

hand. Importantly, they potentially enable continuous online measurement of cognitive load 

during task execution, making them potentially promising for use in realistic online adaptive 

systems. However, it must be taken into account that behavioral patterns can also be 
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influenced by factors other than cognitive load and therefore do not provide independent 

assessment. 

 

1.2.4 Physiological measures 

Physiological measures rely on the evidence that changes in cognitive states are 

associated with physiological changes (Ahmad, Malik, Kamel, & Reza, 2016; Buchwald et 

al., 2019; Fowler, Nesbitt, & Canossa, 2019; Johannsen, 1979; Liang, Liang, Qu, & Yang, 

2018; McDuff, Gontarek, & Picard, 2014). They allow for continuous recording of data and 

thus might be used for online adaptation to cognitive load. Depending on the type of signal 

and assessment technique, they differ considerably in their cost and obtrusiveness. For 

instance, while heart rate variability (HRV) and electrodermal activity (EDA) sensors tend to 

be discreet, functional magnetic resonance imaging (fMRI) appears impractical in real-world 

situations due to the immobility required of the participant (for an overview see Ninaus et al., 

2013).  

According to Brunken, Plass, and Leutner (2003), based on the relationship between 

cognitive load and observed variables, physiological measures can be further categorized 

into direct and indirect methods. From this perspective, such methods as eye-tracking and 

assessment of HRV are indirectly related to cognitive load, because they can be co-

influenced by other factors such as stress or emotions, whereas brain imaging techniques 

such as fMRI, electroencephalography (EEG), positron emission tomography (PET), and 

functional near-infrared spectroscopy (fNIRS) can be considered direct, because they 

“directly” assess cortical activation in the predefined areas of interest. Although these 

methods also derive cognitive activity from blood flow or electrical activation, I retain this 

terminology because there is no more direct method of detecting cognitive load available 

today. In the following I describe in more detail two (neuro-) physiological methods that 

were used in this dissertation: fNIRS and eye-tracking. 
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1.2.4.1. Functional near-infrared spectroscopy (fNIRS) 

FNIRS represents a non-invasive neuroimaging method for measuring cerebral 

hemodynamics, first presented in the fundamental work of Jobsis (1977). Following the 

terminology of Brunken et al. (2003), it can be considered a direct method for assessing 

cognitive load, because it can directly assess cortical activation in predefined areas of 

interest and thus separate different components of the response. Besides, it offers several 

advantages over other neuroimaging methods in terms of mobility, cost, and robustness, 

making it potentially promising for use in ecologically valid real-life settings. 

 FNIRS relies on the mechanism of neurovascular coupling and optical spectroscopy 

(for review see: Fallgatter, Ehlis, Wagener, Michel, & Herrmann, 2004; Herold, Wiegel, 

Scholkmann, & Müller, 2018; G. Strangman, Boas, & Sutton, 2002). During this procedure, 

near-infrared light is emitted through the participants’ scalp. It penetrates up to approx. 2 cm 

(G. E. Strangman, Li, & Zhang, 2013) deep into the tissue, reaching outer cortical gray 

matter. Here it becomes partially absorbed by oxygenated (HbO2) and deoxygenated (HbR) 

hemoglobin molecules, which differ significantly in their absorption spectra. After that the 

residual reflection of the respective wavelengths is received by a detector (Herold et al., 

2018; G. E. Strangman et al., 2013), and the relative concentration of HbO2 and HbR in the 

respective brain tissue is calculated (see Cope et al., 1988). In this way, inferences about 

local changes in blood flow and further conclusions about which brain regions are active 

and thus which processes take place in the brain at a certain point of time are drawn (Hoge 

et al., 1999; Kim, Rostrup, Larsson, Ogawa, & Paulson, 1999). When attempting to 

measure fluctuations in cognitive load, prefrontal cortex (PFC) is usually regarded (Herold 

et al., 2018). This choice is based on a solid body of empirical evidence indicating that PFC 

is involved in decision-making processes, which are often summarized as “executive 

functions” or “cognitive control” along with at least partial influence of working memory (E. 

K. Miller & Cohen, 2001; Thier, 2006) and that fNIRS assessments of PFC are sensitive to 

fluctuations in cognitive load (Ayaz, Izzetoglu, Bunce, Heiman-Patterson, & Onaral, 2007; 

Ehlis, Herrmann, Wagener, & Fallgatter, 2005; Fishburn, Norr, Medvedev, & Vaidya, 2014; 

Herff et al., 2014; Herrmann et al., 2007; Li, Gong, Gan, & Luo, 2005; Smith & Jonides, 

1997; Xu et al., 2017). 



 

17 
 

When comparing the temporal and spatial resolution of neuroimaging methods, 

fNIRS provides solid results in both domains (Parasuraman & Rizzo, 2006; G. Strangman, 

Goldstein, Rauch, & Stein, 2006). The great strength of the method is that, depending on 

the fNIRS device used, experimental tasks can be performed while sitting, standing, or even 

in motion, which makes the obtained results ecologically far more valid than results from 

experiments in which participants have to lie down, as during fMRI measurements. 

Furthermore, compared to EEG, this method is less susceptible to artifacts caused by 

participants' movements, electro-oculographic and facial electromyographic activity, as well 

as electrical environmental noise - which might be particularly useful when measuring 

neuronal activation during human-machine interactions (see Derosière, Mandrick, Dray, 

Ward, & Perrey, 2013).  

 

1.2.4.2 Eye-Tracking  

Eye-tracking is another physiological method which is becoming increasingly popular 

for assessing cognitive load. Although it can be considered an indirect method, the subtle 

realization of modern video-based eye-tracking systems that do not require direct physical 

contact with user (for an overview see: Hutton, 2019) makes this technique potentially 

promising for real-world developments and well-suitable for commercial approaches. Based 

on empirical evidence, described below, fixations, blinks, saccades, microsaccades, and 

pupil diameter were used as indices for participants’ cognitive load in this dissertation.  

Fixations. Voluntarily controlled stable gazes lasting from 200 - 300 milliseconds to 

up to several seconds are called fixations. During these periods eyes stay relatively still, 

while the person processes information from the fixation area (Pouget, 2019). The relation 

between cognitive load and fixation duration seems to depend on the task at hand. 

Empirical evidence indicates that increased task complexity is associated with fewer but 

longer fixations (for reviews see: Clifton Jr et al., 2016; Rayner, 1998). For instance, S. 

Chen, Epps, Ruiz, and Chen (2011) concluded that increased fixation duration as well as 

decreased fixation rate may  indicate increased attentional effort on a more demanding 

task. Similarly, De Rivecourt, Kuperus, Post, and Mulder (2008) found that increased task 

complexity was associated with longer fixations on the control instruments during simulated 
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flight. Contrarily, Van Orden, Limbert, Makeig, and Jung (2001) observed fixation frequency 

to systematically increase with the visual complexity of a target classification task. Thus, it 

seems that for visual tasks the fixation rate increases with task difficulty whereas non-visual 

task demands lead to a decrease in fixation rate. 

Saccades. Eye movements between two fixations that allow for exploration of the 

surroundings and attention control are called saccades. Empirical evidence indicated that 

that in non-visual tasks saccadic rate and decrease with task difficulty (Nakayama, 

Takahashi, & Shimizu, 2002), whereas visual complexity seems to increase saccadic rates 

(Benedetto, Pedrotti, & Bridgeman, 2011; He, Wang, Gao, & Chen, 2012). 

Microsaccades. If our eyes would stay completely still during fixation, the visual 

image would gradually fade because neural response weakens with constant stimulation 

(Pouget, 2019).  Microsaccades are small unintentional eye movements, which cover less 

than 1° of visual angle and prevent currently viewed visual information from fading. 

Evidence suggests that microsaccadic frequency increases with increasing visual 

complexity of the task at hand (Benedetto et al., 2011), whereas in non-visual tasks 

microsaccadic rate seems to decrease and microsaccadic magnitude to increase with task 

difficulty (Gao, Yan, & Sun, 2015; Siegenthaler et al., 2014). 

Blinks. A commonly known function of blinking consists of keeping the eyeball moist 

and protecting it from physical damage. Besides that, in addition to microsaccades, blinking 

is also needed to prevent perceptual fading (Alexander & Martinez-Conde, 2019). 

Moreover, bursts of blinks seem to occur before and after periods of intense information 

processing (Siegle, Ichikawa, & Steinhauer, 2008), whereas, high blink rates were found to 

be associated with high cognitive load (Nakayama et al., 2002). 

Pupil dilation. This metric is most commonly considered in cognitive load research 

(for a general overview see: Andreassi, 2013). In states of high cognitive load, pupil 

diameter was repeatedly observed to increase proportionally both in visual and non-visual 

tasks (Fukuda, Stern, Brown, & Russo, 2005; He et al., 2012; Klingner, Tversky, & 

Hanrahan, 2011). 
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1.2.5 Multimodal approach   

The brief overview provided above shows that a variety of measurement methods 

can be used to assess cognitive load. However, a perfect single measurement method 

capable of capturing all facets of cognitive workload, preferably in real time, simply does not 

exist. In recent years, the trend is moving towards the development of complex multimodal 

measurement systems to capture cognitive workload (Herff et al., 2014; Ikehara & Crosby, 

2005; Zhou et al., 2020). For instance, Zhou et al. (2020) examined cognitive workload 

during a simulated robotic surgery, whereby the researchers collected different 

physiological data from wireless sensors and compared the predictive power of different 

classifiers. The best classification accuracy was achieved for the multimodal approach, 

which accounted for 83% of variance in cognitive workload. A combination of eye-tracking 

and EEG was found to be advantageously for studying cognitive load during learning with 

multimedia materials, because it allows for fixation specific analysis of brain activation, while 

eye-tracking features such as pupil dilation allow for cognitive load estimation and can be 

used as an additional measure (Scharinger, 2018; Scharinger, Kammerer, & Gerjets, 2015; 

Scharinger, Schüler, & Gerjets, 2020).  

Because subjective and performance-based measurement can be hardly applied 

online during task processing, a combination of (neuro-) physiological and behavioral 

measures appears to be promising in the context of adaptation to cognitive load. However, 

depending on the techniques used, the resulting multimodal measurement methods might 

become complex and expensive and therefore poorly suited for practical use. Moreover, 

data-driven approaches such as machine learning solutions as described by Gerjets, 

Walter, Rosenstiel, Bogdan, and Zander (2014) mostly require specific calibration and thus 

cannot be easily generalized to different subjects and situations.  

This raises the question of whether this limitation can be solved by selecting suitable 

measurement methods that are as simple as possible to collect and process, and analyzing 

them using a suitable theoretical framework that exploits knowledge about the nature of the 

task being performed as well as the cognitive structure of users. Accordingly, when trying to 

apply the proposed measurement system to similar settings, it might be possible to avoid 

additional calibration and thus achieve better generalizability of the method. As mentioned 

above, the concept of cognitive load is founded in the recognition of the limited nature of 
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human cognitive system and it is therefore closely relation to the concept of WM. In the 

following, the most influential contemporary theoretical models of WM are presented and 

discussed in terms of finding an appropriate theoretical foundation for a top-down 

measurement of cognitive load. 

 

1.3 Cognitive load in working memory models 

The idea of working memory (WM) is based on the view that all human reasoning is 

based on some common system, regardless of the problem to be solved. There are many 

different models of WM, and although they differ in details and their backgrounds, most of 

them are very consistent in their main propositions (cf. Bаddeley, 2012; Malmberg, 

Raaijmakers, & Shiffrin, 2019). Depending on how the known limitations of WM and thus 

cognitive load are explained, all models can be roughly divided into two main classes: 

theories that emphasize memory vs. attention as a limited resource.  

Baddeleys’ multicomponent model (Bаddeley & Hitch, 1974) is an example of a 

theoretical framework that emphasizes the role of memory in constraining human cognition. 

It is one of the most influential models of WM, which updated the concept of short-term 

memory from the modal model of Atkinson and Shiffrin (1968) and was based on more 

recent neurophysiological findings from patient studies. Extending the concept of short-term 

memory, the model suggests that WM combines both functions of storage and processing 

of information. The initial version of the multicomponent model assumed three components 

of WM. The central executive was considered to act as a central master system that 

controls two sensory slave systems with limited capacity: the phonological loop and the 

visuospatial sketchpad, which serves to temporally store information from different 

modalities. It is important to notice that both slave systems possess their own rehearsal 

mechanisms to keep information active for some time (e.g., inner speech production is the 

rehearsal mechanism used by the phonological loop). Later the model was enhanced with 

an episodic buffer (Bаddeley, 2000), which served as a passive storage for integrated 

information (e.g., processing of words bounded in sentences or combinations of colors and 

shapes to colored objects). The model assumes that each component is limited in capacity, 

namely in the amount and duration of information processing (Bаddеley & Logie, 1999), 
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whereas individual differences result from differences in underlying brain structures (e.g., 

due genetic factors of brain damages) and expertise (e.g., fluency in inner speech 

production, which serves as the rehearsal mechanism in the phonological loop) by both 

integrating information (e.g., process a word as a single chunk of information instead of 

processing each character separately) and increasing processing speed. Thus, according to 

this model, cognitive load imposed by a task at hand can be seen as the extent to which all 

components are filled with processed information. Under heavy load, resources intended for 

storage of elements are completely occupied, whereby there is no capacity left and the 

performance deteriorates. 

Similarly, cognitive load theory (Sweller et al., 1998), which is based on Baddeleys’ 

multicomponent model and focuses on instructional design, describes cognitive load as the 

extent to which the learners’ limited cognitive resources (i.e. their working memory storage 

component) are occupied. The theory distinguishes between three different aspects of 

cognitive load. Intrinsic cognitive load refers to the difficulty of the task, i.e. the number of 

elements that must be processed simultaneously. Extraneous cognitive load describes the 

unnecessary load caused by irrelevant or poorly-designed instructional materials. Germane 

cognitive load describes the effort that the learner invests in building long-term knowledge. 

It relies on the remaining cognitive resource after intrinsic and extraneous load is imposed 

onto learners. For example, if the task itself is difficult and the instructional design is poor, 

all cognitive resources may already be occupied, leaving no resource for deeper knowledge 

construction, resulting in a decline in learning performance.  

By contrast to these models focusing on the limited capacity of storage structures, 

other approaches emphasize the role of limited attentional resources as a basis of WM 

load. In the context of differential psychology, Engle and Kane (2004) consider WM as a 

part of a single long-term memory in which a limited amount of information can get activated 

for processing by means of directing controlled (or executive) attention to these information. 

According to these researchers, individual differences in WM capacity can be explained by 

means of differences in the ability to control attention, which therefore is an important 

predictor for a wide range of real-life tasks. Similarly, the embedded process model of WM 

by Cowan (1998) does not distinguish between long- and short-term memories but assumes 

that there is only one store for information, namely long-term memory, while short-term 
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memory is based on an activated part of long-term memory. Moreover, an attentional focus 

can be used to select and process a limited number of elements from the activated part of 

long-term memory, thereby constituting WM. In this model, WM is rather limited by the 

capacity and temporal limitation of this attentional focus, because the activation of 

information units decay within approx. 10-20 second without reactivation (Cowan, 1999).  

In sum, temporal limitations are mentioned in most models of WM as an important 

aspect of limited WM capacity. However, these aspects are mostly related to the 

assumption that temporary memory traces decay without refreshing or reactivation - but in 

these models time restriction are not considered to directly affect WM functioning. At the 

same time, evidence from experiments in realistic HMI settings indicates that time pressure 

by itself may also play an important role in inducing cognitive load. To mention one 

example, Andreessen, Gerjets, Meurers, and Zander (2021) trained a passive brain-

computer interface based on EEG to distinguish between high and low cognitive load and 

used it to validly predict the complexity of the presented text, which was read at different 

speeds. The authors found that increased reading speed was associated with higher 

cognitive load due to increased processing demands per time unit. Processing demands per 

time unit are focused on as an important source of WM load in the time-based resource-

sharing model (TBRS), which is based on the assumption that time and time pressure plays 

a crucial role in WM functioning (Barrouillet et al., 2004). 

 

1.3.1 Time-based resource-sharing model 

As other models of WM, the TBRS is based on experiments with working memory 

tasks such as span tasks, developed by Daneman and Carpenter (1980). In these tasks, 

memorizing items (e.g., last words of sentences) is interleaved with processing items (e.g.,  

verifying sentences). The number of items that can reliably be remembered by participants 

after a sequence is used as a measure of their working-memory span. This measure was 

found to be a very good predictor for performance on a wide range of tasks in realistic 

settings (for reviews see: Daneman & Merikle, 1996; Engle, Kane, & Tuholski, 1999). In 

order to study the role of time pressure for working-memory limitations, Barrouillet 

introduced paced span tasks that require participants to faster memorize or process items. 
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In contrast to preceding models, Barrouillet assumed that “the dual function of a 

working memory devoted to the active maintenance of information while concurrent 

processing is performed demands a subtle interplay between activation in which time plays 

the crucial role” (Barrouillet et al., 2004, p. 60). TBRS (for a comprehensive overview of the 

model and its development history, see Barrouillet et al., 2004; Barrouillet & Camos, 2015) 

describes WM as the core system of cognition dedicated to the processing and storage of 

information, whereby both storage and processing components of WM are required for 

executing a cognitive task. According to the model, both components require attention to 

switch between subtasks, which results in complex and time-critical interactions between 

them and eventually causes interruptions in their processing. In this way, researchers agree 

with the suggestion of (Kahneman, 1973) that complex activities impose high load not 

directly due to their complexity, but rather because time pressure is part of their nature. 

Therefore, even the simplest tasks can induce a high cognitive load if they are presented at 

a high pace and continuously demand the focus of attention. 

This idea can be illustrated by a simple example. Considering an arithmetic task such 

as two-digit multiplication: the processing component would be occupied with arithmetic 

operations, while the storage component would be needed to memorize intermediate 

results. Similarly, in a reading task, one needs to remember the context of what is currently 

being read as well as decoding a sequence of words to understand the meaning of a new 

sentence. From these examples, it seems intuitively clear that processing components of 

WM requires attention, but at the same time one must also somehow “refresh” the 

intermediate results of processing by means of intentionally thinking about them. This 

means that attention must be shared between both components of WM. This idea is 

responsible for the second part of the models’ name as TBRS assumes that attention is a 

limited resource that must be shared in such a way that only one central process such as 

storage or processing of information can be performed at a time. As soon as attention is 

directed to the processing component (e.g., to an arithmetic operation), the stored 

information (e.g., an intermediate result from a previous calculation step) begins to fade 

from memory. This so-called decay of memory traces progresses during the time during 

which attention is captured due to the ongoing calculation process. However, the TBRS 

postulates that simultaneous task execution can be mimicked by rapid switches of attention 

between to-be-performed subtasks, potentially interrupting the processing component of the 
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current task (i.e. one may briefly interrupt a simple arithmetic operation to remind oneself of 

the intermediate result). This leads to a complex and time-critical interplay between 

executed processing and storage activities, yielding the notion that attention sharing 

happens in a time-based manner, which explains the full name of the TBRS model. 

 

Returning to the example of a two-digit multiplication, what if a subject is perhaps 

very young and not very skilled in this type of task so that the arithmetic operation captures 

all of his attention without providing the storage process with any chance of refreshing 

intermediate results? After some time these results probably can no longer be retrieved 

from memory, so that further calculations would be rendered impossible, yielding a decline 

in performance. By contrast, for a very skilled subject, the arithmetic operations might be 

carried out in a more automated way requiring less attention, so that it would not be difficult 

to “refresh” intermediate results and show optimal performance. 

 Figure 1. Schematic representation of the emergence of cognitive load from varying 

speeds in a working memory span task. S: presentation of a character that has to be 

stored. P: processing components, e.g., reading letters (cf. Barrouillet & Camos, 2004). 
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Similarly, when executing simple processing activities such as reading letters in a 

paced WM span task (see Figure 1a), if the letters are presented at a comfortable pace, 

participants have sufficient time to reactivate memory traces and recall memorized items 

between their presentation. However, if the presentation pace becomes too fast (Figure 1 

b), the time left for reactivation of memory traces might become insufficient, resulting in 

increased cognitive load and reduce performance. By contrast, slowing of the presentation 

pace (Figure 1 c) would result in lower cognitive load and correspondingly better 

performance. Taking these considerations into account, TBRS predicts that cognitive load 

and thus performance depends on the proportion of time during which attention is captured 

in such a way that the storage of information is disturbed, whereas individual differences in 

cognitive load and performance depend on the duration of processing units as well as 

reactivation speed. 

 

1.4 Temporal action density decay metric  

Unfortunately, it is not trivial to determine the exact time during which attention is 

captured by processing demands. For this reason, the TBRS model was evaluated using 

span tasks (Case, Kurland, & Goldberg, 1982; Daneman & Carpenter, 1980) along with a 

specifically designed paced span tasks, allowing for definition of certain retention and 

storage intervals at a predefined pace (Barrouillet, Bernardin, Portrat, Vergauwe, & Camos, 

2007; Camos, Portrat, Vergauwe, & Barrouillet, 2007; Lépine, Bernardin, & Barrouillet, 

2005; Liefooghe, Barrouillet, Vandierendonck, & Camos, 2008; Portrat, 2008). Although 

hard paced tasks can be found in HMI settings (e.g., playing Tetris) they do not represent a 

typical setting. More frequently, users find themselves in environments dominated by time 

pressure, for example, as a result of predefined time limits in the processing of intelligent 

test items or in situations such as critical emergency, in which although no time limit is 

usually known, but the manager is highly motivated to act as fast as possible to save lives. 

In such settings, the pace at which sub-tasks are processed is internally determined by the 

desire to complete the entire task within the prescribed (or assumed) time limit. Because the 

TBRS model specifically emphasizes the role of time pressure in WM functioning, the model 

seems appropriate for modeling such situations. At the same time, because the method has 

been validated using hard paced tasks in a controlled laboratory environment, it is unknown 
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whether it can be applied in realistic situations with self-defined pace induced by time 

pressure, as described above. So, how might cognitive load be quantified based on the 

TBRS model applied in such a situation? 

In different persons, the same task can capture attention to varying degrees, 

depending on their cognitive resources, which may differ, e.g., through experience or 

training (Babiloni, 2019; Case et al., 1982). This means that under time pressure, a person 

experiencing lower demands on her/his attentional resources for the task-processing 

component may deliberately increase her/his processing speed (task density) without 

affecting his/her memory component, whereas a person experiencing higher attentional 

demands would not be able to do so. Accordingly, when presenting these two hypothetical 

persons with a block of certain tasks under time pressure (action block), one would observe 

two activity phases. In a first phase (burst), one would see both persons performing the 

presented tasks at a maximum speed. In a second phase (idle), they would have to wait 

until the end of the current action block, in other words until the subsequent action block 

begins.  

 

Assuming that both persons have operated at their limits, their cognitive load in the 

burst phase would be equivalent, namely at a maximum. By contrast, the duration of the 

burst phase would depend on their cognitive resources. Therefore, cognitive load of the 

entire action block could be estimated by the relation of the duration of the burst phase to 

the total duration of the action block (see Equation 1). In terms of the TBRS model, this 

implies that the person experiencing lower demands has more temporal processing 

resources left and might therefore also be able to solve more difficult tasks, whereas the 

other person has fewer resources left for the time-based sharing. 

One possibility to apply this approach to realistic HMI using a serious game as an 

example is to define burst and idle periods based on in-game activities captured in log files 

for each participant. During the burst period, participants manage their emergency 

personnel, and after the last available personnel have been assigned to a task the idle 

interval starts and lasts until the first personnel finish their tasks and are available again.  
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Figure 2. llustration of burst and idle time periods based on the example of an Emergency 

serious game. Inactive task forces are marked with black circles, and active ones with 

green. 

 

At the beginning of the game level, all emergency personnel are ready and inactive 

(Figure 2 A).  Subsequently, the initial burst begins with the first task that the player assigns, 

which lasts until all available personnel are actively engaged. In this example, the 

emergency doctor and paramedics are not available for assignment because there are no 

injured people to be treated (Figure 2 B). The initial burst ends as soon as the last available 

personnel are assigned, and the emergency doctor and paramedics cannot yet be 

assigned. This time also marks the beginning of the initial idle, in which the player must wait 

until some personnel become available again or until new tasks occur. In this example, all 

available personnel are already active and the player must wait until the person is rescued 

from the burning building, only after which can he/she be treated by the doctor (Figure 2 C). 

The initial idle ends when the first personnel are available again. In this example, the initial 
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idle phase ends as soon as the rescued person appears lying on the road. At this moment, 

an emergency doctor becomes free and can be assigned to treat the patient. At the same 

time, the ladder truck also becomes free again and can be assigned to rescue the next 

person (Figure 2 D). 

 

1.5. Research questions 

1.5.1 Objectives of this dissertation 

Adequate adaptation to cognitive load might help to reduce human errors and 

improve performance (Kohlmorgen et al., 2007; Walter et al., 2017; Yuksel et al., 2016). 

Specifically, in time-critical situations this might potentially save lives 

(Statistisches Bundesamt, 2017) and therefore holds crucial importance. Data-driven 

methods commonly used for such adaptation seem very promising, but at the same time 

they bring certain limitations: machine learning systems need to be trained on possibly large 

data sets and therefore cannot be easily transferred to a different situation and different 

users. This raises the question of whether this limitation can be solved by using an 

appropriate theoretical approach that would take advantage of knowledge about the nature 

of the task being performed and its structure. 

The TBRS model of Barrouillet et al. (2004) emphasizes the crucial role of time on 

WM functioning and therefore appears to present a promising theoretical framework for this 

purpose. However, the model was developed and evaluated mainly for WM span and 

specific hard-paced experimental paradigms, and it remains unclear how it can be applied 

to a realistic situation. One example of a real-life situation that comes close to a hard-paced 

WM span task may be a time-critical management situation in which the pace is determined 

indirectly due to the reaction and execution time of available resources whenever an 

emergency manager is highly motivated to show maximal performance. However, in these 

situations separation into subtasks would be more difficult than in a WM span task.  

In this dissertation, I propose a method for the application of TBRS on a time 

pressure situation as described in Section 1.4. My objective is to investigate whether 

predicted time periods (burst, idle, action block) can be found in the course of a serious 
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game simulating a time-critical emergency and, if so, whether the analysis of these periods 

can predict cognitive load and player performance in an expected way. By doing so, I hope 

to contribute to the development of adaptive HMI systems for real-world applications. 

Therefore, the measurement methods used were chosen to make this method potentially 

suitable for commercial applications that require unobtrusive realization and are typically run 

on rather small devices with low computing power. 

 

1.5.2 Overview of conducted studies  

 

 In a series of three studies, the proposed approach was introduced and validated 

using behavioral, fNIRS and eye-tracking methods. To induce different levels of cognitive 

load in participants, a specifically customized version of the serious game Emergency 

(Promotion Software GmbH, 1999), which simulated two typical emergency scenarios at 

three levels of difficulty each, was used throughout the studies. Table 1 provides an 

overview of the entire project. 

In the first study, the TBRS model was identified as a potentially suitable theoretical 

framework when modeling the management of time-critical emergencies. Accordingly, it 

was attempted to apply its theoretical predictions to a realistic HMI during a serious game 

by defining and calculating the TADD metric (see Section 1.3). Thereby, the TADD metric 

was presented in three different variations: (1) initial TADD, as the first TADD, calculated at 

the beginning of the level; (2) mean TADD, defined as mean value of all sequential TADDs 

calculated per level; and (3) as normalized gaming time defined as the relation of actual 

gaming time to the predefined time limit. In addition, the difficulty of the levels within the 

customized Emergency serious game was validated using subjective self-reports assessed 

using the NASA-TLX questionnaire.  
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Table 1. Overview of conducted studies. 

 

Is it possible to measure cognitive load in real-time in a top-down manner? 

 
 

Aim 

 

Measurement domain 

 

Study 1 Search for an appropriate theoretical 

framework and propose a practical 

measurement method. 

behavioral data 

 

 

Study 2 
Does cortical activation correspond to 

the theoretical assumptions underlying 

the proposed method? 

cortical activation      

(fNIRS) 

 

Study 3 
Do eye-tracking features correspond to 

the theoretical assumptions underlying 

the proposed method? 

eye-tracking features               

(eye-tracking) 

 

 

Based on the results obtained in the first study, the initial TADD metric was selected 

for further investigations. The further important step was to determine whether theoretical 

assumptions made when developing the metric were correct. This becomes an important 

issue when intending to generalize the method to other scenarios and settings. Because 

behavioral data is not sufficient to accurately determine the users’ cognitive states, whereas 

subjective ratings do not reflect fluctuations in cognitive load over time (see Section 1.1), 

two additional studies involving (neuro-) physiological measurement methods were 

conducted. Thereby, two main questions were addressed. First, the important theoretical 

assumption used in defining the initial TADD metric was that due to the time pressure 

imposed, all participants should be working at their cognitive limit during the initial burst 

phase. Thus, no associations between (neuro-) physiological activation and difficulty level or 

performance were expected during this time period. Second, while participants were 

executing predefined tasks during the initial burst phase, which was captured in game logs, 
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no recordable actions were performed during the initial idle phase due to the nature of this 

time period. For this reason, it was intended to investigate this time period in further depth 

using (neuro-) physiological methods with the aim of better understanding what cognitive 

activities take place during this time and how possible differences in cognitive behavior 

among participants during the initial idle period are related to their cognitive load/outcome of 

the level.  

Following the aforementioned considerations, in the second study a direct (according 

to the classification of Brunken et al., 2003) neuroimaging method fNIRS was used to 

measure cortical hemodynamics during the initial burst and initial idle periods. Building on 

empirical evidence suggesting that the prefrontal cortex is involved in decision-making 

processes (Thier, 2006) and that hemodynamic activation in this region is significantly 

associated with cognitive load (Ayaz et al., 2007; Ehlis et al., 2005; Fishburn et al., 2014), 

this area was specifically under focused on by analyzing activation in the dorsolateral 

prefrontal cortex (DLPFC) and inferior frontal gyrus (IFG), the part of the PFC involved in 

language processing.  

To obtain a comprehensive understanding of the proposed method and evaluate it 

from different perspectives, the third study examined the aforementioned research 

questions once again, this time using the eye-tracking method. According to the same 

classification (Brunken et al., 2003), eye-tracking is considered an indirect method for 

measuring cognitive load, but at the same time it  brings enormous benefits regarding its 

usability for commercial developments due to its discreet implementation. Based on 

empirical evidence showing that these features respond to variations in cognitive load, 

fixations, blinks, saccades, microsaccades, and pupil diameter were analyzed during the 

initial burst and initial idle periods in the third study. 

Taken together, the three studies presented and evaluated a novel theory-based 

approach to measuring cognitive load in time-critical situations while providing a consistent 

comprehensive picture of the cognitive activities underlying the proposed metrics. In the 

process, the feasibility was demonstrated using various measurement domains, while at the 

same time new research perspectives were opened up to be explored. The authors’ 

manuscripts of these studies are presented in the following sections.  
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2 Study 1 

 

The following is an author manuscript of an article published under Creative 

Commons CC-BY license (the current version is CC-BY, version 4.0) by Frontiers in 

Psychology, available online under https://www.frontiersin.org/journals/psychology. 

 

Copyright © 2021 Sevcenko, Ninaus, Wortha, Moeller and Gerjets. This is an open-

access article distributed under the terms of the Creative Commons Attribution License (CC 

BY). The use, distribution or reproduction in other forums is permitted, provided the original 

author(s) and the copyright owner(s) are credited and that the original publication in this 

journal is cited, in accordance with accepted academic practice. No use, distribution or 

reproduction is permitted which does not comply with these terms. 

 

 

Please cite as: 

Sevcenko, N., Ninaus, M., Wortha, F., Moeller, K., & Gerjets, P. (2021). Measuring 

cognitive load using in-game metrics of a serious simulation game. Frontiers in Psychology, 

12, 906. doi:https://doi.org/10.3389/fpsyg.2021.572437 
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Abstract 

Serious games have become an important tool to train individuals in a range of 

different skills. Importantly, serious games or gamified scenarios allow for simulating 

realistic time-critical situations to train and also assess individual performance. In this 

context, determining the users’ cognitive load during (game-based) training seems crucial 

for predicting performance and potential adaptation of the training environment to improve 

training effectiveness. Therefore, it is important to identify in-game metrics sensitive to 

users’ cognitive load. According to Barrouillets’ time-based resource-sharing model, 

particularly relevant for measuring cognitive load in time-critical situations, cognitive load 

doesn’t depend solely on the complexity of actions but also on temporal aspects of a given 

task. In this study, we applied this idea to the context of a serious game by proposing in-

game metrics for workload prediction that reflect a relation between the time during which 

participants’ attention is captured and the total time available for the task at hand. We used 

an emergency simulation serious game requiring management of time-critical situations. 47 

participants completed the emergency simulation and rated their workload using the NASA-

TLX questionnaire. Results indicated that the proposed in-game metrics yielded significant 

associations both with subjective workload measures as well as with gaming performance. 

Moreover, we observed that a prediction model based solely on data from the first minutes 

of the gameplay predicted overall gaming performance with a classification accuracy 

significantly above chance level and not significantly different from a model based on 

subjective workload ratings. These results imply that in-game metrics may qualify for a real-

time adaptation of a game-based learning environment. 
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1 Introduction 

Serious games have become an important tool for educating and training people in a 

variety of different skills, ranging from military purposes to education and health care (for an 

overview see: Boyle et al., 2016; Susi, Johannesson, & Backlund, 2007); Unlike traditional 

analog learning, which cannot be automatically adapted to individual needs, serious games 

and simulations can be programmed to create targeted learning programs. While digital 

training in areas such as maths, language learning, exercise or healthy eating can easily be 

replaced by analogue setups, a range of situations such as aircraft crashes, surgical 

operations, or - more generally - time-critical emergency situations, can hardly be trained in 

real-life situations, it may benefit considerably from simulations and/or serious games. The 

most pronounced advantage of such digital training consists not only of the potential to 

simulate dangerous and time-critical situations, hard to recreate in analogue surroundings, 

but also of the fact that any digital training system also allows for the collection of individual 

in-game metrics (e.g., performance progression or computer mouse/keyboard usage) upon 

which learning analytics can be applied (Freire et al., 2016). Measures such as memory and 

learning outcomes may directly be used for an adjustment of difficulty levels of the learning 

environment. However, these outcome measures are usually only available after a 

particular task has been completed. In contrast, estimations of players’ cognitive or 

emotional states based on in-game metrics (Nebel & Ninaus, 2019), might be used to adapt 

systems to increase training effectiveness, performance, and motivation. Among different 

affective and cognitive components, cognitive load seems to be particularly interesting as it 

is considered to reflect the degree to which available cognitive resources are engaged in 

the task at hand (Babiloni, 2019). As P. Gerjets et al. (2014) pointed out, the actual level of 

cognitive load is relevant in a variety of realistic settings, such as adaptive learning 

environments, where optimal learning content is characterized by an intermediate level of 

cognitive load. The researcher showed that the learners’ cognitive load while solving 

complex realistic tasks can be classified by analyzing electroencephalography (EEG) data 

using machine learning algorithms. Moreover, previous results indicated that adaptations 

based on measured cognitive load can lead to significant learning improvements 

comparable to effects of failure-based adaptations, even when a generalized prediction 

model without user-specific calibration is used (Walter et al., 2017). 
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In the current study, we used a serious simulation game for training emergency 

personnel with the aim to assess participants’ cognitive load by in-game metrics using a 

theory-driven approach. Below we provide a brief overview of cognitive load and its 

measurement methods. This is followed by a more detailed description of the time-based 

resource-shared model of Barrouillet et al. (2004), which provides the theoretical foundation 

for our approach on in-game metrics measuring cognitive load before we describe the 

details of the current study and hypotheses.  

 

1.1 Cognitive load and adaptation to cognitive load 

The concept of cognitive load goes back to the finding that working memory capacity 

is limited to approx. seven chunks of information (G. A. Miller, 1956), and thus cognitive 

resources, in general, are limited. According to the definition of Paas and Van Merriënboer 

(1994), cognitive load is a multidimensional construct and represents demands that a 

particular task imposes on the cognitive system. While this definition offers a good initial 

idea of the construct, the theoretical details of how cognitive load should be precisely 

conceptualized are still under discussion. Thus, even though the research on cognitive load 

has a long history (Barrouillet et al., 2004; Eggemeier et al., 1985; Linton et al., 1978; 

Meshkati, 1988; Sheridan & Simpson, 1979; Sweller et al., 1998; Welford, 1978) it’s still a 

scientifically vibrant field of interest given its crucial importance for everyday life. As noted 

by Babiloni (2019) in his recent review on the topic, cognitive load can be characterized by 

a complex interplay between different task demands and a variety of mental processes such 

as alertness, vigilance, fatigue, etc., and thus represents a result of a complex interaction of 

different aspects. That is, cognitive load is a dynamic variable that may change rapidly 

during task processing. Nevertheless, three general assumptions regarding the construct of 

cognitive load can be derived from the literature (cf. Babiloni, 2019). First, human cognitive 

and attentional resources are limited. Second, different tasks can require different cognitive 

resources to varying degrees. And third, different individuals may experience different levels 

of cognitive load when conducting a task even when achieving the same performance level 

on it.  
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Ample evidence emphasizes the importance of cognitive load in our everyday life. 

For instance, cognitive load plays a crucial role in performing everyday activities such as 

learning/education (Ruiz et al., 2010), car driving (G. Hancock et al., 2012; Kohlmorgen et 

al., 2007), rail industry (Fan & Smith, 2017b), air force (P. Hancock, 1989), office work 

(Smith-Jackson & Klein, 2009), and medicine (Yurko et al., 2010). Thus, accurately 

measuring cognitive load seems of considerable importance for a better understanding of 

the fluctuations in human performance. 

According to an influential theoretical account, the relationship between cognitive 

load and performance is non-linear and can be described following an "inverted-U” shaped 

function (Babiloni, 2019; Veltman & Jansen, 2005), see also Yerkes and Dodson (1908). 

Importantly, the general idea of this “inverted-U” shaped relationship is also closely related 

to the concept of “flow” proposed by Csikszentmihalyi (1975). Flow is described as a 

positive emotional and cognitive state (Kiili et al., 2018) of optimal concentration and 

absorption. The state of flow is achieved when there is a good balance between the 

demands of a given task and the perceived skills and resources of an individual to solve the 

task. That is, a given task should not be too difficult (i.e. cognitive overload) or too easy (i.e. 

cognitive underload and boredom) to elicit a flow state allowing for optimal performance. 

Consequently, optimal learning content should be moderately challenging but should neither 

induce cognitive over- nor underload. The very same consideration is also reflected in 

classical theories of instructional design. So moderately challenging optimal training state 

corresponds to the “zone of proximal development” (cf. Vygotsky (1980) and “amount of 

invested mental effort” cf. Salomon (1984).  

Empirical evidence substantiated this theorized relationship between cognitive load 

and performance. For instance, Cummings and Nehme (2009) evaluated the relationship 

between cognitive load and performance of operators supervising multiple unmanned 

vehicles during a simulation of a military mission. In a series of two experiments, they 

showed that the addition of non-linear parabolic components into their performance 

prediction model improved its predictive power significantly. This demonstrated the non-

linear character of this relationship and indicates that individuals perform best at medium 

levels of cognitive load (e.g., Anderson, 1994; Montani, Vandenberghe, Khedhaouria, & 

Courcy, 2020; Watters, Martin, & Schreter, 1997). These results generalize to educational 
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environments as well as serious games and reflecting that to achieve best learning 

outcomes learners should be kept in an intermediate range of cognitive load where they are 

not bored (Pekrun, Goetz, Daniels, Stupnisky, & Perry, 2010) but also not overstrained 

(Chang, Warden, Liang, & Lin, 2018; Geng & Yamada, 2020; Niederhauser, Reynolds, 

Salmen, & Skolmoski, 2000). 

In this way, it becomes clear that an ideal learning environment should not only be 

tailored to specific needs of the learners (P. H. Gerjets & Hesse, 2004; Richards et al., 

2007), for instance distinguishing between different expertise levels (cf. "expertise reversal 

effect" by Kalyuga, 2007). But also needs to consider that cognitive load is a dynamic 

variable that depends on different cognitive processes and may change during task 

accomplishment. Therefore, in order to keep learners within an optimal intermediate range 

of cognitive load, such systems should be able to identify undesirable states of under- and 

overload in real-time and adapt an ongoing task accordingly. In this way, performance and 

learning outcomes might be optimized. 

Empirical evidence suggests that such online adaptation is indeed practicable (Appel 

et al., 2019; P. Gerjets et al., 2014) and can improve performance. For instance, 

Kohlmorgen et al. (2007) examined whether an adaptive reduction of cognitive load would 

lead to improved performance in a real-world driving task. Using electroencephalography 

(EEG) they were able to detect drivers’ cognitive overload and to adapt to it accordingly by 

making the task easier. In turn, this led to improved driving performance. Similarly, Yuksel 

et al. (2016) reported better performance as a result of adapting task difficulty to cognitive 

load. They used near-infrared spectroscopy (NIRS) to detect states of cognitive underload 

in pianists during a musical learning task and increased difficulty of the respective lessons 

accordingly. Moreover, Walter et al. (2017) developed a learning environment that adapted 

task difficulty based on EEG recordings reflecting the cognitive load of learners. Optimal 

cognitive load was deduced from EEG data and was not individually calibrated. 

Nonetheless, this system led to learning outcomes similar to that observed for error-based 

adaptation.  

These examples indicate the growing popularity of this approach and its importance 

for future studies. However, they also point to the diversity of measurement techniques in 
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this field. The following section introduces and classifies different ways of measuring 

cognitive load. 

 

1.1.1 Measurement of cognitive load 

Cognitive load assessment techniques that might be used to guide adaptations to 

cognitive load should be able to respond sensitively to variations in cognitive demands of 

the task at hand or interaction with learning systems without causing external disturbances 

to performance on the primary task (Orru & Longo, 2019). The literature distinguishes 

between four main categories of cognitive load measurement techniques: subjective 

measures, performance measures, behavioral measures, and physiological measures 

(Brünken et al., 2010; Eggemeier et al., 1991; Johannsen, 1979; Scerbo, 1996). 

 

1.1.1.1 Subjective measures. Subjective measurements are based on the 

observation that people are able to interpret and adequately describe their experienced 

cognitive load during a particular task (Gopher & Braune, 1984). These self-reported 

descriptions are collected using questionnaires such as SWAT (Reid & Nygren, 1988) and 

NASA-TLX (Hart & Staveland, 1988), which require participants to rate their experiences 

using predefined scales immediately after completing a specific task. Subjective measures 

are easy to collect, they are inexpensive and they usually provide consistent results 

(O’Donnell & Eggemeier, 1986). Therefore, these measures are widely accepted and have 

been thoroughly evaluated. Despite their advantages, subjective measurements have also a 

number of limitations. The main issue is that responding to a questionnaire interrupts task 

execution and thus can only be carried out after the task has already been completed, 

which has some potentially confounding consequences. Firstly, a retrospective view of an 

experienced cognitive load may be distorted by fading memory. Secondly, experienced 

failures (or successes) can bias the post-hoc perception of cognitive load (P. Hancock, 

1989). Thirdly, only a rough summary of the experience can be grasped in this way, which 

is not capable of tracking fine variations of cognitive load over time. And finally, self-

reported measurements are only able to reflect conscious aspects of the cognitive load 

experienced during task accomplishment. 
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1.1.1.2 Performance measures. Performance-based approaches evaluate 

variations in human performance. Based on empirical evidence, performance should 

decrease in case of cognitive overload (Babiloni, 2019; Veltman & Jansen, 2005; Yerkes & 

Dodson, 1908). Accordingly, a drop of performance may help to detect cognitive overload. 

As a main objective of cognitive load measurement is the prediction of task performance, 

this cluster of measurement techniques appears intuitively to be the most obvious and direct 

to apply. Unfortunately, it cannot be determined whether observed variations in 

performance have actually occurred due to changes in cognitive load or due to other 

relevant factors such as arousal or motivation (Brünken et al., 2010). Therefore, these 

measures yield no independent assessments of cognitive load for performance prediction. 

Moreover, in many cases it is not possible to obtain performance data during actual task 

completion, so that performance-based measurements can very often only be calculated 

and analyzed post-factum, rendering them useless for prediction or adaptation. 

 

1.1.1.3 Behavioral measures. Behavioral measures rely on the analysis of 

differences in interaction behavior during task processing, such as speech and voice 

patterns (Berthold & Jameson, 1999; Magnusdottir et al., 2017; Ruiz et al., 2010) or 

differences in the usage of input modalities such as keyboard or mouse (Ikehara & Crosby, 

2005; Lim et al., 2015).These measures are usually unobtrusive and do not distract 

participants from the task at hand. Moreover, they do not require additional equipment and 

are usually inexpensive. Behavioral measures potentially allow for a continuous online 

measurement of cognitive states during task execution. However, identifying in the data 

related to cognitive load behavioral patterns is by no means a trivial endeavor, as these 

behavioral patterns might also be influenced by other factors such as emotions or stress. 

 

1.1.1.4 Physiological measures. Physiological measures of cognitive load rely on 

detecting physiological changes associated with cognitive states (Johannsen, 1979). 

Depending on the type of signal to be recorded, they can be more or less obtrusive. While 

sensors for electrodermal activity (EDA) or heart rate variability (HRV) can be rather 

discreet, electroencephalography (EEG) or functional magnetic resonance imaging (fMRI) 
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are less practical or even impracticable in real-life situations because of their complexity, 

immobility, and obtrusiveness (for an overview see Ninaus et al., 2013). One major 

advantage of physiological measures is that they allow for continuous online recording. 

However, physiological measures require special equipment, cause additional costs, and 

the detection of cognitive states based on physiological signals is also not a trivial task 

(Appel et al., 2019; P. Gerjets et al., 2014). Because physiological processes are not only 

driven by cognitive states but can also be influenced by a variety of other factors, such as 

motor actions or emotions, it is not always unambiguously clear whether a change in a 

physiological signal was actually caused by the targeted cognitive state (Kramer, 1991). 

Moreover, physiological signals often require user-specific calibrations due to the signals’ 

high inter-subject variability. 

 

1.1.1.5 Conclusion. While there seem to be numerous methods for measuring 

cognitive load, a perfect single assessment approach capable of capturing all relevant 

facets of cognitive load, preferably in real-time, simply does not exist. In recent years, a 

trend towards the development of complex multimodal measurement systems to capture 

cognitive load can be observed (Herff et al., 2014; Ikehara & Crosby, 2005; Zhou et al., 

2020). However, due to their inherent complexity, multimodal approaches seem to be 

primarily useful for extensive online data acquisition in the laboratory. In real-world 

scenarios outside the laboratory, such as gameplay, it seems reasonable to focus on 

metrics that on the one hand reflect users’ behavior and performance and on the other hand 

can be easily collected during gameplay without requiring additional equipment. In view of 

future developments, such simple but reliable metrics might also become part of more 

complex monitoring systems. However, as argued above, changes in users’ behavior and 

performance do not necessarily directly reflect changes in cognitive load, so that a solid 

theoretical framework for the development of such metrics will be needed. In this paper, we 

will rely on the time-based resource-sharing (TBRS) model described below to provide a 

suitable theoretical basis for assessing cognitive load based on behavioral and performance 

measures in time-critical multitasking environments requiring simultaneous execution of 

several tasks under severe time constraints. 
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1.2 The time-based resource-sharing model  

TBRS (for a comprehensive overview of the model and its development history see 

Barrouillet et al., 2004; Barrouillet & Camos, 2015) describes working memory as the core 

system of cognition dedicated to the processing and storage of information, whereby both 

storage and processing components of working memory are required for the execution of a 

cognitive task. This idea can be illustrated by a simple example. Considering an arithmetic 

task, such as two-digit multiplication, the processing component would be occupied with 

arithmetic operations, while the storage component would be needed to memorize 

intermediate results. Similarly, in a reading task, one needs to remember the context of 

what is currently being read as well as to decode a sequence of words to understand the 

meaning of a new sentence.  

From these examples, it seems intuitively clear that processing components of 

working memory requires attention, but at the same time one must also somehow “refresh” 

the intermediate results of processing by means of intentionally thinking about them. That 

means that attention must be shared between both components of working memory. This 

idea is responsible for the second part of the models’ name as TBRS assumes that 

attention is a limited resource that must be shared in a way that only one central process 

such as storage or processing of information can be performed at a time. As soon as 

attention is directed to the processing component (e.g., to an arithmetic operation), the 

stored information (e.g., an intermediate result from a previous calculation step) will begin to 

fade from memory. This so-called decay of memory traces is progressing in the time during 

which attention is captured due to the ongoing calculation process. However, TBRS 

postulates that simultaneous task execution can be mimicked by rapid switches of attention 

between to-be-performed subtasks - potentially interrupting the processing component of 

the current task (i.e., one may briefly interrupt a simple arithmetic operation to remind 

oneself of the intermediate result). This leads to a complex and time-critical interplay 

between executed processing and storage activities yielding that attention sharing happens 

in a time-based manner, which explains the full name of the TBRS model: time-based 

resource-sharing model.  

Coming back to the example of a two-digit multiplication, what if a subject is perhaps 

very young and not very skilled in this type of task so that the arithmetic operation captures 
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all of his attention without providing the storage process with any chance of refreshing 

intermediate results? Probably, after some time these results cannot be retrieved from 

memory anymore so that further calculations would be rendered impossible, yielding a drop 

in performance. In the contrary, for a very skilled subject, the arithmetic operations might be 

carried out in a more automated way requiring less attention, so that it would not be difficult 

to “refresh” intermediate results and show optimal performance. Taking these 

considerations into account, TBRS predicts that cognitive load and thus performance will 

depend on the proportion of time during which attention is captured in such a way that the 

storage of information is disturbed. 

As Barrouillet et al. (2004) emphasizes, it is unfortunately not trivial to determine the 

exact time during which attention is captured by processing demands. Moreover, as the 

model was developed and evaluated mainly for working-memory span tasks (Case et al., 

1982; Daneman & Carpenter, 1980), it’s further evaluation and extension to other executive 

functions required the design of specific experimental paradigms, allowing for defining 

certain retention and storage intervals at a predefined pace (Barrouillet et al., 2007; Camos 

et al., 2007; Lépine et al., 2005; Liefooghe et al., 2008; Portrat, 2008). 

As such fine-tuned and hard-paced settings are hardly present in everyday life, two 

questions arise: Can the model also be applied to more realistic setups, and if so, how 

should such setups look like. A real-life situation that comes closest to a hard-paced 

working-memory span task may be a computer-based test with restricted execution time for 

particular subtasks. Another situation with inherited pacing could be a time-critical 

management situation in which the pace is determined indirectly due to the reaction and 

execution time of available resources. However, as in both described situations, separation 

into subtasks would be more difficult than in a working memory span task, it remains 

unclear how the model and its prediction of the resulting cognitive load can be used in more 

general situations, such as serious games, where the pace is only indirectly determined 

while time pressure is still relevant. In this study, we aimed to address this question by 

proposing an in-game metric for measuring cognitive load based on the theoretical 

framework of TBRS.  
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1.3 The present study 

Determining cognitive load during a serious game might be crucial for performance 

predictions as well as for providing adaptations to improve learning outcomes. In this study, 

we aimed at evaluating a practicable and parsimonious solution for cognitive load detection 

in serious games based on TBRS with regard to its reliability and potential suitability for 

online assessments and evaluations. To validate our approach we used commonly applied 

subjective reports of cognitive load as assessed by the NASA-TLX (Hart & Staveland, 

1988). We focused on the use of in-game metrics based on users’ behavior and 

performance as sources of information because these measures can be easily collected 

during gaming without extra equipment and provide relevant empirical evidence in terms of 

the time-based resource-sharing model Barrouillet et al. (2004). The validity of the proposed 

metrics for predicting cognitive load was evaluated in terms of their relation to the cognitive 

load as reported in the NASA-TLX and to the overall gaming performance. To implement 

sufficient variance in cognitive load we used an adaptation of a complex serious game 

simulating an emergency situation with different scenarios and levels of difficulty.  

In particular, we pursued the following hypotheses. First, proposed measures of 

cognitive load based on in-game metrics as well as subjective self-report should validly 

reflect differences between various scenarios and levels of difficulty as a manipulation 

check. We expected that cognitive load should be higher in more difficult scenarios and 

levels as indicated by both in-game metrics as well as subjective ratings. Second, on an 

individual level we expected that cognitive load as indicated by the in-game metrics used 

should be associated significantly with participants’ subjective rating of their cognitive load 

as measured by the NASA-TLX as well as with their overall gaming performance. Third, we 

hypothesized that the in-game metrics developed should allow for the prediction of overall 

gaming performance comparably well as subjective ratings provided by the NASA-TLX.  
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2 Methods 

This study focused on measuring cognitive load with behavioral in-game metrics. It 

was carried out as part of a larger project that included several other physiological 

measures such as functional near-infrared spectroscopy (fNIRS), cardiac measurements, 

galvanic skin response, and eye-tracking (cf. Appel et al., 2019). As the aim of the current 

study was the evaluation of a simple and practicable parsimonious solution for cognitive 

load detection in serious games, the current analyses solely focused on behavioral and 

performance measures. 

 

2.1 Participants 

47 volunteers (33 females, 14 males) aged between 15 and 49 years (M = 24.6; SD 

= 6.4) participated in the study with most of them being students (95.7%). Informed consent 

was obtained from all participants or their parents when under the age of 18 (1 participant). 

All participants were right-handed, fluent in German, recruited via an online database, and 

compensated with 8 EUR for completing the study. The study was approved by the local 

ethic committee and a written informed consent was obtained. Participants reported no 

neurological, psychiatric, cardiovascular disorders, and did not take any psychotropic 

medications. 

 

2.2 Task 

Participants played a customized version of the serious game Emergency 

(Promotion Software GmbH, 1999), which provides simulations of different emergency 

situations. The game comprised different scenarios with three levels of difficulty each. 

During gaming, participants’ task was to coordinate six types of emergency personnel, such 

as paramedics, emergency doctors, firefighters, ambulances, as well as fire- and ladder 

trucks, to rescue victims and extinguish fires. 

The game was played from an isometric view where the viewing angle is shifted, creating a 

three-dimensional effect and showing some details of the environment that are not visible 

when viewed directly from above or from the side (see Figure 1). Participants had to choose 



 

47 
 

an appropriate command from an action menu by clicking on an available emergency force, 

and then select a target of the requested action by clicking on the desired object. For 

instance, participants clicked on an emergency doctor who would then be ordered to serve 

a respective victim, or on a firefighter who would be ordered to put out a fire or to free a 

person trapped in a car. Interaction with the game was realized using a conventional 

computer mouse only. 

 

Figure 1. An example scene from scenario Fire. 

 

After getting familiar with the game by playing an introductory tutorial and a training 

scenario, participants completed two target scenarios: Fire and Train Crash. Each scenario 

had to be played with three levels of difficulty: easy, medium, and hard. The difficulty levels 

and the scenarios differed with regard to the number of tasks to be accomplished and the 

number of personnel to be coordinated within a given period of time. At the beginning of 
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each level the number of tasks was equal for all players. Whereas, the number of victims 

was held constant, which means that no new victims were added during a game, the 

number of fires depended very much on the performance of players and therefore could 

grow rapidly (i.e., by fires spreading to adjacent buildings or objects if not extinguished). As 

the increasing task-density across levels and scenarios required not only more actions but 

also better coordination and prioritization, we expected that cognitive load of participants 

would increase with increasing difficulty of levels and scenarios. Additionally, there was a 

time limit for each level and scenario to impose time pressure onto participants. A summary 

of all parameters describing the task difficulty of each scenario and each level can be found 

in Table 1. 

 

Table 1 

Overview over the initial game parameters 

 
Scenario / Game Parameters 

 Difficulty 

 easy medium  hard 

Scenario: Fire     
    Time limit (sec) 
    Tasks – total 

 450 
8+ 

450 
13+ 

450 
18+ 

        Victims      2     3     4 
        Fires       4+     7+     10+ 
        Ladder Rescues      2     3     4 
    Resources –total  9 12 15 
        Doctors      1     2     2 
        Paramedics      1     2     2 
        Fire Fighters      4     4     6 
        Fire Trucks      2     3     4 
        Ladder Trucks      1     1     1 
     
Scenario: Train Crash     
    Time limit (sec)  600 600 600 
    Tasks – total  20+ 30+ 40+ 
        Victims      10     15     20 
        Cars to cut      7     10     13 
        Fires       3+     5+     7+ 
    Resources – total  10 14 18 
        Doctors      2     3     4 
        Paramedics      3     5     6 
        Fire Fighters      4     4     6 
        Fire Trucks      1     2     2 
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Note: The number of fires depended on players’ performance and might grow. These cases are 

marked by the '+' sign. 

2.2.1 Training scenario 

The learning sequence involved a car accident at an intersection. The players’ task 

was to free all persons trapped in the crashed vehicles, treat them for health issues and 

transport them to the hospital. The time limit for this scenario was set to 5 minutes. 

 

2.2.2 Fire 

In this scenario, participants had to fight a burning building block. In addition, some 

residents had to be freed from the burning house, treated for health issues, and transported 

to the hospital. The number of fires varied depending on the players’ performance in 

extinguishing fires and could eventually increase rapidly. The time limit was set to 7.5 

minutes. 

 

2.2.3 Train Crash 

This scenario depicted a train crashing into a building, causing a quick-spreading fire. 

The task was to free trapped passengers from the train, treat them for health issues, and 

then transport them to the hospital. At the same time, numerous fires had to be 

extinguished. In this scenario, the number of fires also varied depending on the players’ 

extinguishing performance. An additional difficulty was to protect emergency doctors 

working near a fire. The time limit for this scenario was set to 10 minutes. 

 

2.3 Measures 

In the current study, cognitive load was measured by means of two methods. The 

objective estimation of cognitive load was performed using behavioral in-game metrics, 

which were defined in line with the time-based resource-sharing model by Barrouillet et al. 

(2004). For the validation of these metrics, we acquired a subset of the NASA-TLX 
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questionnaire as a widely accepted and thoroughly evaluated subjective instrument (i.e., 

mental demand, time demand, and effort). The details for both assessment strategies are 

provided below. Gaming performance was reflected by a binary indicator of whether the 

game was completed successfully within a given time limit or not. Additional personal 

information on participants such as age, gaming experience, and sex were collected prior to 

the experiment using a self-report questionnaire. To measure gaming experience, we asked 

participants to indicate how often they play (online) digital games on a 5-point Likert scale 

(“never”, “several times a year”, “several times a month”, “several times a week”, “every 

day”). 

 

2.3.1 Behavioral in-game metrics 

According to the TBRS Model (Barrouillet et al., 2004), working memory represents 

the core system of cognition dedicated to the processing and storage of information, 

whereby both storage and processing components are normally required for the execution 

of a cognitive task. In situations with pre-defined pace, cognitive load can be estimated as a 

relation between the time during which participants’ attention is captured by the processing 

of information and the total time available. This model was well evaluated on modified span 

tasks with a pre-defined pace (Barrouillet & Camos, 2015). In the current study, we applied 

this metric to a more general situation where the pace is only indirectly determined by the 

nature of the task and inherent time pressure. 

The same task can capture attention to varying degrees in different persons, 

depending on their cognitive resources, which may differ, e.g., through experience or 

training (Babiloni, 2019; Case et al., 1982). This means that under time pressure, a person 

experiencing lower demands on her/his attentional resources for the task-processing 

component may deliberately increase her/his processing speed (task density) without 

affecting his/her memory component, whereas a person experiencing higher attentional 

demands would not be able to do so. Accordingly, when these two hypothetical persons 

were presented with a block comprising a certain number of tasks under time pressure 

(action block), one would observe two activity phases. In a first phase (burst) one would see 

both persons performing the presented tasks at a maximum speed. In a second phase 
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(idle), they would have to wait until the end of the current action block until the subsequent 

action block begins. During the idle phase both persons can only observe how their actions 

during the burst played out.  

 

𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑎𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑑𝑒𝑐𝑎𝑦 (𝑇𝐴𝐷𝐷) =
𝑏𝑢𝑟𝑠𝑡

𝑏𝑢𝑟𝑠𝑡 + 𝑖𝑑𝑙𝑒
        (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1) 

 

Assuming that both persons have operated at their limits, their cognitive load in the 

burst phase would be equivalent, that is, at maximum. In contrast, the duration of the burst 

phase would be different. Therefore, cognitive load of the entire action block could be 

estimated by the relation of the duration of the burst phase to the total duration of the action 

block (see Equation 1). In terms of the TBRS model this implies that the person 

experiencing lower demands has more temporal processing resources left and might 

therefore also be able to solve more difficult tasks whereas the other person has lesser 

resources left for time-based sharing. We transferred these assumptions to the situation of 

the game or gameplay, respectively. As a result, the following three in-game metrics were 

derived. 

 

2.3.1.1 Normalized gaming time. The most obvious, but also the most basic option 

is to work with time-limited levels and to consider the entire level as an action block, while 

the burst phase would correspond to the factual gaming time and the idle phase to the time 

remaining until the end of the level. Based on this consideration, the total cognitive load for 

the entire level could be estimated. As this metric equals 1 for persons who failed at a game 

level and has a potential range between 0 and 1 for those who complete the respective 

level, it directly represents success in the game or level, respectively. Therefore, it can be 

seen as a performance in-game metric, which however can only be calculated 

retrospectively once the level has been completed. 
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2.3.1.2 TADD. A more fine-grained option would be to take a closer look at the 

course of the game action and to try identifying smaller action blocks within each level. This 

can be done by means of the following rationale: In the game, participants have to 

coordinate a set of tasks to be accomplished by a set of emergency personnel by prioritizing 

tasks and resources as quickly as possible (burst phase). When no more resources are 

available (i.e., when all emergency personnel are distributed to existing tasks and busy), an 

inevitable break occurs (idle phase). This idle phase lasts until the first emergency 

personnel are ready to take up a new task (beginning of the burst phase of the new action 

block). This theoretical approach can be applied to a range of different learning scenarios 

that can be found in (game-based) simulations where tasks have to be prioritized and 

teams/resources to be managed, e.g., utilizing elements of (real-time) strategy games for 

training managerial skills (Simons, Wohlgenannt, Weinmann, & Fleischer, 2020), computer 

programming (Muratet, Torguet, & Jessel, 2009), or mathematics problem solving 

(Hernández-Sabaté, Albarracín, Calvo, & Gorgorió, 2016).  

 

2.3.1.3 Initial TADD. For predictive (and adaptive) purposes, it would be ideal to 

base cognitive-load estimations on very early action blocks within each level of a game. 

Therefore, we defined the TADD calculated for the very first action block of each game level 

as the initial TADD. The initial TADD comprises the time from the first user action until the 

first assigned emergency personnel becomes free again. The advantage of this measure is 

that it can be calculated during the first minutes of the gameplay and thus be used for near-

real-time predictions and adaptations. 

 

2.3.1.4 Mean TADD. In addition to the initial TADD we also calculated a mean 

TADD, reflecting the average of TADD for all identified action blocks per level. This metric 

can, of course, also be calculated only retrospectively and was used mainly for an additional 

validation of initial TADD. 
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2.3.2 NASA-TLX   

The NASA-TLX (Hart & Staveland, 1988) is a multidimensional instrument for the 

assessment of subjective workload, with good psychometric properties and a very high 

degree of acceptance in the research community (Hart, 2006). It consists of six items, 

estimating different aspects of subjective workload from 0 to 100 points with steps of 5 

points, resulting in a 21-level scale. The dimensions of the NASA-TLX correspond to 

various theories that distinguish between physical, mental, and emotional demands 

imposed on an operator (Hart, 2006). For the current study, we relied on a subset of these 

items to specifically assess the mental facet of workload, i.e. mental demand, temporal 

demand, and effort. Using various subsets of items is quite common when investigating 

specific facets of workload (Haerle et al., 2013; Temple, Dember, Warm, Jones, & 

LaGrange, 1997). Moreover, focusing on specific items allows for a time-efficient 

assessment of participants' workload, which was particularly important for the current study 

as subjective workload was assessed after each level of difficulty for each scenario to be 

able to associate behavioral and subjective indices of cognitive load for the different 

scenarios and difficulty levels. 

 

 

Figure 2. Experimental setup. 
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2.4 Experiment procedure 

The study took place in a quiet laboratory under constant light conditions. The 

serious game was presented on a notebook with 16" screen providing a 1920 x 1080 

resolution (see Figure 2). All instructions were presented in German. The study was 

implemented in a within-subject design, which means that each participant completed all 

scenarios and levels. The game started with an introductory tutorial and a training scenario 

directly after welcoming participants and collecting demographic data. Each game level was 

followed by a brief assessment of subjective cognitive state through an adapted NASA-TLX 

survey.  
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3 Results 

3.1 Statistical Analyses 

For statistical analyses we used R (R Core Team, 2020) with the lme4 package 

(Bates et al., 2014) to perform generalized linear mixed-effects analyses as well as the 

multcomp, emmeans packages (Hothorn et al., 2008; Lenth et al., 2019) to conduct the 

posthoc comparisons described below. The p-values were obtained by likelihood ratio tests 

of the full model with the effect in question tested against a reduced model without the effect 

in question and were specified in further model analyses. Tukeys’ adjustment method was 

used for multiple comparisons. We used the report package (Dominique Makowski & 

Lüdecke, 2019) to support the description of the results. Standardized parameters were 

obtained by fitting a model on a standardized version of the dataset. Effect sizes were 

labeled following the recommendations by Funder and Ozer (2019) and (H. Chen, Cohen, & 

Chen, 2010) for linear and generalized linear models respectively. No obvious deviations 

from homoscedasticity or normality were revealed using visual inspection of residual plots.  

The final composition of tested models was determined by pairwise likelihood ratio 

tests. Thereby, the null model, which only contained test subjects as a random factor, was 

stepwise extended by fixed effects for scenario, difficulty, gaming experience, age, and 

gender. According to this procedure consideration of gaming experience, age and gender 

did not improve model fit significantly beyond the model only incorporating fixed effects of 

scenario and difficulty. For this reason gaming experience, age and gender were not 

considered in further analyses. In all models we considered the effect of the two scenarios 

as random1, because we were primarily interested in relations between in-game metrics, 

subjective ratings, and difficulty levels within scenarios, regardless of the gaming scenario 

(for an overview of the composition and main outcomes of mixed-effect analyses see Table 

2). 

 

                                                

1 Two models did not converge with participants and scenarios as random effects. Therefore, we decided to 

run models with participants as the only random effect, considering scenario as fixed factor instead (see Table 

2). 
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Table 2 
Overview of the mixed model analyses performed  

   outcome effects p 

    fixed random intercepts  

Manipulation check 

 

 NASA-TLX  mental demand difficulty participant, scenario <.001 

   time demand difficulty participant, scenario <.001 

   effort difficulty participant, scenario <.001 

       

 Performance  failure/success difficulty participant, scenario <.001 

In-game metrics vs. subjective cognitive workload (NASA-TLX) 

 

 normalized             

gaming time 

(NGT) 

 mental demand NGT participant, scenario <.001 

  time demand NGT, scenario participant <.001 

  effort normed GT participant, scenario <.001 

       

 initial TADD  mental demand initial TADD participant, scenario <.001 

  time demand initial TADD participant, scenario <.001 

   effort initial TADD participant, scenario <.001 

       

 mean TADD  mental demand mean TADD participant, scenario   .001 

  time demand mean TADD participant, scenario   .003 

   effort mean TADD participant, scenario <.001 

In-game metrics vs. gaming performance  

       

       failure/success initial TADD participant, scenario <.001 

   failure/success mean TADD, 

scenario 

participant <.001 

       

Note: Gaming performance was represented by the binary indicator of whether the game was 

completed successfully, i.e. all fires extinguish and all injured persons transported to the hospital 

(success) or not (failure). The p-values were obtained by likelihood ratio tests of the full model with 

the fixed effect in question against the reduced model without the fixed effect in question 

 

For an overview of correlations among variables assessed in the current study, 

please see Table 3. Prediction of game performance was conducted using the Python (Van 

Rossum & Drake, 2009) module scikit-learn (Pedregosa et al., 2011). In particular, we used 

linear discriminant analysis with Leave-One-Subject-Out-Cross-Validation to train and test 

the models and permutation tests for model comparisons.  
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3.2 Manipulation check 

3.2.1 Subjective ratings 

To test whether the experimentally induced levels of task difficulty of the game are 

reflected in subjective workload measurements we ran linear mixed-effect models with the 

fixed factor difficulty and random intercepts for participants and scenarios on the 

relationship between selected items of NASA-TLX (mental demand, time demand, effort) 

and levels of difficulty (easy, medium, hard). For a general overview of all collected 

parameters see Appendix, Table 3. 

 

3.2.1.1 Mental demand - difficulty 

Linear mixed-effect analysis revealed a significant main effect of difficulty (χ²(2) = 

79.87, p < .001) on the subjective rating of mental demand. The models’ total explanatory 

power was substantial (conditional R² = 0.82, marginal R² = 0.06). Within this model 

perceived mental demand was significantly higher for medium difficulty levels compared to 

low difficulty levels, this effect can be considered as small (beta = 7.23, SE = 1.42, std. beta 

= 0.32, p < .001; see Figure 3); also, perceived mental demand was significantly higher for 

high difficulty levels compared to low difficulty levels. This effect can be considered as 

medium (beta = 13.83, SE = 1.42, std. beta = 0.61, p < .001; see Figure 3). Posthoc 

comparisons showed significant differences for all combinations of difficulty levels. 

Participants rated their mental demand higher during levels with higher experimentally 

induced task difficulty. 
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Figure 3. Mental Demand. Mean perceived mental demand for all levels of difficulty (easy, medium, 

hard) for each scenario (Fire, Train Crash). Error bars depict +/- 2 SE, which corresponds to 95% CI.  

 

3.2.1.2 Time demand - difficulty 

Linear mixed-effect analysis identified a significant main effect of difficulty on the 

subjective rating of time demand (χ²(2) = 140.48, p < .001). The models’ total explanatory 

power was substantial (conditional R² = 0.66, marginal R² = 0.23). Perceived time demand 

was significantly higher for levels with medium difficulty compared to levels with low 

difficulty, this effect can be considered large (beta = 19.84, SE = 2.36, std. beta = 0.71, p < 

.001; see Figure 4); perceived time demand was significantly higher for hard difficulty levels 

compared to low difficulty levels, this effect can be considered very large (beta = 32.45, SE 

= 2.36, std. beta = 1.17, p < .001; see Figure 4). Post-hoc comparisons showed significant 

differences for all combinations of difficulty levels. Participants rated their time demand 

higher during levels with higher experimentally induced task difficulty. 
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Figure 4. Time Demand. Mean perceived time demand for all levels of difficulty (easy, medium, 

hard) for each scenario (Fire, Train Crash). Error bars depict +/- 2 SE, which corresponds to 95% CI. 

 

3.2.1.3 Effort - difficulty 

Linear mixed-effect analysis showed a significant main effect of difficulty on the 

subjective rating of effort (χ²(2) = 105.97, p < .001).The models' total explanatory power was 

substantial (conditional R² = 0.73, marginal R² = 0.13). Within this model perceived mental 

effort was higher for medium difficulty levels compared to low difficulty levels, this effect can 

be considered as medium and significant (beta = 13.24, SE = 1.84, std. beta = 0.55, p < 

.001; see Figure 5), whereas perceived mental effort was higher for hard difficulty levels 

compared to low difficulty levels, this effect can be considered as very large and significant 

(beta = 21.01, SE = 1.84, std. beta = 0.87, p < .001; see Figure 5). Posthoc comparisons 

showed significant differences for all combinations of difficulty levels. Participants rated their 

effort higher during levels with higher experimentally induced task difficulty. 
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Figure 5. Effort. Mean perceived effort for all levels of difficulty (easy, medium, hard) for each 

scenario (Fire, Train Crash). Error bars depict +/- 2 SE, which corresponds to 95% CI. 

 

3.2.1 Performance - difficulty 

To evaluate, whether the levels of task difficulty are also reflected in gaming 

performance we fitted a logistic mixed-effect model on the relationship between the binary 

indicator of whether the game was completed successfully or not and the three difficulty 

levels. As we were primarily interested in the effect of difficulty levels, we considered 

difficulty as a fixed effect and added random intercepts for participants and scenarios. The 

generalized linear mixed-effect analysis revealed a significant main effect of difficulty (χ²(2) 

= 115.39, p < .001). The models' total explanatory power was substantial (conditional R² = 

0.67, marginal R² = 0.49). Within this model we found that gaming performance was poorer 

for medium difficulty levels compared to low difficulty levels, this effect can be considered as 

large and significant (beta = -3.77, SE = 0.72, std. beta = -3.77, p < .001; see Figure 6); 

gaming performance was poorer for hard difficulty levels compared to low difficulty levels, 

this effect can be considered as large and significant (beta = -5.22, SE = 0.78, std. beta = -

5.2, p < .001; see Figure 6). Post-hoc comparisons also showed significant differences for 
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all combinations of difficulty levels. Participants performed more poorly during levels with 

higher experimentally induced task difficulty. 

 

 

Figure 6. Performance in relation to the level of difficulty. Stacked histogram showing the percentage 

of successes/failures (i.e. whether the participants were able to rescue all victims and extinguish all 

fires within a defined time limit) for all levels of difficulty (easy, medium, hard) over both scenarios 

(Fire and Train Crash). 

 

3.3 Subjective ratings vs. in-game metrics  

To verify whether the calculated in-game metrics is able to predict the subjectively 

experienced cognitive load of participants we ran a linear mixed-effect model separately for 

each metric and the NASA-TLX item. As we were primarily interested in the relation 

between the in-game metrics and the subjective ratings regardless of the gaming scenario, 

we defined in-game metrics as fixed factors and added random intercepts for participants 

and scenarios. 
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3.3.1 Mental demand - normalized gaming time 

Linear mixed-effect analysis indicated a significant effect of normalized gaming time 

(χ²(1) = 104.33, p < .001) on self-reported mental demand. The models' total explanatory 

power was substantial (conditional R² = 0.83, marginal R² = 0.10). Within this model, higher 

normalized gaming times, i.e. participants who took longer to finish the level or even failed, 

was associated significantly with higher perceived mental demand, this effect can be 

considered as small (beta = 38.73, SE = 3.38, std. beta = 0.31, p < .001).  

 

3.3.2 Time demand - normalized gaming time 

Linear mixed-effect analysis revealed a significant effect of normalized gaming time 

(χ²(1) = 141.08, p < .001) on self-reported time demand. The models’ total explanatory 

power was substantial (conditional R² = 0.72, marginal R² = 0.38). Within this model we 

found that higher normalized gaming times, i.e. participants who took longer to finish a level 

or even failed, was significantly associated with higher perceived time demand, this effect 

can be considered as medium (beta = 0.91, SE = 5.59, std. beta = 0.60, p < .001); The 

effect of scenario was not significant (beta = 1.16, SE = 1.80, std. beta = 0.04, p = .517). 

 

3.3.3 Effort - normalized gaming time 

Linear mixed-effect analysis showed a significant effect of normalized gaming time 

(χ²(1) = 125.65, p < .001) on self-reported mental demand. The models' total explanatory 

power was substantial (conditional R² = 0.73, marginal R² = 0.19). Within this model we 

found that higher normalized gaming time, i.e. participants who took longer to finish the 

level or even failed, was significantly associated with higher perceived effort, this effect can 

be considered as medium (beta = 56.86, SE = 4.42, std. beta = 0.43, p < .001). 
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3.3.4 Mental demand – initial TADD 

Linear mixed-effect analysis revealed a significant effect of initial TADD (χ²(1) = 

13.74, p < .001) on self-reported mental demand. The models' total explanatory power was 

substantial (conditional R² = 0.76, marginal R² = 0.01). Within this model we found that 

higher initial TADD, i.e. participants who took longer to allocate the available personnel to 

the tasks to be done to during the first action block, was significantly related to higher 

perceived mental demand, this effect can be considered as very small (beta = 13.71, SE = 

3.64, std. beta = 0.12, p < .001). 

 

3.3.5 Time demand – initial TADD 

Linear mixed-effect analysis identified a significant effect of initial TADD (χ²(1) = 

31.31, p < .001) on self-reported time demand. The models' total explanatory power was 

substantial (conditional R² = 0.45, marginal R² = 0.07). Within this model we found that 

higher initial TADD, i.e. participants who took longer to allocate the available personnel to 

the tasks to be done to during the first action block, was associated with higher perceived 

time demand, this effect can be considered as small and significant (beta = 38.10, SE = 

6.60, std. beta = 0.27, p < .001). 

 

3.3.6 Effort – initial TADD 

Linear mixed-effect analysis revealed a significant effect of initial TADD (χ²(1) = 

22.88, p < .001) on self-reported mental demand. The models' total explanatory power was 

substantial (conditional R² = 0.61, marginal R² = 0.04). Within this model we found that 

higher initial TADD, i.e. participants who took longer to allocate the available personnel to 

the tasks to be done to during the first action block, was significantly associated with higher 

perceived effort, this effect can be considered as very small (beta = 23.89, SE = 4.88, std. 

beta = 0.30, p < .001). 
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3.3.7 Mental demand – mean TADD 

Linear mixed-effect analysis showed a significant effect of mean TADD (χ²(1) = 

11.93, p < .001) on self-reported mental demand. The models' total explanatory power was 

substantial (conditional R² = 0.76, marginal R² = 0.01). Within this model higher mean 

TADD, i.e. participants who in average took longer to allocate the available personnel to the 

tasks to be done to during all defined action blocks, was significantly associated with higher 

perceived effort, was significantly linked to higher perceived mental demand, this effect can 

be considered as very small (beta = 30.62, SE = 8.73, std. beta = 0.11, p < .001). 

 

3.3.8 Time demand – mean TADD 

Linear mixed-effect analysis revealed a significant effect of mean TADD (χ²(1) = 8.83, 

p = .003) on self-reported time demand. The models' total explanatory power was 

substantial (conditional R² = 0.40, marginal R² = 0.02). Within this model higher mean 

TADD, i.e. participants who in average took longer to allocate the available personnel to the 

tasks to be done to during all defined action blocks, was associated with higher perceived 

time demand, this effect can be considered as very small and significant (beta = 49.37, SE 

= 16.38, std. beta = 0.15, p < .01). 

 

3.3.9 Effort – mean TADD 

Linear mixed-effect analysis identified a significant effect of mean TADD (χ²(1) = 

13.31, p < .001) on self-reported mental demand. The models' total explanatory power was 

substantial (conditional R² = 0.59, marginal R² =0.02). Within this model higher mean 

TADD, i.e. participants who in average took longer to allocate the available personnel to the 

tasks to be done to during all defined action blocks, was significantly related with higher 

perceived effort, this effect can be considered as very small (beta = 43.97, SE = 11.85, std. 

beta = 0.15, p < .001.  
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3.4 Performance vs. in-game metrics 

To verify whether the calculated in-game metrics would be able to predict the final 

performance of a given difficulty level, we ran a generalized linear mixed-effect models 

separately for the in-game metric initial TADD as well as for mean TADD and the binary 

indicator identifying whether the participants were able to extinguish all fires and transport 

all injured persons to the hospital (success) or not (failure). Since normalized gaming time 

basically was a performance measure, it predicts gaming success perfectly and cannot be 

used as a predictor variable in the mixed model. As we were primarily interested in the 

relation between in-game metrics and performance regardless of gaming scenario, we 

defined in-game metrics as fixed factors and added random intercepts for participants and 

scenarios.  

 

3.4.1 Performance – initial TADD 

Generalized linear mixed-effect analysis revealed a significant effect of initial TADD 

(χ²(1) = 28.96, p < .001) on performance. The models’ total explanatory power was 

moderate (conditional R² = 0.22, marginal R² =of 0.14). Within this model we found that 

higher initial TADD was significantly linked to lower performance, this effect can be 

considered as small (beta = -3.86, SE = 0.79, std. beta = -0.76, p < .001; see Figure 7). 

 

3.4.2 Performance – mean TADD 

Generalized linear mixed-effect analysis indicated a significant effect of mean TADD 

on performance (χ²(1) = 10.21, p < .001). The models’ total explanatory power was weak 

(conditional R² = 0.13, marginal R² = 0.07). Within this model the higher initial TADD was 

significantly associated with lower performance, this effect can be considered as very small 

(beta = -5.54, SE = 1.85, std. beta = -0.47, p < .01), whereas the effect of scenario was not 

significant (beta = -0.34, SE = 0.26, std. beta = -0.34, p < .190). 

 

3.5 Performance prediction 
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To verify whether the initial TADD may be suitable for real-time or near-real-time 

prediction of performance (i.e., finished level successfully vs. failed) of the given level we 

used linear discriminant analyses with Leave-One-Subject-Out Cross-Validation. These 

demonstrated a 67.38% accuracy in scenario Fire and a 64.53% in the Train Crash 

scenario. However, permutation tests comparing the models' performance with the 

performance of models predicting randomly permuted outcomes showed that only for the 

Train Crash scenario this was significantly above the score of random models (Fire: random 

models mean accuracy: 67.28%, p = .886; Train Crash: random models mean accuracy: 

55.37%, p < .001).  

 

 

Figure 7. Performance in relation to initial TADD. Error bars depict +/- 2 SE, shich corresponds to 

95% CI. 

 

A linear discrimination analysis using the three NASA-TLX subscales in the 

performance scenario showed an average accuracy of 73.04%. A permutation test showed 

that this accuracy was significantly higher than models with randomly permuted outcomes 

(random models mean accuracy: 53.81%, p < .001). However, a permutation test showed 

that the accuracy of this model was not significantly different from the model using only our 

in-game metric (p = .09). 



 

67 
 

4 Discussion 

The current study aimed at evaluating a practicable, parsimonious, and reliable 

approach for the online assessment of cognitive load in serious games, which is suitable for 

cognitive load prediction during realistic gaming setups with a similar structure to the game 

used in the study, i.e. a (real-time) strategy like serious game. Based on the time-based 

resource-sharing model of Barrouillet et al. (2004) we defined several in-game metrics 

(initial TADD, mean TADD, normalized gaming time) for describing the behavior and 

performance in an emergency simulation game. The results indicated that it seems indeed 

possible to use these simple in-game metrics to reliably assess and predict cognitive load 

based on a theory-driven approach. In the following, we critically discuss these results in 

greater detail.  

First of all, we aimed at verifying whether the experimentally induced difficulty levels 

of the serious game were actually able to induce substantial differences in cognitive load for 

the participants. This manipulation check was an important prerequisite for examining our 

main scientific hypotheses. Results clearly indicated that increased difficulty (e.g., in terms 

of more personnel to coordinate and more tasks to execute under a constant time limit) 

indeed resulted in significantly higher subjective ratings of cognitive load accompanied by 

significantly poorer performance. This substantiated our expectations and indicated that the 

intended manipulation of cognitive load by means of game-difficulty levels worked as 

intended. 

Further analyses showed that all three proposed in-game metrics can be considered 

valid to significantly predict self-reported workload as well as actual gaming success. In 

particular, normalized gaming time (i.e., ratio of actual playing time to total time available 

per game level) showed a more pronounced effect on subjective workload ratings as 

compared to initial and mean TADD (temporal action density decay; i.e. ratio of active 

playing time burst to total time available in the first action block and averaged over all action 

blocks defined per level). This may be due to the fact that the former measure was directly 

related to performance and thus most sensitive to subjectively experienced cognitive load. 

For instance, participants were able to develop a feeling for how well they have performed 

the game at the time of the survey and thus experienced failure may have resulted in higher 

perceived cognitive load as compared to known success (P. Hancock, 1989).  
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More interestingly, initial TADD showed a better predictive power as compared to mean 

TADD not only regarding subjective ratings of cognitive load but also in terms of the 

resulting performance. This suggests that early stages of gameplay may be more 

informative and thus more predictive for later gameplay outcomes than an aggregated score 

accumulated over a longer period of time. In this context, averaging TADD across the entire 

duration of the level seems to lead to a substantial loss of information for this metric.  

A closer look at the construction of the game may help to better understand this 

difference. At the beginning of each level, a new emergency scenario was presented, and 

participants had to start assigning tasks to the available emergency personnel soon. That is, 

right at the beginning of the level participants had to orientate themselves in a completely 

new situation, to plan their rescue strategy, and to implement this strategy as quickly as 

possible. In addition, almost the entire rescue team had to be assigned to their tasks at this 

point, meaning that the first action block may have been significantly longer than all 

subsequent blocks, which were not as clearly defined due to more constant interactions with 

the game.  

One possible explanation for the superiority of the initial over the mean TADD might 

be that as the game progressed, successful players realized that they were well in time and 

therefore experienced less time pressure. This might have resulted in longer burst and 

shorter idle phases, as they were not longer operating at their maximal speed, resulting in 

increased TADD ratios in the later stages of the level. Otherwise, it also seems conceivable 

that the initial orientation itself plays a crucial role in the outcome of the level. As better 

planning in early stages of a particular task was observed to be associated with better 

performance in various tasks (Saddler, Moran, Graham, & Harris, 2004) (Wang & Gibson Jr, 

2010) (Capon, Farley, & Hulbert, 1994), initial TADD might also reflect more efficient 

planning to underlie decreased cognitive load during the initial action block. However, these 

assumptions need to be investigated in future studies.  

The final aim of this study was to evaluate whether it would be possible to use in-

game metrics for a real-time or near-real-time assessment of cognitive load and - based on 

this - a substantial performance prediction. The in-game metrics normalized gaming time as 

well as mean TADD represent summary measures, which can only be calculated 

retrospectively once a level has been completed. Thus, they cannot be used for predictive 
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purposes. In contrast, initial TADD, which was calculated during the first minutes of 

gameplay, significantly predicted gaming success - at least in the Train Crash scenario. 

Moreover, it could be shown that the prediction accuracy of a model using only this metric 

did not significantly differ from the model using selected NASA-TLX subscales as predictors 

for gaming performance. Interestingly, no significant prediction could be obtained for the 

less difficult scenario Fire. Importantly, however, this may have been influenced by a crucial 

data issue as far more participants succeeded in the scenario Fire than failed, whereas in 

the scenario Train Crash this relation was more balanced. Accordingly, the difference 

between the two scenarios may indicate an existing floor effect for the easy scenario, 

indicating that the use of this metric may be suitable only for situations eliciting phases of 

maximum cognitive load. Whether this assumption is correct must be investigated in future 

studies 

In summary, the results of the current study indicated that gaming performance can 

be significantly predicted using initial TADD calculated from a short time interval at the very 

beginning of a new game level. This means that we were able to predict well above chance 

level whether the respective level would be completed successfully based on data acquired 

through the first tenth of the total gaming time. It is noteworthy that the quality of this 

prediction did not significantly differ from the prediction based on participants’ retrospective 

and subjective ratings using the NASA-TLX that are informed by their experienced success 

of failure during game play. Hence, initial TADD seems to qualify well for a near-real-time 

adaptation of game flow, not requiring considerable computing power as it is the case for 

more data-driven approaches (e.g., neuronal networks or deep learning based on 

physiological data). 

 

4.1 Methodological strengths and constraints 

There are different analytical approaches to serious games (for review see: Zohaib, 

2018), which are often based on data-driven probabilistic performance evaluations: 

(Magerko et al., 2006; Spronck et al., 2006; Zook & Riedl, 2012). Simple performance data, 

however, often seemed insufficient for estimating cognitive and emotional states of users, 

such as attention, cognitive load or emotional responses. Therefore, these cognitive states 
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are often assessed using (neuro-)physiological data (for reviews see: Kivikangas et al., 

2011), which are, however, relatively complex and laborious to acquire and computationally 

intensive to evaluate and are thus not always suitable for real-world applications outside the 

laboratory. Importantly, though, the current study demonstrated that assessment/prediction 

of cognitive load using simple in-game metrics is feasible. We think that there are two 

crucial constraints for this approach to be successful: First, a theoretically informed top-

down development and second the application within an appropriate test environment.  

As regards the former, we are confident that a theoretical top-down approach may be 

key to find parsimonious, but still reliable and generalizable solutions. Therefore, a suitable 

theoretical framework should be chosen in the first place. In our case, the TBRS model 

(Barrouillet et al., 2004) specifically emphasizes the role of time pressure as the origin of 

cognitive load, therefore seeming to be particularly useful for predicting workload in time-

critical situations such as serious game scenarios similar to the current one, i.e. (real-time) 

strategy games and simulations. 

With respect to the latter, the development of an appropriate testing environment is 

essential. As, for instance, the TBRS model was originally evaluated on very specific tasks 

with strong time pressure induced through pre-defined pace, we evaluated whether its 

predictions may generalize to more realistic applied situations. In this way, we derived two 

critical aspects of a test situation to make these predictions work: time pressure and time-

limited blocks of tasks. By considering these aspects, we designed a gaming environment 

that allowed for testing the proposed metrics. 

 

4.2 Limitations and open questions 

The methodological strengths and constraints of our study, however, can also be 

considered as limitations because it may not be possible to generalize the proposed metrics 

to all possible gaming situations. Presumably, they may well be used in settings with 

inherent time-limits and time pressure, where participants are exposed to new situations 

and have to manage various tasks and resources as it is the case in real-time strategy 

games. Other examples with similar task structures may comprise complex surgery tasks, 

assembly lines or time-critical emergency situations in the context of control tasks. Further 
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testing will be required in the future to substantiate the predictive power of proposed in-

game metrics in this type of situation and, possibly, to adapt the computation of these 

metrics appropriately. 

Therefore, the current study suggests a promising perspective, but at the same time 

raises several questions to be explored in the future. For instance, it is not clear whether 

and how the predictive power of the proposed metrics is related to the given time pressure 

and whether they can, therefore, be used in scenarios that are less time-critical. On the 

other hand it is possible that collected in-game metrics might be affected by factors other 

than cognitive load, such as motor processes related to the experience of the player with 

provided game controls, for instance. Since we used a conventional computer mouse as the 

only game control, we are confident that all participants were used to it and therefore the 

results obtained are valid in this respect. However, such general physiological processes 

should be taken into account and evaluated before proposed in-game metrics are 

generalized to different contexts. Furthermore, it should be evaluated more thoroughly why 

the initial TADD showed better performance as compared to the mean TADD. It might be 

possible, for instance, that the predictive value of the mean TADD (or the mean of the first 

few TADDs) can be improved by using other gaming situations or by sharpening the 

definition of action blocks.  

 

4.3 Implications and future perspectives 

The use of simple in-game metrics for measuring cognitive load and thus deriving 

performance prediction yields several advantages. First, our results suggest that 

psychological constructs, which have traditionally been assessed explicitly using either 

paper-pencil or computerized questionnaires, may well be estimated more implicitly using 

in-game metrics, that is without causing interruption to the task at hand (cf. stealth 

assessment: Shute & Kim, 2014). Second, whereas the use of more complex 

psychophysiological measures would come with additional computational and procurement 

costs, systems that operate on simple in-game metrics may be made more easily 

accessible to the general public. More complex systems relying on resources such as 

neural networks are computationally rather expensive and might require substantial 
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computing power. In contrast, simpler models for cognitive load estimation such as the one 

used in the current study may be easily run in parallel to the actual game on any PC without 

significant consumption of computing resources. Third, also complex multimodal 

measurement systems, which operate with sophisticated algorithms and integrate data from 

physiological and behavioral sources in research laboratories, may benefit from the 

development of simpler in-game metrics as these may be added to these more complex 

algorithms quite easily, thereby leading to improved classification accuracy in the future. 

Finally, the substitution of more complex probabilistic algorithms through simpler but reliable 

metrics (whenever possible) might lead to simplifications of complex models, while at the 

same time expanding their availability and usage. However, we feel that this may only be 

achieved when substantial evidence for relevant in-game metrics is based on theory rather 

than data alone. 

 

4.4 Conclusion 

The present study indicated that parsimonious, but theoretically well-founded in-

game metrics can be used to estimate users’ current cognitive load and, based on this, 

predict future gaming performance within the first tenth of the total gaming time. We applied 

our approach to a serious game simulating a time-critical emergency situation and requiring 

the management of emergency personnel. The game included different scenarios with three 

levels of difficulty each inducing corresponding levels of cognitive load. Based on proposed 

in-game metrics we were able to predict whether the respective level would be completed 

successfully or not well above chance level. Interestingly, the quality of this prediction did 

not differ significantly from a prediction based on participants’ retrospective and subjective 

ratings using the NASA-TLX questionnaire. To achieve this we used a rather simple model 

that interprets behavioral data in the light of the TBRS theoretical approach (Barrouillet et 

al., 2004). Based on its parsimony and the corresponding low computational power 

required, this model can be easily incorporated into games to create an adaptive system. 

Further, the measure and models introduced in this study could be used in conjunction with 

other adaptive features to design even more comprehensive adaptive systems that can 

predict performance more effectively and accurately. Taken together, our results provide 

promising first evidence that needs to be substantiated in future research to determine 
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whether it is suitable for more general reliable assessments of players’ cognitive load and 

for respective real-time adaptations of games or game-based learning environments. 
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Table 3  

Correlations matrix of variables considered in the present study 

 

 2 3 4 5 6 7 8 9 10 11 

1. Difficulty - .636**  .265**   .529**   .397**   .000    .000  .000  .804**  .455**   .479** 
2. Gaming success        - -.322** -.590** -.465** -.226** -.147  .142 -.807** -.342**  -.439** 

 

 
NASA-TLX           

3. Mental demand - .747** .900** .190*  .122  -.004  .343**  .139   .185*  
4. Time demand   -  .835** .128  .087  -.026  .650**   .254**  .402** 
5. Effort    - .214*  .147  -.035  .482**  .201*   .269** 

 
Covariates           

6. Age     - -.053 -.233**  .176*  .210*    .171*  
7. Sex      - -.182*   .141  -.055   -.050  
8. Gaming expertize 
 

     - -.129  -.097   -.135  

In-game metrics         

9.   Normalized gaming time                       -        .460**     .507** 
10. Mean TADD            -     .606** 
11. Initial TADD          - 
           

Note: Pearson 2-tailed correlations. **: Correlation is significant at the 0.01 level; *: Correlation is significant at the 0.05 level. To give an 
overall impression over all collected values we conducted bivariate correlations presented in Table 2. The purpose of this summary is to 
give a first very general impression of the relations between the parameters, as presented values neither has been corrected for multiple 
comparisons, nor have repeated measurements been taken into account.  
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Abstract 

Determining cognitive load seems crucial for the development of training 

environments for life- and time-critical emergencies. Empirical evidence suggests that 

functional near-infrared spectroscopy (fNIRS) provides reliable results for determining 

cognitive load based on multiple repetitions of relatively short cognitive tasks and that 

fNIRS measures of the prefrontal cortex are sensitive to changes in cognitive load. At the 

same time, it remains unclear how to use this technique for assessing cognitive load 

during a prolonged single-trial activity including heterogeneous tasks. In this study, we 

propose a novel approach to measure cognitive load during a computer-based 

emergency simulation game. To this end, we defined specific time periods, determined 

based on simulation log-data interpreted in light of Barrouillets’ time-based resource-

sharing model. Further, to validate our approach, we compared cortical oxygenation in 

prefrontal cortex areas, i.e. dorsolateral prefrontal cortex (DLPFC) and left inferior frontal 

gyrus (IFG), during predefined time periods. We found significant associations between 

cognitive load and oxygenation within the DLPFC depending on the chosen time slot, 

whereas no such dependencies were found for the IFG. Although requiring further 

investigation in terms of reliability and generalizability, the presented approach seems 

promising evidence that fNIRS might be suitable for the assessment of cognitive load 

beyond classical experimental set-ups. 
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1 Introduction 

Daily life is becoming increasingly automated: Autopilots, speed and lane 

assistants, automated manufacturing, etc. help us to deal with well-controlled and 

predictable settings. In contrast, however, time-critical situations, such as driving a car in 

heavy traffic or performing a complex surgery still require a qualified human operator, 

preferably trained for such challenges. As it is not trivial to set up an analog training 

environment for life- and time-critical emergencies, computer-aided simulations, and 

digital training scenarios can be used advantageously in this area (Johnson, Rodrigues, 

Gubbala, & Weibel, 2018; Kincaid, Donovan, & Pettitt, 2003; Liu et al., 2020). Along with 

the potential to simulate dangerous time-critical situations, digital training scenarios also 

allow for the collection of individual data, which can be used to model cognitive or 

emotional states of the user (Nebel & Ninaus, 2019) including cognitive load.  

Cognitive load is considered to reflect “how hard the brain is working to meet task 

demands” (Ayaz et al., 2012). According to the most influential theoretical view, it relates 

to user performance in a way shaped as “inverted-U” (Yerkes & Dodson, 1908), also 

closely related to the concept of “flow” (Csikszentmihalyi, 1987; Kiili, Lindstedt, & Ninaus, 

2018), meaning that performance usually decreases in cognitive over- and underload 

conditions (e.g., Anderson, 1994; Montani, Vandenberghe, Khedhaouria, & Courcy, 

2020; Watters, Martin, & Schreter, 1997; Yerkes & Dodson, 1908). Consequently, 

human-machine interaction such as any computer-based training might be optimized 

using a monitoring system capable of detecting variations in cognitive load (Orru & 

Longo, 2018), which seems feasible in real-world training environments (Appel et al., 

2019; Gerjets, Walter, Rosenstiel, Bogdan, & Zander, 2014). 

The literature describes four main categories of techniques for assessing 

cognitive load (Brünken, Seufert, & Paas, 2010; Eggemeier, Wilson, Kramer, & Damos, 

1991; Johannsen, 1979; Scerbo, 1996), although it needs to be considered that each 

approach is associated with specific strengths and limitations. First, subjective measures 

are collected using self-reported questionnaires (e.g., NASA-TLX: Hart & Staveland, 

1988; SWAT: Reid & Nygren, 1988). They are inexpensive and reliable (O’Donnell & 

Eggemeier, 1986), but are not capable of tracking subtle variations in cognitive load 

online over time. Second, performance-based approaches evaluate fluctuations in 

human performance, i.e. task outcome measures, and relate these to changes in 

psychological constructs such as cognitive load. This category of measurement 
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techniques appears intuitively to be the most obvious and direct. On the other hand, it is 

often impossible to obtain the necessary data until the actual task has already been 

completed. Moreover, it’s hard to determine whether observed variations in performance 

have occurred due to changes in cognitive load or some other factors (Brünken et al., 

2010). Third, behavioral measurements evaluate differences in interaction behavior (e.g., 

speech patterns or mouse usage) with the training system during usage (Berthold & 

Jameson, 1999; Ikehara & Crosby, 2005; Lim, Ayesh, & Stacey, 2014; Magnusdottir, 

Borsky, Meier, Johannsdottir, & Gudnason, 2017; Ruiz, Liu, Yin, Farrow, & Chen, 2010; 

Yap, Epps, Ambikairajah, & Choi, 2011). These measures are usually unobtrusive and 

inexpensive, do not require additional equipment, and potentially allow for continuous 

monitoring of cognitive states. However, behavioral patterns can also be influenced by 

factors unrelated to cognitive load (e.g., emotions or stress). Finally, physiological 

approaches are based on the evidence that changes in cognitive states are 

accompanied by physiological changes (Ahmad, Malik, Kamel, & Reza, 2016; Buchwald 

et al., 2019; Fowler, Nesbitt, & Canossa, 2019; Johannsen, 1979; Liang, Liang, Qu, & 

Yang, 2018; McDuff, Gontarek, & Picard, 2014). Their advantage is that they allow 

continuous recording of data and thus might be used for online adaptation of training 

environments. At the same time, monitoring of physiological signals often requires 

expensive and complicated equipment and sophisticated filtering and analysis 

procedures. Moreover, different types of physiological measures differ considerably in 

their obtrusiveness and practicability in real-life settings. While sensors for heart rate 

variability (HRV), electrodermal activity (EDA), or eye-tracking can be used in a 

comparably discreet way, electroencephalography (EEG) or functional magnetic 

resonance imaging (fMRI) are less practical or even impracticable in real-life situations 

because of their signal sensitivity and immobility (for an overview see Ninaus et al., 

2013).  

According to Brunken, Plass, and Leutner (2003) we can further categorize 

physiological measurements into indirect and direct methods, based on the type of 

relation of cognitive load and observed variables. From this perspective, measurements 

such as pupil dilation or HRV are only indirectly related to cognitive load, as they can be 

co-influenced by other factors such as emotional response or stress, whereas imaging 

techniques such as fMRI, EEG, positron emission tomography (PET), and functional 

near-infrared spectroscopy (fNIRS) can be considered direct methods, as they usually 
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assess hemodynamic cortical activation during task execution2. This approach seems to 

be very promising, as it can be applied in real-time independently from any internal data 

of the training software (e.g., mouse movements or training scores). On the other hand, 

as mentioned above, the major limitation of most neurophysiological and -imaging 

techniques is that they are expensive, complex, and immobile, which significantly limits 

their use in ecologically valid real-life studies. In this respect, fNIRS, which is described 

in the following section, offers some advantages over other neuroimaging techniques 

and appears promising in this field. 

  

1.1 Functional near-infrared spectroscopy  

Near-infrared spectroscopy was first presented in the fundamental work of Jobsis 

(1977). It represents a non-invasive neuroimaging method for measuring cerebral 

oxygenation/hemodynamics, which relies on the mechanism of neurovascular coupling 

and optical spectroscopy (for review see: Fallgatter, Ehlis, Wagener, Michel, & 

Herrmann, 2004; Herold, Wiegel, Scholkmann, & Müller, 2018; Strangman, Boas, & 

Sutton, 2002). 

Hereby, near-infrared light with strictly defined wavelengths in the range between 

600 and 1000 nm is emitted through the scalp of the participant. It penetrates up to 

approx. 2 cm (Strangman, Li, & Zhang, 2013) deep into the tissue (depending on the 

distance between light source and detector) and thus reaches outer cortical gray matter, 

where the emitted light is partially absorbed by oxygenated (HbO2) and deoxygenated 

(HbR) hemoglobin molecules of blood cells that differ significantly in their absorption 

spectra. The residual reflection of the respective wavelength is received by a detector, 

with a usual inter-optode distance of about 3 cm (Herold et al., 2018; Strangman et al., 

2013). Based on the difference between emitted and detected light (see Cope et al., 

1988), the relative concentration of HbO2 and HbR in the brain tissue underlying the 

mean distance between light transmitter and its detector is calculated, allowing 

inferences about local changes in blood flow.  

                                                

2 To be perfectly precise, all these methods can also be considered as indirect, because they deduce 

cognitive activity through blood flow or electrical activation. However, as there is no more direct method of 
capturing it today, we retain this terminology below. 
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Neuronal activation in a particular brain area increases its metabolic needs and 

leads to an increase in local cerebral blood flow (Hoge et al., 1999; Kim, Rostrup, 

Larsson, Ogawa, & Paulson, 1999). This response is called “functional hyperemia” and 

is mediated by mechanisms of neurovascular coupling (Nippert, Biesecker, & Newman, 

2018), resulting in an increase in HbO2 with a simultaneous decrease in HbR in the 

respective area. Based on these observations, a temporal change in detected HbO2 and 

HbR hemoglobin concentration allows conclusions about changes in local brain 

activation. Therefore, depending on the measurement area, it seems possible to draw 

online conclusions about which cognitive processes take place in the brain at a certain 

point of time. When attempting to evaluate changes in cognitive activation related to, for 

instance, cognitive load, areas of the prefrontal cortex (PFC) are typically regarded 

(Herold et al., 2018). 

 

1.1.1 Prefrontal cortex. The PFC is part of the neocortex and is located in the 

anterior part of the frontal lobe. The percentage of the PFC from the total volume of the 

cerebral cortex varies considerably between animal species, ranging from 3.5% in a cat 

to 29% in humans, suggesting that this area has developed rather late in evolutionary 

history (Fuster, 2015) and thus might underlie higher cognitive functions. Indeed, the 

PFC is connected with a “vast array of other cerebral structures” (Fuster, 2001, p. 319) 

such as the brainstem, thalamus, basal ganglia, limbic system, and a number of 

neocortical regions that serve various aspects of sensory and motor functions. 

Documented cases of PFC lesions often report a “personality change” that manifests 

itself either in a general reduction in activity or the disinhibition of behavior without 

affecting the patients’ intelligence, speech, or memory (see Kammer & Karnath, 2006). 

Taken together, the evidence suggests that the PFC plays a modulatory role in 

the path between stimulus and response. The integrative theory of prefrontal cortex 

function by Miller and Cohen (2001) suggests that the PFC generates special “bias” 

signal patterns that alter further stimulus processing either by blocking or amplifying 

desired processing paths and thus adapting reflectively produced behaviors to the 

current context. For example, if on the way to work (which is an automated behavior) we 

see someone lying in the street, we have the choice of interrupting the automated 

behavior or not, which would depend on our experience and the context, including 

whether we have enough time for this or whether we see that the person is already being 
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helped, etc. This decision-making process - involving action often summarized as 

“cognitive control” or “executive functions” - seems associated with PFC involvement 

along with at least partial influences of working memory (Thier, 2006). As such, the PFC 

seems an obvious location to place fNIRS optodes when measuring cognitive load. This 

placement also has an obvious technical advantage. The scalp in the forehead area and 

above the forehead is usually less hairy, which makes the measurement more reliable 

(Murkin & Arango, 2009). 

 

1.1.2 Strengths and limitations.  When comparing the temporal and spatial 

resolution of neuroimaging methods, fNIRS provides solid results in both domains 

(Parasuraman & Rizzo, 2006, see Figure 1), even when comparing short segments of 

data (Strangman, Goldstein, Rauch, & Stein, 2006). 

The great strength of the method is that, depending on the fNIRS device used, 

experimental tasks can be performed while sitting, standing, or even in motion, which 

makes the obtained results ecologically far more valid than results from experiments in 

which participants have to lie down, as during fMRI measurements. Furthermore, 

compared to EEG, this method is less susceptible to motion artifacts, electro-

oculographic and facial electromyographic activity, as well as electrical environmental 

noise - which might be particularly problematic in neuronal measurements of human-

machine interactions (see Derosière, Mandrick, Dray, Ward, & Perrey, 2013). As such, 

fNIRS has been successfully used for investigating cognitive and emotional processes 

during gaming (e.g., Kober, Wood, Kiili, Moeller, & Ninaus, 2020; Witte, Ninaus, Kober, 

Neuper, & Wood, 2015). 

However, fNIRS is not completely free of artifacts and the recorded data must be 

pre-processed for analysis. The measurement method is sensitive to changing light 

conditions, which must be taken into account when planning a study. Moreover, the hair 

of the participant must be carefully pushed to the side at each fNIRS measurement 

optode, as they can strongly influence the quality of the signal (McIntosh, Shahani, 

Boulton, & McCulloch, 2010; Pringle, Roberts, Kohl, & Lekeux, 1999). 
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Figure 1. Resolution space of brain imaging techniques (cf. Parasuraman & Rizzo, 2006, p. 7). 

 

A solid body of evidence supports that fNIRS measures of PFC are sensitive to 

changes in cognitive load. Several experiments documented an increase of PFC 

activation with increasing difficulty of n-back (Ayaz, Izzetoglu, Bunce, Heiman-Patterson, 

& Onaral, 2007; Fishburn, Norr, Medvedev, & Vaidya, 2014; Herff et al., 2014; Herrmann 

et al., 2007; Li, Gong, Gan, & Luo, 2005; Smith & Jonides, 1997) and Stroop tasks 

(Ehlis, Herrmann, Wagener, & Fallgatter, 2005; Xu et al., 2017).   

These fundamental studies substantiated the usage of fNIRS for the 

measurement of cortical activity in laboratory settings. However, in contrast to a well-

structured laboratory experiment, typical real-life challenges contain a multitude of 

heterogeneous events (e.g., visual recognition, emotion, and memorization) that occur 

simultaneously and concurrently, making it difficult to impossible to assign hemodynamic 

cortical activation to specific events. That raises the question of whether and how 

technology can be used for more complex experiments with heterogeneous and more 

ecologically valid tasks, as they typically happen in everyday life. First such attempts 

(see some examples below) have already been made.  
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For example, Ayaz et al. (2012) examined the hemodynamics (HbDiff computed 

as the difference between HbO2 and HbR) during an air traffic management task in 

which participants had to handle 6, 12, or 18 air forces, respectively, for each of two 

specified communication types (either voice or data). The researchers found increased 

activity within the left PFC (i.e.,  in inferior frontal gyrus and medial PFC) corresponding 

to defined levels of difficulty during short task sequences as compared to pre-task 

resting periods. 

Bruno et al. (2018) also observed increased activity of bilateral dorsolateral PFC 

with increasing task difficulty using fNIRS (HbO2) for a simulated driving task. Therein, 

task difficulty was increased for so-called “incongruent” tasks, where turning the steering 

wheel to the right resulted in an opposite movement of the car (to the left).  

In another study by Unni, Ihme, Jipp, and Rieger (2017), an elegant design was 

used to integrate a standard n-back routine (0- up to 4-back) into a driving task using a 

virtual reality driving simulator. Task difficulty was adjusted by asking participants to 

adjust their speed according to the speed signal that appeared before n steps (i.e. in the 

1-back condition participants had to adapt their speed to the last speed sign, while in the 

4-back condition they had to maintain the speed prescribed by the 4th last sign). The 

observed changes in HbR in bilateral inferior frontal areas and bilateral temporo-occipital 

areas were found to reflect cognitive load induced by the adapted n-back task. 

These examples indicate that fNIRS can be a useful method for conducting 

ecologically valid realistic experiments. However, although these studies investigated 

realistic tasks, they mainly used methods that are only applicable in laboratory settings. 

In all of these studies, hemodynamic cortical activation was measured during short 

periods of high cognitive load, and data were aggregated over a large number of 

equivalent repetitions. This method is very common. Herold et al. (2018) reported in their 

methodological review of 35 studies that fNIRS research typically either used block or 

event-based design, which is hardly feasible in real-life situations, or provided simple 

comparisons between baseline and post-treatment measurements.  

This methodology provides reliable results but does not answer the question of 

whether fNIRS technology can also be used to measure cognitive load online during 

long-term heterogeneous tasks that are not repeated several times, as happens often in 

real-life. And because such tasks usually involve different mental activities, which can 
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overlap in time and be executed in different sequences depending on participants’ 

strategy, it is hard to tell exactly what specific timeframes should be used when 

evaluating cognitive load. Another common approach as described by (Gerjets et al., 

2014) consists of using machine learning methods based on behavioral and (neuro-) 

physiological data, which seems to be quite feasible for real-live adaptation, leaving 

open the question of how to generalize the model, because such a data-driven approach 

cannot be easily generalized to different subjects and situations.  

Against this background, one might wonder whether an appropriate theoretical 

approach might help to resolve these issues considering the specific situation in which 

cognitive load should be measured. Because we focus on the measurement of cognitive 

load during the simulation of time-critical emergencies, a well-evaluated (Barrouillet, 

Bernardin, Portrat, Vergauwe, & Camos, 2007; Camos, Portrat, Vergauwe, & Barrouillet, 

2007; Lépine, Bernardin, & Barrouillet, 2005; Liefooghe, Barrouillet, Vandierendonck, & 

Camos, 2008; Portrat, 2008) time-based resource-sharing (TBRS) model developed by 

Barrouillet et al. Barrouillet, Bernardin, and Camos (2004)  might provide a suitable 

theoretical framework. 

 

1.2 Time-based resource-sharing model of cognitive load  

Barrouillet et al. (2004) emphasized that, in addition to task complexity, cognitive 

load is strongly dependent on the time available for the task at hand, which is particularly 

relevant for time-critical situations. According to the TBRS Model cognitive load depends 

on the proportion of time, “during which attention is captured in such a way that the 

storage of information is disturbed”, which is not trivial to determine. Nevertheless, in 

their recent paper, Sevcenko, Ninaus, Wortha, Moeller, and Gerjets (2021) have shown 

that this model can be successfully applied to predicting cognitive load in time-critical 

serious games. Thereby they used the TBRS model to define a behavioral metric based 

on the ratio of specific time intervals. Relying on log data, they found that the game flow 

can be divided into so-called action blocks, i.e. time-segments of dense actions (burst) 

followed by some waiting time (idle). When assuming that during the burst periods 

participants are operating at their cognitive limit - which appears plausible under time-

critical emergency situations- their cognitive load should be comparably high (i.e. at their 

personal maximum), and thus cognitive load of an action block can be estimated as the 
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relation of the duration of the burst phase to the total duration of the inspected block 

(burst + idle). This way, behavioral metric temporal action density decay (TADD) was 

proposed and validated in 47 participants. Interestingly, it was discovered that TADD 

reflecting this relation within the first action block (initial TADD) was a more valid 

measure of cognitive load as compared with averaged TADD sequence calculated over 

a whole level. This means that a simple behavioral metric at the beginning of a level 

significantly predicted the success of the whole level. The fact that initial TADD was 

based on data collected very early on during the game process, makes it potentially 

useful for real-time adaptation systems. 

This apparently provides us with a measurement foundation that is i) theory-

driven and can thus be generalized to any time-critical resource management situation; 

ii) is based on relatively short time intervals (burst & idle); iii) can be calculated from the 

initial phase of training and is thus suitable for real-time adaptation. However, which time 

slots should be used when applying this analytical approach using fNIRS methodology? 

Idle time intervals can become too short (or even equal to zero), for example, if the 

player fails to act fast enough and the first occupied emergency personnel finishes his 

task before the player has completed all ongoing task assignments. This makes idle time 

intervals unqualified for fNIRS analysis. On the other hand, burst periods seem 

sufficiently long and comparable, because during the first burst interval all participants 

are completing nearly the same tasks. However, also because all participants are 

supposed to operate at their limit under time-critical conditions, we can expect similar 

neuronal activity during this phase. In this article, we aimed at exploring these options 

and evaluate whether the direct observation of cortical hemodynamics during the initial 

burst phase and the idle phase directly afterward can provide additional insights into the 

nature and assessment of cognitive load. 

 

 

1.3 Present study 

In this study, we pursue two main questions. We are interested in whether fNIRS 

technology is feasible for cognitive load detection in realistic time-critical emergency 

situations realized with a game; and if so, which time intervals should be used, 

considering the TBRS Model of Barrouillet et al. (2004) and previous results. In 
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particular, we evaluate cortical hemodynamics in the PFC region for specified time slots 

addressing whether the corresponding hemodynamic cortical activation is related (i) to 

the task difficulty, (ii) to the achieved performance, (iii) and to the subjective perception 

of cognitive load. To allow for variance in cognitive load, we use a computer-based time-

critical emergency simulation game which requires management of time-critical 

situations and realizes different levels of difficulty, as validated using NASA-TLX 

questionnaire. Two scenarios of the simulation represent two different emergency 

situations, in which participants have to perform the same predefined number of actions 

by managing a predefined number of emergency personnel and equipment. These 

prerequisites are constant for all participants, although the exact chronological order of 

task execution and, thus, the resulting effectiveness depends on the individual strategy 

used. 



 

98 
 

2 Methods 

The study was carried out as part of a larger project that included several other 

physiological measures such as cardiac measurements, galvanic skin response, and 

eye-tracking. The aim of the study was to investigate whether the fNIRS methodology 

would be feasible for detecting cognitive load in realistic environments. 

 

2.1 Participants 

In this study, we present data of 27 volunteers (18 females, 9 males) aged 

between 20 and 49 years (M = 25.9; SD = 7.2). Data of further 20 participants were 

excluded from the present analysis due to the poor quality of the fNIRS recording. All 

participants were right-handed, spoke fluent German, were recruited via an online 

database, and were compensated monetarily for their time expenditure. They reported 

no neurological, mental or cardiovascular disorders, and did not take any psychotropic 

medication. The local ethics committee approved the study and written informed consent 

was obtained from all participants prior to the experiment. 

 

2.2 Task 

All participants played an adapted version of a game-based simulation of different 

emergency situations (Emergency: Promotion Software GmbH, 1999), in which they had 

to coordinate emergency personnel, such as paramedics, emergency doctors, and 

firefighters, as well as auxiliary items such as ambulances, fire trucks, and fire truck 

ladders to rescue victims and extinguish fires. 

After getting familiar with the games’ simulation routine by playing a tutorial and a 

training scenario, participants were confronted with two experimental scenarios: Fire and 

Train Crash. Each scenario included three levels of difficulty: easy, medium, and hard. 

These were defined by varying the number of tasks to be performed and the number of 

personnel to be coordinated within a given period of time. Because increased task 

density would require not only more actions but also better planning, coordination, and 

prioritization, we expected this to generate a concomitant increase in cognitive load. The 

time pressure was imposed by setting time limits for the levels as well as time bars that 
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showed how fast a victim would die if not helped. For a detailed summary of all 

simulation parameters, scenario descriptions, and validation of difficulty levels see 

Sevcenko et al. (2021). 

 

2.3 Experimental setup and design 

The experiment was implemented in a quiet room under constant light conditions. 

The Emergency game simulation was presented on a 16’’notebook driven at a screen 

resolution rate of 1920 x 1080 using a conventional computer mouse as the only 

interaction tool. Data for cortical hemodynamics were acquired on an additional 

notebook as can be seen in Figure 2, using a portable NIRSPORT-2 device 

(NIRX Medical Technologies). The simulation started with an introductory training 

sequence, which was followed by two experimental scenarios: Fire and Train Crash. At 

the end of each of the three levels per scenario, NASA-TLX scores were collected. Each 

participant executed the defined sequence of levels only once, which lasted about one 

hour including the training phase.   

Figure 2. Experimental setup. 

 

2.3 Measured variables 

For estimating cognitive load we used a continuous multichannel recording of 

cortical hemodynamics during time slots that were derived from participants’ behavior as 

described below. These measurements were subsequently associated with level 
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difficulty, performance data, and subjective estimation of cognitive load, collected by a 

subset of items taken from the NASA-TLX questionnaire (i.e., mental demand, time 

demand, and effort). Additional data such as age and sex were acquired prior to the 

experiment using a self-report survey. 

 

2.3.1 Level difficulty and performance data. For each level a real difficulty 

score was defined as the percentage of participants, who failed to complete the level, 

this means, could not extinguish all the fires and transport all injured persons to the 

hospital within the  defined time limit. Individuals’ performance per level was represented 

by the binary indicator of whether the level was completed successfully or not. 

 

2.3.2 NASA-TLX. Subjective estimation of cognitive load was acquired using 

subscales of the multidimensional NASA-TLX (Hart & Staveland, 1988) questionnaire, 

which consists of six items/dimensions rated on a 21-level scale (0 to 100 points with 

steps of 5). These dimensions correspond to various theories distinguishing between 

physical, mental, and emotional facets of operators’ load (Hart, 2006). In the current 

study, we used the subscales addressing the mental facet, i.e. mental demand, temporal 

demand, and effort, which represents a common procedure when investigating specific 

facets of workload (Haerle et al., 2013; Temple, Dember, Warm, Jones, & LaGrange, 

1997). 
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2.3.3 Time periods. Hemodynamic cortical data were analyzed based on burst 

and idle time periods related to the initial TADD metric proposed by Sevcenko et al. 

(2021), which were designed to predict cognitive load during time-critical situations 

where tasks have to be prioritized and resources managed. According to this approach, 

the time series of participants’ actions during each level was divided into so-called action 

blocks, consisting of active (burst) and waiting (idle) periods. During the burst period, 

participants manage their emergency personnel, and after the last available personnel 

are assigned a task, the idle interval occurs and lasts until the first personnel is available 

again. Figure 3 illustrates four exemplary turning points in the run-up to the emergency 

situation, which determine the initial burst and idle phases. 

Figure 3. Behavioral phases during a game, explained using the Fire scenario as an example. 
Inactive emergency forces are marked with black circles, active - with green ones.  
A: the game level starts, all emergency personnel are ready to go and still inactive. 
B: the initial burst phase begins with the first task, assigned to the emergency force by the 
player, and lasts until all available personnel are engaged actively. In this example, the 
emergency doctor and paramedics are not applicable because there are no injured persons 
waiting for the treatment.  
C: the initial burst phase ends as soon as the last applicable emergency force is engaged, 
emergency doctor and paramedics are still not applicable. This time-point marks also the 
beginning of the initial idle phase, in which the player has to wait until some emergency 
personnel gets free or new tasks appear. This example shows an initial idle phase as all 
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available emergency personnel are already active and the player has to wait until the person is 
rescued from the burning building and the next task will appear.  
D: the initial idle phase ends as soon as some emergency personal becomes available. In this 
example, the initial idle phase ends as soon as the rescued person appears laying down on the 
street. At this moment, an emergency doctor becomes available and can be assigned to treat the 
patient; at the same time, also the ladder truck becomes inactive and must be instructed to 
rescue the next person.  

In this study, we analyzed hemodynamic data obtained during four subsequent 

time slots. The first time slot initial burst starts with the first user action and its duration 

corresponds to the duration of the initial burst phase, which varied between participants. 

The three subsequent time slots start with the end of the corresponding initial burst and 

last 20 seconds each (t0 – t20: starting directly after the initial burst phase; t20 – t40: 

starting 20 seconds after the end of the initial burst; t40 – t60: starting 40 seconds after 

the end of the burst). This configuration is shown in Figure 4. 

Figure 4. Graphical representation of the investigated time periods. 

 

Because we assumed that all participants would be working at their cognitive limit during 

the burst phase, we expected no effects of task difficulty, performance and subjective 

cognitive load on neuronal activation during this time. After the burst phase is over, 

participants who experienced high cognitive load were supposed to have only a very 

short idle phase if any. Consequently, during the 20 seconds following the initial burst, 

participants who experience low cognitive load should still be in the initial idle phase, 

whereas for participants with high cognitive load, the next burst should already start. 

Assuming that hemodynamic cortical activation during the initial burst phase differs from 

the activation during the initial idle phase, we expected to find effects on neuronal activity 

during this time. As time progresses, we expected more heterogeneity in the data, this 

means, depending on their strategies more and more participants would start with a new 
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burst phase while others were still or again in an idle phase. Therefore, we expected 

smaller or even no significant effects in the later stages of the level. 

 

2.4 FNIRS Imaging Procedure  

Participants’ PFC oxygenation was recorded using a portable NIRSPORT-2 

device (NIRX Medical Technologies), which works with two wavelengths (750mn & 859 

nm) and provides time series of relative HbO2 and HbR concentration changes (Cope et 

al., 1988). We used 8 light emitters and 8 detectors, resulting in 20 channels, which were 

placed into electrode caps CUCMS-56/58 (EASYCAP) and adjusted to the Cz and Fpz 

positions according to the 10-20 system (Jasper, 1958). The probeset (see Figure 5) 

covered the dorsolateral PFC and left inferior frontal gyrus (IFG), the latter being part of 

the PFC that is involved in speech processing (Riecker, Mathiak, Grodd, Hertrich, & 

Ackermann, 2005), including the production of the inner dialogue (McGuire et al., 1996). 

The distance between a light emitter and its corresponding detector (i.e., the inter-optode 

distance, the middle of which corresponds to a measurement channel), was approx. 3 

cm. Data recording was performed at a sampling rate of 7.8125 Hz. The data were 

preprocessed with MATLAB version 2017a as described in section 2.5.  
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Figure 5. fNIRS probeset generated by NIRx Montage Editor (NIRX Medical Technologies). Left: 

Topological placement used of light emitters (filled in green), detectors (filled in red), and 

channels (purple) on a standard 10-20 EEG system. Right: Location of the easycap adjustment 

positions: Cz and Fpz (pink).  

2.5 Data analysis  

2.5.1. FNIRS data pre-processing. As mentioned above, despite their relative 

robustness, fNIRS recordings are not completely free of artifacts that can be caused by 

the participants’ physiology (respiration, cardiac activity) and movements, which might 

cause relative motion between optical fibers and scalp (see Cooper et al., 2012; Pinti et 

al., 2018).  The preprocessing steps were conducted in the following way. 

First, data were corrected for high amplitude movement artifacts by the TDDR 

correction (Fishburn, Ludlum, Vaidya, & Medvedev, 2019), followed by bandpass filtering 

(0.01 - 0.1 Hz) and a correlation-based signal improvement (CBSI) (Cui, Bray, & Reiss, 

2010). After that, visual data inspection for outlier-channels was conducted, and on 

average 2.2 channels per participant were interpolated with their surrounding channels. 

A following PCA-based Gaussian kernel filter was used for global signal correction 

(Zhang, Noah, & Hirsch, 2016) and data were z-standardized. Finally, we calculated the 

normalized area under the curve (nAUC) for this signal by placing its integral in relation 

to the duration of the investigated time period.  

 

2.5.2 ROI definition. After pre-processing was completed, we combined 20 

channels into the following 6 regions of interest (ROI), illustrated by Figure 6: DLPFC left 

(DLPFC-L), DLPFC right (DLPFC-R), and IFG (IFG). ROI definition was carried out on a 

data-driven basis combined with theoretical assumptions about the different sections of 

the PFC and their respective functions. Thereby, we visually inspected for all channels a 

timeframe from 5 - 30 sec after the initial burst phase had started. Channels were 

combined based on the anatomical topology, theoretical knowledge and hemodynamic 

activation shown during this period. 

 

2.5.3 Statistical Analyses. We employed linear mixed-effect analyses using 

statistical software R (R Core Team, 2020) with the lme4 package (Bates, Mächler, 
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Bolker, & Walker, 2014). The assumptions of homoscedasticity and normality were 

verified by visual inspection of residual plots. The p-values were obtained by likelihood 

ratio tests of the full model (with the effect of the investigated parameter) tested against 

a reduced model (without its effect). In case of a significant result, further model 

analyses were applied using the report package of Makowski, Lüdecke, and Ben-

Schachar (2020). Standardized parameters were obtained by fitting a model on a 

standardized version of the dataset.  

 

Figure 6. Anatomical allocation of the channels to the brain regions and ROI definition. DLPFC 

left: channels 3, 8; DLPFC right: channels 13; IFG: 6. The figure was generated by MATLAB 

based Atlas Viewer (Aasted et al., 2015) with manually added channel numbers.  
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3 Results 

In this study we examined hemodynamic cortical activation within specified time 

windows during a time-critical emergency simulation. Thereby, we aimed to evaluate 

whether these observations can be used to assess cognitive load induced by the 

simulation design. In particular, for four defined time periods (initial burst and following t0 

– t20, t20 – t40, and t40 – t60), we examined the impact of real difficulty of the level 

(percentage of participants who failed to complete all tasks within the specified time limit) 

and the participants’ performance per level (binary indicator of whether the level was 

completed successfully or not) on the hemodynamic cortical activation level (nAUC: 

time-normalized integral of the CBSI signal) in a specified ROI. Furthermore, we 

evaluated the impact of nAUC on subjective ratings of cognitive load for the whole 

simulation level, acquired via NASA-TLX questionnaire.  

The structure of the following sections corresponds to the structure of Table 1, 

which provides a general overview of all achieved results. Thereby we proceed 

sequentially through the table from top to bottom, providing detailed statistics for all 

specified time periods.  

 

3.0 Manipulation check 

Supporting the validity of the simulation design, we found a significant positive 

effect of ‘scenario’ on perceived cognitive load in relation to all acquired items of NASA-

TLX questionnaire. This reflects that the scenario “Train Crash” was perceived as more 

challenging than “Fire” regarding the subjective rating of mental demand, time demand 

and effort: mental demand (χ²(1) = 9.11, p = .002, beta = 5.56, p < .01); time demand 

(χ²(1) = 4.49, p = .034, beta = 10.25, p < .01), effort (χ²(1) = 4.49, p = .034, beta = 10.49, 

p < .01). 
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Table 1 

Graphical summary of significant effects 

 DLPFC IFG 

 left right  

burst    

    nAUC ~ real difficulty + +  

    nAUC ~ performance  -  

    mental_demand ~ nAUC    

    time_demand ~ nAUC  +  

    effort ~ nAUC    

t0 – t20     

    nAUC ~ real difficulty    

    nAUC ~ performance    

    mental_demand ~ nAUC -   

    time_demand ~ nAUC -   

    effort ~ nAUC - -  

t20 – t40     

    nAUC ~ real difficulty  -  

    nAUC ~ performance    

    mental_demand ~ nAUC  -  

    time_demand ~ nAUC    

    effort ~ nAUC    

t40 – t60     

    nAUC ~ real difficulty    

    nAUC ~ performance    

    mental_demand ~ nAUC    

   time_demand ~ nAUC    

   effort ~ nAUC    

Note: Significant results are listed as + for positive and – for negative effects. Real difficulty 
(related to level): percentage of participants, who did not complete the level. Performance 
(related to participant): binary indicator of whether the level was completed successfully or not. 
nAUC: time-normalized CBSI integral. Regions of interest (ROI) are labelled as follows: DLPFC 
for dorsolateral prefrontal cortex; IFG for inferior frontal gyrus.  
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3.1 Initial burst 

3.1.1 Real difficulty. To evaluate the effect of real difficulty on neuronal activity 

within defined ROIs, we employed linear mixed-effect analysis with intercepts for 

participants entered as random effects and real difficulty as a fixed effect. We found a 

significantly positive effect of real difficulty on hemodynamic cortical activation in DLPFC-

L and DLPFC-R ROIs, meaning that higher levels of real difficulty were associated with 

higher hemodynamic activity. In contrast, no significant association was found between 

real difficulty and hemodynamic cortical activation within the IFG ROI. For detailed 

statistics see Table 2. 

 

Table 2 

nAUC ~ real difficulty during initial burst 

  

χ²(1) 

 

p 

cond.  

R² 

marg. 

 R² 

 

beta 

 

p 

DLPFC-L 4.49 0.034 0.19 0.02 2.24 < 0.05 

DLPFC-R 6.43 0.011 0.55 0.02 2.82 < 0.05 

IFG 0.21 0.210     

Note: cond. R²: conditional R² representing models total explanatory power, marg. R²: marginal 
R² representing explanatory power of fixes effects. Regions of interest (ROI) are labelled as 
follows: DLPFC for dorsolateral prefrontal cortex; IFG for inferior frontal gyrus; L for left; R for 
right. 

 

3.1.2 Performance. To determine the effect of participants’ performance on 

neuronal activity within the defined ROIs, we used a linear mixed-effect analysis with 

intercepts for participants entered as random effects and the binary indicator of whether 

the level was successfully completed or not as a fixed effect. We found a significant main 

effect of performance on the nAUC only within the DLPFC-R ROI. This effect was 

significantly negative, meaning that higher level of performance was associated with 

lower hemodynamic activity. For detailed statistics see Table 3. 
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Table 3 

nAUC ~ performance during initial burst 

  

χ²(1) 

 

p 

cond.  

R² 

marg. 

 R² 

 

beta 

 

p 

DLPFC-L 0.27 0.602     

DLPFC-R 4.03 0.045 0.54 0.01 -1.51 < 0.05 

IFG 0.20 0.657     

Note: cond. R²: conditional R² representing models total explanatory power, marg. R²: marginal 
R² representing explanatory power of fixes effects. Regions of interest (ROI) are labelled as 
follows: DLPFC for dorsolateral prefrontal cortex; IFG for inferior frontal gyrus; L for left; R for 
right. 

 

3.1.3 Perceived cognitive load. To evaluate the effect of participants’ neuronal 

activity on subjective ratings of cognitive load, we employed a linear mixed-effect 

analysis with intercepts for participants entered as random effects and scenario and 

nAUC within investigated ROI as fixed effects. The analysis was performed for all 

combinations of ROIs and selected NASA-TLX subscales.  

We found no significant associations between perceived cognitive load and 

hemodynamic cortical activation in terms of mental demand and effort (see Tables 4 & 

6). Regarding time demand, a significant positive effect of neuronal activation within 

DLPFC-R ROI was found, implying that participants exhibiting higher neuronal activation 

in these cortex areas also perceived higher time pressure (see Table 5). 
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Table 4 

mental demand ~ nAUC during initial burst 

  

χ²(1) 

 

p 

cond.  

R² 

marg. 

 R² 

 

beta 

 

p 

DLPFC-L 0.07 0.799     

DLPFC-R 1.00 0.317     

IFG 0.03 0.865     

Note: cond. R²: conditional R² representing models total explanatory power, marg. R²: marginal 
R² representing explanatory power of fixes effects. Regions of interest (ROI) are labelled as 
follows: DLPFC for dorsolateral prefrontal cortex; IFG for inferior frontal gyrus; L for left; R for 
right. 

.  

Table 5 

time demand ~ nAUC during initial burst 

  

χ²(1) 

 

p 

cond.  

R² 

marg. 

 R² 

 

beta 

 

p 

DLPFC-L 3.25 0.710     

DLPFC-R 5.12 0.024 0.40 0.07 0.87 < 0.05 

IFG 0.15 0.701     

Note: cond. R²: conditional R² representing models total explanatory power, marg. R²: marginal 
R² representing explanatory power of fixes effects. Regions of interest (ROI) are labelled as 
follows: DLPFC for dorsolateral prefrontal cortex; IFG for inferior frontal gyrus; L for left; R for 
right. 
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Table 6 

effort ~ nAUC during initial burst 

  

χ²(1) 

 

p 

cond.  

R² 

marg. 

 R² 

 

beta 

 

p 

DLPFC-L 0.67 0.411     

DLPFC-R 0.97 0.324     

IFG 0.00 0.991     

Note: cond. R²: conditional R² representing models total explanatory power, marg. R²: marginal 
R² representing explanatory power of fixes effects. Regions of interest (ROI) are labelled as 
follows: DLPFC for dorsolateral prefrontal cortex; IFG for inferior frontal gyrus; L for left; R for 
right. 

 

3.2 t0 – t20  

3.2.1 Real difficulty. To determine the effect of real difficulty on neuronal activity, 

we employed linear mixed-effect analysis with intercepts for participants entered as 

random effects and real difficulty as a fixed effect for each of the specified ROIs 

separately. We found no significant effects within any of the ROIs (see Table 7). 

 

3.2.2 Performance. To determine the effect of participants’ performance on 

neuronal activity within the defined ROIs, we used a linear mixed-effect analysis with 

intercepts for participants entered as random effects and the binary indicator of whether 

the level was successfully completed or not as a fixed effect. We found no significant 

effects within any of the ROIs (see Table 8). 

 

 

 

 

 

 



 

112 
 

Table 7 

nAUC ~ real difficulty during t0 – t20 

  

χ²(1) 

 

p 

cond.  

R² 

marg. 

 R² 

 

beta 

 

p 

DLPFC-L 1.29 0.256     

DLPFC-R 0.38 0.539     

IFG 0.01 0.904     

Note: cond. R²: conditional R² representing models total explanatory power, marg. R²: marginal 
R² representing explanatory power of fixes effects. Regions of interest (ROI) are labelled as 
follows: DLPFC for dorsolateral prefrontal cortex; IFG for inferior frontal gyrus; L for left; R for 
right. 

 

Table 8 

nAUC ~ performance during t0 – t20 

  

χ²(1) 

 

p 

cond.  

R² 

marg. 

 R² 

 

beta 

 

p 

DLPFC-L 0.02 0.890     

DLPFC-R 0.09 0.761     

IFG 0.91 0.340     

Note: cond. R²: conditional R² representing models total explanatory power, marg. R²: marginal 
R² representing explanatory power of fixes effects. Regions of interest (ROI) are labelled as 
follows: DLPFC for dorsolateral prefrontal cortex; IFG for inferior frontal gyrus; L for left; R for 
right. 

 

3.2.3 Perceived cognitive load. To determine the effect of participants’ neuronal 

activity on subjective ratings of cognitive load, we employed a linear mixed-effect 

analysis with intercepts for participants entered as random effects and scenario and 

nAUC within investigated ROI as fixed effects. The analysis was performed for all 

combinations of ROIs and selected NASA-TLX items.  

We found a significant negative effect of hemodynamic cortical activity only within 

DLPFC-L ROI on the perceived mental demand (see Table 9), implying that higher 
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hemodynamic cortical activation directly after the burst phase was associated with the 

experience of lower mental demand. Likewise, subjective Time demand was significantly 

negatively associated with hemodynamic cortical activation in DLPFC-L ROI, i.e. the 

increased neuronal activity was related to the experience of less time pressure, whereas 

no significant effect for other POIs were found (see Table 10). Perceived effort was 

significantly associated with hemodynamic cortical activation within both ROIs related to 

DLPFC, again no effect of IFG ROI was observed (see Table 11). This effect was 

negative, meaning that the increased neuronal activity was related to the experience of 

less effort.  

 

Table 9 

mental demand ~ nAUC during t0-t20 

  

χ²(1) 

 

p 

cond.  

R² 

marg. 

 R² 

 

beta 

 

p 

DLPFC-L 4.34 0.037 0.76 0.03 -0.69 < 0.05 

DLPFC-R 2.68 0.102     

IFG 0.00 0.950     

Note: cond. R²: conditional R² representing models total explanatory power, marg. R²: marginal 
R² representing explanatory power of fixes effects. Regions of interest (ROI) are labelled as 
follows: DLPFC for dorsolateral prefrontal cortex; IFG for inferior frontal gyrus; L for left; R for 
right. 
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Table 10 

time demand ~ nAUC during t0-t20 

  

χ²(1) 

 

p 

cond.  

R² 

marg. 

 R² 

 

beta 

 

p 

DLPFC-L 5.90 0.015 0.41 0.06 -1.50 < 0.05 

DLPFC-R 0.18 0.671     

IFG 0.83 0.361     

Note: cond. R²: conditional R² representing models total explanatory power, marg. R²: marginal 
R² representing explanatory power of fixes effects. Regions of interest (ROI) are labelled as 
follows: DLPFC for dorsolateral prefrontal cortex; IFG for inferior frontal gyrus; L for left; R for 
right. 

 

 

Table 11 

effort ~ nAUC during t0-t20 

  

χ²(1) 

 

p 

cond.  

R² 

marg. 

 R² 

 

beta 

 

p 

DLPFC-L 5.86 0.015 0.56 0.04 -1.11 < 0.05 

DLPFC-R 7.33 0.007 0.57 0.05 -1.03 < 0.01 

IFG 0.83 0.361     

Note: cond. R²: conditional R² representing models total explanatory power, marg. R²: marginal 
R² representing explanatory power of fixes effects. Regions of interest (ROI) are labelled as 
follows: DLPFC for dorsolateral prefrontal cortex; IFG for inferior frontal gyrus; L for left; R for 
right. 

 

 

 

 

 



 

115 
 

3.3 t20 – t40  

3.3.1 Real difficulty of. To evaluate the effect of real difficulty on neuronal 

activation, we employed linear mixed-effect analysis with intercepts for participants 

entered as random effects and real difficulty as a fixed effect for each ROI respectively.  

We found a significant negative association between real difficulty and cortical 

hemodynamics only within DLPFC-R ROI, meaning that higher real difficulty was 

associated with lower hemodynamic activation in these cortical areas. No significant 

effects were wound for other ROIs (see Table 12). 

 

Table 12 

nAUC ~ real difficulty during t20 – t40 

  

χ²(1) 

 

p 

cond.  

R² 

marg. 

 R² 

 

beta 

 

p 

DLPFC-L 0.77 0.380     

DLPFC-R 5.93 0.015 0.61 0.01 -2.35 < 0.05 

IFG 1.39 0.238     

Note: cond. R²: conditional R² representing models total explanatory power, marg. R²: marginal 
R² representing explanatory power of fixes effects. Regions of interest (ROI) are labelled as 
follows: DLPFC for dorsolateral prefrontal cortex; IFG for inferior frontal gyrus; L for left; R for 
right. 

 

3.3.2 Performance. To determine the effect of participants’ performance on 

neuronal activity within the defined ROIs, we used a linear mixed-effect analysis with 

intercepts for participants entered as random effects and the binary indicator of whether 

the level was successfully completed or not as a fixed effect. We found no significant 

effects within any of the ROIs (see Table 13). 
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Table 13 

nAUC ~ performance during t20 – t40 

  

χ²(1) 

 

p 

cond.  

R² 

marg. 

 R² 

 

beta 

 

p 

DLPFC-L 0.78 0.376     

DLPFC-R 0.95 0.330     

IFG 1.43 0.231     

Note: cond. R²: conditional R² representing models total explanatory power, marg. R²: marginal 
R² representing explanatory power of fixes effects. Regions of interest (ROI) are labelled as 
follows: DLPFC for dorsolateral prefrontal cortex; IFG for inferior frontal gyrus; L for left; R for 
right. 

 

3.3.3 Perceived cognitive load. To determine the effect of participants’ neuronal 

activity on subjective ratings of cognitive load, we employed a linear mixed-effect 

analysis with intercepts for participants entered as random effects as well as scenario 

and nAUC within investigated ROI as fixed effects. The analysis was performed for all 

combinations of ROIs and selected NASA-TLX items. 

We found a significant negative association between nAUC and perceived mental 

demand within the DLPFC-R ROI, indicating that higher hemodynamic cortical activation 

in this cortical area during t20 – t40 after the burst phase was associated with lower 

perceived mental demand. We found no significant effects within any other ROIs in this 

regard (see Table 14). Likewise, no significant effects were found regarding perceived 

time demand and effort in all ROIs during t20 – t40 after the burst phase (see Table 15 

&16). 
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Table 14 

mental demand ~ nAUC during t20-t40 

  

χ²(1) 

 

p 

cond.  

R² 

marg. 

 R² 

 

beta 

 

p 

DLPFC-L 0.10 0.655     

DLPFC-R 5.78 0.016 0.77 0.04 -0.60 < 0.05 

IFG 0.36 0.550     

Note: cond. R²: conditional R² representing models total explanatory power, marg. R²: marginal 
R² representing explanatory power of fixes effects. Regions of interest (ROI) are labelled as 
follows: DLPFC for dorsolateral prefrontal cortex; IFG for inferior frontal gyrus; L for left; R for 
right. 

 

Table 15 

time demand ~ nAUC during t20-t40 

  

χ²(1) 

 

p 

cond.  

R² 

marg. 

 R² 

 

beta 

 

p 

DLPFC-L 1.72 0.190     

DLPFC-R 0.32 0.569     

IFG 2.27 0.132     

Note: cond. R²: conditional R² representing models total explanatory power, marg. R²: marginal 
R² representing explanatory power of fixes effects. Regions of interest (ROI) are labelled as 
follows: DLPFC for dorsolateral prefrontal cortex; IFG for inferior frontal gyrus; L for left; R for 
right. 
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Table 16 

effort ~ nAUC during t20-t40 

  

χ²(1) 

 

p 

cond.  

R² 

marg. 

 R² 

 

beta 

 

p 

DLPFC-L 0.03 0.856     

DLPFC-R 1.63 0.202     

IFG 1.51 0.219     

Note: cond. R²: conditional R² representing models total explanatory power, marg. R²: marginal 
R² representing explanatory power of fixes effects. Regions of interest (ROI) are labelled as 
follows: DLPFC for dorsolateral prefrontal cortex; IFG for inferior frontal gyrus; L for left; R for 
right. 

 

3.4.1 40 – t60  

3.4.2 Real difficulty. To evaluate the effect of real difficulty on hemodynamic 

cortical activation within defined ROIs, we employed linear mixed-effect analysis with 

intercepts for participants entered as random effects. For this time period, we found no 

significant effects within any of the ROIs (see Table 17) 

 

3.4.3 Performance. To analyze the relationship between the participants’ 

performance and hemodynamic cortical activation, we applied a linear mixed-effect 

analysis with intercepts for participants entered as random effects and the binary 

indicator of whether the level was successfully completed or not as a fixed effect. We 

found no significant effects within any of the ROIs (see Table 18). 
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Table 17 

nAUC ~ real difficulty during t40-t60 

  

χ²(1) 

 

p 

cond.  

R² 

marg. 

 R² 

 

beta 

 

p 

DLPFC-L 0.01 0.918     

DLPFC-R 1.08 0.300     

IFG 0.80 0.371     

Note: cond. R²: conditional R² representing models total explanatory power, marg. R²: marginal 
R² representing explanatory power of fixes effects. Regions of interest (ROI) are labelled as 
follows: DLPFC for dorsolateral prefrontal cortex; IFG for inferior frontal gyrus; L for left; R for 
right. 

 

Table 18 

nAUC ~ real difficulty during t40-t60 

  

χ²(1) 

 

p 

cond.  

R² 

marg. 

 R² 

 

beta 

 

p 

DLPFC-L 0.01 0.992     

DLPFC-R 0.29 0.593     

IFG 0.13 0.719     

Note: cond. R²: conditional R² representing models total explanatory power, marg. R²: marginal 
R² representing explanatory power of fixes effects. Regions of interest (ROI) are labelled as 
follows: DLPFC for dorsolateral prefrontal cortex; IFG for inferior frontal gyrus; L for left; R for 
right. 

 

3.4.4 Perceived cognitive load. To determine the effect of participants’ neuronal 

activity on subjective ratings of cognitive load, we employed a linear mixed-effect 

analysis with intercepts for participants entered as random effects and scenario and 

nAUC within investigated ROI as fixed effects. The analysis was performed for all 

combinations of ROIs and selected NASA-TLX items. Within this time window we found 

no significant effects in any of the ROIs neither regarding perceived mental demand (see 

Table 18) nor regarding time demand (see Table 19), or effort (see Table 20). 
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Table 19 

mental demand ~ nAUC during t40-t60 

  

χ²(1) 

 

p 

cond.  

R² 

marg. 

 R² 

 

beta 

 

p 

DLPFC-L 0.87 0.352     

DLPFC-R 1.66 0.197     

IFG 0.38 0.537     

Note: cond. R²: conditional R² representing models total explanatory power, marg. R²: marginal 
R² representing explanatory power of fixes effects. Regions of interest (ROI) are labelled as 
follows: DLPFC for dorsolateral prefrontal cortex; IFG for inferior frontal gyrus; L for left; R for 
right. 

 

Table 20 

time demand ~ nAUC during t40-t60 

  

χ²(1) 

 

p 

cond.  

R² 

marg. 

 R² 

 

beta 

 

p 

DLPFC-L 0.73 0.393     

DLPFC-R 0.19 0.663     

IFG 0.69 0.407     

Note: cond. R²: conditional R² representing models total explanatory power, marg. R²: marginal 
R² representing explanatory power of fixes effects. Regions of interest (ROI) are labelled as 
follows: DLPFC for dorsolateral prefrontal cortex; IFG for inferior frontal gyrus; L for left; R for 
right. 
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Table 21 

effort ~ nAUC during t40-t60 

  

χ²(1) 

 

p 

cond.  

R² 

marg. 

 R² 

 

beta 

 

p 

DLPFC-L 0.58 0.448     

DLPFC-R 0.78 0.377     

IFG 0.17 0.678     

Note: cond. R²: conditional R² representing models total explanatory power, marg. R²: marginal 
R² representing explanatory power of fixes effects. Regions of interest (ROI) are labelled as 
follows: DLPFC for dorsolateral prefrontal cortex; IFG for inferior frontal gyrus; L for left; R for 
right. 
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4 Discussion 

Determining cognitive load seems crucial for the development of training 

environments for life- and time-critical emergencies. Here, the use of fNIRS methodology 

may provide reliable results in this respect not only in the laboratory but also in 

ecologically more valid experiments, using averaged data of repeated measures of 

relatively cognitive tasks. At the same time, it remains unclear how to use fNIRS for 

assessing cognitive load during a prolonged single-trial activity involving heterogeneous 

tasks. In particular, because averaging over a too long period of time may well obscure 

potential differences in hemodynamic cortical activation, the question arises which time 

windows may be used sensibly to obtain reliable data on experienced cognitive load.  

This study describes an attempt to solve this challenge by following a theory-

driven top-down approach for investigating realistic time-critical emergency situations 

from the perspective of resource management. We used a game-based emergency 

simulation requiring time-critical coordination of emergency personnel to induce different 

levels of cognitive load. Considering  Barrouillet et al. (2004) TBRS Model and previous 

results, we hypothesized that time periods directly following the initial burst phase might 

be well suited for reliable cognitive load assessment with fNIRS. Contrarily, we did not 

expect to find significant associations between hemodynamic cortical activation and 

cognitive load for the initial burst phases themselves in which participants should 

perform at the maximum of their individual capacity as well as for the later course of the 

simulation.  

In accordance with our expectations and despite the fact that simulation levels 

varied significantly in terms of real difficulty and subjective cognitive load, only a few or 

no significant effect on hemodynamic cortical activation was observed during latter time 

intervals: t20 – t40 and t40 – t60 seconds after the end of the initial burst. These results 

substantiate that it is not always possible to determine differences in cognitive load by 

comparing random time intervals over different difficulty levels over a long and complex 

realistic task. Because a realistic cognitive task usually consists of heterogeneous 

subtasks, it cannot be guaranteed that all operators perform these tasks in the same 

order and using the same strategy. This leads to a lot of “noise” in neuronal activity when 

different mental tasks are performed continuously or even overlapping at different times 

by different participants making it almost impossible to pinpoint influences of specific 

variables.  
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This problem might be solved by searching for comparable time slots using the 

global knowledge about the nature of the performed task. As hypothesized, we found a 

significant association between hemodynamic cortical activation within different areas of 

DLPFC immediately after the initial burst phase (t0 - t20) and the subjective assessment 

of cognitive load of the entire level (by NASA-TLX). This association seems robust, as it 

appeared for all investigated subscales (mental demand, time demand, and effort). 

Surprisingly, participants who showed stronger hemodynamic cortical activation within 

this time frame perceived the entire level as less demanding for them and vice versa. 

This pattern of results provides an interesting insight into the nature of the idle phase 

following the initial burst phase. While the simulation log captured that all participants 

acted similarly, when managing initial resources during the first burst (i.e., allocating 

emergency personnel to their tasks) and thus may have relied on similar cognitive 

processes, there is no information about their cognitive engagement during the idle 

phase, because no logable behavior was performed in this time period. In principle, in 

this phase, they could either wait passively for the next burst or use this time for active 

monitoring and planning, which might result in better performance later on and thus to a 

reduction in the subjectively experienced cognitive load (Hancock, 1989). However, as 

no significant association between neuronal activity and final performance was observed 

for this time slot, another explanation seems more likely. It is conceivable that cognitively 

challenged participants tended to use the idle pause to relax as they might get tired of 

maintaining attention, which may have led to reduced hemodynamic cortical activation 

(Nihashi et al., 2019). In contrast, more successful players might use this phase to 

monitor the situation and plan ahead their next steps. Nevertheless, answering this 

question seems to require further investigation.  

Because we assumed that during the initial burst phase all participants would 

operate at their cognitive maximum, we expected no differences in hemodynamic cortical 

activation between participants and real difficulty at this time. Surprisingly, we found a 

considerable positive association between hemodynamic cortical activation within wide 

areas of the DLPFC ROI and real difficulty of the level as well as with perceived time 

pressure during the initial burst phase. In contrast, negative associations with the actual 

performance were found within the right DLPFC. First of all, these results may be 

interpreted as substantiation of the “inverted-U” shaped association of cognitive load and 

performance (Csikszentmihalyi, 1987; Yerkes & Dodson, 1908), which assumes that the 

cognitive load should be kept within a certain range to obtain the best results.  



 

124 
 

Furthermore, the initial burst phase, which takes place at the very beginning of the 

level, appears nevertheless to be well suited to determine the degree of task difficulty 

and could therefore be used for real-time adaptation of training simulations. At the same 

time, however, further investigation is needed to determine whether this effect might 

persist under more stressful conditions. It is conceivable that our preliminary 

assumptions were correct, but the induced time pressure was not sufficient to make all 

participants work at their cognitive limit. In this case, a burst time slot would be well 

suitable for measuring cognitive load in situations with low to medium time pressure, 

while for measuring cognitive load under high time pressure other options need to be 

identified.  

All above-mentioned results refer to neuronal activity within broader ranges of the 

DLPFC. In this study, we found almost no association of IFG activation and participants’ 

cognitive load. This may be due to the nature of the experimental task, which did not 

require difficult calculations or other cognitive manipulations necessitating an inner 

dialogue. Despite this result, the empirical evidence indicates that this region may be 

sensitive to changes in cognitive load (Ayaz et al., 2012; de Fockert & Theeuwes, 2012) 

and should therefore be investigated in future research.  

 

4.1 Methodological strengths and constraints 

Analytic approaches for simulated training environments are often based on data-

driven probabilistic evaluations (Magerko, Stensrud, & Holt, 2006; Spronck, Ponsen, 

Sprinkhuizen-Kuyper, & Postma, 2006; Zook & Riedl, 2012). However, these seem 

insufficient for modeling cognitive user states, which can be “directly” (Brunken et al., 

2003) assessed via neurophysiological methods (for review see: Kivikangas et al., 

2011). Compared to other neuroimaging techniques, the use of the fNIRS methodology 

seems advantageous due to its relatively low cost, high mobility, robustness against 

various artifacts, and reliability when used on averaged data, whereas single-user single-

trial evaluations still remain challenging (Herold et al., 2018; Scholkmann et al., 2014). 

This study takes a step in this direction by proposing a theory-based approach to the 

choice of time frames suitable for assessing cognitive load in realistic single-trial time-

critical emergency situations related to resource management. Unlike data-driven 

approaches such as machine learning, this approach might be generalized to similar 

environments, which however raises further questions. As mentioned above, we have to 
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investigate whether a finer clustering of training scenarios is needed for the selection of 

the appropriate metrics, brain regions, and time frames for data collection. Also, in this 

constellation fNIRS cannot be used as a stand-alone methodology, because it needs log 

data from the simulation to calculate the required time periods, which would result in 

relatively complex assessment installation. Thus the obtained results might be used to 

improve laboratory systems with the aim of conducting mobile, ecologically valid 

experiments. 

 

4.2 Conclusion 

In this study, we presented a simple method to determine time periods that qualify 

for cognitive load detection in a single-trial time-critical resource-management 

emergency situation using the fNIRS method in combination with TBRS theory. 

Detection of proposed time periods is based on log data and can be easily run in the 

background. We found significant associations between cognitive load and neuronal 

activity within DLPFC during chosen time periods, whereas only a few or no significant 

effects were observed during later time intervals, substantiating that it is not always 

possible to determine differences in cognitive load by comparing random periods of time. 

We found no significant dependencies within IFG. These results illustrate how 

knowledge of task structure may be used advantageously for the identification of 

cognitive load. Although requiring further investigation in terms of reliability and 

generalizability, the presented approach seems promising evidence that fNIRS might be 

suitable for the assessment of cognitive load beyond classical experimental set-ups. 
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Abstract 

Computerized systems are taking on increasingly complex tasks. Consequently, 

monitoring automated computerized systems is becoming increasingly demanding for 

human operators, which is particularly relevant in time-critical situations. A possible 

solution might be adapting human-computer interfaces (HCI) to the operators’ cognitive 

load. Here, we present a novel approach for theory-based measurement of cognitive 

load based on tracking eye movements of 42 participants while playing a serious game 

simulating time-critical situations that required resource management at different levels 

of difficulty. Gaze data was collected within narrow time periods, calculated based on log 

data interpreted in the light of the time-based resource-sharing model. Our results 

indicated that eye fixation frequency, saccadic rate, and pupil diameter significantly 

predicted task difficulty, while performance was best predicted by eye fixation frequency. 

Subjectively perceived cognitive load was significantly associated with the rate of 

microsaccades. Moreover our results indicated that more successful players tended to 

use breaks in gameplay to actively monitor the scene, while players who use these times 

to rest are more likely to fail the level. The presented approach seems promising for 

measuring cognitive load in realistic situations, considering adaptation of HCI. 
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1 Introduction 

Our daily lives are becoming more and more automated, with computerized 

systems such as autopilots, speed and lane assistants, robotic surgeons, etc. taking on 

increasingly complex tasks. Thus, a human operator is supported considerably by such 

systems on the one hand. However, monitoring of such automated systems is becoming 

increasingly demanding due to the rising complexity of tasks they are capable of 

executing. This problem is particularly evident in unexpected time-critical situations, 

where the operator does not have time for a detailed analysis of the interface and 

therefore relies more than usual on cognitive ergonomics.  

A possible solution to this challenge may be the development of intelligent 

human-computer interfaces (HCIs) capable of adapting their demands and appearance 

(e.g., minimizing displayed information when the operator is cognitively overloaded) to 

the situation as well as to the operators’ cognitive and emotional states to optimize 

performance and prevent failures. The so-called cognitive load on the operator seems 

particularly relevant in this case, because it is considered to reflect the degree to which 

available cognitive resources are engaged in the task at hand (Babiloni, 2019) and thus 

can be used to predict operators’ performance. Accordingly, detecting the actual level of 

cognitive load seems highly relevant in a variety of realistic settings (P. Gerjets et al., 

2014), for example, to change the appearance of the interface according to the 

operators’ cognitive load. Empirical evidence indicates that differently designed HCIs 

may cause different levels of cognitive load while performing the same task. As one 

example, Charabati et al. (2009) compared interfaces designed to monitor anesthesia 

parameters during a surgery and reported that participants rated their cognitive load 

significantly lower when using a mixed numerical–graphical interface compared to the 

numerical and advanced-graphical interfaces. Another example was provided by the 

study of Oviatt (2006) who found that students performed significantly better at solving 

mathematical problems when using a digital pen and paper interface compared to 

graphical tablet interfaces. At the same time, online adaptation of the environment to the 

operators’ current cognitive load was shown to lead to a significant performance 

improvements (Walter et al., 2017). Fortunately, digital systems easily allow for collecting 

individual user data that may well be used to model cognitive or emotional states of the 

operator (Nebel & Ninaus, 2019) including but not limited to cognitive load. In the current 

study we investigated whether eye-tracking features collected during narrow time 
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intervals, which were predefined using a theoretical approach, may be used successfully 

to measure cognitive load during time-critical emergency simulation.  

 

1.1 Cognitive Load 

The concept of cognitive load is based on the realization that cognitive resources 

are limited (G. A. Miller, 1956). It can be understood as the degree of “how hard the 

brain is working to meet task demands” (Ayaz et al., 2012, p. 36). At the same time, it 

needs to be considered that cognitive load evolves as a complex interplay between 

different task demands and mental processes (Babiloni, 2019), and thus represents a 

dynamic variable that fluctuates during task accomplishment. 

An association between cognitive load and human performance was 

demonstrated in a variety of realistic settings such as e-learning (Oviatt, 2006; Walter et 

al., 2017), transportation (Fan & Smith, 2017a; G. Hancock et al., 2012; P. Hancock, 

1989), office work (Aasted et al., 2015; Smith-Jackson & Klein, 2009) and medicine 

(Yurko et al., 2010). It has been observed , that this relation seems to be shaped like an 

“inverted-U” (Yerkes & Dodson, 1908) with best performance under medium cognitive 

load. Additionally, it seems to be associated with Csikszentmihalyis’ concept of “flow” 

(Csikszentmihalyi, 1975; Kiili et al., 2018), which characterizes a state of total 

concentration on the task at hand and also assumes that  performance usually declines 

when cognitive demands are boring or overstraining(e.g., Anderson, 1994; Cummings & 

Nehme, 2009; Montani et al., 2020; Yerkes & Dodson, 1908). As such, this indicates that 

human-computer interaction might be optimized by keeping its’ operators’ cognitive load 

at a medium level (Orru & Longo, 2019).  

Kohlmorgen et al. (2007) substantiated this consideration by showing that an 

adaptive reduction of cognitive load improved driving performance under real traffic 

conditions. Furthermore, Yuksel et al. (2016) reported on the benefits of adaptively 

increasing task complexity on learning performance in pianists. Moreover, Walter et al. 

(2017) observed significant improvement in learners’ math performance when using an 

electroencephalography (EEG)-based adaptive learning environment. However, it is 

worth noting that although the system used in this experiment did not have to be 

calibrated individually, improvements achieved were comparable to those obtained when 

using traditional error-based adaptation. Taken together, these results indicate that 
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online adaptation to cognitive load is beneficial as well as practicable. Thus, considering 

that cognitive load is a dynamic variable that fluctuates over time during task completion, 

we need a measurement method able to capture cognitive load at the early stages of 

task processing to adapt HCI to it in a timely manner, because the earlier a non-

responsive cognitive state can be detected, the earlier HCI can be adapted accordingly. 

Measurement techniques of cognitive load can be classified into four main 

categories: i) performance-based, ii) subjective, iii) behavioral, and iv) physiological 

measurements (Brünken et al., 2010; Eggemeier et al., 1991; Johannsen, 1979). 

Performance-based measurements rely upon user performance, for example, the rate of 

correct responses while solving a sequence of arithmetic tasks. These measurements 

are hardly applicable in the context of human-computer interaction (HCI), where 

intermediate results can seldom be identified. Subjective measurements are usually 

obtained by (standardized) questionnaires such as SWAT (Reid & Nygren, 1988) and 

NASA-TLX (Hart & Staveland, 1988). These measurements are well validated, easy to 

apply, and highly reliable. Unfortunately, they can primarily be collected after the task 

has already been completed and thus are hardly applicable for online assessment of 

cognitive load when aiming for timely HCI adaptation. Behavioral measurements rely on 

the analyses of differences in operators’ interaction behavior with the system, such as 

mouse usage, click rates, etc. They potentially allow for online evaluation of fluctuations 

in cognitive load. However, behavioral measurements might be influenced by factors 

other than the task at hand such as attentional or motivational processes (Azcarraga & 

Suarez, 2013). Finally, physiological measurements (e.g., measurements of heart rate 

variability and electrodermal activity, electroencephalography (EEG), functional magnetic 

resonance imaging (fMRI), eye-tracking) relate physiological parameters to 

psychological constructs including cognitive load (FakhrHosseini & Jeon, 2019; 

Haapalainen, Kim, Forlizzi, & Dey, 2010; Johannsen, 1979; Liu, Walker, Friedman, 

Arrington, & Solovey, 2020). They seem very promising for the development of adaptive 

systems because they allow for continuous recording of the respective variables and 

thus online adaptation. However, they often require costly equipment and sophisticated 

methods of data analysis. Moreover, some physiological methods are hardly feasible in 

realistic HCI environments (for an overview see e.g., Ninaus et al., 2014) due to their 

immobility (e.g., fMRI) or high noise sensitivity (e.g., EEG).  
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1.2 Eye-Tracking 

One physiological method which is gaining increasing popularity in this regard is 

eye-tracking. In particular the subtle realization of modern video-based eye-tracking 

systems (for an overview see: Hutton, 2019) makes this technique potentially promising 

for the commercial development of user-friendly adaptive HCIs. In this article, we 

focused on fixations, blinks, saccades, microsaccades, and pupil diameter as specific 

indices of participants’ eye-fixation behavior because, as described in more detail below, 

evidence has shown that these features respond to fluctuations in cognitive load.  

 

1.2.1 Fixations. Voluntarily controlled stable gazes lasting from 200 to 300 

milliseconds to up to several seconds are called fixations. During these periods eyes 

stay relatively still, while the person processes information from the fixation area 

(Pouget, 2019). The relation between cognitive load and fixation time seems to depend 

on the task at hand. There is evidence that increased task complexity is associated with 

fewer but longer fixations (for reviews see: Clifton Jr et al., 2016; Rayner, 1998). For 

example, S. Chen et al. (2011) concluded that increased fixation duration and decreased 

fixation rate indicate increased attentional effort on a more demanding task. Similarly, De 

Rivecourt et al. (2008) found that increased task complexity is associated with longer 

fixations on the control instruments during simulated flight. Contrarily, however, Van 

Orden et al. (2001) observed fixation frequency to systematically increase with the visual 

complexity of a target classification task. 

 

1.2.2 Saccades. Eye movements between two fixations that allow for exploration 

of the surroundings and attention control are called saccades. There is evidence that 

saccadic rate and length decrease with task difficulty (Nakayama et al., 2002). 

1.2.3 Microsaccades. If our eyes would stay completely still during fixation, the 

visual image would gradually fade because neural response weakens with constant 

stimulation (Pouget, 2019).  Microsaccades are small unintentional eye movements, 

which cover less than 1° of visual angle and prevent currently viewed visual information 

from fading. Evidence suggests that microsaccadic frequency increases with increasing 

visual complexity of the task at hand (Benedetto et al., 2011), whereas in non-visual 



 

142 
 

tasks microsaccadic rate seems to decrease and microsaccadic magnitude to increase 

with task difficulty (Gao et al., 2015; Siegenthaler et al., 2014). 

 

1.2.4 Blinks. A commonly known function of blinking consists of keeping the 

eyeball moist and protecting it from physical damage. Besides that, in addition to 

microsaccades, blinking is also needed to prevent perceptual fading (Alexander & 

Martinez-Conde, 2019). Moreover, bursts of blinks seem to occur before and after 

periods of intense information processing (Siegle et al., 2008). Additionally, high blink 

rates were found  associated with higher cognitive load (Nakayama et al., 2002). 

 

1.2.5 Pupil dilation. This metric is most commonly considered in cognitive load 

research (for a general overview see: Andreassi, 2013). In states of high cognitive load, 

pupil diameter was repeatedly observed to increase proportionally both in visual and 

non-visual tasks (Fukuda et al., 2005; Klingner et al., 2011).  

 

Taken together, eye-tracking seems a very promising technique well-suitable for 

assessing cognitive load online during HCI. Empirical evidence indicates that the eye-

tracking measures listed above fluctuate dynamically over time (Siegle et al., 2008). 

Hence it might be advantageous to know the exact on- and off-set of each stimulus to be 

able to effectively differentiate between states of low and high cognitive load. While this 

premise is easy to achieve in a controlled laboratory setting,  realistic HCI usually 

consists of a variety of interlocking tasks and stimuli that are impossible to analyze 

separately. Therefore, we chose a specific analytic approach. Instead of analyzing eye-

tracking data for the entire time course of HCI, we focused on the analysis of most 

relevant time periods determined according to an established theoretical approach, 

allowing for better generalizability of these calculations to similar situations. In the 

context of time-critical interactions under severe time restraints, the time-based 

resource-sharing (TBRS) model briefly described below provided a suitable theoretical 

basis for assessing cognitive load.  
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1.3 Time-based resource-sharing model 

The main idea proposed in the TBRS model by Barrouillet et al. (2004) is that, in 

addition to task complexity, cognitive load also strongly depends on available time. This 

is particularly relevant in time-critical situations. The model describes working memory 

as a core system of cognition consisting of two processes indispensable for the 

execution of a cognitive task: information storage and processing. According to the 

model, both components require attention, to switch between subtasks resulting in 

complex and time-critical interactions between them and eventually causing interruptions 

in the processing of subtasks. Based on these assumptions, TBRS predicts that 

cognitive load, and thus performance “depends on the proportion of time during which 

attention is captured in such a way that the storage of information is disturbed” 

(Barrouillet et al., 2004, p. 93). However, the authors acknowledge that it is not trivial to 

determine these time intervals.  

  In a recent study (Sevcenko et al., 2021), we addressed this challenge by 

applying the TBRS model to a serious game requiring time-critical action. Thereby, we 

identified characteristic patterns of player activity based on in-game log data and defined 

a behavioral metric as the ratio of the temporal duration of these patterns (for more 

details see Materials and Methods). Importantly, and observed that the proposed metric 

proved useful to predict participants’ cognitive load. Moreover, because this metric was 

computed during the initial phase of interaction with the simulation it might offer the 

possibility for the potential development of smart HCI systems that can adapt to the 

operators’ cognitive load early on during task execution and not only after task 

completion.  

 

1.4 Present study 

In this article, we present a novel theory-driven approach for targeted 

measurement of cognitive load using eye-tracking. In so doing, we used in-game log 

data interpreted in the light of the TBRS model to identify time periods relevant for 

analysis. We then related specific eye-tracking features acquired during these time 

periods to participants’ performance and subjectively reported cognitive load, as well as 

task difficulty. To induce variance in cognitive load we used a serious game that 



 

144 
 

simulates time-critical emergencies requiring resource-management at different levels of 

difficulty.  

In particular, we aimed at achieving two main goals. First, we considered the eye-

tracking method to validate the theory-based approach suggested in Sevcenko et al. 

(2021). We expected that it should be possible to predict task difficulty, cognitive load, 

and performance based on eye-tracking features collected during predefined time 

intervals using TBRS Model. Second, with the help of eye-tracking data, we aimed at 

better understanding of what cognitive activities take place during specified time periods. 

For reasons of better readability, the detailed description of the analyzed time intervals, 

eye-tracking characteristics, and associated hypotheses are described in the following 

section. 

  



 

145 
 

2 Materials and Methods 

The study was carried out as part of a larger project. Besides eye-tracking 

features described in this paper, it included measurements of behavioral in-game data, 

cardiac activity, galvanic skin response, and cortical hemodynamics, measured by 

functional near-infrared spectroscopy (Appel et al., 2019; Sevcenko et al., 2021).  

 

2.1 Participants 

In the following, we present data of 42 participants (31 females, 11 males) aged 

between 19 and 48 years (M = 24.3; SD = 5.4). Five participants were excluded from the 

analysis due to poor quality of their eye-tracking data. All participants spoke fluent 

German and were right-handed. They were recruited via an online database and 

compensated for their time expenditure. None of the participants reported neurologic, 

psychiatric, or cardiovascular disorders, and none of them were taking psychotropic 

medications. The study was approved by the local ethics committee and written informed 

consent was obtained prior to the experiment. 

 

2.2 Task 

Participants played an adapted version of the serious game (Emergency: 

Promotion Software GmbH, 1999), simulating time-critical emergencies. There were two 

different emergency scenarios with three different levels of difficulty each. During the 

game, participants had to coordinate different emergency personnel, such as emergency 

doctors, paramedics, and firefighters, as well as ambulances, fire- and ladder trucks to 

rescue victims and extinguish fires. 

After familiarizing themselves with the task by playing a learning sequence, all 

participants completed two experimental scenarios: Fire and Train Crash. The learning 

sequence consisted of a short tutorial followed by a car accident scenario where 

participants had to free all victims from the crashed vehicles, provide first aid and then 

arrange their transport to hospital. The time limit for the training scenario was 5 minutes.  
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In the Fire scenario, participants had to extinguish a burning building block, 

rescue some residents from burning houses, provide first aid, and arrange their transport 

to hospital within a time limit of 7.5 minutes. The scenario Train Crash involved a train 

crashing into a building and causing a quick-spreading fire. The scenario required 

participants to free trapped passengers, provide first aid, and arrange their transport to 

hospital, as well as extinguish numerous fires. The time limit for each level of this 

scenario was 10 minutes.  

Each scenario was presented at three difficulty levels: easy, medium, and hard, 

as defined by varying the number of tasks to be performed and the number of personnel 

to be coordinated (see Table 1). We expect that the increasing density actions required 

achieved in this way increased task demands in terms of planning, coordination, and 

prioritization, which should consequently lead to varying levels of cognitive load. Time 

pressure was additionally induced by setting time limits for levels. 

 

2.3 Apparatus and experimental setup 

The experiment was performed in a quiet room under constant light conditions (see Fig 

1). The Emergency serious game was presented on a 16’’ notebook driven at a screen 

resolution rate of 1920 x 1080. A conventional computer mouse was used as the only 

interaction device. Gaze data were recorded at 250 Hz using a SensoMotoric 

Instruments (SMI) RED250 eye tracker in combination with SMI Experiment Center 

3.7.60 software installed on the same notebook. The eye tracker was calibrated using 

SMIs’ integrated 9-point calibration procedure. The seating position of each participant 

was determined individually before the calibration of the eye tracker, without using a chin 

rest. The experiment began with the calibration followed by a baseline phase during 

which participants were asked to sit still and look at a fixation cross for 5 minutes to 

acquire baseline parameters of physiological measures. After that, participants 

completed an introductory learning sequence, followed by the two scenarios with their 

respective levels of difficulty presented in constant order (Fire: easy, medium, hard; 

Train Crash: easy, medium, hard). Subjective ratings of cognitive load experienced 

during the Emergency serious game were obtained intermittently after each level using 

the NASA-TLX questionnaire. The whole experiment lasted about one hour including 

training time.  
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Table 1 Overview over the initial game parameters (Sevcenko et al., 2021). 

 
Scenario / Game Parameters 

 Difficulty 

 easy medium  hard 

Scenario: Fire     
    Time limit (sec) 
    Tasks – total 

 450 
8+ 

450 
13+ 

450 
18+ 

        Victims      2     3     4 
        Fires       4+     7+     10+ 
        Ladder Rescues      2     3     4 
    Resources –total  9 12 15 
        Doctors      1     2     2 
        Paramedics      1     2     2 
        Fire Fighters      4     4     6 
        Fire Trucks      2     3     4 
        Ladder Trucks      1     1     1 
     
Scenario: Train Crash     
    Time limit (sec)  600 600 600 
    Tasks – total  20+ 30+ 40+ 
        Victims      10     15     20 
        Cars to cut      7     10     13 
        Fires       3+     5+     7+ 
    Resources – total  10 14 18 
        Doctors      2     3     4 
        Paramedics      3     5     6 
        Fire Fighters      4     4     6 
        Fire Trucks      1     2     2 

Note: The number of fires depended on players’ performance and might grow. These cases are 
marked by the '+' sign. 

 

2.4 Features 

To estimate cognitive load, we used eye-tracking features known from the 

literature in this regard. These data were recorded during narrow time periods, which 

were calculated based on log data as described below. Hereafter, means of the 

respective eye-tracking measures for the respective time periods were associated with 

the level difficulty of the scenarios as well as participants’ performance and their 

subjective ratings of cognitive load. In the following, we describe in more detail. 

2.4.1 Difficulty and performance. For each level, a difficulty score was defined 

as the percentage of participants, who failed to complete the level within the predefined 
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time limit. Performance was reflected individually for each participant as the binary 

indicator of whether the level was completed successfully or not. 

 

 

Fig. 1 Experimental setup. 

 

2.4.2 Subjective rating of cognitive load. After each level, we asked 

participants to rate their subjectively experienced cognitive load by completing selected 

items of the NASA-TLX questionnaire (Hart & Staveland, 1988). The NASA-TLX consists 

of six items rated on a 21-level scale (0 to 100 points with steps of 5), and its’ 

dimensions correspond to various theories distinguishing between physical, mental, and 

emotional demands imposed on the operator (Hart, 2006). In this study, we considered 

the three items addressing the mental facet of operators’ load (i.e. mental demand, 

temporal demand, and effort) (Haerle et al., 2013; Temple et al., 1997). 

2.4.3 Eye-Tracking features. Eye-tracking features were extracted using SMI 

Experiment Center 3.7.60 software. During preprocessing of pupillometric data, we 

removed all data points where pupil diameter was non-positive, because such artifacts 

typically indicate invalid data. We also did not consider data up to 100 ms immediately 
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before and after each blink, because during these periods the pupil is partially occluded 

by the eyelid or eyelashes and thus cannot be detected reliably (Kret & Sjak-Shie, 2019; 

Mathôt, Fabius, Van Heusden, & Van der Stigchel, 2018).  Finally, we linearly 

interpolated small gaps of up to 50 ms to increase the amount of usable data. The rate of 

microsaccades was computed using the method proposed by Krejtz, Duchowski, 

Niedzielska, Biele, and Krejtz (2018). After preprocessing, we averaged the collected 

data over time, subtracted the respective baseline value, and z-standardized all features. 

When analyzing gaze data, we focused on fixations, blinks, saccades, 

microsaccades, and pupil diameter because, as described above, evidence has shown 

that these features respond to variations in cognitive load. Previous evidence on the 

relationship between cognitive load and fixation rate is not entirely conclusive and seems 

to depend on the task at hand. For visual tasks it seems that the fixation rate increases 

with task difficulty (He et al., 2012; Van Orden et al., 2001), whereas non-visual task 

demands lead to a decrease in fixation rate (S. Chen et al., 2011; De Rivecourt et al., 

2008). The same consideration is true for saccades and microsaccades. There is 

evidence that in non-visual tasks saccadic- and microsaccadic rate decreases with task 

difficulty (Gao et al., 2015; Nakayama et al., 2002; Siegenthaler et al., 2014), whereas 

visual complexity seems to increase saccadic and microsaccadic rates (Benedetto et al., 

2011; He et al., 2012). The Emergency serious game was designed in such a manner 

that along with increasing the required number of actions, increasing levels of difficulty 

required better planning and coordination, which is a strong non-visual component. 

Therefore, we expected fixation frequency and saccadic and microsaccadic rates to 

increase in response to visual load and to decrease in response to non-visual cognitive 

load. Based on previous evidence we also expected pupil dilation (Fukuda et al., 2005; 

He et al., 2012; Klingner et al., 2011) and blinking rate (Nakayama et al., 2002; Siegle et 

al., 2008) to increase with increased difficulty.  

 

2.4.4 Analyzed time periods. Eye-tracking features were collected during time 

periods related to the initial temporal action density decay (initial TADD) metric, which 

was proposed to predict cognitive load in time-critical situations where resources must 

be managed and tasks prioritized. According to this approach, such situations can be 

divided into a series of so-called action blocks consisting of active phases (burst), in 

which resources are managed, and waiting phases (idle), in which all resources are 
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occupied or unavailable and one must wait until a new task appears or a resource 

becomes available again (for a detailed example see Fig 2). In a recent study, the ratio 

of the length of the first detected burst (initial burst) to the length of the first action block 

(initial action block: occurred right at the beginning of each level), was shown to 

significantly predict performance (Sevcenko et al., 2021). In fact, it turned out that 

participants, who completed their tasks faster and therefore had to wait longer at the 

beginning of the level, were also significantly more likely to successfully complete the 

respective level. Thus, knowledge about participants’ timing appears to be important for 

performance predictions, although this metric tells us nothing about cognitive processes 

actually occurring during this time. 

In the present article, we determined initial burst and initial idle periods based on 

logged in-game activities for each participant. During the burst period, participants 

managed their emergency personnel, and after the last available personnel was 

assigned to a task, the idle interval started and lasted until the first personnel finished 

their tasks and were available again (for a detailed example see Fig 2). While 

participants’ cognitive engagement during the initial burst can be estimated based on 

logged in-game actions, this method cannot be used for the initial idle period, because 

no actions are performed during this time. It is conceivable that some participants might 

use the initial idle for relaxation, which would be reflected in decreased cognitive load, 

whereas others might use this time for planning and visual screening of the scenery, 

which we expect to lead to an increased level of cognitive load as compared to the first 

group.  

Based on these considerations, we expected that participants, who stay more 

active during the initial idle phase, will perform better and to be more likely to complete 

the level successfully. Regarding the initial burst phase, we expected all participants to 

work at their limit, that is, to have maximum cognitive load. For this reason, we did not 

expect any relationship between eye tracking data during the initial burst phase with task 

difficulty as well as their subjective assessment of cognitive load and their performance.  
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Fig. 2 Analyzed time periods using the Fire scenario as an example. Inactive task forces are 
marked with black circles, active - with green 

A: At the beginning of the game level, all emergency personnel are ready and inactive. 

B: The initial burst begins with the first task the player assigns and lasts until all available 
personnel are actively engaged. In this example, the emergency doctor and paramedics are not 
available for assignment because there are no injured people to be treated. 

C: The initial burst ends as soon as the last available personnel are assigned, emergency doctor 
and paramedics cannot yet be assigned. This time also marks the beginning of the initial idle, in 
which the player must wait until some personnel become available again or until new tasks 
occur. In this example, all available personnel are already active and the player must wait until 
the person is rescued from the burning building, only then he can be treated by the doctor. 

D: The initial idle ends when the first personnel are available again. In this example, the initial 

idle phase ends as soon as the rescued person appears lying on the road. At this moment, an 

emergency doctor becomes free and can be assigned to treat the patient; at the same time, the 

ladder truck also becomes free again and can be assigned to rescue the next person. 
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2.5 Statistical Analysis 

We employed linear mixed-effect analyses using statistical software R 

(R Core Team, 2020) with the lme4 package (Bates et al., 2014). The p-values were 

obtained by likelihood ratio tests of the full model tested against a reduced model. 

Further model analyses were applied in case of a significant result, using the report 

package of D Makowski et al. (2020). Standardized parameters were obtained by fitting 

a model on a standardized version of the dataset. 
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3 Results 

In this section, we present in detail associations between gaze data collected 

during initial burst, and initial idle time periods and (1) level difficulty, (2) participants’ 

performance, (3) and subjective estimation of cognitive load. To ensure better readability 

and not overwhelm our readers with the vast amount of statistics, we have decided to 

only report significant results in detail. 

 

3.1 Level Difficulty 

First, we aimed at investigating whether level difficulty affected eye-tracing 

features during the initial burst and initial idle time periods. Therefore, we fitted linear 

mixed models for each combination of gaze features and time periods to predict gaze 

data. We considered difficulty as a fixed effect and added random intercepts for subjects.  

 

3.1.1 Initial burst. During the initial burst period we found significantly negative 

association between level difficulty and fixation frequency (χ²(1) = 7.26, p = .007, beta = -

0.20, 95% CI [-0.35, -0.06], t(247) = -2.72, p < .01; std. beta = -0.05, 95% CI [-0.09, -

0.01]) and saccadic rate  (χ²(1) = 3.92, p = .048, beta = -0.15, 95% CI [-0.29, -2.18e-03], 

t(247) = -1.99, p < .05; std. beta = -0.04, 95% CI -0.08, -6.16e-04]), whereas effect on 

pupil diameter positive (χ²(1) = 13.30, p < .001, beta = 0.17, 95% CI [0.08, 0.26], t(247) = 

3.71, p < .001; std. beta = 0.05, 95% CI [0.02, 0.08]). That is, during initial burst phase 

more challenging levels were significantly associated with fewer fixations and saccades 

as well as increased pupil diameter see Fig 3. 

 

3.1.2 Initial idle. We found no significant association between gaze features and 

difficulty for any feature within the initial idle phase.  
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3.2 Performance 

We fitted linear mixed-effect models for each combination of gaze features and 

time periods on the relationship between performance and gaze data. We added random 

intercepts for participants and considered performance as a fixed effect. We also 

considered the scenario as a fixed effect because we were interested in whether 

performance induces an effect in addition to the scenario. 

 

 

Fig. 3 Significant associations between level difficulty and eye-tracking features. Error bars 

depict +/- standard error. 

 

3.2.1 Initial burst. During the burst phase we found a significantly negative effect 

of scenario on fixation frequency (χ²(1) = 25.53, p < .001, beta = -0.19, 95% CI [-0.27, -

0.12], t(247) = -5.03, p < .001; std. beta = -0.19, 95% CI [-0.26, -0.12]). The same effect 

was found regarding saccades (χ²(1) = 17.74, p < .001, beta = -0.16, 95% CI [-0.23, -

0.08], t(247) = -4.11, p < .001; std. beta = -0.16, 95% CI [-0.24, -0.09]). Whereas the 
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effect on pupil diameter was positive (χ²(1) = 31.25, p < .001, beta = 0.14, 95% CI [0.09, 

0.19], t(247) = 5.75, p < .01; std. beta = 0.15, 95% CI [0.10, 0.21]). That is, while playing 

more challenging Train Crash scenario participants did significantly less fixations and 

saccades, while their pupil diameter was significantly increased compared to Fire 

scenario. 

However, associations between gaze data and performance showed opposite, we 

found positive effect on fixations (χ²(1) = 25.53, p < .001, beta = 0.09, 95% CI [2.19e-03, 

0.17], t(247) = 2.01, p < .05; std. beta = 0.09, 95% CI [2.14e-03, 0.17]), saccades (χ²(1) 

= 4.34, p = .03, beta = 0.09, 95% CI [5.89e-03, 0.18], t(247) = 2.09, p < .05; std. beta = 

0.10, 95% CI [6.11e-03, 0.19]) and microsaccades (χ²(1) = 6.22, p = .012, beta = 0.012, 

95% CI [0.03, 0.22], t(247) = 2.51, p < .05; std. beta = 0.13, 95% CI [0.03, 0.23]), along 

with negative effect on blinks (χ²(1) = 5.47, p = .019, beta = -0.10, 95% CI [-0.19, -0.02], 

t(247) = -2.35, p < .05; std. beta = -0.10, 95% CI [-0.19, -0.02]), meaning that participants 

who successfully completed the level showed significantly more fixations, saccades and 

microsaccades, but blinked significantly less often during the initial burst phase 

compared to unsuccessful participants (see Fig 4). 

We found a significant positive effect of performance on fixation frequency (χ²(1) = 

29.53, p < .001, beta = 0.09, 95% CI [2.19e-03, 0.17], t(247) = 2.01, p < .05; std. beta = 

0.09, 95% CI [2.14e-03, 0.17]), saccades (χ²(1) = 4.34, p = .037, beta = 0.09, 95% CI 

[5.89e-03, 0.18], t(247) = 2.09, p < .05; std. beta = 0.10, 95% CI [6.11e-03, 0.19]), and 

microsaccades (χ²(1) = 6.22, p = .013, beta = 0.12, 95% CI [0.03, 0.22], t(247) = 2.51, p 

< .05; std. beta = 0.13, 95% CI [0.03, 0.23]), meaning that participants who failed the 

level also exhibited less fixations, saccades and microsaccades during the initial burst 

phase. In contrast, the effect on blinks was significantly negative, meaning that more 

successful participants blinked less during initial burst phase (χ²(1) = 5.47, p = .019, beta 

= -0.10, 95% CI [-0.19, -0.02], t(247) = -2.35, p < .05; std. beta = -0.10, 95% CI [-0.19, -

0.02]).  
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Fig. 4 Associations between gaze features, scenario, and performance. ‘***’ = significance at 

0.001 level; ‘**’ = significance at the .01 level; ‘*’ = is significance at.05 level. Error bars depict +/- 

standard error. 
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3.2.2 Initial idle. During initial idle only pupil diameter differed significantly 

between scenarios, whereas more challenging Train Crash scenario was associated with 

increased pupil diameter (χ²(1) = 4.57, p = .032, beta = 0.14, 95% CI [0.01, 0.27], t(247) 

= 2.17, p < .05; std. beta = 0.14, 95% CI [0.01, 0.28]). In contrast, performance was 

significantly positively associated with fixation frequency (χ²(1) = 8.04, p = .005, beta = 

0.27, 95% CI [0.09, 0.46], t(247) = 2.87, p < .01; std. beta = 0.27, 95% CI [0.09, 0.45]), 

saccadic (χ²(1) = 14.12, p < .001, beta = 0.32, 95% CI [0.16, 0.49], t(247) = 3.82, 

p < .001; std. beta = 0.33, 95% CI [0.16, 0.50]), and microsaccadic rates (χ²(1) = 14.79, 

p = .001, beta = 0.37, 95% CI [0.18, 0.55], t(247) = 3.92, p < .001; std. beta = 0.37, 95% 

CI [0.19, 0.56]), meaning that participants who succeed the level showed significantly 

more fixations, saccades and microsaccades than participants who failed. 

 

3.3 Subjective assessment of cognitive load 

To investigate whether eye-tracking features are influenced by subjectively 

reported cognitive load we fitted linear mixed-effect models for each combination of the 

inspected NASA-TLX items and gaze features on the relationship between subjective 

cognitive load and gaze data which resulted in 15 models for each time period. We 

included random intercepts for participants, whereas scenario was considered a fixed 

factor.  

For all considered NASA-TLX items we found a significant difference between 

scenarios, whereas the Train Crash scenario was perceived as more demanding than 

scenario Fire regarding mental demand, time demand and effort (mental demand: χ²(1) = 

19.19, p < .001, beta = 6.39, 95% CI [3.60, 9.18], t(247) = 4.48, p < .001; std. beta = 

0.28, 95% CI [0.16, 0.41]; time demand: χ²(1) = 7.84, p = .005, beta = 7.66, 95% CI 

[2.35, 12.97], t(247) = 2.83, p < .01; std. beta = 0.28, 95% CI [0.08, 0.47]; effort: χ²(1) = 

15.63, p < .001, beta = 7.58, 95% CI [3.89, 11.27], t(247) = 4.03, p < .001; std. beta = 

0.32, 95% CI [0.16, 0.47]).  

 

3.3.1 Initial burst. Furthermore, in addition to the effect of scenario during the 

initial burst period we found a significant negative effect of microsaccades on all three 

items: mental demand (χ²(1) = 19.19, p < .001, beta = -4.27, 95% CI [-7.96, -0.59], t(247) 
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= -2.27, p < .05; std. beta = -0.18, 95% CI [-0.33, -0.02]), time demand (χ²(1) = 7.84, p = 

.005, beta = -5.17, 95% CI [-10.32, -0.03], t(247) = -1.97, p < .05; std. beta = -0.18, 95% 

CI [-0.35, -9.74e-04]), and effort (χ²(1) = 15.63, p < .001, beta = -6.71, 95% CI [-11.03, -

2.40], t(247) = -3.05, p < .01; std. beta = -0.27, 95% CI [-0.44, -0.09]). That is, participant 

who reported to be more challenged in terms of mental demand, time demand and effort 

exhibited significantly less microsaccades than participants who rated their cognitive 

load lower. 

 

3.3.2 Initial idle. Moreover we found significant negative effect of microsaccades 

on time demand (χ²(1) = 7.84, p = .005, beta = -5.27, 95% CI [-8.96, -1.57], t(247) = -

2.79, p < .01; std. beta = -0.19, 95% CI [-0.32, -0.06]) and effort (χ²(1) = 15.63, p < .001, 

beta = -4.70, 95% CI [-7.43, -1.98], t(247) = -3.38, p < .001; std. beta = -0.19, 95% CI [-

0.31, -0.08]). That is, participants who reported to be more challenged regarding time 

demand and effort did significantly less microsaccades during initial idle phase 

compared to less challenged participants. We found no significant effect regarding 

mental demand. 

 

3.4 Additional Analyses 

We hypothesized that more successful players should experience lower cognitive 

load, which should be reflected in their eye-tracking features - in particular, in lower 

ratings of subjective cognitive load among more successful participants. To evaluate this 

assumption, we fitted three linear mixed-effect models for each of the investigated 

NASA-TLX items to predict subjective ratings of cognitive load from performance. We 

included scenario and performance as fixed factors and participants as random 

intercepts in the models.  

For all NASA-TLX items we found significantly positive association with scenario 

and significantly negative association with performance along with non-significant 

interaction effect (effect of scenario on mental demand: χ²(1) = 19.19, p < .001, beta = 

5.37, 95% CI [2.91, 7.82], t(247) = 4.29, p < .001; std. beta = 0.24, 95% CI [0.13, 0.35]; 

effect of performance on mental demand: χ²(1) = 58.26, p < .001, beta = -11.71, 95% CI 

[-14.52, -8.89], t(247) = -8.16, p < .001; std. beta = -0.52, 95% CI [-0.64, -0.39]; effect of 
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scenario on time demand: χ²(1) = 7.84, p = .005, beta = 5.15, 95% CI [0.99, 9.32], t(247) 

= 2.42, p < .05; std. beta = 0.19, 95% CI [0.04, 0.34]; effect of performance on time 

demand: χ²(1) = 11.60, p < .001, beta = -28.71, 95% CI [-33.42, -24.00], t(247) = -11.96, 

p < .001; std. beta = -1.04, 95% CI [-1.21, -0.87]; effect of scenario on effort: χ²(1) = 

15.63, p < .001, beta = 5.96, 95% CI [2.94, 8.98], t(247) = 3.87, p < .001; std. beta = 

0.25, 95% CI [0.12, 0.38]; effect of performance on effort: χ²(1) = 90.52, p < .001, beta = 

-18.52, 95% CI [-21.97, -15.08], t(247) = -10.54, p < .001; std. beta = -0.78, 95% CI [-

0.92, -0.63]). That is, subjective ratings of cognitive load were higher in a more 

challenging Train Crash scenario, and at the same time more successful players 

reported lower cognitive load.  
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4 Discussion 

In this article, we presented a novel theory-driven approach to targeted eye-

tracking based measurement of cognitive load in HCI. Our first goal was to investigate 

whether participants’ cognitive load during a time-critical Emergency serious game can 

be estimated reliably based on gaze features collected at the beginning of a game 

session within initial burst and initial idle time periods. As a second goal, we aimed at 

deepening our understanding of what cognitive processes occur during initial burst and 

idle phases. To identify these time periods we used behavioral log data interpreted in the 

light of the TBRS model (Barrouillet et al., 2004) in line with a recent approach by 

Sevcenko et al. (2021).  

In the following we will first describe in detail how the presented approach can be 

used for prediction of task difficulty, operators’ performance, and subjectively perceived 

cognitive load, then we proceed to discuss which cognitive processes seem to happen 

during the initial idle phase and demonstrate correctness of the level construction of the 

used serious game. After that we present strengths and limitations of the study and 

briefly outline a possible direction of future research, followed by a general conclusion.  

 

4.1 Difficulty, performance and cognitive load prediction 

In general, the results of the present study substantiated our hypothesis that 

cognitive load might be predicted using eye-tracking features collected during time 

intervals related to initial TADD metric was confirmed. Indeed, we found significant 

associations between gaze features during the indicated time periods and difficulty, 

performance, and cognitive load, although some of these associations were unexpected. 

In line with our expectations, we found significant associations between performance 

and eye-tracking features during initial idle: successful participants did significantly more 

fixations, saccades, and microsaccades during this time period as compared to 

participants who failed the level. Additionally, we found a significant negative association 

between microsaccadic rates and subjective ratings of cognitive load for both initial burst 

and initial idle time periods. Other investigated gaze features showed no significant 

associations in this regard.  
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Contrary to our expectations, we found strong associations between eye-tracking 

features, difficulty, and performance when considering the initial burst time period. 

Because we assumed that all participants would play at their cognitive limit during the 

initial burst phase, we expected no effects during this time. Although gaze features were 

associated with task difficulty in the expected way, the observed association with 

performance was in the opposite direction. For instance, we observed that participants 

performed significantly fewer fixations during the more challenging levels, but this 

association was significantly less pronounced in more successful participants. The same 

pattern was also evident for other gaze features. Importantly, this finding seems sensible 

and might indicate that more successful players experienced lower cognitive load, which 

is reflected in their eye-tracking features. To test this assumption we conducted 

additional analyses (see Section 3.4 Additional Analyses) which showed exactly the 

same pattern of subjectively reported cognitive load ratings and thus further supported 

this account. As such, contrary to our expectations, the initial burst might be well suited 

to determine task difficulty and to-be-expected performance. One possible explanation 

for this finding is that time pressure, induced by the Emergency serious game, was not 

high enough to make all participants work on their cognitive limits. In this case, initial 

burst might be well suitable for measuring cognitive load in situations with low to medium 

time pressure, while for measuring cognitive load under high time pressure other options 

need to be identified. This hypothesis requires further investigation. 

          Taken together, our results support the idea that cognitive load and performance 

during HCI can be captured successfully based on gaze data collected during relatively 

narrow timeframes with the latter being inferred by a theory-driven approach and thus 

allowing for better generalizability to similar settings. 

 

4.2 Cognitive processes during initial idle  

Our second goal was to better understand what cognitive processes occur during 

initial idle, because no loggable in-game actions happen during this period. As expected, 

we found that successful participants performed significantly more fixations, saccades, 

and microsaccades during this time as compared to participants who failed the level. 

Based on this finding and previous evidence it seems that more successful participants 
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tend to use the initial idle time for more intensive visual exploration and monitoring of the 

game scene (Benedetto et al., 2011; He et al., 2012; Van Orden et al., 2001). 

 

4.3 Manipulation Check 

Last but not least, it is worth noting that our results substantiated that difficulty 

levels of the Emergency serious game were well constructed and effectively induced 

different levels of cognitive load. As expected, participants reported the Train Crash 

scenario to be cognitively more demanding than the Fire scenario. Likewise, the difficulty 

score which was calculated for each game level representing the percentage of 

participants who failed a level indicated that level difficulty increased as expected during 

the respective scenarios. Furthermore, we found significant negative associations 

between difficulty level and fixation as well as saccadic frequency, suggesting that game 

levels differed in non-visual cognitive demand components such as strategic planning (S. 

Chen et al., 2011; De Rivecourt et al., 2008; Nakayama et al., 2002). 

 

 4.4 Strengths and Limitations 

Analytical approaches to HCIs are often based on data-driven probabilistic 

performance evaluations (Magerko et al., 2006; Spronck et al., 2006; Zook & Riedl, 

2012), which sometimes seem insufficient for estimating operators’ cognitive and 

emotional states. In such cases, (neuro-)physiological methods (for review 

see:Kivikangas et al., 2011) seem advantageous, although often relatively complex to 

acquire and evaluate. Another peculiarity of physiological methods is that most of them 

require physical contact with the operator and therefore can hardly be used for online 

commercial developments. Based on these considerations, we employed the eye-

tracking method in this study, because modern video-based eye-tracking systems may 

not require  physical contact and thus can be used in a very subtle way (for an overview 

see: Hutton, 2019). 

Nevertheless, we think that the main strength of our approach is represented by 

our theoretically informed top-down development relying on an appropriate theoretical 

framework. In this way, we hope to foster generalizability of this method to similar 

situations, which might be less feasible in pure data-driven approaches. For this 
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purpose, we used the TBRS model (Barrouillet et al., 2004), which specifically 

emphasizes the role of time pressure in inducing cognitive load and therefore seems 

particularly suitable for predicting cognitive load during time-critical HCI. Moreover, the 

proposed method allows for early prediction of operator performance and can therefore 

be used for the development of interactive adaptive HCIs. 

However, our approach is not free of limitations. First, the proposed method 

applies only to a relatively narrow family of situations or tasks with certain 

characteristics. Further research is needed to determine whether this approach can be 

applied or easily adapted to other contexts, e.g., interactions without time pressure. 

Second, as mentioned above, it is not clear whether different degrees of time pressure 

during HCI must be considered when using this method. Third, the recording frequency 

of the eye-tracker used for the study was 250 Hz, which might represent a technical 

limitation for instance by detecting microsaccades. 

 

4.5 Conclusion 

In this paper, we presented a novel theory-driven approach considering specific 

eye-tracking features to predict cognitive load during time-critical resource-managing 

situations in combination with TBRS theory. Eye-tracking data was collected during 

relatively narrow time windows at the beginning of the interaction with the simulation 

serious game and thus can be potentially used for real-time adaptation of human-

computer interactions. Moreover, the detection of the time periods was based on log 

data and can be easily run in the background. Obtained results supported the proposed 

approach; eye-tracking features collected during the initial burst appeared to be well 

suited to predict performance and task difficulty. Fixations frequency, saccadic rate, and 

pupil diameter seem to be well suited to predict task difficulty during the initial burst 

phase. Fixation rate was the best indicator to predict performance during the initial burst. 

If an estimate of subjectively perceived cognitive load is required, the microsaccadic rate 

recorded during the initial action block might be a good option. These results illustrate 

how theoretic knowledge about the task structure may be used advantageously for the 

assessment of cognitive load. Although requiring further investigation in terms of 

reliability and generalizability, the presented approach seems promising for measuring 
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cognitive load in realistic time-critical HCI, considering adaptation to operators’ mental 

needs. 
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5 General Discussion 

5.1 Summary and discussion of general findings 

Recent developments continue to move towards increasing complexity in HMIs, 

making the operators’ task more complex due to the increasing number of available 

options and actions (Stapel et al., 2019). In this context, determining the operators’ 

cognitive load seems crucial for the timely prediction of an emerging performance 

breakdown, whereby such information might be useful for a timely adaptation of the HMI 

interface with the aim of keeping the operator within the optimal activation range, thus 

achieving the best possible performance. Keeping operators’ performance at an optimal 

level becomes especially important in time-critical situations, imposing time pressure. 

The main objective of this dissertation was to provide a contribution to the development 

of adaptive HMI systems for real-world applications capable of recognizing and adapting 

to the operators’ cognitive need. Accordingly, a novel method for measuring cognitive 

load in situations involving resource management under time pressure was elaborated, 

presented, and evaluated in the process. Thereby, the following requirements were set: 

(1) to obtain a method that might be easily generalizable to similar situations, it should 

be based on an appropriate theoretical framework; (2) to be adequate for use in adaptive 

HMI systems, it should be able to track variations in cognitive load over time while not 

impairing performance in the main task; (3) and finally, to be suitable for real-world and 

commercial developments, the measurement techniques used in the method should be 

as discrete and unobtrusive as possible, with the computational algorithms being as 

simple to execute as possible to enable its usage in rather small devices with low 

computing power.  

In a sequence of three studies, the established theoretical model of WM was 

applied to a realistic HMI setting, represented by a serious game. In the first study, three 

variations of the TADD metric were derived from the TBRS model of Barrouillet et al. 

(2004) and evaluated using behavioral data. The second and the third studies aimed to 

further evaluate and investigate the concept with (neuro-) physiological measurement 

methods. In the following, the aforementioned findings are discussed in more detail. 

 

It is worth noting that the first study demonstrated the validity of the level 

construction of the customized version of the Emergency (Promotion Software GmbH, 



 

177 
 

1999) serious game. This version of the game was used throughout the project to induce 

different levels of cognitive load in participants; therefore, a valid level construction was 

an important prerequisite for all further analyses. Although all of the three behavioral 

metrics proposed in the first study (i.e. initial TADD, mean TADD, and normalized 

gaming time) were found to be significantly associated with cognitive load, the initial 

TADD metric appeared to be the most promising for use in adaptive scenarios given that 

it was calculated very early in the course of the level and thus qualified for near-real-time 

adaptation. The validity of the metric was supported in statistical analyses, particularly 

when used under severe time constraints. This was interpreted as a possible indication 

of an existing floor effect, indicating that this metric may be best suitable in situations 

eliciting phases of maximum cognitive load. Another important result was that the 

beginning of the entire interaction appeared crucial for the final outcome. This finding is 

consistent with empirical evidence, suggesting that better planning in early stages of 

various tasks is associated with better performance (Capon, Farley, & Hulbert, 1994; Liu, 

Walker, Friedman, Arrington, & Solovey, 2020; Saddler, Moran, Graham, & Harris, 2004) 

and thus might represent a valid global phenomenon in different contexts. At the same 

time, the question arises whether this structure is typical for situations involving resource 

management under time pressure and, if not, how deviations from this structural pattern 

should be dealt with when applying the proposed method.  

The second study (see Table 2) further supported this finding by demonstrating 

that cortical hemodynamics assessed by fNIRS during the first minutes of the interaction 

were more informative in detecting cognitive load than during later time periods. This 

result supports the idea that a theoretical knowledge of task structure and an appropriate 

model of the cognitive activities ongoing during the task processing might be used 

advantageously to identify cognitive load, whereas focusing on specific theoretically-

derived time intervals might be superior to averaging over random time slots, which 

carries the risk of overlooking existing difference features. Furthermore, against 

expectations, it was found that hemodynamic activation during the initial burst phase was 

significantly associated with the difficulty level. This result was crucial because the 

important assumption made in the definition of the initial TADD metric was that all 

participants would be working at their cognitive limits during the initial burst and thus no 

association between cognitive load and difficulty or the final performance was expected. 

At the same time, this finding might help to understand why the initial TADD metric 

showed better predictive power when applied under stronger time pressure, as it 
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emerged in the first study. Differences observed in cognitive load during the initial burst 

suggested that the induced time pressure was not sufficient to force all participants to 

their limits, thus confirming the aforementioned hypothesis of existing floor effect. Finally, 

it was demonstrated that participants who showed stronger hemodynamic cortical 

activation within the initial idle phase perceived less cognitive load at the end of the level, 

which might indicate that more successful players tended to use this time for active 

monitoring and planning (P. Hancock, 1989), whereas more challenged participants 

might use this time to relax (Nihashi et al., 2019). 

 

Table 2. Graphical summary of significant effects obtained in study 2. 

   NASA-TLX 

 level  

difficulty 

perfor- 

mance 

mental 

demand 

time 

demand  

effort 

 

initial burst 

     

    DLPFC-left +     

    DLPFC-right + -  +  

 

initial idle (t0-t20) 

     

    DLPFC-left   - - - 

    DLPFC-right     - 

 

t20-t40 

     

    DLPFC-left      

    DLPFC-right -  -   

 

t40-t60 

     

    DLPFC-left      

    DLPFC-right      

Note: Significant results are marked with green ‘+’ for positive and red ‘-’ for negative effects. 

Level difficulty: percentage of participants who did not complete the level. Performance (related 

to participant): binary indicator of whether the level was completed successfully or not. 

 

The results from the third study (see Table 3) were largely consistent with 

previous findings. Eye-tracking features acquired during the initial burst phase were 

significantly associated with the level difficulty, whereas it was found that more 

successful participants tended to use the initial idle period for more active visual 
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exploration compared to participants who failed the level. Fixations frequency, saccadic 

rate, and pupil diameter appeared to be well suited to predict task difficulty during the 

initial burst phase. Fixation rate was the best indicator to predict performance during the 

initial burst. If an estimate of subjectively perceived cognitive load is required, the 

microsaccadic rate recorded during the initial action block might be a good option. 

 

Table 3. Graphical summary of significant effects obtained in study 3. 

   NASA-TLX 

 level  

difficulty 

perfor-

mance 

mental 

demand 

time 

demand  

effort 

 

initial burst 

     

    fixations - +    

    blinks  -    

    saccades - +    

    pupil diameter +     

    microsaccades  + - - - 

 

initial idle  

     

    fixations  +    

    blinks      

    saccades  +    

    pupil diameter      

    microsaccades  +  - - 

Note: Significant results are marked with green ‘+’ for positive and red ‘-’ for negative effects. 

Level difficulty: percentage of participants who did not complete the level. Performance (related 

to participant): binary indicator of whether the level was completed successfully or not. 

 

Altogether the three studies of this dissertation have indicated that the TBRS 

model can be used for assessing cognitive load in a realistic setting with inherent time 

pressure (as proposed in Section 1.4). The three studies have provided first empirical 

evidence of the value of the presented approach and opened a new perspective for the 

development of theory-based metrics for measuring cognitive load in time pressure 

situations. In particular, three main outcomes can be emphasized. First, in the course of 

the realistic time-critical interaction simulated by the Emergency serious game, a 

predicted occurrence of periods of high and low activity (burst and idle) was detected. 

Second, the relation of these time periods (TADD) was significantly associated with level 
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difficulty, performance, and subjective cognitive load (NASA-TLX). Third, fNIRS and eye-

tracking data collected during the initial burst and initial idle periods were significantly 

associated with level difficulty, performance, and subjective cognitive load (NASA-TLX). 

Fourth, the initial TADD metric appears to be better suited for use in high-pressure 

scenarios, whereas fNIRS and eye-tracking data collected during the initial burst may be 

best applicable in more relaxed situations. 

To provide the full picture of the project, Table 4 represents an overview of all 

metrics and characteristics analyzed over the course of the three studies. Depending on 

the complexity of the scenario and the resulting time pressure, different results were 

obtained regarding the initial TADD metric. Although other features were not tested 

separately for different scenarios, this suggests that different measures and features 

may be more appropriate under different time pressure conditions, which should be 

explored in future studies. For this reason, although this distinction is only relevant for 

the initial TADD metric, the lower horizontal header of Table 4 distinguishes between 

different time pressure conditions, with the Crash train representing a high time pressure 

scenario and Fire representing a low time pressure scenario. The vertical header is 

divided into three measurement methods used in the project: Behavioral analysis, fNIRS, 

and eye-tracking. For each method, the associated time intervals used for the calculation 

of the respective features/metrics are listed in the right part of the vertical header. All 

presented metrics were collected at the beginning of each level during three time 

periods: initial burst (approx. the first 40 sec), initial idle (approx. the following 10 sec), 

and initial action block (consisting of initial burst and initial idle together, approx. the first 

50 sec). Finally, the body of Table 4 presents significant associations between the 

analyzed metrics/features and the difficulty of each level within the scenario, the 

performance (whether or not the level was successfully completed), and the subjective 

estimation of cognitive load (NASA-TLX) after completion of the respective level. The 

significance level is indicated by different fonts. 

 

Table 4. Summary of three studies of the dissertation with preliminary suggestions of 

which measurement features might be better suitable for which situation. 
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Note: The significance level is marked as follows. 0.5: italic, 0.1: standard, 0.001: bold; 
‘+’: indicates positive association, ‘-‘: indicates negative association; ‘x’: indicates 
associations that have not been tested; CL: cognitive load. 

 

According to the discriminant analyses with Leave-One-Subject-Out Cross-

Validation, the initial TADD metric demonstrated a 64.53% accuracy in predicting 

performance in the more complex Train Crash scenario, where the models’ outcome was 

significantly above the score of the random model and at the same time did not 

significantly differ from the prediction based on NASA-TLX scores (for this reason an 

additional model was build based on NASA-TLX scores). At the same time, this pattern 

was not found for less complex Fire scenario, where the prediction of performance 

based on the initial TADD did not significantly differ from models predicting randomly 

permuted outcomes. This result indicates that the assumption that all participants would 

play at their maximum speed and thus achieve the same level of cognitive load 

regardless of the level of difficulty and performance might be incorrect. It is possible that 

participants acted more relaxed in the less time pressure Fire scenario because they 

could afford to win the level even if they were not working at their maximum speed, 

which affected the predictive power of the initial TADD metric. The results of the second 
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and third studies support this suspicion, showing correlations between level difficulty and 

cortical activation and eye-tracking features, thus suggesting that participants were not 

working at their cognitive limits at this time. At the same time, increased cognitive 

activation during this time as assessed by fNIRS and eye-tracking features was 

associated with decreased performance. This suggests that acting too fast may also be 

counterproductive, causing subjects to seemingly overload their cognitive resources, 

leading to deterioration in performance. Another important piece of information, which 

can be seen in Table 4, is that eye-tracking features showed stronger associations with 

level difficulty, performance, and subjective cognitive load than fNIRS features, while at 

the same time showing the same pattern as the fNIRS associations, suggesting that eye-

tracking could be used in place of fNIRS in further studies. 

To summarize all information presented in Table 4 and the last section. The 

results of this dissertation indicate that (1) the initial TADD metric might be better suited 

for more complex scenarios, inducing more time pressure, which should be investigated 

in future studies; (2) Eye-tracking features during initial burst and initial idle periods might 

be better used to access cognitive load in less demanding scenarios, although also this 

assumption needs detailed investigation in the future; (3) fixation count, saccadic and 

microsaccadic rates and pupil diameter showed stronger associations with level 

difficulty, performance, and subjective cognitive load (NASA-TLX) compared to blink 

count and should therefore be preferred in further investigations; (4) FNIRS 

measurements might be replaced by eye-tracking measurements because eye-tracking 

features showed stronger associations with level difficulty, performance, and subjective 

cognitive load while maintaining the same pattern; (5) Adaptive systems based on the 

proposed metrics/features could prevent performance degradation by detecting user 

actions that are too fast and prompting them to slow down. In the next section, the value 

and scientific contribution of the proposed approach will be discussed (Section 5.2), 

followed by the strength and limitations (Section 5.3) as well as implications for future 

research (Section 5.4). 

 

5.2 Scientific contribution 

As described earlier (Sections 1.1, 1.2), interaction systems that are able to adapt 

to the cognitive load are increasingly becoming the focus of modern research and seem 

very promising in terms of optimizing performance in a variety of realistic contexts. At the 
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same time, adaptation to cognitive load appears to be quite feasible, although a reliable 

measure for online and near-real-time assessment of cognitive load remains under 

development. Furthermore, it is apparent that although a variety of measurement 

methods can be used to assess cognitive load, they all have their strengths and 

limitations and the perfect single measurement method does not exist. Considering this, 

multimodal approaches, especially the combination of behavioral and (neuro-) 

physiological measurements, seem to be a potentially good solution for online and near-

real-time assessment of cognitive load in adaptive systems. The research area is still 

very nascent and no common theoretical framework has been established yet, whereas 

most attempts in this regard are often based on data-driven probabilistic performance 

evaluations, which often require user- and situation-specific calibration and cannot be 

easily transferred to other contexts.  

Mostly research on the assessment of cognitive load concentrates on 

investigating certain measures that are known to be associated with cognitive load from 

the empirical evidence (e.g., eye-tracking features such as pupil diameter of blink count) 

and relating them to performance/self-reported rating or applying machine learning 

classifications for different levels of cognitive load. Typically, no attempt is made to 

analyze acquired measures in the light of an established theoretical approach, although 

such an attempt might be useful in providing a general foundation for developing new 

metrics and making it easier to generalize the developed approaches to similar settings.  

Such an attempt was made by Sweller (1988), who developed a computational 

model of WM using PRISM language (Langley & Neches, 1981). Based on this model, 

the cognitive load during the processing of a given task could be estimated based on 

task characteristics. However, this approach did not include individual and immediate 

feedback from learner and might therefore be suitable for preparing instructional material 

for the classroom, but did not qualify for online assessment of cognitive load. Five years 

later, Paas and Van Merriënboer (1993) presented a combined measurement method for 

assessing the efficiency of instructional material. According to the “efficiency view” 

(Ahern & Beatty, 1979), the learner is more efficient if his performance is higher than 

could be expected from his cognitive load and/or his cognitive load is lower than could 

be expected from his performance. Based on this idea, researchers developed an 

approach for measuring the efficiency of instructional materials using combined 

measures of cognitive load and task performance. Thereby, cognitive load was 

measured using a simple self-report nine-point Likert scale (Paas, 1992) and 
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performance quantified by the number of correct answers. Thus, this method might also 

not be used for online assessment of learner efficiency because, as described earlier, 

both self-report and performance-based measures are generally not available until task 

completion. 

In this dissertation, I have attempted to provide a theoretical basis for the 

measurement of cognitive load, linking the theoretical background to the direct 

assessment of the users’ cognitive load. An overview of the most influential theoretical 

models of working memory was provided (Section 1.3), and it became apparent that 

depending on how the known limitations of WM, and thus cognitive load, are explained, 

all models can be roughly divided into two main classes: emphasizing role of memory vs. 

attention as a limited resource. The best-known WM model by Bаddeley and Hitch 

(1974) emphasizes the role of memory structures. However, in this work, however, the 

attention-oriented approach was pursued and the TBRS model of Barrouillet et al. (2004) 

was selected because it particularly emphasizes the role of time in WM functioning and 

therefore seems to be particularly suitable for assessing cognitive load in time-critical 

situations. An approach for its application to a realistic HMI was presented (Section 1.4).  

What can we derive from the results of the three studies in this dissertation in 

terms of theoretical perspective?  In fact, the suggestion of calculating the TADD metric 

appeared useful, namely periods of burst and idle were found in the game course. 

Difficulty level, which can also be interpreted as time pressure because it was 

constructed by presenting more tasks in the same given the amount of time available, 

was significantly positively associated with the metric, i.e. under increased time 

pressure, cognitive load increased, as quantified by the initial TADD metric. Thus, it was 

shown that time pressure leads to an increase in cognitive load, although the difficulty of 

the individual tasks did not change, which supports Barrouillets’ hypothesis.  

Moreover, winners tended to complete their tasks more quickly, which resulted in 

lower initial TADD scores, i.e. lower cognitive load. This observation is consistent with 

evidence (Csikszentmihalyi, 1975; Vygotsky, 1980; Yerkes & Dodson, 1908) and 

underlines that excessively high levels of cognitive load are associated with reduced 

performance.  

But at this point, another question arises. Why were some participants more 

successful than others? The most obvious answer would be because some of them had 
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more experience. However, in the context of these analyzes, no significant effect of 

experience level on performance was found after accounting for the effect for difficulty 

level and scenario (see Chapter 2). The results suggest that performance appears to be 

related to participants’ cognitive actions during the initial idle time period. While this 

association during the initial burst is straightforward and is strongly influenced by the 

imposed time pressure – we see increasing activity in both measurement domains 

associated with level difficulty, whereas cognitive overload is associated with decreased 

performance (as expected based on ample evidence, see Chapter 1), during the initial 

idle periods, participants had the choice of either passively waiting for the next burst or 

actively researching, observing, and planning their future strategy. Following the 

theoretical account what results could be expected for initial idle period based on two 

main approaches described in Section 1.3? Based on the hypothesis of limited memory 

capacity, we would expect the success of winners to be due to the greater capacity of 

their WM storage systems compared to participants who lose the level. In this case, they 

may be able to remember and process more objects and interactions at the same time, 

so that they could develop a more comprehensive picture of the gameplay, act more 

sufficiently, and consequently be more likely to win the level. In this case, based to the 

evidence showing that DLPFC activity is related to memorization and WL (Narayanan et 

al., 2005; D. J. Veltman, Rombouts, & Dolan, 2003), we would expect increased activity 

in DLPFC areas during initial idle period. Alternatively, based on the hypothesis of limited 

attention we might expect the winners to be able to switch their attention more quickly as 

compared to losers. Due to the fact that visual focus was found to be associated with 

attention (Kruschke, Kappenman, & Hetrick, 2005; Rehder & Hoffman, 2005), we would 

thus expect increased activity of eye-tracking features association with attention focus 

during this time. The results from the analyses of fNIRS and eye-tracking data provide 

evidence for the limited attention hypothesis. While cortical activation in the left DLPFC 

as well as pupil diameter and blink count (eye-tracking features related to non-visual 

cognitive load) during the initial idle phase showed no association with performance (see 

Tables 1, 4), at the same time better players showed more fixations, saccades, and 

microsaccades (eye-tracking features associated with attentional focus, see Tables 2, 4) 

compared to the participants who tended to fail the level.  

In summary, this dissertation supports the applicability of the TBRS model as a 

theoretical basis for measuring cognitive load in realistic time pressure situations and 

suggests that time pressure and attention play a role in the development of cognitive 
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load. Furthermore, it also provides an indication of which features are more likely to be 

useful for assessing cognitive load (see Table 4). 

 

5.3 Strengths and limitations 

This dissertation provides first empirical evidence for a theory-based multimodal 

approach for assessing cognitive load in situations involving time pressure. In this 

section, the strengths and limitations of the presented concept are discussed.. 

 

5.3.1 Theory-based approach  

One of the important strengths of the presented approach is that all proposed 

metrics were derived based on predictions of cognitive load made by the TBRS model, 

which is a well-established theoretical model of WM. While data-driven bottom-up 

approaches do not use theoretical knowledge about the task structure or the undergoing  

cognitive processes thus need to calibrate each situation and each new user individually, 

a theory-inspired approach provides the foundation for the simplified generalizability of 

the method to similar situations and potentially facilitates adaptation to different types of 

situations, if needed. For example, building on the TBRS model allows deriving several 

different ways to quantify the TADD metric. As one example, the mean value for a 

sequence of detected TADDs for some time period can be used to estimate cognitive 

load during this period. In the first study, the mean TADD metric was calculated as the 

mean of all TADD relations detected per level, but the results showed that initial TADD 

was superior to mean TADD in terms of predictive power, indicating that the beginning of 

the level appeared to be crucial for the final outcome. Theoretically, it might become 

necessary to adapt this method for other types of emergency situations, in which this 

would not be the case. For example, the critical interaction period (analog to the initial 

action block, which includes initial burst and initial idle) might potentially occur later, or 

not at all. In this case the interaction patterns would remain relatively stable throughout 

the interaction process. Due to the theoretical foundation of this approach, in this case 

the adjustment of the measurement method could be made simply by adjusting 

investigated time periods. 
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Nevertheless, it is probably not possible to generalize the proposed method to all 

potential HMI interactions. Presumably, it may well be used in settings with inherent time 

limits, particularly where participants are exposed to new or unusual situations and have 

to manage a large number of tasks and resources under time pressure. Examples of 

such situations may comprise different types of emergencies such as a critical situation 

on the road or in the sky, or a sudden critical situation during a surgery, but also less 

dramatic situations such as working on an assembly line or managing an event. 

In this dissertation, the approach was validated on two different types of 

emergencies, i.e. the management of a fire and a train accident, providing promising 

initial evidence of the transferability between similar emergency situations. Nevertheless, 

further research will be needed in the future to evaluate whether this method is 

applicable to other scenarios that may differ in structure from the investigated situations. 

Moreover, more research will be needed to substantiate the predictive power of 

proposed metrics and possibly to these metrics appropriately to different situations.  

Another important point in this context is that while using theory as the basis for 

the measurement method may provide advantages in terms of transferability, each new 

situation needs to be studied at least briefly in advance to select the most appropriate 

metrics or metric combinations. In this way, depending on the task and situation, this 

approach could be more profitable than calibrating a new neural network, but it would 

still not provide a fully transferable solution. One possible way to overcome this limitation 

could be to develop multimodal methods that are able to identify the situation and select 

appropriate metrics from a predefined set (see Section 5.3). However, even such 

multimodal approaches would likely first be calibrated to a given set of situations.   

 

5.3.2 Multimodality 

To accomplish the overarching research project on the differential value of 

different cognitive load measures, this dissertation implemented a multimodal 

measurement approach, which is the second major strength of this work. As shown in 

the introduction (Section 1.2), each of the existing measurement methods has its 

strengths and limitations, whereas there is no perfect single measure for cognitive load. 

For this reason, to ensure strong validity of the research, this work concentrated on three 

different methods that potentially qualify for online assessment: analysis of behavioral 
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data, fNIRS, and eye-tracking. Efforts were made to select methods that would not 

interfere with the performance of the primary task, be sensitive to variations in cognitive 

load over time, and at the same time be implemented as discretely and unobtrusively as 

possible. Importantly, the measurement methods were selected to complement each 

other to provide the comprehensive picture of the proposed approach. For example, 

behavioral data, which are very practical and easy to collect, do not provide accurate 

information about the users’ cognitive state, which can be better estimated using 

neurophysiological methods, whereas eye-tracking can provide additional information 

about the visual focus of attention, which can be useful in interpreting cortical activation 

(cf. Scharinger, 2018; Scharinger et al., 2015; Scharinger et al., 2020). 

However, despite the aforementioned advantages, the implementation of 

multimodal approaches comes with certain limitations. Strong attention was paid to 

render the interaction scenario as naturalistic as possible. This was one of the reasons 

for using the eye-tracking method, which was installed as a remote system positioned in 

an absolutely discreet way, without using glasses or chin rests and without restricting 

participants in any way apart from fluent calibration at the beginning of the session. 

Furthermore, the fNIRS was chosen partly due to its feasibility for naturalistic scenarios. 

fNIRS is the most naturalistic neuro-imaging method available, allowing much more 

freedom of movement for participants than other brain-imaging methods (such as EEG 

or fMRI). The wires of the fNIRS cap were sufficiently long for the participants to move 

their heads freely, and no gel had to be applied, as is required when using EEG. 

Nevertheless, using this equipment meant that participants had to wear this 

measurement equipment and sit relatively still in a quiet room under constant light 

conditions, implying some limitation of ecological validity.  

At the same time, the measuring equipment did not disturb participants from 

operating the game, and therefore I hope that the interaction with the game did not lose 

its naturalistic and realistic character, especially considering the strong immersive 

character of the game used. This hope is sustained by the data collected in a small pilot 

study addressing a different age group. In this pilot experiment, about ten people were 

asked to play the game, with only in-game analyses recorded in the background. 

Although these participants were from different age spans and did not wear 

measurement equipment, they showed very similar behavior pattern.  

 



 

189 
 

5.3.3 Suitability for adaptive systems 

Because cognitive load can rapidly change during the processing of a task, the 

measurement procedure suitable for online adaptation should be able to respond 

sensitively to these variations without causing external disturbances to performance on 

the primary task (Orru & Longo, 2019). This work is based on this principle, starting with 

the selection of measurement methods and ending with the fact that investigated time 

periods (initial burst, initial idle), which form the proposed initial TADD metric, occur at 

the beginning of the interaction. In this way, the probable outcome of the entire 

interaction can be predicted at an early stage, which enables the timely adaptation of the 

HMI system. Thus, the proposed method is suitable for near-real-time adaptation in the 

HMI environment involving time pressure. 

At the same time, this approach comes with an important limitation. The 

initial TADD metric can be calculated relatively early, but not before the end of the action 

block, which took an average 50 seconds in the investigated scenarios. Even if one tries 

to gain some time and uses initial burst as a basis for calculation with neurophysiological 

or eye-tracking data (see Table 3), it takes on average 40 seconds until initial burst is 

completed. Hence, in the case of a critical situation when the system is supposed to 

react within milliseconds, e.g., in a car accident, this method would be too slow. In this 

way, the method appears useful for assessing cognitive load within action blocks of 

several minutes, such as in detecting cognitive states in managers during coping with an 

emergency, organizing an event, or assessing the cognitive load of assembly line 

workers. Furthermore, this method could be applied in the educational context in 

developing pedagogical adaptive simulations or serious games. 

Another important limitation relates to the application of the fNIRS method in 

realistic commercial settings. I decided to use fNIRS as the least obtrusive direct 

neuroimaging method to gain a deeper insight into cortical activation during the initial 

burst and initial idle periods. This decision yielded good results that helped to better 

understand what cognitive processes might happen during these time periods. However, 

given that this method requires relatively complex and precise placement of the optodes 

on the users’ head, it appears impractical for realistic application. Nonetheless, the 

fNIRS method might be used for research purposes when investigating potential new 

situations and metrics to act as a direct validation method. At the same time, the results 

of the second and third studies were largely consistent, suggesting that in this 
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application fNIRS could be replaced by eye-tracking. Therefore, for realistic commercial 

development, eye-tracking in combination with behavioral measurements seems to be a 

promising solution. 

Although the eye-tracking method is also not completely free of limitations, it 

brings a major advantage. Assuming that such an adaptive system would be installed in 

a vehicle, only a few drivers would be willing to wear additional devices or caps to 

operate the system, whereas eye-tracking can be installed completely without body 

contact and would thus be inconspicuous to the user. However, it must be taken into 

account that eye-tracking systems usually still need initial calibration, makeup and 

glasses (especially sunglasses) can dramatically impair their work, and pupil detection is 

also lost if the user turns his head away too much. 

 

 

 

5.3.4 Methodology 

All studies in this dissertation were conducted based on a large data set obtained 

in the course of one extensive experiment. This fact might represent an important 

limitation in terms of generalizability. Although the theoretical foundation of the method, 

the results of the pilot experiment (see below) and the fact that two different emergency 

scenarios were used to induce cognitive load indicate that the method is likely to be 

transferrable between situations and samples, this must be further investigated in 

subsequent experiments, including different samples and situations. 

The 47 participants who took part in the experiment were mainly students with an 

average age of about 25 years. In the context of this work, this sample seems 

permissible because basic cognitive mechanisms and indicators of cognitive load were 

studied, so it seems unlikely that a broader sampling procedure with more diversity in 

terms of social or socioeconomic parameters would substantially affect the pattern of 

results. Moreover, the pilot experiment revealed that the behavioral patterns were very 

similar among 60-year-olds from the middle-high socioeconomic layer, whereas at the 

same time some of the older participants had problems operating the mouse, and 

needed more time to understand the logic of the game. Based on these usability 
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problems and the fact that older participants are not the typical target group for playing 

digital games, it was decided to limit studies of this dissertation with a more 

representative sample of younger individuals. Nonetheless, this point represents a 

limitation. Because evidence indicates that cognitive abilities are affected by age, in 

future studies it might be worth investigating the distribution of ages in the sample, as 

well as expanding the number of participants and examined situations to improve the 

external validity of the results obtained.  

Another aspect that should be considered and elaborated in the future is that 

although the presented studies were designed as realistic HMI in the context of playing a 

digital game, i.e. the participants were sitting in a quiet room in front of a laptop 

representing the game scene, this situation does not represent a realistic situation in the 

sense of a real emergency. Indeed, this step is important because evidence indicates 

that results obtained in simulations often differ from those obtained in corresponding 

real-life settings (e.g., Wilson et al., 1987). In this way, the next step would be to take the 

method outside the laboratory. 

5.4 Implications for future research  

In this section, key implications and corresponding ideas for future research are 

discussed. Finally, the practical relevance of the proposed method is outlined. 

 

5.4.1 Combination of behavioral and physiological measurements 

In general, the results of the second and third studies indicated that both cortical 

hemodynamic activation and eye-tracking features behavior during the initial burst phase 

were significantly positively associated with level difficulty and negatively associated with 

performance. This result was unexpected and disproved the important foundation for the 

initial TADD metric that all participants would be working at their cognitive limit at this 

time. At the same time, these findings help to explain why in the first study the initial 

TADD metric performed better when applied to a more challenging scenario. Possibly 

the time pressure induced by the Emergency serious game was not sufficient to push all 

participants to their limits. This raises a potential research question for future research. It 

would be interesting to investigate how time pressure affects the associations between 

task difficulty and performance, initial TADD, and (neuro-) physiological activation during 

the initial burst.  
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On the one hand, this indicates that the assumption made was correct and that 

strong time pressure during HMI is a necessary condition for the application of the initial 

TADD metric. At this point, another question may arise: what happens when the induced 

time pressure is too high? Is the metric still applicable in this case? The ideal setting for 

the application of the metric is when the participants reach their maximum processing 

speed. Further increasing the speed would lead to a decrease in the initial TADD 

relation, which would be interpreted as increased cognitive load, while at the same time 

increasing the in error rate resulting from the overloaded cognitive state according to the 

“inverted-U” relation between cognitive load and performance as described by Yerkes 

and Dodson (1908). In this case, the metric would correctly reflect the cognitive 

overload, which might be used as a signal for necessary adaptation to reduce the 

cognitive load and prevent errors. Thus, excessive time pressure does not seem to affect 

the validity of the metric, which nevertheless should be investigated in further studies. 

Consequently, the initial TADD metric appears to be well suited for situations with severe 

time pressure, while more relaxed situations might limit its operational capability.  

 On the other hand, because (neuro-) physiological activation during the initial 

burst and initial idle periods seems to show a stronger association with cognitive load 

specifically in more relaxed scenarios (which is another important aspect to be 

investigated in future studies), it seems reasonable to combine the behavioral initial 

TADD metric with the (neuro-) physiological data collected during the initial burst and 

initial idle periods. 

Here, it should be noted that no assumptions were made regarding cognitive 

processes in the initial idle phase, and these are irrelevant to the operation of the initial 

TADD metric. Nevertheless, the results of the second study in particular showed a 

significant positive correlation between visual search behavior during this time and 

performance, with this pattern found consistently across different eye-tracking features. 

Thus, it seems reasonable to use these associations to predict final performance during 

HMI, although future research should investigate whether this association also depends 

on induced time pressure.  

In summary, for the development of multimodal measurement systems, it is 

important to consider that the initial TADD metric should be primarily used under severe 

time constraints, whereas in milder settings cognitive activation during the initial burst 

appears to be positively associated with task difficulty and increased visual activity 
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during the initial idle is likely to predict better performance. In this way, it may be possible 

to close this gap and develop a system capable of predicting cognitive load for a wide 

range of situations with varying degrees of time pressure.  

 

5.4.2 Detection of cognitive underload 

In this dissertation, the second "horn" of the "inverted U" of Yerkes and Dodson 

(1908) was investigated. Accordingly, the presented approach was tested in a 

demanding environment under time pressure, which caused cognitive overload in some 

participants, and it was found that the proposed approach seems suitable to detect 

states of cognitive overload and related performance degradation. However, cognitive 

underload is also associated with performance deterioration and should therefore be 

detected by an adaptive system. For example, in the case of autonomous driving, where 

the driver is still present and needs to monitor the system, this approach might also be 

suitable to define states of cognitive underload and fatigue. In this case, a combination of 

behavioral data with eye-tracking seems particularly appropriate because, in addition to 

the eye-tracking features described above, it can also be used to estimate fatigue 

caused by eyes that are closed for too long (e.g., Eriksson & Papanikotopoulos, 1997). 

This represents an important future direction for further research on this method.  

 

5.4.3 Development of new metrics 

Another direction to consider in this context is to develop new behavioral or 

physiological metrics based on the proposed principle. Accordingly, for instance, in the 

first study, the mean TADD metric was proposed, which was calculated as the mean for 

all TADD relations detected per level. This metric has not been further investigated in 

subsequent studies. However, its application could be promising in other HMI contexts 

that might be structurally different from the interaction studied in this dissertation. The 

mean TADD metric can be beneficial when multiple adjustments are required per 

session. For example, the mean TADD can be calculated every x minutes, and based on 

the result of this calculation an appropriate adjustment to the user interface or training 

environment can be made. It is also conceivable that other metrics that were not 
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investigated in this dissertation might be developed and adjusted to different types of 

contexts. 

 

5.4.4 Practical relevance 

As discussed above, the proposed method might be used for developing 

standalone systems capable of predicting cognitive load for a diversity of situations with 

varying degrees of time pressure. Whereas the use of more complex 

psychophysiological measures would come with additional computational and 

procurement costs, systems that operate on simple unobtrusive metrics may be made 

more easily accessible to the general public. More complex systems relying on 

resources such as neural networks are computationally rather expensive and might 

require substantial computing power. By contrast, simpler models for cognitive load 

estimation may be easily run in the background without significant consumption of 

computing resources and thus they would be suitable for real-life applications.  

Additionally, complex multimodal measurement systems that operate with 

sophisticated algorithms and integrate data from physiological and behavioral sources in 

research laboratories may benefit from the development of simpler metrics as these may 

be added to these more complex algorithms quite easily, thereby leading to improved 

classification accuracy in the future. The substitution of more complex probabilistic 

algorithms through simpler but reliable metrics (whenever possible) might lead to the 

simplifications of complex models, while at the same time expanding their availability and 

usage, specifically if using theory-based metrics. 

 

5.5 Conclusion and outlook 

This dissertation presents a novel approach to measure cognitive load based on 

behavioral and (neuro)-physiological data during HMIs in situations involving the 

management of resources under time pressure. To potentially achieve the easy 

generalizability of the approach to similar contexts, it was developed relying on the 

established theoretical model of WM and cognitive load, namely the TBRS model 

(Barrouillet et al., 2004). Importantly, the method is potentially suitable for use in near-

real-time adaptive systems given that the proposed metrics can be computed relatively 
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early during the interaction. At the same time, the unobtrusiveness and simplicity of the 

proposed measurements appear promising for use in lightweight standalone systems or 

to extend comprehensive multimodal solutions. The results obtained in a series of three 

studies within the scope of this dissertation appeared stable and consistent, presenting a 

comprehensive picture of the method and cognitive activities that take place during 

investigated time periods. It was consistently demonstrated that theoretically specified 

time periods at the beginning of a situation involving management of resources under 

time pressure play a critical role and can be used to predict the outcome of the entire 

interaction. This observation was thoroughly verified using different measurement 

domains including behavioral measurements, cortical activation measurements, and 

eye-tracking data. The approach seems promising for developing realistic HMI systems 

capable of adapting to the cognitive load of their operators in near-real-time. In 

summary, this dissertation supports the applicability of the TBRS model as a theoretical 

basis for measuring cognitive load in realistic time pressure situations and suggests that 

time pressure and attention play a role in the development of cognitive load. 

Furthermore, it also provides an indication of which features are more likely to be useful 

for assessing cognitive load under time pressure. Further research is needed to 

complete the development of the method and provide a ready-to-use concept for 

practical application. 
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