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Abstract 

Oscillatory neuronal activity has been proposed to facilitate and multiplex the 

communication between distant brain regions. In particular, two key coupling modes 

have been discussed in this regard; amplitude- and phase-coupling between distant 

signals. Both can describe large-scale neuronal interactions independently of one 

another and have theoretically been linked to distinct neuronal mechanisms. However, to 

date the direct relations between functional networks derived from these two coupling 

modes remain unclear. In this thesis we conducted two magnetoencephalography 

(MEG) studies to empirically assess the relationship between amplitude- and phase-

coupling networks in the healthy and diseased human brain. 

In the first study we analyzed the publicly available human connectome project (HCP 

S900) dataset of 95 healthy subjects. We applied source-reconstruction to systematically 

compare cortical amplitude-coupling and phase-coupling patterns in the healthy human 

brain. We found significant similarities between amplitude- and phase-coupling patterns 

for almost the entire spectrum and cortex. We further showed that these patterns are 

similar but non-redundant, indicating a complex spatial and spectral distribution. By 

combining empirical measurements with simulations and attenuation correction, we 

sought to ensure that these results were not due to methodological biases but instead 

reflected relations between genuine amplitude- and phase-coupling, which may indicate 

at least partially distinct neuronal mechanisms. Additionally, we highlight and clarify the 

compound nature of amplitude-coupling of orthogonalized signals. 

In our second study, we measured MEG in 17 relapsing-remitting Multiple Sclerosis 

patients at an early disease stage (median EDSS = 1.5, range 0 to 3.5) and 17 healthy 

controls to investigate brain-wide phase- and amplitude-coupling of frequency specific 

neuronal activity. We developed a new analysis approach that combines dimensionality 

reduction, bootstrap aggregating and multivariate classification to identify changes of 

brain-wide coupling in Multiple Sclerosis. We identified systematic and non-redundant 

changes of both phase- and amplitude-coupling. Changes included both, increased and 

decreased neuronal coupling in wide-spread, bilateral neuronal networks across a broad 

range of frequencies. These changes allowed to successfully classify patients and 

controls with an accuracy of 84%. Furthermore, classification confidence predicted 

behavioral scores of disease severity. Our results unravel systematic changes of large-
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scale neuronal coupling in Multiple Sclerosis and suggest non-invasive 

electrophysiological coupling measures as powerful biomarkers of Multiple Sclerosis.  

Overall, our two studies provide, to our knowledge, the first systematic analyses 

describing the relationship between amplitude- and phase-coupling networks. In both, 

the healthy as well as in the diseased brain, these two coupling modes are related but 

show distinguishable features. Our findings highlight that amplitude- and phase-coupling 

might at least partially originate from distinct neuronal mechanisms.  
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1 Introduction 

Understanding cognition and the mechanisms of brain function are central goals of 

modern neuroscience. Over recent years the field has progressively shifted from a 

region-centered to a network centered view of brain function. A given task is most likely 

not solely solved by one specific brain area but rather the complex interplay of several 

regions (Biswal et al., 2010; Siegel et al., 2012; Singer, 1999). An increasing number of 

imaging tools have been deployed to assess such brain networks from a functional as 

well as a structural point of view. One branch of these brain-imaging techniques is 

electrophysiology. Here, electroencephalography (EEG), magnetoencephalography 

(MEG) and electrocorticography (ECoG) and corresponding analysis tools have been 

developed and improved to investigate brain function invasively (ECoG/LFP) and non-

invasively (M/EEG). Their high temporal resolution makes them ideally suited to 

investigate dynamic neural processing and to bridge the gap between behavior and 

brain anatomy (Pesaran et al., 2018). 

The temporally rich nature of electrophysiology yields several possibilities to analyze 

the interplay of distant brain regions for a variety of timescales. Prominent theories 

highlight the importance of rhythmic and spectrally band-limited oscillations to 

orchestrate effective timing and communication between distant neuronal assemblies 

(Engel et al., 2001; Fries, 2015; Singer, 1999). In such schemes, neuronal spiking 

activity is understood as a train of events following a periodic probability distribution, 

hence an oscillation (Destexhe et al., 1999; Fries, 2015; Jahnke et al., 2014; Jensen and 

Mazaheri, 2010). When an oscillatory generator is strong enough, these oscillations can 

be measured extra-cranially (Pesaran et al., 2018). Hereby, the defining features of an 

oscillation are the temporal distribution of its phase and amplitude. Over the last years a 

growing body of evidence has associated several aspects of cognition with spatially 

confined oscillatory activity (Donner and Siegel, 2011a; Engel et al., 2013; Siegel et al., 

2012). These associations appear to be spectrally specific and have thus been coined 

“spectral fingerprints” (Siegel et al., 2012). Additionally, electrophysiological network 

measures have been increasingly used as a versatile biomarker for various neurological 

and psychiatric diseases (Fornito et al., 2015; Heuvel and Sporns, 2019; Stam, 2014). 
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1.1 Hypothesis 

In this thesis we wanted to establish the relationship between amplitude- and phase-

coupling networks. Despite the rapidly growing interest in these network measures and 

their increasing application in basic research and medical studies little is known about 

the relationship between phase- and amplitude-based networks. Amplitude-coupling 

describes the co-fluctuation of signal strengths and phase-coupling the consistent 

alignment of signals. These two features of large-scale neuronal interactions are in 

principle statistically independent (Bruns et al., 2000; Engel et al., 2013; Siegel et al., 

2012) and represent two so-called coupling modes. Here, we report the findings of two 

MEG studies addressing the relationship between amplitude- and phase-coupling 

patterns in the healthy and the diseased human brain. We hypothesize that if amplitude- 

and phase-coupling are indeed related to two or more separate neuronal mechanisms, 

their network features should be dissociated as well. These studies are, to our 

knowledge, the first systematic analyses on this topic and establish several guidelines 

for the analyses of functional connectivity of non-invasive electrophysiological signals. 

In our first study (Siems and Siegel, 2020), we analyzed 95 healthy subjects and 

computed amplitude- and phase-coupling for a broad range of frequencies. Several 

methodological obstacles impede the direct comparison of amplitude- and phase-

coupling networks: First, MEG sensors as well as source-projected MEG signals are not 

independent. The superposition of electromagnetic fields in combination with the 

imperfect back-projection of the signal to the source space adds to the effect of volume 

conduction. Second, discounting volume conduction introduces spurious amplitude-

coupling as a function of, among others, the underlying phase-coupling (Palva et al., 

2018). Third, the measurement accuracy of functional connections, in other words the 

signal-to-noise ratio, affects the comparison of these networks. This is a problem 

because the power distribution in the brain is non-uniform over space (Hillebrand et al., 

2012) as well as over frequencies (Voytek and Knight, 2015) and might induce false 

spatial or spectral specificity in our results. 
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Integrating these methodological issues into our guiding question we formulate the 

following hypotheses for our first study: 

1.1) The measured amplitude-coupling networks cannot be fully explained by 

the spurious amplitude-coupling introduced from discounting volume conduction 

and thus at least partially reflect genuine amplitude-coupling. 

1.2) Genuine amplitude- and phase-coupling patterns will be related but exhibit 

distinguishing features. 

 

In our second study (Siems et al., 2021) we analyzed amplitude- and phase-coupling 

networks in both healthy controls as well as in a patient group. For this, we measured 

MEG of 17 relapsing-remitting Multiple Sclerosis (RRMS) patients at an early disease 

stage and 17 healthy controls. Multiple Sclerosis is a suitable disease model to analyze 

functional coupling changes as the disease mainly affects the brain’s white matter. The 

goal of this study was to examine the differences in amplitude- and phase-coupling 

between healthy controls and patients. However, alterations to the anatomical 

connectome occur sparsely and diffusely in this early disease stage. One major problem 

that needs to be addressed is the variance between patients. Lesion locations will likely 

not overlap between subjects. Recent theories proposed that areas and connections 

higher up in the connectomic hierarchy, so-called hubs, might still show generalized 

effects (Fornito et al., 2015; Heuvel and Sporns, 2019; Stam, 2014). Hereby, it has been 

shown that neurological tissue damage does not solely lead to a lack or decrease of 

coupling but can as well show an increase in coupling as a result of compensatory 

effects. 

Based on these assumptions we formulate the following hypotheses for our second 

study: 

2.1) There exists a lower-dimensional feature space in which patient and 

control group can be classified. 

2.2) The low-dimensional features will include both, amplitude- and phase-

coupling, but will not be identical between the two coupling modes. 
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In the following we seek to give an introduction into the relevant literature forming the 

bedrock of each study. This includes in the first part a record of possible network 

measures, the mechanisms that are assumed to underlie amplitude- and phase-coupling 

and specific problems of non-invasive electrophysiology. In the second part of this thesis 

we introduce concepts and theories of functional coupling changes in the diseased 

human brain, focusing on Multiple Sclerosis. Hereby, the first part of this thesis 

corresponds to the published paper Siems and Siegel, 2020 and the second part is 

currently submitted for publication and a preprint is available under Siems et al., 2021. 
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2 Functional connectivity 

The human brain is a highly complex and effective information transfer system. With 

approximately 100,000,000,000 neurons and one thousand connections per neuron, 

every neuron is connected with every other over maximally ~10 synapses (Herculano-

Houzel, 2009; Kandel et al., 2000). This anatomical network constitutes the backbone of 

our conscious human experience and any behavioral output in general. 

This structural organization has been linked to brain function throughout history. One 

of the first well-described and still valid functional networks involves the human language 

system and was first derived in the 19th century by Broca, Lichtheim and Wernicke from 

the analysis of lesioned patients (Geschwind, 1970, 1979; Poeppel et al., 2012; 

Wernicke, 1874). Their network view of brain function has survived until today. 

With the proliferation of non-invasive brain imaging techniques the network view of 

brain function has been extended over the last decades. The term functional connectivity 

was coined to describe statistical relations between distant brain areas independent of 

their anatomical relations (for example Biswal et al., 2010; Friston, 1994). Importantly, 

these functional connections do not only form during the execution of a task but also 

during rest (for example Biswal et al., 1995; Raichle, 2015; Raichle et al., 2001). 

Generally, anatomical connections are relatively stable over time, whereas functional 

connections change with task (Engel et al., 2013; Siegel et al., 2012), cognitive state 

(Dehaene and Changeux, 2011) as well as neuromodulatory regulation (van den Brink et 

al., 2019; Pfeffer et al., 2018). One handy metaphor for those two concepts, anatomical 

and functional connectivity, is of roads and traffic, respectively. The anatomical network 

defines a set of rules how information might travel between distant brain areas and 

functional connectivity describes the dynamic communication between those areas 

depending on external stimuli and internal states. 

Over recent years, the study of resting-state functional connectivity focused on the 

correlation of functional magnetic resonance imaging (fMRI) time-courses. The 

systematic analysis of temporal relationships yielded several canonical networks, which 

appear to be stable over time and subjects (Biswal et al., 2010; Fox and Raichle, 2007; 

Smith et al., 2009; Yeo et al., 2011) and can be indicative of neurological and psychiatric 

disorders (for example Zhang and Raichle, 2010). However, the blood oxygen level-
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dependent (BOLD) signal measured with fMRI is only a slow and indirect measure of 

neuronal activity (Logothetis, 2008). In contrast, electrophysiological signals, as for 

example measured with electroencephalography (EEG) and magnetoencephalography 

(MEG), directly measure the underlying neuronal activity. An additional advantage of 

M/EEG is its high temporal resolution, i.e. millisecond precision, which increases the 

sensitivity to fast changes of activity and opens a window to the rich spectral dynamics 

of neuronal activity (Siegel et al., 2012). Narrow-band as well as oscillatory activity 

interactions can define large-scale neuronal networks beyond BOLD signal correlations 

(Hipp and Siegel, 2015) and might provide new insights into circuit level mechanisms of 

neuronal organization (Donner and Siegel, 2011a; Engel et al., 2013; Siegel et al., 

2012).  

2.1 Electrophysiological coupling modes 

In non-invasive human electrophysiology two fundamental features can be used to 

obtain functional connectivity networks: The amplitude and the phase of the signal. 

Functional connectivity derived from the amplitude of two or more signals is defined as 

the co-fluctuation of signal strengths. Phase-coupling on the other hand reflects the 

consistent temporal alignment of the phases of two or more signals.  

These two concepts are theoretically independent and lay the foundation for several 

coupling measures. These measures can be broadly classified by four categories: 

directed vs. undirected, bivariate vs. multivariate, linear vs. non-linear and static vs. 

dynamic coupling (for an overview, cf.: Colclough et al., 2016; van Diessen et al., 2015; 

Marzetti et al., 2019; Zhigalov et al., 2017). In the current studies we mainly focused on 

undirected, bivariate, linear, static measures of coupling.  

The neuronal mechanisms of phase- as well as amplitude-coupling are yet to be fully 

understood (Engel et al., 2013; Siegel et al., 2012) and direct evidence of relationships 

between these coupling modes is scarce (Avramiea et al., 2021; Daffertshofer et al., 

2018; Mehrkanoon et al., 2014). Phase-coupling has been proposed to foster effective 

communication between neuronal assemblies (Fries, 2015; Womelsdorf et al., 2007). 

The so-called “communication through coherence” hypothesis suggests that neuronal 

assemblies exhibit periodic excitation-inhibition cycles and hence are more susceptible 

to spiking input at certain time points within the cycle. Effective communication is 

granted when the assembly gets input time-locked to the excitable phase of the cycle. 
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This mechanism would, on the macroscopic level, generate two frequency specific 

phase-coupled signals (Fries, 2015). Accordingly, phase-coupling has been associated 

with performance in various cognitive domains including selective attention (Bosman et 

al., 2012; Buschman and Miller, 2007; Siegel et al., 2008), perception (Hipp et al., 

2011a), memory (Fell and Axmacher, 2011; Palva et al., 2010a, 2010b) and task-

switching (Buschman et al., 2012). 

Amplitude-coupling on the other hand refers to the temporal co-modulation of the 

amplitude (or power) of neuronal oscillations. Like phase-coupling, amplitude-coupling 

may not only result from, and thus reflect, neuronal interactions, but may also regulate 

these interactions by temporally aligning distant processes associated with fluctuating 

oscillations (von Nicolai et al., 2014; Siegel et al., 2012). Amplitude-coupling is also 

expressed in well-structured cortical networks that match known anatomical and 

functional connectivity (Hipp et al., 2012; Siems et al., 2016), resemble fMRI correlation 

patterns (Boto et al., 2021; Brookes et al., 2011; Deco and Corbetta, 2011; Destexhe et 

al., 1999; Hipp and Siegel, 2015; Mantini et al., 2007; Nir et al., 2008; O’Neill et al., 

2015), and are more stable than phase-coupling networks (Colclough et al., 2016; Wang 

et al., 2014). Amplitude-coupling is largely driven by amplitude dynamics below 0.1 Hz 

(Hipp et al., 2012; Leopold et al., 2003). Hypothetically, the slow dynamics of amplitude-

coupling may reflect the general establishment and decay of communication channels 

(Destexhe et al., 1999; Engel et al., 2013; Larson-Prior et al., 2011; Leopold et al., 2003; 

von Nicolai et al., 2014). A coincidence of high amplitudes in distant brain areas, i.e. high 

excitability in both areas, can promote effective direct communication. Analogously, 

recent studies linked neuromodulatory brainstem activity with intrinsic signal co-

fluctuations (compare van den Brink et al., 2019; Pfeffer et al., 2020). This association 

indicates a possible mechanism for slow connectivity dynamics, for example via 

noradrenergic modification of the excitation-inhibition balance in local neuronal circuits 

(Froemke, 2015; Pfeffer et al., 2018, 2020). 

Beyond their proposed dissociations, some studies identified strong relationships 

between amplitude- and phase-coupling. One study found that phase-coupling between 

areas in conjunction with local cross-frequency phase-amplitude coupling within areas 

might induce amplitude-coupling between areas (von Nicolai et al., 2014). Similarly, a 

novel modeling approach found that directed communication between brain areas can 

stem from rhythmic synchronization within a sending area propagated through 
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anatomical connections (Schneider et al., 2020). Within this framework both phase- and 

amplitude-coupling might originate from such directed communication channels. 

Moreover, Womelsdorf and colleagues (2007) have shown that strong amplitude-

coupling can be related to particular phase relations between neuronal assemblies 

(Womelsdorf et al., 2007). It is therefore plausible that amplitude- and phase-coupling 

share features in their respective network architecture. This relationship between 

amplitude- and phase-coupling was the focus of our first study (Siems and Siegel, 2020). 

We proposed that if both coupling modes arise from different neuronal mechanisms the 

derived networks would diverge. 

2.2 Challenges of electrophysiological connectivity measures 

The functional mapping of brain activity offers great potential in understanding the 

mechanisms of neuronal processing non-invasively. However, no single imaging 

procedure can claim the status of a gold standard. M/EEG data has the advantage of 

measuring brain activity directly with a high temporal resolution, but there are several 

caveats that have to be considered when applying these measurement modalities. 

First, M/EEG measures the superposition of neuronal electro-magnetic activity on the 

scalp level (Baillet et al., 2001) with the sensors being far away from the neuronal 

activity. Thus, every sensor picks up activity not only from tissue directly underneath it 

but a compound signal of all possible sources. Defining neuronal generators of activity 

from the sensor level data is one of the major challenges in non-invasive 

electrophysiology and is coined the inverse problem. Due to the poor signal-to-noise 

ratio of scalp-recordings, the limited number of sensors and the almost infinite number of 

possible generator configurations there is no analytic and definite solution; the inverse 

problem is mathematically ill-posed. Therefore, every source reconstruction is solely an 

estimation guided by assumptions on, for example, anatomy (Pascual-Marqui et al., 

2002, 2011) or unit-gain constraints (spatial filtering; Gross et al., 2001; Van Veen et al., 

1997). Thus, the spatial resolution of M/EEG source analyses is considerably lower as 

compared to fMRI for example. 

Second, as a consequence of imperfect source-estimation and the super-position of 

electromagnetic fields, estimated sources are not independent measures of neuronal 

activity. Thus, functional connectivity as a statistical measure of interactions between 

signals will be positively offset. These volume conduction effects lead to spurious and 
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trivial connectivity patterns and potentially mask physiologically relevant networks (Hipp 

et al., 2012). As a consequence several network measures have been developed to 

address the problem of signal leakage (for example Brookes et al., 2011; Hipp et al., 

2012; Nolte et al., 2004, 2020; Pascual-Marqui, 2007; Stam et al., 2007; Vinck et al., 

2011). Their foundation is that electric and magnetic signals travel and superimpose 

virtually instantaneously and affect different sensors and estimated sources with zero 

phase delay (Nolte et al., 2004). However, true physiological interactions can display any 

phase shift, due to, for example, variable conduction delays between neuronal 

assemblies. 

Two classes of algorithms have been developed to discount volume conduction: 

signal orthogonalization and removing the real component of the cross-spectrum 

(Brookes et al., 2011; Hipp et al., 2012; Nolte et al., 2004; Stam et al., 2007; Vinck et al., 

2011), mainly applied to amplitude- and phase-coupling, respectively. Both methods 

remove the signal components that exhibit zero phase delay between paired signals. 

Signal orthogonalization sets the phase relation between two signals at any time point to 

90 degrees, effectively removing volume conduction effects (Brookes et al., 2012; Hipp 

et al., 2012). Thus, this procedure destroys almost all phase relations between the 

signals. Conversely, assessing only the imaginary component of the cross-spectrum 

leaves the phase relations interpretable but removes any interaction that can be affected 

by the zero-lagged volume conduction effect. 
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3 Dissociated neuronal phase- and amplitude-coupling 
patterns in the human brain 

 

3.1 Scientific questions and aims 

In our first project we addressed whether different coupling modes, i.e. amplitude- 

and phase-coupling, can be dissociated (Siems and Siegel, 2020). Recent research on 

functional connectivity of electrophysiological signals mainly focused on the meticulous 

description of each coupling mode separately. However, a systematic framework to 

compare these measures empirically is still missing and many questions remain 

unanswered. For instance, do patterns of amplitude- and phase-based connectivity 

measures differ? Little is known about their empirical relationship (Bruns et al., 2000; 

Leopold et al., 2003) but this question is of major importance due to the potentially 

different neuronal origins these coupling modes indicate (Engel et al., 2013; Siegel et al., 

2012).  

As straightforward as this comparison appears its empirical investigation is non-trivial. 

Several obstacles impede a direct comparison of amplitude- and phase-based functional 

connectivity. Non-neuronal signal components, i.e. muscle, ocular and cardiac activity as 

well as volume conduction, have to be discounted. Any form of artifactual component 

might bias the similarity, predominantly towards overestimating the relationship (Hipp 

and Siegel, 2013; Hipp et al., 2012). Additionally, discounting volume-conduction by 

signal orthogonalization introduces spurious amplitude-coupling as a function of, among 

others, the strength of the underlying phase-coupling (Palva et al., 2018). In other words, 

the measured amplitude-coupling reflects a mixture of genuine amplitude-coupling of 

interest and spurious amplitude-coupling due to phase-coupling. 

Thus, we tried to answer two main questions in this study taking all of the above-

mentioned methodological issues into account. First, we tested if we can identify 

genuine amplitude-coupling independent of the spurious amplitude-coupling introduced 

through signal orthogonalization (Hypothesis 1.1). Second, we assessed the relationship 

between genuine amplitude- and phase-coupling cortical networks for a broad range of 

frequencies (Hypothesis 1.2).  
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3.2 Materials and methods 

3.2.1 Subjects and dataset 

We analyzed resting-state MEG measurements from 95 subjects included in the 

publicly available human connectome project (HCP) S900 release. Participants were 

healthy adults in the age range between 22-35 (n22-25=18, n26-30=40, n31-35=37), including 

45 females. The resting-state measurements included up to three six-minute blocks with 

short breaks in between measurements. Data were recorded with a whole-head Magnes 

3600 scanner (4D Neuroimaging, San Diego, CA, USA) situated in a magnetically 

shielded room (for further details see: Larson-Prior et al., 2013). Additionally, subjects 

were scanned on a Siemens 3T Skyra to acquire structural T1-weighted magnetic 

resonance images (MRI) with 0.7 mm isotropic resolution (Van Essen et al., 2013). 

3.2.2 Data preprocessing 

We used the preprocessed data as provided by the HCP pipeline (Larson-Prior et al., 

2013). This includes removal of noisy and bad channels, bad data segments and 

physiological artifacts by the iterative application of temporal and spatial independent 

component analysis (ICA) (Larson-Prior et al., 2013; Mantini et al., 2011).  

3.2.3 Physical forward model and source modeling 

MEG sensors were aligned to the individual anatomy using FieldTrip (Oostenveld et 

al., 2010). We segmented the individual T1-weighted images and generated a single 

shell head model to compute the physical forward model (Nolte, 2003). We computed 

the forward model for 457 equally spaced (~1.2 cm distance) source points spanning the 

cortex at 0.7 cm depth below the pial surface (Hipp and Siegel, 2015). This source shell 

was generated in MNI-space and non-linearly transformed to individual headspace. 

Source coordinates, head model and MEG channels were co-registered on the basis of 

three head localization coils. 

The sensor-level MEG data was projected to source space using linear beamforming 

(Gross et al., 2001; Van Veen et al., 1997). This spatial filtering approach reconstructs 

activity of the sources of interest with unit gain while maximally suppressing 

contributions from other sources.  
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Coordinates for the seed-based connectivity analyses were adopted from Hipp et al. 

(2012). For every seed, the source location of the 457 shell positions with minimum 

Euclidean distance from the seed coordinates was chosen: left auditory cortex (lAC) [-

54, -22, 10]; left somatosensory cortex (lSSC) [42, -26, 54]; medial prefrontal cortex 

(MPFC) [-3, 39, -2] (all MNI coordinates). 

3.2.4 Spectral analysis 

Time-frequency estimates of the time-domain MEG signal were generated using 

Morlet’s wavelets (Goupillaud et al., 1984). The bandwidth of the wavelets was set to 0.5 

octaves (1 spectral standard deviation) with a temporal step-size of half the temporal 

standard deviation. We derived spectral estimates for frequencies from 1 to 128 Hz in 

quarter octave steps. 

3.2.5 Coupling measures 

We estimated amplitude-coupling using amplitude envelope correlations of 

orthogonalized signals (Hipp et al., 2012). Volume conduction effects were discounted 

by orthogonalizing the two complex signals at each point in time before correlation 

(Brookes et al., 2012; Hipp et al., 2012): 

𝑦!"#! 𝑡, 𝑓 = 𝑖𝑚𝑎𝑔(𝑦(𝑡, 𝑓)
𝑥(𝑡, 𝑓)′
|𝑥(𝑡, 𝑓)|

) 

The imag operator describes the imaginary part of the signal. The complex signals x 

and y are a function of time and frequency. x’ is the complex conjugate of x. Discounting 

volume conduction with orthogonalization is only optimal for data with a Gaussian 

distribution (Brookes et al., 2014). Finally, we computed the Pearson correlation 

between the logarithm of power envelopes of the signals x and yorth. 

As a measure of phase-coupling we applied the weighted phase lag index (wPLI; 

Vinck et al., 2011). The wPLI takes only the imaginary part of the cross-spectrum into 

account and normalizes it with the average absolute imaginary contribution within the 

time series.  

𝑤𝑃𝐿𝐼 =
|𝑚𝑒𝑎𝑛 𝑖𝑚𝑎𝑔 𝐶!,! |

𝑚𝑒𝑎𝑛(|𝑖𝑚𝑎𝑔 𝐶!,! |)
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𝐶!,! = 𝑥𝑦′ 

Here, Cx,y is the cross-spectrum between the two complex signals x and y defined as 

the product of x and the complex conjugate of y. The imaginary part of the cross-

spectrum is insensitive to volume conduction since it has no contribution from zero 

phase lagged parts of the signal (Nolte et al., 2004; Vinck et al., 2011). We computed 

both coupling measures for the full correlation matrices for all subjects and frequency 

bands.  

3.2.6 Data simulation 

Palva and colleagues (2018) showed that amplitude correlations based on 

orthogonalized signals yield spurious correlations, given a consistent non-zero phase 

delay between signals. We employed the simulation approach put forward by Palva and 

colleagues (2018) as a generative model to estimate these spurious correlations. We 

computed a model for every connection, subject and frequency using empirical values 

for the free parameters. With this approach, we generated complete correlation matrices 

for every subject and frequency to estimate the spatial patterns of spurious amplitude-

coupling. We modeled every two signals x and y 

𝑥 = 𝐴! 𝑡 𝑒!!!(!) +𝑚𝐴!(𝑡)𝑒!(!! ! !!!,!) 

𝑦 = 𝐴!(𝑡)𝑒!(!! ! !!!,!) +𝑚𝐴! 𝑡 𝑒!!!(!) 

where A(t) and p(t) are vectors representing the amplitude and the phase of the 

sources, respectively. In analogy to volume conduction, the source data is linearly mixed 

by the parameter m. This value is determined from the empirical data as the 

multiplication of the filter matrix Fx,f with the leadfield Ly (i.e, the resolution matrix) 

projected onto the first principal dipole direction P1 at x. 

𝑚(𝑓)!,! = 𝐹!,!𝐿!𝑃1! 

For every connection, we computed the model in both directions. sx,y is the phase shift 

between the two signals and was set to the estimated empirical phase shift for every 

connection, frequency and subject (see 2.7 below). 

We determined the amplitude A(t) vectors as follows: 
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𝐴! 𝑡 = |𝐹 𝑛! 𝑡 + 𝑐!𝑛! 𝑡 | 

𝐴! 𝑡 = |𝐹 𝑛! 𝑡 + 𝑐!𝑛! 𝑡 | 

where n1(t) and n2(t) are vectors of normally distributed random numbers with data 

length of 300 s, a pink spectrum and a sampling frequency of 400 Hz approximately 

matching the original data (Larson-Prior et al., 2013). The ||	 operator refers to the 

modulus. cA denotes the amplitude-coupling between the sources x and y, which was set 

to 0. The function F is the complex wavelet transformation of the vectors at the frequency 

of interest. The wavelet transformation parameters matched our analysis of the empirical 

data (see above). Analogously, we generated the phase p(t) vectors: 

𝑝! 𝑡 = 𝑎𝑛𝑔𝑙𝑒(𝐹 𝑛! 𝑡 + 𝑐!𝑛! 𝑡 ) 

𝑝! 𝑡 = 𝑎𝑛𝑔𝑙𝑒(𝐹 𝑛! 𝑡 + 𝑐!𝑛! 𝑡 ) 

where n3(t) and n4(t) are again 300 s vectors of normally distributed random numbers 

with a pink spectrum at a sampling frequency of 400 Hz. All 4 n-vectors were drawn 

anew for every connection and simulation run (see below). cp denotes the phase-

coupling and was set to the estimated empirical phase-coupling for every connection, 

frequency and subject (see 2.7 below). 

Finally, we computed the amplitude-coupling of the orthogonalized signals x and y 

(see above) to quantify the strength of amplitude-coupling (ACspur) that would be 

expected given the empirical parameters and no ground truth amplitude-coupling (ca = 

0). We computed the full correlation matrices for every subject and frequency. To reduce 

the variance induced by finite sampling, we averaged the correlation matrices across ten 

simulations. Furthermore, we averaged the two directions of orthogonalization, x on y 

and y on x, in the final correlation matrices. We correlated the spatial patterns PACspur of 

spurious amplitude-coupling with the spatial patterns of empirically measured amplitude-

coupling PACmeas to quantify the similarity of these spatial patterns.  

Finally, we orthogonalized the measured amplitude-coupling patterns to the spurious 

amplitude-coupling patterns by linear regression to estimate the corrected amplitude-

coupling patterns. 
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3.2.7 Estimated empirical phase shift and phase-coupling 

The wPLI quantifies phase-coupling but is not identical to the phase-coupling cp 

employed in the above simulations. In other words, if one simulates two signals with cp 

set to an empirically measured wPLI the simulated signals will have a wPLI that is 

different from the empirically measured wPLI. The same applies to the phase shift sx,y 

between the two signals. The empirical statistics and their model parameters show a 

monotonous interaction but are not numerically identical. Thus, for each connection, 

frequency and subject, we employed a grid search approach to estimate the parameter 

setup (cp and sx,y) under which the simulated signals had the least deviation from the 

empirically measured wPLI and phase shift. 

For the grid search we simulated signals as described above (see 2.6) 800,000 times 

covering the entire space of possible mixings, phase-couplings and phase shifts: mixing 

m between 0 to 1 (in steps of 0.01), phase shift sx,y	between 0 and π (in steps of π/100) 

and phase-coupling cp between 0 and 0.8 (in steps of 0.01).  For each parameter 

combination, we computed the phase shift, i.e. the angle of the mean complex 

coherency, and the wPLI of the simulated signals. To stabilize these estimates, we 

averaged these values across 1000 repetitions within each combination. For any 

connection with a given mixing m, we determined which combination of cp and sx,y yielded 

the empirically measured wPLI and phase shift of the simulated signal. We then 

employed this estimated parameters for each simulated connection in the main 

experiment (see Fig. A1 for an example and assessment of the estimation quality). 

3.2.8 Reliability estimation 

To compare the reliability, i.e. reproducibility, of functional connectivity measures, we 

correlated the seed-based connectivity patterns. We first averaged the correlation 

matrices acquired in the three runs of each subject before performing pairwise 

correlations between subjects (between-subjects reliability, relbs).  

𝑟𝑒𝑙!",!!,!!,!!,!!,! = 𝑐𝑜𝑟𝑟(𝑃!!,!!,! ,𝑃!!,!!,!) 

where M1	and	M2 denote the different connectivity measures (ACspur, ACmeas, or PC). A 

pattern P describes the connectivity of a given seed with the rest of the source-model, 

i.e. one column of the full correlation matrix. s1	and	s2 denote the subjects involved in the 
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computation, where s1≠s2. All reliabilities were independently computed as a function of 

frequency f. 

Only reliable signals can be correlated and corrected for attenuation (see below). 

Therefore, we statistically tested for reliabilities larger than zero (one-sided t-test, df = 94 

(n = 95), FDR correction, see below) and excluded connections with non-significant 

reliability. We found that 99%, 95% and 95% of the connections spanning all frequencies 

were reliable for measured amplitude-coupling, spurious amplitude-coupling and phase-

coupling, respectively. 

3.2.9 Pattern similarity, inter-measure correlation and attenuation correction 

We correlated the correlation patterns between different metrics, i.e. ACspur vs. ACmeas, 

ACspur vs. PC, ACmeas vs. PC:  

𝑖𝑐!"#$%&,!"#$%&,!,!!,!!,! = 𝑐𝑜𝑟𝑟(𝑃!"#$%&,!,!!,! ,𝑃!"#$%&,!,!!,!) 

𝑖𝑐!"#$%&,!",!,!!,!!,! = 𝑐𝑜𝑟𝑟 𝑃!"#$%&,!,!!,! ,𝑃!",!,!!,!  

𝑖𝑐!",!"#$%&,!,!!,!!,! = 𝑐𝑜𝑟𝑟(𝑃!",!,!!,! ,𝑃!"#$%&,!,!!,!) 

The inter-measure correlation ic between two metrics is defined as the Pearson 

correlation (corr) of the seed-based connectivity patterns P at seed i	 and frequency f 

computed between different subjects s1≠s2. The seed pattern P is defined as the 

connectivity of a given seed with the remaining 456 source points, i.e. one column in the 

full correlation matrix. We computed the inter-measure correlations ic for all 8930 unique 

subject pairings (952-95), 457 connectivity patterns, 3 metric combinations, and 29 

frequencies.  

The measured inter-measure correlations do not only reflect the true underlying 

similarity of patterns but also the reliability with which these patterns are estimated. 

Measured correlation decreases with decreasing pattern reliability even if the true 

underlying pattern correlation remains identical (Fig. 1, dashed lines). This effect of 

reliability is known as attenuated correlations (Spearman, 1904). Following Spearman 

(1904), we corrected for this attenuation and normalized the mean inter-measure 

correlation icM1,M2 by the pooled reliabilities within the measures relM1 and relM2.  
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𝑖𝑐!!,!!,!,! = 𝑍!!(𝑚𝑒𝑎𝑛! 𝑍 𝑖𝑐!!,!!,!,!!,!!,! ) 

𝑟𝑒𝑙!!,!,! = 𝑍!!(𝑚𝑒𝑎𝑛! 𝑍 𝑟𝑒𝑙!",!!,!!,!!,! ) 

𝑟𝑒𝑙!!,!,! = 𝑍!!(𝑚𝑒𝑎𝑛! 𝑍 𝑟𝑒𝑙!",!!,!!,!!,! ) 

where the mean inter-measure correlation ic for different metric combinations M1/M2	

is defined as the mean over all possible subject combinations s with s1≠s2. The same 

averaging is done for the reliabilities within the measures M1 and M2. The function Z 

denotes the Fisher Z-transformation and Z-1 the inverse transformation: 

𝐹𝑖𝑠ℎ𝑒𝑟!𝑠 𝑍 =
1
2
ln

1 + 𝑟
1 − 𝑟

= artanh (𝑟)	

𝐹𝑖𝑠ℎ𝑒𝑟!𝑠 𝑍!! = 𝑟 =
𝑒!! − 1
𝑒!! + 1

= tanh (𝑍)	

Here, ln denotes the natural logarithm, artanh the inverse hyperbolic tangent, tanh the 

tangent function, e Euler’s number and r is the correlation coefficient. Finally, the 

attenuation corrected inter-measure correlation icc is defined as: 

𝑖𝑐𝑐!!,!!,!,! =
𝑖𝑐!!,!!,!,!

𝑟𝑒𝑙!!,!,! 𝑟𝑒𝑙!!,!,!

 

3.2.10 Simulation of attenuation corrected correlations 

The attenuation corrected inter-measure correlation is unbiased. Accordingly, 

independent of the reliability with which two patterns are measured, their expected 

attenuation corrected correlation is the true underlying correlation of these patterns. This 

is well illustrated by simulations (Fig. 1). We simulated two connectivity patterns of size 

N (n=45, approximating the effective degrees of freedom of the source-level MEG data; 

Hipp and Siegel, 2015) by drawing two times N data points from a normal distribution 

and applying the inverse Fisher’s Z transformation. The resulting Nx2 matrix with both 

patterns is defined as P. From P we then computed Pr with a predefined correlation r 

between the two patterns. To this end, we defined the desired full correlation matrix R 

between the two patters as: 
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𝑅 = 1 𝑟
𝑟 1  

Then, we applied the Cholesky factorization chol of R and multiplied P by the resulting 

matrix: 

𝑃! = 𝑃 ∗ 𝑐ℎ𝑜𝑙(𝑅!) 

We simulated two cases, r=1 and r=0.3. Due to finite sampling the resulting 

correlation of the two vectors in Pr only approximates r. We therefore only used patterns 

for which the measured correlation coefficient differed from r by maximally 0.05. This 

threshold is necessary to not conflate the spread of the attenuation-corrected correlation 

distributions with the variance of the simulated vector correlation, which otherwise grows 

towards r	=	0. We replicated the patterns for n=95 subjects and added inverse Fisher’s 

Z-transformed normally distributed noise independently to every subject’s Pr with varying 

signal-to noise ratios of 0.5, 1, 2. Then, we computed the inter-measure correlation 

between patterns and the attenuation corrected correlation patterns and repeated the 

simulation 10,000 times for every SNR. The results are shown in Fig. 1. 

3.2.11 Statistical testing of attenuation corrected correlations 

A perfect attenuation corrected correlation (icc	=	1) indicates that two cortical patterns 

are identical if there was perfect reliability. A value smaller than 1 indicates that there is 

a difference between the two patterns that cannot be explained by reduced reliability. 

Similarly, a value different from 0 indicates pattern similarity. For statistical testing of icc, 

we applied leave-one-out Jackknifing and computed icc pseudo-values for each subject, 

source and frequency. We tested the generated pseudo-value distributions for normality 

using the Kolmogorov-Smirnov test. We then performed one-sided t-tests against 1 

when appropriate. We corrected the resulting p-values with false-discovery rate 

correction across frequencies (Benjamini and Hochberg, 1995). 

Notably, statistical testing re-introduces the reliability confound discussed above. 

While the mean pseudo-values of attenuation corrected correlations are independent of 

reliability, their variability across subjects increases with decreasing reliability (see also 

Fig. 1). This confound needs to be taken into account when interpreting the statistical 

significance.    
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Figure 1. Simulation of attenuation corrected and uncorrected pattern correlation as a 

function of ground-truth pattern correlation and between-subject noise 
Distribution of simulated attenuation corrected (solid lines) and uncorrected correlations (dashed 

lines) between perfectly correlated patterns (A) and patterns correlated at r=0.3 (B). We added 

uncorrelated noise to the patterns: The signal-to-noise ratio (SNR) levels are set to 0.5, 1 and 2 

(for further details see 2.10). The y-axis in (A) is trimmed to 0.2 for visualization purposes: 

maximum values for SNR 1=0.4 and SNR 2=0.83. 

 

3.3 Results 

We quantified brain-wide neuronal phase- and amplitude-coupling from resting-state 

MEG measurements in 95 healthy participants. We applied source-reconstruction (Van 

Veen et al., 1997) to systematically characterize neuronal coupling at the cortical source 

level. Field spread (or signal leakage) can induce spurious coupling of sensor- and 

source-level M/EEG signals. Thus, we employed two coupling measures discounting 

signal leakage. We quantified phase-coupling using the weighted phase lag index (wPLI; 

Nolte et al., 2004; Vinck et al., 2011), which shows the best reliability of phase-coupling 

measures free from volume-conduction (Colclough et al., 2016). Further, for the 

presented data wPLI showed the same coupling patterns as the imaginary coherence or 

the phase lag index (see Fig. A2 for a comparison of the wPLI with these other phase-

coupling measures). For amplitude-coupling, we employed pair-wise signal 
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orthogonalization before estimating amplitude envelope-correlations (Fig. 2A) (Brookes 

et al., 2012; Hipp et al., 2012).  

It has recently been shown that signal orthogonalization does not perfectly discount 

volume conduction in the presence of genuine phase-coupling with non-zero phase 

delays (Palva et al., 2018). Intuitively, this is because in the presence of signal leakage, 

such phase-coupling systematically rotates the estimate of the signal to which one aims 

to orthogonalize, which results in sub-optimal orthogonalization and spurious amplitude-

correlations (Fig. 2B). Thus, our first question was if the empirically measured amplitude-

coupling patterns solely reflect this spurious amplitude-coupling. To test this, we directly 

estimated the spurious amplitude-coupling with numerical simulations based on 

empirical parameters (see 2.6). In brief, for each subject, connection, and frequency, we 

simulated pairs of cortical signals with their signal leakage (resolution matrix), measured 

phase-coupling (wPLI) and measured mean phase shift, but with no amplitude-coupling. 

We then estimated the spuriously measured amplitude-coupling for such signals. With 

this approach we computed the cortex-wide patterns of spurious amplitude-coupling to 

be expected under the assumption of no genuine amplitude-coupling. 

 

 

Figure 2. Principle of signal leakage reduction for amplitude relations 

(A) Illustration of band-limited time series from two sources X (red, upper panel) and Y (blue, 

middle panel) with their envelopes (thick lines). The green thick line represents the envelope of 

signal Y orthogonalized on signal X. (B) illustrates how the orthogonalization can induce spurious 

amplitude-coupling in the presence of phase-coupling and signal leakage. Here, we orthogonalize 

the measured signal Ymeas onto the measured signal Xmeas. In the presence of signal leakage, 

both measured signals reflect a mix of the genuine signals Xgen and Ygen. For non-zero phase-

coupling between Xgen and Ygen, Xmeas is rotated away from Xgen. This causes sub-optimal signal 

orthogonalization and spurious amplitude-coupling. 
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3.3.1 Seed-Based Connectivity Analysis 

We started with a seed-based analysis (Fig. 3). We computed cortex-wide patterns of 

measured (Fig. 3A) and spurious (Fig. 3B) amplitude-coupling as well as phase-coupling 

(Fig. 3C) at 16 Hz for several early sensory and higher-order cortical regions. As early 

sensory regions we chose the primary auditory (A1) and the somatosensory cortex (S1), 

which show strong inter-hemispheric connectivity and robust amplitude-coupling patterns 

at 16 Hz (Hipp et al., 2012; Mehrkanoon et al., 2014; Siems et al., 2016). For each seed, 

subject and both coupling modes, we z-scored the raw coupling measures and tested for 

z-scores larger than zero across subjects (one-sided t-test, FDR-corrected). This 

revealed which connections showed significant above-average coupling, discounting 

global offsets of coupling measures (Hipp et al., 2012).  

For both sensory seeds (A1 and S1), amplitude-coupling was strongest to regions 

surrounding the seed region and to the homologous area in the other hemisphere (Fig. 

3A). Phase-coupling did not show this pattern, but only above-average connectivity 

surrounding the seed (Fig. 3C). Similarly, spurious amplitude-coupling was restricted to 

regions surrounding the seed (Fig. 3B). 

Our findings for a higher-order seed region confirmed these results. We investigated 

phase- and amplitude-coupling for the medial prefrontal cortex (MPFC, Fig. 3A-C bottom 

row), which shows a complex connectivity structure for amplitude-coupling at 16 Hz 

(Hipp et al., 2012; Siems et al., 2016). We found that amplitude-coupling of MPFC 

peaked bilaterally in the dorsal prefrontal and lateral parietal cortices. In contrast, phase-

coupling and spurious amplitude-coupling only peaked surrounding the seed region. 

We extended our analysis to the entire correlation matrix at 16 Hz (Fig. 3D). The 

results confirm the observations from the seed-based analyses. In comparison to phase-

coupling and spurious amplitude-coupling, measured amplitude-coupling displayed the 

most pronounced interhemispheric connectivity.  
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Figure 3. Seed based analysis for early sensory and higher order cortices at 16Hz 

Seed-based correlation structure (z-scores) of the left auditory (left A1, top row), left 

somatosensory (left S1, middle row), and the medial prefrontal cortex (MPFC, bottom row) for 

measured amplitude-coupling (A), spurious amplitude-coupling due to phase-coupling (B) and 

measured phase-coupling (C). Coupling z-scores are tested against zero and statistically masked 

(p<0.05, FDR corrected). Color scale ranges from the 2nd to the 98th percentile of significant 

values, scaled within each panel. White dots indicate seed regions. The white dashed line in the 

top left panel highlights the central sulcus (see 4.3 for exact seed coordinates). (D) Full cortico-

cortical connectivity at 16Hz. Seed-wise coupling z-scores are tested against zero and statistically 

masked (p<0.05, FDR corrected). Gray areas indicate non-significant connections. Colored 

marginals and the inset on the bottom right indicate the ordering of cortical seeds. 
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3.3.2 Genuine amplitude-coupling 

To quantitatively address our first main question, i.e. if the measured amplitude-

coupling reflects genuine amplitude-coupling, we systematically assessed the similarity 

of the cortical patterns of spurious and measured amplitude-coupling across frequencies 

(Fig. 4). 

For each frequency and both measures, we computed the coupling between all 

cortical regions, i.e. we computed the full connectivity matrices of the cortex-wide 

measured and spurious amplitude-coupling (as shown in Fig 3D for 16 Hz). We then 

correlated the patterns of spurious and measured amplitude-coupling for each cortical 

seed region (3 examples from all 457 sources at one frequency are shown in Fig. 3). In 

other words, we correlated each column of the connectivity matrices between measures. 

Averaged across all seed regions and all frequencies, this revealed a very low 

correlation between spurious and measured amplitude-coupling patterns with median 

correlation coefficients below 0.05 (Fig. 4A, yellow line).  

 

 

Figure 4. Correlation between measured and spurious amplitude-coupling patterns 

(A) Frequency resolved correlation between measured and spurious amplitude-coupling patterns. 

Lines indicate median attenuation corrected (blue) and uncorrected (yellow) correlation. Shaded 

areas indicate the 5-95% and 25-75% inter-percentile range across cortical space. (B) Reliability, 

i.e. correlation, of measured amplitude-coupling patterns between subjects. (C) Reliability of 

spurious amplitude-coupling patterns between subjects. Shaded areas indicate the 5-95% 

interquantile range. 
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At first sight, the low correlation between measured and spurious amplitude-coupling 

patterns suggests that there is indeed genuine amplitude-coupling. However, it is 

important to realize that the correlation between two metrics does not only reflect their 

true underlying correlation, but also the metrics’ reliability (Bergholm et al., 2010; Hipp et 

al., 2012; Siems et al., 2016; Spearman, 1904). A reduced reliability of two measures, 

e.g. due to noise, leads to a lower measured correlation even if the true underlying 

correlation between the two measures is higher (Fig. 1, dashed lines). Thus, the 

observed low and frequency-specific correlation between spurious and measured 

amplitude-coupling patterns may merely reflect the low reliability of either measure (Fig. 

4B & C), and thus, does not allow for directly inferring genuine amplitude-coupling.  

We applied attenuation correction of correlations (Hipp and Siegel, 2015; Siems et 

al., 2016; Spearman, 1904) to account for the effect of signal reliability. Attenuation 

corrected correlations quantify how strong a correlation would be for perfectly reliable 

signals (Fig. 1). We employed the between-subject correlation of the measured and 

spurious amplitude-coupling patterns as a proxy for each measure’s reliability. For the 

measured amplitude-coupling, between-subject reliability peaked around 16 Hz (Fig. 4B) 

which is compatible with previous findings (Hipp and Siegel, 2015; Siems et al., 2016). 

For the spurious amplitude-coupling, reliability was overall lower and decreased for 

frequencies below 16 Hz (Fig. 4C).  

We corrected the correlation between measured and spurious amplitude-coupling 

patterns for these reliabilities by pooled division (Fig. 4A, blue line). As predicted, the 

overall correlation between measured and spurious amplitude-coupling patterns 

increased. However, the median attenuation corrected correlation remained low between 

0.05 and 0.19 for all frequencies. We statistically assessed if there was indeed spurious 

amplitude-coupling contributing to the measured amplitude-coupling, i.e. if the 

attenuation corrected correlations between measured and spurious amplitude-coupling 

patterns were significantly different from 0. Attenuation corrected correlation is an 

unbiased estimate (Fig. 1). Thus, we applied a leave-one-out jackknifing procedure and 

false-discovery rate correction (Benjamini and Hochberg, 1995). Across the entire 

spectrum, we found that less than 1% of the seed patterns showed significant (p<0.05, 

FDR-corrected) correlations with spurious amplitude-coupling patterns. On average, 

across all frequencies and cortical seeds, less than 2% of the variance in the measured 

amplitude-coupling patterns could be explained by spurious amplitude-coupling.  
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The above simulations may not capture all non-linearities in the relationship of phase-

coupling, amplitude-coupling and spurious amplitude-coupling. Thus, we repeated our 

analysis using a non-parametric rank correlation that is insensitive to monotonous non-

linearities (Fig. A3). The results of this control analysis were nearly identical to the 

results based on Pearson’s correlation. Taken together, we concluded that, for the data 

at hand, the effect of spurious amplitude-coupling on measured amplitude-coupling 

patterns was small.  

Why does the spurious amplitude show little effect on the measured amplitude-

coupling? We speculated that this might be due to the dynamic range of empirical 

phase-coupling. To investigate this, we performed systematic simulations across a broad 

set of coupling parameters and mixing (compare Palva et al., 2018) (Fig. 5A). These 

simulations showed that only for substantial phase-coupling (cp>=0.2) the relation 

between phase-shift, phase-coupling, mixing and spurious amplitude-coupling appears 

stable (Fig. 5A). However, the estimated empirical phase-coupling was mostly below this 

range (Fig. 5B). The median over all frequencies was between 0.01 and 0.09. For all 

frequencies but the lowest two, phase-coupling was below 0.2 and 0.3 for more than 

95% and 99% of the connections, respectively (Fig. 5B). Complementarily, spurious 

amplitude-coupling values approached the levels of measured amplitude-coupling (Fig. 

5C) only at higher phase-coupling (cp>=0.4) at a phase shift of around 90 degrees (Fig. 

5A). Thus, for the present data, the observed small effect of spurious amplitude-coupling 

on the measured amplitude-coupling is likely due to the small empirical phase-coupling.  
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Figure 5. Systematic simulation of spurious amplitude-coupling and empirical parameters 

 (A) Simulation of spurious amplitude-coupling as function of phase-coupling (panels), phase shift 

between signals (-pi to pi) and signal mixing (colored lines). (B) Distribution of the estimated 

empirical phase-coupling (C) Distribution of the measured amplitude-coupling (D) Distribution of 

empirical signal mixing. All shaded areas indicate the 1-99%, 5-95% and 25-75% interquantile 

ranges. 

 

3.3.3 Comparing amplitude-coupling and phase-coupling networks 

The above results suggest that the measured amplitude-coupling patterns are 

dominated by genuine amplitude-coupling. This allowed us to address our second main 

question: Are amplitude- and phase-coupling patterns of cortical connectivity different?  

To address this question, we partialized out the spurious amplitude-coupling patterns 

from the measured amplitude-coupling patterns using linear regression (see Fig. 6 for 

example seed patterns). We then correlated the resulting corrected amplitude-coupling 

patterns with the measured phase-coupling patterns for every seed pattern and 
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frequency. We found highest correlations from 8–26 Hz (Fig. 7A, yellow line). As for the 

correlation between spurious and measured amplitude-coupling patterns above, these 

correlations are attenuated by measurement reliability (Fig. 1 and 7B). We therefore 

computed the attenuation corrected correlation between the corrected amplitude-

coupling and phase-coupling patterns. 

The attenuation correction substantially increased the correlation, i.e. similarity 

between the two coupling modes (Fig. 7A, blue line). The median corrected correlation 

was around 0.8. The spectral distribution indicated three regimes: Very high similarity for 

frequencies below 4 Hz, a lower similarity from 5–64 Hz and very high variability of 

similarity above 64 Hz. We statistically tested if the two coupling modes shared pattern 

similarities, i.e. if the correlation was significantly different from 0. Indeed, for the entire 

spectrum and almost all seed patterns there was significant similarity between 

amplitude- and phase-coupling patterns (Fig. 7C, green line; p<0.05, corrected). 

However, even though the similarity was high, we found that the patterns were not 

identical. For almost all seed patterns at frequencies above 4 Hz pattern similarity was 

significantly smaller than 1 (Fig. 7C red line; p<0.05, corrected). Thus, amplitude- and 

phase-coupling patterns were similar but not identical. Again, we repeated the 

correlation analysis based on rank-correlation (Fig. A4). This yielded almost identical 

results suggesting that the dissimilarities were not driven by monotonous non-linear 

interactions between amplitude- and phase-coupling.  

The average attenuation corrected correlations did not show strong spectral 

differences (Fig. 7A). However, the cortical distribution of connectivity patterns that are 

most dissimilar between coupling modes may be frequency specific. Indeed, for all 

investigated frequencies, we found cortical regions with significantly dissimilar 

amplitude- and phase-coupling patterns (Fig. 7C) and less than 25% shared variance 

between coupling patterns (Fig. 8). The median pattern across all frequencies (Fig. 8, 

bottom right) displayed the strongest differences bilaterally in lateral prefrontal, 

orbitofrontal, anterior temporal and temporo-parietal areas. The lateral prefrontal 

differences appear to be strongest in the theta to alpha frequency range (6–11 Hz) and 

the temporal differences in the beta (23 Hz) and low gamma (45 Hz) frequency ranges 

(Fig. 8). 
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Figure 6. Corrected genuine amplitude-coupling patterns 

(A) Seed-based correlation structure (z-scores) of the left auditory (left A1, top row), left 

somatosensory (left S1, middle row), and the medial prefrontal cortex (MPFC, bottom row) for the 

corrected amplitude-coupling at 16 Hz. Coupling z-scores are tested against zero and statistically 

masked (p<0.05, FDR corrected). Color scale ranges from the 2nd to the 98th percentile of 

significant values, scaled within each panel. White dots indicate seed regions. The white dashed 

line in the top left panel highlights the central sulcus (see Section 4.3 for exact seed coordinates). 

(B) Full cortico-cortical connectivity at 16 Hz. Seed-wise coupling z-scores were tested against 

zero and statistically masked (p<0.05, FDR corrected). Gray areas indicate non-significant 

connections. Colored marginals and the inset on the bottom right indicate the ordering of cortical 

seeds. 
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Figure 7. Correlation between amplitude- and phase-coupling patterns 

(A) Spectrally resolved distribution of the correlation between corrected amplitude- and phase-

coupling patterns. The lines show the median of the uncorrected (yellow) and attenuation 

corrected (blue) correlations. The shaded areas indicate the 5-95% and 25-75% interquantile 

range across cortical space. (B) Between-subject reliability of corrected amplitude-coupling 

(purple) and phase-coupling (cyan) as a function of frequency. Shaded areas indicate the 5-95% 

interquantile range across cortical space. (C) Spectrally resolved fraction of patterns that show an 

attenuation-corrected correlation significantly different from 0 (green line) or smaller than 1 (red 

line) (p< 0.05, FDR-corrected). 

 

Which features of connectivity drive these differences between coupling modes? 

Given the higher complexity of amplitude-coupling patterns as compared to phase-

coupling patterns (Fig. 3A & Fig. 6A), we investigated the relation between amplitude- 

and phase-coupling patterns as a function of spatial distance. We split all cortico-cortical 

connections into 4 quartiles and, for each quartile, repeated the correlation of 

connectivity patterns (Fig. 9). We found that patterns were most similar for short distance 

connections and were more dissociated for longer connections (Fig. 9B). Thus, the 

differences between amplitude- and phase-coupling patterns were mostly driven by 

differences of long-distance connectivity. 
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Figure 8. Cortical distribution of the correlation between amplitude- and phase-coupling 

patterns 

Cortical distribution of the shared variance (r2) between corrected amplitude- and phase-coupling 

patterns for 6 Hz, 11 Hz, 23 Hz, 45 Hz and 90 Hz. The bottom right panel shows the median 

across all assessed frequencies (1–128Hz). Red areas indicate differences whereas green areas 

indicate similarity between coupling modes. The white dashed line (top left panel) indicates the 

central sulcus. 
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Figure 9. Correlation between amplitude- and phase-coupling patterns as a function of 

connection distance 

Spectrally resolved correlation between corrected amplitude- and phase-coupling patterns for 

different quartiles of Euclidean distance between the cortical seeds of each connection. (A) 

Uncorrected and (B) attenuation corrected correlation between corrected amplitude-coupling and 

phase-coupling patterns. Shaded areas indicate the 25-75% interquartile range over space. 

 

3.4 Discussion 

Our results provide, to our knowledge, the first systematic comparison of cortical 

phase- and amplitude-coupling patterns in the human brain. We found similarities and 

differences between both coupling modes that were widely distributed across 

frequencies and the entire cortex (Hypothesis 1.2). By combining empirical 

measurements and simulations we showed that the observed differences were not 

caused by known methodological biases, but instead reflect a genuine dissociation 

between coupling modes (Hypothesis 1.1). The observed differences suggest that the 

two coupling modes may at least partly reflect distinct neural mechanisms. Furthermore, 

our results highlight and clarify the compound nature of amplitude-coupling measures 

applied to orthogonalized signals. 

3.4.1 Discounting confounding factors 

Our analyses discount three critical factors that confound the estimation of neuronal 

coupling patterns and their comparison. First, we employed amplitude correlations of 

orthogonalized signals (Brookes et al., 2012; Hipp et al., 2012) and the weighted phase-

lag index (Vinck et al., 2011). Using these coupling measures ensured that the 

measured coupling did not reflect spurious coupling due to field-spread.  
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Second, recent studies suggest that amplitude correlation between orthogonalized 

signals is a compound measure, which is affected by the phase-coupling between those 

signals (Palva et al., 2018). We estimated the spurious amplitude-coupling due to phase-

coupling using simulations based on the empirically measured phase-coupling. We then 

partialized the resulting spurious amplitude-coupling patterns from the measured 

amplitude-coupling patterns. 

Third, for the comparison between coupling modes, we employed attenuation 

correction of correlations (Spearman, 1904). This approach allows correcting for the 

attenuation of measured correlation caused by sub-optimal measurement reliability. 

Attenuation correction of correlations is a powerful analytical approach that has been 

successfully employed before to compare MEG with fMRI (Hipp and Siegel, 2015) and 

MEG with EEG (Siems et al., 2016). Importantly, reliability in the present study refers to 

the stability of coupling patterns across subjects, which effectively takes into account all 

sources of variance across subjects, including measurement and finite-sampling noise, 

noise caused by neural activity not of interest, and inter-subject variability. The employed 

approach corrects for all these sources of variance, which attenuate measured 

correlations and may thus induce spurious spectral and spatial specificity.  

Our results indicate that the raw correlation between amplitude- and phase-coupling 

patterns is strongly affected by measurement reliability. Attenuation correction suggests 

that the raw correlation peak around 16 Hz reflects the strength of intrinsic cortical 

rhythms around this frequency, rather than a frequency-specific relation of the two 

coupling modes (compare also Zhigalov et al., 2017).  

3.4.2 Phase-coupling sensitivity of orthogonalized amplitude correlation 

Our results provide a critical reassessment of well-established amplitude-coupling 

measures of orthogonalized signals (Brookes et al., 2012; Hipp et al., 2012). It has 

recently been pointed out that, in the presence of field-spread, these measures are 

sensitive to phase-coupling with non-zero phase lag (Palva et al., 2018). Here, we 

combined the simulation approach put forward by Palva and colleagues (2018) with 

empirical measurements to systematically evaluate the sensitivity of these measures to 

phase-coupling across the human cortex.  
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The bias of orthogonalized amplitude-coupling measures left open the possibility that 

the described amplitude-coupling patterns (Brookes et al., 2012; Hipp et al., 2012) 

merely reflect phase-coupling in combination with field spread. Our results provide 

several lines of evidence against this hypothesis. 

First, the spurious amplitude correlation showed little consistent connectivity, whereas 

the measured amplitude-coupling patterns showed complex and multimodal distributions 

(Fig. 3). Second, the between-subject reliability of coupling patterns clearly dissociated 

measured and spurious amplitude-coupling (Fig. 4B and C). Third, for all frequencies 

and cortical regions spurious amplitude-coupling patterns could not explain more than 

10% and on average less than 4% of the variance in measured amplitude-coupling 

patterns (Fig. 4A). In sum, our findings suggest that for the present data the magnitude 

of spurious amplitude-coupling and its effects on measured amplitude-coupling is small. 

Nevertheless, it is important to highlight the compound nature of amplitude 

correlations of orthogonalized signals. Our simulations confirm that phase-coupling, 

phase shift and mixing have a marked effect on the amount of spurious amplitude-

coupling (Fig. 5A). In accordance with Palva and colleagues (2018), our results show 

that this compound nature needs to be taken into account in particular for cases with 

high or variable phase-coupling. 

3.4.3 Relation between phase- and amplitude-coupling 

Our results show that amplitude- and phase-coupling patterns bear substantial 

similarities (Fig. 7). These similarities may result from one or more common underlying 

neural mechanisms. Synaptic interactions between neuronal populations may induce 

both, coupling of phases and amplitudes of these neuronal populations. Similarly, 

common input to neuronal populations will co-modulate and thus couple both, phases 

and amplitudes (Tewarie et al., 2018a).  

Alternatively, also causal relations between both coupling modes may result in 

correlations. For example, phase-locking may enhance neuronal interactions, and 

thereby, enhance amplitude-coupling (Fries, 2015; Womelsdorf et al., 2007).  

Despite the high attenuation corrected correlation between amplitude- and phase-

coupling patterns we found that amplitude- and phase-coupling patterns are not 
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identical. Which factors may cause the observed differences between phase- and 

amplitude-coupling patterns (Fig. 7)?  

First, different non-linearities between coupling modes may induce differences. The 

same underlying neuronal interaction or common input may have different effects on 

both coupling modes. However, in contrast to our present results, this effect should be 

spectrally and spatially unspecific. Furthermore, our present results were robust to using 

a non-parametric correlation insensitive to monotonous non-linearities (Fig. 6). These 

results suggest that such non-linearities cannot fully explain the observed differences 

between coupling modes. 

Second, distinct neuronal mechanisms may underlie the two coupling modes. On the 

one hand, for example, neuromodulation may co-modulate the amplitude of rhythms in 

different brain regions (van den Brink et al., 2019). Or, as recently proposed, slow 

fluctuations of extracellular potassium concentrations and structural connectivity may 

drive long-range power co-fluctuations (Krishnan et al., 2018). These mechanisms may 

induce amplitude-coupling on a slow temporal scale without necessarily causing phase-

coupling. On the other hand, synaptic interactions triggered by intrinsic activity or 

sensory inputs may induce phase-coupling between areas without driving identical 

amplitude co-modulations (Landau et al., 2015). The notion of different mechanisms 

underlying both coupling modes is also supported by their distinct temporal dynamics 

(Daffertshofer et al., 2018). 

Notably, also residual non-neuronal signals, such as e.g. muscle activity, eye-

movements or cardiac activity, might systematically affect both coupling modes. Such 

sources may induce or hamper reliable coupling patterns across subjects and coupling 

modes, and thereby, affect the correlation of coupling patterns between coupling modes. 

3.4.4 Functional role of coupling modes 

Phase-coupling of neuronal populations may regulate their interactions by aligning 

rhythmic excitability fluctuations and rhythmic inputs (Fries, 2015). Similarly, amplitude-

coupling may modulate interactions by temporally aligning processing associated with 

low or high oscillatory amplitudes across brain regions (von Nicolai et al., 2014; Siegel et 

al., 2012). While the observed differences between coupling modes may reflect such 

functional roles, the present results hold independent from such potential functions. In 
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fact, even if phase- or amplitude-coupling merely reflect neural interactions without a 

causal mechanistic role, our results show that these coupling modes provide partially 

dissociated and thus non-redundant information about neuronal interactions. This 

suggests that both coupling modes provide complementary information on large-scale 

neuronal interactions during cognitive processes and on their alteration in 

neuropsychiatric diseases. 

3.4.5 Limitations  

Our results are based on the assumption of Gaussian signals. Deviations from this 

assumption may have an effect on two levels. First, non-Gaussian signals will lead to 

sub-optimal orthogonalization (Brookes et al., 2012, 2014; Hipp et al., 2012). Second, 

the spurious amplitude-coupling of non-Gaussian signals will deviate from the simulated 

estimates based on Gaussian signals. Thus, optimal estimation of spurious amplitude-

coupling requires a further systematic assessment of the effect of signal distributions. 

3.4.6 Conclusion 

With our first empirical study (Siems and Siegel, 2020) we showed that cortical 

phase- and amplitude-coupling patterns are non-redundant (Hypothesis 1.2), which may 

reflect at least partially distinct neuronal mechanisms. These results are independent of 

the critical bias that induces spurious amplitude-coupling due to phase-coupling and 

highlighted and clarified the compound nature of amplitude-coupling measures 

(Hypothesis 1.1). We could draw these conclusions due to a newly established analysis 

approach combining empirical measurements and simulations. Additionally, our findings 

are unaffected by the non-uniform signal-to-noise ratio distribution. 
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4 Connectivity as a biomarker of pathology 

Modern network science offers the opportunity to not only understand the functioning 

of the healthy but also the pathologically altered brain. A fostered understanding of 

normal brain function made it possible to address functional connectivity changes in 

various neurological and psychiatric disorders (cf.: Fornito et al., 2015; Heuvel and 

Sporns, 2019; Stam, 2014). Recent studies have applied functional connectivity 

measures as a versatile biomarker in autism (Kitzbichler et al., 2015), schizophrenia 

(Cetin et al., 2016; Maran et al., 2016), epilepsy (Burns et al., 2014; van Dellen et al., 

2014; Zerouali et al., 2016), dementia (Koelewijn et al., 2017; Maestú et al., 2015), 

Parkinson’s disease (Oswal et al., 2016) and blindness (Hawellek et al., 2013) among 

others. 

As specific as these disease phenotypes are, associated changes on the network 

level appear to follow a specific set of rules: Wherever tissue damage or alterations 

occur the effect appears to progressively spread through the entire connectome (Fornito 

et al., 2015; Stam, 2014). This spread is supposed to be a result of the hierarchical 

organization of the brain (Crossley et al., 2014; Rubinov and Sporns, 2010). At the top of 

the hierarchy are so-called rich-club nodes, a selection of nodes that form strong 

connections and facilitate effective long-range communication (Rubinov and Sporns, 

2010). Lower down the hierarchy are the modules that are related to the direct 

processing of information. 

Theoretically, a primary pathological area will affect its connected nodes and increase 

or decrease their function. If the secondarily affected nodes cannot compensate for the 

altered input, those changes will spread higher up the hierarchy (Fornito et al., 2015; 

Heuvel and Sporns, 2019; Stam, 2014). Changes to nodes on the highest level of the 

hierarchy, i.e. the “rich-club”, likely lead to the strongest pathological and behavioral 

effects (Crossley et al., 2014). 

4.1 Functional connectivity in Multiple Sclerosis 

Multiple Sclerosis (MS) is an inflammatory, demyelinating secondary 

neurodegenerative disease (Dendrou et al., 2015). From early disease stages on and 

during disease progression (Amato et al., 2010), accumulating white-matter lesions and 

cortical atrophy can lead to cognitive decline and physical disability (Chiaravalloti and 
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DeLuca, 2008). While gross white-matter damage itself is only weakly related to disease 

severity and duration (Benedict and Zivadinov, 2011; Benedict et al., 2004; Stam, 2014), 

fine-grained analyses of structural connectivity and neuronal coupling revealed that the 

location of affected white-matter tracts is pivotal (Schoonheim et al., 2015; Stam, 2014). 

Using Magnetic Resonance Imaging (MRI), Magnetoencephalography (MEG) and 

Electroencephalography (EEG), anatomical and functional network changes have been 

related to tissue pathology (Roosendaal et al., 2009; Shu et al., 2011; Tewarie et al., 

2014a), cognitive deficits (Cogliati Dezza et al., 2015; Gschwind et al., 2016; Hardmeier 

et al., 2012; Hawellek et al., 2011; Rocca et al., 2012; Schoonheim et al., 2013; Sjøgård 

et al., 2021; Tewarie et al., 2013, 2014b), clinical subtypes (Kocevar et al., 2016) and 

disease duration (Liu et al., 2016).  

The high temporal resolution of MEG and EEG allows to characterize the frequency 

specific coupling of neuronal activity, which may reflect (Hipp and Siegel, 2015; Siegel et 

al., 2012) and even mediate (Fries, 2005) interactions in large-scale brain networks. 

Accordingly, electrophysiological studies in MS patients have revealed changes of 

neuronal coupling in specific frequency ranges (Hardmeier et al., 2012; Schoonheim et 

al., 2013; Tewarie et al., 2013, 2014a). While these studies have largely focused on 

phase-coupling as a measure of functional connectivity, recent findings have highlighted 

amplitude-coupling as another mode of neuronal interactions that may provide robust 

connectivity information, non-redundant to phase-coupling (Brookes et al., 2012; 

Daffertshofer et al., 2018; Hipp et al., 2012; Siems and Siegel, 2020; Siems et al., 2016; 

Sjøgård et al., 2021; Wens et al., 2014). However, so far it is unknown how such 

amplitude-coupling changes may relate to phase-coupling. 

Additionally, the change in cognitive function can be related to both increased and 

decreased connectivity (Hardmeier et al., 2012; Hawellek et al., 2011; Tewarie et al., 

2013). Human electrophysiology studies in particular paint a complex picture of 

connectivity progression. Here, the sign of connectivity changes strongly depends on the 

isolated carrier frequency of the signal (Hardmeier et al., 2012; Schoonheim et al., 2013; 

Tewarie et al., 2013, 2014a). Moreover, disease duration appears to be an important 

factor for network changes and might depend on the interplay of gray and white-matter 

damage (Tewarie et al., 2018b). Hence, it appears critical to identify compensatory 

mechanisms of brain connectivity over the course of the disease to understand their 

function and more generally learn about brain connectivity organization itself.  
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5 Altered cortical phase- and amplitude-coupling in 
Multiple Sclerosis 

 

5.1 Scientific questions and aims 

In our second study (Siems et al., 2021) we assessed if we can classify Multiple 

Sclerosis patients from healthy controls based on their electrophysiological coupling 

networks. In contrast to the recent literature our sample comprised a relatively early 

disease stage (median EDSS = 1.5, range 0 to 3.5). So far most studies applied only 

phase-coupling measures to assess disease specific alterations of functional networks 

(Cover et al., 2006a; Hardmeier et al., 2012; Schoonheim et al., 2013; Tewarie et al., 

2013, 2014b; Van Schependom et al., 2014a) and little is know about the changes in 

amplitude-coupling (Sjøgård et al., 2021). We thus focused our analyses on both 

amplitude- and phase-coupling networks and their interactions. As we have outlined in 

our first study these two coupling modes dissociate in the healthy brain and might 

indicate at least partly distinct neuronal mechanisms (Avramiea et al., 2021; 

Daffertshofer et al., 2018; Siems and Siegel, 2020). The question remained if the two 

coupling modes do further dissociate in the diseased brain. 

Here, we measured magnetoencephalography (MEG) of 17 relapsing-remitting 

Multiple Sclerosis patients (Lublin and Reingold, 1996; Polman et al., 2011) and 17 

healthy controls. The patient group was measured prior to the first application of 

Tecfidera (dimethyl fumarate; BioGen Inc., Cambridge, MA, USA) with median disease 

durations of 1 month (0 - 3 years interquartile range, maximum 11 years). Multiple 

Sclerosis is a progressive neurological disease that through demyelination primarily 

affects the structural basis of connectivity. However, the demyelinating effects of Multiple 

Sclerosis can occur diffusely and the lesions will likely not overlap between subjects. 

Nonetheless, recent disease models proposed that areas and connections higher up the 

connectomic hierarchy, so-called hubs, might show generalized effects (Fornito et al., 

2015; Heuvel and Sporns, 2019; Stam, 2014). Hereby, it has been shown that 

neurological tissue damage does not solely lead to a lack or decrease of coupling but 

can as well show an increase in coupling as a result of compensatory effects (Hawellek 

et al., 2011; Schoonheim et al., 2013, 2015; Tewarie et al., 2018b). Addressing the inter-
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subject variability was one of the major challenges of this study, particularly due to the 

high-dimensional search space of functional connectivity. 

Here, we tried to answer two main questions addressing all of the above-mentioned 

points. First, we tried to establish a lower-dimensional feature-space in which the 

successful classification between patient and control group was possible. Second, we 

assessed if the feature characteristics differ between amplitude- and phase-coupling 

networks and show a dissociated spatio-spectral structure. 

5.2 Materials and methods  

5.2.1 Subjects and dataset 

We analyzed MEG data from two datasets. The first dataset was recorded at the 

MEG-Center Tübingen and included eyes-open resting-state MEG measurements from 

34 subjects. 17 of these subjects (8 female, mean age (± std) 31.1 ± 9.6 years) were 

diagnosed with RRMS and 17 subjects were healthy controls (9 female, mean age (± 

std) 28.4 ± 4.2 years, p = 0.30). The patient group was measured prior to the first 

application of Tecfidera (dimethyl fumarate; BioGen Inc., Cambridge, MA, USA) with a 

median disease duration of 1 month (0 - 3 years interquartile range, maximum 11 years). 

Neurological impairment was assessed with the Expanded Disability Status Scale 

(Kurtzke, 1983; n = 14; median EDSStotal = 1.5, range 0 to 3.5) and the Multiple Sclerosis 

Functional Composite (Fischer et al., 1999; n = 13; median MSFCtotalz = -1.8, range -0.3 

to -3.3). All participants gave written informed consent in accord with the Declaration of 

Helsinki, and the study was approved by the ethics committee of the medical faculty of 

the University of Tübingen. 

We collected 10 minutes of eyes-open resting-state MEG data per subject. The MEG 

was continuously recorded with a 275-channel whole-head system (Omega 2000, CTF 

Systems Inc., Port Coquitlam, Canada) in a magnetically shielded room. The head 

position was tracked using three head localization coils fixated at the nasion and the left 

and right preauricular points. MEG signals were recorded with 2343.75 Hz sampling 

frequency and down sampled to 1000 Hz offline. 

A T1-weighted sagittal MRI was obtained from each participant to construct individual 

high-resolution head models (MPRAGE sequence, TE = 2.18 ms, TR = 2300 ms, TI = 

1100 ms, flip angle = 9°, 192 slices, voxel size = 1 × 1 × 1 mm). The subjects were 
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scanned in a Siemens MAGNETOM Trio 3T scanner (Erlangen, Germany) with a 32-

channel head coil. 

The second dataset included 95 subjects from the publicly available human 

connectome project (HCP) S900 release (Larson-Prior et al., 2013). Participants were 

healthy adults in the age range between 22-35 years (n22-25 = 18, n26-30 = 40, n31-35 = 37). 

The HCP-sample included 45 females. The HCP-MEG data included three six-minute 

blocks of eyes-open resting-state MEG with short breaks in between measurements. 

Data were recorded with a whole-head Magnes 3600 scanner (4D Neuroimaging, San 

Diego, CA, USA) situated in a magnetically shielded room (for further details see: 

Larson-Prior et al., 2013). Additionally, the HCP-subjects were scanned on a Siemens 

3T Skyra to acquire structural T1-weighted magnetic resonance images (MRI) with 

0.7mm isotropic resolution (Van Essen et al., 2013). 

5.2.2 Data preprocessing 

For the Tübingen-dataset, we first notch-filtered line noise at 50 Hz and at the first six 

harmonics (stop-band width: 1 Hz). Second, we visually inspected the data for muscle-, 

eyeblink-, and technical artifacts (SQUID-jumps). We rejected corresponding time 

intervals and malfunctioning or noisy channels (mean: 1 channel; range: 0 to 3 

channels). Third, we high-pass filtered the data at 0.5 Hz with a 4th-order zero-phase 

Butterworth filter and split the data into two frequency bands: a low frequency band from 

0.5–30 Hz and a high frequency band with frequencies above 30 Hz. For both frequency 

ranges, we separately performed independent component analysis (ICA) (Hyvärinen and 

Oja, 2000). This approach takes advantage of the distinct spectral profile of different 

physiological artifacts, such as muscle and eye-movement artifacts (Hipp and Siegel, 

2013). For both frequency ranges, independent components were visually inspected and 

artifactual components were rejected according to their topology, time course and 

spectrum (Chaumon et al., 2015; Hipp and Siegel, 2013). Finally, both frequency bands 

were recombined. 

For the HCP-dataset we used the preprocessed data as provided by the HCP 

pipeline (Larson-Prior et al., 2013). This included removal of noisy and malfunctioning 

channels, bad data segments and physiological artifacts by the iterative application of 

temporal and spatial independent component analysis (ICA; Larson-Prior et al., 2013; 

Mantini et al., 2011).  
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5.2.3 Physical forward model and source modeling 

MEG sensors were aligned to the individual anatomy using FieldTrip (Oostenveld et 

al., 2010). We segmented the individual T1-weighted images and generated a single 

shell head model to compute the physical forward model (Nolte, 2003) for 457 equally 

spaced (~1.2 cm distance) source points spanning the cortex at 0.7 cm depth below the 

pial surface (Hipp and Siegel, 2015; Hipp et al., 2011b; Siems and Siegel, 2020). The 

source shell was generated in MNI-space and non-linearly transformed to individual 

headspace. We co-registered the source coordinates, head model and MEG channels 

on the basis of the three head localization coils. 

The sensor-level MEG data was projected to source space using linear beamforming 

(Gross et al., 2001; Van Veen et al., 1997). This spatial filtering approach reconstructs 

activity of the sources of interest with unit gain while maximally suppressing 

contributions from other sources. 

5.2.4 Spectral analysis 

We generated time-frequency estimates of the time-domain MEG signal using Morlet 

wavelets (Goupillaud et al., 1984). The bandwidth of the wavelets (1 spectral standard 

deviation) was set to 0.5 octaves with a temporal step-size of half the temporal standard 

deviation. We derived spectral estimates for 23 frequencies from 2.8 to 128 Hz in 

quarter-octave steps.  

5.2.5 Neuronal Coupling 

We estimated neuronal amplitude- and phase-coupling by means of amplitude 

envelope correlations of orthogonalized signals (Hipp et al., 2012) and the weighted 

phase lag index (Vinck et al., 2011), respectively. Importantly, both measures are 

insensitive to volume conduction and might relate to distinct functional mechanisms of 

cortical network interactions (Daffertshofer et al., 2018; Engel et al., 2013; Siegel et al., 

2012; Siems and Siegel, 2020). For the application of amplitude-coupling we used 

pairwise orthogonalization of the two complex signals at each time-point (Brookes et al., 

2012; Hipp et al., 2012) before correlating the log-transformed power envelopes. 

For both metrics all subjects and frequency bands, we generated full and symmetric 

correlation matrices. For further analyses, we vectorized all unique connections of these 

correlation matrices. We refer to the resulting vectors as coupling profiles. 
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5.2.6 Direct comparison of coupling 

For every connection (nc = 104,196) in each frequency band (nf = 23), we tested for 

group differences in coupling strength (two-tailed Mann-Whitney U-tests) and applied 

false-discovery rate correction (Benjamini and Hochberg, 1995) for multiple-comparison 

correction within each frequency. Further, we tested which group was more likely to 

show stronger coupling in each frequency band by testing the distribution of the sign of 

significant t-scores (p < 0.05, corrected) against 0.5 using a binomial test. In other 

words, we tested the Null-hypothesis for the same probability of positive and negative 

signs. For the binominal statistic, we conservatively estimated the degrees of freedom at 

df = 40 as the rank of the forward model, i.e. the maximum amount of independently 

separable sources (compare Hipp and Siegel, 2015; Wens et al., 2015). Furthermore, 

we FDR-corrected the results of the binomial tests across frequencies. 

5.2.7 Dimensionality reduction of coupling spaces 

In a first step, in the HCP dataset, for each frequency and coupling measure, we 

applied PCA to the coupling profiles across HCP subjects (nhcp = 95) in order to identify 

components, i.e networks of coupling that explain most variability across subjects. Next, 

we projected the coupling profiles of the Tübingen patient and control subject dataset 

into the PCA space. For each frequency and both coupling modes, we multiplied the z-

scored coupling profiles of every subject with the component eigenvectors of the PCA. In 

each frequency band, we used the 30 principle components with the highest 

eigenvalues, which resulted in 690 feature dimensions per coupling measure (coupling 

components). 

5.2.8 Feature bagging and group classification 

In a second step, we applied bootstrap aggregating (feature bagging) to identify the 

components that best separate between the two groups (Fig. 10A). We drew a random 

subset of features (nsub = 10) from all 1380 features, classified the two groups using a 

support vector machine classifier with leave-one-out cross-validation, and repeated this 

procedure (ndraw = 2x107). As control analyses, we repeated the procedure for nsub = 2, 3, 

5, 20 and for three other classification algorithms (decision trees, linear discriminatory 

analysis, naïve Bayes classifier). This procedure resulted in a distribution of 

classification accuracies across random feature selections. We defined the features that 
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best separate between patients and controls by applying a threshold at the 75-percentile 

of this distribution (Fig. 10B). If no feature can classify between the two groups the 

probability of any feature to be in the subsets with the 25% highest accuracies will be 

equal. However, if features contain information to classify the two groups, this probability 

will increase. Thus, we defined the probability of a feature to be in the 25% subsets with 

the highest accuracies as its classification score. As control analyses, we repeated the 

analyses for different accuracy thresholds: 66%, 90% and 98% cutoff. 

 

 

Figure 10. Analysis approach 

(A) For each subject, coupling measure and frequency we computed complete cortico-cortical 

correlation matrices and vectorized and z-scored the upper triangle. We conducted PCA on the 

coupling vectors of the HCP data and projected the coupling vectors of RRMS-patients and 

control subjects into the resulting space of principal coupling components. We applied bootstrap 

aggregating (feature bagging) to identify coupling components that best classify between RRMS 

patients and control subjects. We drew random subsets of 10 components (bags) and, for each 

bag, classified (SVM) between groups with leave-one-out cross-validation. We employed a 

permutation statistic to select components that were more often in the top quartile of best 

classifying bags than expected by chance (see methods) (B) Distribution of classification 

accuracies across all 2x107 bags for the original data (purple) and for randomly permuted group 

assignments of subjects (yellow).  
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5.2.9 Statistical testing of classification scores 

We used permutation statistics to test the statistical significance of every feature’s 

classification score, i.e., the likelihood of a given classification score under the Null-

hypothesis that groups cannot be classified based on this feature. A significant feature 

indicates a spatio-spectral pattern of cortical coupling that separates between patient 

and control groups. 

For each permutation (n = 1000), we randomly reassigned subjects to one of the two 

groups, keeping the same ratio between groups and repeated our analysis. Importantly, 

for each permutation, we again drew ndraw = 2x107 feature bags per group permutation to 

account for the random separability of any group constellation. We then combined all 

classification scores (1000 permutations of 1380 feature-specific classification scores) to 

define one general, component-independent Null-distribution and to assign p-values for 

each classification score. We corrected these p-values with false-discovery rate 

correction across the 1380 scores (FDR-correction; Benjamini and Hochberg, 1995). 

To test if groups could be significantly classified in general, we quantified how likely it 

was to find the identified number of significant components under the Null-hypothesis 

that groups could not be classified. We applied the same procedure as for the real data 

to every group permutation and quantified how many significant components we could 

identify (p < 0.05, FDR-corrected). The resulting distribution across the 1000 

permutations served as the Null-distribution of significant components. All permutations 

had less significant features than identified for the real data (58 features). In fact, not 

more than one significant feature (p < 0.05, FDR-corrected) was identified for any of the 

1000 permutations. 

5.2.10 Classification confidence 

We quantified classification confidence as a distant measure. For each subject i, we 

compared the Mahalanobis distance Dmah of its feature vector to the distribution of 

feature vectors for the patient and for the control group. We computed Dmah of subject i: 

𝐷!"!,!,! = (𝑓! − µ!) ∗ 𝐶!!! ∗ (𝑓! − µ!)′ 

Here, fi describes the feature vector of each subject; µ and C describe the group g 

mean and group member covariance, respectively. We excluded the ith subject from the 

corresponding mean and covariance matrix calculation. The exponential -1 indicates 
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matrix inverse and the ‘ operator indicates the transpose. We then defined classification 

confidence as the difference between DMah,i,con – Dmah,i,rms. Thus, a positive value 

indicates that a subject is closer to the patient group mean than to the control group 

mean and vice versa. 

5.2.11 Spatial distribution of PCA components 

The component coefficients derived from the HCP-dataset contain the spatial 

distribution of each principal component. However, the sign of these weights is 

inherently ambiguous. We achieved sign consistency across components by sign 

flipping those components for which the mean component scores within the patient 

group were smaller than in the control group. Hence, a positive component coefficient 

indicates that the coupling is relatively increased in patients whereas a negative 

coefficient indicates a coupling decrease.  

We visualized the spatial distribution of PCA components as the average of all 

normalized significant components within a frequency band and coupling measure: delta 

(2.8 - 3.4 Hz), theta (4 - 6.7 Hz), alpha (8 - 13 Hz), beta (16 - 27 Hz), low gamma (32 - 

54 Hz) and high gamma (64 - 128 Hz). For the normalization we divided each 

component by the absolute 98th-percentile across all its connections. 

5.2.12 Unbiased accuracy estimation 

To estimate the unbiased accuracy with which any new subject can be classified as 

patient or healthy control, we employed a second-level leave-one-out cross-validation. 

Leaving out each subject at a time, we applied the complete analysis pipeline outlined 

above, defined features spaces, and classified the left out subject. 

We generated a continuous estimate of accuracy by computing the distance of the 

left-out subject from the decision boundary. To compare distances across different 

feature space realizations, i.e. left out subjects, we defined distances in units of standard 

deviation. We divided the distance of the left-out subject in each feature space by the 

standard deviation of the distances to the decision boundary of all but the left-out 

subjects. The sign of the distance was set positive or negative if the subject was 

classified as a patient or healthy control, respectively. 
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Finally, we separately fit a Gaussian distribution to the patient (NMS) and healthy 

control group (Ncon) distances. We derived the unbiased sensitivity, specificity and 

accuracy of classification from these two Gaussians: 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑁!!"#

!∞
!

𝑁!!"#
!∞
!∞

 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
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𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
1
𝑛!""

(𝑛!!"# ∗ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 +  𝑛!"# ∗ 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) 

where ∫ indicates the integral and the two Gaussians, NMS and Ncon, are defined by 

the group specific mean and standard deviation. The group sizes were defined by nMS, 

ncon and nall for the patient group, the control group and all subjects, respectively. 

 

5.3 Results 

We compared brain-wide phase- and amplitude-coupling of frequency specific 

neuronal activity between 17 patients diagnosed with RRMS and 17 healthy control 

subjects. Cortical phase- and amplitude coupling was estimated from 10 min of eyes-

open resting-state MEG measurements. We reconstructed cortical activity from the MEG 

using beamforming (Gross et al., 2001; Van Veen et al., 1997) and quantified phase- 

and amplitude-coupling using the weighted phase-lag index (Vinck et al., 2011) and 

power-correlations of orthogonalized signals(Hipp et al., 2012), respectively. Both 

measures are insensitive to volume conduction (Brookes et al., 2012; Hipp et al., 2012; 

Vinck et al., 2011) and show strong intra- and inter-subject reliability (Colclough et al., 

2016; Hipp et al., 2012; Siems and Siegel, 2020; Siems et al., 2016; Wens et al., 2014). 

5.3.1 Direct comparison of neuronal coupling 

As a first approach, we directly compared the connection- and frequency-wise 

coupling between patients and controls (Fig. 11; nc = 104,196; nf = 23). While differences 

between groups peaked around 19 Hz and 45 Hz for amplitude- and phase-coupling, 

respectively (Fig. 11, purple lines), these effects were not statistically significant when 

applying false discovery rate-correction for the number of connections tested (Fig. 11, 
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green lines). This highlights how the high dimensionality of brain-wide coupling impedes 

a direct statistical comparison. 

 

Figure 11. Connection-wise comparison of neuronal coupling between MS patients and 

control subjects 

(A) Amplitude-coupling (orthogonalized amplitude correlations) (B) Phase-coupling (weighted 

phase-lag index). In both panels, the purple line indicates the ratio of significantly different 

connections (p < 0.05 uncorrected) and the green line indicates this ratio after false-discovery 

rate correction. The red and the blue lines show the ratio of connections with increased and 

decreased coupling in the patient group, respectively (p < 0.05, uncorrected). The gray bars 

display carrier frequencies with a significantly directed ratio of effects (p < 0.05, FDR-corrected), 

i.e. more connections with significantly increased or decreased coupling. The black dashed line 

indicates 0.05.	

 

Nevertheless, the direct comparison revealed an intriguing pattern of the sign of 

differences between groups  (Fig. 11, red and blue lines). If there was no difference 

between groups, the sign of randomly significant differences in coupling (type I errors) 

would be equally probable in both directions. However, the observed differences 

deviated from this distribution for both coupling measures (Fig. 11, gray bars). For 

amplitude-coupling, patients showed decreased coupling in the beta frequency range 

(16 – 22 Hz) and increased coupling in the delta (2 – 4 Hz) and gamma (32 – 106 Hz) 
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frequency ranges. Phase-coupling in patients was increased in the low gamma 

frequency range (38 – 54 Hz). 

In summary, although the vast number of connections impaired the direct comparison 

of coupling on the connection-level, the asymmetry of observed differences suggested 

that there are systematic and frequency-specific differences of coupling between early-

stage MS patients and healthy control subjects. 

	

5.3.2 Group classification based on principal coupling components 

To overcome the limitations of the connection-wise analysis and to efficiently cope with 

the high dimensionality of the brain-wide coupling space, we next devised a multistage 

machine-learning approach (Figure 10). In brief, we first identified a subspace of 

principle coupling components in an independent MEG dataset, then projected the 

patient and control data into this coupling space, and finally employed a bootstrapped 

classification approach to identify significant coupling differences between groups. 

 

 

Figure 12. Selection of principal coupling components by classification scores  
Classification scores were defined as the likelihood of each component to contribute to bags with 

classification accuracies in the top quartile of all 2x107 bags. (A) Classification scores for all 30 

amplitude- (purple) and phase-coupling (green) components of each carrier frequency ordered by 

the variance explained within each frequency. The components and eigenvalues were derived 

from the HCP-dataset. Dashed lines divide the carrier frequencies. Purple and green squares 

indicate significant classification scores for amplitude- and phase-coupling components, 

respectively (p < 0.05, FDR-corrected) (B) Maximum classification scores per carrier frequency 

for amplitude- (purple) and phase-coupling (green).  
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To efficiently reduce the dimensionality of the coupling space, we applied principal 

component analysis (PCA) to the z-scored brain-wide phase- and amplitude-coupling of 

95 subjects from the human connectome project S900 MEG dataset (Larson-Prior et al., 

2013). For each frequency and both coupling modes, we extracted the 30 principal 

coupling components that explained most variability of coupling across subjects (largest 

eigenvalues). Importantly, the identification of principal coupling components in an 

independent dataset ensured, that this identification itself was not conflated by any 

potential variability between patient and control groups. We next projected the coupling 

profiles of patients and control subjects into the principal coupling space, which resulted 

in a more than 3000-fold dimensionality reduction to a total of 1380 coupling 

components. 

We next employed multivariate classification (support vector machine, SVM) to 

identify significant differences of coupling between groups in the reduced coupling 

space. Because likely not all components are informative, classification accuracy suffers 

when utilizing all components at once (Pappu and Pardalos, 2014). Similarly, by using 

every component for itself, generic interactions between components and frequencies 

might be missed. We therefore employed a bootstrap approach (feature bagging). 20-

million times, we picked a random subset of 10 coupling components (without 

replacement) and applied SVM to classify patients and controls with leave-one-out 

cross-validation (Fig. 10A). For each component, we then computed a classification 

score as its likelihood to contribute to component-subsets with classification accuracies 

in the top quartile (Fig. 10B). For each component, we statistically tested its classification 

score using a permutation approach (p < 0.05, FDR-corrected). This procedure allowed 

us to identify 58 coupling components that significantly contributed to the classification of 

patient and control groups (Fig. 12A, p <0.05 FDR-corrected). 34 and 24 of these 

components were specific to amplitude-coupling and phase-coupling, respectively.  

The employed permutation statistic also allowed us to test whether overall we could 

significantly classify between the two groups. We quantified how likely it was to find the 

identified number of significant components under the Null-hypothesis that groups could 

not be classified. We found that the amount of identified features was indeed highly 

significant (p < 0.001). Thus, early-stage MS patients could be significantly classified 
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from healthy control subjects based on a specific set of principal phase- and amplitude-

coupling components. 

These results were robust across a broad range of parameter choices and control 

analyses. First, we repeated the analysis separately for amplitude- and phase-coupling 

components. The classification scores were similar and well correlated to those obtained 

when combining amplitude- and phase-coupling components (amplitude-coupling r = 

0.79; phase-coupling: r = 0.65). We further repeated the analyses for different bag sizes 

(2, 3, 5, 20), accuracy thresholds (0.66, 0.9, 0.98), and classification algorithms (naïve 

Bayes, decision tree and linear discriminatory analysis). The results were again very 

similar with high correlations of classification scores between approaches (bag size: 0.92 

< r < 0.96; accuracy threshold: 0.81 < r < 0.99; algorithm: 0.65 < r < 0.91; all p < 0.05, 

FDR-corrected across all comparisons). 

5.3.3 Spectral and cortical distribution of altered coupling 

We further examined the spectral and cortical distribution of coupling components 

that dissociated MS patients from healthy controls. For amplitude-coupling, these 

components were spectrally specific to low frequencies (< 5 Hz), the beta frequency 

range (19 Hz) and the gamma frequency range (> 40 Hz; Fig. 3B). For phase-coupling 

the classification score distribution showed several peaks in the theta (4 Hz), alpha (8 

Hz), beta (13 - 16 Hz & 22 - 26 Hz) and gamma frequency range (> 45 Hz) (Fig. 12B).  

To visualize the brain regions whose coupling dissociated patients from control, we 

first averaged the absolute coupling coefficients of all significant components for each 

brain region for frequencies below and above 35 Hz and both coupling measures (Fig. 

13A). We split these frequency ranges because at frequencies above 35 Hz coupling 

estimated from MEG strongly resembles residual muscle activity (Hipp and Siegel, 2013; 

Siems et al., 2016).  

We found that, for frequencies below 35 Hz, early-stage MS affected intra- and 

interhemispheric amplitude-coupling of the medial prefrontal, dorsolateral prefrontal, 

pericentral, lateral parietal and extrastriate visual cortex (Fig. 13A). For phase-coupling 

differences in this frequency range between patients and controls peaked in bilateral 

pericentral, inferior temporal and medial occipito-parietal areas, mainly with altered intra-

hemispheric coupling. For high frequencies above 35 Hz, for both coupling modes, we 
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found differences between patients and controls for areas typically related to residual 

muscle-activity, that is bilateral anterior temporal and ventral frontal regions (Fig. 13A). 

 

Figure 13. Cortical distribution of classifying coupling components  

(A) Normalized average absolute strength of significantly classifying components for amplitude- 

(left) and phase-coupling (right), and for frequencies below (top) and above (bottom) 32 Hz. 

Colors are scaled between 0 and maximum for each panel. The circular line plots indicate 

connections with best classification between patients and controls (random subset of best 10%). 

The colors along the circle indicate cortical location, as shown on the right. (B) Normalized 

average strength of significantly classifying components for individual frequency bands and both 

coupling modes. Colors are scaled between the positive and negative absolute 95-percentile for 

each panel. Warm and cold colors indicate an increased and decreased coupling in patients, 

respectively. Circular line plots as in (A). 
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We next resolved the signed changes of coupling in patients within each frequency 

band (Fig. 13B). For amplitude-coupling, patients showed enhanced low-frequency 

coupling in lateral parietal and extrastriate visual areas in the delta band (2.8-3.4 Hz) 

and in medial and ventrolateral prefrontal cortex in the theta band (4 - 6.7 Hz). In the 

beta band (16-27 Hz), patients showed reduced amplitude-coupling in pericentral and 

visual areas. Frequencies above 32 Hz showed reduced amplitude-coupling in often 

muscle confounded anterior temporal and ventral prefrontal regions. Phase-coupling 

showed a rich pattern of changes in MS patients with typically bilateral increases and 

decreases of coupling within the same frequency range. Patients showed increased 

phase-coupling in medial prefrontal (theta, 4 - 6.7 Hz), lateral prefrontal (theta, alpha, 

beta & low gamma 8 - 54 Hz), as well as pericentral and lateral parietal areas (beta & 

gamma, 16 - 128 Hz). Phase-coupling was decreased in temporal (theta 4 - 6.7 Hz), 

medial and lateral parietal (alpha 8 - 13 Hz) as well anterior temporal areas (beta & 

gamma 16 - 128 Hz).  

In summary, MS patients showed both, increased and decreased phase- and 

amplitude-coupling across a broad but highly specific range of frequencies and cortical 

regions. 

5.3.4 Altered coupling predicts disease severity 

If the identified changes of neuronal coupling in MS patients reflected disease-specific 

mechanisms, they may predict disease severity and our results support this hypothesis. 

We tested if, across patients, the confidence of classification based on neuronal 

coupling, i.e. how similar coupling was to that of patients as compared to controls, was 

correlated with two clinical measures of disease strength: the Expanded Disability Status 

Scale (Kurtzke, 1983) and the Multiple Sclerosis Functional Composite (Fischer et al., 

1999). We found that indeed both clinical scores were significantly correlated with 

classification confidence (Fig. 14) (MSFC: r = 0.49, p = 0.02, FDR-corrected; EDSS: r = 

0.45, p = 0.04, FDR-corrected). Thus, stronger coupling changes predicted a more 

severe disease state. 
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Figure 14. Correlations between classification confidence and behavioral scores of 

disease severity  

Correlation between classification confidence and (A) the EDSS (Expanded Disability 

Status) and (B) the MSFC-scores (Multiple Sclerosis Functional Composite). The y-axis 

indicates the disease severity such that an increasing value corresponds to a more 

severe disease state. For MSFC we mirrored the values into the positive range to fit this 

notation (original values MSFCz = -0.3 - 3.3). Shaded areas are 95% confidence 

intervals of the linear model parameters. 

 

5.3.5 Classification accuracy 

In a final set of analyses, we quantitatively addressed the question how well novel 

early-stage MS patients could be classified based on the cortical coupling assessed with 

MEG. Importantly, the classification accuracy of an individual subjects based on the 

principal coupling components identified including this subject is positively biased. Thus, 

to derive an unbiased estimate of classification accuracy for a novel MEG dataset, we 

performed a cross-validation of the entire analysis pipeline leaving out and classifying 

each subject at a time. We performed this analysis for all combined coupling 

components (ncomp = 1380) as well as separately for the two coupling modes (ncomp = 

690) and frequency ranges (ncomp,low = 480 & ncomp,high = 210).  
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Figure 15. Classification accuracy  

(A) Distance of every subject from the decision boundary (classification confidence) and 

Gaussian fits of the group distributions. Distances are normalized by the standard deviation 

across all subjects within each cross-validation fold. The circle color indicates the group; red for 

RRMS-patients and blue for controls. Frequencies are split below 35 Hz (low vs. high). (B) Each 

subjects’ distance from the classification boundary for all amplitude- and phase-coupling 

components. AC (amplitude-coupling); PC (phase-coupling). 

 

The unbiased classification accuracy using all coupling components was 84 % (chance 

level: 50%) and nominally higher than the accuracy obtained using any coupling mode or 

frequency range alone (Fig. 15A). The independent classification accuracy for 

amplitude-coupling (83 %) was higher than for phase-coupling (74%). Furthermore, we 

found that the distance to the classification boundary was only weakly correlated 

between amplitude- and phase-coupling (r = 0.21, p > 0.05) (Fig. 15B). In line with the 

enhanced accuracy when combining both coupling modes, this is supporting evidence 

for non-redundant information of phase- and amplitude-coupling. 
  

0

D
is

ta
nc

e 
fro

m
 

bo
un

da
ry

A

2

-2

B

Control
RRMSACall AClow AChigh PCall PClow PChigh

0

D
is

ta
nc

e 
fro

m
bo

un
da

ry
 (P

C
al

l)

2

-2

Distance from
boundary (ACall)

0 2-2All

Accuracy: 84% 83% 75% 79% 74% 71% 80%



	 69	

5.4 Discussion 

This study provides, to our knowledge, the first systematic comparison of brain-wide 

phase- and amplitude-coupling in Multiple Sclerosis patients. We identified several 

principal coupling components, which could significantly classify patients from healthy 

controls with an overall accuracy of 84% and with classification confidence predicting 

disease severity. For both coupling modes, in RRMS patients we found both, increased 

and decreased coupling across a broad range of frequencies and cortical regions. At 

higher frequencies, effects likely at least partially reflected changes in muscle activity 

(Hipp and Siegel, 2013; Siems et al., 2016). In summary, our results show systematic, 

wide-spread and non-redundant changes of phase- and amplitude-coupling in Multiple 

Sclerosis. 

5.4.1 Classification approach 

We employed a novel unsupervised multivariate classification approach that 

combines several key methodological advantages. First, all analyses were carried out on 

reconstructed cortical activity, rather than on the raw MEG-signals. This allowed to align 

subjects and enhanced the signal-to-noise ratio by rejecting non-neuronal activity and 

focusing on signals of neuronal origin (Hipp and Siegel, 2013; Van Veen et al., 1997). 

Furthermore, we employed phase- and amplitude-coupling measures that rejected 

spurious coupling due to field spread. 

Second, we combined dimensionality reduction and bootstrap aggregating to classify 

between groups in a very high-dimensional dataspace. Critically, the dimensionality 

reduction was based on a large and completely independent dataset. Thus, the identified 

principal coupling components reflected universal characteristics of cortical coupling 

across human subjects independent from the variance between the two groups at hand. 

In turn, the identified components can be readily applied to any new dataset and 

question at hand. We employed a bootstrap approach (feature bagging) (Tin Kam Ho, 

1998) to identify several relevant dimensions in the reduced dataspace. The results were 

similar across a broad range of bootstrap parameters (bag size, threshold) and 

classification algorithms, supporting the robustness and broad applicability of this 

approach.  

Third, cross-validation at two critical stages ensured the generalization of results at 

the population level. First, we cross-validated (leave-one-out) the classification between 
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groups for every bootstrap aggregate of coupling components. This prevented overfitting 

for the identification of classifying coupling components. Second, we cross-validated 

(leave-one-out) the classification accuracy of the entire analysis pipeline, which ensured 

an externally valid and unbiased estimate of the classification accuracy for new datasets. 

High dimensional feature spaces are a common problem in brain-connectivity 

analyses and biomedical research in general. Classification of groups of samples on the 

entire space is often not feasible because of uninformative dimensions and classification 

on individual dimensions may be computationally impractical, might miss multivariate 

interactions, and is difficult to control for multiple comparisons (Pappu and Pardalos, 

2014; Hipp and Siegel, 2015; Wang et al., 2018). In the present case, this is well 

illustrated by the failure to detect significant coupling changes in a direct connection-

level comparison. In these situations, the new analyses approach employed here 

provides a flexible tool that can be readily adapted to classify comparably small samples  

in a high-dimensional space. 

5.4.2 Wide-spread bidirectional changes of cortical coupling 

Our results provide new insights into the spatial and spectral distribution of cortical 

coupling changes during early-stage MS. We found altered coupling across the entire 

investigated frequency range (2.8 to 128 Hz). This adds to a growing but heterogenous 

body of studies that have identified MS-related changes of rhythmic neural activity or 

coupling across various different frequency bands (Cover et al., 2006b; Figueroa-Vargas 

et al., 2020; Hardmeier et al., 2012; Schoonheim et al., 2013, 2015; Schoonhoven et al., 

2019; Tewarie et al., 2013, 2014b; Van Schependom et al., 2014b). For phase-coupling, 

our approach revealed both increases and decreases within the same frequency range. 

This may have contributed to the heterogeneity of previous findings and highlights the 

advantage of separating cortical networks at the source-level.  

Rhythmic coupling at different frequencies reflects interactions in specific neuronal 

micro and macro-circuits (Donner and Siegel, 2011b; Siegel et al., 2012). The spectrally 

widespread nature of our findings suggests that MS leads to alterations across many 

different circuit interactions. This may entail not only local and large-scale cortico-cortical 

interactions, but also cortico-subcortical interactions. For example, the altered phase-

coupling in the alpha frequency range found here may reflect altered cortico-thalamic 
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interactions associated with MS-related thalamic atrophy (Schoonhoven et al., 2019; 

Tewarie et al., 2013). 

The observed broad spatial distribution of altered coupling across the cortex accords 

well with its broad spectral distribution. Changes involved both, local and large-scale 

coupling. In general, the affected cortical networks resembled the known association 

with specific frequency ranges, such as for example altered theta- or beta- coupling in 

midfrontal and sensorimotor regions, respectively. This suggests that MS alters the 

strength of interactions in common brain networks associated with specific frequencies. 

It remains to be determined, to what extent also the frequency of these interactions is 

affected (Schoonhoven et al., 2019).  

At frequencies above 35 Hz, MS patients showed decreased frontotemporal coupling, 

which well resembled the reported distribution of residual muscle activity in EEG and 

MEG (Hipp and Siegel, 2013; Siems et al., 2016). Thus, the decreased high-frequency 

coupling may be due to decreased muscle activity, which may in turn result from both, 

the disease itself as well as from motivational differences between patients and control 

subjects.  

Motivational or cognitive differences may generally contribute to classification results 

between patient and control groups. In this context, the finding that classification 

confidence predicts disease severity within the patient groups is particularly important. 

This finding suggests, that the identified changes indeed reflect disease specific effects 

rather than general motivational differences between patient and control groups.  

Several different mechanisms may contribute to such disease specific changes. On 

the one hand, lesions of white-matter tracts may directly cause a reduced coupling of the 

connected neuronal populations. On the other hand, such reduced anatomical 

connectivity and functional coupling may induce a number of indirect effects. For 

example, the decoupled populations may be part of a larger neuronal network. Local 

decoupling in this network may lead to a global decrease of coupling, compensatory 

enhancement of coupling or a mere shift of the network dynamics. Similarly, changes 

within one network may again lead to both, decreases as well as increases of coupling in 

other brain networks (Fornito et al., 2015; Helekar et al., 2010; Heuvel and Sporns, 

2019; Schoonheim et al., 2015; Stam, 2014). Importantly, all these changes could span 

a broad range of temporal-scales, which may even lead to opposite immediate and long-

term effects of the disease. 
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The interplay of all these mechanisms may explain the wide-spread, complex and 

often bi-directional pattern of coupling changes observed here. The present results set 

the stage for future studies to disentangle the different mechanisms underlying these 

changes. For this, longitudinal investigations will be particularly important (Schoonheim 

et al., 2015), and it will be key to link the observed coupling changes to detailed 

anatomical and cognitive pathologies. 

5.4.3 Coupling mode specific changes 

Amplitude correlation of orthogonalized signals has recently been introduced as a 

robust and spectrally specific marker of cortical coupling (Hipp et al., 2012; Siems and 

Siegel, 2020; Siems et al., 2016). Consistent with other recent evidence (Sjøgård et al., 

2021), our results show that cortical amplitude-coupling is systematically altered in 

RRMS patients already at an early disease stage. Moreover, our findings uncover 

markedly distinct changes for phase- and amplitude-coupling. There were more coupling 

components that dissociated the groups and higher classification accuracy for 

amplitude-coupling than for phase-coupling (amplitude/phase-coupling: 34/24 

components; 83/74% accuracy). This suggests that coupling changes are more robust 

for amplitude-coupling.  

Furthermore, while phase-coupling showed effects in all but the delta-band, 

amplitude-coupling was altered in all but the alpha-band. Effects were also spatially 

dissociated. Below 35 Hz, amplitude-coupling showed strongest changes in medial and 

lateral prefrontal cortex as well as in pericentral and medial parietal areas, while phase-

coupling showed strongest effects in pericentral, medial occipitoparietal and inferior 

temporal cortex. Additionally, while amplitude-coupling showed either consistent 

increases or decreases of coupling within each band, phase-coupling showed 

bidirectional effects within each band. For frequencies above 35 Hz, amplitude-coupling 

showed higher sensitivity to residual muscle activity. Finally, we found that the two 

coupling modes showed different sensitivities to different subgroups of subjects. 

Overall, our results show that phase- and amplitude-coupling are sensitive to at least 

partially distinct changes of cortical coupling in MS. Accordingly, while both coupling 

modes could independently dissociate patients from healthy controls, the combination of 

coupling modes increased classification accuracy. Our findings suggest that amplitude-

coupling provides a robust biomarker of changes in large-scale network dynamics during 
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early-stage MS that may be synergistically combined with phase-coupling measures. 

Furthermore, the observed differences between coupling modes adds to converging 

evidence that at least partially distinct neuronal mechanisms underlie both coupling 

modes (Daffertshofer et al., 2018; Engel et al., 2013; Siegel et al., 2012; Siems and 

Siegel, 2020). 

5.4.4 Conclusion 

In summary, we devised a new analysis approach that combines dimensionality 

reduction and bootstrapped multivariate classification to identify disease-related 

neuronal coupling changes. Our approach can be readily adapted to other scientific 

questions, and thus, holds great potential for the comparison of groups in high-

dimensional search spaces. 

Our results uncover systematic changes of large-scale cortical phase- and amplitude-

coupling at an early disease stage of Multiple Sclerosis. Changes were coupling-mode 

specific and included decreases as well as increases across wide-spread frequency 

ranges and cortical networks. Our results highlight non-invasive electrophysiological 

measures of neuronal coupling as powerful new biomarkers of relapsing-remitting 

Multiple Sclerosis. 
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6 Summary and conclusion 

The studies summarized in this thesis describe previously unknown relations between 

amplitude- and phase-based coupling in the human brain (Siems and Siegel, 2020; 

Siems et al., 2021). Our results suggest that these two coupling modes indicate similar 

but non-redundant network interactions. We presented several lines of evidence 

supporting this hypothesis: 

First, in accordance with Hypothesis 1.2, we have shown in a large sample of healthy 

subjects that amplitude- and phase-coupling patterns are similar albeit not identical. On 

average, one third of the variance in amplitude-coupling patterns could not be explained 

by phase-coupling. Importantly, this quantity is free of methodological issues regarding 

volume-conduction, spurious amplitude coupling and the signal-to-noise ratio distribution 

and thus confirmed our Hypothesis 1.1. Additionally, the identified differences between 

coupling modes are spatially and spectrally specific. This is in line with a growing body of 

literature suggesting that effective brain communication is multiplexed over several time-

scales within and between areas (reviewed for example in: Engel et al., 2013; Siegel et 

al., 2012).  

Second, in accordance with Hypotheses 2.1 and 2.2, in the abnormal brain the two 

coupling modes show distinct disease-specific features. We analyzed Multiple Sclerosis 

patients and discovered spectrally and spatially specific components that separate those 

from healthy controls. These components yielded spatially and spectrally non-redundant 

information for the two coupling modes. 

We conclude that there exists a complex relationship between amplitude- and phase-

coupling patterns. Both coupling modes display similarities but are not completely 

redundant. Importantly, the differences are non-uniformly and broadly distributed over 

the spectrum and the cortex and appear to be relevant in the healthy as well as the 

diseased brain. Choosing one of the two coupling measures for the analysis of 

electrophysiological coupling might affect sensitivity for particular neuronal processes. 

Nevertheless, our analyses are a non-exhaustive description of their relationship and we 

can only speculate what exact mechanisms underlie distinct amplitude- and phase-

coupling patterns. 
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In the following we will discuss the key findings of both presented studies. We will 

highlight possible neuronal and non-neuronal mechanisms that might explain these 

findings and propose new approaches that might foster the understanding of coupling 

mode-specific cortical interactions. 

6.1 Coupling similarities 

One key finding of both our studies was that amplitude- and phase-coupling patterns 

share a substantial amount of variance in the healthy and in the diseased brain. We 

could quantify this similarity to account for more than 60% of shared variance in healthy 

subjects (Siems and Siegel, 2020). The variance shared is larger than it is unique to any 

coupling mode. In the following, we discuss several neuronal and non-neuronal 

characteristics of brain activity that might affect amplitude- and phase-coupling 

simultaneously. 

On the one hand, common input to neuronal populations or sources will co-modulate 

their activity and will ultimately suggest that sources are coupled both in phase and 

amplitude. This input can be of neuronal origin, i.e. synaptic input from a third neuronal 

assembly, or non-neuronal, i.e. through source leakage of distant and close-by sources 

or non-neuronal artifacts. Of note, this common-input problem might lead to an 

overestimation of similarity. Accounting for these factors is important to further evaluate 

the similarity of phase- and amplitude-coupling patterns. Therefore, recently described 

multivariate, leakage-corrected connectivity algorithms might be useful (Basti et al., 

2018; Colclough et al., 2015) but further research in this direction is needed.  

On the other hand, synaptic interactions between neuronal populations may phase-

lock their activity while simultaneously increasing neuronal activity (Fries, 2015; 

Womelsdorf et al., 2007), leading to a simultaneous increase of both amplitude- and 

phase-coupling. As described in the communication-through-coherence framework 

(Fries, 2015) the oscillatory excitation-inhibition cycle of a neuronal assembly describes 

a probability function for when an input can be most effective (Destexhe et al., 1999; 

Lopes da Silva, 2013; Singer, 2013). Therefore, if the input excites the receiving 

assembly at the right time in the cycle, interacting assemblies are coupled by their 

phase. Similarly, as the activity of the input assembly varies over time and several 

oscillatory cycles, the strength of excitation varies as well and with it the activity in the 
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receiving neuronal assembly (c.f. Schneider et al., 2020). In other words, interacting 

assemblies would exhibit both phase- and amplitude-coupling. 

6.2 Coupling differences 

As we have pointed out before, amplitude- and phase-coupling patterns share more 

than 60% of variance. Conversely, this means that functional networks exhibit on 

average more than 30% unique variance per coupling mode. Thus, amplitude- and 

phase-coupling patterns are non-redundant measures of functional coupling. We 

concluded that these dissociations might be at least partially the result of distinct 

neuronal mechanisms. In the following, we want to highlight multiple non-exclusive and 

non-exhaustive processes, from the circuit level to macro-scale interactions, which might 

explain these differences. 

First, amplitudes may be co-modulated without affecting the underlying phase 

relations. Here, we propose mechanisms that indirectly affect the ability of neuronal 

assemblies to fire. For example, a recent modeling study (Krishnan et al., 2018) 

proposed that slow fluctuations of extracellular potassium show infra-slow dynamics 

similar to the time scale of amplitude dynamics (Hipp et al., 2012). They further present 

theoretical evidence of how these fluctuations may be linked via long-range structural 

connections, entailing connectivity. Another line of evidence relates neuromodulatory 

activity with widespread signal power modulations (van den Brink et al., 2019). It 

appears plausible that a spatially exhaustive modulation of the cortical excitation-

inhibition balance might induce large-scale amplitude-coupling without directly affecting 

phase-locking between neuronal populations (Pfeffer et al., 2018, 2020). 

Second, phase synchronization can occur without affecting the signal amplitudes. 

Here, we propose mechanisms that are more directly related to neuronal information 

transfer. For example, along the lines of the communication-through-coherence 

hypothesis, intrinsic activity and neuronal communication may trigger synaptic 

interactions while maintaining its spiking frequency (Fries, 2015). Another mechanism 

that has recently been suggested is the so-called phase-resetting or attentional reset 

(Landau and Fries, 2012; Landau et al., 2015). In this process, sensory input 

instantaneously reorganizes phase relations into a coherent state, analogous to the 

effect of the radiofrequency pulse in magnetic resonance imaging. Such a reset does not 
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necessarily affect the signal power and might be another mechanism dissociating 

amplitude- and phase-coupling. 

Lastly, one alternative explanation might be that both coupling modes reflect the 

same underlying communication processes but are unequally non-linearly related to 

these. In our first paper we could exclude monotonous non-linear interactions but non-

monotonous non-linear input-output functions remain a possible dissociating mechanism 

(cf. for example Snyder et al., 2018). Clearly, however, all the proposed mechanistic 

explanations are to a certain degree speculative and further research is needed to 

gather empirical evidence for their validity. 

6.3 Invasive recordings 

The studies presented in this thesis give a first overview over similarities and 

differences between amplitude- and phase-coupling networks. We can show that the 

underlying mechanisms may not be completely redundant but we cannot further qualify 

the nature of these processes. In the last part of this thesis we want to give an outlook 

on how the presented analyses might be used and expanded further. We propose a total 

of three complementary approaches to shed more light on potential underlying 

mechanisms. 

A first step might be the comparison of these features using invasive data (local field 

potentials (LFP), spiking activity). In M/EEG recordings we measure the linear 

summation of highly synchronous neuronal firing on the scalp level (Baillet et al., 2001) 

far away from the signal source. Thus, invasive recordings, which are performed directly 

within neuronal tissue, may improve the investigation of coupling modes and their 

underlying mechanisms. One advantage is that invasive recordings yield higher 

confidence regarding the signal origin than source reconstruction algorithms. The LFP 

measured at an electrode can be localized comparatively well. Additionally, with 

adequate referencing the problem of signal leakage does not apply to invasive 

recordings. Consequently, the established compound nature of leakage corrected 

amplitude-coupling is not a factor and comparisons between coupling modes become 

methodologically more feasible.  

However, invasive recordings are limited in their spatial coverage. So far it is not 

viable to invasively measure activity of the entire cortex of larger animals to get a 
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complete and systematic picture of neuronal interactions in terms of amplitude- and 

phase-coupling. A comparison of coupling modes will therefore be strongly affected by 

the general research question and electrode placement. 

6.4 Task-specific activity and coupling 

A second possibility to improve the mechanistic understanding of neuronal processes 

underlying different coupling modes might be the experimental manipulation of large-

scale neuronal coupling. 

As the brain might be working in several distinct states during rest, the possible 

mechanisms affecting functional connectivity could be as manifold (Quinn et al., 2019; 

Vidaurre et al., 2017, 2018). In contrast, task-dependent activity modulations might 

influence functional connectivity and coupling mode relations in a more hypothesis-

driven manner (Engel et al., 2013; Siegel et al., 2012). Thus, with a suitable 

experimental design one might be able to further elucidate the relationship between 

amplitude- and phase-coupling networks. However, to the best of our knowledge, we do 

not know of an experimental paradigm that theoretically differentiates amplitude- and 

phase-coupling within the same frequency range. We can therefore only speculate about 

a suitable task potentially applying the aforementioned attentional resetting paradigms 

(Landau and Fries, 2012; Landau et al., 2015). 

Further, regarding the analyses of task-dependent activity one important caveat has 

to be considered. As we have outlined in our first paper, increasing the power and 

thereby the signal-to-noise ratio will ultimately change the measured coupling even in 

the absence of true neuronal coupling differences. Any task-dependent change in 

connectivity needs to be dissociated from task-specific changes in power to not conflate 

true connectivity changes with improved measurement accuracy. 

6.5 Coupling in the normal and abnormal brain 

A third line of research to foster understanding of the mechanisms underlying 

amplitude- and phase-coupling networks is to assess those connectivity features in 

different pathological or malfunctioning brain states. In a well-defined disease model and 

with a good control group, deviations in connectivity can be attributed to pathological 
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processes, lesions and changes of normal neuronal activity (Fornito et al., 2015; Heuvel 

and Sporns, 2019; Stam, 2014).  

Unfortunately, disease mechanisms and effects are rarely well circumscribed and 

patient populations might show high in-group variability, e.g. due to comorbidities. 

Another possibility is the artificial induction of disease-like states via pharmacological 

manipulation of normal brain function. As such, the manipulation of neuromodulatory 

systems appears to be a fruitful possibility to evoke controllable activity changes while 

monitoring its effect on functional connectivity measures (van den Brink et al., 2019; 

Pfeffer et al., 2020). Catecholamines, particularly norepinephrine, have been shown to 

affect the excitation-inhibition balance in local microcircuits, increasing the response of 

cortical neurons to synaptic input (Froemke, 2015; Murphy and Miller, 2003; Pfeffer et 

al., 2018, 2020; Polack et al., 2013). Such a mechanism would be in line with an 

increase in amplitude-coupling between distant brain regions but not necessarily lead to 

increased phase-coupling beyond the effects of signal-to-noise ratio improvements. 

However, empirical evidence for this notion is sparse and functional connectivity during 

pharmacological manipulation has so far mainly been assessed with functional magnetic 

resonance imaging (for example: van den Brink et al., 2016, 2018; Shine et al., 2018). 

6.7 Conclusion 

Overall, our studies contribute to the better understanding of large-scale neuronal 

interactions. We have shown that distinct signal components, namely the phase and the 

amplitude, reveal dissociated interaction patterns. Even though we applied well 

established measures of functional coupling (Brookes et al., 2012; Hipp et al., 2012; 

Vinck et al., 2011), the relationships between amplitude- and phase-coupling networks 

has not been assessed systematically before. We identified similarities and differences 

between both coupling modes that were widely distributed across the entire spectrum 

and cortex and found markedly affected networks in the diseased brain.  

Additionally, a crucial proportion of the work presented here outlined, discussed and 

put forward solutions for methodological issues in electrophysiological functional 

connectivity analysis. These issues include signal leakage, non-uniform distributions of 

measurement error and signal-to-noise ratio, the compound nature of orthogonalized 

amplitude-coupling measures, as well as classification and statistical testing in high-

dimensional data. We therefore consider the presented work as a valuable and general 
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guide for interaction analyses of cortical amplitude- and phase-coupling of non-invasive 

and invasive electrophysiological measurements. 
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Appendix 

 

 

Figure A1. Assessment of parameter estimation  

Example distribution (at measured signal mixing of 0.2) of the difference between 

simulation output and empirically measured (A) phase-shift and (B) phase coupling as a 

function of simulation input (x-axis phase-shift, y-axis phase coupling parameter). Red 

squares indicate the zero contour-line of the minimum difference between simulation 

output and empirically measured values as a function of input phase-shift and phase-

coupling. We chose the intersection between these isolines as the estimated empirical 

phase shift and phase coupling for the signal construction to obtain simulation outputs 

with the measured wPLI and phase shift. (C) Difference between the optimal simulation 

output and the empirically measured values. Shaded areas indicate the 5-95% 

interquantile range across subjects and connection space. (D) Rank correlation between 

the optimal simulation output and the empirically measured values. Shaded areas 

indicate the 25-75% interquartile range. 
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Figure A2. Comparison between phase-coupling measures 

Distribution of attenuation corrected (blue) and uncorrected (yellow) correlation between 

seed-patterns of the weighted phase lag index (wPLI) and imaginary coherency (ImC) 

(A) and of the wPLI and phase lag index (PLI) (B). The gray line indicates the relative 

number of corrected seed patterns. Shaded areas indicate the standard deviation across 

cortical space.  
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Figure A3. Non-parametric correlation between spurious and measured amplitude 

coupling patterns  

Lines indicate median attenuation corrected (blue) and uncorrected (yellow) correlation. 

Shaded areas indicate the 5-95% and 25-75% inter-percentile range over space. 
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Figure A4. Non-parametric correlation between corrected amplitude coupling and 

phase coupling patterns 

Lines indicate median attenuation corrected (blue) and uncorrected (yellow) correlation. 

Shaded areas indicate the 5-95% and 25-75% inter-percentile across cortical space. 
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Figure A5. Comparison of variance between patients and controls 

Significantly different coefficient of variation, with two-tailed Mann-Whitney U-test, 

between Multiple Sclerosis patients and healthy controls for every connection and 

frequency for (A) orthogonalized amplitude correlations and (B) weighted phase lag 

index. The gray line indicates all significantly different connections (p<0.05, FDR-

corrected). The red and the blue lines specify how many connections in the patient 

group are increased or decreased (p<0.05, FDR-corrected), respectively. 


