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Abstract

Recent state-of-the-art deep learning frameworks require large, fully annotated training
datasets that are, depending on the objective, time-consuming to generate. While in most
fields, these labelling tasks can be parallelized massively or even outsourced, this is not
the case for medical images. Usually, only a highly trained expert is able to generate these
datasets. However, since additional manual annotation, especially for the purpose of seg-
mentation or tracking, is typically not part of a radiologist’s workflow, large and fully
annotated datasets are a rare and scarce good. In this context, a variety of frameworks are
proposed in this work to solve the problems that arise due to the lack of annotated training
data across different medical imaging tasks and modalities.
The first contribution as part of this thesis was to investigate weakly supervised learning
on PET/CT data for the task of lesion segmentation. Using only class labels (tumor vs.
no tumor), a classifier was first trained and subsequently used to generate Class Activa-
tion Maps highlighting regions with lesions. Based on these region proposals, final tumor
segmentation could be performed with high accuracy in clinically relevant metrics. This
drastically simplifies the process of training data generation, as only class labels have to be
assigned to each slice of a scan instead of a full pixel-wise segmentation.
To further reduce the time required to prepare training data, two self-supervised methods
were investigated for the task of anatomical tissue segmentation and landmark detection.
To this end, as a second contribution, a state-of-the-art tracking framework based on con-
trastive random walks was transferred, adapted and extended to the medical imaging do-
main. As contrastive learning often lacks real-time capability, a self-supervised template
matching network was developed to address the task of real-time anatomical tissue track-
ing, yielding the third contribution of this work. Both of these methods have in common
that only during inference the object or region of interest is defined, reducing the number of
required labels to as few as one and allowing adaptation to different tasks without having
to re-train or access the original training data. Despite the limited amount of labelled data,
good results could be achieved for both tracking of organs across subjects as well as tissue
tracking within time-series.
State-of-the-art self-supervised learning in medical imaging is usually performed on 2D
slices due to the lack of training data and limited computational resources. To exploit the
three-dimensional structure of this type of data, self-supervised contrastive learning was
performed on entire volumes using over 40,000 whole-body MRI scans forming the fourth
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contribution. Due to this pre-training, a large number of downstream tasks could be suc-
cessfully addressed using only limited labelled data. Furthermore, the learned representa-
tions allows to visualize the entire dataset in a two-dimensional view.
To encourage research in the field of automated lesion segmentation in PET/CT image data,
the autoPET challenge was organized, which represents the fifth contribution.
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Kurzzusammenfassung

Moderne Deep-Learning-Frameworks erfordern große, vollständig annotierte Trainings-
datensätze, deren Erstellung je nach Zielsetzung sehr zeitaufwändig ist. Während der An-
notationsvorgang in den meisten Fächern bzw. Bereichen massiv parallelisiert oder sogar
ausgelagert werden kann, ist dies bei medizinischen Bildern nicht der Fall. In der Regel
ist nur ein gut ausgebildeter Experte in der Lage, diese Datensätze zu erstellen. Da jedoch
ein manuelles Labeln, insbesondere zum Zwecke der Segmentierung oder des Trackings,
in der Regel nicht Teil des Arbeitsablaufs eines Radiologen ist, sind große und vollständig
beschriftete Datensätze ein seltenes und rares Gut. Um dem zu entgegnen, werden in dieser
Arbeit eine Reihe von Frameworks aufgezeigt, welche die Probleme, die durch den Man-
gel an annotierten Trainingsdaten im Bereich der medizinischen Bildgebung entstehen,
adressieren.
Der erste Beitrag im Rahmen dieser Arbeit war die Untersuchung von weakly-supervised
learning auf PET/CT-Daten für das Problem der Tumorsegmentierung. Unter ausschließlicher
Verwendung binärer Klassenlabels (Tumor vs. Kein Tumor) wurde zunächst einKlassifika-
tor trainiert, der anschließend verwendet wurde, um Class Activation Maps zu erzeugen,
welche Regionen mit Läsionen anzeigen. Mit Hilfe dieser Regionsvorschläge konnte eine
finale Tumorsegmentierung durchgeführt werden, die eine hohe Genauigkeit bei den klin-
isch relevanten Metriken erreichte. Dieser Vorgang vereinfacht den Prozess der Trainings-
datenerzeugung drastisch, da anstatt einer vollständigen Tumorsegmentierung nur Klassen-
labels für jede Schicht eines Scans erzeugt werden müssen.
Um den Zeitaufwand für die Vorbereitung von Trainingsdaten weiter zu reduzieren, wur-
den zwei unterschiedliche self-supervised Methoden für die anatomische Gewebesegmen-
tierung und Landmark Detektion untersucht. Hierfür wurde als zweiter Beitrag dieser
Arbeit ein state-of-the-art Tracking Framework, welches auf contrastive random walks
basiert, auf die medizinische Bildgebung übertragen, angepasst und erweitert. Da con-
trastive learning oft noch nicht echtzeitfähig eingesetzt werden kann, wurde eine self-
supervised Template Matching Architektur entwickelt, um die Aufgabe der Echtzeitverfol-
gung von anatomischem Gewebe zu ermöglichen. Dies ist der dritte Beitrag dieser Thesis.
Beide Methoden haben gemeinsam, dass erst während der Inferenz definiert wird, welches
Objekt verfolg werden soll. Hierdurch lässt sich die Anzahl der erforderlichen Labels auf
bis zu Eins reduzieren. Ebenso erlaubt dies eine Anpassung an sich ändernde Aufgaben,
ohne dass ein erneutes Training oder Zugriff auf die Trainingsdaten notwendig ist. Trotz
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der begrenzten Menge an gelabelten Daten konnten, sowohl für das Organtracking zwis-
chen unterschiedlichen Patienten als auch innerhalb einer Zeitreihe, gute Ergebnisse erzielt
werden.
Self-supervised learning wurde bisher aufgrund begrenzter Trainingsdaten und Rechenka-
pazität in der Regel nur auf zwei-dimensionalen Schichten angewendet. Um sich die drei-
dimensionale Struktur der Daten zunutze zumachen, wurde als vierter Beitrag dieser Arbeit
self-supervised contrastive learning auf vollenVolumen und über 40.000GanzkörperMRTs
durchgeführt. Aufgrund dieses Vortrainings konnten viele Downstream Tasks mit nur
sehr begrenztem Labelling durchgeführt werden. Darüber hinaus ermöglicht die gelernte
Repräsentation die Visualisierung des gesamten Datensatzes in einer zwei-dimensionalen
Ansicht.
Um die Forschung auf dem Gebiet der automatischen Tumorsegmentierung in PET/CT
Daten zu fördern, wurde die autoPETChallenge organisiert, was den fünftenBeitrag darstellt.
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2. Introduction

Over the past decade, machine learning systems have transformed many areas of industry
and personal life. A variety of highly accurate classification, segmentation and tracking
frameworks now exist for a vast number of tasks and problems. From classification of cof-
fee capsules [1] over (semi-) self-driving cars [2] to autonomous drones delivering medical
samples [3], machine learning is here to stay. One significant field, however, is not pro-
ceeding as fast as the others, namely the medical imaging domain.

2.1 Medical Imaging - A Field that matters

More than 3.6 billion medical imaging procedures are performed worldwide each year,
demonstrating the diagnostic importance of these techniques [4]. Depending on the modal-
ity (e.g X-Ray, CT, MRI, PET, Echo) and the underlying disease, different tasks or necessi-
ties arise. Often, the goal is to classify a disease or medical condition, which typically does
not require time-consuming steps. Some medical fields, however, require specific metrics
to evaluate the severity of a disease. In cardiology, for example, the volume of the left ven-
tricle is crucial, while in oncology the tumor volume is of particular importance. To obtain
these metrics, manual segmentation of the relevant anatomical tissue is required which of-
ten results in an enormous expenditure of time, especially in three- or four-dimensional
volumes.
Recent technological innovations in radiation oncology, namely the introduction of theMR-
LINAC, an MRI/linear accelerator hybrid that allows real-time acquisition of MR images
during radiotherapy, have opened up an entirely new need beyond what we humans are
capable of: Tracking of anatomical structures in real time (and simultaneously passing this
information to the scanner).
The ability to track organs or lesions in real-time enables image-guided radiotherapy, which
could substantially improve outcomes by preventing irradiation of healthy tissue.
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(a) Fast Disease Classification:
Pneumothorax of the left lung

(b) Laborious Tumor Segmen-
tation: Lymphoma

(c) Beyond Human: Real-time
tracking during radiotherapy

Figure 2.1: Comparison between disease classification in radiographs (a) [5], tumor seg-
mentation in FDG-PET/CT data (b) [6], and liver dome tracking during radiotherapy in
MR-LINAC data (c) [7]. Classification, regardless of modality, can usually be performed
by the radiologist without much manual effort. Tumor/Tissue Segmentation, in contrast, is
always a time-consuming and costly task, especially for highly metastatic cancers such as
lymphoma or melanoma. Tracking of organs or even anatomical landmarks in real time is
not feasible for humans due to the very low latency requirement.

An example representative for each task is visualized in Figure 2.1.
In recent years, a variety of machine learning-based systems have appeared to tackle these
above mentioned tasks. First, highly specific classification and regression problems were
addressed [8]. Prominent examples include the classification of skin-cancer [9], detection
of diabetic retinopathy[10], brain tumor classification [11] and recognition of pneumonia
in infant X-Ray images [12]. These frameworks can be used in a supportive way but an
expert still needs to review every case, thus their benefit is limited.
In contrast to plain classification, automatic segmentation of anatomical structures is a real
support for the physician, as it drastically simplifies the previously time-consumingmanual
annotation. Several frameworks have been proposed to tackle this problem, most notably
the U-Net [13] and nn-U-Net [14]. Many tasks, including tumor segmentation for various
cancers and modalities [15, 16, 17, 18], as well as organ segmentation for single organs,
multiple organs or task-specific structures like the cardiac chambers [19, 20, 21, 22] have
been successfully addressed. Tracking of anatomical tissue also is a crucial but either time-
consuming - if done retrospectively - or impossible task due to the real-time constraint.
Thus, plenty of frameworks have been introduced, often based on classical Optical Flow
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estimation [23, 24, 25]. Although deep learning based Optical Flow techniques exist [26,
27, 28], their application to medical images is scarce as they cannot be applied without
retraining due to the domain shift.
This problem is, in fact, common for all mentioned works. All frameworks, except for
classical Optical Flow algorithms which work directly at the pixel level, are based on ar-
chitectures trained in a supervised manner on a fully annotated / segmented dataset that
required enormous expert effort beforehand and drastically limits their application to other
tasks within the same modality. As a result, more efficient learning routines should be
used.

2.1.1 Learning Strategies

Over the years, several learning strategies have emerged, varying in the amount and type
of labels required, as well as in their inference routines.

Supervised Learning

Up to this date, supervised learning is themost commonly used approach to train any type of
machine learning system. After specification of a task, e.g tumor segmentation in PET/CT
images, a team needs to be assembled to manually collect and annotate a large training
dataset which is then leveraged to train the (tumor-segmentation) model. The training and
inference process is depicted in Fig. 2.2.
Manual annotation, especially segmentation, is always associatedwith an enormous amount
of work. In the field of medical imaging, however, only highly trained experts are able to
provide the necessary ground truth, which further complicates training data generation as
their time is scarce good.
Another very important drawback is the adaptability to new tasks. Once trained, a su-
pervised model cannot simply change its output and requires retraining to match the new
task. To overcome the challenge of needing fully labelled datasets, one approach is to use
Weakly-Supervised Learning.
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Figure 2.2: Supervised Learning: The model is trained on the task directly and can be used
for inference without any subsequent steps.

Weakly-Supervised Learning

Weakly-supervised learning strategies aim to reduce the labelling effort by using weaker
annotations such as class labels instead of full segmentations [29, 30, 31]. In a first step,
the model is trained using the provided weak labels. Subsequently, some form of post-
processing is implemented to extract the knowledge or insights from the model, with the
goal of obtaining the desired final prediction. For segmentation or localization tasks, this is
often achieved leveraging Class Activation Maps [32, 33]. Fig. 2.3 visualizes the training
routine of a weakly-supervised framework.
Weakly-supervised strategies, while capable of drastically reducing the labelling effort, still
require some expert effort before training. Their biggest drawback, however, is that they
still require retraining to adapt to new tasks.
Recently, a new learning paradigm has evolved that is capable of addressing these two
challenges simultaneously: Self-Supervised Learning.
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Figure 2.3: Weakly-Supervised Learning: Training is performed using weaker labels (e.g.
classification labels instead of full segmentations). During inference, task-specific post-
processing is applied to the weak prediction to yield the final estimate.

Self-Supervised Learning

In contrast to supervised- and weakly-supervised strategies, self-supervised frameworks
are trained without any labels on some pretext task, often by exploiting specific properties
/ structures of the training dataset, e.g. by predicting image rotations [34] or by solving
jigsaw puzzles [35]. These networks are subsequently finetuned on a small labelled subset
using approximately 1-10% of the data (semi-supervised finetuning), yielding comparable
results compared to their fully-supervised trained baselines [36]. A high-level overview of
a self-supervised system is depicted in Fig. 2.4.
The use of self-supervised pretraining eliminates the dependence on having a large, densely
labelled dataset prior to training. Only after the initial training process, during the fine-
tuning step, a labelled dataset is required - however, a small fraction compared to fully-
supervised training is sufficient. This allows for easy adaptation to new tasks within the
same domain, as only few labelled data points are required to fit the model. If the pretext
task can be formulated in a way that it directly represents the task of interest, such as in
Frueh et al. [7], no fine-tuning is necessary.
More recently, self-supervised learning is usually performed in a contrastive setting to
embed training data into meaningful feature representations.
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Figure 2.4: Self-Supervised Learning: The model is pretrained on some pretext task that
is usually derived from the data itself. After pretraining, the fully connected pretext layer
is replaced by the fine-tuning layer to match the final task and then fine-tuned (either the
whole-model or only the fine-tuning layer) on a small labelled subset. Inference is subse-
quently performed without any post-processing.

Self-Supervised Contrastive Learning

Contrastive learning aims to learn an embedding strategy that maps input data to feature
vectors, with the intention of obtaining similar feature vectors for similar inputs and dis-
similar features for dissimilar inputs, typically using the cosine similarity as a measure of
similarity between the feature vectors.
These frameworks, however, are not generally self-supervised as an anchor image paired
with positive and negative examples is required [37]. During training, the model learns to
pull together the feature vectors of the anchor image and positive example, whilst repelling
the negative example.
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Chen et al. could prove that contrastive learning without the necessity of any labels is possi-
ble using a simple framework called SimCLR [38]. Two different views of the same image
are created using extensive, targeted data augmentation corresponding to the anchor and
positive examples. All other image pairs within the current batch act as negative examples.
Obtaining a representative feature embedding model allows for both fine-tuning combined
with direct inference (Fig. 2.4) as well as few-shot inference.

Figure 2.5: Self-Supervised Contrastive Learning: Two different augmentations of the
same image are created using data augmentation (as proposed in SimCLR, simplified)
which are then embedded into their respective feature vectors and pushed to be close ac-
cording to some similarity loss. Both direct inference by finetuning (refer Fig. 2.4) as well
as few-shot inference are possible.

Few-shot inference can be performed as follows:

1. Select 5-10 samples for each class

2. Store the feature vectors for all samples
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3. Map a test image x to its feature representation x̂

4. Compute the cosine-similarity between x̂ and all stored feature vectors

5. Assign the class with the highest overall similarity to x

However, due to the exhaustive feature comparison process that comes with few-shot in-
ference, this approach is not yet real-time capable.
Fig. 2.5 visualizes the contrastive learning setting using a simplified version of SimCLR.
Since 2020, a plethora of self-supervised contrastive frameworks have been released and it
is currently regarded as state of the art for most self-supervised learning tasks [39, 36, 40,
41].

2.1.2 Challenges

While all of these learning strategies have been successfully applied to numerous tasks
[42, 43, 44], application of weakly-supervised or self-supervised (contrastive) frameworks
to medical images is still scarce and often focused on highly preprocessed and simple
datasets such as chest X-Rays or dermatological images [45, 46, 47]. Only very recently
self-supervised learning has been utilized for more challenging tasks such as tumor seg-
mentation [48].
The main reason for this lag compared to other areas is the high entry barrier due to low
availability of training data, combined with its often difficult structure.
In summary, the following challenges occur in the context of medical image data:

• Lack of annotated training data, especially outside the usual domains. Furthermore,
for more complex tasks such as real-time tracking during radiotherapy, unlabelled
data is also rare.

• Unlike RGB images, which are completely standardized, medical images vary greatly
between hospitals and scanners, especially for the field ofMRI. Second to that, image
quality can be significantly affected by motion, artifacts and noise.

• Due to their three- or four-dimensional structure, handling of medical images is ex-
ceptionally computationally demanding. Some applications, such as tracking during
radiotherapy, furthermore need to be able to run in real time.

• Trade-off between data privacy and research.
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Therefore, the performance of systems that show promising results on everyday images
does not necessarily translate well to themedical imaging context due to the different nature
of medical image data.

2.2 Research Goal and Outline

The primary objective of this work is to overcome some of these challenges and advance the
field of deep learning in medical imaging with a focus on anatomical tissue segmentation
and tracking, as these are among the most useful for physicians. One particular goal is to
improve image-guided radiotherapy using the MR-LINAC system. To achieve this, real-
time tracking of lesions or organs is required, which ultimately allows for patient or beam
adjustment, resulting in increased efficacy and reduced radiation damage at the same time.
Since annotated training data, especially for tracking tasks, is scarce, all frameworks need
to be able to work without full supervision by being either label-efficient or, much better,
label-free during training.
To this end, several label efficient and label free frameworks have been either developed or
transferred and adapted, implemented and evaluated on a wide range of medical imaging
tasks, including lesion segmentation in PET-CT images [49], anatomical tissue tracking
[50], real-time landmark detection and tracking [7], as well as large-scale 3D contrastive
learning on over 40,000 whole-body MR scans C.1.
In the following section, the outline of this work is presented. A brief background is pro-
vided for each paper.

Weakly supervised segmentation of tumor lesions in PET-CT hybrid
imaging

Metabolic Tumor Volume (MTV) and Total Lesion Glycolysis (TLG) are two of the most
important measures to assess the severity of cancer in a patient [51]. To estimate these
metrics, all lesions have to be manually segmented by an expert in PET/CT images. This
laborious task can be tackled with great success using deep learning based segmentation
architectures, such as the nn-U-Net 1. However, these supervised methods require a large
and fully segmented training dataset in advance, which is expensive and arduous to create.

1https://autopet.grand-challenge.org/
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To circumvent this problem, a weakly supervised strategy was implemented that requires
only class labels instead of full segmentations, drastically reducing the labelling effort [49].

Self-supervised learning for automated anatomical tracking in medical
image data with minimal human labelling effort

Many tasks require the tracking of organs and other anatomical tissues in time-resolved
image data. Examples include measuring the volume change of the left ventricle in CINE-
MRI, or tracking the liver during radiotherapy to avoid irradiation of healthy tissue. The-
oretically, all these tasks could be solved using standard segmentation networks trained
under full supervision. Labelled datasets of sufficient size, however, do not exist, thus
exhaustive preparation would be required. Moreover, a supervised trained network is ren-
dered useless if the task changes slightly, e.g. tracking the right ventricle instead of the left
ventricle.
These tasks were addressed by adaptation and extension of a self-supervised contrastive
framework [52] to the medical domain, enabling automated anatomical tracking using only
a single labelled example [50].

Real Time Landmark Detection for Within- and Cross Subject Track-
ing With Minimal Human Supervision

Contrastive learning has one major drawback: Unless finetuned on a specific task, exhaus-
tive feature comparison is necessary to conduct inference. While this is fast for classifi-
cation, as only one feature vector per image is compared to the class example vectors, it
becomes a major bottleneck for segmentation. If an image of shape (256 × 256) is trans-
formed into a feature map of shape (64 × 64 × 512), 4096 feature vectors, each consisting
of 512 elements, must be compared between the first and second image, which is not fea-
sible in real-time with current hardware. Thus, to address this challenge, a self-supervised
template matching architecture was developed to estimate the position of anatomical land-
marks based on a single labelled example for both time-series and cross-subject tracking
in real time [7].
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Large Scale, entire-volume, 3D Contrastive Learning on whole-body
MRI data

Due to advances in compute power coupled with the availability of a large whole-bodyMRI
dataset (50,000 scans), contrastive learning was performed to map entire-volume whole-
body MRI scans to a single feature vector. As the dataset was derived from a large biomed-
ical database (UK Biobank [53]), additional metadata was available (e.g. sex, age, weight,
health score), rendering the possibility to evaluate the capacity of the trained framework
on medical imaging data. (Appendix C.1)

Advancing the Field through Challenges

Over the years, task-specific challenges have become the primary tool for comparing and
advancing machine learning algorithms, especially in less common areas such as medical
imaging. By providing a fully annotated dataset [6], infrastructure for automated inference
using the grand-challenge platform, as well as a prize pool of €15,000, participants were
encouraged to develop and submit frameworks that address lesion segmentation in PET/CT
data [54].
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3. Results

3.1 Weakly supervised segmentation of tumor lesions in
PET-CT hybrid imaging

This section summarizes the method and results presented in [49]. The main contribution
lies in the development of a weakly supervised framework for lesion segmentation in FDG-
PET/CT images.
A three-step pipeline was developed to obtain the full tumor segmentation using only class
labels: First, a binary classifier is trained on two-dimensional PET/CT [6] slices (input
shape: (2 × 256 × 256)) that predicts whether a slice contains a lesion.
Training was conducted using an adapted VGG16 architecture where the first max-pooling
layer was removed to increase the feature map size to (32 × 32), as a large feature map is
crucial for the second step. Given the trained lesion classification model and a test subject,
each slice of the scan is classified as tumorous or not tumorous. If the network suspects that
a slice contains a lesion, a Class Activation Map (CAM) [32] is computed, highlighting the
regions responsible for the decision of the classifier. Subsequently, this map is upscaled to
the original image size. If the tumor classifier has been trained properly, this saliency map
should only highlight those regions of the slice that contain a lesion. A method specific
threshold was then applied to the CAM to decide whether a pixel lies within one of the
proposed regions.
Thus, a large feature map is required in order to yield a finer-grained Class ActivationMap.
A small feature map (e.g., in the extreme case of shape (1 × 1)) cannot be used to project
the estimated lesion area onto the original image because all regional information is lost.
Fig. 3.1 depicts examples of accurate and inaccurate CAMs.
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In a next step, leveraging the structure of 18F-FDG PET, the standardized uptake value
(SUV) distribution within the highlighted regions is estimated. Subsequently, all pixels
with an SUV higher than a specific percentile of this SUV distribution are segmented as
tumorous.

(a) True Positive (b) False Negative

(c) False Positive (d) Feature Map too small

Figure 3.1: Various CAMs: (a) True Positive: The Class Activation Map highlights all
lesions. (b) False Negative: The classifier did not recognize the central lesions. (c) False
Positive: The classifier erroneously predicted this slice to be tumorous. (d) Class Activa-
tion Map too small: Although the classifier was correct, the size of the feature map is too
small resulting in a missed lesion after upscaling to the original image size
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Percentiles and thresholds for the Class Activation Maps were determined empirically via
extensive grid search on the validation data.
Final segmentation performance was assessed across four different Class Activation Map
generating methods (CAM [32], GradCAM [55], GradCAM++ [56], ScoreCAM [57]) and
evaluated for Dice Score [58], MTV- and TLG deviation on the test dataset.
Application of an empirically determined fixed SUV threshold, as well as a U-Net trained
with full supervision, served as lower and upper baselines, respectively.

Results

As expected, the supervised U-Net produced the best results in all evaluation metrics (me-
dian Dice Score: 0.72, median MTV difference: 17 ml, median TLG deviation: 50 g).
Regarding the weakly supervised frameworks, best performance was achieved using CAM
and ScoreCAM (median Dice Score: 0.47, median MTV difference: 27/26 ml, median
TLG deviation: 101/99 g). GradCAM++ performed slightly worse and GradCAM failed
to deliver adequate results. Application of the fixed global threshold produced significantly
worse results than theweakly supervised strategies (medianDice Score: 0.29, medianMTV
difference: 44 ml, median TLG deviation: 167 g).
Metabolic Tumor Volume was overestimated for very small lesions and underestimated
for extremely large lesions for all weakly supervised methods. In contrast, more accurate
results could be observed for Total Lesion Glycolysis. Overestimation of lesions with low
TLG was drastically reduced compared to MTV, while very large TLG still resulted in
slight underestimation.
Fig. 3.2 depicts successful and unsuccessful lesion segmentationwith corresponding ground
truth on PET/CT slices based on four different test subjects.
Overall, weakly supervised segmentation is a viable approach for tumor segmentation in
PET/CT data, as clinically relevant metrics could be estimated with acceptable accuracy.
The main application, however, is not primarily direct clinical use, but rather fast training
data generation in a research setting. Manual segmentation of the entire dataset is circum-
vented, since only minor corrections to incorrectly estimated segmentations are necessary.
Limitations arise primarily from the use of the two thresholds. While this is suitable for
FDG PET/CT data, application to other modalities such as CT or MRI may be challeng-
ing. Due to computational limitations, training and evaluation were performed on two-
dimensional slices instead of full 3D volumes, potentially affecting the performance of the
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classifier and thus the extracted segmentation.
Future work should aim to avoid the necessity for thresholds and investigate performance
when using more advanced two- or three-dimensional models.

(a) Correct Segmentation

(b) Erroneous Segmentation

Figure 3.2: Good results vs. failures in PET-CT images (top: CT, bottom: PET with cor-
responding segmentation): (a) In all cases, lesions were segmented (red) with only minor
deviations from ground truth (yellow). (b) The weakly supervised strategy did not result
in correct segmentations, as either whole lesions were missed, tumor volume was under-
/overestimated, or healthy slices were incorrectly classified as tumorous.
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3.2 Self-supervised learning for automated anatomical track-
ing in medical image data with minimal human label-
ing effort

This section summarizes the method and results presented in [50]. The main contribu-
tion lies in the transfer, adaptation and extension of a self-supervised contrastive tracking
framework [52] to the medical imaging domain.
Tracking of anatomical structures was implemented using a framework that transforms
images into a feature space where similar anatomical structures are close and dissimi-
lar anatomical structures are far apart. Self-supervision was obtained by leveraging the
cycle-consistency [59], which proved that tracking of objects in image time series could be
achieved without the necessity of any labels during training.
The whole pipeline, as originally proposed in [52], consists of multiple steps, depicted
below:
Initially, the image is split into a patch grid with patches of fixed size. A ResNet-18 en-
coder is then used to transform the individual patches into their respective feature space.
Following L2 normalization of these features, the cosine similarity can be computed using
the dot product, allowing for similarity comparison between all pairs of patches.
In a second step, the affinity matrix is obtained by comparing the features of all patches
of two images within the time series. A patch grid of e.g. shape (7 × 7) results in an
affinity matrix of shape (49 × 49). Application of the (temperature-scaled) softmax func-
tion maps these similarity scores to probabilities which can be subsequently used for loss
computation.
To calculate the loss, however, some form of ground truth is required. This is where cycle-
consistency becomes relevant. By extending an image sequence (I1...Ik) with its corre-
sponding palindrome sequence (Ik...I1), the cross-entropy loss can be calculated between
all pairs of patches within the source and target images, allowing for model optimization.
After training, anatomical structures can be tracked as follows: Assume X to be an image
sequence consisting of two frames X0 and X1.

1. Manually segment the structure of interest (i.e. any organ) in X0.

2. Use the trained ResNet encoder to map X0 and X1 to their corresponding downsam-
pled feature maps X̂0 and X̂1
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3. Compute the affinity matrix A.

4. Extract the k = 10 most similar feature vectors of X̂0 (within a radius r = 20) for
each feature vector of X̂1. This corresponds to taking the k-largest affinities of each
row of A

5. Identify the annotations of these k features in X0 and assign the most frequent one
to the corresponding feature vector in X̂1 (and thus to all pixels in the original, not-
downsampled image X1 responsible for this feature vector)

For longer image sequences, the initial segmentation is propagated iteratively by taking the
k most similar features based on all previous images instead of just the first one.
To improve performance on medical data, the original framework has been extended with
an additional clustering of the predicted segmentation masks. If multiple objects have been
segmented, the one with the highest similarity to the provided segmentation mask is taken.
As in 3.1, the size of the feature map is crucial to obtain an accurate segmentation result,
especially for smaller segmentation masks. Fig. 3.3 visualizes this. To increase the size of
the feature maps and thus tackle this problem, the stride of the second layer was reduced
to one and images were upsampled up to (784 × 784) during inference. Retraining using
these upscaled images was not required, but will probably result in better performance.
To evaluate and validate this framework, tracking was performed on cardiac CINE MRI
[60], cardiac echo [61], and abdominal MRI acquired using the in-house MR-LINAC sys-
tem.
The organs to track were the left ventricle for both cardiac CINE MRI and cardiac echo, as
well as the liver for the abdominal MRI. Evaluation was performed using both the average
Dice score between predicted and manual segmentation on all slices, as well as the edge
Dice Score where only the final frame was considered. Both forward (I0...Ik) and back-
ward (Ik...I0) mask propagation was evaluated to account for different motion patterns
such as contraction or expansion (systole/diastole). Additionally, artificial motion (hori-
zontal image shift of 8% of the image size) was added into the image series to evaluate
performance when large displacements occur. Besides tracking within image time series,
tracking performance across different subjects was also assessed.
Initial segmentations, as well as ground truth for all intermediate frames have been provided
by an experienced radiologist. Comparison was conducted against three Optical Flow base-
lines, namely FarnebäckOptical Flow [62], PCA-Flow [63] and FlowNet2 [27]. PCA-Flow
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and FlowNet2 were applied without any finetuning.

(a) Small Feature Map (64 × 64)

(b) Large Feature Map (128 × 128)

Figure 3.3: Affinity between all features in the initial image and the marked pixel in the
target image. (a) If the feature map is too small, inaccuracies occur at the tissue boundaries.
The features with the highest similarity fall inside the segmented region (left ventricle) and
lead to false positive segmentations. (b) With a large feature map, this problem does not
occur. The most similar features are outside of the left ventricle yielding a true negative
prediction for this pixel. All images were downsized to match the shape of the feature
maps.

Results

Quantitative results for mask propagation are depicted in Table 3.1.
Liver tracking in MR-LINAC images was possible with high accuracy in all methods eval-
uated. Regarding more complex motion, such as tracking of the left ventricle in cardiac
CINE MRI, the self-supervised framework (SSL) outperformed the Optical Flow based
methods. This is especially true for the forward pass (systole, contraction of the heart)
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Table 3.1: Mean average Dice scores (top) and mean average Dice scores with artificial
image displacement (bottom)

Forward Mask Propagation Backward Mask Propagation

Methods
Abdominal

MRI
Cardiac
MRI

Cardiac
Echo

Abdominal
MRI

Cardiac
MRI

Cardiac
Echo

SSL 0.95 0.89 0.93 0.96 0.90 0.95
PCA-Flow 0.94 0.80 0.89 0.93 0.89 0.91
FB-Flow 0.94 0.81 0.91 0.93 0.92 0.91
FlowNet2-Flow 0.95 0.77 0.91 0.95 0.73 0.92

SSL 0.95 0.89 0.93 0.96 0.90 0.96
PCA-Flow 0.92 0.75 0.77 0.85 0.77 0.84
FB-Flow 0.72 0.52 0.64 0.80 0.60 0.85
FlowNet2-Flow 0.94 0.58 0.81 0.95 0.55 0.81

and confirmed by the edge Dice Score (0.85, 0.61, 0.7, 0.55 for SSL, PCA-Flow, FB-Flow
and FlowNet2-Flow, respectively). The backward pass (diastole, expansion of the heart),
in contrast, could be accurately tracked by FB-Flow and PCA-Flow as well. FlowNet2 as
a supervised trained network failed to capture this motion due to the domain shift to the
training data. Tracking of the left ventricle in echocardiography was again possible with
all methods.
Injection of artificial motion resulted in a severe performance decline of all Optical Flow
based methods, especially FB-Flow. Results produced by SSL remained unchanged.
As expected, tracking of anatomical structures across different subjects was significantly
superior using SSL compared to the Optical Flow based methods, especially for cardiac
MRI. The mean Dice Scores amounted to 0.72 ± 0.25 / 0.33 ± 0.28 / 0.35 ± 0.36 / 0.28 ±
0.30 for SSL, PCA-Flow, FB-Flow and FlowNet2-Flow, respectively. Regarding the other
datasets, where the position of the organs to track is more similar, outperformance of SSL
was not as pronounced.
Overall, SSL proved to be more robust compared to classical and deep learning-based Opti-
cal Flow methods, as it was not affected by large displacements or more complex non-rigid
motions which are common in the medical field.
Application of pretrained Optical Flow frameworks trained in a supervised manner is not
feasible for most medical imaging tasks due to the domain shift between training and test
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data. Even fine-tuning on a labelled subset is not an option, as creation of such a dataset
requires a dense motion field for all pixels, which is practically impossible to obtain.
A wide range of time-consuming medical imaging tasks in the fields of diagnostic- as well
as interventional radiology can be tackled using this framework, as it removes the necessity
to create a large and fully segmented training dataset in advance. It can be used for the pur-
pose of inference (e.g. changes of left ventricular volume) or for training data generation.
The main limitation of this study is that only two-dimensional data was investigated. Many
time series in medical imaging are four-dimensional, thus tracking of full volumes instead
of individual slices could be beneficial for tracking accuracy. Adaptation of this framework
to handle three-dimensional volumes will be part of future work. Furthermore, the creation
of the affinity matrix, especially due to the need for a large feature map, requires an enor-
mous amount of computational effort which limits application in fields where real-time
performance is required, at least with current computational resources.
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3.3 Real Time LandmarkDetection forWithin- andCross
Subject Tracking With Minimal Human Supervision

This section summarizes the method and results presented in [7]. The main contribution is
the development of a self-supervised framework that enables tracking of anatomical struc-
tures in real-time.
Real-time, self-supervised tracking was achieved by developing and training a siamese-
like CNN for a template matching task that estimates the central coordinates of a patch
inside a full image. Two different encoders, one that handles the full image and one that
processes the patch, were used. The stacked output of these encoders is then fed to a fully
connected MLP yielding the final coordinate estimate (refer Fig. 1 in [7]). In addition
to pure patch center regression, uncertainty estimates were added to the network’s output,
yielding information about the uncertainty of the model’s prediction given an input image
and patch. High uncertainty can indicate errors during tracking or domain shift of the data.
During training, image patches with center coordinates (x, y) are uniformly drawn from
source images. Patch and source image are then processed by the network to estimate the
coordinates (x̂, ŷ) of the patch center, paired with the corresponding uncertainty. This en-
ables calculation of the negative log-likelihood between prediction (x̂, ŷ) and patch centers
(x, y) and thus to train the model. As, of course, a pure template matching strategy is not
fruitful for cross- or within subject landmark tracking, domain specific data augmentation
(rotation, scaling and gamma contrast variation) was applied to the image patches allowing
for generalization beyond within-image template matching. Since the patch center coordi-
nates need to remain unchanged, no translation was used.
In contrast to existing template matching based tracking frameworks, such as [64], this
framework does not require any previous manual annotation.
During inference, landmarks to track are manually annotated in the initial image. Patches
are then extracted around each landmark and fed through the network, paired with either
(i) subsequent frames within the time series or (ii) different subjects.
The use of more than one labelled example image might increase performance. To ac-
count for that, an uncertainty weighted average over the individual coordinate predictions
is computed to yield the final estimate.

27



Evaluation was carried out on three different datasets and tasks using images of shape
(224 × 224) and squared patches of size (32, 40, 50, 60, 70, 80):

• Within-Subject liver dome tracking in abdominal MRI data from the in-house MR-
LINAC

• Within-Subject liver lesion tracking in abdominal CINE MRI [65]

• Cross-Subject landmark detection in chest X-Ray images [45]

To ensure that patches can be drawn from the image borders, all images were padded to
patch size

2 .
Evaluation was performed using pixel-wise template matching, pixel-wise cross-image
matching, and example-based landmark matching. For pixel-wise template matching, the
euclidean template matching (patch was directly taken from the target image) errors for all
pixels in all test images were computed. Performance of pixel-wise cross-image matching
was evaluated using a cyclic error metric [59] which does not require ground truth informa-
tion: Given two images X and Y (either different subjects or same subjects but different
frames), in a first step a patch (x, y) is extracted from X and its location (x′, y′) is estimated
in Y . Subsequently, based on this patch coordinate estimate, a patch is extracted from Y

and a prediction about its location in X is made (x′′, y′′). This allows for application of any
regression error metric between (x, y) and (x′′, y′′).
Formally, the cyclic, label-free evaluation looks as follows 1:

E(x,y) = |f θ(PY(f θ(PX(x, y), Y)), X) − (x, y)|,

where PX is the patch extracted from X , PY the patch extracted from Y and f θ the trained
model.
Using this routine, the cyclic error is computed for every second pixel in the test data. Re-
garding the task of within-subject tracking, cyclic errors were computed between the slice
representing the end-inspiration and end-expiration phases. For cross-subject detection,
cyclic errors were calculated between random pairs of chest X-Ray images.
To assess the performance of example-based landmark detection, liver dome, lesion cen-
ters and nine anatomical landmarks were annotated by an experienced radiologist in MR-
LINAC data, abdominal CINE MRI and chest X-Rays, respectively, in all test images.
In addition, comprehensive baseline comparisonwas conducted using the chest X-Ray data:

1based on [7], formula 4
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• Fully-supervised baseline: A ResNet-50, pretrained on imageNET, was finetuned on
the labelled chest X-Ray validation data to estimate the position of the nine anatom-
ical landmarks in the test data.

• Patch-wise feature comparison: A feature embedding networkwas trained on squared
(32 × 32) image patches using the SimCLR framework to transform these patches
into 1024-dimensional feature vectors. Landmark detection can then be performed
by first computing the features of the landmark of interest and subsequent compari-
son of this feature vector with the features of all 32 × 32 patches in the target image.
The patch with the highest feature similarity to the patch describing the landmark of
interest represents the final estimate.

• Supervised baseline pretrained with SimCLR: A ResNet-50 encoder was pretrained
on the whole chest X-Ray dataset using SimCLR to map whole X-Ray images into
1024-dimensional feature vectors. After pretraining, the network was fine-tuned as
described above in the fully-supervised baseline.

On top of to these baseline comparisons, several ablation studies were performed, includ-
ing the number of available example patches (from 1 to 50), the used encoder (VGG [66],
ResNet [67], DenseNet [68], and ConvNext [69]), the size of the MLP after the convolu-
tional encoder, and the distribution used during training for uncertainty estimation.
To the best ofmy knowledge, this was the first work that usedConvNexts in a self-supervised
framework.
All evaluations, baselines and ablation routines were conducted with a focus on runtime,
as real-time performance was required.

Results

As expected, pixel-wise template matching showed good results for all datasets. Mean,
averaged euclidean errors over all pixels amounted to less than 4 px, with higher errors
in the background region. This is supported by the uncertainty, which largely increased
towards the image margins (Refer Fig. 4 in [7]).
Cyclic evaluation of cross-image matching resulted in slightly increased errors by about
2-3 px, mainly due to higher errors in the background.
Detection of predefined landmarks yielded excellent results on all datasets. For within-
subject tracking of liver dome and liver lesions, mean euclidean errors amounted to less
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than 2.2 px. Accuracy of cross-subject anatomical landmark detection was slightly worse,
with a mean euclidean error of 5.6 px for one annotated example and 5.0 for 10 available
examples.
Among all test subjects, maximal euclidean errors were 3.1, 3.5 and 13.5 pixels for MR-
LINAC, abdominal CINE MRI and chest X-Ray data, respectively, with maximal anatom-
ical displacements of 10.1 pixels for the liver dome and 8.9 pixels for liver lesions in MR-
LINAC and abdominal CINE MRI, respectively.
Overall, pixel-wise template matching and cross-image matching benefited from larger
patches, whereas landmark detection errors decreased with the use of smaller patches.
The baseline comparisons are depicted in Table. 3.2 2

Table 3.2: Template Matching Network (TMN) vs baseline methods in chest X-Ray im-
ages: Inference times on GPU (CPU) (in ms) are reported. Top: Best euclidean landmark
matching errors (mean ± standard deviation). Bottom: Comparison for one labeled exam-
ple.

Method Euclidean Error [px] Inference Time [ms]

Fe
w
Sh

ot

Supervised: Baseline 8.5 ± 5.7 11 (90)

Feature Comparison 6.2 ± 4.3 1200 (140,000)

Supervised: Finetuned 6.3 ± 4.0 11 (90)

TMN (proposed) 5.0 ± 3.4 17 (150)

Si
ng
le
Sh

ot Supervised: Baseline 15.6 ± 10.4 11 (90)

Feature Comparison 14.8 ± 6.7 1200 (140,000)

Supervised: Finetuned 14.9 ± 11.4 11 (90)

TMN (proposed) 5.6 ± 3.8 6 (75)

Overall, the template matching approach significantly outperformed all baselines, espe-
cially when only one annotated datapoint was available. Due to the low inference time,
even on CPU, real-time application is feasible.
Ablation studies revealed that at least a two-layer MLP was required for this architecture
to work. One layer was not enough to yield accurate results. Replacement of the VGG16
encoder with a ResNet-50 or ConvNext encoder slightly improved results. Changing the
distribution during training had only minor impact on the results (Refer Tab. 3 in [7]).

2Taken and adapted from [7], TABLE 2
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Segmentation

Extension of this framework to segmentation tasks is trivial by patch extraction around all
segmented pixels or, at least, the segmentation boundary.
Fig. 3.4 visualizes segmentation results on MR-LINAC and chest X-Ray data.

Figure 3.4: Predicted segmentations (bottom) based on one labelled example image (top)
for liver, aortic knob and lung segmentation, respectively. Segmentation was performed
based on contours only resulting in inference times of less than 30 ms on GPU. Dice Scores
amounted to 0.94, 0.95, 0.81 and 0.94, respectively. Addition of artificial horizontal bulk
motion (second column) did not affect the result.

In contrast to other tracking and detection works, this framework is capable of both anatom-
ical landmark detection and segmentation in real-time without requiring a single label dur-
ing training. A single labelled example image is sufficient to perform inference with high
accuracy, rendering this approach very useful for image-guided radiotherapy due to the
fact, that organ and lesion segmentation is performed prior to each session.
Pixel-wise evaluation of template-matching as well as cross-image matching revealed high
performance for the foreground regions. The high uncertainty in the background indicates
that this framework learns to recognize relevant structures within a dataset.
The actual tracking of anatomical landmarks, either through time or across subjects, could
be performed with high accuracy for all tasks. Due to the higher similarity, within-subject
tracking performance was superior compared to cross-subject anatomical landmark detec-
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tion within X-Ray images.
As this framework relies on patches to describe what landmark to track, the patch size is the
most important hyperparameter. Generally, patches of sizes 32 to 40 px yielded superior
results for individual landmark detection compared to larger patch sizes. In contrast, for
the pixel-wise evaluations, larger patches led to better performance since the number of
patches that contain only background is reduced.
Obtaining an uncertainty score for each prediction is of huge importance for radiotherapy
as it allows for instant termination if high uncertainty occurs possibly preventing irradiation
of healthy tissue.
First possible applications could involve the definition of an area of interest during radio-
therapy. As long as the landmarks to track are within this region, radiation can continue.
Second to that, this framework can be used for training data generation for any landmark
detection or segmentation task. Based on only a few examples, a large dataset can be fully
segmented and subsequently, after some minor validation, used for supervised learning.
The main limitation of this work is the dependence on the patch size. Future work should
focus on implementing pyramidal strategies to combine several patch sizes to increase gen-
eralizability and remove the necessity of manual patch size selection.
As this framework can be seamlessly translated to 3D volumes, future workwill incorporate
evaluation on full volumes instead of individual slices. First results have been promising.
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3.4 Large Scale, entire-volume, 3D Contrastive Learning
on whole-body MRI data

This section summarizes the method and results presented in C.1. The main contribution
lies in the transfer of SimCLR to the three-dimensional domain and its application on entire-
volume whole-body MR scans.
Whole-body MRIs were transformed into feature vectors consisting of 512 elements using
a three-dimensional ResNet-18 encoder trained in a self-supervisedmanner using SimCLR.
During training, two different augmentations of the initial volume are created and subse-
quently mapped to their respective feature spaces using the ResNet encoder. Chen et al.
[38] could show that adding a subsequent MLP improves performance, thus the feature
vectors are once more transformed before computation of the Normalized Temperature-
scaled Cross-Entropy loss [70]. Given an image tuple (i,j) sampled from the initial volume
(positive pair), the following term is optimized:

ℓ = −log
exp(sim(zi, zj)/τ)∑2N

k=1 1k ̸=iexp(sim(zi, zk)/τ)
,

where sim(zi, zj) corresponds to the cosine similarity between the resulting feature vectors
zi and zj , while τ indicates the temperature and zk contains the feature vectors of the neg-
ative samples. This loss is computed for all positive pairs in the batch rendering the final
objective.
Training was conducted on 40,000 whole-body MRI volumes (224 × 168 × 163) provided
by the UK Biobank [53] using a batch size of 56 (i.e. 112 volumes are used in a batch) on 8
A100 GPUs (NVIDIA) for 200 epochs. For optimization, ADAM [71] was used together
with a linear warmup scheduler up to a learning rate of 1e-3.
Evaluation was performed on 4,174 test subjects (ground truth was provided by the UK
Biobank) using the following downstream tasks:

• Sex classification

• Overall health score classification (Poor to Excellent)

• Age regression

• Height regression
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Figure 3.5: t-SNE plots of the feature vectors colorized for body fat (left, in %) and high
blood pressure (right).

• Weight regression

• Body fat regression

Classification was performed using an MLP consisting of 100 neurons, whereas standard
Ridge regression was used for the regression tasks. Only the feature vectors were used as
input, no fine-tuning of the ResNet encoder was performed. To determine the advantage
of self-supervised contrastive learning, comparison was conducted using a ResNet-18 that
was trained with full supervision on 2, 20, 200 and 400 randomly selected samples.
Second to the evaluation of clinical metrics, feature representations were visualized using
t-SNE plots [72].

Results

Overall, as expected, the self-supervised pretrained model significantly outperformed the
supervised baseline when only limited training data (2 or 20 samples) were available. More
labels led to a convergence of results for all tasks besides the health score classification,
where 400 labelled samples were not enough to reach the self-supervised performance.
Regarding sex classification, self-supervised pretraining achieved markedly high accuracy
using only two labelled samples (one male, one female). This is explained by the t-SNE
plot, which shows an almost perfect separation line between the sexes. (Fig. 4, Appendix
C.1). Fig. 3.5 visualizes two additional t-SNE plots, one for the body fat distribution and
one for the occurrence of high blood pressure.

34



To the best of my knowledge, this is the first work that performed contrastive learning
on entire-volume MRI scans on a very large dataset. Evaluation revealed that contrastive
learning can be used to transform MR volumes into useful feature representations without
the necessity of a labelled dataset. Subsequent adaptation to a downstream task can be per-
formed in two different ways: Retraining of the whole encoder using the learned weights as
starting point, or simply training of a subsequent model using the estimated feature vectors
as input. Both methods, however, allow model sharing and retraining without access to the
initial dataset.
The main drawback of this framework lies in the efficacy of the labelled subset. If finetun-
ing is performed on only a very small subset, performance may vary drastically depending
on the selected data (e.g only male subjects). Evaluation of routines to find the optimal
subset will be part of future work.
While compressing a full volume into a feature vector has certain advantages for estimation
of high-level attributes such as age or sex, there are certain disadvantages when it comes to
prediction of very specific diseases or segmentation tasks. A feature vector that contains
512 elements is just not powerful enough to capture all these properties. Application of
contrastive learning on a slice- or pseudo 3D level might result in more detailed feature
vectors. Future work should investigate this and conduct corresponding comparisons.
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3.5 Advancing the Field through Challenges

This section summarizes the organization and results of the autoPET challenge3 based on
the dataset proposed in [6].
The autoPET - Automated Lesion Segmentation in Whole-Body FDG-PET/CT- challenge
was organized to encourage research in the field of lesion segmentation in PET/CT imaging.
To this end, a dataset consisting of 1014 fully annotated FDG-PET/CT scans (UKT Tübin-
gen) was prepared and made public [6] that participants were allowed to use. A held-out
test set consisting of 150 scans, assembled from two institutions (100 UKT Tübingen / 50
LMU Munich) was used for evaluation. Ranking was performed using Dice Score, false
negative volume and false positive volume, with the Dice Score weighted twice.
Training of the models was conducted locally, whereas evaluation was performed on the
challenge platform https://autopet.grand-challenge.org, to which participants sub-
mitted a docker container containing their framework paired with the model weights. The
challenge consisted of two different phases. Firstly, the preliminary phase, which started
in May 2022 and consisted of 5 test samples, with the goal of allowing the participants to
familiarize themselves with the platform. To this end, a pretrained nn-U-Net baseline was
provided. The final phase, which started in August 2022, included the 150 test subjects.
To encourage participation, a prize pool of 15,000 € was offered.

Results

Throughout the challenge duration (April - September 2022), 359 teams registered from
all over the world. 61% were from Asia (41 % China), 20 % from Europe and 16 % from
NorthAmerica. The largemajority (75%) of all participants were workingwithin academic
institutions. 253 submissions were made from 37 teams during the preliminary phase. For
the final phase, 18 teams submitted their algorithms. Out of these 18 teams, the first 7 were
the challenge winners and received their share of the prize pool (6000 €, 3000 €, 2000 €, 4
× 1000 €).
The winning algorithms were mostly based on a 3D U-Net (nn-U-Net) using the Dice Loss
for optimization. Other frameworks were based on transformers or 2D/3D hybrid models.
Mean Dice Scores ranged from 0.74 to 0.79, mean false positive volumes from 0.5 to 1.5 ml
and mean false negative volumes from 2.1 to 9.5 ml. Results on the out-of-distribution test

3https://autopet.grand-challenge.org/final-leaderboard
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data from Munich were significantly worse (mean Dice Scores from 0.6 to 0.7) compared
to Tübingen (mean Dice Scores from 0.8 to 0.88).
Surprisingly, the performance of the winning teams did not vary much, regardless of the
model chosen. In fact, the provided nn-U-Net baseline was already among the best algo-
rithms (but of course not included in the final leaderboard), supporting the thesis that for
current architectures, the quantity and quality of the training data is much more important
than exhaustive model customization.
In the field of medical imaging, challenges have become the best tool to advance the field.
With the organization of the autoPET 2022 challenge, a first step was taken towards auto-
mated analysis of PET/CT data. Future challenges will address the problem of multi-site,
out-of-distribution test data, and will also allow for incorporation of additional training
data, possibly enabling self-supervised pretraining.
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4. General Discussion & Conclusion

Medical imaging remains one of the medical fields that can benefit most from automated
analysis, due to the enormous possible time savings for the radiologists. The bottleneck
for the broad deployment of such frameworks, however, lies in the process of training data
generation.
For plain classification tasks, training data can be generated without much effort or directly
extracted from existing reports. The benefit of such classification systems, however, is
limited as the radiologist is usually as fast as the trained model. Of course, supportive
applications still have their justification, as they can reduce the likelihood of misdiagnosis.
Segmentation tasks, in contrast, require high manual effort, as the physician has to accu-
rately segment all corresponding pixels / voxels, which is an exceptionally tedious task.
Automated segmentation of medical images is thus a problem of very high relevance. Un-
fortunately, large and fully segmented training datasets are still a rare good, affecting the
application of supervised methods and therefore delaying the development of useful seg-
mentation models. Since only highly trained experts are able to provide this kind of data, it
will probably take a very long time before training datasets are available for a satisfactory
number of tasks. Thus, other ways of either data generation or training routines need to be
developed and evaluated to advance the field of medical imaging.
In this work, several label-efficient or label-free frameworks were developed or transferred
from the normal image domain, implemented and evaluated on several medical imaging
datasets ranging from two to four dimensions.
Weakly-supervised segmentation of tumor lesions in FDG-PET/CT images was achieved
by training classifier with subsequent region proposals usingClassActivationMaps. Lever-
aging these proposals, an adaptive threshold was applied to the PET images to produce the
final segmentation. While this approach proved to be very reliable for small to large tu-
mors, very small or extremely large lesions were typically over- or underestimated, either
because the SUV uptake was too small for the adaptive threshold to function properly, or
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because the extracted region proposals did not include the whole lesion. Hence, applica-
tion in clinical practice is feasible to obtain an initial assessment of the tumour burden,
but detailed evaluation has to be carried out by an expert. The greater value, however,
lies in the potential for training data generation in a research setting. Instead of manual
segmentation in all subjects, the radiologist just needs to label the slices and subsequently
verify or correct the predicted segmentations, resulting in enormous time savings. Due to
the threshold-based routine, this approach is only viable for PET or PET/CT data. Future
work should thus focus on avoiding the thresholds to enable transfer to other modalities.
However, due to advances in self-supervised learning, it may be more efficient to perform
pre-training without any labels with subsequent fine-tuning on a small, fully segmented
dataset, rather than using weakly supervised learning.
One core objective of this work was to advance the field of anatomical tissue tracking. Two
different frameworks, one based on self-supervised contrastive learning and one based on
self-supervised learning with direct-inference were implemented and evaluated on vari-
ous tasks and modalities. The contrastive framework was transferred from the normal im-
age domain and adapted to the medical field, whereas the direct-inference self-supervised
framework was developed directly for the task of anatomical tracking. Both approaches
could be trained without the necessity of an annotated dataset, and inference was per-
formed by providing a single (for the contrastive framework) or arbitrarily many (for the
self-supervised direct framework) labelled examples. While in theory both approaches are
suitable to track landmarks and segmentations, the contrastive framework failed to deliver
accurate results when tracking landmarks due to the feature-based comparison. If the exact
spot of the landmark does not match the most similar feature vector (but its close surround-
ings, which are annotated as zero), the landmark will erroneously also be labelled as zero.
Even if the euclidean distance between ground truth and location of the most similar feature
vector is very small, the evaluation still fails because nothing is annotated in the subsequent
image and thus no landmark is tracked. The self-supervised direct framework, in contrast,
showed great performance for both tracking of landmarks and segmentations.
The main drawback of the contrastive method lies in its inference time. Due to the expen-
sive feature comparison to obtain the affinity matrix, in combination with the requirement
of the large featuremap (1284 operations per frame pair), real-time application is not achiev-
able with current hardware. In contrast, application of the self-supervised, direct-inference
framework, was possible in less than 11 ms for landmark tracking and 25-30 ms when
tracking segmentations. This allows its use in real-time applications such as image-guided
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radiotherapy.
Uncertainty quantification together with inference is of highest importance in medicine,
as ”unsecure” predictions can lead to catastrophic failures. In Germany, according to the
secondAI roadmap published by theDeutsche Institut für Normung (DIN) [73], uncertainty
quantification should be a requirement for all AI based frameworks in the medical field.
While this comes natural with the self-supervised, direct-inference framework by adding
the corresponding uncertainty neurons in the output layer, it is not as trivial for contrastive
learning. One strategy that typically works well is to train an ensemble and calculate the
variance of the predicted results. This, however, scales linearly with inference time and is
thus not feasible for real-time applications. First approaches, not relying on ensembling,
have been proposed very recently [74] and show promising results.
Due to the lack of computational resources and available data, 3D contrastive learning on
full volumes has not been feasible in the past. Advanced GPUs, paired with a large dataset
provided by the UK Biobank, enabled this challenge to be addressed. To this end, a 3D
ResNet-18 has been implemented into the SimCLR framework to map the entire volume
to a single feature representation. Semi-supervised evaluation revealed that the amount
of labels required to fine tune such a pretrained network on a downstream task can be
drastically reduced. More interesting than that is the ability to visualize entire populations
(or at least the subgroup that had an MRI taken) by application of a t-SNE plot to the
predicted feature embeddings. Another useful application is to find the most similar scans
to the current one. In the future, this might be used to suggest scans that have been evaluated
in the past, improving diagnostic accuracy. Overall, performance and benefits on more
complicated and useful tasks still have to be evaluated. Currently, due to the still limited
batch size and feature dimension, application on two-dimensional slices might be more
promising.
Last but not least, leaving the field of label-efficient learning, the autoPET challenge was
planned and organized to motivate deep learning researchers to work on the highly relevant
field of lesion segmentation in PET/CT data. By providing a large and fully annotated
dataset as well as a platform for automatized inference, 18 teamswere encouraged to submit
their final results, of which 7 won a part of the prize money. Solutions were mostly based on
the nn-U-Net and overall scores did not vary significantly on the held out within-domain
test set. In contrast, the out-of-domain data from Munich resulted in a higher variance
among the results. Thus, for the second challenge, which is currently in the preliminary
phase, a higher focus is set on these kind of problems.
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In conclusion, the results of this work are promising that the medical imaging domain ben-
efits from label efficient frameworks, especially in the field of tissue tracking. Using these
kind of techniques will allow for more precise and thus more efficient radiotherapy in the
future and therefore has the potential to change the outcome of a tumor burden for good.
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Abstract

Purpose: We introduce and evaluate deep learning methods for weakly supervised segmentation
of tumor lesions in whole-body fluorodeoxyglucose-positron emission tomography (FDG-PET)
based solely on binary global labels (“tumor” versus “no tumor”).

Approach: We propose a three-step approach based on (i) a deep learning framework for image
classification, (ii) subsequent generation of class activation maps (CAMs) using different
CAM methods (CAM, GradCAM, GradCAM++, ScoreCAM), and (iii) final tumor segmenta-
tion based on the aforementioned CAMs. A VGG-based classification neural network was
trained to distinguish between PET image slices with and without FDG-avid tumor lesions.
Subsequently, the CAMs of this network were used to identify the tumor regions within images.
This proposed framework was applied to FDG-PET/CT data of 453 oncological patients with
available manually generated ground-truth segmentations. Quantitative segmentation perfor-
mance was assessed for the different CAM approaches and compared with the manual ground
truth segmentation and with supervised segmentation methods. In addition, further biomarkers
(MTV and TLG) were extracted from the segmentation masks.

Results: A weakly supervised segmentation of tumor lesions was feasible with satisfactory per-
formance [best median Dice score 0.47, interquartile range (IQR) 0.35] compared with a fully
supervised U-Net model (median Dice score 0.72, IQR 0.36) and a simple threshold based seg-
mentation (Dice score 0.29, IQR 0.28). CAM, GradCAM++, and ScoreCAM yielded similar
results. However, GradCAM led to inferior results (median Dice score: 0.12, IQR 0.21) and
was likely to ignore multiple instances within a given slice. CAM, GradCAM++, and
ScoreCAM yielded accurate estimates of metabolic tumor volume (MTV) and tumor lesion gly-
colysis. Again, worse results were observed for GradCAM.

Conclusions: This work demonstrated the feasibility of weakly supervised segmentation of
tumor lesions and accurate estimation of derived metrics such as MTV and tumor lesion
glycolysis.
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1 Introduction

Contrast-enhanced computed tomography (CT) remains the backbone for oncological staging,
whereas 18-fluordesoxyglucose ([18F]-FDG) positron emission tomography (PET)/CT hybrid
imaging plays a central role in the detection of distant metastatic disease.1 In addition to the
detection of tumor spots, FDG-PET provides essential functional information about the tumor
metabolism.2 For instance, the maximum standardized uptake value (SUV) for FDG of primary
tumors is a prognostic biomarker for survival in non-small cell lung cancer.2 In addition to the
maximum SUV, state-of-the-art metrics for assessing tumor burden also include the metabolic
tumor volume (MTV) and total lesion glycolysis (TLG).3 Although this information is, in prin-
ciple, available in routine examinations, the evaluation can imply the manual analysis of a large
number of single lesions and thus proves to be problematic in everyday clinical practice and in
the exploration of large cohorts. Computer-aided automatic detection and segmentation of tumor
lesions is therefore of great importance in PET/CT imaging. In recent years, significant progress
has been made in the automatic analysis of medical images, mainly due to the emergence of deep
learning methods.4,5 Deep learning models have already been successfully applied for the detec-
tion and segmentation of tumor lesions.6 Established approaches are mostly based on supervised
learning schemes7 that use a large amount of manually voxel-wise annotated ground-truth
data. However, acquiring ground-truth data, in particular for many small tumor lesions, is time
consuming and requires an enormous manual labeling effort of an experienced radiologist.
Advances in machine learning are pointing to methods that allow learning with a smaller amount
of annotated training data.8 Whereas semi- and self-supervised learning try to boost performance
by utilizing unlabeled data, weakly supervised learning reduces the complexity of the label and
therefore simplifies the collection of ground-truth annotations. Following the second approach,
the location of objects in natural images can be learned to a limited extent from a weaker anno-
tation such as a classification of the imaged object of interest, instead of an actual voxel-wise
mask (i.e., the full positional information).9 Previous studies demonstrate the potential of weakly
supervised segmentation based on bounding boxes,10 scribbles,11 or image level class labels.12 In
this work, we propose a framework for weakly supervised segmentation of tumor lesions in full-
body PET/CT images of patients with cancer. Thus, only a binary slice-by-slice specification of
whether malignant tissue is present or not is used as a weak supervision signal. A convolutional
neural network (CNN) acts as a classifier. Subsequently, a threshold-based analysis of class acti-
vation maps (CAM) is utilized to generate the segmentation mask. We evaluate our proposed
approach for different CAM methods and compare its performance in predicting TLG and MTV
with supervised segmentation approaches for PET/CT images of oncological patients with lung
cancer, lymphoma, and malignant melanoma.

1.1 Related Work

The use of CAM for weakly supervised object detection and segmentation has been reported,
including in the medical imaging domain. Afshari et al. proposed a FCN architecture for PET
lesion segmentation based on bounding boxes and the unsupervised Mumford-Shah segmenta-
tion model.13 Nguyen et al.14 used GradCAM paired with a ResNet50 to segment uveal mela-
noma lesions in MRI images. Subsequently, after applying a conditional random field, they
trained a U-Net on predicted segmentation masks, which achieved Dice scores similar to the
supervised counterpart. Recently, Eyuboglu et al.15 proposed a weakly supervised method that
uses a BERT language model16 to extract regional abnormality labels from free-text radiology
reports of PET/CT examinations. Subsequently, they trained a CNN-based classifier on these
labels to automatically detect if there are abnormalities in a certain anatomical region.

2 Materials and Methods

2.1 Dataset

In this study, we included full body PET/CT scans of 453 oncological patients (195 females, 258
males) acquired between 2013 and 2016 from an ongoing PET/CT registry study in our
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hospital.17 The distribution of oncological diagnoses was as follows: 50% lung cancer, 18%
lymphoma, and 32% malignant melanoma. The median age was 64 years (19–95 years). All
examinations were performed using standardized protocols including state-of-the-art CT with
an intravenous contrast agent (Biograph mCT, Siemens Healthineers, Germany). [18F]-FDG
was applied as the PET tracer. The registry study was approved by the Ethics Committee of
the University of Tübingen, reference number 064/2013B01.

2.1.1 Pre-processing

Voxel-wise SUVs were computed from attenuation corrected PET images.18 SUV images were
pre-aligned and resampled to the resolution of the corresponding CT images by means of linear
interpolation (spatial resolution of 2 × 2 × 3 mm, in-slice shape 256 × 256). To evaluate the per-
formance of the model, a subject level train-validation-test split (60%–20%–20%) was used. All
tumor lesions were manually annotated by an experienced radiologist in a slice-by-slice manner
(Fig. 1). A slice-wise binary label, which indicates if malignant tissue is present or not, was
derived from the segmentation masks as a weak supervision signal.

2.1.2 Data description

The median tumor volume was 46.5 ml [interquartile range (IQR) 158.4 ml]. Overall, only
13.5%–14% of the training/test set image slices contained malignant tissue. As shown in
Fig. 2, the right skewed distribution of the tumor size within slices reflects a dominance of slices
with small tumor proportions.

2.2 Methods—Weakly Supervised Tumor Segmentation

First, we describe the proposed method for weakly supervised segmentation. A detailed descrip-
tion of the network architecture as well as the derivation of the utilized CAM methods is given.
Finally, we summarize the training routine, the baseline methods and the evaluation
methodology.

2.2.1 Weakly supervised segmentation

The purpose of weakly supervised segmentation is to achieve a well-performing segmentation
model without the need for manually annotated ground-truth segmentation masks. Weak labels
(e.g., class labels or bounding boxes) are typically easy to gather and correlate directly with the
segmentation mask. Our framework generates a segmentation mask prediction in three separate
steps. First, a tumor classification network is trained with the provided slice-level binary labels
(tumor/no tumor). Second, CAM methods are used to identify regions that are relevant to the
networks decision. An adaptive unsupervised threshold-based image segmentation is applied to
the region proposed by the CAM algorithm, yielding the tumor segmentation.

Fig. 1 Exemplary PET/CT slice with high SUV uptake next to the hilum of the right lung. The right
image shows the manually annotated segmentation mask as red overlay to the PET image.
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Architecture. For the slice-wise classification task, a CNN with VGG-16 base architecture19

was utilized. The weights of the network were pretrained on Imagenet.20 By removing the first
max-pooling layer of the network, the size of the final feature map was increased to 32 × 32. Pre-
processed PET and CT image slices form the two input channels of the network. The output of
the network yields the probability of the slice containing one or more FDG-avid tumor lesions.

Class activation maps. Neural networks form a class of highly non-linear functions, and
there is no general recipe for explaining the relevance of input features for the final prediction.
One common approach is to visualize the saliency of regions of the input image with respect to
the prediction of a CNN. These saliency maps are called CAM9 (Fig. 3). Four different estab-
lished methods to derive CAMs were compared in this study.

The classic CAM9 algorithm requires a specific network architecture with a single fully con-
nected layer following the final global average pooling layer of the convolutional part of the
network. The activation map M for class c is computed as the dot product between feature map
Ak with k filters of the last convolutional layer of the network and weights w for class c from the
fully connected layer:

Fig. 3 Proposed processing routine. First, a binary tumor classifier is trained in a supervised man-
ner on PET/CT data. Then a class activation map is computed based on the classifier. Finally,
threshold based segmentation is performed on the PET images within the region proposed by the
CAM.

Fig. 2 Distribution of the tumor size for slices with malignant tissue. Slices with small sized tumors
are dominating.

Früh et al.: Weakly supervised segmentation of tumor lesions in PET-CT hybrid imaging

Journal of Medical Imaging 054003-4 Sep∕Oct 2021 • Vol. 8(5)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Medical-Imaging on 04 Nov 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



EQ-TARGET;temp:intralink-;e001;116;735Mc ¼
X
k

wc
kAk: (1)

Compared with CAM, GradCAM21 shows more flexibility regarding the network architec-
ture. CAM Mc is computed by scaling corresponding feature map A of the last convolutional
layer with the gradients of prediction ŷ for class c with respect to the elements of A via
backpropagation followed by global average pooling:

EQ-TARGET;temp:intralink-;e002;116;653δc ¼ 1

N

X
h

X
w

∂ŷc

∂Ak
hw

: (2)

Subsequently, the linear combination between δc and feature map Ak is calculated to
compute Mc:

EQ-TARGET;temp:intralink-;e003;116;580Mc ¼ max

�X
k

δckA
k; 0

�
: (3)

GradCAM lacks performance if multiple instances of the same class occur within one image
as the focus on one object of class c is enough to yield the corresponding prediction.22 Often only
fragments of the object are considered as these are already sufficient for an accurate classifi-
cation. This is particularly relevant in tumor segmentation, in which multiple tumor spots
regularly appear on a single slice.

GradCAM++22 tackles this problem by weighting the non-negative gradient of the last
convolutional layer with respect to a specific class:

EQ-TARGET;temp:intralink-;e004;116;448Mc ¼
X
h
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w
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∂Ak
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�
; (4)

where αkchw is defined as
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ij
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∂3 ŷc

ð∂Ak
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� ; (5)

with i and j indexing over the slice dimensions.
ScoreCAM,23 just like CAM, does not rely on gradients to derive a CAMM. The input image

B is perturbed with the predicted, up-sampled, and normalized feature maps A. For each of these
disturbed images, new feature maps A 0 are computed by forward passes through the network. All
A 0 are subtracted from the original feature map A of the input image B. A subsequent softmax
operation yields weights αc of the following linear combination:

EQ-TARGET;temp:intralink-;e006;116;251Mc ¼ max

�X
k

αckA
k; 0

�
: (6)

Adaptive threshold. By applying a CAM-method-specific CAM-threshold tm to the
CAMs, a binary regional candidate mask for the tumor area is derived. Thresholded CAMs are
upscaled from 32 × 32 pixels to the original image size by means of nearest neighbour
interpolation.

The segmentation mask is subsequently derived by selecting all positions with values larger
than a method-specific but fixed percentile qm of the SUV distribution inside the masked region.
Data-specific hyperparameters in the form of CAM-thresholds and intensity percentiles were
determined empirically on the training and validation sets. The percentile qm was empirically
determined by performing grid search on the training data with 20 linearly spaced values
between 20 and 50. The threshold value tm was determined in the same manner with ten linear
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spaced values from 0.1 to 0.9. The best values were determined by maximizing the Dice score on
the validation data.

Segmentation routine. The complete segmentation routine is presented in the algorithm
below.

2.3 Baselines

To evaluate the performance of our method, we compared our results with two baselines: a sim-
ple global threshold-based segmentation method and a fully supervised U-Net-CNN model.4

2.3.1 Global threshold

A global threshold based on a fixed SUV percentile was applied to all images in which the
classification network predicts a tumor. The percentile was again empirically determined by
performing a grid search on the training data with 20 linearly spaced values between 20 and
50 and choosing the one that yielded the highest Dice score.

2.3.2 Supervised UNET

We compared our approach with a standard UNET4 segmentation model trained in a supervised
manner on image slices. Our architecture consists of four double convolution layers in both,
having the decoder and encoder with skip connections between all levels.

2.3.3 Training

As described above, a modified VGG1619 backbone was used as the tumor classification net-
work. Data augmentation, including slice-wise scaling, rotations, translations, and contrast
changes, was applied.24 The model was implemented using the deep learning framework
PyTorch (1.7.1).25 The network was trained for 50 epochs using a SGD optimizer with a momen-
tum of 0.9,26 a learning rate of 0.001, and a batch size of 64. To consider class-imbalance, a
weighted cross entropy loss (w ¼ 7.7) was used.

Algorithm 1 CAM Segmentation

Input: PET/CT slice X, Percentile qm , Adaptive Threshold tm ;

1: Predict class ŷ of X (Does X contain a tumor or not?);

If ŷ is tumorous then

H = CAM(X)

Else

return Empty segmentation mask

End

2: H 0← Mask all values ≥tm ;

3: Upscale H 0 from 32x32 pixels (size of the CAM) to the size of X ;

4: H 00←X⊙H 0;

5: t q← Calculate the percentile qm of H 00;

6: Segmentation mask = H ≥ t q ;

Output: Segmentation mask;
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The baseline U-Net model was trained on 2D image slices with a batch size of 64 for 200
epochs using the ADAM optimizer27 (β1 ¼ 0.9, β2 ¼ 0.999) with an initial learning rate of
5e − 5. Again, a weighted (w ¼ 7.7) cross entropy loss was used. The same data augmentation
for the classifier was used.

A dedicated GPU (Tesla V100, NVIDIA, Santa Clara) was used for accelerated computing.

2.3.4 Statistical analysis

All results are reported with median and IQR. Additionally for all segmentation methods,
intra-class correlations (two-way, agreement) between ground truth annotation and prediction
were computed. A global significance level of 0.05 was used.

2.4 Evaluation

Our proposed framework and the baselines were evaluated for 90 test subjects. The metrics 3D
Dice score (compared with manual ground truth), MTV, and TLG deviation were computed for
each patient.

The Dice score is defined as

EQ-TARGET;temp:intralink-;sec2.4;116;317

2jA ∩ Bj
jAj þ jBj ;

where A and B are the sets of voxels inside the ground truth and predicted segmentation mask,
respectively. The MTV quantifies the volume of tumor regions with high metabolism. TLG is
defined as the product of the mean SUV and MTV.28

3 Results

3.1 Weakly Supervised Tumor Segmentation

The following threshold values (tm) were derived for CAM, GradCAM, GradCAM++, and
ScoreCAM activation maps: 0.3, 0.2, 0.3, and 0.4, respectively. The following SUV percentile
thresholds (qm) were applied: 0.31 for CAM, 0.35 for GradCAM, 0.32 for GradCAM++, and
0.31 for ScoreCAM. Fig. 4 depicts the activation maps based on the four different methods and
the corresponding segmentation for a sample slice with a tumor.

3.1.1 Dice score

Overall, the supervised U-Net model showed the best performance with a median Dice score of
0.72 (IQR 0.36) (Fig. 5). ScoreCAM and CAM produced the best results of all weakly

Fig. 4 PET with ground truth segmentation, corresponding activation map based on the four CAM
methods, extracted segmentation and corresponding CT for a sample slice with a tumor.
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supervised methods with a median Dice score of 0.47 (IQR 0.35) and 0.46 (IQR 0.35), respec-
tively. GradCAM++ performed slightly worse with a median Dice score of 0.42 (IQR 0.30).
GradCAM, which achieved a median Dice score of 0.12 (IQR 0.21), showed significantly worse
results. The global threshold method achieved a median Dice of 0.29 (IQR 0.28).

3.1.2 Evaluation of MTV

The supervised U-Net again showed the best results for the MTV estimation with a median
difference of 17 ml (IQR 27 ml). Small tumors were slightly overestimated (Fig. 6). ScoreCAM
(median difference 27 ml, IQR 48 ml), GradCAM++ (median difference 24 ml, IQR 48 ml), and
CAM (median difference 26, IQR 68 ml) provided similar results. GradCAM again revealed
inferior results with a median difference of 30 ml (IQR 76 ml). For all weakly supervised meth-
ods, an overestimation of small tumors and underestimation of large tumors was observed. This
characteristic was most prominent in GradCAM and CAM. Using the global threshold baseline
method also yielded a strong overestimation of smaller tumors and an underestimation of larger
tumors (median difference 44 ml, IQR 92 ml). Those results are further validated by the ICC
compared with the manual ground truth segmentation, which showed very similar scores and
confidence intervals for CAM, GradCAM++, and ScoreCAM. GradCAM in contrast showed a
significantly lower ICC (Table 1). Again, the supervised U-Net showed the highest scores and
smallest confidence intervals, whereas the global threshold performed worse than CAM,
GradCAM++, and ScoreCAM.

3.1.3 Evaluation of TLG

Tumor lesion glycolysis was predicted accurately by all methods except for GradCAM. Again,
the supervised U-Net yielded the best results with a median TLG deviation of 50 g (IQR 110 g).
No significant over- or underestimation was observed. (Fig. 7) ScoreCAM (median deviation of
99 g, IQR 285 g), GradCAM++ (median deviation 108 g, IQR 267 g), and CAM (median
deviation 101 g, IQR 219 g) again achieved closely similar results. GradCAM (median deviation
112 g, IQR 482 g) showed the highest error with overall underestimation of TLG. In general

Fig. 5 Per subject Dice scores for the weakly supervised segmentation methods (blue) and the
supervised baselines (red).
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underestimation of TLG of large tumors was observed; no overestimation of the TLG of small
tumors occurred. The global threshold showed the largest variance for TLG estimation, again
induced by marked overestimation of small lesions (median difference 167 g, IQR 524 g); how-
ever, there was less underestimation of larger lesion compared with the weakly supervised meth-
ods, which results in a higher ICC score due to less overall systematic error.

4 Discussion

In this study we introduced, evaluated, and compared methods for weakly supervised segmen-
tation of FDG-avid lesions in whole-body FDG-PET images. We established that, using CAMs
with subsequent thresholding, weakly supervised segmentation is feasible with satisfactory accu-
racy. Compared with an upper baseline (a fully supervised UNET) and a lower baseline (a global
threshold), we found that CAM, GradCAM++, and ScoreCAM yielded good overall segmen-
tation accuracy whereas the use GradCAM led to inferior results. Overall, image-derived

Fig. 6 Comparison between true and estimated MTV. All units in ml.

Table 1 Intra class correlation for estimated and real MTV/TLG.

MTV (ml) TLG (g)

ICC 95%-CI p-value ICC 95%-CI p-value

CAM 0.64 [0.50, 0.74] <0.001 0.85 [0.77, 0.90] <0.001

GradCAM 0.55 [0.39, 0.67] <0.001 0.40 [0.19, 0.57] <0.001

GradCAM++ 0.64 [0.48, 0.73] <0.001 0.79 [0.66, 0.86] <0.001

ScoreCAM 0.64 [0.50, 0.75] <0.001 0.82 [0.71, 0.88] <0.001

Threshold 0.59 [0.45, 0.71] <0.001 0.88 [0.83, 0.92] <0.001

UNET 0.94 [0.91, 0.96] <0.001 0.99 [0.98, 0.99] <0.001
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parameters MTV and TLG extracted from these segmentations correlated well with the ground
truth values extracted from manual segmentation using CAM, GradCAM++, and ScoreCAM.
Again, the use of GradCAM yielded higher deviations.

The results of this study are relevant for a wide range of segmentation tasks in the medical
imaging domain in which the generation of sufficient labeled training data is associated with
high effort and cost. Using weak supervision—e.g., as in this study by only providing binary
labels on an image level—this effort can be reduced significantly. Our results can thus contribute
to more efficient training data generation and thus wider application of machine learning meth-
ods in the medical imaging domain.

The contribution of our study beyond existing work is the application to whole body FDG
PET data and the detailed comparison of different CAM techniques. We found that CAM,
GradCAM++, and ScoreCAM are suitable CAM methods for weakly supervised segmentation
as they capture the tumor lesions within PET images, and thus the inferior performance of
weakly supervised segmentation using GradCAM can be explained by the known and previously
described property of GradCAM to highlight only the few small regions that are relevant for the
network output, leading to systematic underestimation of target regions within the image22

The main limitation of class activation mapping-based segmentation as implemented in this
study is the necessity of two thresholds—one on the CAM to identify the target area and one on
the PET image to define the segmentation. Our results show that this works well on FDG-PET
data due to the generally higher signal intensity of tumor lesions compared with background
tissue. However, generalization to other medical imaging modalities such as CT or MRI, in
which lesion intensity is less discriminative, might be limited. Future work will expand the use
of class activation mappings to further datasets, including CT or MRI images. To this end,
research should focus on methods that avoid the use of thresholds.

In this work, all analyses were performed on 2D slices. However, it would be beneficial to
extend the principle of weakly supervised segmentation to 3D image data. This will allow for
processing of entire imaging studies of single patients and further decrease the labeling effort. It
can be expected, however, that the transition to 3D processing will be associated with a signifi-
cant increase in computational demand. Although weak supervision saves significant time in
creating labels, the precision of a supervised approach could not be reached in our study. If
additional manual post-processing efforts are required to achieve sufficient precision for
real-world applications, this must be taken into account. However, such corrections are mostly

Fig. 7 Comparison between true and estimated TLG. All units in g.
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limited to the exclusion of entire false positive lesions and can therefore be efficiently performed.
On the other hand, weak supervision allows a potentially much larger number of subjects to be
available as training data. Further studies need to show to what extent this compensates for the
poorer accuracy. In particular, this could potentially also provide higher robustness and general-
izability than a supervised model with a smaller training sample size.

Finally, the translation of the methodology presented in this paper to other PET tracers should
be straightforward and may thus allow for implementing automated segmentation of non-FDG
PET data with minimal manual annotation effort.

5 Conclusion

We were able to demonstrate that weakly supervised segmentation of FDG-avid lesions on
whole-body FDG-PET is feasible, yielding satisfactory results. Further studies extending the
proposed methodology to other PET tracers and medical imaging modalities will be necessary
to investigate the transferabilty of the proposed methodology to related segmentation tasks.
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a b s t r a c t 

Background and Objective: Tracking of anatomical structures in time-resolved medical image data plays 

an important role for various tasks such as volume change estimation or treatment planning. State-of- 

the-art deep learning techniques for automated tracking, while providing accurate results, require large 

amounts of human-labeled training data making their wide-spread use time- and resource-intensive. Our 

contribution in this work is the implementation and adaption of a self-supervised learning (SSL) frame- 

work that addresses this bottleneck of training data generation. Methods: To this end we adapted and 

implemented an SSL framework that allows for automated anatomical tracking without the necessity for 

human-labeled training data. We evaluated this method by comparison to conventional- and deep learn- 

ing optical flow (OF)-based tracking methods. We applied all methods on three different time-resolved 

medical image datasets (abdominal MRI, cardiac MRI, and echocardiography) and assessed their accu- 

racy regarding tracking of pre-defined anatomical structures within and across individuals. Results: We 

found that SSL-based tracking as well as OF-based methods provide accurate results for simple, rigid and 

smooth motion patterns. However, regarding more complex motion, e.g. non-rigid or discontinuous mo- 

tion patterns in the cardiac region, and for cross-subject anatomical matching, SSL-based tracking showed 

markedly superior performance. Conclusion: We conclude that automated tracking of anatomical struc- 

tures on time-resolved medical image data with minimal human labeling effort is feasible using SSL and 

can provide superior results compared to conventional and deep learning OF-based methods. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

Tracking of anatomical structures and organs is a central task 

in medical image analysis, especially regarding the assessment of 

time-resolved image data such as CINE MRI or ultrasound images. 

In such applications, the change in position or volume of certain 

structures provides insight into the pathophysiology of diseases 

or allows for planning of therapeutic interventions. For example, 

the change in volume of the left ventricle as measured in car- 

diac CINE MRI provides information on cardiac function [1] and 

the tracking of tumor lesions during respiration enables precise 

planning and execution of radiation therapy [2–7] . In many situa- 

∗ Corresponding author. 

E-mail address: Sergios.Gatidis@med.uni-tuebingen.de (S. Gatidis) . 

tions, tracking of predefined structures is still performed manually 

or semi-automatically in time-demanding procedures. The conven- 

tional approach for automation of tracking tasks in medical imag- 

ing uses established registration methods that match different im- 

ages on pixel-level information [8–11] . Among these methods, op- 

tical flow techniques are the most commonly used class of al- 

gorithms and have been applied to numerous image processing 

tasks such as image registration [12] , motion correction [13] or 

lesion tracking [10] . The main drawback of these methods how- 

ever, lies in the neglect of semantic image content and the ne- 

cessity for hyperparameter optimization. The introduction of deep 

learning algorithms has improved automation of numerous image 

analysis tasks including organ segmentation [14,15] lesion detec- 

tion [16,17] and optical flow estimation [18–20] which also allows 

for tracking of anatomical structures in specific applications. How- 

https://doi.org/10.1016/j.cmpb.2022.107085 
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ever, a substantial drawback of most deep-learning approaches is 

the necessity for large amounts of pixel-wise annotated training 

datasets which is associated with enormous effort or in some situ- 

ations even not feasible. To alleviate this challenge, different learn- 

ing strategies have been proposed including unsupervised learn- 

ing techniques [21] . Recently, novel machine learning approaches 

have been introduced that aim to alleviate the problem of large- 

scale training data labeling by means of semi-, weakly- or self- 

supervised learning [22–28] . The central concept of these methods 

lies in exploiting regularities in the underlying data to learn use- 

ful representations that can subsequently be used for downstream 

tasks. Self-supervised learning (SSL) has been proposed for vari- 

ous medical image analysis tasks such as organ segmentation [29] , 

classification [30] or landmark detection [31] . For the specific field 

of image tracking and registration, SSL has been shown to provide 

good results without human interaction [32,33] . Specifically, Jabri 

et al. recently demonstrated the use of a random walk SSL task 

for object tracking on video data [34] . The purpose of this work 

was thus to address this bottleneck of training data generation. Our 

contributions lie in the adaptation and implementation of an SSL 

framework that allows for automated anatomical tracking without 

the necessity for human-labeled training data and the comparison 

of this SSL-based anatomical tracking with Farneback optical flow 

[35] (FB-Flow), PCA optical flow [36] (PCA-Flow) and FlowNet2 op- 

tical flow [37] (FlowNet2-Flow) on three different datasets (abdom- 

inal MRI, cardiac CINE MRI, and echocardiography) for the task of 

organ tracking. To the best of our knowledge this is the first study 

evaluating and comparing the performance of both, self-supervised 

deep learning and optical flow based tracking algorithms for tissue 

tracking on different modalities. 

2. Material and methods 

2.1. Anatomical tracking 

The overarching goal of this study was to implement and evalu- 

ate methods that allow for tracking of anatomical structures within 

image series without human supervision and without the necessity 

for human-annotated training data. 

To this end, four different tracking methods, one based on self- 

supervised deep learning and three based on Optical Flow were 

implemented and adapted to a medical imaging context. 

2.1.1. Optical flow-based tracking 

The purpose of dense optical flow algorithms is to track the 

movement of all pixels between two frames in an image sequence. 

For the optical flow methods used in this study, objects are tracked 

by warping the respective manual segmentation mask according to 

the estimated flow field. 

Farneback optical flow 

The Farneback algorithm is a widely used method for object 

tracking on image sequences [35] . It is based on Polynomial Expan- 

sion for neighborhood approximation and was used in this study as 

a baseline method and a classical representative for Optical Flow 

estimation. All results produced by the Farneback Optical Flow 

were obtained using a pyramid scale of 0.5 with 3 levels, a win- 

dow size of 15, 3 iterations, a pixel neighborhood of 5 to calculate 

polynomial expansion and 1.2 as standard deviation for derivative 

smoothing. 

PCA optical flow 

A more recent approach to Optical Flow estimation, PCA-Flow 

[36] , approximates the Optical Flow by computing the weighted 

sum over basis flow fields with corresponding weights. The ba- 

sis flow fields of the original method were derived from Holly- 

wood movies by initial Optical Flow computation using GPUFlow 

[38] and subsequent calculation of the first 500 principal com- 

ponents of the resulting flow fields. These established basis flow 

fields were also used in this work without re-training. Default pa- 

rameters were used. 

FlowNet2 optical flow 

In contrast to the above methods, FlowNet [18] estimates the 

Optical Flow by leveraging Convolutional Neural Networks. Two 

subsequent images are fed to the FlowNet architecture (either 

stacked as multiple channels or separated through two different 

encoders) which then outputs an optical flow approximation. The 

network is trained end-to-end on datasets where ground truth op- 

tical flow is available (mostly synthetic datasets, such as Flying 

Chairs [18] , Flying Things3D [39] or MPI Sintel [40] ). FlowNet2 [37] , 

the successor of FlowNet, combines multiple FlowNet networks 

with different architectures to handle both, small and large mo- 

tion. In this work, a pre-trained (Flying Things3D) FlowNet2 model 

was deployed directly on the presented use cases. Due to the lack 

of ground truth motion fields on these datasets, which is typical 

for medical applications, no fine tuning could be performed. 

2.2. Self-Supervised pretraining for deep learning-based object 

tracking 

SSL is based on the concept of using a training task that does 

not require external labels but instead relies on ground truth that 

is known by design. A simple example for an SSL task is predicting 

the rotation of images that were intentionally rotated and where 

thus the ground truth is directly available [41] . Recently, Jabri et al. 

proposed a deep learning framework for self-supervised pretrain- 

ing on videos [34] that can be used for object tracking in image 

series. 

In this framework, self-supervision is achieved by ensuring 

cycle-consistent mapping of image patches. 

In a first step, the individual video frames are divided into 

patches. Using an encoder φ based on the ResNet-18 architecture 

[42] which maps the patches into their respective feature space, 

the similarity between two patches p and q is computed using the 

dot product d = < φ(p) , φ(q ) > . 

Subsequently, the affinity matrix between two consecutive 

frames at timepoints t and t + 1 is computed via: 

A 

t+1 
t (i, j) = 

exp (d(p i t , q 
j 
t+1 

) /τ
∑ N 

n =1 exp (d(p i t , q 
n 
t+1 

) /τ
(1) 

A 

t+1 
t (i, j) contains the stochastic (temperature-scaled) similarity 

between all pairs of patches (p t , q t+1 ) . 

Affinity between longer frame pairs at timepoints t and t + 

k, k > 1 is achieved via multiplication of the intermediate affinity 

matrices between consecutive frame pairs. 

To optimize this framework in a self-supervised way, image 

sequences are expanded into palindrome sequences (normal and 

inverse order of images). This enables computation of the cross- 

entropy loss between initial patches in the first frame and target 

patches in the final frame (which is identical to the first frame in 

the palindrome sequence) as each patch acts as its own target la- 

bel. 

Formally, during training, all entries with i = j of the palin- 

drome similarity matrix A 

t+ k 
t A 

t 
t+ k are maximized while off-diagonal 

entries are minimized yielding the following loss: 

L CE = 

N ∑ 

i = j 
−log (A 

t+ k 
t A 

t 
t+ k (i, j)) (2) 

To propagate a reference segmentation from the first image 

through the image sequence during inference, the local features 

2 
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Fig. 1. Exemplary initial and final frame from all three datasets respectively with corresponding manual segmentation of the organ of interest: liver (abdominal MRI, the 

dotted line serves as a positional reference), left ventricle (cardiac MRI and cardiac Echo). Contours are drawn at liver boundary (abdominal MRI) and endocardium (cardiac 

CINE MRI and cardiac Echo) by an experienced reader. 

are extracted from all images using the trained encoder φ in a first 

step. Subsequently, the affinity matrix is calculated based on these 

features and the k ( k is a hyperparameter) largest affinity values 

are considered same-class segmentation labels (k-nearest neigh- 

bors). 

In this study, we extended this method for application on med- 

ical image data so that it can be used for tracking in time-resolved 

data as well as across subjects. We trained the feature extractor 

from scratch with decreased stride in the second layer to increase 

accuracy at tissue boundaries on image sequences of 4 images for 

500 epochs with a batch size of 6, an initial learning rate of 10 −4 

and softmax temperature of 0.07 for each dataset on an NVIDIA 

RTX3090 GPU. Using this method, object tracking was performed 

by initially calculating the feature maps for all images in an image 

series and subsequently determining the k = 10 most similar fea- 

tures within a radius of 20 pixels of all feature maps with respect 

to an initial manual segmentation. In addition, we performed clus- 

tering on the predicted segmentations and, in case multiple ob- 

jects are recognized in the target image, we selected the object 

with the highest similarity to the ground truth segmentation. All 

images were resized to (784 × 784) for inference yielding feature 

maps with matrix size of (196 × 196) . 

In all following figures, results of SSL-based tracking are dis- 

played in red, of PCA-Flow in blue, of FB-Flow in green and of 

FlowNet2 in purple. 

2.3. Experiments 

Three different datasets were used for method evaluation in 

this work. We chose these datasets as they cover different imag- 

ing modalities, anatomical regions and motion patterns ( Fig. 1 ). 

1. Cardiac MRI: The anonymized Data Science Bowl Cardiac Chal- 

lenge Dataset [43] consisting of 1140 cardiac Magnetic Reso- 

nance Imaging (MRI) studies of 1140 patients (42 ± 20 years, 

470 female) including 12,121 time-resolved short axis CINE se- 

quences of the heart resulting in 372,810 individual image slices 

in total with a matrix size of 192 × 256 and a spatial resolution 

of 1.4 × 1.4 mm for an 8 mm slice thickness. Data was acquired 

in short-axis on both, 1.5 and 3T MRI with a balanced steady- 

state free precession sequence with varying temporal resolu- 

tion of approximately 30 frames/heart beat, i.e. 30 frames/ 

second. 

2. Cardiac Echo: The EchoNet-Dynamic dataset [44] which con- 

sists of 10,030 anonymized dynamic 4-chamber echocardiogra- 

phy (Echo) videos of 10.030 patients (68 ± 21 years, 4885 fe- 

male) with a total of 1,770,646 single image frames, a temporal 

resolution of approximately 50 frames/second and matrix size 

of 112 × 112. 

3. Abdominal MRI: An anonymized in-house time-resolved MRI 

of the upper abdomen was acquired on an MR-LINAC system 

(Unity, Elekta, Stockholm, Sweden). The database includes 230 

studies of 50 patients (66 ± 11 years, 20 female) with three se- 

quences in axial, coronal and sagittal orientation each. A total 

of 165,264 single image slices was obtained. Data was acquired 

with a matrix size of 352 × 352 , a spatial resolution of 1.2 ×
1.2 mm, 5 mm slice thickness, and a temporal resolution of 2 

frames/second. Patient data were acquired in the context of a 

clinical phase II trial (NCT04172753). 

2.4. Dataset-Specific-Preprocessing 

Abdominal MRI 

CINE data were acquired over a period of 20–30 min during ra- 

diotherapy, yielding around 10 0 0 frames for each image orienta- 

tion. These long sequences were split into short clips of 20 frames 

of identical orientation, roughly containing two to three respiratory 

cycles. All images were divided into a train-validation-test split 

(60%, 20%, 20%) in a subject-wise manner. 

Cardiac CINE MRI Z-normalization was performed on a subject 

wise manner followed by cropping or padding of the individual 

two dimensional frames from the whole left ventricular stack to 

a common shape of (352 × 352) . Again a 60-20-20 subject-wise 

train-val-test split was used. 

Cardiac echo All two-dimensional frames were resized to an in- 

put dimension of (352 × 352) , intensity-scaled to the unit range 

followed by z-normalization and split into short sequences of 30 

frames each with subsequent division into a 60-20-20 subject-wise 

train-val-test split. 

3 



M. Frueh, T. Kuestner, M. Nachbar et al. Computer Methods and Programs in Biomedicine 225 (2022) 107085 

Fig. 2. Averaged Dice scores based on forward and backward passes on both, original (saturated color/left box plot) and artificially displaced data (light colors/right box plot), 

based on predicted and ground truth segmentations for SSL (red), PCA-Flow (blue), Farneback Flow (green) and FlowNet2 (purple). Overall, tracking based on SSL yields the 

best performance. 

2.5. Evaluation 

Accuracy of anatomical tracking using the presented methods 

was evaluated on two principle tasks: (i) within-subject segmen- 

tation mask propagation and (ii) cross-subject segmentation mask 

propagation. 

Mask propagation The first task consisted of propagating a seg- 

mentation mask from the initial to the final image (forward pass) 

and vice versa (backward pass) of a test sequence. 

For all datasets, the anatomical target structures to track (liver 

on abdominal MRI, left ventricle in both cardiac MRI and cardiac 

Echo) were segmented on all frames of 10 test sequences by an 

experienced radiologist (SG, 11 years of experience) providing ref- 

erence data for method evaluation. Regarding the cardiac datasets, 

manual segmentation was performed for one systolic phase, i.e., 

from maximal to minimal left ventricular expansion. The liver 

was manually segmented over one breathing cycle, i.e, from end- 

inspiration to end-expiration. 

Accuracy of mask propagation was quantified as the mean Dice 

score between the propagated mask and manual reference seg- 

mentation on all images within a sequence (averaged dice) by per- 

forming both, forward and backward mask propagation. In addi- 

tion, the Dice score only based on the final target frame (edge dice) 

was calculated to investigate method performance between the ex- 

tremes of the image sequences. 

To assess the performance of the presented algorithms under 

bulk motion, we artificially introduced a horizontal image displace- 

ment by shifting all images after the central frame of the respec- 

tive test sequence by 8% of the image width to the right. 

Cross-subject anatomical matching In certain clinical situations, 

identification of anatomical structures across subjects or examina- 

tion time points can be relevant. In order to assess the capacity of 

SSL-based and optical flow-based anatomical matching across sub- 

jects, we propagated the segmentation masks between all pairs of 

test images within the respective datasets. Again, the Dice score 

was used as performance metric. 

3. Results 

Mask propagation 

For the task of liver tracking within MR-LINAC images, we ob- 

served a mean averaged forward/backward dice score of 0.95/0.96, 

0.94/0.93, 0.94/0.93, 0.95/0.95 for SSL, PCA-Flow, Farneback-Flow 

and FlowNet2, respectively, as depicted in Fig. 2 top row. 

Mean edge dice scores amounted to 0.94/0.96, 0.92/0.90, 

0.92/0.91 and 0.94/0.93, respectively. 

Tracking of the left ventricle in cardiac MRI yielded the largest 

difference between the methods. A mean forward/backward aver- 

aged dice score of 0.89/0.90 was achieved by the self-supervised 

learning based method, whereas PCA-Flow yielded 0.80/0.89 and 

Farneback 0.81/0.92 respectively. FlowNet2 performed worst re- 

sulting in a Dice score of 0.77/0.73. Refer to Fig. 2 middle row. 

This difference is highlighted by the edge dice which amounted 

to 0.85/0.95, 0.61/0.89, 0.70/0.92 and 0.55/0.54 for all methods, re- 

spectively. 

In contrast, when performing ventricle tracking in echocar- 

diography we observed similar mean forward/backward averaged 

dice scores of 0.93/0.95, 0.89/0.91, 0.91/0.91 and 0.91/0.92, respec- 

tively as shown in Fig. 2 bottom row. The edge dice amounted to 

0.93/0.96, 0.88/0.92, 0.91/0.94 and 0.85/0.88. 

Overall, accuracy of mask propagation on the inverse image 

sequences showed similar results ( Fig. 2 right column). Notably, 

for the cardiac datasets, mask propagation from systole to dias- 

tole (backward pass) was markedly more accurate (edge dice) com- 

pared to the forward pass (diastole to systole) using PCA-Flow and 

FB-Flow. In contrast, no relevant differences between forward and 

backward pass tracking accuracy were observed for the SSL-based 

method and FlowNet2-Flow. 

4



M. Frueh, T. Kuestner, M. Nachbar et al. Computer Methods and Programs in Biomedicine 225 (2022) 107085 

Fig. 3. Visualized mask propagation based on SSL (red, forward/backward edge dice scores of 0.94/0.95, 0.87/0.96 and 0.92/0.96 for the visualized abdominal MRI, cardiac 

MRI and cardiac Echo, respectively), PCA-Flow (blue, forward/backward edge dice scores of 0.89/0.90, 0.66/0.95 and 0.91/0.92 for the visualized abdominal MRI, cardiac MRI 

and cardiac Echo respectively), FB-Flow (green, forward/backward edge dice scores of 0.90/0.90, 0.55/0.89 and 0.92/0.95 for the visualized abdominal MRI, cardiac MRI and 

cardiac Echo, respectively) and FlowNet2-Flow (purple, forward/backward edge dice scores of 0.92/0.91, 0.62/0.68 and 0.84/0.89 for the visualized abdominal MRI, cardiac 

MRI and cardiac Echo, respectively) for an exemplar validation sequence. The left columns depict the forward propagation whereas the right columns visualize the backward 

mask propagation. The manual segmentation mask is depicted in yellow. 

Fig. 4. Mask Propagation with additional image displacement: Visualized mask propagation based on SSL (red, forward/backward edge dice scores of 0.94/0.95, 0.87/0.96 

and 0.92/0.94 for the visualized abdominal MRI, cardiac MRI and cardiac Echo respectively), PCA-Flow (blue, forward/backward edge dice scores of 0.81/0.83, 0.58/0.83 

and 0.82/0.9 for the visualized abdominal MRI, cardiac MRI and cardiac Echo respectively), FB-Flow (green, forward/backward edge dice scores of 0.54/0.57, 0.14/0.17 and 

0.61/0.54 for the visualized abdominal MRI, cardiac MRI and cardiac Echo respectively) and FlowNet2-Flow (purple, forward/backward edge dice scores of 0.92/0.92, 0.57/0.66 

and 0.83/0.89 for the visualized abdominal MRI, cardiac MRI and cardiac Echo, respectively) for an exemplar validation sequence. The left columns depict the forward 

propagation whereas the right columns visualize the backward mask propagation. The manual segmentation mask is depicted in yellow. 

Qualitative visual evaluation ( Fig. 3 , Video 1, supplementary 

material) further supported the above findings. While liver motion 

was accurately captured by all methods, systolic cardiac movement 

was not correctly captured by the optical flow algorithms. 

Mask propagation with image displacement 

Horizontal image displacement led to a marked performance 

decrease, for both forward- and backwards mask propagation using 

optical flow based methods. This drop in accuracy was more pro- 

nounced using FB-Flow. In contrast, SSL-based mask propagation 

showed similarly accurate results compared to the non-displaced 

version as illustrated in Fig. 2 (light colors). These quantitative re- 

sults were again confirmed by qualitative inspection of the propa- 

gated segmentation masks ( Fig. 4 ). 

3.1. Cross-subject anatomical matching 

For the task of cross-subject anatomical mapping we observed 

a markedly better performance of SSL-based tracking compared 

to the optical flow-based methods. On the cardiac MRI dataset, 

matching accuracy was 0.72 ± 0.25 using SSL-based tracking com- 

pared to 0.33 ± 0.28/0.35 ± 0.36/0.28 ± 0.30 using PCA-Flow/FB- 

Flow/FlowNet2-Flow respectively. Similar results were observed for 
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Fig. 5. Dice Scores for cross-subject mask propagation based on predicted and ground truth segmentation for SSL (red), PCA-Flow (blue), FB-Flow (green) and FlowNet2-Flow 

(purple). Overall, SSL yields much more robust results. 

Fig. 6. Visualized cross-subject mask propagation based on SSL (red, dice scores of 0.83, 0.85 and 0.87 for the visualized abdominal MRI, cardiac MRI and cardiac Echo, 

respectively), PCA-Flow (blue, dice scores of 0.74, 0.38 and 0.79 for the visualized abdominal MRI, cardiac MRI and cardiac Echo, respectively), FB-Flow (green, dice scores of 

0.67, 0.47 and 0.85 for the visualized abdominal MRI, cardiac MRI and cardiac Echo, respectively) and FlowNet2-Flow (purple, dice scores of 0.27, 0.29, 0.77 for the visualized 

abdominal MRI, cardiac MRI and cardiac Echo, respectively) between two sample validation subjects. 

the abdominal MRI dataset. In contrast, for the echocardiography 

dataset, where anatomical positions within the images were simi- 

lar across subjects, all four methods performed equally well (mean 

Dice scores of 0.72-0.75) ( Fig. 5 ). The quantitative results were con- 

firmed by qualitative evaluation ( Fig. 6 ). 

4. Discussion 

In this work, we implemented and evaluated a method for au- 

tomated anatomical tracking on time-resolved medical image data 

based on SSL that does not require human labeling effort for algo- 

rithm training and compared it to conventional and deep-learning 

based optical flow-based tracking methods. 

We found that these methods in general provide accurate re- 

sults for rigid and smooth motion patterns and thus can allow for 

reliable motion tracking for numerous clinical tasks. However, re- 

garding more complex motion, e.g. non-rigid or discontinuous mo- 

tion patterns, or cross-subject anatomical matching, optical flow- 

based methods showed markedly inferior performance while track- 

ing accuracy using SSL still provided satisfactory results. 

In particular, we found that tracking rigid and non-displaced 

liver motion during the respiratory cycle yielded similarly good re- 

sults among all methods. In contrast, contraction and expansion of 

the left ventricle resulted in strong differences between the four 

methods. SSL yielded satisfactory tracking performance for cardiac 

motion, while especially tracking of systolic cardiac motion was in- 

ferior using optical flow methods. Overall, PCA-Flow yielded supe- 

rior results compared to FB-Flow and FlowNet2-Flow. 

Similarly, SSL-based motion tracking showed good accuracy for 

all datasets when artificial image displacement was introduced, 

while PCA-Flow yielded slightly inferior results and FB-Flow failed 

to produce meaningful results. 

FlowNet2 was able to successfully track the rigid motion of the 

liver within the abdominal MRI but not the cardiac motion. 

These results extended to cross-subject matching where SSL 

yielded superior results overall. Due to the domain shift in the 

datasets, supervised optical flow methods are not suitable without 

retraining. 

Numerous potential clinical applications are conceivable using 

the presented methods for automated anatomical tracking. Regard- 

ing diagnostic imaging, tracking of anatomical structures in time- 

resolved image data can provide accurate information about vol- 

ume changes and allow for motion-corrected evaluation of dy- 

namic contrast-enhanced imaging. Regarding interventional and 

therapeutic applications, motion tracking, e.g. in radiation therapy 

or interventional radiology can allow for tracking of the therapeu- 

tic progress and thus enabling more precise treatment delivery. In 

all these fields of application, it is important to limit the neces- 

sity for human-annotated training data which is a significant bot- 

tleneck for clinical translation. Thus, using the described methods, 
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clinical implementation can be achieved with markedly reduced 

effort compared to e.g. supervised machine learning methods. In 

general, based on our results, we assess that self-supervised deep 

learning is the most effective and versatile method to achieve this 

goal and surpasses the performance of optical flow methods. 

This study has limitations. First, we only focused on 2D image 

data. Although it can be expected that our results can be general- 

ized to the 3D case, additional studies will be necessary to provide 

more insight. Also, we only investigated tracking of physiological 

anatomical structures and did not assess the tracking performance 

on pathological data e.g. of tumor lesions. Finally, as a methodolog- 

ical aspect, we did not retrain the feature extractor of PCA-Flow or 

the FlowNet2-Flow network as our goal was to provide methods 

that do not require any human labeled data. In principle, perfor- 

mance of these frameworks may be improved by fine tuning on a 

specific dataset, which however would require additional effort for 

training data generation. 

5. Conclusion 

In conclusion, tracking of anatomical structures on time- 

resolved medical image data with minimal human labeling effort 

is feasible using SSL and can provide superior results compared to 

conventional and deep learning OF-based methods. Overall, self- 

supervised deep learning can be regarded as the more accurate and 

versatile method and thus potentially be applied to numerous clin- 

ical applications. 
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ABSTRACT Landmark detection plays an important role for a variety of image processing and analysis
tasks. Current methods rely on either supervised or semi-supervised learning which often requires large
labeled training datasets. Also, retrospective addition of further target landmarks after completion of training
is difficult in current methods. In this paper we propose a framework that addresses these limitations
and allows for landmark detection based on only few examples and for definition of target landmarks
after completed training without retraining. Our proposed approach relies on self-supervised training on
a within-image template matching task with regularization by data augmentation. The trained network
generalizes to cross-image matching and can thus be extended to example-based landmark detection and
tracking. We extensively evaluate the proposed framework on chest X-ray images and abdominal MRI scans
and demonstrate high accuracy with only few or even only one labeled example. Additionally we apply it to
the task of liver and liver lesion tracking in CINE MRI scans.

INDEX TERMS Landmark detection, magnetic resonance imaging, self-supervised learning, real time
motion tracking, x-ray.

I. INTRODUCTION
Automated analysis of image data plays a central role in
medical imaging [1], [2]. To this end, anatomical target
structures must be reliably recognized in order to enable
subsequent processing steps for a wide variety of diagnostic
tasks. A typical task of automated image analysis is the
detection and tracking of anatomical landmarks within and
between images, i.e. the identification of points in images
that have structurally similar neighborhoods and similar
semantic properties. In applications such as image-guided

The associate editor coordinating the review of this manuscript and

approving it for publication was Yongming Li .

radiotherapy, the anatomically accurate and low-latency
tracking of lesions over time is crucial to administer local-
ized beams for the target lesion. Established methods for
automated landmark detection are mostly based on super-
vised machine learning methods [3]–[5] which rely on
large amounts of manually labeled training data. Although
these methods provide powerful predictive models, their
widespread application to various image data is limited due
to the lack of manually annotated training data. Particularly
with many landmarks per image, the effort required for man-
ual annotations increases considerably. In addition, super-
vised methods require landmarks to be defined beforehand;
adding additional landmarks usually requires re-training of
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the model and, importantly, requires access to the initial
training dataset as well. Contrastive methods [6]–[8] alleviate
these problems but typically violate the real-time constraint
due to their extensive feature comparison and are therefore
not suitable for tasks where real-time tracking is required,
such as image-guided radiotherapy.

In contrast to natural image data, medical images of a
particular modality and body region exhibit a high degree
of regularity based on a common anatomical structure.
We attempt to leverage this regularity to learn a global posi-
tional embedding of local image patches in a self-supervised
way using targeted data augmentation on a within-image tem-
plate matching task. This allows to implement a simple yet
effective one-shot landmark detection method that requires
only a single annotated example per landmark. Additionally,
the framework can be extended to an arbitrary number of
landmarks without any additional re-training of the model.

In this work, we propose a framework for real-time land-
mark detection and tracking which is trained self-supervised
on minimally labeled data. In contrast to self-supervised
methods [9], [10] that rely on similarity measures of image
patches (e.g. through contrastive learning), we propose a
local-to-global positional embedding which allows for com-
putationally efficient predictions that enable its application in
fields where real-time interaction is required. The proposed
framework is demonstrated and investigated for automatic
real-time liver lesion tracking in time-resolved abdominal
magnetic resonance imaging (MRI) and real-time automated
liver tracking for image-guided radiotherapy onmagnetic res-
onance linear accelerator (MR-LINAC) data, both of which
are subject to respiratory motion. Furthermore we prove
the practicability of our method for automated detection of
anatomical landmarks in conventional chest X-rays.

A. RELATED WORK
Numerous studies have been published on landmark detection
and tracking using a variety of methods and applications [11],
[12]. Early work focused on conventional image processing
techniques based on hand-crafted features, e.g., for facial
feature recognition [13]. More recent papers demonstrate the
use of machine learningmethods such as regression trees [14]
or SVMs [15] and latelymostly Deep learning-basedmethods
using convolutional neural networks in various flavors, e.g.
multi-task learning [16], reinforcement learning [17], [18],
fully convolutional networks [19], regression networks [20],
[21], siamese networks [22], [23] or transformers [24], [25].

While state-of-the-art supervised landmark detection
frameworks provide highly accurate predictions, they still
rely on large amounts of labeled training data.

Data efficient landmark detection using only a few labeled
samples (few- or one-shot learning) has long been an area
of scientific interest [26]–[29]: Common approaches for
few-shot learning in this context typically rely on semi-
supervised [30], [31] or self-supervised learning frameworks
consisting of random walk based methods [32], [33], cross-
input consistency [34] or neural rendering [35]. Recently,

single-shot learning for anatomical landmarks has been intro-
duced by Yan et al. [9] which uses contrastive learning to
learn local and global embeddings on radiological images for
cross-image landmark detection.

II. METHODS
A. CONTRIBUTIONS
We introduce a framework for landmark detection and track-
ing that

1) does not require labeled data during training and only
requires a single labeled example at inference

2) allows for definition of target landmarks at inference
timewithout re-training andwithout access to the initial
training data.

3) directly returns the position of the object combined
with to track to enable real-time detection

To this end, we implement a two-step procedure. In the
first step, a (siamese-like) neural network [36] is trained
on a within-image template matching task [37], [38] using
self-supervision and targeted data augmentation. This is
in contrast to the existing supervised template matching
based tracking methods, which leverage existing positional
labels [22], [36]. In the second step, after training, landmarks
are identified in a target image by providing a single labeled
example patch containing the target landmarks as input to
the trained model. This step does not require re-training of
the network. We implicitly make the assumption that train-
ing data as well as labeled examples are drawn from the
same distribution of images that contain a specific object or
structure.

B. SELF-SUPERVISED TEMPLATE MATCHING
The template matching task consists of estimating the center
position of extracted image patches within source images.
Themotivation for using this task is that it allows to implicitly
learn the distribution of object characteristics within the train-
ing data. This in turn should enable subsequent identification
of specific landmarks.

In detail, squared image patches PI of predefined
size are uniformly drawn from the respective source
images I.

Both, patch and source image are then fed to a template
matching neural network f θ (with weights θ ) to output an
estimate (x̂, ŷ) of the patch center coordinates. We further
assume an aleatoric heteroscedastic Gaussian distribution of
the samples.

Formally, we thus model this problem as the task to learn
the conditional distribution of the center coordinates given
the source image and the extracted patch under the assumed
Gaussian distribution:

P(C|PI, I) = N2(µ, 6), (1)

where µ = (x, y) are the patch center coordinates and 6 =
diag(σx , σy) describes the variance.
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FIGURE 1. The proposed landmark detection and tracking framework
consists of a Template Matching Network that combines two
encoders (ConvNet) whose outputs are fed into a shared multi-layer
perceptron (MLP). One encoder is used to process the full source image
(global information) whereas the second encoder processes the extracted
(during training augmented) patch (local information). A) During training,
the patch is drawn from the same image. B) When performing inference,
the patch is manually chosen from an initial key image, extracted and i)
tracked in the target image (time series of subsequent images) of the
same subject (within-subject tracking), or ii) the same anatomical
landmark is identified across the target subjects (cross-subject tracking).

The sampling loss is then given by the negative
log-likelihood for x and y, respectively:

L(x, y, x̂, ŷ, σ̂x , σ̂y) =
1
σ̂ 2
x
(x̂ − x)2 + ln(σ̂x)

+
1
σ̂ 2
y
(ŷ− y)2 + ln(σ̂y) (2)

Here, (x̂, ŷ, σ̂x , σ̂y) = f θ (PI , I ) is the network output where
x̂, ŷ are the estimated patch center positions and σ̂x , σ̂y denote
the estimated standard deviation or uncertainty of the given
predictions.

The template matching network (TMN) architecture
(Fig. 1 A) consists of two separate feature encoders (one
for the source image and one for the extracted patch; no
weight sharing), each resulting in its own feature vector.
These encoders are based on the VGG16 architecture [39] and
are pretrained on imageNET [40]. The stacked feature vectors
are then fed into three fully connected layers with four linear
outputs (x̂, ŷ) and (σ̂x , σ̂y).

C. CROSS-IMAGE MATCHING AND LANDMARK TRACKING
Beyond identifying similar patches within the same image,
our goal was to achieve generalization for cross-image
landmark detection, i.e. i) tracking a landmark for a given sub-
ject over time (series of time-resolved images) or ii) match-
ing/detecting landmarks between different subjects. In the
following, we refer to these two cases as i) within-subject
tracking and ii) cross-subject detection, respectively. Under
the assumption that all training images contain the same or
similar objects, we hypothesize that this generalization can be
achieved by regularization through data augmentation. Thus,

FIGURE 2. Label-free evaluation: Cyclic evaluation routine for
cross-image matching. First, a patch is extracted from the source key
image (1). The corresponding image patch position is then estimated by
the template matching network (TMN) in the intermediate target image
(2). In a backward pass, a patch around the predicted coordinates is
extracted from the intermediate target image (3) and fed into the TMN to
estimate the corresponding position in the original source key image (4).
This estimated position is then compared to the initial patch position to
compute a cyclic error (5).

we apply domain-specific data augmentation to the whole
images (Rotation: -10◦ to 10◦, affine scaling: 0.8 to 1.2 and
random resized crops) as well as to the extracted image
patches (Rotation: -5◦ to 5◦, affine scaling: 0.9 to 1.3 and
gamma contrast variation: (0.5, 2)) [41]. It is important to
mention, that the patch center, which represents the target
coordinate, is fixed during the augmentation steps. Thus,
no translation is used.

The described within-image template matching task can be
extended to a cross-imagematching task (cross-subject detec-
tion and within-subject tracking), where - given an extracted
patch from a source key image - the goal is to estimate
the semantically corresponding location (coordinates) of this
patch in a target image (Fig. 1 B).

Cross-image matching can be naturally extended to
example-based landmark detection by feeding both the target
image and an extracted patch of the source image containing
the desired landmark as its center point to the trained net-
work. The example patch is drawn from an image where the
landmark position is known, e.g after manual labeling.

For some databases, we may have access to more (>1)
labeled landmarks in the dataset. Thus, to leverage the avail-
ability of larger labeled datasets for cross-subject landmark
detection, we extend the described procedure to allow for
multiple example patches as follows.

GivenN example patches, the estimated landmark position
(x̂, ŷ) within the target image is obtained based on these
examples by uncertainty-weighted averaging over the single
coordinate estimates based on each example patch:

x̂ =

∑N
i=1 x̂i ·

1
σ̂xi∑N

i=1
1
σ̂xi

, (3)

where x̂i is the estimated landmark position based on the ith

example patch with corresponding estimated uncertainty σ̂xi .
ŷ is computed in the same fashion.

D. LABEL-FREE EVALUATION
When applying the trained model to cross-image match-
ing, no direct ground truth is available, in contrast to the
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initial self-supervised within-image template matching task.
This poses a challenge when it comes to the evaluation of
algorithm performance for the cross-image matching task.
We therefore use a process of label-free evaluation that uses
a cyclic estimation of corresponding landmarks between two
images [42](Fig. 2). This cyclic evaluation is performed in a
two-step procedure: In the forward pass, source patches are
extracted for every second pixel within a source key image.
For each of these patches, corresponding center coordinates
are estimated on N target images using the trained model.
In the backward pass, patches are sampled at the estimated
coordinates of the target images and used as input to the
trained model to estimate the corresponding center positions
in the original source key image. The absolute cyclic error
E(x,y),i at a given coordinate (x, y) within the source image
can be computed for each of the N target images allowing for
label-free estimation of model accuracy via

E(x,y),i = |f θ (PTi (f
θ (PS(x, y),Ti)),S)− (x, y)|, i ≤ N

(4)

where S is the source image, Ti the ith target image, f θ (·) the
trained model output (estimated coordinates), PS the patch
extracted from the source image at position (x, y) and PTi the
patch extracted from the ith target image at the estimated coor-
dinates in the forward pass. The mean and standard deviation
of these errors over all N target images can subsequently be
computed for each pixel position in the source image (Fig. 2).

III. EXPERIMENTS
For the purpose of evaluation, we applied the proposed
framework in use cases from two medical imaging domains
as depicted in Fig. 3. Landmark tracking (MR-LINAC and
abdominal MRI) and cross-image matching (chest X-ray) are
investigated.

MR-LINAC imaging was performed on a 1.5T MR-
LINAC scanner (Philips Healthcare, Best, the Netherlands)
in patients undergoing radiotherapy treatment. Images were
acquired with a balanced fast field echo sequence yielding
time-resolved images of the upper abdomen. The database
includes 230 studies of 50 patients (20 female, 66 ±
11.52 years, matrix size = 352 × 352; acquisition time/
image = 0.5s) with three sequences in axial, coronal and
sagittal orientation each, resulting in a total of 165,264 single
image slices. Patient data were acquired in the context of
a clinical phase II trial (NCT04172753). Data is used for
within-subject liver tracking under respiratory motion.

The abdominal MRI data was acquired on a 3T PET/MR
(Siemens Biograph mMR, Siemens Healthcare, Erlangen,
Germany) in patients with suspected liver or lung metastases
for the purpose of respiratory motion correction. In this work,
the data is used to track liver lesions under respiratory motion
within subjects. Imaging was performed with a spoiled gra-
dient echo sequence (TE/TR = 1.8ms/3.6ms; flip angle =
15◦; bandwidth = 670Hz/pixel; resolution = 2 × 2mm2;
matrix size = 192 × 176; acquisition time/image = 0.4s)

FIGURE 3. Sample data with corresponding ground truth annotations of
the landmark to track. The top row visualizes a full respiratory cycle
during radiotherapy. The landmark defines the liver dome to track. The
central row denotes abdominal MRI at end-expiration, mid-expiration
and end-inspiration. Several lesions are visible within the liver of which
three example annotated lesions are highlighted by white arrows. The
bottom row visualizes three different chest X-ray images with
corresponding ground truth annotation as described in III-C .

yielding 2D sagittal motion-resolved MR images of the body
trunk [43]. 36 patients (60±9 years, 20 female) were acquired
resulting in 12214 individual slices. The study was approved
by the local ethics committee and all patients providedwritten
consent.

The chest X-ray dataset reflects a cross-subject landmark
detection task based on Chexpert [44] and contains 224,316
chest X-ray from 65,240 patients (60 ± 17.8 years, 40.6%
female). Images were acquired with varying matrix size
(resampled to 224 × 224) with and without pathological
findings.

All images were zero-padded with patch size
2 on each side

to ensure that patches could also be sampled from the image
margins. Experiments were performed using different patch
sizes (32, 40, 50, 60, 70 and 80 pixels) of extracted squared
image patches in order to assess the effect of patch size
on model performance. For all databases a 60-20-20 train-
test-val split with a patient-leave-out approach was used, i.e.
unique patients were assigned to each set. A subsequent test
dataset was kept separate for all three tasks for final evalua-
tion of the following experiments: Templatematching (III-A),
cross-image matching (III-B) and example-based landmark
detection (III-C).

The proposed template matching network was trained for
1000 epochs with a batch size of 192 using the Adam opti-
mizer [45] (β1 = 0.9, β2 = 0.999) and an initial learning rate
of 1e-4 that is scaled by 0.85 every 80 epochs on a NVIDIA
RTX3090 GPU using PyTorch 1.8 [46].
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A. PIXEL-WISE TEMPLATE MATCHING
To assess the performance of the training and hence the tem-
plate matching ability, we compute and report the mean, and
standard deviation of the euclidean template matching errors
for every pixel in all test images, paired with corresponding
uncertainty.

B. PIXEL-WISE CROSS-IMAGE MATCHING
For within-subject tracking (MR-LINAC and abdominalMRI
datasets), the cycle errors were computed for every second
pixel on 10 image pairs from the test dataset, each pair
consisting of the slice of the end-inspiration phase as target
image and the slice containing the end-expiration phase as
source key image. For cross-subject detection on chest X-ray
images, cyclic errors were computed using 10 randomly cho-
sen intermediate target images.

Mean and standard deviation of euclidean cyclic errors
were calculated based on all pixels on the corresponding test
datasets.

C. EXAMPLE-BASED LANDMARK MATCHING
To evaluate the performance of the proposed framework for
identification of predefined landmarks, ground truth data for
specific landmarks were generated by an experienced radiol-
ogist (S.G., >10 years of experience) for all three datasets.
We compute and report the mean, standard deviation, as well
as the maximum of the euclidean error between prediction
and labeled ground truth over all test subjects and landmarks.

1) WITHIN-SUBJECT MOTION TRACKING
For liver tracking (MR-LINAC), the liver dome was anno-
tated on all slices for 5 subjects for one respiratory cycle in
the sagittal and coronal orientation.

For the task of lesion tracking (abdominalMRI), 10 lesions
were manually annotated in all slices.

For both tasks, the source slice depicts the state of maximal
end-expiration.

2) CROSS-SUBJECT ANATOMICAL LANDMARK DETECTION
On the chest X-ray data, 9 landmarks were manually labeled
on 100 images representing the left and right pleural recesses,
the left and right diaphragmal domes, the left and right pul-
monary apeces, the left and right sternoclavicular joints as
well as the carina of the trachea (Fig. 3).

To differentiate between single-shot and few-shot applica-
tion, up to 50 of these labeled images were used as examples
and 50 were used as target images for evaluating the accu-
racy of example-based landmark detection. Mean euclidean
errors, as well as minimal andmaximal mean euclidean errors
between prediction and ground truth for landmark detec-
tion were computed based on all landmarks in the 50 target
images.

To assess the performance for the generation of ground
truth data based on a single example, we also evalu-
ate the cross-subject landmark detection capability on the

model trained on the MR-LINAC dataset. Good perfor-
mance on this task would allow for efficient creation
of large, annotated datasets based on only few labeled
samples.

D. COMPARISONS TO BASELINE MODELS
1) COMPARISON TO A SUPERVISED NETWORK BASELINE
(SUPERVISED BASELINE)
In order to provide a baseline comparison to fully super-
vised landmark detection, we used a ResNet-50 [47] CNN
pretrained on imageNET with 18 outputs for the chest X-ray
images (x and y coordinates for 9 target landmarks) to esti-
mate the coordinates for all landmarks in a single prediction.
The same labeled dataset that was used for example-based
landmark detection (III-C2) was also used as training data for
the supervised network. The network was trained for 20,000
steps using the Adam optimizer with a batch size of 50 and
an initial learning rate of 1e-4.

2) COMPARISON TO A PATCH-WISE FEATURE MATCHING
BASELINE (SimCLR PATCH)
We trained SimCLR [8] (ResNet-50 backbone) to pro-
duce a 1024-dimensional feature vector from squared
32 × 32 patches on the chest X-ray dataset for cross-subject
detection.

The affinity matrix A between an initially selected key
patch p0 and all patches pij within the next subject is con-
structed via

At+1t (i, j) = 〈hθp(p0), h
θ
p(pij)〉, (5)

where hθp(p) is the `2 normalized feature vector of the respec-
tive patch. Patch coordinate estimation is subsequently per-
formed by choosing the patch with maximum affinity to the
input patch.

For evaluation, the same labeled dataset as in III-C2 was
used.

We trained the patch-wise feature matching baseline for
1000 epochs using proposed SimCLR parameters. Horizontal
flips were removed from the data augmentation pipeline.

3) COMPARISON TO A SUPERVISED NETWORK BASELINE
PRETRAINED WITH SimCLR (SimCLR PRETRAINED)
In a pre-training setup, we trained SimCLR (ResNet-50 back-
bone) to produce a 1024-dimensional feature vector from the
full image on the chest X-ray dataset for cross-subject detec-
tion. Finetuning and inference was subsequently performed
in the same setting as in (III-D1)

SimCLR was trained for 1000 epochs using the pro-
posed SimCLR parameters, again without horizontal
flips.

For all baseline comparisons, we recorded the
mean euclidean landmark estimation error,
as well as the inference time. In addition, we track the
results against an increasing number of available training
examples.
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E. ABLATION STUDIES
1) DATASET SIZE
The influence of the available example patches (i.e the
number of available labels) on the performance is assessed
by computing the mean euclidean landmark errors for
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50] available example
patches in each predefined landmark on the chest X-ray data.
Squared 32 × 32 patches were used.

2) ENCODER
To study the impact of the encoder, we evaluate the mean
euclidean landmark matching error for different encoders
(VGG16 [39], ResNet50 [47], DenseNet121 [48] and
ConvNext-Small [49]). Three fully connected layers were
used for each architecture.

The training was conducted as described in III. For
ConvNext-Small a batch size of 92 was used.

3) SHARED MULTI LAYER PERCEPTRON
To quantify the influence of the subsequent MLP we train
the Resnet50 encoder with one to four fully connected layers,
each consisting of 4096 neurons with ReLU and Dropout in
between.

4) DISTRIBUTION
We investigate the impact that the choice of probability dis-
tributions has on training and the associated mean euclidean
landmark matching error by comparing the Normal distribu-
tion (`2 loss) to the Laplace distribution (`1 loss).

IV. RESULTS
A. PIXEL-WISE TEMPLATE MATCHING
Results of pixel-wise template matching are depicted in the
left column of Table 1. All results were averaged over all
pixels and test subjects and obtained with a patch size of
80 × 80. In general, lower estimation errors were observed
with increasing patch size for all three tasks (Fig. 5 left).
Qualitative evaluation shows that higher errors and especially
higher uncertainties typically occur in the background region
(Fig. 4 left / central columns).

B. PIXEL-WISE CROSS-IMAGE MATCHING
For the task of cross-image matching we observed similar
results as for the within-image templatematching task. Corre-
sponding results are depicted in the central column of Table 1
and were obtained with a patch size of 80 × 80. Again, the
estimation error generally decreased with increasing patch
size (Fig. 5 center), and similar to the template matching
task, lower errors were observed in recurrent structures of the
abdominal organs and chest regions, whereas higher errors
occurred in the periphery and image background (Fig. 4 right
column).

C. EXAMPLE-BASED LANDMARK MATCHING
Overall, we observed high accuracy for example-based
landmark detection on all tasks using a patch size of

FIGURE 4. Color-coded mean euclidean pixel-wise template matching
error (left column, III-A), corresponding estimated uncertainty (central
column, III-A) and mean euclidean pixel-wise cross-image matching error
(right column, III-B) for each pixel in three representative examples from
the MR-LINAC (top row), the abdominal MRI (central row) and the chest
X-ray (bottom row) for a patch size of 80. For MR-LINAC and abdominal
MRI, a subsequent frame from the same subject was used, whereas the
chest X-ray from a different subject was used.

TABLE 1. Evaluation of the proposed Template Matching Network:
Mean ± standard deviation of euclidean errors (in pixels) for pixel-wise
template matching (III-A), cross-image matching (III-B) and
example-based landmark matching (III-C).

50× 50 pixels. Quantitative results for liver dome tracking on
MR-LINAC data, liver lesion tracking on the abdominal MRI
dataset and estimation of the 9 predefined anatomical land-
mark positions on chest X-ray images based on one labeled
example are depicted in Table 1 (right column). Maximal
euclidean errors amounted to 3.5, 3.1 and 13.5 pixels for
abdominal MRI, MR-LINAC and chest X-ray, respectively,
with maximal motion-induced euclidean displacements of
8.9 and 10.1 pixels on abdominal MRI and MR-LINAC.
Generally, smaller patch sizes yielded better results (Fig. 5
right). Qualitative evaluation is depicted in Figure 7.

Cross-subject landmark detection between different sub-
jects within the MR-LINAC dataset resulted in a mean
euclidean tracking error of 4.5 pixels. Qualitative evalua-
tion can be found in Fig. 7 (bottom) and visualizes that
our method is capable of tracking the liver dome between
different subjects.

D. BASELINE COMPARISONS
1) COMPARISON TO A SUPERVISED NETWORK BASELINE
(SUPERVISED BASELINE)
The fully supervised landmark detection network yielded a
markedly higher landmark estimation error using only few
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FIGURE 5. Dependency of the mean euclidean errors on various patch sizes in (left) template matching (pixel-wise template matching, III-A), (central)
cross-image matching (cyclic error; within-subject tracking for MR-LINAC and abdominal MRI, cross-subject detection for chest X-ray, III-B) and (right)
selected example-based landmarks (within-subject motion tracking for MR-LINAC and abdominal MRI, cross-subject anatomical landmark detection for
chest X-ray. III-C).

examples and failed to reach the same accuracy as our pro-
posed framework even using 50 labeled training examples
(mean euclidean landmark matching error of 8.5 pixels) as
shown in Fig. 6 (red).

2) COMPARISON TO A PATCH-WISE FEATURE MATCHING
BASELINE (SimCLR PATCH)
Patch-wise feature matching remarkably outperformed the
supervised baseline, even with only 5 samples (mean
euclidean landmark matching error of 6.6 pixels). Further
increase in the number of available examples did not improve
performance much. Quantitative evaluation of patch-wise
feature comparison is depicted in Fig. 6 (orange).

3) COMPARISON TO A SUPERVISED NETWORK BASELINE
PRETRAINED WITH SimCLR (SimCLR PRETRAINED)
In contrast to patch-wise feature comparison, fine-tuning of
the SimCLR network benefits from each additional training
example. Compared to the supervised baseline without any
pretraining, the mean euclidean error is reduced by 30%
yielding a mean euclidean landmark matching error of 6.3
(Fig. 6, green).

Comparison of our template matching network (patch size
32 × 32) and all baselines is depicted in Table 2. Both,
best results (top, few-shot) and results for only one labeled
example (bottom, single-shot) are evaluated in terms of mean
euclidean landmark matching error and inference time. For
the best scores, 30 labeled example patches were used for
patch-wise feature matching, 20 for our framework, and
50 for the two supervised baselines.

E. ABLATION STUDIES
1) DATASET SIZE
Regarding the impact of the number of landmark exam-
ple patches on mean euclidean landmark matching error,
we observed that the landmark estimation errors decreased
rapidly from 1 to 20 examples, reaching optimal accuracy

TABLE 2. Comparison of Template Matching Network (TMN) to baseline
methods for example-based landmark matching (III-C) in the chest X-ray
dataset. Inference time on GPU (CPU) (in ms) are reported. Top: Best
euclidean landmark matching errors reported as mean ± standard
deviation (in pixels). Bottom: Comparison for one labeled example.

at already 20 examples. No further performance gain was
observed using 30, 40 or 50 examples (Fig. 6, blue).

2) ENCODER
Quantitative Analysis of using different encoders is depicted
in Table 2 (top) for 20 example images and a patch size of
32 × 32. Corresponding qualitative analysis is visualized in
Fig. 7 (bottom)

No relevant differences between the encoders could be
observed, however modern architectures seem to yield
slightly superior results compared to VGG-16. All architec-
tures are real-time capable, also on CPU.

3) SHARED MULTI LAYER PERCEPTRON
Results are depicted in Table 2 (bottom) for 20 example
images and a patch size of 32× 32. A single linear layer was
not enough to reliably track landmarks. Increasing the layers
gradually increases the performance, reaching its optimum at
3 layers.

4) DISTRIBUTION
When comparing the impact of the distribution (Normal vs
Laplace, Table. 3 bottom) we could not observe any relevant
performance differences.
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FIGURE 6. Dependency of the average euclidean landmark matching
(cross-subject) error on the number of available labeled examples in the
9 chest X-ray landmarks (III-C2) for the proposed template matching
network (TMN) (blue), a supervised baseline (red), the patch-wise feature
matching baseline (orange) and the supervised baseline pre-trained with
SimCLR (green).

TABLE 3. Euclidean landmark matching errors for ablation studies of the
template matching network (TMN) in the example-based landmark
matching (III-C) of the chest X-ray dataset. Mean ± standard deviation of
euclidean errors (in pixels) as well as inference times (in ms) on GPU are
reported for different encoder architectures (top) and varying numbers of
fully connected layers (bottom).

V. DISCUSSION
In this work we introduced a framework for real-time capable
landmark detection and tracking on medical images that can
be trained on a fully self-supervised basis. Given one or
more example images defining the landmarks of interest,
our proposed algorithm is able to identify these landmarks
on unseen test images. We showed that this approach yields
good performance in within-subject (e.g. time series) as well
cross-subject landmark detection. In contrast to supervised
approaches [50], our proposed framework does not require
re-training of the model for detection of specific landmarks
but instead relies on the presentation of examples contain-
ing target landmarks. Importantly, and in contrast to other
self-supervised frameworks [9], [32], [51], due to its high
inference speed, it allows for application in real-time critical
areas, such as image guided radiotherapy systems where it
could potentially allow for tracking of target structures and
thus adjustment of treatment parameters.

Evaluation of the template matching capability revealed
that our framework successfully learned to map example
patches to coordinates. The higher error in background
regions indicates that it does not implement a pure template
matching strategy but actually learns relevant and recurrent
anatomical structures. This is supported by the predicted
uncertainty, especially within the MR-LINAC dataset (Fig. 4,
top row, central image). Targeted regions of interest (e.g.
liver) have a significantly decreased uncertainty compared to
background regions or anatomical structures that do not occur
regularly within the database (e.g. pelvic region).

Of course, the focus of our framework is not on identifying
structures within the same image from which the patch was
selected, but across other images (between subjects or in
time-series). Evaluation of the pixel-wise tracking capability
across different subjects (cross-subject detection) or across
different time steps (within-subject tracking) revealed similar
results compared to the template matching task effectively
showing the ability of our framework to generalize. The
error typically increases within background regions or non-
recurring structures.

Evaluation of tracking performance of individual anatom-
ical landmarks (9 landmarks for cross-subject chest X-ray
images, one landmark for cross-subject liver dome detection,
one landmark for within-subject liver dome tracking, mul-
tiple landmarks for within-subject lesion tracking) yielded
satisfactory results. Overall, motion tracking performance of
the within-subject tasks was slightly superior compared to
cross-subject performance due to the higher level of similar-
ity. The tracking accuracy is in the lower millimeter range
(even maximal displacement errors < 1cm) in contrast to
a motion displacement of up to several centimeters (IV-C)
which would render acceptable results for any prospective
motion tracking or correction strategies.

The patch size is a crucial parameter depending on the
underlying task at hand. In general, smaller patch sizes
(around 32-50 pixels) tend to yield superior performance for
the task of anatomical landmark detection (cross-subject) and
tracking (within-subject) compared to larger patches (Fig. 5
right). Contrary to that, when inspecting all pixels within an
image, larger patches resulted in better performance due to
better background region recognition.

In contrast to motion tracking, where typically only one
labeled example patch can be leveraged, multiple patches can
be used for cross-subject landmark detection. The use of up
to 20 example patches yields a steady improvement in per-
formance. Using additional examples does not improve the
result any further on the chest X-ray dataset. We hypothesize
that the reason for this pattern resides in the averaging of the
individual predictions pairedwith label noise. The occurrence
of this behavior in the patch-wise feature comparison baseline
experiment supports this hypothesis.

A single labeled example outperformed all supervised and
self-supervised baselines.

The central concept of our proposed approach is the
extension of a within-image template matching task to
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FIGURE 7. Qualitative evaluation of example-based landmark matching (III-C) for (A) within-subject motion tracking and (B) cross-subject anatomical
landmark detection. A) Visualized within-subject motion tracking of the liver dome on MR-LINAC data (top) and a liver lesion within the abdominal MRI
dataset under respiratory motion (bottom). The red dots indicate the predicted liver dome or tumor lesion center whereas the green ones visualize the
ground truth. The red line depicts the displacement of the liver/lesion over time with respect to motion. A complete respiratory cycle of approximately 3s
is visualized. B) Example-based cross-subject landmark detection on chest X-ray images (top) with 20 labeled example images and MR-LINAC
data (bottom) of one labeled example image. The red dots indicate the predicted landmark whereas the green dots visualize the corresponding ground
truth annotation. For the chest X-ray images the predictions are depicted for VGG (red), ResNet (orange), DenseNet (blue) and ConvNext (black).

cross-image matching. This generalization is induced by
regularization through data augmentation. Thus, the model
focuses on features that are present across all images within
the given domain. This becomes evident by our observa-
tion that the template matching and cross-image matching
tasks yield better performance on foreground regions com-
pared to background regions. Possible applications of our
proposed framework include areas where limited amounts
of training data are available or where the set of target
landmarks needs to be adapted after training without the
ability to re-train the model. The proposed framework can

potentially be extended to further tasks beyond landmark
detection, such as object detection or segmentation and may
allow for efficient processing of these tasks based on only few
examples.

We acknowledge the following limitations: Coordinate
estimation is task specific and might not work well if the
image content or its resolution varies substantially. Thus,
while being efficient for motion tracking, the performance
of cross-subject anatomical landmark detection might suffer
from higher variance. Determining the correct patch size
depends on the overall goal and image size, thus inductive
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bias or costly hyperparameter tuning may be required to
determine a good patch size.

A natural extension of our work is application on 3D image
data which will be part of future work.

In conclusion, we were able to demonstrate a self-
supervised framework for both, cross- and within subject
landmark detection and tracking that is capable of running
in real-time.
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A whole-body FDG-PET/CT Dataset 
with manually annotated Tumor 
Lesions
Sergios Gatidis   1,2 ✉, Tobias Hepp1,2, Marcel Früh2, Christian La Fougère3,4,5, 
Konstantin Nikolaou2,4, Christina Pfannenberg2, Bernhard Schölkopf1, Thomas Küstner   2, 
Clemens Cyran6 & Daniel Rubin7

We describe a publicly available dataset of annotated Positron Emission Tomography/Computed 
Tomography (PET/CT) studies. 1014 whole body Fluorodeoxyglucose (FDG)-PET/CT datasets (501 
studies of patients with malignant lymphoma, melanoma and non small cell lung cancer (NSCLC) and 
513 studies without PET-positive malignant lesions (negative controls)) acquired between 2014 and 
2018 were included. All examinations were acquired on a single, state-of-the-art PET/CT scanner. The 
imaging protocol consisted of a whole-body FDG-PET acquisition and a corresponding diagnostic CT 
scan. All FDG-avid lesions identified as malignant based on the clinical PET/CT report were manually 
segmented on PET images in a slice-per-slice (3D) manner. We provide the anonymized original DICOM 
files of all studies as well as the corresponding DICOM segmentation masks. In addition, we provide 
scripts for image processing and conversion to different file formats (NIfTI, mha, hdf5). Primary 
diagnosis, age and sex are provided as non-imaging information. We demonstrate how this dataset 
can be used for deep learning-based automated analysis of PET/CT data and provide the trained deep 
learning model.

Background & Summary
Integrated Positron Emission Tomography/Computed Tomography (PET/CT) has been established as a central 
diagnostic imaging modality for several mostly oncological indications over the past two decades. The unique 
strength of this hybrid imaging modality lies in its capability to provide both, highly resolved anatomical infor-
mation by CT as well as functional and molecular information by PET. With growing numbers of performed 
examinations, the emergence of novel PET tracers and the increasing clinical demand for quantitative analysis 
and reporting of PET/CT studies is becoming increasingly complex and time consuming. To overcome this 
challenge, the implementation of machine learning algorithms for faster, more objective and quantitative med-
ical image analysis has been proposed also for the analysis of PET/CT data. First methodological studies have 
demonstrated the feasibility of using deep learning frameworks for the detection and segmentation of metabol-
ically active lesions in whole body Fluorodeoxyglucose (FDG)-PET/CT of patients with lung cancer, lymphoma 
and melanoma1–4. Despite these encouraging results, deep learning-based analysis of PET/CT data is still not 
established in routine clinical settings. Thus, automated medical image analysis, specifically of PET/CT images 
is an ongoing field of research that requires methodological advances to become clinically applicable. In contrast 
to the more widely used imaging modalities CT and MRI however, only few datasets of PET/CT studies are 
publicly accessible to clinical and machine learning scientists who work on automated PET/CT analysis. Even 
fewer datasets contain image-level ground truth labels to be used for machine learning research5,6. This is likely 
a major obstacle for innovation and clinical translation in this field. Examples of related areas, such as analysis 
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Germany. 6Hospital of the Ludwig-Maximilians-University, Department of Radiology, Munich, 81377, Germany. 
7Stanford University, School of Medicine, Department of Biomedical Data Science, Stanford, 94305, USA. ✉e-mail: 
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of dermoscopy7 or retinal images8, show that the existence of publicly available labeled datasets can serve as a 
catalyst for method development and validation. The purpose of this project is thus to provide an annotated, 
publicly available dataset of PET/CT images that enables technical and clinical research in the area of machine 
learning-based analysis of PET/CT studies and to demonstrate a use case of deep learning-based automated 
segmentation of tumor lesions. To this end, we composed a dataset of 1,014 oncologic whole-body FDG-PET/
CT examinations of patients with lymphoma, lung cancer and malignant melanoma, as well as negative controls 
together with voxel-wise manual labels of metabolically active tumor lesions. The provided data can be used by 
researchers of different backgrounds for the development and evaluation of machine learning methods for PET/
CT analysis as well as for clinical research regarding the included tumor entities.

Methods
Data collection.  Publication of anonymized data was approved by the institutional ethics committee of the 
Medical Faculty of the University of Tübingen as well as the institutional data security and privacy review board. 
Data from 1,014 whole-body FDG-PET/CT examinations of 900 patients acquired between 2014 and 2018 as 
part of a prospective registry study9 were included in this dataset. Of these 1,014 examinations, 501 are positive 
samples, meaning they contain at least one FDG-avid tumor lesion and 513 are negative samples, meaning they 
do not contain FDG-avid tumor lesions. Negative samples stem from patients who were examined by PET/CT 
with a clinical indication (e.g. follow-up after tumor resection) but did not show any findings of metabolically 
active malignant disease. The selection criteria for positive samples were: age >18 years, histologically confirmed 
diagnosis of lung cancer, lymphoma or malignant melanoma, and presence of at least one FDG-avid tumor lesion 
according to the final clinical report. The selection criteria for negative samples were: age >18 years, no detectable 
FDG-avid tumor lesion according to the clinical radiology report. Of the 501 positive studies, 168 were acquired 
in patients with lung cancer, 145 in patients with lymphoma and 188 in patients with melanoma. Patient charac-
teristics are summarized in Table 1.

PET/CT Acquisition.  All PET/CT examinations were performed at the University Hospital Tübingen 
according to a standardized acquisition protocol on a single clinical scanner (Siemens Biograph mCT, Siemens 
Healthineers, Knoxville, USA) following international guidelines for oncologic PET/CT examinations (Boellaard 
et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0)10.

Diagnostic whole-body CT was acquired in expiration with arms elevated according to a standardized proto-
col using the following scan parameters: reference tube current exposure time product, 200 mAs with automated 
exposure control (CareDose); tube voltage, 120 kV. CT examinations were performed with weight-adapted 
90–120 ml intravenous CT contrast agent in a portal-venous phase (Ultravist 370, Bayer Healthcare) or without 
contrast agent (in case of existing contraindications). CT data were reconstructed in transverse orientation with 
a slice thickness between 2.0 mm and 3.0 mm with an in-plane voxel edge length between 0.7 and 1.0 mm.

18F-FDG was injected intravenously after at least 6 hours of fasting. PET acquisition was initiated 60 min-
utes after injection of a weight-adapted dose of approximately 300 MBq 18F-FDG (mean: 314.7 MBq, SD: 
22.1 MBq, range: [150, 432] MBq). For the purpose of weight adaptation, target FDG injection acitivities 
were 250–300 MBq/300–350 MBq/350–400 MBq for patients with a body weight below 60 kg/between 60 and 
100 kg/above 100 kg respectively. PET was acquired over four to eight bed positions (usually from the skull 
base to the mid-thigh level) and reconstructed using a 3D-ordered subset expectation maximization algorithm 
(two iterations, 21 subsets, Gaussian filter 2.0 mm, matrix size 400 × 400, slice thickness 3.0 mm, voxel size of 
2.04 × 2.04 × 3 mm3). PET acquisition time was 2 min per bed position. Example PET/CT images are displayed 
in Fig. 1a.

Data labeling and processing.  All examinations were assessed by a radiologist and nuclear medicine 
specialist in a clinical setting. Based on the report of this clinical assessment, all FDG-avid tumor lesions (pri-
mary tumor if present and metastases if present) were segmented by an experienced radiologist (S.G., 10 years of 
experience in hybrid imaging) using dedicated software (NORA image analysis platform, University of Freiburg, 
Germany). In case of uncertainty regarding lesion definition, the specific PET/CT studies were reviewed in 

diagnosis patient sex n/o studies age [mean SD]

Melanoma
female 77 65.0 ± 12.8

male 111 65.7 ± 13.7

Lymphoma
female 69 45.1 ± 19.7

male 76 47.3 ± 17.9

Lung Cancer
female 65 64.2 ± 8.7

male 103 67.0 ± 9.0

Negative
female 233 59.1 ± 14.7

male 280 58.7 ± 15.1

All
female 444 58.5 ± 16.1

male 570 60.1 ± 15.9

Table 1.  Patient characteristics across the dataset subcategories.
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consensus with the radiologist and nuclear medicine physician who prepared the initial clinical report. To this 
end CT and corresponding PET volumes were displayed side by side or as an overlay and tumor lesions showing 
elevated FDG-uptake (visually above blood-pool levels) were segmented in a slice-per-slice manner resulting in 
3D binary segmentation masks. An example slice of a segmented tumor lesion is shown in Fig. 1b. DICOM data 
of PET/CT volumes and corresponding segmentation masks were anonymized upon data upload to The Cancer 
Imaging Archive11 using the CTP DICOM anonymizer tool.

Data properties.  Of the 1014 studies (900 unique patients) included in this dataset, one study was included 
of 819 patients, two studies were included of 59 patients, 3 studies of 14 patients, 4 studies of 4 patients and 5 
studies of 3 patients. The mean coverage (scan range) of the PET volumes in the longitudinal direction over all 
datasets was 1050.7 mm (SD: 306.7 mm, min: 600 mm, max: 1983 mm). The three included tumor entities showed 
similar distributions with respect to metabolic tumor volume (MTV), mean SUV of tumor lesions and total lesion 
glycolysis (TLG) (Fig. 1c). Overall, in non-negative studies, MTV, mean SUV and TLG amounted to (mean ± SD) 
219.9 ± 342.7 ml, 5.6 ± 2.7 and 1330 ± 2296 ml, respectively. For lung cancer studies, these values were 
263.6 ± 345.1 ml, 4.4 ± 1.5 and 1234 ± 1622 ml. For lymphoma studies these values 297.5 ± 393.1 ml, 6.3 ± 2.7 
and 2042 ± 2941.4 ml. For melanoma studies these values were 121.2 ± 269.4 ml, 6.2 ± 3.1 and 867.3 ± 2113.8 ml.

Data Records
This dataset can be accessed on The Cancer Imaging Archive (TCIA) under the collection name 
“FDG-PET-CT-Lesions”12.

DICOM data.  Each individual PET/CT dataset consists of three image series stored in the DICOM format: a 
whole-body CT volume stored as a DICOM image series, a corresponding whole-body FDG-PET volume stored 
as a DICOM image series and a binary segmentation volume stored in the DICOM segmentation object for-
mat. The entire DICOM dataset consists of 1,014 image studies, 3,042 image series and a total of 916,957 single 
DICOM files (total size of approximately 419 GB). The directory structure of the DICOM dataset is depicted in 
Fig. 2a. Patients are identified uniquely by their anonymized patient ID.

Conversion to other image formats.  To facilitate data usage, we provide Python scripts that allow con-
version of DICOM data to other medical image formats (NIfTI and mha) as well as the hdf5 format. (https://
github.com/lab-midas/TCIA processing). In addition to file conversion, these scripts generate processed image 
volumes: a CT volume resampled to the PET volume size and resolution as well as a PET volume with voxel values 

Fig. 1  Dataset properties. (a) Coronal views of CT (left) and FDG-PET (right) image volumes without 
pathologic findings. (b) Example of manual tumor segmentation (bottom image, green area) of a lung cancer 
mass; top: CT, middle: FDG-PET (c) Distribution of mean SUV, MTV and TLG of studies in patients with lung 
cancer (blue), lymphoma (red) and melanoma (yellow).
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converted to standardized uptake values (SUV). The data structure of the generated NIfTI files is represented in 
Fig. 2b. Data in the other formats (mha and hdf5) are generated accordingly.

Metadata.  In addition to imaging data, a metadata file in Comma-separated Values (csv) format is provided 
containing information on study class (lung cancer, melanoma, lymphoma or negative), patient age (in years) and 
patient sex. In addition, the DICOM header data include information about patient body weight, injected activity 
and whether CT was contrast-enhanced (in case of non-enhanced CT, the CT series description includes the key 
word “nativ”).

Technical Validation: Deep Learning-based Lesion Segmentation
In order to provide a use case scenario for the provided dataset we trained and evaluated a deep learning model 
for automated PET lesion segmentation. To this end, we used a standardized and publicly available deep learning 
framework for medical image segmentation (nnUNet13). This framework is based on a 3D U-Net architecture 
and provides an automated adaptive image processing pipeline. PET volumes converted to SUV units (SUV.
nii.gz, Fig. 2b) and corresponding re-sampled CT volumes (CTres.nii.gz, Fig. 2b) were used as model inputs. 
Training with 5-fold cross validation was performed using the pre-configured model parameters with maximum 
number of epochs set to 1,000 and an initial learning rate of 1e-4 in a dedicated GPU (NVIDIA A5000). Typical 
loss and validation curves of a single validation step are depicted in Fig. 3a. For validation of algorithm perfor-
mance, three metrics were used: Dice score, false positive volume and false negative volume (Fig. 3b). False pos-
itive volume was defined as the volume of false positive connected components in the predicted segmentation 

Fig. 2  Dataset structure. Patients are identified by a unique, anonymized ID and all studies of a single patient 
are stored under the respective patient path. (a) DICOM data: Each study folder contains three subfolders with 
DICOM files of the PET volume, the CT volume and the segmentation mask. (b) NIfTI data: Using the provided 
conversion script, DICOM data can be converted to NIfTI files. In addition to NIfTI files of the PET volume 
(PET.nii.gz), the CT volume (CT.nii.gz) and the segmentation mask (SEG.nii.gz), this script generates NIfTI 
volumes of the PET image in SUV units (SUV.nii.gz) and a CT volume resample to the PET resolution and 
shape (CTres.nii.gz).

Fig. 3  Training and evaluation. (a) Representative loss curve on training data (blue) and validation data (red) 
from one fold of a 5-fold cross validation. (b) Schematic visualization of the proposed evaluation metrics false 
positive and false negative volumes (in addition to the Dice score).
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mask that do not overlap with tumor regions in the ground truth segmentation mask. This can be e.g. areas of 
physiological FDG-uptake (e.g. brain, heart, kidneys) that are erroneously classified as tumor. False negative 
volume was defined as the volume of connected components in the ground truth segmentation mask (=tumor 
lesions) that do not overlap with the estimated segmentation mask. These are tumor lesions that are entirely 
missed by the segmentation algorithm. In case of negative examples without present tumor lesions in the ground 
truth segmentation, only false positive volume was applicable as a metric.

We introduce these additional metrics (false positive and false negative volumes) due to the specific require-
ments of automated lesion segmentation. The specific challenge in automated segmentation of FDG-avid 
lesions in PET is to avoid false-positive segmentation of anatomical structures that have physiologically high 
FDG-uptake (e.g. brain, kidney, heart, etc.) while capturing all - even small - tumor lesions. The Dice score alone 
does not differentiate between false positive or negative segmentation within a correctly detected lesion (e.g. 
along its borders) and false positive or negative segmentations unconnected to detected lesions (i.e. false positive 
segmentation of healthy tissue or entirely missed lesions).

Overall, automated lesion segmentation using the described deep learning model showed good agreement 
with manual ground truth segmentation (Fig. 4). On datasets containing lesions, a high correlation of MTVs was 
observed between automated and manual segmentation (r = 0.85). The mean Dice score of automated compared 
to manual lesion segmentation was 0.73 (±0.23) on positive datasets. Mean false positive/false negative volumes 
were 8.1 (±81.4) ml/15.1 (±80.3) ml respectively. Quantitative algorithm performance results on validation 
data (5-fold cross validation) are summarized in Fig. 4. Figure 5 provides qualitative examples for automated 
segmentation results.

This presented use case scenario demonstrates how this dataset can be used for the development and validation 
of algorithms for analysis of PET/CT data. We observed overall high automated segmentation performance that 
is comparable to previous studies focusing on specific disease entities4,14. In combination with methodological 
advances in the fields of machine learning and computer vision, this dataset can thus contribute to the develop-
ment of increasingly accurate, robust and clinically useful algorithms for PET/CT analysis.Beyond automated 
lesion segmentation, this dataset bears the potential to be used for further tasks such as automated organ segmen-
tation or automated lesion tracking. This would require further annotations which can be integrated with relatively 
low additional effort. For example, the recently published MOOSE framework15 for automated organ segmenta-
tion on PET/CT data can be directly applied to this dataset providing e.g. information about lesions localization.

Usage Notes
For the purpose of visualization, image data can be loaded using freely available medical image data viewers such 
as the Medical Imaging Interaction Toolkit (https://www.mitk.org/) or 3D Slicer (https://www.slicer.org/). For 
the purpose of computational data analysis e.g. in Python, 3D image volumes can be read using freely available 
software such as pydicom (https://pydicom.github.io/) or nibabel (https://nipy.org/packages/nibabel/index.html).  

Fig. 4  Quantitative evaluation of automated lesion segmentation. Top left: Correlation of automatically 
predicted tumor volume with ground truth tumor volumes from manual segmentation in positive studies. Top 
right: Distribution of Dice coefficients for automated versus manual tumor segmentation in positive studies. 
Bottom left: Distribution of false negative volumes over all positive studies. Bottom right: Distribution of false 
positive volumes over all studies.
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The data presented in this manuscript is part of the MICCAI autoPET challenge 2022 (https://autopet.
grand-challenge.org/).

Code availability
We provide the code of the data conversion and processing pipeline under https://github.com/lab-midas/TCIA 
processing. The trained PET/CT lesion segmentation model is publicly available under https://github.com/lab-
midas/autoPET/tree/master/.
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Abstract
We describe the results of the autoPET challenge, a biomedical image analysis challenge aimed to
motivate and focus research in the field of automated whole-body PET/CT image analysis. The challenge
task was the automated segmentation of metabolically active tumor lesions on whole-body FDG-PET/CT.
Challenge participants had access to one of the largest publicly available annotated PET/CT data sets
for algorithm training. Over 350 teams from all continents registered for the autoPET challenge; the seven
best-performing contributions were awarded at the MICCAI annual meeting 2022. Based on the challenge
results we conclude that automated tumor lesion segmentation in PET/CT is feasible with high accuracy
using state-of-the-art deep learning methods. We observed that algorithm performance in this task may
primarily rely on the quality and quantity of input data and less on technical details of the underlying
deep learning architecture. Future iterations of the autoPET challenge will focus on clinical translation.

Introduction
Recent advances in computational medical image analysis – in particular the introduction of deep
learning methods – have led to substantial progress in numerous medical image analysis tasks including
segmentation, regression and classification tasks. As part of this rapid development, medical image
analysis challenges have played a crucial role by identifying relevant tasks, motivating and coordinating
engagement, defining benchmarks and – perhaps most importantly – providing publicly available labeled
data for algorithm development.

Several prominent examples of medical image analysis challenges, such as The Medical Segmentation
Decathlon1, the BRATS challenge2 or the RSNA Pediatric Bone Age Challenge3 illustrate the immense
impact of such initiatives on their respective fields of research and application.

Most medical imaging challenges focus on the analysis of normal anatomy or the analysis of
pathologies in defined anatomic regions, limiting the scope and complexity as well as the amount of
required training data. In comparison, computational analysis of whole-body oncologic examinations, as
acquired by PET/CT, is associated with higher complexity due to the multimodal nature of the underlying
data, the large anatomical coverage, and the high morphological variability of oncologic pathologies.
Furthermore, the generation of training labels on oncologic whole-body examinations requires a high level
of clinical expertise and can only be performed by experienced medical imaging specialists. These
factors contribute to delayed progress in the field of computational whole-body oncologic image
processing, specifically regarding whole-body PET/CT imaging. Few studies have reported the
development and application of automated PET/CT analysis – specifically automated tumor lesion
segmentation – in the past. In these studies, a variety of methodological approaches have been proposed
ranging from simple, threshold-based segmentation algorithms4 to state-of-the-art deep learning
methods5 or combinations thereof6. While these studies clearly demonstrate the technical feasibility of
automated PET/CT image analysis, the comparison and reproducibility of methods is limited due to the
use of proprietary data and algorithms. A recent medical image analysis challenge (HECKTOR
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challenge)7 on automated PET/CT lesion segmentation in the head/neck region demonstrated in an
anatomically restricted scenario, how combined efforts by the research community can advance this field
in a specified direction.

Automation of the image analysis process in oncologic whole-body PET/CT data is of high interest.
Quantitative analysis of PET/CT data requires segmentation of tumor lesions which is time-consuming
and labor-intensive, thus associated with high effort and cost. This prevents wide-spread clinical
adoption of quantitative image analysis beyond study settings. Automation of this process can thus
potentially allow for integration of quantitative PET/CT analysis in routine clinical workflow supporting
diagnostic and therapeutic decisions.

To advance the field of automated oncologic PET/CT analysis and to address the existing shortcomings
in this area, we conducted the autoPET challenge. The primary challenge task was the automated
segmentation of metabolically active tumor lesions in whole-body FDG-PET/CT. To this end, a multi-
center database of 1164 oncologic whole-body PET/CT datasets (1014 public training samples and 150
private test samples) with manually segmented tumor lesions was composed. The training dataset is
publicly available at The Cancer Imaging Archive (TCIA)8 and has been previously described in detail9.

In this work we present the content and results of the autoPET challenge that was conducted as part of
MICCAI 2022 aiming to (1) motivate and focus research in the field of automated PET/CT image analysis
(2) provide a platform for algorithm comparison and reproduction and (3) document the current state-of-
the-art in this field. In addition, we provide analysis on the importance of composition and size of
available training data for successful algorithm development.

Results
In the following, we describe the challenge preparation, organization and evaluation following the
guidelines for biomedical image analysis challenge reporting (BIAS guidelines)10. The public challenge
training data set was drawn from the University Hospital Tübingen (UKT). The private challenge test set
was partly drawn from the same source (UKT) and partly from the University Hospital of the LMU Munich
(LMU).

Challenge Participation
A total number of 359 teams registered for the autoPET challenge including teams from all continents
(Fig. 1) with clear geographic concentrations on Asia (61%, mainly China: 41%), Europe (20%) and North
America (16%, mainly USA: 13%). As far as disclosed, most participants were affiliated to academic
institutions (75%), followed by a smaller group of company employees (12%).

37 teams submitted at least one algorithm to the preliminary challenge phase amounting to 253 total
submissions in this phase. In the final challenge phase 18 teams contributed a total of 67 algorithms.
The best-performing submission by each team was considered for the challenge leaderboard. The seven
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best performing teams were identified as challenge winners – their contributions are described in greater
detail as part of this work.

As expected, all final contributions were based on deep learning models. The majority of submitted
algorithms relied on a 3D U-Net backbone in combination with a Dice loss. A minority of participants
deployed transformer-based architectures or combinations of different architectures (2D and 3D) or used
more uncommon loss functions11 (e.g., focal loss, TopK Dice loss, Lovasz loss, Tversky loss), mostly in
combination with a conventional Dice loss. An overview of the technical details is depicted in Fig. 2.

Best performing algorithms
In the following, we provide brief descriptions of the seven best-performing contributions in the order of
the final leaderboard followed by individual performance reports. The code for all contributions is publicly
available – details are available in the technical papers published by the participating teams and cited
below. Overall, the use of a U-Net backbone was a common feature of the best contributions. The
additional implementation of rule-based post-processing of algorithm outputs (e. g. threshold-based
removal of small connected components from the output segmentation mask) distinguished the top four
contributions from the rest of the field. All top-performing teams used both, the PET and CT image
volumes as algorithm inputs.

Team Blackbean
The best-performing team chose a deliberately simple approach by using a vanilla U-Net backbone and
focusing on ablation studies to identify the best combination of input shape (crop size) and step size
during sliding window inference. In addition, a post-processing step was used to minimize the false-
positive volume by removing small connected components from the initial algorithm output12.

Team BDAV
Team BDAV used a combination of self-supervised pre-training (via contrastive learning) and a multi-
stage U-Net architecture. The multi-stage U-Net architecture utilized a global segmentation module to
conduct coarse tumor segmentation, which was then fed into a local refinement module to reduce the
false positives. The multi-stage U-Net model was ensembled with a standard nnUNet model to generate
the final prediction13.

Team FightTumor
This contribution was based on a slightly modified nnUNet model using DiceTopK loss and enhanced
data augmentation. In addition, post-processing of the model output was performed by removing small
connected components (< 10 voxels) and segmentations in areas with low CT Hounsfield Units (< -1,000
HU)14.

Team UIH-FL
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Team UIH-FL trained a combined 2D and 3D nnUNet model. In addition, they performed post-processing
of the model output by removing small connected components (< 4 voxels) and all connected
components on the three bottom slices of the predicted pet mask15.

Team Heiligerl
This contribution was based on an ensemble of an nnUNet-based model and a Swin UNETR. In addition,
a classification model was trained to identify negative PET/CT scans without metabolically active
lesions, based on maximum intensity projections (MIP), inspired by reading procedures of physicians 16.

Team SM
Team SM proposed a cascaded architecture consisting of a stacked ensemble of low-resolution U-Net
models and a subsequent refiner U-Net for high-resolution predictions17.

Team Flemings
Team Flemings proposed a cascaded architecture consisting of an initial inpainting model to detect and
generate lesion-free images, followed by a U-Net-based segmentation, with the residual inpainting image
as additional input18.

nn-Unet (baseline model, out of competition)
To provide a baseline model, the widely used and standardized nn-UNet framework19 was used with the
default settings using PET and CT volumes as input. The trained baseline model is publicly available
under https://github.com/lab-midas/autoPET.

Ensemble model (out of competition)
Based on the predictions of these above-described best performing algorithms, including the baseline
model, an ensemble model output was computed by pixel-wise majority voting.

Overall, the performance metrics of the best performing teams were slightly different with respect to all
three metrics (Fig. 3, A): Dice score (capturing consistency between foreground predictions and manual
masks), false negative volume (capturing total volume of missed lesions), and false positive volume
(capturing false-positive segmentations of physiologic tracer uptake). The mean Dice score ranged
between 0.74 and 0.79, the mean false negative volume between 0.5 and 1.5 ml and the false positive
volume between 2.1 and 9.5 ml. When assessing algorithm performance separately for the two data
sources (UKT and LMU) of the multicentric training set, we observed that mean Dice scores were overall
markedly higher for UKT test data (ranging between 0.8 and 0.88) compared to LMU test data (ranging
between 0.6 and 0.7). Mean false negative volumes and false positive volumes were slightly higher for
LMU data compared to UKT data (false negative volumes UKT: 0.3 to 1.7 ml, false negative volumes
LMU: 0.9 to 2.3 ml; false positive volumes UKT: 1.5 to 5.4 ml, false positive volumes LMU: 3.2 to 20.3 ml).
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The best performing team (Blackbean) ranked first regarding the mean dice score and the mean false
negative volume and second regarding the mean false positive volume. Interestingly, the provided
baseline nnUNet model showed a good overall performance ranking – out of competition – second with
respect to the mean Dice score and seventh with respect to the mean false positive and false negative
values (Fig. 3, A).

The ensemble prediction (out of competition) based on the top performing contributions and the baseline
model showed a superior performance compared to all participating teams with the highest overall mean
Dice score (0.81), the second lowest mean false negative volume (0.71 ml) and the lowest mean false
positive volume (1.6 ml) (Fig. 3, A).

Typical qualitative examples of model performance and error cases are given in Fig. 4. In general, false
positive segmentations mainly occurred in areas of atypical physiological tracer uptake (e. g. unusually
large urinary bladder, brown adipose tissue) while tumor lesions adjacent to physiological tracer uptake
were more often missed.

Impact of training data composition on algorithm
performance
To better understand external factors influencing algorithm performance in general we performed
additional ablation studies using the baseline model with different sizes and compositions of training
data.

As could be expected, we observed an overall increase in segmentation performance with increasing
numbers of training data reflected by increasing Dice scores and decreasing false positive and false
negative volumes (Fig. 3, B). Interestingly, in contrast to this overall tendency, Dice scores on LMU test
data showed no increase and even slightly decreased with higher numbers of training data, probably as a
sign of overfitting to the UKT training data distribution.

In addition, we assessed the impact of the input data composition on algorithm performance. In addition
to PET and CT volumes that were also used within the challenge, we added CT-based anatomical organ
labels as a potential third input.

Regarding the composition of training data, we observed the highest segmentation performance in terms
of Dice scores when using all three inputs (PET, CT and anatomical labels) on both, UKT and LMU data
(Fig. 3, B). On UKT data, using all three inputs also gave lower false positive and false negative volumes.
On LMU data, the results regarding composition of data and false positive/negative volumes were
inconclusive; however, using only PET data resulted in markedly higher false positive volumes on LMU
test data.

Figure 5 provides qualitative examples of test data sets and associated segmentation results for test
data drawn from UKT and LMU. In agreement with the quantitative results, we qualitatively observed a
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larger mismatch between manual and automated tumor lesion segmentation on LMU data (Fig. 5). In
general, tumor volumes were locally overestimated on LMU test data explaining the lower Dice scores on
LMU test data compared to UKT test data. Also agreeing with the quantitative results, with respect to
false positive and false negative volumes, we did not observe any obvious qualitative differences
between LMU and UKT test data.

Discussion
In this work we introduce the autoPET challenge on automated PET/CT lesion segmentation – organized
as a MICCAI challenge in 2022 – and present its results as well as the results of further analyses to pave
the way for a clinical adoption of automated PET/CT image analysis.

The main technical scope of this challenge was the automated segmentation of metabolically active
tumor lesions in whole-body FDG PET/CT scans. The best performing contributions demonstrated that
this basic and important task can be performed using state-of-the-art deep learning methodology with
high overall accuracy.

Interestingly, algorithm performance did not depend in a relevant way on technical details of the deep
learning architecture, and the provided nnUNet-based baseline model already performed among the top
contributions. Furthermore, an ensemble model of the top-performing algorithms showed the best overall
performance. These observations are in line with more general results from machine learning challenges
indicating that ensembling of many different algorithms can be superior to optimization of a single
algorithm 20.

In contrast, the size and composition of training data had a substantial effect on algorithm performance.
First, we observed a slight but relevant increase in lesion segmentation accuracy when using PET and CT
data as input compared to a PET-only input indicating that anatomical and morphological information is
useful for lesion segmentation. Overall, segmentation accuracy also increased with increasing the size of
the training set. However, this effect was not uniform between test data from UKT (same as training
distribution) and test data from LMU (different from training distribution): On UKT test data, the increase
in training data resulted in marked increase in Dice scores and decrease in false negative volumes with a
plateau at around 800-1,000 training samples. On LMU test data however, while false negative volumes
also increased with increasing training examples, no improvement and even a slight decline in Dice
scores was observed. False positive volumes were relatively low in both test data sets independent of the
size of the training set. These results indicate that the generalizability of algorithms trained in a single
institution is limited and that a reduction in segmentation performance can be expected when applied to
data from different sources, e.g., different scanners of hospitals. This drop in performance is not
catastrophic but rather related to different localization of the tumor margins – false positive and false
negative volumes were interestingly not worse on the external test data. These results motivate us to
place our focus on the topics of robustness and generalization for the next iteration of the autoPET
challenge.
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The autoPET 2022 is the first, important step towards a long-term goal of fully automated, quantitative
oncologic PET/CT image analysis. A number of tasks – beyond lesion segmentation in FDG-PET – need
to be addressed. For the near future we identify mainly two: (i) generalization of PET lesion segmentation
to different tracers and to different environments (tumor types, scanners, hospitals etc.) and (ii)
segmentation of lesions that are only visible on CT due to low or missing tracer uptake. We aim to include
these tasks as part of the next iterations of the autoPET challenge.

Materials and Methods

Challenge Mission and Task
The mission of the autoPET challenge is to motivate and focus research in the field of automated
PET/CT image analysis, to provide a platform for algorithm comparison and reproduction and to
document the current state-of-the-art in this field.

The autoPET challenge task – fully automated segmentation of metabolically active tumor lesions – is a
crucial first step towards objective and quantitative oncologic diagnosis, staging and therapy response
assessment in whole-body FDG-PET/CT. This task can be performed manually in principle but –
depending on tumor spread – can be associated with enormous effort by experts. As a result, lesion
segmentation is not performed routinely in clinical settings. Automation of this task will strongly support
clinical implementation of PET/CT lesion segmentation and quantitative analysis.

We consider the autoPET challenge 2022 to be the first part of a series of challenges aiming to gradually
address increasingly complex aspects of automated PET/CT analysis including detection and
segmentation of tumor lesions on CT data, extension to other PET tracers, lesion phenotyping and the
analysis of longitudinal imaging studies.

Challenge Organization and Infrastructure
The autoPET Challenge was conducted in 2022 as a MICCAI (Medical Imaging Computing and Computed
Assisted Intervention Society) - registered challenge and in cooperation with the European Society of
Hybrid, Molecular end Translational Imaging (ESHI-MT). The organizing team consisted of radiologists
and medical data scientists from the University Hospital Tübingen (UKT) in Tübingen, Germany and the
Ludwig-Maximilian-University (LMU) Hospital in Munich, Germany.

The challenge proposal was submitted to MICCAI in December 2021 and – after undergoing a peer-review
process – was approved in February 2022. The final challenge proposal is publicly available 21. The
challenge and its results were presented in a Satellite Event at the 25th International Conference on
Medical Imaging Computing and Computed Assisted Intervention in September 2022.

The challenge was opened on April 1st, 2022, with the release of all related information and the public
training set. During a first submission phase, starting May 3rd, 2022, participants were able to submit
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their algorithms to perform technical sanity checks on a small, preliminary private test data set consisting
of 5 representative test samples. The second and final submission phase was launched August 1st, 2022,
with the activation of the final, private test data set consisting of 150 test samples (Fig. 1).

The technical realization of autoPET 2022 was conducted on the dedicated Grand Challenge platform
(grand-challenge.com, Diagnostic Image Analysis Group, Radboud University Medical Center, The
Netherlands) as a type-II challenge (i.e., submission of algorithms by participants to run on a private test
set) under the URL https://autopet.grand-challenge.org/. Due to the private nature of the test data set,
algorithms were submitted to and deployed on the Grand Challenge computing platform via Docker
containers. A time limit of 20 minutes per test sample was set for algorithm execution on the available
computation resources (1 TPU with 16 GB GPU memory (NVIDIA, Santa Clara, CA, USA), 8 CPUs and 30
GB of CPU memory).

Technical support was provided to challenge participants in the form of a baseline algorithm example
and the associated code base as well as detailed description of the submission process on a public
online code repository (https://github.com/lab-midas/autoPET) and the challenge website
(https://autopet.grand-challenge.org/).

Participation policies
The use of data for algorithm development was restricted to the provided public training data set. No
additional data or machine learning models pre-trained on external data were permitted. Members of the
organizer’s institutes were allowed to participate in the autoPET challenge but were not eligible for
awards. The seven best performing contributions according to the challenge leader board (ranking criteria
are described below) were announced publicly awarded with monetary prizes (in €: 6,000 for first place,
3,000 for second place, 2,000 for third place and 1,000 for places four to seven). To be eligible for awards,
participating teams were required to publish their code and a technical manuscript describing their
methodology and results under an open-source license. Two members of each team were invited to
contribute as authors to this manuscript.

Datasets
The public training data consisted of 1,014 anonymized oncologic whole-body FDG-PET/CT data sets
together with manually generated segmentation labels of metabolically active tumor lesions drawn from
the University Hospital in Tübingen (UKT) (Fig. 6, A). All training data were obtained from a single
institution and clinical PET/CT scanner (Biograph mCT, Siemens Healthcare) using a standardized
imaging protocol (CT protocol: reference tube current, 200 mAs with automated tube current modulation;
tube voltage, 120 kV; i.v. contrast agent injection, 90–120 ml Ultravist 370 (Bayer AG) in the portal-venous
phase; slice thickness, 2–3 mm; PET protocol: tracer uptake time, 60 min; injected tracer activity, 300–350
MBq; iterative reconstruction (two iterations, 21 subsets) with Gaussian smoothing (2 mm full width at
half-maximum); reconstructed voxel size, 2 x 2 x 3 mm3). The training data set is publicly available at
The Cancer Imaging Archive (TCIA)8 and has been previously described in detail22.
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The private test data set consisted of 150 anonymized oncologic whole-body FDG-PET/CT data sets
together with manually generated segmentation labels of metabolically active tumor lesions (Fig. 6, A).
100 of the 150 training samples were obtained from the same institution (UKT) and acquired with the
same imaging protocol as the training data set. The remaining 50 of the 150 training samples were
obtained from a different institution (LMU) with variable PET/CT imaging protocols using clinical
PET/CT scanners by two vendors (64 TruePoint or Biograph mCT Flow (Siemens Healthineers) or a GE
Discovery 690 (GE Healthcare)). These 50 test data sets were acquired using similar protocols (CT
protocol: tube current, 100–190 mAs; tube voltage, 120 kV; i.v. contrast agent injection, weight-adapted
dose of Ultravist 300 (Bayer AG) or Imeron 350 (Bracco Imaging) in the portal venous phase; slice
thickness, 3 mm; PET protocol: tracer uptake time, 60 min; tracer activity, 300–350 MBq; iterative
reconstruction (three iterations, 21 subsets) with Gaussian smoothing (2–4 mm full width at half-
maximum) reconstructed voxel size, 2.7 x 2.7 x 2–4 x 4 x 5 mm3).

Only members of the organizing committee had access to the private test data set and its labels.

Both, the training and test data sets included examinations of patients diagnosed with lymphoma, lung
cancer or melanoma as well as negative studies (without detectable metabolically active tumor lesion).
Training and test populations had a comparable age distribution. 444 of 1,014 training scans (43.7%)
and 58 of 150 test scans (38.7%) were of female patients. Regarding the distribution of tumor load,
measured by the Metabolic Tumor Volume (MTV) and metabolic tumor activity, measured by the mean
Standardized Uptake Value (meanSUV) training and test data showed a good overall agreement
(Supplemental Figure S1).

A representative example of a complete data set is provided in the supplemental material (Supplemental
Figure S2).

Evaluation and further analyses
Quantitative algorithm performance regarding the challenge task was assessed using three metrics
representing different aspects as previously described in 22 (Fig. 6, B). The foreground Dice score was
used as an overall metric of agreement between ground truth segmentations and algorithm predictions.
In addition, the metrics “false positive volume” and “false negative volume” were used to quantify the
erroneous segmentation of healthy tissue and the miss of entire tumor lesions respectively. The false
positive volume is defined as the sum of all positive connected components in the prediction that do not
overlap with true tumor lesions in the ground truth (i.e., false positive segmentations that are not related
to actual tumor lesions). The false negative volume is defined as true positive connected components
that do not overlap with positive areas of the prediction (i.e., tumor lesions that were entirely missed).

Challenge submissions were ranked separately for each to these three metrics using their respective
means. The final overall rank was derived using the mean of these single rankings (with Dice score being
weighted twice) using the Dice score as a tie break. The code used for computation of the challenge
metrics is publicly available under https://github.com/lab-midas/autoPET.
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To analyze the generalization properties of submitted algorithms, all metrics were also computed
separately for the two data sources (UKT and LMU).

To assess the impact of available training data the following additional ablation studies were performed
using baseline models based on the standard configuration of the nn-UNet framework19: The impact of
the number of available training data was assessed by training different versions of the baseline model
with 50, 100, 200, 400, 800 or 1,014 randomly drawn training datasets. To assess the impact of
additional anatomical information, these baseline models were trained either using only the PET image
volumes as model input, or the PET volumes and the corresponding CT volumes or the PET and CT
volumes together with CT-based anatomical organ segmentation masks. These organ segmentation
masks were derived on using a publicly available pre-trained CT organ segmentation model 23. This
model provides segmentation of 36 anatomical structures including all major organs as well as adipose
and lean tissue compartments (Supplemental Fig. 2). The underlying hypothesis for these experiments
was that the addition of implicit or explicit anatomical information as input might support the learning
process and potentially improve segmentation performance or reduce the number of required training
data. It should be noted that the use of anatomical labels was not permitted within the challenge and was
only used as part of these additional analyses.
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Figure 1

Challenge organization and participation

The autoPET challenge, conducted in 2022, consisted of two phases: a preliminary phase - allowing
participants to perform technical validation of their algorithms on a small private test set – and a final
phase where participants contributed their algorithms for final evaluation on the entire private test set.
The seven best performing contributions were awarded and are described in this paper. In total, 359
teams from all continents participated in this challenge. Top: Geographic distribution of registered teams,
bottom: challenge phases and participation.
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Figure 2

Overview of technical details of the final phase submissions

All participants used deep learning techniques to solve the challenge task. The majority of participating
teams used a 3D U-Net architecture (left) together with a combined Dice and cross-entropy (CE) loss
(right).
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Figure 3

Overview of algorithm performance

A) Challenge results and algorithm performance in terms of Dice score, false negative (FN) volume and
false positive (FP) volume. Results are ordered from best (left) to worst (right). Overall, algorithms
performed better on the test data drawn from the training distribution (UKT, blue dots) compared to out-
of-distribution data (LMU, green dots)

B) Impact of data source (UKT vs. LMU) and number of training samples on the performance of the
baseline nn-UNet model in terms of Dice score, false negative (FN) volume and false positive (FP)
volume. Overall, algorithm performance was higher on UKT test data compared to LMU test data and
improved with increasing number of training samples. Notably, algorithm performance in terms of Dice
scores did not improve with increasing numbers of training samples on out-of-distribution data (LMU).



Page 18/20

Figure 4

Qualitative examples of false positive and false negative volumes

A) Example of a large false positive volume, drawn from the UKT test data. PET scan of a patient with
lung cancer (arrow I). Manual segmentation (in blue) shows the tumor lesion. Automated segmentation
(red) using the baseline nn-UNet model accurately captures the tumor volume but in addition includes a
large portion of the unusually large urinary bladder (arrow II). This false positive segmentation was
observed in the majority of submitted algorithms.

B) Example of a false negative volume, drawn from the LMU test data. PET scan of a patient with Non-
Hodgkin-Lymphoma of the right pharyngeal tonsil (manual segmentation outlined in green). This lesion
was missed by 5 of the 7 best-performing contributions, probably due to its uncommon location.
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Figure 5

Typical examples of PET/CT data and segmentations from UKT (top) and LMU (bottom)

While CT image appearance is comparable between LMU and UKT data, PET scans have a lower spatial
resolution on LMU data. As a result, all algorithms tended to overestimate local tumor volumes on LMU
data (right column, outlined in green) compared to the manual ground truth segmentation (outlined in
red). On UKT test data, automated tumor segmentations (right column, outlined in blue) showed a better
agreement with manual (outlined in red) and segmentations. This is also reflected in the overall lower
Dice scores of automated lesion segmentation on LMU test data compared to UKT test data.
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Figure 6

Challenge data and Evaluation Metrics

A) Overview of the composition of training data and test data. Training data were public and drawn from
a single institution and scanner (UKT). Test data were private and drawn from two institutions: UKT
(same as training data distribution) and LMU (out of training distribution).

B) Schematic illustration of the challenge metrics. I: a primary tumor lesion (red), II: a metastasis (red).
Blue: Algorithm output. The Dice score provides a measure of the overall overlap between tumor lesions
and algorithm segmentation. In this illustration, the lesion II is a false negative volume, as it is entirely not
captured by the algorithm. Segmentation III (partial segmentation of the urinary bladder) is a false
positive volume as it is not related to a tumor lesion.
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1 Synopsis

Billions of MR images are currently stored in clinical archives world-wide. Manual annotation of all these

images for the purpose of supervised machine learning is impossible. To still leverage their potential,

novel machine learning strategies are thus required.

Recently, self-supervised learning approaches have been proposed enabling training of deep learning mod-

els without requiring human-generated labels. The technical feasibility of these methods has previously

demonstrated for patch-wise training.

In this work we propose the use of augmentation-based contrastive learning for the analysis of over 40,000

entire-volume whole-body MRI data from the UK Biobank study and demonstrate its applicability to

various down-stream tasks.

2 Summary of Main Findings

3D-Contrastive learning is performed on 40,000 full abdominal MRI volumes. Subsequent application

to classification and regression tasks outperformed the supervised baselines significantly, demonstrating

the advantage of contrastive learning.

3 Introduction

Deep Learning frameworks have shown remarkable results in many fields of MR image analysis over the

past decade.1–4 One main drawback of supervised approaches is their need for large fully annotated

training datasets which are difficult and often impossible to acquire. Additionally, once trained, these

frameworks cannot be easily extended to different tasks as re-training and full access to the initial dataset

is usually required. Furthermore, it is desirable to learn generic feature representations which can be

reused for multiple tasks, instead of task-specific features.

Over the past years, self-supervised learning (SSL) methods have been introduced, aiming to alleviate the

above-described challenges. Several self-supervision tasks have been proposed including e.g., prediction

of image rotations,5 image colorization,6 solving jigsaw puzzles7 or image inpainting.8 More recently, self-

supervised contrastive frameworks based on image augmentation have been shown to improve on earlier

results9–12 and have also been applied in the field of MRI.13–15 Previous work focused on patch-wise

image processing using 2D or 3D patches16 as input.
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Application of self-supervised contrastive learning on entire 3D MRI volumes however is associated with

additional computational challenges and requires a larger number of training data.

Our contributions in this work are: (i) We propose a 3D feature extractor trained in a self-supervised

contrastive manner using SimCLR9 on entire-volume MRI volumes. (ii) we deploy this framework on

40,000 abdominal MRI scans from the UK Biobank (UKB). (iii) We use the learned representations in

various downstream tasks yielding high performance for classification and regression based on only few

labelled examples and without access to the initial dataset or re-training.

4 Methods

We hypothesize that - using contrastive learning - a feature embedding of an entire volume can be learned

which is suitable for various downstream tasks. We therefore train a self-supervised feature encoder based

on the SimCLR framework9 on full whole-body MRI volumes.

During pre-training (Fig. 1A), two different views of the same volume are created using domain specific

data augmentation (resized crops: 0.1 to 1, Gaussian noise N (0, 0.1), gamma contrast variation: -0.5 to

0.5, Gaussian blurring σ = 2) which are fed to a 3D-ResNet1817 encoder to produce feature vectors of

length 512. To improve performance9 a subsequent two-layer MLP is used to project the two feature

vectors into the loss-space before application of the Normalized Temperature-scaled Cross-Entropy loss.18

For the obtained feature vectors z, the cosine similarity (sim)is computed yielding the following final

optimization term:

ℓ = −log
exp(sim(zi, zj)/τ)∑2N

k=1 1k ̸=iexp(sim(zi, zk)/τ)
(1)

The pre-trained ResNet is used to embed each MR volume into a feature representation which can

subsequently be used as input for further downstream tasks.

We trained this framework on 40,000 abdominal MRI volumes from the UK Biobank19 study based on

a dual echo GRE sequence acquired on a clinical 1.5 T scanner (Magnetom Aera, Siemens Healthineers)

with the following parameters: matrix size: 224× 168× 363, resolution: 2.23× 2.23mm2, TE/TR: 2.39

ms, 4.77 ms / 6.69 ms, flip angle: 10◦, bandwidth: 440 Hz/pixel). We used the out-of-phase image

volumes as input. Training was performed for 200 epochs on 8 dedicated GPUs (A100, NVIDIA) with a

batch size of 56 and the ADAM optimization20 paired with a linear warmup scheduler up to a learning

rate of 1e-3.

Experiments:

Evaluation was performed on several classification and regression tasks using 4,174 validation subjects.

For classification tasks, a single linear layer consisting of 100 neurons was trained for 10,000 steps on top

on the resulting feature embeddings. For regression, plain ridge regression with an α of 4 was used.

Accuracy was used as metric for classification performance for the prediction of sex and an overall health

score (1: Poor to 4: Excellent), whereas the mean absolute error (MAE) is reported for the target

variables age, weight, height and body fat. The ground truth labels were provided by the UKB. To

assess the efficacy of self-supervised training, we trained the single layer / Ridge Regression (see above)

on 2, 20, 200 and 400 randomly selected examples and compared these results with fully supervised

training using the ResNet18 architecture directly on image data for the same examples.

t-SNE plots were used to visualize the data manifold of feature representations produced by SSL.21
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5 Results and Discussion

Quantitative evaluations are visualized in Figures 2/3 and qualitative evaluation is depicted in Fig. 5.

Accuracy and MAE were significantly better for the SSL-model when using only a small dataset for

task-specific training of up to 20 subjects suggesting that self-supervised training indeed produces useful

feature representations of data.

The t-SNE plots of feature representations produced by SSL showed a clear separation of sex in accor-

dance with the visual perception but also includes other features such as weight(Fig. 4).

This study has limitations. In this work we mostly focused on simple demographic target variables (age,

weight) for prediction tasks. Estimation of more specific properties such as diseases, as well as SSL

training for tissue segmentation will be part of future work. Additionally, the impact of the labelled

subset will be investigated.

6 Conclusion

In this study we implemented and evaluated large-scale contrastive learning on entire-volume whole-body

MRI data using SimCLR generating useful feature representations that can be leveraged for various

downstream tasks.
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Figure 1: Using SimCLR for self-supervised pre-training of a 3D-ResNet18 to produce feature embeddings

of two different augmentations based on the same initial volume. Application of the NT-Xent loss function

forces the linear projected features to be similar. During inference (B) the trained ResNet18 is used to

embed the full non-augmented volume into a feature vector of length 512 which can be subsequently

used as input for various downstream tasks.
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Figure 2: Accuracy dependency on the number of available labelled training samples in the fully su-

pervised baselines (right) and the proposed self-supervised approach (left) for classification of sex and

overall health. Using the proposed feature embedding as input improves performance if only limited

training data is available.

Figure 3: Mean Absolute Error (in years, kg ,% and cm) dependency on the number of available labelled

training samples in the fully supervised baselines (right) and the proposed self-supervised approach(left)

for regression of age, body fat, weight and height. Using the proposed feature embedding as input yields

significant improvement compared to the supervised baselines. Performance gains are considerably higher

compared to the classification task.
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Figure 4: t-SNE visualization of the estimated feature embedding for the proposed self-supervised ap-

proach on the validation dataset colorized for A) sex and B) body weight paired with 4 corresponding

sample images (C)). The proposed approach clearly learned to use the visible sexual characteristics to

distinguish between volumes but also incorporates additional knowledge such as weight.
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Figure 5: A) Distribution of body fat percentage deviation between prediction and ground truth for

the supervised baseline (blue) and self-supervised model (green) using 20 labelled examples. The 4

annotations are highlighted in B) which also depicts the corresponding predictions for body fat and

sex paired with ground truth (orange). Overall, the self-supervised model markedly outperforms the

supervised baseline.
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