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1.1 Musculoskeletal disorders in the working population

Work-related musculoskeletal disorders (WMSDs), such as impairments of muscles,
joints, tendons, and ligaments, have been reported to be the most frequent occupational
health problem in industrial countries. According to the European Agency for Safety and
Health at Work, 60% of all self-reported health problems of employees in the European
Union (EU) belong to the musculoskeletal system (DeKok et al., 2019). The
consequences are often limitations in their daily life, such as physical function in daily
activities and quality of life. Further repercussions are impairments in their working
activities, such as efficiency and productivity loss and sick leave (Duenas et al., 2016;
Eurostat, 2010). Musculoskeletal disorders (MSDs) are the most frequently reported
reasons for sick leave. In Germany, for example, 25.2% of the total registered sick leave
days (17.4 days/year/person) was related to MSDs in 2016. This resulted in production
cost losses of 17.2 billion euros for the economy in that year, representing 0.5% of the

German gross domestic product (Dauber & Isusi, 2019).

The most affected area of MSDs is the back, often resulting in lower back pain
(LBP; de Kok et al., 2019; Eurostat, 2010; Hartvigsen et al., 2018), which has been
registered to be the leading cause of disability worldwide (Hartvigsen et al., 2018). In the
EU, 12-month prevalence rates for overall back pain have recently been reported to be
43% for employees in general (Dauber & Isusi, 2019) and 55-60% for blue-collar
workers, with the lower back most commonly affected (DeKok et al., 2019; Govaerts et
al., 2021). In certain professional groups, the prevalence rates might even exceed these
rates. For example, cross-sectional surveys identified a 12-month prevalence of 70% in
flight baggage handlers for back pain (Bergsten et al., 2015) and 89% in wind farmers for
LBP (Jia et al., 2016).

The cause of LBP is multifactorial, including physical or biomechanical (e.g.,
exposure to physical load), psychosocial (e.g., job satisfaction), and personal or individual
(e.g., socio-economic status) factors (da Costa & Vieira, 2010; de Kok et al., 2019; Dick
et al., 2020; Hartvigsen et al., 2018). The strongest association for LBP was shown for
physical exposures (Dick et al., 2020), such as repetitive movements, dynamic or static
work in awkward postures, carrying or moving heavy loads, and lifting (da Costa &

Vieira, 2010; de Kok et al., 2019; Dick et al., 2020).



1.2 Prevention of work-related musculoskeletal disorders

Various prevention strategies for WMSDs are available at work in industrial countries.
For example, the European Agency for Safety and Health reports that 91% of European
employees work in companies that provide equipment for lifting and moving assistance,
83% work in companies that provide ergonomic equipment, 75% work in companies that
include regular work breaks for awkward postures, 63% work in companies that include
task rotation for reducing repetitive movements, 87% of the employees have access to
training on working techniques, and 73% have access to equipment for reducing their
workload (Dauber & Isusi, 2019). In this respect, three past (systematic) reviews (one
including a meta-analysis) focusing on workplace interventions regarding LBP concluded
that most interventions were either ineffective or had unclear benefits due to low quality
of evidence (Gatty et al., 2003; Maher, 2000; Steffens et al., 2016). On the contrary, a
recent review with meta-analyses found positive effects on LBP, quality of life, and
related parameters when evaluating workplace interventions (Russo et al., 2021).
However, despite access to workplace interventions, the impact of WMSDs, including
symptoms like LBP, remains significant (Di Tecco et al., 2022; EU-OSHA, 2023;
Govaerts et al., 2021) and their prevention is challenging as a result of their multifactorial
nature (Di Tecco et al., 2022). This indicates that ongoing treatments and prevention may
be insufficient or inappropriate and provides support for the need of innovative
approaches to manage WMSDs. Exoskeletons have recently been introduced to prevent
WMSDs, including the back area, and have gained a growing interest in both industry
and research (Steinhilber et al., 2020; Toxiri et al., 2019), offering a unique opportunity
to reduce biomechanical loads via a user-robotic interface (Govaerts et al., 2021; Lee et

al., 2012).

1.3 Exoskeletons

Exoskeletons are wearable mechanical structures that aim to support the musculoskeletal
system in motion (e.g., in physical work tasks) by generating forces/torques on human
joints (de Looze et al., 2016; Steinhilber et al., 2020; Toxiri et al., 2019). Their innovation
has been described to be the combination of human intelligence and robot power (Lee et
al., 2012). Their field of application can be medical, occupational, or military. Most

exoskeletons have been designed for medical reasons such as rehabilitation or daily living



movement assistance, e.g., supporting gait and the general functionality of the locomotor
system. Military exoskeletons mainly aim to support walking and carrying loads.
Occupational exoskeletons, also described as work-related or industrial exoskeletons, aim
to reduce the physical workload in defined body areas during the performance of certain
work tasks (ExR). Technically, they have been classified according to (1) the type of
actuation (active vs passive), (2) structures and attachments (rigid vs soft), and (3) joint
alignment. First, active exoskeletons are powered through actuators such as electrical
motors or hydraulic cylinders, while passive exoskeletons—which account for the
majority of commercially available exoskeletons—use components such as springs,
dampers, or straps for storing energy (Howard et al., 2020; Lee et al., 2012; Toxiri et al.,
2019). Second, the structures that transfer the supportive torques from one area to another
can be either rigid or soft, inducing a load perpendicular or parallel to the respective body
segment (Toxiri et al., 2019). Third, anthropomorphic exoskeletons are designed to align
the rotation axis of the exoskeleton to the rotation axis of the human joint and therefore
allow it to move in accordance with the wearer. Quasi-anthropomorphic exoskeletons
allow similar movements but without exact alignments of the joints. Non-
anthropomorphic exoskeletons have more simple builds and allow specific movements
for performing specific tasks (de Looze et al., 2016; Lee et al., 2012). Further,
exoskeletons can be grouped according to the supported body area, e.g., the upper limbs,
lower limbs, back, combinations of several areas, or single joints (de Looze et al., 2016;
Lee et al., 2012; Toxiri et al., 2019). This dissertation focuses on exoskeletons with an
occupational purpose and will mainly discuss passive, anthropomorphic devices that

support the lower back.

Classification within the context of occupational safety and health

There is ongoing debate about whether a qualification of occupational exoskeletons for
personal protective equipment (PPE) is justifiable (BGHW, 2022; DGUV, 2019; Lowe et
al., 2019), as the objectives of occupational exoskeletons and PPEs to prevent WMSDs
or work-related injury coincide (Howard et al., 2020). Using PPE is one solution within
the application of personal protective measures. It is the last of four options in the so-
called STOP principle, recommended by the Federal Institute for Occupational Safety
and Health in Germany to maintain employees’ work-related physical and psychosocial

health. The application of the measures follows a hierarchical order. First, the



“Substitution” or avoidance of health hazards must be implemented with priority. If not
possible, “Technical” protection measures should be applied, including the technical
equipment of the workplace, in order to avert any health hazards. The third option is
“Organizational” protection measures, e.g., the reorganization of work processes. Fourth,
if the previously described principles are not sufficient, the use of “Personal” protective
measures is an option, including PPE (BAuA, 2022). Although occupational exoskeletons
are not yet classified as PPE, they are already used in some companies with the aim to
prevent the risk for WMSDs and manufacturers promote their preventive effects (Howard

et al., 2020; Steinhilber et al., 2020).

Laevo® V2.56 exoskeleton

suspenders

- chest pad
chest gel paddings
right torso structure
|eft torso structure
hip paddings
hip back belt
hip front belt

- hip front belt buckle
buttock belt
labe
smart joint
leg structures

leg pads

structure size indication
- structure lock button
support cam

- angle button (behind)

- support on/off button

Figure 1: The passive exoskeleton Laevo® V2.56 (Laevo B.V., Delft, The Netherlands)
(user manual, 2018; Laevo B.V., Delfi, The Netherlands; https://laevo-exoskeletons.com/ Manuals).

One exemplary exoskeleton that has already been tested by industrial companies

is the passive back-support exoskeleton (BSE) Laevo® (V2.56, Laevo B.V., Delft, the



Netherlands; 2.8kg). The Laevo® exoskeletons aim to “prevent back injuries and improve
quality of life” by reducing back strain in occupational settings (Laevo). It works via an
energy-storing gas spring system located outside the hip joint pivot point (“smart joint”).
The smart joint is connected by rigid bars to a chest pad on the lower sternum level and a
leg pad on the front of the thighs. When bending the trunk, energy is stored and emitted
by trunk extension movement (Laevo). Structures responsible for trunk or hip extension
are relieved by the trunk extension torque applied, which is supported by a force pushing

perpendicular onto the thighs (Toxiri et al., 2019).

1.4 Back-support exoskeletons in industrial tasks—State of the evidence

Recently, researchers have increasingly evaluated the effects of using BSEs on physical
stress and strain parameters (De Bock et al., 2022; Kermavnar et al., 2021; Theurel &
Desbrosses, 2019). Herein, physical stress is the quantitative action of a load, for example,
induced due to physical exposure. Physical strain is the individual physical response to
the stressor, depending on an individual’s characteristics and capabilities (e.g., muscle
activity, heart rate, perceived exposure; Rohmert, 1986). In some exoskeleton
evaluations, physical stress was detected, mostly via force measurements. However, the
evaluation of physical strain parameters, such as muscle activity, heart rate, and perceived
exertion or discomfort were more popular measures. Herein, muscle activity was the most
frequently used objective strain parameter (de Looze et al., 2016; Kermavnar et al., 2021;
Theurel & Desbrosses, 2019), reflecting the amount of muscle activity provided for
performing a certain physical task (Burden, 2010). Reductions in stress and strain
parameters are considered positive in terms of musculoskeletal health, however, evidence
for the positive effect is still lacking. Most studies thus far were conducted under
laboratory conditions, evaluated acute effects, included highly controlled simulated work
tasks, and focused on the intentionally supported area (target area), e.g., the back (de

Looze et al., 2016; Kermavnar et al., 2021; Theurel & Desbrosses, 2019).

There are some (systematic) reviews that provide an informative overview of the
effects of using BSEs (de Looze et al.,, 2016; Kermavnar et al., 2021; Theurel &
Desbrosses, 2019), upper limb-support exoskeletons (ULEs) (de Looze et al., 2016;
McFarland & Fischer, 2019; Theurel & Desbrosses, 2019), or the technical aspects of

BSEs (Toxiri et al., 2019). However, despite the existing reviews, and because of very
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rapid development and frequently newly published papers in recent years, a current and
straightforward overview of the topic is lacking. In this respect, no quantitative analyses
(e.g., via meta-analyses) have been performed across aspects such as exoskeleton types,
body areas, or outcome parameters. A systematic review, including meta-analyses will
provide a broad and general overview of the effects and side-effects that potentially occur
when using exoskeletons. The knowledge gained will be used as a basis for further
research and will help in decision making in terms of the implementation of the devices

in the field.

Effects of using back-support exoskeletons

Some studies have shown promising results in terms of reducing the muscular activity in
the back when using a BSE in lifting tasks or when performing static trunk forward bent
postures. For example, reductions of acute muscle activity ranging between 8-24% when
using a BSE in frontal oriented lifting tasks (Abdoli-Eramaki & Stevenson, 2008; Alemi
et al., 2020; Baltrusch et al., 2020a; Koopman, et al., 2020a) and 11-61% when using a
BSE in static holding tasks (Agnew, 2008; Bosch et al., 2016; Graham et al., 2009;
Koopman et al., 2019; Madinei et al., 2020b; Wei et al., 2020) were identified in several
studies. However, these findings were not supported by other investigators, as they did
not find significant changes (Baltrusch et al., 2019; Ulrey & Fathallah, 2013a) or reported
an increase in back muscle activity in some of the various performed task executions

(Koopman et al., 2019; Madinei et al., 2020b).

Side-effects of using back-support exoskeletons

Exoskeletons incorporate the mechanism of relieving one body area but possibly
redistributing load to other body areas (Toxiri et al., 2019). Consequently, these newly
loaded areas might be exposed to increased biomechanical stress and strain. For safe
applications of exoskeletons in the work field, it is crucial that any potential health
hazards to the musculoskeletal system when using the devices can be excluded. Hints for
side-effects can be found in the literature (e.g., Bosch et al., 2016; Kim et al., 2020), and
in one evaluation of two distinct BSEs!, possible side-effects of using the devices in

various assembly task executions were intensively focused. Although they did not find

! backX™ AC (US Bionics Inc., Berkeley, CA) and Laevo™ V2.5 (Laevo, Delft, The Netherlands)
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main effects for the majority of the investigated parameters (e.g., muscle activity, body
posture), using either BSE, created side-effects in some task executions (Kim et al., 2020).
Nevertheless, there is a lack of evidence and limited consensus on the effect of work-

related BSEs on body areas other than the target areas (non-target areas).

Some rigid passive BSEs (including the Laevo®) provide a supportive trunk
extension torque with the support of a force pushing perpendicular onto the thighs via
leg-pads (Toxiri et al., 2019). Therefore, special attention should be paid to the knee joints
as they may be exposed to an increased load. After the back and the upper limbs, the knee
joint belongs to the most affected areas by WMSDs. A 33% prevalence of work-related
knee disorders in industrial workers in Europe was reported in a systematic review (with
meta-analysis) by Govaerts et al. (2021). Similar risk factors as those for back pain were
reported, such as awkward postures, lifting, and repetitive movements (da Costa & Vieira,
2010; de Kok et al., 2019). As BSEs are intended to be used during work tasks, it seems
crucial to focus intensively on knee joint loading when evaluating BSEs. However, no
study investigating BSEs has focused on forces or moments in the knee joint or other non-

target areas.

Body posture

As a result of the exoskeleton acting mechanically on the human body—e.g., the
exoskeleton’s structures pushing against certain body segments—the body posture of the
exoskeleton user may change (Ulrey & Fathallah, 2013b). Joint posture may determine
joint loading and thus be related to musculoskeletal health. The knee flexion angle in
lifting, for example, was related to knee force magnitudes and further influences spine
loading (Kingma et al., 2010). For the lumbar spine, prolonged (hyper-) flexion was
related to increased spinal forces (Gallahager, 2010; Fatallah, 2004; Ulrey & Fatallah,
2013a), overstretching of spinal ligaments (Ulrey & Fatallah, 2013a), and thus an
increased risk for intervertebral disc and ligament injuries (Burgess-Limerick, 2001;
Gallahager, 2005; Adams, 1982; Ulrey & Fatallah, 2013a). An excess of spinal flexion
might be prevented by using a BSE? (Ulrey & Fathallah, 2013a, 2013b). Summarizing
the existing literature of effects when using BSEs: lumbar or kyphotic spinal flexions

were reported to be substantially reduced (Koopman, et al., 2020b; Sadler et al., 2011),

2 BNDR (Limbic Systems Inc., Ventura, CA)
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slightly reduced (Ulrey & Fathallah, 2013a), not substantially altered (Abdoli-Eramaki et
al., 2006; Baltrusch et al., 2020a; Kim et al., 2020; Koopman et al., 2019; Ulrey &
Fathallah, 2013a), or increased (Koopman et al., 2020a); trunk flexions were shown to
either trend towards or were significantly increased (Bosch et al., 2016) or did not change
(Baltrusch et al., 2020a); hip flexions increased (Luger et al., 2021a; Sadler et al., 2011),
decreased (Koopman et al., 2019; Simon et al., 2021), or did not change (Ulrey &
Fathallah, 2013a); and knee flexions increased (Luger et al., 2021a), decreased (Simon et
al., 2021), did not substantially change (Abdoli-Eramaki et al., 2006; Baltrusch et al.,
2020a; Ulrey & Fathallah, 2013a), or were overextended (observed but not evaluated)
(Bosch et al., 2016). Drawing clear consent or presuming a direction of how wearing a
BSE may affect body posture is not possible from these findings. Despite the presumed
importance of monitoring body posture in BSE evaluations, the number of investigations

including such parameters is still limited.

1.5 Influencing factors—Work tasks and their execution technique

In exoskeletons whose function is based on a pivot joint, the joint’s flexion angle
determines the assistive torque the device provides to the user (e.g., the Laevo®)
(Koopman et al., 2019). Therefore, the exoskeleton’s support likely depends on the trunk
and lower limb postures. Depending on the workplace, a movement amplitude might be
restricted, e.g., no possibility to bend the knees when lifting or lowering an object. In
realistic work scenarios, movements are usually not performed in only the sagittal plane
(symmetric trunk orientation). Additional trunk rotations may be required to perform a
certain task (asymmetric trunk orientation), resulting in different flexion angles between
the left and the right side of the exoskeleton structures. Therefore, the effects of using a
BSE are designed to be dependent on the body posture in the respective work tasks.
However, to date, the influence of varying body postures within a certain task (e.g., lifting
style or asymmetric trunk orientation) has been rarely investigated. One workgroup
focusing on asymmetric trunk orientation found less pronounced effects of using two
distinct BSEs® when performing lifting and lowering tasks asymmetrically compared to
symmetrical trunk orientation (Alemi et al., 2020; Madinei et al., 2020a). They further

reported varying effects when comparing different trunk orientations in assembly tasks

3 backX™ AC (US Bionics Inc., Berkeley, CA) and Laevo™ V2.5 (Laevo, Delft, The Netherlands)
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(Madinei et al., 2020b). The influence of lifting style has been scarcely investigated in
the context of exoskeletons, and no clear consensus can be drawn from the findings of
those existing investigations (Abdoli-Eramaki et al., 2006; Alemi et al., 2019; Frost et al.,
2009).

In summary, the evidence for the advantages or disadvantages of using
occupational BSEs is both limited and conflicting. Their effectiveness concerning
workers’ health has not yet been demonstrated, e.g., the prevention of (lower) back
WMSDs (Howard et al., 2020; Steinhilber et al., 2020; Theurel & Desbrosses, 2019).
Furthermore, possible side-effects that may negatively affect the human body cannot be
excluded from existing literature. Despite the lack of evidence, manufacturers promote
their various beneficial effects, such as significant stress and strain reductions®, fatigue,
and/or injury prevention®, and reductions of sick absence and work turnover® (Auxivo;

Bionics; ExoAtlant; Laevo; Ottobock).

4 Laevo exoskeletons (Laevo, Delft, The Netherlands), CrayX (German Bionic, Augsburg, Germany), ExoAtlant (ExoAtlet,
Luxembourg), LiftSuit (Auxivo AG, Schwerzenbach, Switherland), Ottobock back exoskeletons (Ottobock, Duderstadt, Germany)

5 Laevo exoskeletons, CrayX, ExoAtlant, LiftSuit, Ottobock back exoskeletons

¢ CrayX, Ottobock back exoskeleton
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1.6 Aims of the thesis

Indeed, before implementing exoskeletons in the field, their scientific evaluation is
crucial to ensure an advantageous as well as a safe application. More specifically, it needs
to be determined whether the exoskeleton has the potential to relieve the musculoskeletal
structures in the target area in the absence of side-effects (which may increase stress and
strain in other body areas). Therefore, the main research question of this doctoral thesis

is:

e What are the effects of using a back-support exoskeleton in industrial tasks on

physical stress or strain?
Further sub-questions of this doctoral thesis include:

e Does using a back-support exoskeleton relieve strain on the musculoskeletal
system of the back?
o What are the side-effects in non-target areas when using a back-support

exoskeleton?
To answer these questions, the following research objectives will be addressed:

1. To determine what is currently known about the influence of using occupational
exoskeletons during work tasks on acute physical stress and strain. (Chapter 2).

2. To determine the influence of using a passive back-support exoskeleton (the
Laevo® V2.56) on muscle activity, posture, and heart rate during simulated
industrial tasks, including distinct lower limb postures and symmetric and
asymmetric trunk orientations. (Chapters 3 & 4)

3. To determine the effects of using a passive back-support exoskeleton (the
Laevo® V2.56) on tibiofemoral joint loading during simulated industrial tasks,
including distinct lower limb postures and symmetric and asymmetric trunk

orientations. (Chapter 5)
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1.7 Outline of the thesis

In Chapter 2, a systematic review with meta-analyses is presented. The review focuses
on the influence of using occupational exoskeletons on several physical stress and strain
parameters. Biomechanical, physiological, and subjectively perceived parameters
regarding the exoskeleton’s target area, but also the non-target areas, are evaluated. Here,
exoskeletons that were developed and investigated for an occupational setting are
included. However, in this dissertation, the focus is primarily on passive devices trunk

orientation trunk orientation—which aim to support the lower back.

In Chapters 3—5, various results of a physiological and biomechanical evaluation
of the back-support exoskeleton Laevo® V2.56 are presented. Therefore, a laboratory
study investigating the device in simulated occupational tasks was conducted. Chapters
3 and 4 present the effects of using the exoskeleton on muscle activity of the back but
also of other possibly influenced body areas (e.g., legs, abdomen, shoulder/neck). Further,
they include monitoring of spine and lower limb postures and heart rate, which may be
influenced by wearing and using the device. Specifically, in Chapter 3, the results of a
manual assembly task (sorting screws and pins), holding a forward bent trunk posture
statically (with and without additional trunk rotation) are described. In Chapter 4, a
dynamic task of repetitive lifting and lowering a load is presented. The task was
performed with two different knee postures (stoop and squat), each one with and without
an additional trunk rotation. Due to the load-transferring mechanism of the Laevo®
exoskeleton inducing a load perpendicular to the front part of the thighs, it was assumed
that using the device may affect the knee joint loading. In Chapter 5, therefore, the focus
lies on the influence of using the exoskeleton on forces acting on the tibiofemoral joint in
vertical and horizontal (anteroposterior) directions. These parameters were investigated

during the same experimental work tasks described in Chapters 3 and 4.

In Chapter 6, the findings presented in Chapters 3—5 are summarized and
discussed concerning the questions of this thesis and in a broader context of the current
state of exoskeleton research and application. To this concern, remaining questions are
highlighted. Finally, recommendations for future research as well as for the practical

implementation of exoskeletons are presented.
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Chapter 2

The influence of using exoskeletons during occupational tasks on
acute physical stress and strain compared to no exoskeleton - A
systematic review and meta-analysis.

Bér, Mona
Steinhilber, Benjamin
Rieger, Monika A.
Luger, Tessy

Applied Ergonomics, 2021
94, 103385. https://doi.org/10.1016/j.apergo.2021.103385
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ARTICLE INFO ABSTRACT

Keywords:
Assistive device

Objectives: This systematic review and meta-analysis determined the effects of using an exoskeleton during
occupational tasks on physical stress and strain compared to not using an exoskeleton.

Methods: Systematic electronic database searches were performed and the review was prepared according to the
PRISMA guidelines. Treatment effects on the predefined outcomes were calculated using standardized mean
differences for continuous outcomes in several meta-analyses using Review Manager 5.3. Registration: PROS-
PERO (CRD42020168701).

Results: 63 articles were included in qualitative syntheses and 52 in quantitative, but most of them did not
extensively evaluate musculoskeletal stress and strain and the risk of bias was rated high for all included studies.
Statistically significant effects of using back, upper-limb, or lower-limb exoskeletons have been observed in the
supported body areas (e.g. reduced muscle activity, joint moments and perceived strain). Studies which did not
exclusively focus on the supported body area also showed statistically significant effects in the non-supported
areas (e.g. changed muscle activity and perceived strain) and in physiological outcomes (e.g. reduced energy
expenditure).

Conclusions: Using an exoskeleton during occupational tasks seems to reduce user’s acute physical stress and
strain in the exoskeleton’s target area. However, impact on workers’ health is still unknown, primarily because of
missing long-term evaluations under real working conditions. Furthermore, this systematic review highlights a
lack of studies (1) following high quality methodological criteria, (2) evaluating various inter-related stress and
strain parameters instead of only focusing on one specific, and (3) evaluating non-target body areas instead of
only the directly supported body area.

Biomechanics
Muscle activity
Work-related musculoskeletal disorder

1. Introduction

Work-related musculoskeletal disorders (WMSD) have a high impact
on workers’ wellbeing, health care systems and economy. Around 60%
of all self-reported work-related health problems in the European Union
correspond to the musculoskeletal system (DeKok et al., 2019). The
consequences of these health problems are often limitations in daily life
for the person concerned as well as constraints in working activities
(Eurostat, 2010) leading to a remarkable amount of sick leave days from
work (Burton and Kendall, 2014; da Costa and Vieira, 2010; Eurostat,
2010). Specific working conditions are known to contribute to an
elevated risk of WMSD; heavy physical work, lifting tasks, repetitive

* Corresponding author.

movements, awkward static and dynamic working postures are some of
the most prevalent reported risk factors (da Costa and Vieira, 2010;
Eurofound, 2012; Eurostat, 2010).

Strategies to avoid physically demanding exposure at work have
been implemented, such as the modification of workplaces and auto-
mation of work processes; however, this is not always feasible because of
economic reasons or workplace characteristics that require the full
competences of a human (de Looze et al., 2016). Recently, there has
been a growing interest in exoskeletons for supporting movements and
postures in an occupational context and thereby reducing the physical
workload (de Looze et al., 2016; Toxiri et al.,, 2019). By using an
exoskeleton, human power can be increased due to the support of the

E-mail addresses: mona.baer@med.uni-tuebingen.de (M. Bar), benjamin.steinhilber@med.uni-tuebingen.de (B. Steinhilber), monika.rieger@med.uni-tuebingen.
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addressed musculoskeletal structures (de Looze et al., 2016), whereas
physical and cognitive human competences remain almost unaffected.
Exoskeletons can be classified according to their functionality, either as
passive or active depending on the energy sources used. Passive exo-
skeletons use load-bearing elements (e.g., springs) that are able to store
and release energy that is gained by the user’s movements. Active exo-
skeletons use additional external actuators, such as electric motors or
pneumatic muscles (Gopura and Kiguchi, 2009) to provide extra energy
(de Looze et al., 2016; Toxiri, 2018). According to the respective work
tasks given, different exoskeletons have been developed to support the
upper limbs for working with elevated arms, the lower limbs for pro-
longed standing work, or the back for lifting or prolonged forward
bending. Full-body-exoskeletons assist several of the mentioned areas
and some exoskeletons only support single joints like the elbow, wrist,
knee or ankle.

Several exoskeletons have been evaluated in a (simulated) occupa-
tional context to identify their potential impact on parameters associ-
ated with WMSD (Steinhilber et al., 2020b) which refer to physical stress
(e.g. joint load) or physical strain (e.g. muscle activity, perceived
discomfort or fatigue.), (de Looze et al., 2016; McFarland and Fischer,
2019; Theurel and Desbrosses, 2019; Toxiri, 2018). Stress is the quan-
titative amount of a stressor (work-related exposure) and strain the in-
dividual’s response to this stressor (Rohmert, 1986).

Although work-related physical stress and strain reflect different
concepts, epidemiological studies consistently demonstrate that both
physical strain parameters like elevated muscle activity (Hanvold et al.,
2013; Luttmann et al., 2010; Westgaard, 1999) and peak and cumulative
discomfort at work (Reenen et al., 2008), together with physical stress
parameters like high peak (Norman et al., 1998) and cumulative (Coe-
nen et al., 2013, 2014) mechanical loadings at the lumbar spine esti-
mated by shear forces and joint moments are associated with WMSD.

The potential of reducing the level of muscle activity in the sup-
ported body region by using an exoskeleton was shown by three reviews
on back-supporting and upper-limb supporting exoskeletons (de Looze
et al., 2016; McFarland and Fischer, 2019; Theurel and Desbrosses,
2019). Joint moments, shear and compression forces at lower spine level
may also be reduced when using back-supporting exoskeletons (de
Looze et al., 2016; Theurel and Desbrosses, 2019). Subject-reported
feelings of both general and local physical strain, on the other hand,
showed mixed results with studies reporting an increase (Hensel and
Keil, 2019; Luger et al., 2019a), a decrease (Madinei et al., 2020; Smets,
2019) or no change when using an exoskeleton (Rashedi et al., 2014).
However, the relevance of such changes in muscle activity, biome-
chanical load and perceived discomfort or fatigue is not determined yet
(Steinhilber et al., 2020b) and may depend on the exoskeleton’s support
characteristics (Alemi et al., 2020), the evaluated occupational task
(Alemi et al., 2020), and also on the exact task execution (Steinhilber
et al., 2020a). Moreover, the influence of using an exoskeleton on the
musculoskeletal system in other body regions than the target region
remains largely unclear. Although several studies show altered joint
moments and forces at lumbosacral level when using upper-limb exo-
skeletons (McFarland and Fischer, 2019) or changed muscle activity in
the leg musculature when using back exoskeletons (de Looze et al.,
2016), these findings are inconsistent and incomplete since only a few
studies so far have addressed the aspect of evaluating others than the
target areas. Taken together, the previous reviews provide a good
overview on this topic of growing interest. However, they did only
include some selected types of exoskeletons (McFarland and Fischer,
2019; Theurel and Desbrosses, 2019), provide an overview without
including a systematic literature search (Theurel and Desbrosses, 2019),
are not up to date anymore since they have been published in 2016 (de
Looze et al., 2016) or in 2019, so they did not consider many studies
evaluating exoskeletons that have been published within the last two
years (McFarland and Fischer, 2019; Theurel and Desbrosses, 2019), and
did not include quantitative analysis for evaluating the effects of exo-
skeletons (de Looze et al., 2016; McFarland and Fischer, 2019; Theurel

Applied Ergonomics 94 (2021) 103385

and Desbrosses, 2019).

Therefore, an overview of all studies that evaluated occupational
exoskeletons including meta-analyses will provide a valuable overview
of the current state of knowledge for scientists, occupational physicians
and ergonomists. Furthermore, such an overview may help practitioners
to judge whether an exoskeleton may be a suitable intervention to
counteract work-related physical loads or to support workers with
reduced physical capacity in terms of occupational reintegration. This
systematic review with meta-analysis aims to determine the effects of
using an exoskeleton on physical stress and strain of the user in occu-
pationally relevant tasks compared to not using an exoskeleton. Several
parameters related to physical stress and strain will be evaluated.

2. Methods

This systematic review was prepared following the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses guidelines
(PRISMA; Moher et al., 2009). The protocol of the current review is
registered at the international prospective register of systematic reviews
(PROSPERO) of the National Institute for Health Research (registration
number: CRD42020168701) (Bar et al., 2020).

2.1. Eligibility criteria

English, Dutch or German papers were included when they reported
results of an experimental study, evaluated an exoskeleton in an occu-
pational context in the field or in the laboratory. Publications in scien-
tific journals, conference papers or dissertations were admitted. No
restrictions on the type of study design were set; however, they had to
include a control condition evaluating identical tasks but without using
the exoskeleton. We included studies that assessed adults (aged 18 years
or above) who could be either workers or non-workers (e.g., novices).
The review was limited to studies on occupational purpose; those eval-
uating exoskeletons for military or rehabilitative use were excluded.
However, we did not exclude those studies which did not specify the
exoskeletons purpose when an occupational use of the device could be
possible. We set no restrictions to the type of exoskeleton evaluated. We
included studies that reported at least one of the following outcomes:

1. Biomechanical stress or strain, including muscle activity, joint mo-
ments, compression forces and shear forces.

2. Physiological strain, including heart rate parameters (i.e., heart rate,
cardiac cost), energy expenditure (i.e., energy expenditure, meta-
bolic cost, oxygen consumption), and blood pressure.

3. Participant-reported strain, including perceived musculoskeletal
discomfort, fatigue, exertion, effort, pressure and pain.

For the data collection and meta-analysis, only results presented as
means, medians or integrals were consulted; such that peak values were
excluded.

2.2. Search strategy

This literature review is based on the results of a systematic elec-
tronic literature search of nine different databases (cf. Fig. 1). Addi-
tionally, reference lists of included studies as well as the researchers’
personal databases were screened for further relevant studies. The pri-
mary search strategy was created for MEDLINE (PubMed), designed
according to the PICO-scheme including MeSH-terms (Appendix 1) and
adjusted for all other databases (Appendix 2). The detailed search strings
can be found in Appendix 1 and 2. The searches were conducted on 17
March 2020; with the exception of EMBASE (OVID) on 25 January 2019.

[a Automatic exclusion from the pooled analyses by Review Man-
ager; b Studies and/or contacted authors did not provide sufficient data
for the pooled analyses; Databases screened: Cochrane Central Register
of Controlled Trials (CENTRAL; Wiley Online Library), MEDLINE
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7847 of records identified through
database searching:

«  CENTRAL (n=241)

«  MEDLINE (n=1926)

¢ Web of Science (1=4576)

«  EMBASE (n=1104)

154 of additional records identified
through other sources:

ClinicalTrials.gov(n=93)
DRKS (n=0)

EUCTR (n=1)

ISRCTN (n=42)

WHO ICTRP (n=2)

Own resources (n=16)

v

8001 records identified

\ 4

1475 duplicates removed

Y.

6526 of records after
duplicates removed

A\ 4

6526 of records screened

Y

6423 of records excluded

Y

37 of full-text articles excluded, with reasons:

* Not work-related (n=2)

¢ No evaluation of an exoskeleton(n=3)

¢ No control group, i.e. without exoskeleton
(n=5)

¢ Exoskeletonfor military or rehabilitation
purposes (n=3)

104 of full-text articles
assessed for eligibility

¢ Qutcomesnot indicating stress or strain of
human subject(n=3)

\ 4

Y

* Design, development, modelling of
exoskeleton without experiment with
human subjects(n=7)

¢ Reporting of peak values only, i.e. other
than median, mean or integral(n=5)

¢ No full-text available, i.e. not from the
institutional library and not from one of
the authors(n=9)

15 studies (15 full-text articles) excluded from

63 studies (67 full-text
articles) included in
qualitative synthesis

quantitative synthesis, with reasons:
¢ Only 1 subject included in the study?
(n=8; 89, 91, 122-127)

\ 4

Y

* Data notavailable ®
(n=7; 87, 88, 90, 128131)

48 studies (52 full-text
articles) included in
quantitative synthesis
(meta-analysis)

Fig. 1. Study flow diagram.

(PubMed) EMBASE (OVID), Web of Science (Thomson Reuters), U.S.
National Library of Medicine (ClinicalTrials.gov), German Clinical Trials
Register (DRKS; DRKS.de), EU Clinical Trials Register (EU CTR; Clin-
icalTrialsRegister.eu), ISRCTN Registry (ISRCTN.com), World Health
Organization International Clinical Trials Registry Platform (WHO

ICTRP; WHO.int/ICTRP/en)]

2.3. Study selection

All records identified by the literature search were proofed for du-
plicates with Rayyan QCRI (Ouzzani et al., 2016) and additionally
checked by one reviewer (AWMEF, 2012). First, two reviewers (MB, TL)
independently screened the titles and abstracts of all selected studies.
They then independently assessed the full texts of the remaining studies
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for eligibility. Disagreement or obscurity was resolved by discussion or,
when necessary, by consulting a third review author (BS).

2.4. Data extraction

Two review authors (MB, TL) extracted the main characteristics from
the included studies (author and year, methods, participants, in-
terventions, outcomes, notes; cf. Appendix 4).

2.5. Risk of bias assessment

Two reviewers (MB, TL) independently assessed the risk of bias in
each study using the quality assessment tool for controlled intervention
studies as developed by the Risk Assessment Work Group of the United
States’ National Institutes of Health (Goff and Lloyd-Jones, 2013) and as
used in a previous occupational-related review (Padula et al., 2017).
Disagreement was resolved by discussion or, if necessary, by consulting
a third reviewer (BS).

The quality assessment tool consists of 14 items, to which we
responded with yes (score of 1), no (score of 0) or other (CD, cannot
determine; NA, not applicable; NR, not reported; equal to a score of 0).
Six items received a higher weighting of two instead of one, because we
considered them more relevant in the risk of bias assessment than the
other eight items. Based on the allocation by Padula et al. (2017) and
modified using the criteria outlined in the Cochrane Handbook for
Systematic Reviews of Interventions (Higgins et al., 2019b), the 14 items
were allocated into seven superior clusters. (Cf. Appendix 6).

The susceptibility to bias of each cluster was rated based on the sum
of the assigned items to be high (<50% score), moderate or unclear
(50-99% score) or low (100% score). A good study quality indicates low
risk of bias, a fair quality indicates moderate or susceptible risk of bias,
and a poor quality indicates significant or high risk of bias (Goff and
Lloyd-Jones, 2013).

2.6. Meta-analysis

The outcome data of the included studies was extracted by two re-
view authors (MB, TL) and transferred into Review Manager 5.3 soft-
ware (Review Manager, 2014) for calculating the treatment effects. We
used standardized mean differences (SMD) for continuous outcomes, for
which a higher SMD can be interpreted as a larger effect (Higgins et al.,
2019b), without being able to interpret the exact SMD-value to indicate
a small, moderate or large effect (e.g. Cohen 1988 (Cohen, 1988)). In
case of missing data or data not reported in a usable manner, the study
authors were contacted for data sharing. If numerical outcome data such
as standard deviations or correlation coefficients were missing and could
not be obtained from the study authors, we calculated them from other
available statistics, such as p-values, according to the methods as
described in Section 6.5.2.3 of the Cochrane Handbook for Systematic
Reviews of Interventions (Higgins et al., 2019a) or we measured them
from available figures. If the provided data was insufficient and study
authors did not respond, we excluded the study from the meta-analysis.

We grouped the results of the included studies based on similarity of
the intervention (type of support) and outcome. We classified the eval-
uated exoskeletons into the following five supporting body areas: (1)
back, (2) lower limb, (3) upper limb, (4) ankle or (5) wrist. The study
results of any measurement method related to each of the included
outcomes muscle activity, joint compression force, joint shear force,
joint moments, heart rate, blood pressure or metabolic costs within these
outcome-groups were considered as similar. The study results of any
measurement method that was used to report participant-reported out-
comes (e.g., numeric rating scale, visual analogue scale) were consid-
ered as similar.

We pooled the data from the studies per outcome in forest plots. The
results of each study were plotted as point estimates with corresponding
95% confidence intervals. We used a random-effects model to pool the
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results of the studies (Borenstein et al., 2009) for all outcome analyses.
Heterogeneity of the results was assessed using the I? statistic, as pro-
vided by Review Manager 5.3 (Review Manager, 2014) and provided
descriptively. I? values greater than 75% can be interpreted as a sub-
stantial heterogeneity (Section 10.10.2; Deeks et al., 2019). Independent
meta-analyses were performed for each type of exoskeleton as previ-
ously defined. If more than one exoskeleton was tested within a study
against a control condition, the exoskeletons were observed indepen-
dently, meaning that the identical data of the control measurement was
used for calculating the effects of the different exoskeletons. Further-
more, the outcomes were assigned to a joint function (for muscle ac-
tivity) or to a body region (for both the participant-reported as well as
biomechanical outcomes), which means that there can be more than one
meta-analysis for the same outcome when more than one body region or
joint function has been included in one or more studies. If more than one
reported study outcome belonged to a single body region or joint, and
also if several tasks and task conditions were conducted within one
study, we combined the reported means and standard deviations as
described in Section 6.5.2.10 of the Cochrane Handbook for Systematic
Reviews of Interventions (Higgins et al., 2019a). If several time points
were measured, we calculated the means and pooled standard de-
viations of all time points for both conditions (with and without
exoskeleton) to include studies with endurance protocols as well. For the
outcome muscle activity, we grouped various muscles based on their
main function, taking into account the exoskeleton used and the per-
formed work task as listed in Table 1. For the physiological outcomes,
we defined the categories heart rate (including cardiac cost), energy
expenditure (including oxygen consumption and metabolic cost) and
blood pressure. For the biomechanical outcomes, including shear and
compression forces and joint moments we defined the following join-
ts/body areas: shoulder, arm, back (lumbosacral level) and hip. For the
participant-reported outcomes we defined the following body areas:
general, hands & wrists, neck & shoulders & arms, back, chest, hips &
upper legs, knees & lower legs & feet.

3. Results
3.1. Study selection

Fig. 1 presents the study selection process in a flow diagram. Out of
originally 8001 identified articles, 67 records from 63 studies remained
in the qualitative analysis; of which 52 references from 48 studies were
considered for the quantitative meta-analysis (reasons for exclusion are
listed in Fig. 1).

3.2. Data extraction

Proportions of the characteristics of the 63 included studies of study
setting (e.g. laboratory or field, continent of execution), time area of
publication, number and sex of included subjects, type of exoskeleton,
tasks, duration of experimental conditions and outcomes are presented
in Appendix 3. The study characteristics of the qualitative analysis of
each study are provided in Appendix 4. The study outcomes described as
absolute value and percentage change for the experimental conditions
compared to the control condition (i.e., without exoskeleton) are sepa-
rately calculated and provided in Appendix 5. All outcomes have to be
considered as acute effects of using an exoskeleton since the designs of
the included studies used protocols of short duration (no longer than 3
days).

3.3. Risk of bias assessment
The risk of bias assessment according to the seven categories is
presented as percentage of all 63 included studies in Fig. 2. All studies

showed a high risk of bias, because at least one out of the seven risk of
bias categories was judged as high. The ratings of the 14 single items
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Table 1
Muscles included for each muscle group based on the main anatomical muscle
function.

Muscle group Main functions Included muscles

Shoulder
elevation

oM. deltoideus
acromialis/medialis
oM. deltoideus
scapularis/posterior
oM. deltoideus
clavicularis/anterior
oM. trapezius
descendens/upper
oM. serratus anterior
oM. biceps brachii
oM. trapezius
ascendens/lower
oM. teres major
oM. triceps brachii
oM. latissimus dorsi
Shoulder Internal rotation, external rotation oM. teres major
rotation oM. infraspinatus
oM. deltoideus
scapularis/posterior
oM. deltoideus
clavicularis/anterior
oM. triceps brachii
oM. biceps brachii
o). erector spinae
spinalis
oM. erector spinae
longissimus
oM. erector spinae
iliocostalis
oM. multifidus
Flexion oM. rectus abdominis
oM. obliquus externus
oM. obliquus internus
Extension oM. gluteus maximus
oM. semitendinosus
oM. biceps femoris
Flexion oM. rectus femoris

Arm abduction, arm elevation, arm
anteversion, shoulder elevation

Shoulder
depression

Arm adduction, shoulder
depression, arm retroversion

Extension
Flexion, pronation
Extension

Elbow extension
Elbow flexion
Trunk extension

Trunk flexion

Hip extension

Hip flexion

Knee extension Extension oM. rectus femoris
oM. vastus lateralis
oM. vastus medialis

Flexion oM. biceps femoris
oM. semitendinosus

eM. gastrocnemius

Knee flexion

Ankle Plantarflexion eM. gastrocnemius
plantarflexion oM. soleus
Ankle Dorsiflexion oM. tibialis anterior
dorsiflexion
Wrist extension Extension, ulnar extension oM. extensor carpi
ulnaris
Wrist flexion Flexion oM. flexor digitorum
superficialis

included in this assessment are tabulated in Appendix 6.
3.4. Meta-analysis

In the following, SMD along with their 95% confidence interval (CI)
in the experimental condition (i.e., using an exoskeleton) compared to
the control condition (i.e., not using an exoskeleton) are reported.

3.4.1. Intervention: back-supporting exoskeletons

3.4.1.1. Outcome: biomechanical stress or strain. The activity of the
musculature responsible for trunk extension showed a statistically sig-
nificant reduction (SMD 0.58; 95% CI 0.28 to 0.88; = 54%; 16 studies,
198 subjects) when using a back-supporting exoskeleton. Furthermore,
muscle activity of hip extension muscles (SMD 0.53; 95% CI 0.19 to
0.86; = 0%; 5 studies, 73 subjects), and muscles that act as knee
flexors (SMD 0.54; 95% CI 0.21 to 0.88; I2 = 0%; 5 studies, 73 subjects)
were statistically significantly reduced when using a back-supporting
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exoskeleton. There were no statistically significant changes in the
musculature responsible for trunk flexion (SMD —0.05; 95% CI —0.27 to
0.17; I2 = 0%; 11 studies, 140 subjects), shoulder depression (SMD 0.59;
95% CI —0.20 to 1.39; = 67%; 3 studies, 41 subjects), knee extension
(SMD —0.19; 95% CI —0.64 to 0.26; I = 0%; 3 studies, 39 subjects), and
ankle dorsiflexion (SMD —0.08; 95% CI —0.73 to 0.57; = n/a.; 1 study,
18 subjects) when using a back-supporting exoskeleton. (Cf. Fig. 3)

Both shear forces in the sagittal plane at the lumbosacral spine level
(SMD 0.30; 95% CI —0.63 to 1.23; = n/a.; 1 study, 9 subjects) and
compression forces at the lumbosacral spine level (SMD 0.29; 95% CI
—0.64 to 1.22; 2= 95%; 1 study, 9 subjects) showed no statistically
significant differences when using a back-supporting exoskeleton. In
contrast, moments at the lumbosacral spine level showed a statistically
significant reduction (SMD 0.78; 95% CI0.15 to 1.41; = 32%; 3
studies, 33 subjects) when using a back-supporting exoskeleton. (Cf.
Appendix 7).

3.4.1.2. Outcome: physiological strain. Neither the outcomes heart rate
(SMD 0.01; 95% CI —0.61 to 0.64; = 54%; 5 studies, 48 subjects),
energy expenditure (SMD 0.24; 95% CI —0.12 to 0.61; I2 = 0; 3 study, 41
subjects), nor blood pressure (SMD 0.41; 95% CI —0.53 to 1.35; ?=n/a
1 study, 9 subjects) showed statistically significant differences when
using a back-supporting exoskeleton. (Cf. Appendix 7).

3.4.1.3. Outcome: participant-reported strain. General perceived muscu-
loskeletal strain (SMD 0.92; 95% CI 0.32 to 1.52; I? = 72%; 6 studies, 77
subjects) and perceived musculoskeletal strain in the target area of the
back (SMD 0.73; 95% CI 0.38 to 1.09; I = 0%; 3 studies, 48 subjects)
both showed a statistically significant reduction when using a back-
supporting exoskeleton.

Perceived musculoskeletal strain in the non-target areas hips &
upper legs (SMD 0.15; 95% CI —0.19 to 0.50; 12 = 0%; 3 studies, 48
subjects) and neck & shoulders & arms (SMD 0.21; 95% CI —0.25 to
0.68; 2= n/a; 1 study, 18 subjects) showed no statistically significant
changes, whereas perceived musculoskeletal strain at the chest showed a
statistically significant increase (SMD —0.86; 95% CI —0.55 to —0.18; I2
= n/a; 1 study, 18 subjects) when using a back-supporting exoskeleton.
(Cf. Fig. 4)

3.4.2. Intervention: lower-limb-supporting exoskeletons

3.4.2.1. Outcome: biomechanical stress or strain. No statistically signifi-
cant changes were observed for the knee flexor (SMD 0.75; 95% CI
—0.02to0 1.51; = 67%; 3 studies, 65 subjects), the knee extensor (SMD
0.52; 95% CI —1.10 to 2.13; I = 92%; 3 studies, 65 subjects), and hip
extensor musculature (SMD 0.20; 95% CI —0.51 to 0.92; I = n/a; 1
study, 15 subjects) when using a lower-limb-supporting exoskeleton.
The activity of the musculature responsible for ankle dorsiflexion
showed a statistically significant reduction (SMD 1.22; 95% CI 0.43 to
2.01; 12 =n/a; 1 study, 15 subjects), whereas the musculature respon-
sible for ankle plantarflexion (SMD 0.72; 95% CI —0.08 to 1.52; =
70%; 3 studies, 65 subjects), trunk extension (SMD 0.08; 95% CI —0.28
to 0.43; = 0%; 2 studies, 60 subjects) and shoulder elevation (SMD
—0.11; 95% CI —0.53 t0 0.30; I = n/a; 1 study, 45 subjects) showed no
statistically significant changes when using a lower-limb-supporting
exoskeleton. (Cf. Appendix 8).

3.4.2.2. Outcome: physiological strain. Both heart rate (SMD —0.08; 95%
CI —0.55 to 0.39; I* = n/a; 1 study, 35 subjects) and energy expenditure
(SMD —0.19; 95% CI —0.58 to 0.20; I> = 0%; 3 studies, 51 subjects) did
not show statistically significant changes when using a lower-limb-
supporting exoskeleton. (Cf. Appendix 8).

3.4.2.3. Outcome: participant-reported strain. The general perceived
strain showed a statistically significant increase (SMD —0.36; 95% CI
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Fig. 2. Risk of bias graph: review authors’ judgements (based on (Goff and Lloyd-Jones, 2013; Padula et al., 2017)) about each risk of bias item presented as

percentages of all 63 included studies.

—0.70 to —0.02; I2 = 13%; 2 studies, 80 subjects) when using a lower-
limb-supporting exoskeleton. Perceived strain in the target areas hips
& upper legs (SMD 0.34; 95% CI —0.34 to 1.02; ? =n/a; 1 study, 17
subjects) and knees & lower legs & feet (SMD —0.09; 95% CI —0.76 to
—0.58; I = n/a; 1 study, 17 subjects) showed no statistically significant
changes when using a lower-limb-supporting exoskeleton. Perceived
strain in the non-target area neck & shoulders & arms (SMD —0.04; 95%
CI —0.71 to 0.63; I? = n/a; 1 study, 17 subjects) showed no statistically
significant changes when using a lower-limb-supporting exoskeleton,
whereas there was a statistically significant reduction in the back (SMD
0.81; 95% CI 0.10 to 1.51; I = n/a; 1 study, 17 subjects). (Cf. Appendix
8).

3.4.3. Intervention: upper-limb-supporting exoskeletons

3.4.3.1. Outcome: biomechanical stress or strain. The activity of the
muscles responsible for shoulder elevation (SMD 0.41; 95% CI 0.15 to
0.67; I? = 33%; 13 studies, 144 subjects) and shoulder rotation (SMD
0.48; 95% CI1 0.19 to 0.77; = 41%,; 12 studies, 136 subjects) showed a
statistically significant reduction when using an upper-limb-supporting
exoskeleton. No statistically significant changes have been detected for
the muscles responsible for shoulder depression (SMD 0.14; 95% CI
—0.12 to 0.41; I> = 0%; 8 studies, 94 subjects) when using an upper-
limb-supporting exoskeleton. The activity of the muscles responsible
for trunk extension showed a statistically significant increase when
using an upper-limb-supporting exoskeleton (SMD —0.43; 95% CI —0.72
to —0.14; I’ = 22%; 9 studies, 88 subjects). None of the other observed
muscle groups showed statistically significant changes of activation
when using an upper-limb-supporting exoskeleton: trunk flexors (SMD
0.08; 95% CI —0.29 to 0.45; I2 = 0%; 3 studies, 32 subjects); hip flexors
(SMD 0.09; 95% CI —0.90 to 1.07; = n/a; 1 study, 8 subjects); hip
extensors (SMD 0.14; 95% CI —0.84 to 1.13; I = n/a; 1 study, 8 sub-
jects); knee flexors (SMD —0.03; 95% CI —1.01 to 0.95; P=n/a1 study,
8 subjects); knee extensors (SMD 0.09; 95% CI —0.90 to 1.07; 2= n/a; 1
study, 8 subjects); elbow flexors (SMD 0.37; 95% CI —0.03 to 0.78; 2=
0%; 5 studies, 48 subjects); elbow extensors (SMD —0.15; 95% CI —0.52
to 0.22; I2 = 0%; 4 studies, 42 subjects); ankle dorsi-flexors (SMD —0.26;
95% CI —0.96 to 0.43; I2 = 0%; 2 studies, 16 subjects); ankle plantar-

flexors (SMD 0.00; 95% CI —0.98 to 0.98; I> = n/a; 1 study, 8 sub-
jects); and wrist flexors (SMD 0.32; 95% CI —0.42 to 1.07; = n/a; 1
study, 14 subjects). (Cf. Fig. 5; Appendix 9)

None of the outcomes indicating forces at the lumbosacral level in
the lower back showed statistically significant changes when using an
upper-limb-supporting exoskeleton, shear force in the mediolateral di-
rection (SMD 0.21; 95% CI —0.60 to 1.01; = n/a; 1 study, 12 subjects),
shear force in anterior-posterior direction (SMD —0.49; 95% CI —1.90 to
0.93; = 82%; 2 studies, 24 subjects), and compression force (SMD
—0.79; 95% CI —1.84 to 0.26; I> = 67%; 2 studies, 24 subjects). No
statistically significant changes have been detected for arm torque (SMD
—0.50; 95% CI —1.50 to 0.50; I? = n/a; 1 study, 8 subjects) but shoulder
torque showed a statistically significant reduction (SMD 1.56; 95% CI
0.62 to 2.49; I? = n/a; 1 study, 12 subjects) when using an upper-limb-
supporting exoskeleton. (Cf. Appendix 9).

3.4.3.2. Outcome: physiological strain. Heart rate showed no statistically
significant decrease (SMD 0.33; 95% CI —0.05 to 0.70; 2 = 0%; 6
studies, 57 subjects) whereas energy expenditure showed a statistically
significant decrease (SMD 0.85; 95% CI 0.26 to 1.45; 12 = 0%; 2 studies,
24 subjects) when using an upper-limb supporting exoskeleton. (Cf.
Appendix 9).

3.4.3.3. Outcome: participant-reported strain. General perceived strain
(SMD 0.81; 95% CI 0.16 to 1.46; 12 = 0%; 2 studies, 20 subjects) as well
as perceived strain in the target area neck & shoulders & upper arms
(SMD 0.38; 95% CI 0.12 to 0.63; I’ = 0%; 8 studies, 85 subjects) showed
a statistically significant decrease when using an upper-limb-supporting
exoskeleton.

Perceived strain in none of the non-target areas showed statistically
significant changes when using an upper-limb supporting exoskeleton:
back (SMD 0.07; 95% CI —0.19 to 0.34; = 0%; 8 studies and 85
subjects); hips & upper legs (SMD —0.10; 95% CI —0.38 to 0.18; I2 = 0%;
6 studies and 59 subjects); knees & lower legs & feet (SMD —0.19; 95%
CI —0.58 to 0.21; I? = 23%; 3 studies, 27 subjects); hands & wrists (SMD
0.19; 95% CI —0.15 to 0.54; = 0%; 3 studies, 27 subjects). (Cf. Fig. 6)
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Fig. 3. Study findings (i.e. SMD and risk of bias) for studies evaluating the effects of using a back supporting exoskeleton on muscle activity (muscles were grouped
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Fig. 4. Study findings (i.e. SMD and risk of bias) for studies evaluating the effects of using a back supporting exoskeleton on perceived strain. [IV = inverse variance;

CI = confidence interval; Exo = exoskeleton].
3.4.4. Intervention: ankle-supporting exoskeletons

3.4.4.1. Outcome: physiological strain. The outcomes heart rate (SMD
—0.66; 95% CI —2.12 to 0.80; I = n/a; 1 study, 4 subjects) and energy
expenditure (SMD —0.45; 95% CI —1.87 to 0.97; 12 =n/a 1 study, 4
subjects) showed no statistically significant changes when using an
ankle-supporting exoskeleton. (Cf. Appendix 10).

3.4.5. Intervention: wrist-supporting exoskeletons
3.4.5.1. Outcome: biomechanical stress or strain. The muscle activity of

the wrist flexors (SMD —0.23; 95% CI —0.64 to 0.18; I> = n/a; 1 study,
23 subjects), wrist extensors (SMD —0.07; 95% CI —0.48 to 0.34; P=n/

a; 1 study, 23 subjects) and shoulder elevators (SMD —0.44; 95% CI
—0.85 to 0.02; 12 = n/a; 1 study, 23 subjects) showed no statistically
significant changes when using a wrist supporting exoskeleton. (Cf.
Appendix 11).

4. Discussion
4.1. Summary of findings

This systematic review with meta-analyses is the first aiming to
determine the effects of using exoskeletons on physical stress and strain

of the user in occupational tasks. We included 48 studies in the pooled
meta-analyses with a total of 700 participants. Exoskeletons were
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Fig. 5. Study findings (i.e. SMD and risk of bias) for studies evaluating the effects of using an upper limb supporting exoskeleton on muscle activity (muscles were
grouped according to joint movements). - Part 1 [IV = inverse variance; CI = confidence interval; Exo = exoskeleton].
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Alabdulkarim 2019 Il FORTIS™ 0.33[-0.48, 1.14] A
Huysamen 2018 Il - passive upper limb Exo -0.37 [-1.36, 0.62] - 1
Kim 2018 | - EksoVest™ 0.13[-0.68, 0.93] N L
Kim 2019 - EksoVest™ 0.06 [-0.74, 0.86] -
Liu 2018 - Levitate Airframe 0.50 [-0.57, 1.57] ™
Subtotal (95% CI) -0.10 [-0.38, 0.18] 4
Heterogeneity: Tau? = 0.00; Chi? = 7.86, df = 9 (P = 0.55); 1= 0%
Test for overall effect: Z = 0.69 (P = 0.49)
Knees & lower legs & feet
Alabdulkarim 2019 | - Fawcett Exovest™ 0.06 [-0.92, 1.05] I
Alabdulkarim 2019 | - FORTIS™ -1.11[-2.18,-0.03) —  © |
Alabdulkarim 2019 | - ShoulderX 0.21[-0.78, 1.19] N
Alabdulkarim 2019 Il - EksoVest™ -0.18 [-0.98, 0.62] e
Alabdulkarim 2019 Il - Fawcett Exovest™ -0.81[-1.65,0.03] I
Alabdulkarim 2019 Il FORTIS™ 0.07 [-0.73, 0.87] -
Liu 2018 - Levitate Airframe 0.50[-0.57, 1.57] - =
Subtotal (95% Cl) -0.19 [-0.58, 0.21] -
Heterogeneity: Tau? = 0.07; Chiz=7.79, df = 6 (P = 0.25); 1= 23%
Test for overall effect: Z = 0.92 (P = 0.36)
Hands & wrists
Alabdulkarim 2019 | - Fawcett Exovest™ 0.35[-0.64, 1.34] I
Alabdulkarim 2019 | - FORTIS™ 0.56 [-0.45, 1.56] -1 T
Alabdulkarim 2019 | - ShoulderX 0.14[-0.84,1.12] I L
Alabdulkarim 2019 Il - EksoVest™ 0.10[-0.70, 0.90] I
Alabdulkarim 2019 |l - Fawcett Exovest™ -0.13[-0.93, 0.67] I B
Alabdulkarim 2019 Il FORTIS™ 0.14 [-0.66, 0.94] N
Liu 2018 - Levitate Airframe 0.50 [-0.57, 1.57] N .
Subtotal (95% CI) 0.19 [-0.15, 0.54] >
Heterogeneity: Tau? = 0.00; Chi? = 1.60, df =6 (P = 0.95); 1> = 0%
Test for overall effect: Z=1.11 (P = 0.26)
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Fig. 6. Study findings (i.e. SMD and risk of bias) for studies evaluating the effects of using an upper limb supporting exoskeleton on perceived strain. [IV = inverse
variance; CI = confidence interval; Exo = exoskeleton].
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grouped into five categories according to the supported body region, i.e.
back, upper extremities, lower extremities, wrist and ankle. The meta-
analyses indicated that using an exoskeleton can reduce stress and
strain in the supported areas, supported by a reduced muscle activity,
but the evaluation of various inter-related parameters is incomplete.

4.2. Quality and applicability of the evidence

This review provides an overview on the actual existing literature on
occupational exoskeletons. Although the findings of the meta-analyses
show statistically significant evidence of reducing parameters indi-
cating physical stress or strain by using an exoskeleton, there is no ev-
idence to recommend using an exoskeleton for preventing WMSD and
possible collateral risks cannot be estimated yet. Therefore controlled
long-term evaluations including various outcome parameters and
observing various body areas (not only the target-areas) are inevitable.
We detected all included studies to have a high risk of bias. Most of the
studies did not include an adequate randomization process or did not
describe the randomization method used. However, an exact randomi-
zation can be challenging because many studies evaluating exoskeletons
include comprehensive protocols and multiple tasks, and the donning
and doffing of the exoskeletons can be difficult on the equipped subjects
(e.g. electrodes, sensors). Regardless, experimental conditions should be
randomized as exact as possible and should be described in the methods.
The item allocation was mainly rated with an unknown risk of bias
resulting from treatment allocation not being concealed; however,
concealment when evaluating exoskeletons is not possible which equally
counts for the item blinding. Often studies did not report drop-out rates,
but if reported, they were low in most of the studies. None of the studies
conducted a power analysis before determining their sample sizes.
Similarly, no effect sizes were reported by the authors and the relevance
of the findings in the single studies was not discussed. Some papers
included in this review primarily aimed to report the development or
function of an exoskeleton with pilot measurements including only one
or a few subjects. Although the main focus was not evaluating the effects
of using an exoskeleton in these studies, still, larger sample sizes would
provide more usable insights of the exoskeleton’s properties. Also,
across the actual intervention studies only three included more than
twenty subjects (Ferrigno et al., 2009; Knott, 2017; Luger et al., 2019a,
2019b). It is recommended to define a sufficiently large sample size with
the goal of reaching a power of at least 80% for the differences between
the intervention and control conditions. Selective reporting was rated
with a high or unknown risk of bias for more than half of the studies. We
detected outcomes not being evaluated or measured using reliable and
valid measures or without clarifying these. Some outcomes and sub-
group analyses were conducted or reported without defining and
describing them in the methods section. All outcomes and subgroups to
analyze should be defined in advance and evaluated via valid and reli-
able measurements. Outcomes and measurements should be described
sufficiently in the methods section; therefore, methods, results and
discussion sections should be reported separately and not mixed as
occurred in some of the papers.

Although there was a large number of studies included in the current
review and meta-analyses, which resulted in a total of N = 700 subjects
and up to N = 198 in some individual analyses, the value and applica-
bility of the results is very restricted. Many studies focused only on a few
parameters, particularly muscle activity, but evaluations of the associ-
ated passive musculoskeletal structures or physiological parameters are
limited. Equally, many studies evaluated only the areas directly sup-
ported by the individual exoskeleton but not the surrounding areas.
Possible risks that may result from load shifting from one to another
area, the carrying of additional weight of the exoskeleton itself and/or
from changed movement patterns due to wearing and using an
exoskeleton have been reported in some studies (Theurel and Des-
brosses, 2019; Weston et al., 2018) and need to be clarified.

All studies evaluated short duration periods with simulated tasks that
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ranged between a couple of seconds to 45 min and field observations
that lasted between 2-h work shifts to a full working day. Wearing and
using an exoskeleton is usually unfamiliar for subjects and may even-
tually change movement patterns and/or could adapt perceived strain
after a longer period of using them regularly (Moyon et al., 2019).
Furthermore, we cannot deduce any conclusions about long-term effects
from evaluations of particularly short-duration laboratory simulations.
The current sample of included studies is not representative for real
working populations and situations, due to most of the included studies
being performed in the laboratory using novices. Although the trans-
ferability of the results presented to practice is limited, evaluating
exoskeletons under laboratory conditions using simulated work-tasks is
an important first step to get insights into their potential effects. How-
ever, as one next step studies including longer testing protocol dura-
tions, reflecting the duration of a whole working shift could provide
information about adaptations over the shift. Further studies including
randomized-controlled trials in the field could provide further knowl-
edge for practical applicability of the various exoskeletons.

4.3. Interpretation of findings

4.3.1. Back-supporting exoskeletons

Twenty studies evaluated back-exoskeletons included in these meta-
analyses evaluating eight different exoskeletons (6 passive, 2 active). All
of them tended to support the users’ back in lifting and lowering ac-
tivities and during static trunk forward flexion postures.

In our analyses, using a back-supporting exoskeleton resulted in
statistically significant reduced muscle activity in the target area (i.e.
trunk and hip extension groups), lower perceived back strain, smaller
moments at the lumbosacral spine level, and no changes in lumbar shear
and compression forces compared to not using an exoskeleton. Effects
were strongest for the joint moments [SMD 0.78; 95% CI 0.15-1.41],
followed by back perceived strain [SMD 0.73; 95% CI 0.38-1.09], trunk
[SMD 0.58; 95% CI 0.28-0.88] and hip [SMD 0.53; 95% CI 0.19-0.86]
extensor muscle activity. Most prevalent changes in trunk extensor
muscle activity occurred when evaluating exoskeletons in endurance
protocols (cf. Fig. 3). The small number of studies evaluating forces and
moments at the lumbar spine (Abdoli-Eramaki et al., 2006; Agnew,
2008; Frost et al., 2009; Koopman et al., 2019) and their inconclusive
results indicate that an estimation of the effect of using back-supporting
exoskeletons on passive musculoskeletal structures is still not possible.
However, lumbar forces and moments are important indicators that
have been associated with work-related low back pain (LBP) (Coenen
et al., 2013, 2014; Norman et al., 1998).

In the non-target areas, i.e. those not directly supported by the
exoskeleton, no changes occurred except for the muscle activity of the
knee flexor group which statistically decreased significantly. Both the
knee flexor and hip extensor muscle groups mainly include the M. biceps
femoris. Likely, a reduction of M. biceps femoris activity rather comes
from a hip extension support provided by the exoskeletons. However, a
reduced muscle activity of one muscle or muscle group possibly caused
by supporting a joint movement might again have adverse effects on
contiguous joints (e.g. reduced joint stability) that we cannot estimate.
In a review about the effects of using exoskeletons on physical workload,
mainly including muscle activity and joint angles, forces and moments
(de Looze et al., 2016), an increase in leg muscle activity when using
back-supporting exoskeletons was mentioned. Although we could not
detect any statistically significant changes in other leg-related muscle
groups, nor in other non-target areas and parameters, many of the
included studies did not extensively evaluate these non-target regions.
This makes it impossible to accept or reject the occurrence of any
additional musculoskeletal stress or strain as a consequence of using a
back-supporting exoskeleton.

We found statistically significant reduced general perceived muscu-
loskeletal strain but no changes in the metabolic parameters when using
a back-supporting exoskeleton. Observing the forest plots of both
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outcomes shows a large inconsistency between the included studies,
which may again be due to the different exoskeletons and experimental
protocols evaluated. (Cf. Appendix 7).

4.3.2. Lower-limb-supporting exoskeletons

Nine studies evaluated lower-limb-exoskeletons, which included
eight different exoskeletons (4 passive, 4 active). The function and the
supported area were highly variable across the evaluated exoskeletons;
some provided a substitution for prolonged standing (e.g. Chairless
Chair) (Groos et al., 2020; Luger et al., 2019a, 2019b), whereas others
supported the musculoskeletal system in movements like walking,
squatting or kneeling addressing the ankle, knee and/or hip joint (Knott,
2017; Lee et al., 2020; MacLean and Ferris, 2019; Pillai et al., 2020; Sado
et al., 2019).

In the overall pooled analyses, muscle activity in the target areas was
partly reduced when using an exoskeleton, most likely dependent on the
exoskeleton used. Within the non-target areas, participants perceived
significantly less strain in their back (resulting from one study only
(Groos et al., 2020)) that investigated an exoskeleton to substitute
prolonged standing postures included). Prolonged standing is associated
with LBP (Andersen et al., 2007; Gregory and Callaghan, 2008), so
avoiding long-duration standing postures by using an exoskeleton could
result in less stress and strain of the users’ back. The general perceived
strain statistically increased significantly when using an exoskeleton,
possibly caused by the additional weight carried or by discomfort arising
by wearing an external structure on the body. The estimation of the
effects of using a lower-limb-supporting exoskeleton on stress and strain
of the user is very limited because of the very low number of studies
evaluating these exoskeletons. Furthermore, the variety of different
lower-limb-supporting exoskeletons needs to be considered. (Cf. Ap-
pendix 8).

4.3.3. Upper-limb-supporting exoskeletons

Twenty studies evaluating upper-limb-exoskeletons were included in
the meta-analyses, assessing 15 different exoskeletons (12 passive, 3
active). In some exoskeletons the weight of a tool is supported by an
additional mechanical arm, which transfers the weight of the handled
tool directly to the hips and/or torso; whereas most regular upper-limb-
supporting exoskeletons directly support the weight of the upper ex-
tremities when performing the task and handling the tools (McFarland
and Fischer, 2019). Such distinctions can result in different effects by
using one of the exoskeletons.

Despite the different functions of the exoskeletons, the overall pooled
analyses showed statistically significant reduced stress and strain in the
target area when using an upper-limb-supporting exoskeleton; i.e., in
muscle activity of the shoulder elevators and rotators (note that many
muscles included in these two groups are similar), shoulder moments
(resulting from one study only (de Vries et al., 2019)) and perceived
strain. No changes have been observed in the muscle activity of the
shoulder depression group, which represents the antagonistic shoulder
muscles for most of the work tasks realized in the studies.

Within the non-target areas, trunk extensor muscle activity was
significantly increased statistically when using an upper-limb exoskel-
eton. The weight of the upper-limb exoskeleton that has to be carried by
the user could imply an additional load on the musculoskeletal system of
the trunk and/or lower limbs and, therefore, collateral risk for WMSD.
Forces at lumbosacral spine-level have not been statistically influenced
significantly according to our meta-analysis; however, only two studies
were included (Kim et al., 2018; Weston et al., 2018), and one of these
studies found increased compression forces when using an exoskeleton
with an additional mechanical arm (Weston et al., 2018). To pursue the
question of adverse effects of increased spinal loading by wearing an
upper limb exoskeleton, further evaluations including longer-lasting
study protocols would be helpful. The general perceived musculoskel-
etal strain and energy expenditure were both statistically reduced
significantly, whereas heart rate did not statistically change when
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wearing an upper-limb-supporting exoskeleton. (Cf. Appendix 9).

4.3.4. Ankle- and wrist-supporting exoskeletons

There was only one study evaluating an ankle-supporting exoskel-
eton and one study evaluating two wrist-supporting exoskeletons.
Therefore, a discussion on their effects when using them is restricted (cf.
Appendix 10 and 11). However, ankle-supporting exoskeletons might be
able to support walking while carrying loads which is relevant in some
professions (Bougrinat et al., 2019), and wrist-supporting exoskeletons
can be helpful in computer work (Ferrigno et al., 2009). Therefore these
areas should be considered in the development and evaluation of
exoskeletons.

4.4. Strengths and limitations

A strength of this systematic review with included meta-analyses is
its high methodological quality by following standards like using the
PRISMA guidelines (Moher et al., 2009) and considering the Cochrane
Handbook for Systematic Reviews of Interventions (Higgins et al.,
2019b). Preparing all calculations in Review Manager 5.3 (Review
Manager, 2014) enabled us to combine results with different scales using
the option of SMD for continuous outcomes. However, interpreting these
results is difficult (Cochrane Handbook Section 12.6.1 (Higgins et al.,
2019b)) because absolute changes cannot be deduced. For assessing the
quality of the included studies, a detailed and specialized risk of bias
assessment tool was used that best reflected the type of studies included
in this review, which were a mixture of experimental and randomized
cross-over designs.

This review also has some limitations. First of all, we clustered
various outcome parameters, i.e. muscle groups and participant-
reported outcomes, based on muscle main function or body region (cf.
2.1 Eligibility criteria). This may provide a quick overview for the
various body areas, but may also be inconclusive as some muscles have
various functions such as the M. biceps femoris and M. deltoideus.
Likewise, we integrated several muscles in more than one muscle group
and, thus, pooled analyses. For the grouping of both muscle activity and
participant-reported outcomes, very specific results may get lost in the
analyses. For the outcome parameter “perceived musculoskeletal
strain”, we included all participant-reported outcomes (cf. 2.1 Eligibility
criteria), although some of these parameters may not refer to exactly the
same perceived feeling. The various currently existing exoskeletons use
different techniques to support the wearer (e.g. active or passive, springs
or elastic bands, rigid and/or soft structures, including a mechanical arm
or not). To perform meta-analyses with groups of adequate sizes we
clustered the devices based on the body region supported. However, this
restricts the quantitative analyses by not providing the effects of every
special type of exoskeleton which can be found in Appendix 5.

A second limitation might be the broad spectrum of statistical het-
erogeneity identified in our meta-analyses (I? ranging from 0% to 92%).
A high level of heterogeneity (i.e. high I? statistic) was the case for knee
extensor muscle activity in lower-limb-supporting exoskeletons (i.e.
92%). This specific example of considerable heterogeneity may be the
result of the diversity of included exoskeletons (passive, active, different
functions), variety in evaluated muscles (different for each of the three
studies) and different task protocols. Similar reasons may apply to other
pooled analyses that show considerable heterogeneity (i.e. 12>75%;
Deeks et al., 2019).

We excluded outcomes provided as peak values in this systematic
review as we had to restrict the extent of this paper. As peak load has
also been related to LBP (Norman et al., 1998); future work should also
consider the evaluation of peak value outcomes. We furthermore
excluded outcomes such as usability, acceptability and performance.
Although these outcomes might be interesting and relevant for field
evaluations and practical recommendations, we focused on acute
physical stress and strain particularly because the development of
occupational exoskeletons is fairly new and long-term investigations
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may provide a more valid evaluative reflection of usability and accept-
ability among workers.

The further development and the evaluation of occupational exo-
skeletons are quickly proceeding currently. Therefore the reviews about
the effects of wearing these exoskeletons should be updated constantly,
including further databases (e.g. Scopus) for considering all relevant
existing articles.

5. Conclusions

Using an occupational exoskeleton seems to reduce muscle activity of
the wearer in the exoskeleton’s supported body areas and occasionally
influences other parameters indicating physical or perceived musculo-
skeletal stress and strain. However, the impact on workers’ health is
unknown mainly because of a lack of studies following high methodo-
logical criteria and evaluating stress and strain of the user thoroughly
and with inter-related outcomes, including passive as well as active
musculoskeletal structures and also subjective outcomes in supported as
well as non-supported body areas.

From the existing literature and our research question it is only
possible to estimate acute effects on physical stress and strain of using an
exoskeleton based on short-duration laboratory simulations. Long-term
effects under real working conditions are currently not known, which
means that we cannot formulate any conclusions or practical recom-
mendations of the effects of using an exoskeleton on the prevalence of
WMSD. Future studies need to include prospective field randomized
controlled trials to gain insights into the implementation of exoskeletons
on aspects of workers’ health and well-being.
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Using a Passive Back Exoskeleton During a Simulated Sorting
Task: Influence on Muscle Activity, Posture, and Heart Rate

Mona Bar®, Tessy Luger®, Robert Seibt, Monika A. Rieger,
Benjamin Steinhilber ®, University of Tibingen and University Hospital Tubingen,

Tibingen, Germany

Objective: To evaluate using a back exoskeleton in
a simulated sorting task in a static forward bent trunk posture
on muscle activity, posture, and heart rate (HR).

Background: Potentials of exoskeletons for reducing
musculoskeletal demands in work tasks need to be clarified.

Methods: Thirty-six healthy males performed the sorting
task in 40°-forward bent static trunk posture for 90 seconds, in
three trunk orientations, with and without exoskeleton. Muscle
activity of the erector spinae (ES), biceps femoris (BF), trapezius
descendens (TD), rectus abdominis (RA), vastus laterals (VL), and
gastrocnemius medialis was recorded using surface electromy-
ography normalized to a submaximal or maximal reference
electrical activity (%RVE (reference voluntary electrical activity)/
%MVE). Spine and lower limb postures were assessed by
gravimetric position sensors, and HR by electrocardiography.

Results: Using the exoskeleton resulted in decreased BF
muscle activity [—8.12%RVE], and minor changes in ES [—1.29%
MVE], RA [—0.28%RVE], VL [—-0.49%RVE], and TD [+1.13%
RVE] muscle activity. Hip and knee flexion increased [+8.1°%;
+6.7°]. Heart rate decreased by 2.1 bpm. Trunk orientation had
an influence on BF muscle activity.

Conclusion: Using the back exoskeleton in a short sorting
task with static trunk posture mainly reduced hip extensor
muscle activity and changed lower limb but not spine posture.
Implications of using a back exoskeleton for workers’ mus-
culoskeletal health need further clarification.

Application: The detected changes by using the Laevo
illustrate the need for further investigation prior to practical
recommendations of using exoskeletons in the field. In-
vestigating various work scenarios in different kind of workers
and long-term applications would be important elements.

®
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INTRODUCTION

Musculoskeletal disorders (MSD) in the back
area, including low back pain (LBP), represent
the most reported health problem among the
working population in the European Union
(DeKok et al., 2019). Low back pain has been
reported to have an estimated lifetime preva-
lence up to 75% among the general population
(Burton & Kendall, 2014) and a 12-month
prevalence ranging from 25% among employ-
ees in the United States (Dick et al., 2020) to
43% among workers in the European Union
(DeKok et al., 2019). The consequences include
limitations in daily life of the persons concerned
(Eurostat, 2010) as well as impairments at and
absence days from work (DeKok et al., 2019;
Valirad et al., 2015). Several physical risk fac-
tors have been reported to be related to LBP,
including working in awkward positions like
trunk forward flexion, heavy physical work and
lifting (Coenen et al., 2014; Coenen et al., 2013;
da Costa & Vieira, 2010; Dick et al., 2020).

Lately, practitioners and researchers have fo-
cused on the occupational application of exo-
skeletons for reducing physical workload by
supporting movements and postures of workers
(Bar et al., 2021; Toxiri et al., 2019). “Exoskel-
etons are assistive systems worn on the body that
act mechanically on the body. In an occupational
context, they aim to support functions of the
skeletal and locomotor system during physical
work.” (Steinhilber, Luger, et al., 2020). For
supporting the lower back in work tasks, several
passive exoskeletons have been described; some
are already commercially available and others still
are in a developmental stage. Most of the com-
mercially available exoskeletons use passive
components to generate an assistive torque for
storing or releasing energy, such as spring-like
structures or soft elastic bands (Toxiri et al., 2019).
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A variety of studies evaluated passive back
supporting exoskeletons (BSEs) in an occupa-
tional context regarding their effects on acute
physical stress and strain. The meta-analyses of
a recent systematic review indicated the capa-
bility of using BSEs to reduce muscle activity in
the supported areas (Bar et al., 2021), which is
frequently used as objective physical strain in-
dicator reflecting the necessary amount of muscle
activation to realize a given motor task when
normalized to the muscle activity during a maxi-
mum voluntary contraction (MVC) (Burden,
2010). Most of the included studies were per-
formed in the laboratory and evaluated dynamic
tasks, like lifting and lowering. Only few studies
examined BSEs in static postures including for-
ward trunk bending (Bér et al., 2021; Madinei
etal., 2020b). However, there is some evidence for
reduced back extensor muscle activity ranging
between 11%-61% (Agnew, 2008; Bosch et al.,
2016; Graham et al., 2009; Koopman et al., 2019;
Madinei et al., 2020b; Ulrey & Fathallah, 2013;
Wei et al., 2020) and reduced hip extensor muscle
activity ranging between 17%-24% (Bosch et al.,
2016; Ulrey & Fathallah, 2013) when using a BSE
in static forward bent postures. Within these
studies, the reported reductions have not always
reached statistical significance (Ulrey & Fathallah,
2013), and in some of the various observed
bending postures there have been no changes or
even increases in trunk extensor muscle activity
(Koopman et al., 2019; Madinei et al., 2020b).
One main function of exoskeletons is the load
transfer to other body areas (Toxiri et al., 2019;
Weston et al., 2018). However, physical stress and
strain parameters in these non-supported areas
have been evaluated rarely (Bér et al., 2021) and
most of the studies have not included posture into
their observations so far (Kermavnar et al., 2021).

Physical back loading might be reduced by
using a passive BSE in work tasks requiring static
postures holding the trunk in a forward bent po-
sition. However, from the existing literature no
conclusions can be drawn yet on their effective-
ness with respect to LBP reduction and prevention
or on the occurrence of possible collateral effects.
Furthermore, most of the existing studies on this
topic only observed working postures in the
sagittal plane and did not include an orientation of
the trunk to the side, that is, rotation which is often

required at workplaces and may modify the in-
tended support provided by the exoskeleton due to
modified individual inclination angles. Therefore,
this study evaluated the effects of using a passive
BSE (Laevo® V2.56) during a sorting task with
40°-trunk forward flexion, with and without ad-
ditional trunk rotation induced by a 45°-sideward
workstation orientation. During initial measure-
ments, a direct increase in physiological response
such as heart rate (HR) and muscle activity within
the first seconds was observed and lasted on
a steady state over several minutes. Thus, for
detecting acute effects of the exoskeleton and also
avoiding muscular fatigue, a 90-second period for
performing the sorting task was chosen. We in-
cluded the outcome measures muscle activity,
body posture, and HR. Concerning the exo-
skeletons’ function, our primary outcome mea-
sure in this study was muscle activity of the
erector spinae (ES) and biceps femoris (BF),
which are responsible for back and hip extension.
We hypothesized that both ES and BF muscle
activity are reduced when wearing the exo-
skeleton. The secondary outcomes were muscle
activity of the vastus lateralis (VL), gastrocne-
mius medialis (GM), trapezius descendens (TD),
and rectus abdominis (RA), posture of the spine
as well as hip flexoin (HF) and knee flexion (KF),
and HR. We had no particular expectations with
respect to the secondary outcomes. We included
VL and GM because these muscles might be
affected due to load shifting when wearing the
exoskeleton. We included TD because the exo-
skeleton shoulder straps might bother wearers.
We included RA because it acts antagonistic to
the ES, and trunk bending might be hindered by
the exoskeletons’ extension moment resulting in
increased RA muscle activity. Body posture
might be influenced by wearing the exoskeleton,
as previous studies reported that wearers com-
plained about reduced freedom of movement
(Baltrusch et al., 2019). We included HR to
monitor an eventual cardiovascular response of
using the exoskeleton.

METHODS
Sample Size and Study Design

This manuscript describes one part of a larger,
explorative laboratory study, evaluating the
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(b) Main experiments — Static and dynamic work tasks
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Experimental task 5
(set of 3 trials)

Experimental task 6

(set of 3 trials) a8 (set of 3 trials)

4

—
(C) Experimental task — Static sorting (EXO or control)

90-sec Sorting 30-sec 90-sec Sorting 30-sec

Left/ frontal/ right Pause Left/ frontal/ right Pause

90-sec Sorting
Left/ frontal/ right

Figure 1. Line (a) shows one exemplary experimental day for one subject. Line (b) shows the
sequence of the six main experimental conditions (randomized order): Static_sorting EXO/Stat-

ic_sorting_control/Dynamic_lifting Stoop_posture EXO/Dynamic_lifting_Stoop_posture_con-

trol/ Dynamic_lifting_Squat_posture £XO/Dynamic_lifting Squat posture_control which were

performed three times each (including three Trunk orientations). Each set of static sorting tasks lasted 330
s, and each set of dynamic lifting tasks lasted 375 s. Line (c) shows one set of the static sorting task which
is the basis of this manuscript. Tirunk orientations (left/frontal/right) were performed in randomized order.

Laevo® V2.56 exoskeleton on physiological and
biomechanical parameters (ClinicalTrials.gov,
NCT03725982). The overall study was designed
according to the Declaration of Helsinki and
approved by the Ethics Committee of the Uni-
versity and University Hospital of Tiibingen
(617/2018B0O2). The overall study required
a sample size of 36 subjects based on a Single
Williams Latin Square design (Luger, Bir, Seibt,
Rimmele, et al., 2021). The current article focuses
on the static sorting task (Figure 1), for which we
maintained a within-subject design with Device
(without (control) vs. with (EXO)) and Trunk
orientation (ipsilateral vs. frontal vs. contralat-
eral) as the within-subject variables. Randomi-
zation was realized by drawing three lots: (1)
order of control and EXO; (2) order of the Trunk
orientation (left, frontal, right); (3) measured
body side reflecting muscle activity and HF and
KF angles. All randomizations were balanced
across the subjects.

Participants

Thirty-six healthy males (mean age 25.9 +4.6
years, mean body height 178.7 £ 7.3 cm, mean
body weight 73.5 + 8.9 kg) participated in the
study. Inclusion criteria were: 18—40 years of
age, BMI of 18.5-30 kg/m?, free of any acute or
cardiovascular diseases, physical disability,
systemic diseases, or neurological impairments
that would hinder the subject from performing

the tasks and wearing the exoskeleton. Only
male subjects were included due to a continuing
domination of male workers in the manufacturing
industries.

Experimental Procedure and Task

On a first day lasting 1 h, the subjects got
informed about the study procedure and signed
the informed consent. Inclusion and exclusion
criteria were clarified and anthropometric meas-
ures (i.e. body height and weight) were collected.
The required exoskeleton size (S/L) was chosen
and the exoskeleton was adjusted to best fit the
subjects. Subsequently, subjects got familiarized
with wearing the exoskeleton and performing the
task. On a second day lasting 4 h, the subjects got
prepared with the measurement equipment and
performed the six conditions of the simulated
static sorting task with either a 30 s or 120 s rest
break in between (Figure 1).

The task included sorting screws and pins for
90 s with the trunk bent forward in 40°. This
inclination angle was ensured by the signal of
a position sensor placed on the spinous process
of the 10™ thoracic vertebrae (T10) which was
visually controlled on a screen by the researchers.
The mean T10 inclination angle was 38.9° (cf.
Table 2). The feet position was kept constant
during all experimental conditions and defined
prior to the experiment and marked in the study
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Figure 2. Sorting task; (a) frontal; (b) 45° trunk orientation to the right; (c) 45° trunk orientation
to the left.

setup, while participants were requested to stand
comfortably upright, positioning their feet equa-
bly, facing straight ahead, and extending but not
overstretching their legs. Trunk orientations de-
viating from the sagittal plane were realized by
positioning the task setup in a 45°-rotation from
the sagittal (Figure 2). The different feet and
posture requirements were continuously con-
trolled for by the researchers and corrected by
verbal instructions when necessary.

Exoskeleton

The Laevo® exoskeleton (V2.56, Laevo
B.V., Delft, the Netherlands; 2.8 kg) is a passive
BSE that supports back extension. The exo-
skeleton consists of a hip belt with two attached
joints including a gas pressure spring located
close to the pivot of the hip joints. A chest pad
and two leg pads are attached to the springs over
rigid metal bars, movable by two-dimensional
joints in the chest pad. Bending the trunk for-
ward compresses the springs and generates
a moment which supports back and hip exten-
sion. The springs can be turned off and be ad-
justed to start the support at different trunk
flexion angles (ranging from 0° to 45° in steps of
5°). Depending on the subject’s body pro-
portions, the support angle was adjusted to

assure contact but no pressure on the chest by the
chest pad during an upright standing position
(i.e., ONm), monitored by a force sensor built
into the chest pad (38x10 mm; Type KM38-
1 kN, ME-Messsysteme GmbH, Henningsdorf,
Germany) and visually controlled on a screen by
the researchers.

MEASUREMENT AND DATA ANALYSIS

Muscle activity. The muscle activity of
erector spinae lumbalis at level of lumbar ver-
tebraec L1 (ES), BF, RA, VL, GM and TD
muscles was recorded unilaterally (body side
was randomized) via surface electromyography
(EMG). This procedure was due to practical
reasons of having no more EMG channels left.
The skin over the muscles was shaved and
cleaned using abrasive paste (Skin Prep Gel,
Nuprep®, Aurora, USA). Pre-gelled Ag/AgCl
surface electrodes with an active area of 15 mm
diameter (KendallTM H93SG electrocardiog-
raphy (ECG) Electrodes, Covidien, Zaltbom-
mel, the Netherlands) were used in bipolar
configuration (inter-electrode center distance
25 mm) and located over the muscle bellies
according to international standards (Criswell,
2010; Hermens et al., 2000). The electrodes over
the VL were in some cases placed slightly more
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distal compared to the standard recommendations
to avoid any contact with the exoskeleton’s leg
pad. The ground electrode was placed over
cervical vertebrae C7 (PS12-1I, THUMEDI®
GmbH & Co. KG, Thum, Germany, physical
resolution 24 bit; overall CMRR >98 dB; overall
effective sum of noise <0.5 pV RMS; linearity
typically £0.1 dB at 30—1200 Hz). Electromy-
ography raw signals were differential amplified,
filtered (high-pass, second order, —3 dB at 4 Hz;
low-pass, 11th order, —3 dB at 1300 Hz), sam-
pled (4096 Hz), analog-digital-converted, ana-
lyzed, and continuously stored. The signals were
real-time transformed in the frequency domain
(1024-point Fast Fourier Transformation using
a Bartlett-window with 50% overlap), digitally
filtered (high-pass, 11™ order, —3 dB at 16 Hz)
and powerline interferences were removed by an
average filter (11th order, —3dBat 50 Hz and its
first seven harmonics, bandwidth of 4 Hz was
replaced by its spectral neighbors). The electrical
activity (eA) [uV] was calculated as the root-
mean-square (RMS) of the EMG amplitude by
real-time estimation (250 ms moving window
with 50% overlap) from the power spectrum and
stored synchronously to the raw data.

The eA of the BF, VL, RA, GM, and TD were
normalized to the eA of a submaximal reference
voluntary contraction (Supplemental Appendix
1), presented as reference voluntary eA (%RVE;
Mathiassen et al., 1995). RVE normalization
was done since less demanding than MVC based
normalization and less affected by motivational
aspects (Steinhilber & Rieger, 2013). The eA of
the ES, was normalized using a maximal voluntary
eA (%MVE; Mathiassen et al., 1995) during
MVC, since this evaluated muscle is located in
the targeted area of the exoskeleton and has often
been reported expressed as %MVE in studies
already investigating the Laevo® exoskeleton
(Bosch et al., 2016; Koopman et al., 2019). The
median (50th percentile) normalized muscle activity
[6MVE/%RVE] was calculated for each experi-
mental condition: control and EXO, ipsilateral
(measured side equals trunk orientation), frontal,
and contralateral (measured side opposes trunk
orientation) over the 90-second task.

Body posture. For recording body posture, we
used two-dimensional gravimetric position
sensors (PS12-1I; Thumedi GmbH & Co. KG)

placed on the skin over thoracic vertebrae T1
and T10, lumbar vertebrae L1 and L5, and on the
anterior side of the femur and tibia, fixed with
double-sided adhesive tape (25%5 mm, 3M
transparent Medical Standard, Top Secret®, Ge-
sellschaft fliir Haarasthetik mbH, Fiirth, Germany).
The sensors continuously measured inclination
angles respective to the gravitational axis in an-
teroposterior direction (resolution 0.1° and 125 ms
in time; maximum static error 0.5°; maximum
repetition error 0.2°). For further evaluations the
differences between angles during the experi-
mental conditions and a reference posture were
used (Supplemental Appendix 1); subtracting the
reference angles from the experimental angles.
Four joint angles were calculated: thoracic ky-
phosis (TK), lumbar lordosis (LL), hip flexion
(HF), and knee flexion (KF) (Table 1;
Supplemental Appendix 2). The medians were
calculated for each condition over the 90-second
tasks. HF and KF were grouped into ipsilateral,
frontal, and contralateral. TK and LL were
grouped into frontal and lateral (including both,
left and right trunk orientations).

Heart rate. The HR was recorded continu-
ously using ECG sampled at 1,000 Hz (PS12-II;
Thumedi GmbH & Co0.KG). Two pre-gelled Ag/
AgCl surface electrodes with an active area of
15 mm diameter (KendallTM H93SG ECG
Electrodes, Covidien, Zaltbommel, the Nether-
lands) were placed ~5 cm cranial and ~3 cm
lateral from the distal end of the sternum and over
the anterior to mid-axillary line at the fifth left rib.
The median HR was calculated over the 90-sec-
ond periods for the conditions frontal and lateral.

Statistical Analysis

We visually inspected the data histograms in-
cluding their skewness and kurtosis. Electromyog-
raphy and position sensor data showed no normal
distribution. Subsequently, a log-transformation
(LOG10) for the statistical analysis was per-
formed. Heart rate data showed normal distribution,
which was used directly for further evaluation.
Differences between conditions were analyzed by
repeated-measures analyses of variance with the
fixed factors Device (EXO vs. control) and Device X
Trunk orientation (three levels: ipsilateral vs. frontal
vs. contralateral, for the outcome parameters
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TABLE 1: Calculation and Interpretation of the four joint angles

Joint angle Calculation Interpretation
Thoracic Anteroposterior inclination angles or tangent 0° reflects curvature in upright stance
kyphosis lines (Cobb method) over the processus posture, a positive value means the upper
spinosi of T1 and L1 according to the Cobb  back is curving more (direction kyphosis),
angle boundaries (Takacs et al., 2018) and negative value means the upper back
is curving less (direction lordosis)
compared to upright stance
Lumbar Anteroposterior inclination angles or tangent 0° reflects curvature in upright stance,
lordosis lines (Cobb method) over the processus a positive value means the lower back is
spinosi of L1 and L5 according to the Cobb  curving less (direction kyphosis),
angle boundaries (Takacs et al., 2018) a negative value means the lower back is
curving more (direction lordosis)
compared to upright stance
Hip flexion Difference value between the anteroposterior Smaller angles [°] reflect more hip extension
inclination angles of L5 and femur (direction upright stance) and greater
angles reflect more hip flexion
Knee Difference value between the anteroposterior Smaller angles [°] reflect more knee
flexion inclination angles of femur and tibia extension (direction upright stance) and

greater angles reflect more knee flexion

muscle activity, KF and HF; or two factors: frontal
vs. lateral, for the outcome parameters TK, LL and
HR). In case of significant interaction effects, we
used Tukey HSD for post hoc pairwise compar-
isons. We calculated F-values, p-values and effect
size partial eta squared (ng) using the F-ratios
strategy (Bakeman, 2005) for fixed effects, and T-
value, p-value and effect size Cohen’s d using the
pooled standard deviation strategy (Cohen, 1988)
for post hoc pairwise comparison. Effect sizes are
interpreted by Cohen (1988) as follows: small (1
>0.02; d>0.2), medium (n2>0.13; d>0.5), or large
(n>>0.26; d>0.8). A significance level of a=<0.05
was used. All statistical evaluations were performed
in IMP® (Version 14.2.0, SAS Inc., Carry, NC,
USA).

RESULTS

Descriptive information about the trunk in-
clination angle and the supporting moment of
the exoskeleton are provided in Table 2.

Median values with interquartile ranges
(IQR) or mean values with standard deviations
(SD), and differences between the exoskeleton
conditions are provided in Table 3a for muscle
activity, 3b for posture and 3c for HR.

Corresponding statistics for main effects of the
exoskeleton condition Device (EXO vs. control),
the interaction effects between Device and Trunk
orientation (Device % Trunk orientation) and the
pairwise comparisons for Device x ipsilateral,
Device x frontal, and Device X contralateral or
Device % lateral are provided in Table 4a for
muscle activity, 4b for posture and 4c for HR.

Muscle Activity

A significant main effect of Device for ES oc-
curred when using the £XO resulting in a decreased
muscle activity (—1.3%MVE; p = 0.007; n =
0.193) without significant interaction effect for
Device x Trunk orientation. BF had a significant
main effect of Device; its muscle activity decreased
when using the EXO (—8.1%RVE; p <0.001; 0} =
0.389). BF also showed a significant Device X
Trunk orientation interaction effect. Its muscle ac-
tivity decreased when using the EXO with ipsilat-
eral and frontal orientations. RA had a significant
main effect of Device when using the EXO showing
adecreased muscle activity (—0.3%RVE; p <0.001;
nf) =0.450) and the VL had a significant main effect
for Device when using the EXO showing a de-
creased muscle activity (—0.49%RVE; p = 0.018;
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TABLE 2: Descriptive Information (mean =+ SD) of the trunk inclination angle as measured at vertebra T10
and supporting moment provided by the exoskeleton as measured by the force sensor in the exoskeleton’s

chest pad

Trunk orientation

Trunk inclination [°] Left
Frontal
Right

Supporting moment [Nm] lpsilateral
Frontal

Contralateral

Control Exoskeleton
37.97 (£3.72) 38.63 (+£3.86)
39.42 (£3.65) 39.92 (x4.12)
38.39 (£3.72) 38.90 (+3.86)
- 23.25 (£5.77)
- 22.81 (3.75)

- 22.67 (£4.20)

1’ = 0.155), both without significant interaction
effects for Device % Trunk orientation. The GM had
no main effect for Device. However, there was
a significant interaction effect for Device x Trunk
orientation without significant effects within the
essential pairwise comparisons. The TD muscle had
a significant main effect for Device showing an
increased muscle activity when using the EXO
(+1.1%RVE; p = 0.002; ng = 0.235) without
a significant interaction effect for Device x Trunk
orientation.

Body Posture

Device had no significant main effects on TK
and LL. Device had a significant main effect on
HF, showing increased flexion angles (i.e. flexing
more) when using EXO (+8.1°; p < 0.001; n, =
0.525). Device * trunk orientation had a signifi-
cant effect on HF, but without a relation to dif-
ferences between EXO and Control, meaning that
the HF increased when using the £XO, no matter
which Trunk orientation was applied with similar
effect sizes. Device had a significant main effect
on KF, which increased (i.e. flexing more) when
using the EXO (+6.7°; p < 0.001; nf) = 0.496),
without a significant interaction effect for Device
x Trunk orientation.

Heart Rate

Device had a significant main effect on HR,
which decreased when wusing the EXO
(—2.1bpm; p < 0.001; 0 = 0.339) without in-
teraction effects for Device x Trunk orientation.

DISCUSSION

The results of this study confirmed our
hypothesis, because ES and BF muscle ac-
tivity both reduced when wearing the exo-
skeleton. Since BF was reduced more than ES,
this indicates that the exoskeleton supports hip
extension to a larger extend than back ex-
tension during work tasks performed in a static
forward bent trunk posture. Extra support for
the latter indication is the finding that both HF
and KF increased when wearing the exo-
skeleton. With respect to the other secondary
outcomes, RA, VL, and TD muscle activity
slightly changed when wearing the exo-
skeleton, but for GM muscle activity and
spinal posture we could not detect statistically
significant changes. HR slightly decreased
when using the exoskeleton but no substantial
effect on cardiovascular strain can be deduced
from this finding. The factor trunk orientation
had a significant effect on BF, so that BF
muscle activity significantly reduced in the
ipsilateral and frontal but not in the contra-
lateral working direction when wearing an
exoskeleton.

Muscle Activity

The Laevo® is designed to support the
lower back by providing an extension mo-
ment in, i.e., static holding tasks, aiming to
reduce lower back physical loading and
eventually long-term lower back complaints.
Previous studies investigating work tasks
requiring static ~40° forward bent working
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TABLE 3: Median or mean values, corresponding IQR or SD, absolute and relative differences showing
EXO compared to control. (a) Median RMS of normalized eA (b) Median angles (c) Mean heart rate.

a Control EXO Difference
Muscle activity [%MVE/% Trunk [%MVE/%
RVE] orientation Median (IQR) Median (IQR) RVE] [%]
Erector spinae [%MVE] Total 12.25 (6.87) 1096 (5.58) -1.29 -10.5
Ipsilateral 10.44 (5.93) 997 (4.83) -0.47 -4.5
Frontal 12.74 (7.02) 11.55 (6.70) -1.19 -94
Contralateral 13.60 (6.95) 11.28 (6.24) —-2.32 171
Biceps femoris [%RVE] Total 35.98 (28.99) 27.86 (25.09) -8.12 -22.6
Ipsilateral 3293 (22.58) 20.28 (22.78) —12.65 -38.4
Frontal 35.72 (26.98) 30.40 (22.18) -5.32 -14.9
Contralateral 39.63 (33.06) 35.75 (33.2) -3.88 -9.8
Rectus abdominis [%RVE] Total 1.85 (1.74) 157 (1.38) -0.28 —15.2
Ipsilateral 1.90 (1.66) 1.57 (1.55) -0.33 -17.3
Frontal 1.83 (1.66) 1.54 (1.66) -0.29 -15.8
Contralateral 1.82 (1.90) 1.71 (1.37) -0.12 -6.5
Vastus lateralis [%RVE] Total 3.85 (3.58) 335 (272 -0.49 -12.8
Ipsilateral 458 (15.75) 3.47 (6.22) —1.1 241
Frontal 3.88 (3.51) 3.23 (1.65) —0.65 -16.7
Contralateral 334 (232) 3.18 (2.84) -0.15 —4.6
Gastrocnemius medialis Total 5411 (46.96) 54.11 (38.73) +0.67 +1.2
[%RVE] Ipsilateral 56.77 (46.78) 50.33 (48.27) —6.45 -11.4
Frontal 68.93 (29.27) 66.39 (37.09) -2.54 -3.7
Contralateral 25.05 (24.75) 44.49 (32.82) +19.44 +77.6
Trapezius descendens Total 3.77  (6.12) 490 (7.39) +1.13 +30.1
[%RVE] Ipsilateral 436 (4.21) 494 (6.37) +0.59 +13.5
Frontal 472 (7.7) 493 (11.69) +0.21 +4.4
Contralateral 345 (5.57) 4.71 (7.41) +1.26 +36.4
b Control EXO Difference
Posture [°] Trunk orientation Median (IQR) Median (IQR) [°] [%]
Thoracic kyphosis ~ Total 14.53 (12.64) 12.45 (9.74) —-2.08 —14.3
Frontal 11.35 (12.25) 10.60 (10.36) -0.75 —6.6
Lateral 15.63 (10.95) 13.08 (10.00) -255 -163
Lumbar lordosis Total 12.30 (5.64) 12.38 (4.86) +0.07 +0.6
Frontal 13.60 (5.14) 12.85 (6.28) -0.75 -55
Lateral 12.18 (5.83) 11.95 (4.93) -0.23 -1.8
Hip flexion Total 31.93 (14.59) 40.00 (13.16) +8.08  +25.3
lpsilateral 33.23 (15.76) 39.95 (13.75) +6.73  +20.2
Frontal 33.00 (15.20) 40.65 (12.64) +7.65  +23.2
Contralateral 26.25 (14.73) 36.58 (14.90) +10.33 +39.3
Knee flexion Total 10.73 (13.36) 17.45 (16.33) +6.73 +62.7
Ipsilateral 11.28 (13.03) 17.48 (13.45) +6.20  +55.0
Frontal 10.53 (11.85) 16.83 (17.14) +6.30  +59.9
Contralateral 10.10 (14.26) 19.70 (17.28) +9.60  +95.0
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c Control EXO Difference

Heart rate [bpm] Trunk orientation Mean (SD) Mean (SD) [bpm] [%]
Total 85.29 (10.19) 83.16 (10.49) -2.13 -25
Frontal 85.58 (10.37) 83.25 (10.73) -2.33 -2.7
Lateral 85.14 (10.17) 83.11 (10.44) -2.03 2.4

IQR = interquartile range; SD = standard deviation; RMS = root mean square; eA = electrical activity; MVE/RVE =
maximal/reference voluntary electrical activity; bpm = beats per minute; ipsilateral: the measured side equaling the
working direction; contralateral: the measured side opposing the working direction; lateral: includes both sideward

working directions.

postures presented promising results with
lower back muscle activity reductions rang-
ing from ~8% during fastening (i.e. ~1.5%
RVE; (Luger, Bir, Seibt, Rieger, &
Steinhilber, 2021)) to ~36% during assem-
bling (i.e. ~3.5%MVE; (Bosch et al., 2016)).
Also, the current study showed that ES
muscle activity decreased by ~11% (i.e.
~1.5%RVE) when wearing the Laevo®. The
divergent results may be the result of the tasks
that were not exactly the same. When con-
trasting these results with studies that ex-
amined repetitive lifting and lowering,
reductions in back extensor activity are
slightly higher with 3-7%MVE (i.e. 8-20%
relative reduction; (Baltrusch et al., 2020;
von Glinski et al., 2019; Yin et al., 2019)).
Although work tasks requiring static postures
belong to the first factors for back MSD (da
Costa & Vieira, 2010), the type of task per-
formed may be indicative of the BSE’s effi-
cacy, which may be stronger in lifting and
lowering.

While the reduction of lower back muscular
load was not as notable as desired, the mus-
cular load on the hip extensor decreased to
a greater extend with ~23% (i.e., ~8.1%RVE).
Previous studies support this finding with
reduced hip extensor muscle activities ranging
from 20-36% (Bosch et al., 2016; Luger, Bér,
Seibt, Rieger, & Steinhilber, 2021). This dif-
ference in muscle load reduction of the trunk
and hip extensors may indicate the supportive
character of the Laevo® for extending the hips
because the BSE creates a hip extensor mo-
ment rather than a trunk extensor moment

(Luger, Bar, Seibt, Rimmele, et al., 2021;
Ulrey & Fathallah, 2013). This finding can be
supported by the detected medium effect sizes for
the ES and large effect sizes for the BF; however,
the quantity of a muscle activity reductions which
are clinically relevant is not known and therefore an
interpretation in terms of preventing MSD is
difficult.

Several studies observed an increased ab-
dominal muscular load as a compensation
strategy of the BSE to increase the stiffness
and stabilization of the trunk (Alemi et al.,
2019; Madinei et al., 2020b). The current
study, however, observed a minimally re-
duced muscle activity level of the RA when
wearing the Laevo®, although the magnitude
was only 0.3%RVE. As reported by other
studies, the overall activity level of the ab-
dominal muscles is low to very low (Koopman
et al., 2019; Luger, Bar, Seibt, Rieger, &
Steinhilber, 2021). Therefore, the relevance
of this finding with respect to consequences
for musculoskeletal health may be limited. A
similar interpretation may hold for the leg and
shoulder muscles. Concerns were raised that
muscular load may increase in the shoulder
due to the exoskeleton designs (i.e. shoulder
straps) and in the legs due to a load shift
resulting from the changed working postures
and movements due to wearing the exo-
skeleton (Bosch et al., 2016; Kim et al., 2020;
Theurel & Desbrosses, 2019). However, the
current study cannot support these theories,
since marginal or no differences were found
for the VL (0.5%RVE), GM (0.0%RVE) and
TD (1.1%RVE; (Kim et al., 2020)).
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Combining these findings with the absence of
arising perceived discomfort in the shoulders
(Steinhilber, Bir, et al., 2020) and legs (Bosch
et al., 2016) indicates that the exoskeleton
may not have notable bothersome side effects.

Body Posture

Spine posture, especially lumbar flexion,
has been related to the musculoskeletal health
of the low back area (Adams & Hutton, 1985).
Smaller lumbar spine flexion angles tend to
reduce the risk of low back disorders due to
lower compression forces on the ante-
roposterior portions of the vertebral discs as
mentioned by Ulrey and Fathallah (2013). In
this study, using the EXO did not result in
substantial spine posture changes, which is in
line with two previous studies evaluating the
Laevo® (Kim et al., 2020; Koopman et al.,
2019). Therefore, using the Laevo® may
probably not negatively influence the spine
posture in work tasks requiring static forward
bending trunk postures. Using other BSEs in
static bending postures resulted in reduced
lumbar flexion (Koopman et al., 2020; Ulrey &
Fathallah, 2013) which could have beneficial
effects; however, this needs further
exploration.

One main function of the Laevo® exoskeleton
is the load transfer to the leg and chest pads
inducing pressure to these areas (Bosch et al.,
2016); the resulting forces depend on the exo-
skeletons’ pivot point inclination angle
(Koopman et al., 2019). In this study HF and KF
increased when using the EXO. Similarly, in
a fastening work task requiring a similar trunk
forward bent posture (~40°) using the EXO re-
sulted in increased HF and KF (Luger, Bar, Seibt,
Rieger, & Steinhilber, 2021). In comparison;
using the Laevo® resulted in reduced HF in
deeper trunk bending angles and systematically
increased knee extension in several bending
angles (Koopman et al., 2019) or resulted in knee
overextension holding a likewise trunk bending
angle (Bosch et al., 2016), while using another
BSE holding a stooped posture with different
weights carried did not result in significant HF
and KF changes (Ulrey & Fathallah, 2013).
Changes in lower limb posture may be a result of

adjusting a comfortable and postural stable
posture while performing the particular work
task. The various effects on lower limb posture
between studies may be caused by differences in
support characteristics of the device, but also by
variation in task execution (Luger, Bar, Seibt,
Rieger, & Steinhilber, 2021). In this study, we
explicitly prevented knee overextension by ver-
bal instructions and visual control, wherefore
lower limb posture might have been influenced.
However, the most similar study results (i.e. in-
creased HF and KF) described by Luger, Bar,
Seibt, Rieger, and Steinhilber (2021) occurred
when not controlling the lower limb posture as
strict as in this investigation. Therefore, it is likely
that the increased flexions are not provoked by
our strict instructions. Using the EXO had a large
effect on HF and KF in this investigation;
however, the clinical relevance cannot be con-
cluded from changed flexion angles alone, further
parameters like joint forces should be monitored
therefore in future studies.

It is indicated that using BSEs results in
variable postural changes, but generally posture
has not been evaluated sufficiently in previous
studies. Koopman et al. (2019) showed that only
very slight changes in lumbar postures may
cause major changes in back muscle activity,
which has been most frequently used as in-
dicator for lower back strain in evaluations of
exoskeletons (Bar et al., 2021; de Looze et al.,
2016), but mainly without additionally moni-
toring postures. Furthermore, changes in HF
angles showed significant interactions with
lumbar spine moments (Koopman et al., 2019),
which is an indicator for mechanical loading that
has been described as a risk factor for LBP
(Coenen et al., 2013). From our results, we
cannot draw any conclusions of the occurring
postural changes being beneficial or disadvan-
tageous in terms of musculoskeletal loading;
however, these changes illustrate the need of
further investigation in terms of posture and
related changes in physical load acting on the
musculoskeletal system.

Heart Rate

The slight HR reductions observed in this
study (—2 bpm) when using the £EXO do not
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seem to be relevant in terms of cardiovascular
health, because the average HR ranged 83—85
bpm across the experimental conditions, a range
that is far from the endurance limit of physical
exertion (105—110 bpm) for physical work
shifts (Sammito et al., 2016). Further, the here
presented work task may be of too short duration
for detecting changes with respect to cardio-
vascular strain over a complete working shift.
Additionally, using a BSE in functional tasks did
not significantly influence HR (Luger, Bir,
Seibt, Rieger, & Steinhilber, 2021) or in lon-
ger lasting simulated working protocols de-
creased HR without reaching statistical
significance (Godwin et al., 2009; Lotz et al.,
2009). With the current knowledge we cannot
state whether using a BSE has an influence,
either positive or negative, on cardiovascular
health.

Interaction Effect of Device x Trunk
Orientation

Symmetric postures are often hard to realize in
various industries, e.g. in bricklaying (Vink &
Koningsveld, 1990), and the asymmetric coun-
terpart is associated with an increased risk for
developing back disorders (Punnett et al., 1991).
This was indicative for investigating the BSE not
only in the traditional sagittal plane requiring
a symmetric working posture (i.e. frontal trunk
orientation) but also in the asymmetric counter-
parts, trunk rotation to the left and right. An
additional reason to investigate Trunk orientation
with respect to the efficacy of the BSE was that
the BSE’s support characteristics may be de-
pendent on the interaction between the exo-
skeleton’s or trunk inclination angle and the trunk
orientation or rotation. With respect to the pri-
mary outcomes, we only found that Trunk ori-
entation had a significant interaction effect on hip
extensor muscle activity. The post hoc analyses
revealed that using the exoskeleton lead to small
but statistically significant interaction effects only
for the frontal and ipsilateral Trunk orientations
with the most prominent reductions in BF muscle
activity in ipsilateral Trunk orientation. With
respect to the secondary outcomes, a statistically
significant interaction with Trunk orientation was
found for the HF angle showing large effect sizes.

Hip flexion increased in all three Trunk ori-
entations but most prominent increases in the
angle were in the contralateral Trunk orientation.
Combining these two results does not provide an
explanation why the BSE led to more pronounced
changes in the one than in the other Trunk ori-
entation. However, when comparing the three
Trunk orientations while wearing the BSE, it
seems as ifa larger HF angle may result in a lower
hip extension muscular load (cf. Table 3). Hip
flexion when using the exoskeleton seems to
depend on Trunk orientation and may be influ-
enced by the amount of support provided by the
exoskeleton as has been set by the “smart joint.”

Limitations

We have to acknowledge a few study limi-
tations. First, we included a healthy, male study
population, aged 18—40 years. This does not
reflect the general working population and the
effects of using an exoskeleton might differ for
groups of workers including all sexes (Kim
et al., 2020; Madinei et al., 2020a), including
healthy, symptomatic and reintegrating workers,
and including aging workers. Second, the
Laevo® was only adjustable to a restricted ex-
tend, where we for example experienced diffi-
culties in placing the leg pads according to the
manufacturer’s instructions (i.e., on the upper
part of the thighs) in a few smaller subjects. Only
two out of the 36 subjects used the S-sized
exoskeleton. Further, the exoskeletons struc-
tures cannot fully be prevented from shifting
when the wearer is moving; however, in this
static work task we did not observe any crucial
movement of the device. For avoiding a colli-
sion with the leg pad the VL electrode was
placed more distal on the muscle bellies than
recommended. Although the absolute muscle
activation level for this muscle might possibly
be less representative for the task in single
subjects, this does not influence any of our
outcomes as comparisons are based on a within
subject design. Third, although we used a fa-
miliarization session for using the exoskeleton
and executing the sorting task on a separate day,
a single practice lasting 1 h may not be extensive
enough for getting accustomed to the device
sufficiently. According to Moyon et al. (2019)
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subjects reached a familiarization level four out
of seven. Fourth, this experiment included
a short sorting task, which does not enable to
providing data on muscular fatigue or cumula-
tive strains. Conclusions regarding the long-
term use of the BSE in full work-shifts and in
various tasks are thus not possible. Fifth, the
trunk inclination angle was controlled for and
subjects were instructed not to overstretch their
knees. Consequently, possible changes in body
posture may have been masked in comparison to
a freestyle task execution.

CONCLUSION

Using the Laevo® exoskeleton in a short-cyclic
assembly task requiring a static forward bent
posture did not result in substantial changes of
lower back muscle activity, but rather reduced hip
extensor muscle activity, which indicated the sup-
portive character of hip extension. We detected
increased HF and KF angles but only minor
changes in spine posture. Trunk orientation had an
impact on hip extensor muscle activity and HF
angles. However, it remains unclear whether the
small effects of using the Laevo® on lower back
muscle activity and spinal posture and the small
interacting effects of Tiunk orientation on the hip
area might have an impact on musculoskeletal
health. Thus, it remains questionable if the exo-
skeleton has the potential to operate as intervention
for back MSDs. The occurrence of changes in
posture and physical strain, as well as the in-
consistency between several studies indicate that
further investigation on this topic is necessary be-
fore an application of exoskeletons at work can be
recommended. Therefore, we suggest including
several work tasks and postures, realistic working
scenarios with longer lasting protocols (e.g., work
shifts at least), various interrelated parameters (e.g.,
postures, muscle activity, moments and forces), and
conducting long-term studies with populations in-
cluding all genders and both healthy and symp-
tomatic workers.
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KEY POINTS

e The Laevo® reduced both back and hip extensor
muscle activity when working in a 40°-static trunk
forward bent posture; however, hip extensor
muscle activity reduced to a larger extent.

e Hip and knee flexion increased when using the
Laevo®, whereas spine posture remained
unchanged.

e There have not been many studies evaluating the
body posture in work tasks requiring a static
forward bent posture, a clear conclusion about the
effects of the Laevo® on working posture there-
fore is difficult.

e Trunk rotation, that is, task orientation, should be
considered as a potential influencing factor for the
impact of using the Laevo® on muscle activity and
postural angles; hip extensor muscle activity as
well as hip flexion was influenced by trunk ori-
entation in this evaluation.

e The appearing changes in muscle activity, pos-
ture and heart rate cannot be interpreted to be
positive or negative in terms of musculoskeletal
health; they rather indicate the need of further
investigation including different work tasks and
longer protocols.
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A passive back exoskeleton supporting symmetric and asymmetric lifting in
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ARTICLE INFO ABSTRACT
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Working posture

The influence of a passive exoskeleton was assessed during repetitive lifting with different lifting styles (squat,
stoop) and orientations (frontal/symmetric, lateral/asymmetric) on trunk and hip extensor muscle activity
(primary outcomes), abdominal, leg, and shoulder muscle activity, joint kinematics, and heart rate (secondary
outcomes). Using the exoskeleton significantly and partially clinically relevant reduced median/peak activity of
the erector spinae (<6%), biceps femoris (<28%), rectus abdominis (<6%) and increased median/peak activity

of the vastus lateralis (<69%), trapezius descendens (<19%), and median knee (<6%) and hip flexion angles
(<11%). Using the exoskeleton had only limited influence on muscular responses. The findings imply the
exoskeleton particularly supports hip extension and requires an adjusted body posture during lifting with
different styles and orientations. The potential of using exoskeletons for primary/secondary prevention of
musculoskeletal disorders should be investigated in future research including a greater diversity of users in terms

of age, gender, health status.

1. Introduction

Although the prevalence of low back pain (LBP) slightly decreased
over the past twenty years (Wu et al., 2020), it remains the most com-
mon musculoskeletal problem worldwide. For instance, the general
prevalence estimates for the U.S. are between 23% (Dick et al., 2020)
and 26% (Luckhaupt et al., 2019). Luckhaupt et al. (2019) report the
estimated work-relatedness of LBP prevalence to be 23%. Among certain
professions, the prevalence of LBP may be as high as 70% for baggage
handlers (Bergsten et al., 2015), 72% for manual material handling
workers (Muslim and Nussbaum, 2015), 74% for operation room staff
(Bin Homaid et al., 2016) and 89% for wind farmers (Jia et al., 2016).
Various individual, psychosocial and physical risk factors are associated
with work-related back pain, of which the physical risk factors show the
strongest association (Dick et al., 2020). Especially lifting intensity or
load, lifting frequency, and awkward body postures such as repetitive
bending, torso rotation, backward bending and pulling objects are re-
ported with respect to LBP prevalence.

For lifting intensity, odds ratios of LBP prevalence are reported from
1.1 (Coenen et al., 2014) to 1.9 (Dick et al., 2020) for the general

* Corresponding author.

working population to 3.8 for wind farmers (Jia et al., 2016). Odds ratios
of LBP for lifting frequency vary from 1.1 for the general working
population (Coenen et al., 2014) to 2.4 (Stricevi¢ and Papez) or 3.6
(Andersen et al., 2019) for nurses. The odds ratio of LBP for awkward
postures may be very high, for example 4.5 for nurses who are exposed
to trunk rotation during weight-bearing (Bin Homaid et al., 2016). The
high odds ratios for these physically demanding occupations emphasize
the need for reducing the physical load on the lower back due to lifting
and working in awkward body postures.

In recent decades, the application of exoskeletons as workplace
intervention for reducing physical demands has rapidly evolved. Exo-
skeletons are assistive systems worn on the body that act mechanically
on the body. In an occupational context, they aim to support functions of
the skeletal and locomotor system during physical work (Steinhilber
et al., 2020). Currently, most commercially available exoskeletons
provide support using passive structures, i.e., springs or other elastic
structures. Passive back-supporting exoskeletons showed promising re-
sults with respect to a reduced physical load on the lower back during
occupational lifting. Objectively measured physical low back load by
muscle activity showed reductions mainly during symmetric lifting
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when wearing a passive exoskeleton of 8% (Koopman et al., 2020a),
13% (Baltrusch et al., 2020), 20% (Alemi et al., 2020), and 24%
(Abdoli-Eramaki and Stevenson, 2008). However, there are also studies
reporting no change in lower back muscle activity when wearing such an
exoskeleton (e.g., Baltrusch et al., 2019). In asymmetric lifting, i.e.
lifting with trunk rotation, lower back muscle activity also decreased
(14%) but to a lesser extent than in symmetric lifting (Alemi et al.,
2020). Several studies also measured antagonistic abdominal muscle
activity, of which the majority reported no changes (Abdoli-Eramaki and
Stevenson, 2008; Baltrusch et al., 2019, 2020), and some reported small
but mixed changes when wearing an exoskeleton (Alemi et al., 2020).
Subjectively measured physical low back load by local discomfort is
reported during lifting by Kozinc et al. (2020), who showed a 43%
reduction (i.e., from 2.8 to 1.6 on the CR10 Borg scale).

Some studies have been published investigating the influence of a
passive back-supporting exoskeleton on physical load during occupa-
tional lifting, of which only a few incorporated trunk rotation in the
occupational lifting task. Different lifting styles, i.e., squat and stoop
lifting postures, have, to our knowledge, also only been marginally
investigated in relation to exoskeletons. Therefore, the current study
examined the effect of a passive back-supporting exoskeleton, the
Laevo® (more information, see 2. Materials and methods), during
repetitive symmetric and asymmetric lifting in a squat and stoop lifting
posture of an 11.6-kg load. We included the following outcome mea-
sures: muscle activity, kinematics, and heart rate. The Laevo® is
designed to reduce stress in the lower back by supporting the trunk in
work activities that require a forward bending posture, realized by
transferring the load to the legs. For this reason, we recorded muscle
activity of the erector spinae and biceps femoris to be our primary
outcomes, and that of the rectus abdominis, vastus lateralis, gastrocne-
mius medialis and trapezius descendens as well as joint angles and heart
rate to be secondary outcomes. We hypothesized that the median and
peak muscle activity of the erector spinae and biceps femoris would be
reduced when wearing the exoskeleton. The results of this study may
contribute to the general knowledge about the possibility of applying
passive back-supporting exoskeletons to reduce work-related physical
demands that can induce musculoskeletal disorders.

2. Materials and methods
2.1. Sample size and study design

The data presented in this manuscript are part of a larger, explor-
ative, laboratory study (ClinicalTrials.gov, NCT03725982), within
which the physiological and biomechanical influences of wearing the
Laevo® V2.56 were investigated during four different simulated voca-
tional tasks: a static sorting task, a dynamic lifting task, a set of func-
tional tasks (Luger et al., 2021), and a set of static holding tasks in
different forward trunk flexion angles. In this manuscript, only the dy-
namic lifting task is evaluated in detail.

The study population for the overall study was determined based on
the three independent variables task (static sorting vs. dynamic lifting),
exoskeleton (with vs. without) and working posture (squat vs. stoop). A
selection of combinations from the three independent variables resulted
in six different experimental conditions tested (i.e., static-without-stoop,
static-with-stoop, = dynamic-without-stoop, dynamic-without-squat,
dynamic-with-stoop, dynamic-with-squat). We used a standardized
Single Williams Latin Square design (Bate and Jones, 2008) for six
conditions to prevent first-order carry-over effects and applied its
six-fold, resulting in a required sample size of 36 subjects.

The current manuscript focuses on the dynamic lifting task main-
taining a within-subject design, within which we investigated an addi-
tional independent variable next to exoskeleton and working posture,
resulting in twelve different conditions: exoskeleton (with vs. without),
working posture or lifting style (squat vs. stoop) and lifting orientation
(symmetric vs. asymmetric ipsilateral vs. asymmetric contralateral). A
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stooped lifting style was included because in several industrial settings,
workers do not always have the possibility to bend their knees (e.g.,
lifting from or into a lattice box). The three lifting orientations were
assigned randomly using six possible orders of the three experimental
conditions according to a Double Williams Latin Square design (Bate and
Jones, 2008). The order of the conditions was assigned randomly to each
subject by drawing two lots, one for the exoskeleton/lifting style/task
and one for the lifting orientation. An additional lot was drawn to
determine which body side of the subject would be prepared for re-
cordings of muscular activity, which was balanced across subjects (i.e.,
18 lots for left, 18 lots for right).

2.2. Participants

Thirty-nine male participants (18-40 years old) were recruited to
participate in the study. After excluding three participants due to time
restrictions (N = 1) or a too high BMI (N = 2), 36 participants were
enrolled in the study. The exclusion criteria were a BMI higher than 30
kg/m?, acute or cardiovascular diseases, physical disability, systemic
diseases, or neurological impairments preventing the subjects from
performing the lifting task and wearing the exoskeleton. The study
population (N = 36) had a mean age of 25.9 years (SD 4.6), weight of
73.5 kg (SD 8.9), height of 178.8 cm (SD 7.3), BMI of 22.9 kg/m2 (SD
2.1), rest blood pressure of 129/79 mmHg (SD 7/7), and its majority was
righthanded (4 left; 32 right). The participants signed an informed
consent prior to study participation. The study was designed in accor-
dance with the Declaration of Helsinki and approved by the local Ethics
Committee of the University and University Hospital of Tiibingen (617/
2018B02).

2.3. Procedure

Before the study was executed, subjects visited the lab 1-5 days
before to get a short explanation about the study, read and sign the
informed consent form, check for eligibility, and collect basic anthro-
pometric data. During this first 1.5-h visit, subjects were familiarized
with both the exoskeleton and the simulated vocational tasks. Addi-
tionally, the position with respect to the box on the platform for the
dynamic lifting task was individually determined. The position of both
feet was marked so that when changing conditions, the same feet posi-
tion could be maintained. The height of and distance to the platform
with the box for the dynamic lifting task were individually adjusted:
while the subject was standing upright with minimally bent knees
(ensuring the knees were not overstretched) in 70° trunk inclination, the
upper arm was orthogonal to the floor and the elbow angle approxi-
mately 160°. The second visit lasted ~4 h and comprised the four of
vocational tasks as previously listed. Prior to the experiment, the sub-
jects were equipped with the measurement equipment after the skin was
shaved and cleaned (Skin Prep Gel, Nuprep®, Aurora, USA), and per-
formed a set of reference contractions and postures for normalization of
muscle activity and correction of posture (cf. 2.6.1 Muscular activity;
2.6.2 Posture, joint angles; Table 1).

2.4. Dynamic lifting task

The lifting task was performed in two sets of five repetitions, inter-
rupted with a 35-s break. Successive experimental conditions were
interspersed with 60-s breaks. The pace of the repetitive lifting task was
set at 5s per lift and timed with an acoustic signal. One lifting repetition
included the following four movements: (1) pick up a 11.6-kg load (i.e.,
a10-kg load placed in a 1.6-kg box [W x D x Hof 60 x 40 x 22 cm] with
handles on both sides [19 cm]) at approximately 70° trunk inclination
(stoop) coming from an upright position; (2) recapture an upright po-
sition while holding the load close to the body with flexed elbows; (3)
put the load down with the upper body in approximately 70° forward
flexion; (4) recapture an upright position without load. The 10-kg load
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Table 1
Normalization procedures for the six muscles of which muscle activity was
recorded using bipolar surface electromyography.

Muscle  Normalization procedure

ES Subjects lay prone with the upper body and hips (hip bones) off the bench
and the legs fixed with straps, performing maximal hip extension against a
barrier while keeping the body horizontal and the arms crossed in front of
the chest (modified Biering-Sgrensen test; Biering-Sgrensen, 1984).

BF Subjects lay prone with 90° hip and knee flexion, feet flexed, keeping the
position while a rope with a 7-kg weight hanging over a pulley was
attached around the ankle.

RA Subjects lay supine with the upper body and hips off the bench and the legs
fixed with straps, performing 45° hip flexion while holding an additional
10-kg weight and keeping the arms crossed in front of the chest (reverse
Biering-Sgrensen test; Biering-Sgrensen, 1984).

VL Subjects lay supine with 90° hip and knee flexion, feet flexed, keeping the
position while a rope with a 10-kg weight hanging over a pulley was
attached around the ankle.

GM Subject stood upright, performing bilateral, isometric plantar flexion.

TD Subject stood upright, feet hip-width apart, arms in 90° abduction but
slightly in the frontal plane, elbows extended but not overstretched, while
holding a 2-kg weight in each hand (Mathiassen et al., 1995).

was chosen based on input we retrieved from the cooperation partners in
this project, who handle this load a common in logistics (see Ac-
knowledgements). The lifting task was performed without and with
exoskeleton in two different lifting styles, i.e., a squat and stoop posture
(Fig. 1), and in three different lifting orientations, i.e., symmetrically
(frontal orientation) and asymmetrically (45° rotation to left and right
lateral).

2.5. Passive exoskeleton

We evaluated a passive exoskeleton (Laevo® V2.56, Laevo B.V.,
Delft, the Netherlands; 2.8 kg) that supports trunk and hip extension by
two laterally arranged semi-rigid bars (torso structures) and two con-
necting springs (smart joints; see Fig. 2). The torso structures connect a
chest pad and a hip belt and are exchangeable to fit different body sizes.
The smart joins can be set to different starting support angles (0-45°, 5°-
increments) or no support (off). The Laevo® was adjusted to best fit the
subject’s body composition, whereby the angle support in the smart
joints was adjusted to avoid any contact pressure with the chest pad in
upright stance. This was controlled by a built-in force sensor in the chest
pad (38 x 10 mm; Type KM38-1 kN, ME-MeBsysteme GmbH, Hen-
ningsdorf, Germany).
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2.6. Measurements

2.6.1. Muscular activity

The electrical activity of six muscles was recorded unilaterally by
surface electromyography (EMG) by placing two pre-gelled Ag/AgCl
surface electrodes (42 x 24 mm, KendallTM H93SG ECG Electrodes,
Covidien, Zaltbommel, the Netherlands) in bipolar configuration (inter-
electrode distance 25 mm) on the muscle bellies (Criswell, 2010; Her-
mens et al., 2000). The following muscles were measured: erector spinae
lumbalis (ES at lumbar vertebra L1), biceps femoris (BF), rectus
abdominis (RA), vastus lateralis (VL), gastrocnemius medialis (GM) and
trapezius descendens (TD). The ground electrode was placed over the
cervical vertebrae C7. EMG signals were continuously recorded during
the lifting task and during the normalization contractions (see Table 1;
Biering-Sgrensen, 1984). The procedures included single repetitions of
5-s maximal and 10-s submaximal contractions (see Luger et al. (2021)
for an explanation of the choice for maximal or submaximal
contraction).

The collected EMG signals were differential amplified, transmitted,
filtered (high-pass, 2nd order, —3 dB at 4Hz; low-pass, 11th order, —3 dB
at 1,300Hz), sampled (4,096Hz), analyzed and stored (PS12-II, THU-
MEDI® GmbH & Co. KG, Thum, Germany; physical resolution 24 bit;
overall CMRR >98 dB; overall effective sum of noise <0.5 pV RMS;
linearity typically +0.1 dB at 30—1,200Hz). The data were real-time
transformed in the frequency domain (1024-point Fast Fourier Trans-
formation using a Bartlett-window with 50% overlap), digitally filtered
(high-pass, 11th order, —3 dB at 16Hz) and powerline interferences
were removed by an average filter (11th order, —3 dB at 50Hz and its
first seven harmonics, bandwidth of 4Hz was replaced by its spectral
neighbors). The root-mean-square (RMS) of the electrical activity [pV]
was real-time calculated (250-ms moving window with 50% overlap)
from the power spectrum and stored synchronously to the raw data. The
RMS-values of the BF, VL, RA, GM, and TD were normalized to the
median RMS-values of the most stable 5-s period of each submaximal
reference voluntary contraction (RVC) and expressed as percent of the
electrical activity during the RVC, i.e. reference voluntary electrical
activity (%RVE; Mathiassen et al., 1995). The RMS-values of the ES were
normalized to the 90th percentile RMS-values of the most stable 3-s
period of the maximal voluntary contraction (MVC) and expressed as
percent of the electrical activity during the MVC, i.e. maximal voluntary
electrical activity (%MVE; Mathiassen et al., 1995). The 10th percentile,
50th percentile (median) and 90th percentile (peak) normalized
RMS-values of all muscles were calculated (Jonsson, 1982) for each
experimental condition and used for further analysis. Each value reflects
the mean of all ten lifts, i.e., both sets of five lifting actions (cf. 2.4
Dynamic lifting task). Due to the unilateral electrode application we

Fig. 1. Simulated dynamic lifting task with exoskeleton applying a squat (left) or stoop (right) lifting technique.
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- suspenders
- chest pad
- chest gel paddings
- right torso structure
- left torso structure
- hip paddings
- hip back belt
- hip front belt
- hip front belt buckle
- buttock belt
. label
- smart joint
leg structures

leg pads

- structure size indication
- structure lock button

- support cam
- angle button (behind)

- support on/off button

Fig. 2. The passive exoskeleton Laevo® V2.56 (Laevo B.V., Delft, The Netherlands; http://www.laevo.nl/wp-content/uploads/2018/10/2018-07-16-Laevo-Instruct

ions-V2.56-EN.pdf).

refer to frontal, ipsilateral and contralateral for distinguishing between
lifting orientations.

2.6.2. Posture, joint angles

Joint inclination angles with respect to the absolute perpendicular
(gravitational axis) in the anteroposterior (flexion) and mediolateral
(lateral flexion) directions were recorded using two-dimensional gravi-
metric position sensors (PS12-II; sample rate at 8Hz; resolution 0.1° and
125 ms in time; maximum static error 0.5°; maximum repetition error
0.2°) attached to the skin with double-sided adhesive tape (25 mmx5m,

3M transparent Medical Standard, Top Secret®, Gesellschaft fiir
Haarasthetik mbH, Fiirth, Germany). Sensors were placed at thoracic
vertebrae T1 and T10, lumbar vertebrae L1 and L5, and the anterior side
of the femur and tibia. The position sensors continuously recorded the
inclination angles during the lifting task and reference posture. The
reference posture included a 5-s recording of the subject standing up-
right against a wall, while contacting the wall with his heels, back, and
buttocks and keeping his head in natural position. The median inclina-
tion angles of the most stable 1-s period of the reference posture were
subtracted from the experimental recordings. Therefore, all further
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measures represent angular deviations or differential measures between
two sensors with respect to this individual upright standing position.

We calculated five joint angles, i.e., knee flexion (KF), hip flexion
(HF), lumbar lordosis (LL), and thoracic kyphosis (TK) (Table 2; Takacs
et al., 2018). Additionally, we provide results of the trunk inclination
(TI), but this was a control measure and not an outcome measure. The
minimum, median and maximum values of each joint angle were
calculated for each experimental condition and used for further analysis.
Each value reflects the mean of all ten lifts, i.e., both sets of five lifting
actions (cf. 2.4 Dynamic lifting task).

2.6.3. Heart rate

The activity of the heart was recorded using electrocardiography
(ECG) by two pre-gelled Ag/AgCl surface electrodes (42 x 24 mm,
KendallTM H93SG ECG Electrodes, Covidien, Zaltbommel, the
Netherlands) placed ~5 c¢m cranial and ~3 cm left-lateral from the distal
end of the sternum and over the anterior to midaxillary line at the fifth
left rib. ECG was continuously recorded during the dynamic lifting task,
sampled at 1,000Hz and stored (PS12-II). From the ECG signals, the
median heart rate (HR) was calculated for each experimental condition
and used for further analysis.

2.7. Statistical analysis

After visual inspection of the histograms and interpretation of
skewness and kurtosis values, some parameters approached a normal
distribution. The muscle activity levels of all muscles showed positively
skewed data and were log-transformed (LOG10) prior to statistical an-
alyses, but the back-transformed summary outcomes are reported as
least squares means in tables and figures.

We used repeated-measures analyses of variances (RM-ANOVA) to
assess the effect of the fixed factors exoskeleton, exoskeleton x lifting style,
exoskeleton x lifting orientation, and exoskeleton x lifting style x lifting
orientation on the outcome parameters of muscle activity, posture, and
heart rate. The factor lifting orientation had three levels for all parameters
except for lumbar lordosis, thoracic kyphosis, and heart rate, where it
was reduced to two levels, i.e., frontal vs. lateral. In case of significant
fixed factors with more than two levels, we applied Tukey HSD for post
hoc pairwise comparisons. For each RM-ANOVA, F-value, p-value and
effect size partial eta squared (ng) using the F ratios strategy (Bakeman,
2005) are reported. For post hoc pairwise comparisons, T-value, p-value
and effect size Cohen’s d using the pooled standard deviation strategy
(pooled standard deviated strategy; Cohen, 1988) are reported. Effects
sizes are interpreted according to Cohen (1988) as small (2>0.02; d >
0.2), medium (171%20.13; d > 0.5), or large (;71%20.26; d > 0.8).

Statistical analyses were performed using JMP® (Version 14.2.0, SAS
Inc., Carry, NC, USA) and statistical significance was accepted at a <
0.05. We considered muscle activity levels of the erector spinae (ES) and
biceps femoris (BF) to be the primary outcomes and all other parameters
to be secondary outcomes.
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3. Results

The normalized EMG values and statistical results of ES and BF are
summarized in Table A1 and Table A2 in Appendix A. Normalized EMG
values and statistical results of RA, VL, GM, and TD are summarized in
Table B1 and Table B2 in Appendix B. The values and statistical results
of KF, HF, LL, TK, and HR are summarized in Table C1 in and Table C2 in
Appendix C.

3.1. Muscular activity

3.1.1. Primary outcomes — erector spinae and biceps femoris

Exoskeleton had significant main and interaction effects on ES.
Wearing the Laevo® resulted in an average 8.7% increase (0.3%MVE; ng
= 0.16) in ES19, —2.3% decrease (—0.4%MVE; 173 = 0.16) in ESsg
(Fig. 3), and —4.2% decrease (—1.3%MVE; 12 = 0.40) in ESgo. Exoskel-
eton x Lifting style had a significant effect on ESgq (173:0.27; Fig. 4). In
squat posture, wearing the exoskeleton resulted in reduced ESqy (d =
—0.21). Exoskeleton x Lifting orientation had a significant effect on ES;g
(;13:0.14; Fig. 5) and ESsg (;73:0.18). In frontal orientation, ES;o was
higher with exoskeleton compared to without exoskeleton (d = 0.23). In
contralateral orientation, ESsy was lower with exoskeleton than without
exoskeleton (d = —0.14). Exoskeleton x Lifting style x Lifting orientation
had a significant effect on ESgq (175 =0.20). In squat posture, wearing the
exoskeleton resulted in reduced ESg for all three orientations (—0.17<d
< —0.26).

Exoskeleton had a significant main effect on BF. Wearing the Laevo®
resulted in an average —18.6% decrease (—1.2%RVE; ;13 = 0.36) in BFq,
—17.1% decrease (—4.9%RVE; ;13 = 0.38) in BF5q (Fig. 3), and —8.1%
decrease (—5.2%RVE; ;15 = 0.25) in BFq.

3.1.2. Secondary outcomes — rectus abdominis, vastus lateralis,
gastrocnemius medialis and trapezius descendens

Exoskeleton had significant main and interaction effects on RA.
Wearing the exoskeleton resulted in an average —3.2% decrease
(~0.04%RVE; 75 = 0.14) in RAjg, —4.7% decrease (—0.2%RVE; 17 =
0.36) in RAsg (Fig. 3), and —2.9% decrease (—0.2%RVE; 17‘3 = 0.16) in
RAgp. Exoskeleton x Lifting style had a significant effect on RAjq
(;15:0.13); in squat posture, RAjg reduced (d = —0.07) when wearing
the exoskeleton. Exoskeleton x Lifting style x Lifting orientation had a
significant effect on RAjg (n§:0.13); but the post hoc test showed no
significant differences in wearing the exoskeleton.

Exoskeleton had significant interaction effects on VL. Exoskeleton x
Lifting style had a significant effect on VLsg (;13:0.12) and VLgg
(;113:0.12); only for VLsg, post hoc tests showed that in squat posture,
activity reduced (d = —0.26) when wearing the exoskeleton. Exoskeleton
x Lifting style x Lifting orientation had a significant effect on VLo
(1113:0.11), VLso (773:0.10) and VLgg (n§:0.13); only for VLsg, post hoc

Table 2
Calculation and interpretation of the five joint angles.
Joint angle Calculation Interpretation
Trunk Anteroposterior inclination angle of thoracic vertebrae T10 0° reflects full extension (upright stance) and 180° full flexion
inclination
Hip flexion Difference value between the anteroposterior inclination angles of lumbar 0° reflects full extension (upright stance) and 180° full flexion

vertebrae L5 and femur
Knee flexion

Thoracic Anteroposterior inclination angles or tangential lines (Cobb method) over the
kyphosis processus spinosi of thoracic vertebrae T1 and lumbar vertebrae L1 according to the
Cobb angle boundaries (Takacs et al., 2018)
Lumbar Anteroposterior inclination angles or tangential lines (Cobb method) over the
lordosis processus spinosi of lumbar vertebrae L1 and lumbar vertebrae L5 according to the

Cobb angle boundaries (Takacs et al., 2018)

Difference value between the anteroposterior inclination angles of femur and tibia

0° reflects full extension (straight legs) and 180° full flexion
0° reflects curvature closer to upright stance and a positive value means the
upper back is curving more compared to upright stance

0° reflects curvature closer to upright stance and a positive value for lumbar
lordosis means the lower back is curving (opposite of the lordosis) compared
to upright stance
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tests showed that in squat posture with contralateral orientation, ac-
tivity decreased (d = —0.38) when wearing the exoskeleton.

Exoskeleton had significant main and interaction effects on GM.
Wearing the exoskeleton resulted in an average 27.0% increase (2.2%
RVE; 52 = 0.61) in GMy, 21.1% increase (8.1%RVE; 72 = 0.51) in GMs
(Figs. 3), and 11.4% increase (10.5%RVE; ’15 = 0.52) in GMgy.
Exoskeleton x Lifting orientation had a significant effect on GMj5g
(;13:0.21) and GMgg (;1?,:0.13); in both frontal and contralateral ori-
entations, GMsg (d = 0.17-0.43) and GMgg (d = 0.12-0.29) increased
when wearing the exoskeleton. Exoskeleton x Lifting style x Lifting
orientation had a significant effect on GMgg (;71%:0.15); wearing the
exoskeleton increased GMyg in squat posture with frontal and contra-
lateral orientation (d = 0.21-0.22) and in stoop posture with contra-
lateral orientation (d = 0.41).

Exoskeleton had significant main and interaction effects on TD.
Wearing the exoskeleton resulted in an average 12.4% increase (0.4%
RVE; r]ﬁ = 0.27) in TDq¢ and —7.4% increase (1.8%RVE; 115 =0.12) in
TDsg (Fig. 3). Exoskeleton x Lifting style had a significant effect on TDgg
(173:0.14); but post hoc tests showed no significant differences when
wearing the exoskeleton. Exoskeleton x Lifting orientation had a signifi-
cant effect on TDsq (173 =0.14); in ipsilateral orientation, TDs( increased
when wearing the exoskeleton (d = 0.22). Exoskeleton x Lifting style x
Lifting orientation had a significant effect on TDsg (173:0.10); wearing the
exoskeleton increased TDs in stoop posture with ipsilateral orientation
(d = 0.31).

3.2. Posture, joint angles

Exoskeleton had significant main and interaction effects on knee
flexion, hip flexion, lumbar lordosis, and thoracic kyphosis. Wearing the
exoskeleton resulted in an average 3.0° increase (>100%; 115 =0.59) in
KFmin, 22.9% increase (4.9°; ;1[2, = 0.61) in KF50, and 4.6% increase (2.2°;
71; = 0.18) in KFyjax. Exoskeleton x Lifting style had a significant effect on
KFso (;113:0.26) and KFyax (1113:0.56); wearing the exoskeleton in stoop
posture resulted in increased KFsg and KFyax (d = 0.54-0.72), and in
squat posture in increased KFso (d = 0.36; see Fig. 6). Exoskeleton x
Lifting orientation had a significant effect on KFyyy (;15:0.09) and KFyax
(;73:0.10); wearing the exoskeleton decreased KFyax in contralateral
orientation (d = 0.12) but increased KFyy in all three orientations (d =
0.41-0.59). Exoskeleton x Lifting style x Lifting orientation had a signifi-
cant effect on KFsq (nﬁ =0.12) and KFyax (113:0.09); wearing the
exoskeleton increased KFyax in a stoop posture with any orientation (d
= 0.44-0.69) and increased KFso in all but in squat posture with
contralateral orientation (d = 0.35-0.84).

Wearing the exoskeleton resulted in an average 3.3° increase in
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HFyin (>100%; 77 = 0.73), 20.4% increase (6.3°%; 17 = 0.69) in HFs0,
and 3.9% increase (2.8°; ;7; = 0.25) in HF\ax. Exoskeleton x Lifting style
had a significant effect on HFsq (113:0.45; Fig. 6) and HFyax (n§:0.52);
wearing the exoskeleton in stoop posture resulted in increased HFs( (d
= 0.91) and HFax (d = 0.52) and in squat posture in increased HFsq (d
= 0.54).

Wearing the exoskeleton resulted in an average 10.0% increase (2.1°;
n’% = 0.27) in LLyax. Exoskeleton x Lifting orientation had a significant
effect on LLyax (113:0.13); in both frontal and ipsilateral orientations (d
= 0.18-0.26), wearing the exoskeleton increased LLyax.

Wearing the exoskeleton resulted in an average 0.3% increase (0.02°;
175 = 0.13) in TKsp, and —13.3% decrease (—1.9°; 175 = 0.37) in TKpax.
Exoskeleton x Lifting style had a significant effect on TKyn (r]ﬁ:O.lS),
TKso (;13:0.24) and TKyax (;15:0.31); wearing the exoskeleton resulted
in stoop posture in decreased TKsg (d = —0.08) and TFgg (d = —0.42) and
in squat posture in increased TKjo (d = 0.18). Exoskeleton x Lifting
orientation had a significant effect on TKpyax (;13:0.17); wearing the
exoskeleton resulted in decreased TKyax both in frontal and lateral
orientations (—0.14<d < —0.26).

3.3. Heart rate

Exoskeleton had a significant main effect on the heart rate, with an
average reduction of —1.5bpm (11;:0.40) when wearing the exoskeleton
compared to not wearing the exoskeleton.

4. Discussion
4.1. Muscle activity of trunk and hip extensor muscles

Using the exoskeleton resulted in ~9% statistically significant
increased 10th percentile trunk extensor activity (i.e., ~0.3%MVE).
Reason for this increased 10th percentile level may be that the
exoskeleton does not provide a sufficient facilitation or relaxation,
meaning that parts of the trunk extensors stay more or less activated
during the complete lifting and lowering process. Using the exoskeleton
also resulted in slightly but significantly reduced median and peak trunk
extensor activity of 2% (0.4%MVE) and 4% (1.3%MVE), respectively.
These findings are much smaller than reported in other studies, with
magnitudes in mean activity of 8% (von Glinski et al., 2019), 14% (3%
MVE; Baltrusch et al., 2020), and 20% (7%MVE; Yin et al., 2019) and in
peak activity of 8% (6%MVE; Koopman et al., 2020a), 10% (4%MVE,;
Madinei et al., 2020a), and 24% (4%MVE; Lazzaroni et al., 2019). A
potential reason for these differences in magnitude may be the overall
posture of the participants during the lifting task; when the trunk
inclination angle increases, it is more likely that the exoskeleton reduces
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Fig. 6. Exoskeleton x Lifting Style interaction effect on median knee flexion angle (KF50; A) and median hip flexion angle (HF50; B). White bars represent without
exoskeleton, grey bars represent with exoskeleton. Note that * indicates a significant post hoc difference from the control condition (i.e., no exoskeleton).
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trunk extensor activity due to a larger assistive torque provided by the
back-supporting exoskeleton (Koopman et al., 2019; Madinei et al.,
2020b). For example, Bosch et al. (2016) reported an increased trunk
inclination of 15% (~4.9°) and a concomitant decreased mean trunk
extensor muscle activity of 38% (~3.5%MVE). On the contrary, this
study observed that lumbar lordosis increased by 10% (~0.9°) and trunk
inclination (calculated post-hoc) increased by 7% (~1.9°), with the
result that median trunk extensor activity reduced by only 2% (~0.4%
MVE). An additional reason may be the varying amount and mode of
support provided by the different back-supporting exoskeletons evalu-
ated in the studies, which resulted in different trunk-inclination vs.
supporting-moment relations.

Although reduced mean and peak muscular loads in the lower back
were not as pronounced as observed in other studies, the influence of
using the exoskeleton on hip extensor activity, on the contrary, was
much larger. We observed reductions of 8-17% (5%RVE) in median and
peak hip extensor activity, which confirms previous studies, where re-
ductions of 25% mean activity (5%MVE; Huysamen et al., 2018) and
17% peak activity (8%MVE; Ulrey and Fathallah, 2013) were reported.
The fact that the exoskeleton had a larger effect on hip extension than on
trunk extension, as was also the case in the study of Ulrey and Fathallah
(2013), may be due to both the Laevo® and Bending Non-Demand Re-
turn exoskeleton (BNDR) creating a hip extensor moment. Therefore,
both exoskeletons may support hip extensors while back extensors may
not be supported that much. Consequence, this may be a reason why the
current results show that the biceps femoris is supported but the erector
spinae not that much.

Previous studies reported that reductions of trunk extensor activity
due to using an exoskeleton are more pronounced in symmetric
compared to asymmetric lifting orientations that require some trunk
rotation (Alemi et al., 2020; Madinei et al., 2020a). In the present study,
no clear effects have been found between the different symmetrical and
asymmetrical lifting orientations with respect to trunk and hip exten-
sors. Differences in lifting style, i.e., squat versus stoop, were, however,
more pronounced, albeit only significant in squatting. Using the
exoskeleton in squat posture resulted in a ~7% reduced peak trunk
extensor activity, i.e., from ~33%MVE without to ~31%MVE with
exoskeleton. This agrees with previous work (Alemi et al., 2019;
Koopman et al., 2020b), within which reduced peak trunk extensor
loads of as high as 32% (17%MVE) and 19% (24%MVE) were reported
with exoskeleton, respectively. However, both studies also reported
significantly reduced peak activity in stoop lifting posture of 25-28%
(12-35%MVE), which was only 2% (0.6%MVE, i.e., from ~31.1 to
~30.5%MVE) in the current study and not statistically significant. The
current results suggest that a squat lifting style may increase the exo-
skeletons effectiveness compared to a stoop lifting style. A potential
reason could be the increased hip flexion angle, which was larger in
squatting than in stooping and resulted in a substantial lumbar EMG
reduction.

4.2. Muscle activity of abdominal, leg and shoulder muscles

The load-transfer-mechanism of back-supporting exoskeletons may
increase the antagonistic abdominal muscle load for increasing trunk
stiffness and stabilization (Granata and Orishimo, 2001; Stokes et al.,
2011) and make the exoskeleton effective in reducing the load on trunk
and, potentially, hip extensors (Alemi et al., 2019; Madinei et al.,
2020b). However, this strategy as observed by several studies (Alemi
et al., 2019; Baltrusch et al., 2019) may be at the expense of increased
spinal compression (Gardner-Morse and Stokes, 1998; Granata et al.,
2005; Vera-Garcia et al., 2006). However, the current study as well as
some other studies actually reported slightly decreased abdominal
muscle activity (Huysamen et al., 2018; Koopman et al., 2019; Ulrey and
Fathallah, 2013). This requires more research, investigating whether
antagonistic activity may be influenced by using an exoskeleton
depending on the task performed and the exoskeleton’s working
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mechanism.

In line with previous studies, wearing and using the exoskeleton did
not have a big influence on both the shoulder muscles (Alemi et al.,
2019; Frost et al., 2009; Madinei et al., 2020a) and knee extensor
muscles (Alemi et al., 2020; Baltrusch et al., 2019). However, median
gastrocnemius medialis muscle activity in the current study showed to
significantly increase by about 21% (8%RVE). This finding can be due to
the slightly changed working posture, particularly respect to the slightly
increased median knee and hip flexion angles (c.f. 4.3 Kinematics).

4.3. Kinematics

Using the exoskeleton influenced the posture to some extent. Mini-
mal, median, and maximal knee flexion increased by 3.0° (>100%), 4.9°
(22.9%), and maximal knee flexion increased by 2.2° (4.6%), respec-
tively, when using the exoskeleton. This was observed with a concom-
itant increased minimal, median, and maximal hip flexion of 5.2°
(>100%), 3.4° (10.9%), and 4.2° (5.8%), respectively. Changes in the
same order of magnitude were observed by studies that evaluated a
similar lifting task (Baltrusch et al., 2020; Madinei et al., 2020a; Ulrey
and Fathallah, 2013) and may imply back-supporting exoskeletons are
more effective when both flexion angles slightly increase to better
activate the passive structures that transfer the load on the lower back to
the legs. Furthermore, with respect to the interaction Exoskeleton x
Lifting style, our results indicate a 11.0% increased maximal hip flexion
angle (6.7°) with exoskeleton in a stoop lifting style. This trend agrees
with Ulrey and Fathallah (2013), who observed it increased by 10.2%
(6.9°). However, the different relative increases may be due to the
spring-characteristic curve and the transmission of the spring-force into
a torque by the spring-joint, implying the BNDR (Ulrey and Fathallah,
2013) may require a stronger hip posture adaptation.

Using the exoskeleton did not lead to any impairments in spinal
posture. Although significant effects of using the exoskeleton were found
on lumbar lordosis and thoracic kyphosis, these reflected minor differ-
ences up to 2.1° for peak spinal angles. This is in line with previous study
results on repetitive lifting, where differences were either not significant
(Abdoli-Eramaki et al., 2006; Baltrusch et al., 2020; Frost et al., 2009;
Madinei et al., 2020a) or small but significant (Ulrey and Fathallah,
2013) in the range 2.2-5.4°. The clinical relevance of
exoskeleton-induced changes in spinal posture remains unknown yet
and should be addressed by future research.

4.4. Cardiovascular response

Using the exoskeleton in repetitive lifting resulted in a slightly
reduced heart rate response of 1.5bpm (1.6%), although this change is
not relevant. Godwin et al. (2009) and Lotz et al. (2009) found a 3% and
10% reduced heart rate response after 45 min repetitive lifting when
using the exoskeleton, which did not reach significance. With the cur-
rent results, we cannot state whether using a back-supporting exoskel-
eton during lifting may have beneficial effects on the cardiovascular
response and physical strain of the wearer; however, we emphasize that
the tasks investigated in the current study and in the other two studies
(Godwin et al., 2009; Lotz et al., 2009) are of relatively short duration
not reflecting a full work shift of, e.g., 8 h. Consequently, the heart rate
in none of the studies reached the so-called endurance limit of physical
exertion that ranges between 105 and 110 bpm (Sammito et al., 2016).

4.5. Clinical relevance of the findings

The interpretation of whether exoskeleton-induced changes in
physiological parameters are clinically relevant is still difficult at this
stage. Although there are approaches and attempts, e.g., to interpret the
level of EMG signals (Jonsson, 1978), the postures adopted or joint
angles (Bleyer et al., 2008) or changes in heart rate (Sammito et al.,
2016), these do not yet show sufficiently high validity. On the one hand,
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an increase in 10th percentile trunk extensor muscle activity when using
the exoskeleton could be accompanied by an increase in the risk for
musculoskeletal disorders induced by sustained muscle activation
leading to type I motor unit overloading (Westgaard, 1999). On the
other hand, a decrease in median and peak muscle activity may be
beneficial in preventing musculoskeletal disorders (Jonsson, 1978).
Besides the high effort in developing and optimizing exoskeletons,
future research on how to interpret physiological parameters is a central
requirement to evaluate whether an exoskeleton induces clinically
relevant effects or not. Alternatively, long-term studies are necessary to
gather evidence whether exoskeletons may help in reducing the preva-
lence of work-related musculoskeletal disorders; however, this is
currently not possible because the various exoskeletons are still under-
going strong development and improvement.

4.6. Study limitations

Several limitations should be noted for the current study. First, the
study sample was young (range 19-38 years) and included males only.
This does not cover the full range of the working age population and
caution is required in generalizing the current results for older and fe-
male workers. Second, repetitive lifting with various lifting styles and
orientations was simulated under highly controlled laboratory condi-
tions. This does not reflect the actual work environment, meaning that
feasibility studies and randomized-controlled studies are necessary to
provide more insights into the effectiveness of the current and other
back-supporting exoskeletons in the field. Third, we focused on the
acute effects of using the Laevo exoskeleton and restricted our evalua-
tion to physiological parameters. It remains unclear whether the here
reported results can be generalized to longer periods and how using the
Laevo exoskeleton and other exoskeletons may influence subjective and
social parameters, e.g., discomfort and acceptability. Fourth, all par-
ticipants underwent only a brief training session on the day prior to the
experiment, which may have been a too limited familiarization period
for proper use of the exoskeleton.

5. Conclusions

Physically demanding occupations exposing workers to repetitive
lifting and working in awkward body postures are identified with high
odds ratios for the prevalence of LBP. Back-supporting exoskeletons
seem to be a promising intervention to prevent (primary) or reduce
(secondary) the prevalence of LBP. We evaluated the effect of a passive
exoskeleton on muscle activity, kinematics, and heart rate during re-
petitive symmetric and asymmetric lifting in squat and stoop posture.
Hip extensor activity decreased to a larger extent (up to 28%, i.e., 15%
RVE) than trunk extensor activity (up to 6%, i.e., 2%MVE), which im-
plies the exoskeleton also induces a hip extensor moment. Changes in
other muscles were not substantial. Joint kinematics, however, showed
small changes in knee flexion and hip flexion that may imply wearers
have to adjust their working posture when wearing the exoskeleton. We
recommend future research to better determine the task specificity of
deploying back-supporting exoskeletons and the generalizability of
exoskeletons (e.g., field studies) on physiological, biomechanical, and
subjective outcomes across different users (e.g., age, gender, LBP-
status).
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Abstract: Due to the load shifting mechanism of many back-support exoskeletons (BSEs), this
study evaluated possible side effects of using a BSE on knee joint loading. Twenty-nine subjects
(25.9 (£4.4) years, 179.0 (£6.5) cm; 73.6 (£9.4) kg) performed simulated static sorting and dynamic
lifting tasks, including stoop and squat styles and different trunk rotation postures. Ground reaction
force, body posture and the force between the chest and the BSE’s contact interface were recorded us-
ing a force plate, two-dimensional gravimetric position sensors, and a built-in force sensor of the BSE,
respectively. Using these parameters and the subject’s anthropometry, median and 90th percentile
horizontal (HORsy, HORgg) and vertical (VERT5g, VERTq) tibiofemoral forces were calculated via a
self-developed inverse quasi-static biomechanical model. BSE use had a variable effect on HOR5g
dependent on the working task and body posture. Generally, VERT5j increased without significant
interaction effects with posture or task. HORgy and VERT were not affected by using the BSE. In
conclusion, utilizing the investigated exoskeleton is likely to induce side effects in terms of changed
knee joint loading. This may depend on the applied working task and the user’s body posture.
The role of these changes in the context of a negative contribution to work-related cumulative knee
exposures should be addressed by future research.

Keywords: knee force; tibiofemoral force; side effects; assistive device; asymmetric lifting; load shift;
forward bent posture

1. Introduction

Musculoskeletal disorders (MSD), especially in the back, remain the most common
health problem affecting workers in the European Union [1] and the United States [2].
Twelve-month prevalence rates of 58% for the occurrence of general MSD [1] and of 25-43%
for the back area have been reported [1,2]. Musculoskeletal back pain has been found to
be strongly associated to physical risk factors, especially heavy lifting in the workplace
and cumulative low back load. Therefore, intervention strategies for physically demanding
work incorporating these risk factors need to remain a focus [2,3].

To support workers in their daily work routines, the use of exoskeletons has become
a focus area. “Exoskeletons are assistive systems worn on the body that act mechanically
on the body. In an occupational context, they aim to support functions of the skeletal and
locomotor system during physical work” [4] (p. 3), by transferring forces from exposed
body regions to other body sites [5]. Currently, one of the main debates about the use of
exoskeletons is whether or not they are effective in preventing work-related MSD [4].

Recently, a growing number of studies have focused on biomechanical, physiological,
and subjective stress and strain parameters for determining the impact of using exoskele-
tons on the musculoskeletal system during occupational tasks [6]. Passive back-support
exoskeletons (BSEs) were shown to potentially reduce physical strain in the supported
body area in experiments including dynamic tasks such as lifting [7-11] and in tasks with a
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static forward bent posture [12-16]. Describing the short-term influence of exoskeletons
on physical stress and strain parameters in the supported body area is one important
step toward identifying potential strategies for relieving these specific musculoskeletal
structures in the wearer.

However, the nature of many exoskeletons is shifting the mechanical load from one
area to a different area or areas of the body [5], which raises concerns about excessive
biomechanical stresses on these other areas [4,17]. In this context, potential side effects of
using BSEs have been examined using parameters such as muscle activity and perceived
discomfort outside the target region [10-12,18-23]. With respect to side effects, findings for
strain parameters in the legs, i.e., mean muscle activity and perceived discomfort have been
inconsistent. Some studies report decreases [12,20-22], others report increases [10,11,18-20],
or no statistically significant changes [10-12,18,19,23,24]. The ambiguous findings of the
available studies and the fact that only few focused extensively on possible side effects in
the leg region of using a BSE show that it is unclear whether and how using a BSE affects
the musculoskeletal system of the lower limb [6].

To ensure the safe application of BSEs, including the aim of promoting workers’ health
in physically demanding work, it is imperative to further investigate potential side effects
(i.e., potential adverse consequences) of their use. An evaluation of biomechanical joint
loading might also give more insight into load transfers or load shifts to other (i.e., non-
supported or non-targeted) body areas caused by using a BSE [6,25]. Although the back,
shoulder, and neck are much more commonly affected by MSD than the knee, Govaerts et al.
(2021) reported a 33% overall prevalence of work-related MSD in the knee among industrial
workers [26]. Moreover, there is reasonable evidence that knee disorders are related
to physical work exposures partially similar to those reported for back pain, including
awkward postures, lifting, and task repetition [1,27]. To the authors’ knowledge, so far
there has been no published study focusing on the mechanical loading of lower limb joints,
particularly the knees, when using a BSE. Hence, the aim of this study was to evaluate
the horizontal (anteroposterior) and vertical forces acting on the tibiofemoral joints when
using a BSE (Laevo®, Delft, The Netherlands) during simulated industrial work tasks. For
this purpose, a self-developed two-dimensional inverse quasi-static biomechanical model
was used. We hypothesized that the horizontal and vertical median and 90th percentile
tibiofemoral forces increase when using the Laevo® exoskeleton.

2. Materials and Methods
2.1. Sample Size and Study Design

This manuscript comprises one section of a broader, exploratory laboratory experi-
ment, evaluating the effects of the Laevo® V2.56 exoskeleton on physiological and biome-
chanical parameters using a within-subject-design [28] (registered at ClinicalTrials.gov,
NCT03725982). A Single Williams Latin Square design [29] for six conditions ((1) Exoskele-
ton: Laevo® exoskeleton (EXO) vs. Control; (2) Task: Static vs. Dynamic; (3) Lifting style:
Stoop vs. Squat) was used to determine the sample size of 36 and to randomize the order
of the main experimental tasks in this study. In addition, a Double Williams Latin Square
design [29] was applied to randomize three Trunk orientation conditions for the tasks. The
order of randomization resulted from drawing lots.

2.2. Participants

Thirty-nine male subjects were recruited to participate in the study, of which three
subjects had to be excluded due to time restrictions (N = 1) or not meeting the BMI
criterion (N = 2). Thirty-six healthy males completed the experiment, of which data
from 29 subjects (mean age 25.9 (+4.4) years, mean body height 179.0 (£6.5) cm, mean
body weight 73.6 &+ 9.4 kg) were used for the outcome measures described here. The
force plate data from seven subjects could not be used due to technical issues. Inclusion
criteria were: male gender, age (18-40 years), BMI (18.5-30 kg/m?), and absence of any
acute or cardiovascular diseases, physical disabilities, systemic diseases, or neurological
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impairments that would not allow subjects to perform the tasks or wear the exoskeleton.
BMI was calculated by measuring body height and weight, while the other inclusion
criteria were assessed according to subjects’ self-report. These restrictions in our study
sample were chosen to avoid possible moderating influences of sex/gender, age, or even
body composition, which have not previously been studied. Furthermore, male subjects
were chosen due to the domination of males in the manufacturing industries. The Laevo®
exoskeleton is only adjustable to a restricted extent and might therefore not fit to all body
dimensions (e.g., female body composition, BMI > 30 kg/m?) We chose a rather young
age group to ensure that all subjects were able to perform the tasks without an early
onset of fatigue.

The study was designed according to the Declaration of Helsinki and approved by the
Ethics Committee of the University and University Hospital of Tiibingen (617/2018BO2).

2.3. Exoskeleton

We evaluated the passive exoskeleton Laevo® (V2.56, Laevo B.V., Delft, The Nether-
lands; 2.8 kg), which supports the back during work tasks such as lifting a load and
tasks requiring forward bending postures. Torque generation is provided by two two-
dimensional joints (“smart joints”) with gas pressure springs that are attached to a hip belt
located close to the pivot point of the hip joints. Two rigid bars connect the joints to a chest
pad placed over the upper part of the sternum and to two leg pads placed over the thighs.
The smart joints can be turned on and off, and the joint flexion angle at which the support
should begin can be set (range 0—45°, increments of 5°). The exoskeleton was adjusted to fit
the subject’s physique in two ways: First, by varying the size of the exchangeable rigid bars
connecting the chest pad and the smart joints resulting in a chest-to-smart joint distance of
405 mm (S-size) or 435 mm (L-size). Secondly, by adjusting the smart joint support angle to
avoid contact forces while standing upright (depending on the subject’s torso composition).
The force was measured and controlled using an integrated force sensor in the chest pad
(38 x 10 mm; Type KM38-1kN, ME-Messsysteme GmbH, Henningsdorf, Germany). The
leg-pad-to-smart joint distance could not be adjusted and was always 200 mm.

2.4. Experimental Procedure and Tasks

A 1.5-h visit to our laboratory was mandatory 1-5 days prior to participating in the
experiment. This visit included information about the study procedure and signing an
informed consent form. Inclusion and exclusion criteria were clarified, anthropometric mea-
surements were collected, and subjects were familiarized with the exoskeleton and tasks.
On the day of the experiment, which lasted 4 h, the subject was prepared with the measure-
ment equipment required for the outcome measures and performed a series of experimental
tasks [11,19,24]. This manuscript considers six experimental task conditions (Static-EXO;
Static-Control; Dynamic-EXO-Stoop; Dynamic-Control-Stoop; Dynamic-EXO-Squat; Dynamic-
Control-Squat; cf. Figure 1) and focusses on the outcome measures related to knee forces
(i.e., tibiofemoral forces).

(a) Six experimental conditions

Experimental task 1
(set of 3 trials)

3
E]
3
&

3min)

@

Experimental task 6
(set of 3 trials)

Experimental task 2
(set of 3 trials)

Experimental task 3
(set of 3 trials)

Experimental task 4
(set of 3 trials)

Experimental task 5
(set of 3 trials)

Pause
(2-3min)

|

(b) Details of one experimental task (EXO or control)

Static (90-sec) or Dynamic (85-sec) Pause Static (90-sec) or Dynamic (85-sec) Pause Static (90-sec) or Dynamic (85-sec)
Left/ frontal/ right (30/60-sec) Left/ frontal/ right (30/60-sec) Left/ frontal/ right

Figure 1. (a) shows the sequence of the six experimental conditions; two static and four dynamic:
Static-EXO; Static-Control; Dynamic-EXO-Stoop; Dynamic-Control-Stoop; Dynamic-EXO-Squat; Dynamic-
Control-Squat. The six conditions were performed in randomized order, and each was performed in a
set of three Trunk orientations. Each set of static sorting tasks lasted 330 s, and each set of dynamic
lifting tasks lasted 375 s. (b) shows one set of one experimental task. Trunk orientations (left/frontal/right)
were performed in randomized order. Figure modified after Bar et al. (2022) [16].
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The experimental tasks were performed while standing on a force plate in front of a
table that was adjustable according to the subject’s height. The feet position was defined
prior to the experiment and kept constant during each task by using markings on the
force plate (Figure 2). The feet position was defined while the subjects were instructed to
stand comfortably upright with their feet positioned evenly and facing straight ahead. The
distance to and height of the table was adjusted to allow the subject to perform the sorting
or lifting task in the required body postures (explanation below). The six experimental
conditions were performed in sets of three trials, with each trial performed in one of the
three trunk orientations. Therefore, the sorting or the lifting box was placed to the front, in
a 45° rotation to the left, or in a 45° rotation to the right from the sagittal plane. Reported
results in the frontal direction include both knees when the work tasks were performed
without trunk rotation. The reported ipsilateral results refer to both trunk orientations (left
and right), including the knee belonging to the body side that coincides with the direction
of trunk orientation. The reported contralateral results refer to both trunk orientations (left
and right), including the knee belonging to the side of the body opposite to the direction of
trunk orientation.

Figure 2. Force plate prepared with a coordinate system and with the individually pre-adjusted and
pre-marked foot positions for the different tasks (static and dynamic). Marked landmarks were the
heel in line with the Achilles tendon, medial and lateral malleolus, medial and lateral sesamoid, and
the forefoot. Tape was placed on the subjects’ shoes and on the force plate, and a connecting line was
drawn between each pair of foot-to-floor tape markings considering the above outlined landmark
positions. The malleolus markers were later used to determine the x and y coordinates of the ankle
joint centers for both feet; by calculating the midpoints of the lateral and the medial malleoli.

The simulated static work task included sorting screws and pins while keeping the
trunk in a 40° forward bent posture in the sagittal plane, following the tangent line of a
two-dimensional gravimetric position sensor (PS12-1I; Thumedi GmbH & Co. KG, Thum,
Germany) that was placed on the skin over the spinous process of the 10th thoracic vertebrae
(T10). The examiner monitored the signal on a screen. Additionally, the subjects were
instructed to almost completely extend but never overstretch their knees (stoop knee
posture) and to keep their feet in the pre-marked position. The height of the table was
adjusted and the y-position of the feet was set while the subjects remained in the forward
bent posture, comfortably reaching the sorting material with their hands while their elbows
were flexed at approximately 135°. The sorting task lasted 90 s without moving the feet,
legs or trunk, and was performed in the two following conditions: with or without the
exoskeleton (Static-EXO vs. Static-Control). The subjects rested for 30 s between each trunk
orientation and for 120 s after each static experimental condition. (Figure 3a—c).
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Figure 3. Subjects performing the experimental work tasks using the exoskeleton. (a—c) [16] show
the static sorting task in three Trunk orientation conditions: (a) frontal, (b) right orientation, (c) left
orientation. (d,e) show the dynamic lifting task to the front, performing (d) the squat style and (e) the
stoop style.

The simulated dynamic work task included lifting and lowering an 11.6 kg load (i.e., a
10 kg load placed into a 1.6-kg box [W x D x H of 60 x 40 x 22 cm] with handles on both
sides [19 cm]). The pre-defined body posture for adjusting the table included bending the
upper body at a 70° flexion-angle in the sagittal plane, controlled similarly to the static task,
with the legs almost completely extended but not overstretched. The upper arms hung
perpendicular to the platform with an elbow flexion of approximately 160° while holding
the handles of the box. Each dynamic experimental condition consisted of two sets of five
consecutive lifts, keeping a pace of 5 s per lift, timed by an acoustic signal. The subjects
rested for 35 s between both sets. Each lifting repetition included the following movements:
(1) starting in an upright standing position, bending the trunk forward and picking up the
load; (2) resuming the upright position while holding the load close to the body in front
of the pelvis with flexed elbows; (3) lowering the load by bending the trunk forward and
returning the load to its original position; (4) resuming the initial upright standing position
without the load. The lifting task was performed in the following four conditions: with or
without the exoskeleton, and holding the knees almost extended (stoop style) or bending
the knees (squat style) while lifting (Dynamic-EXO-Stoop vs. Dynamic-Control-Stoop vs.
Dynamic-EXO-Squat vs. Dynamic-Control-Squat). The subjects rested for 60 s between each
trunk orientation and for 180 s after each dynamic experimental condition (Figure 3d,e).

All tasks were approved for their work-related relevance by consulting seven industrial
companies who were already testing or had interest in testing BSEs in their companies. The
applied tasks and their executions, i.e., body postures, lifting frequency, working height,
have best represented the real work situations of these consulted companies.
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2.5. Measurement and Data Analysis

The outcome parameters to assess the forces acting on the tibiofemoral joints during
the dynamic work task were 50th and 90th percentile horizontal (anteroposterior) forces
(HORs5p, HORgp), and 50th and 90th percentile vertical forces (VERT5p, VERTgg). They were
considered as median and peak knee loads during the lifting tasks. During the static work
task, only HOR5p and VERT5, were estimated, since the static body posture over the 90-s
sorting task period would induce 90th percentile forces which do not differ much from
the median forces. To estimate the forces acting on the knee joints, an inverse quasi-static
model was developed, since no established model incorporating the Laevo® exoskeleton
that could be applied was available (see Appendix A for a detailed explanation of the
model). Quasi-static models have been used previously to detect the risk of injury in
industrial workers [30]. For the model, subjects” anthropometrics, including body height,
segment lengths, and segment weights [31-33], distances between the devices” contact
points, lower limb posture, ground reaction forces below the feet, and the force between
the chest and the exoskeleton’s contact surface, were recorded.

To measure the lower limb posture, we used gravimetric inclination sensors connected
to a sampling and storage device (PS12-1I with 2.5D-gravimetrical sensors; THUMEDI
GmbH & Co. KG, resolution 0.1° and 125 ms in time; maximum static error 0.5°; maxi-
mum repetition error 0.2°) attached to the skin over the anterior tibia and femur using
double-sided adhesive tape (25 x 20 mm, 3M transparent Medical Standard, Top Secret®,
Gesellschaft fiir Haardsthetik mbH, Fiirth, Germany). The measurement system con-
tinuously recorded the anteroposterior and lateral inclination angles respective to the
gravitational axis. Possible angular offsets caused by individual placement of the sensors
at the tibia and femur were neutralized using the measurement values of a 5-s upright
standing period recorded prior to the experiment.

Ground reaction forces were continuously recorded using a three-dimensional force
plate that was linked to a signal conditioner and digitizer (FP9090-15-1000; Analog and
Digital Amplifier AM6800; resulting resolution 0.5 N and 125 ms in time; overall maximum
error 6 N; Bertec Corporation, Columbus, OH, USA). The resulting digital force signals
were continuously recorded by self-developed software (University Hospital Tiibingen)
using the Bertec “Device interface Library for NET”, which allows recoded data to be
synchronized with data captured by the inclination sensors placed on the lower limbs.

The force plate’s platform was prepared with a coordinate system to determine the
subject’s standing position, which was kept constant for the static and dynamic tasks (see
2.4 Experimental procedure and tasks; Figure 2). The points forming the tangent between
the lateral and medial malleoli were marked on the coordinate system and used for further
calculations. Prior to each measurement session, a self-calibration procedure was executed
to remove possible offsets, for example, caused by temperature variations. The position
measurement accuracy was regularly checked by placing a 2 kg weight on five predefined
locations on the force plate (at the center and close to the four corners); accuracy was
accepted with measured location errors < 10 mm.

The support moment of the exoskeleton was estimated by measuring the contact force
between the Laevo® exoskeleton and the chest using a @38 mm x 10 mm thick force sensor
(Type KM38-1kN, ME-Mefisysteme GmbH, Henningsdorf, Germany; resolution 0.1 N;
maximum error 1% = 10 N, shown to be <2.5 N in this study setting) that was manually
integrated in the chest pad of the exoskeleton and connected to the previously described
sampling and storage device (PS12-1II, 24 Bit physical resolution, 4096 Hz sampling rate).

Several of the subjects’” anthropometrics (i.e., body height, body weight), segment
lengths, and distances (i.e., shank and thigh lengths, distances between sesamoid and
malleolus) and segment distances of the exoskeleton (i.e., distance between joints and
contact points) were included in the model for the force calculations (Cf. Appendix A).
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2.6. Statistical Aanalysis

The normal distribution of the histograms of the outcome parameters was inspected
visually and the absolute z-values of the skewness and kurtosis of the data were judged
to be valid for statistical evaluation [34]. We used repeated-measures analyses of variance
(RM-ANOVA) with fixed factors Exoskeleton (E), Trunk orientation (TO) and (E x TO) to
analyze differences between the experimental conditions (1) Static-EXO vs. Static-Control
for the outcome parameters HOR5y and VERT5. We used RM-ANOVA with fixed fac-
tors E, TO, Lifting Style (LS), E x TO, E x LF, TO x LS, and E x TO x LS to analyze dif-
ferences between the experimental conditions (2) Dynamic-EXO-Squat vs. Dynamic-Control-
Squat, and (3) Dynamic-EXO-Stoop vs. Dynamic-Control-Stoop for the outcome parameters
HORs5p, HORgy, VERT5, VERTg. However, only the findings including the Exoskeleton-
condition are presented in the results section. To evaluate the static sorting task, we in-
cluded the full 90-s periods. To evaluate the dynamic lifting task, we included only the two
phases including the weight: (2) resuming the upright position while holding the load and
(3) lowering the load by bending the trunk forward and returning the load to its original
position. If statistically significant interaction effects occurred, Student’s t-tests were used for
post-hoc pairwise comparisons. Further interpretations only considered the relevant compar-
isons (i.e., EXO vs. Control within each Trunk orientation: ipsilateral, frontal, contralateral, within
each Lifting style: Stoop, Squat, and within the combination of Trunk orientation and Lifting style).
For fixed effects, F-values, p-values, and effect size partial eta squared (77%) were calculated
using the F-ratios strategy [35], and for the post-hoc pairwise comparison, T-value, p-value,
and effect size Cohen'’s d were calculated using the pooled standard deviation strategy [36]. In
agreement with Cohen [36] and F-ratios strategy [35], effect sizes were interpreted as small
(15 < 0.02; d < 0.2), medium (75 0.13-0.259; d 0.5-0.79), or large (75 > 0.26; d > 0.8). For
pairwise comparisons, we accepted significance levels of x < 0.05 for fixed effects, and of
a <0.00333 for E X TO, o < 0.00833 for E x LS, and « < 0.00076 for E x TO x LS (Bonferroni
correction for 15, 6, and 66 possible comparisons, respectively). JMP® (Version 14.2.0, SAS
Inc., Carry, NC, USA) was used for statistical evaluations.

3. Results

Median values with corresponding interquartile ranges (IQR) and differences between
EXO and Control are provided in Table 1 for the main comparisons of the static and dynamic
work tasks, in Table 2 for the E x TO and the E x LS comparisons for the static and dynamic
work tasks, and in Table 3 for the E x TO x LS comparisons of the dynamic work task.
The related statistics for the main effects of the Exoskeleton condition (EXO vs. Control) and
the interaction effects for E x TO, E x LS, and E x TO x LS are provided in Appendix B
(Table A5) for all examined work tasks. All relevant pairwise comparisons for variables
with significant interaction effects are provided in Appendix B (Table A6) for static and
dynamic work tasks.

Table 1. Median knee force values and corresponding interquartile ranges (IQR), absolute and relative
differences showing EXO compared to Control for static and dynamic work tasks (main interactions).

Knee Force Control Knee Force EXO Difference
Work Task Parameter [N] [N] (EXO-Control)
Median (IQR) Median (IQR) [N] %
Stati HORs, 49.69 (57.28) 46.45 (97.75) —3.24 —6.5%
ate VERTs 693.05 (527.15) 700.09 (478.77) 7.04 H 1.0%
HORs, 52.71 (78.66) 36.56 9611)  —1615"  —30.6%
HORgyg 251.91 (279.74) 246.99 (314.22) —4.92 —2.0%
Dynamic
VERTs 596.91 (376.75) 635.64 (375.45) 38.74 2 6.5%
VERTy, 1010.14 (604.72) 1041.61 (599.21) 31.47 3.1%

Significant differences are shown in bold (p-value & < 0.05). Effect sizes * large effect size (7];2j > 0.26); * medium

effect size (17;27 > (.13)) are shown for the significant differences. Detailed statistics are displayed in Appendix B.
N = newton; HOR5 = 50th percentile of the horizontal force; HORgg = 90th percentile of the horizontal force;
VERTS5, = 50th percentile of the vertical force; VERTgy = 90th percentile of the vertical force.
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Table 2. Median knee force values and corresponding interquartile ranges (IQR), absolute and
relative differences showing EXO compared to Control for static and dynamic work tasks (two-fold
interactions (a) EXO x Trunk orientation and (b) EXO X Lifting style).

@ Knee Force Control Knee Force EXO Difference
[N] [N] (EXO-Control)
Work Task Parameter Trunk Orient Median (IQR) Median (IQR) [N] %
ipsi 57.63 (67.71) 60.11 (122.75) 248 4.3%
HORs front 73.32 (44.90) 88.02 (70.05) 14.69 20.0%
stati cont 20.73 (23.37) —547 (48.34) —26.19* —126.4%
atic
ipsi 896.48 (423.04) 904.65 (433.03) 8.17 0.9%
VERT5, front 765.16 (202.38) 839.40 (232.69) 74.24 9.7%
cont 307.59 (168.52) 349.64 (173.52) 42.05 13.7%
ipsi 67.12 (96.00) 56.41 (109.21) —10.70 —15.9%
HORsp front 69.63 (84.01) 59.84 (105.20) —9.78 —14.1%
cont 29.84 (41.02) 3.53 (53.79) —26.30 © —88.2%
ipsi 365.43 (326.53) 371.04 (346.22) 5.62 1.5%
HORgg front 287.50 (178.97) 309.12 (224.50) 21.62 7.5%
) cont 95.25 (115.99) 78.93 (110.65) —16.32 —17.1%
Dynamic
ipsi 767.35 (418.68) 806.37 (413.84) 39.03 5.1%
VERT5 front 652.35 (313.27) 696.94 (300.28) 44.59 6.8%
cont 409.13 (243.75) 421.87 (233.23) 12.74 3.1%
ipsi 1406.16 (745.10) 1439.82 (723.97) 33.66 2.4%
VERTg front 1009.79 (529.94) 1057.44 (499.05) 47.65 4.7%
cont 798.45 (306.43) 809.17 (306.52) 10.72 1.3%
(b) Knee force Control Knee force EXO Difference
[N] [N] (EXO-Control)
Work Task Parameter Lifting Style Median (IQR) Median (IQR) [N] %
HOR Squat 90.30 (107.91) 61.75 (112.25) —28.55° —31.6%
50 Stoop 71.15 (102.42) 75.53 (149.61) 439 6.2%
HOR Squat 301.63 (338.34) 261.76 (358.53) —39.87 —13.2%
) %0 Stoop 274.26 (286.83) 303.18 (349.62) 28.91 10.5%
Dynamic
VERT Squat 613.48 (354.58) 653.30 (376.70) 39.82 6.5%
50 Stoop 822.45 (681.98) 840.92 (658.81) 18.47 2.2%
VERT. Squat 1006.89 (451.76) 1054.35 (481.07) 47.45 4.7%
90 Stoop 1343.11 (823.42) 1322.57 (771.82) —20.53 —1.5%
Significant differences for the post hoc analyses are shown in bold (p-values « < 0.00333 for E x TO and
o < 0.00833 for E x LS). Effect sizes (* large effect size (d > 0.8); © small effect size (d > 0.2)) are shown for
the significant differences. Detailed statistics are displayed in Appendix B. N = newton; Trunk Orient = Trunk
orientation; HORsy = 50th percentile of the horizontal force; HORgy = 90th percentile of the horizontal force;
VERTS5p = 50th percentile of the vertical force; VERTq = 90th percentile of the vertical force; ipsi = ipsilateral;
front = frontal; cont = contralateral.
Table 3. Median knee force values and corresponding interquartile ranges (IQR), absolute and relative
differences showing EXO compared to Control for the dynamic work task (three-fold interactions
EXO x Trunk orientation x Lifting style).
Knee Force Control Knee Force EXO Difference
Parameter  Lifting Style  Trunk Orient [N] [N] (EXO-Control)
Median (IQR) Median (IQR) [N] %
ipsi 126.78 (142.73) 101.62 (146.48) —25.15 —19.8%
Squat front 101.04 (91.74) 74.35 (92.33) —26.69 —26.4%
HOR cont 50.36 (65.39) 19.57 (69.46) —30.79 @ —61.1%
50
ipsi 94.59 (117.18) 107.05 (159.15) 12.46 13.2%
Stoop front 118.36 (90.48) 142.74 (124.94) 24.39 # 20.6%
cont 29.43 (33.49) 4.26 (58.56) —2517 4 —85.5%
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Table 3. Cont.

Knee Force Control Knee Force EXO Difference
Parameter  Lifting Style  Trunk Orient [N] [N] (EXO-Control)
Median (IQR) Median (IQR) [N] %
ipsi 509.26 (462.72) 481.07 (404.54) —28.19 —5.5%
Squat front 284.71 (173.79) 258.84 (238.40) —25.87 —9.1%
HOR cont 151.54 (232.13) 109.48 (160.99) —42.06 —27.8%
% ipsi 361.67 (233.48) 406.50 (313.69) 44.83 12.4%
Stoop front 346.07 (133.70) 392.77 (169.43) 46.70 13.5%
cont 70.81 (67.34) 60.19 (88.21) ~10.61 ~15.0%
ipsi 833.72 (360.54) 891.83 (325.38) 58.10 7.0%
Squat front 623.58 (225.56) 667.24 (236.27) 43.66 7.0%
cont 393.07 (290.35) 387.06 (261.02) —6.00 —1.5%
VERTs
ipsi 1125.73 (771.99) 1142.44 (708.87) 16.72 1.5%
Stoop front 1006.42 (431.70) 1022.66 (423.27) 16.24 1.6%
cont 413.25 (324.03) 439.88 (323.31) 26.63 6.4%
ipsi 1319.08 (557.25) 1387.66 (541.02) 68.58 5.2%
Squat front 933.70 (363.33) 976.06 (373.88) 42.36 4.5%
VERT cont 864.42 (365.11) 868.97 (335.23) 4.56 0.5%
% ipsi 1912.96 (760.15) 1858.51 (796.44) —54.45 —2.8%
Stoop front 1396.92 (510.29) 1399.91 (467.59) 2.99 0.2%
cont 856.06 (364.26) 868.64 (359.74) 12.58 1.5%

Significant differences of the post hoc analyses are shown in bold (p-value « < 0.00076 for E x TO x LS). Effect
sizes (* medium effect size (d > 0.5); @ small effect size (d > 0.2)) are shown for the significant differences. Detailed
statistics are displayed in Appendix B. N = newton; Trunk Orient = Trunk orientation; HORs( = 50th percentile of
the horizontal force; HORgg = 90th percentile of the horizontal force; VERT5y = 50th percentile of the vertical force;
VERTy = 90th percentile of the vertical force; ipsi = ipsilateral; front = frontal; cont = contralateral.

3.1. Static Task

In the static work task, Exoskeleton had no significant main effect on HOR5y. However,
there was a significant interaction effect for E x TO (p < 0.001; 17%, = 0.496), including a
significant pairwise comparison for the contralateral side (p < 0.001; d = —0.912), which
showed a reduction when using the EXO (—126.4%) (Cf. Appendix B).

The main effect of Exoskeleton was significant for VERT5q (p = 0.011; 17;2, = 0.209); the
acting force increased (1%) when using the EXO. There was no significant interaction effect
for E x TO on VERT5) (Cf. Table 1 and Appendix B).

3.2. Dynamic Task

Performing the dynamic work task, Exoskeleton had a significant main effect on HORs5
(p=0.012; 17;2, = 0.205) with significant interaction effects for E x TO (p < 0.001; 17%, = 0.455),
E x LS (p < 0.001; 17’% = 0471), and E x TO x LS (p = 0.002; 17’% = 0.201). Pairwise
comparisons for E x TO were significant only for contralateral (p < 0.001; d = —0.493).
Pairwise comparisons for E x LS was significant only for Squat (p < 0.001; d = —0.261).
Pairwise comparisons for E x TO x LS were significant for E x ipsilateral x Squat (p < 0.001;
d = —0.195), for E X frontal x Stoop (p < 0.001; d = 0.597), for E x contralateral X Squat
(p <0.001; d = —0.487), and for E x contralateral x Stoop (p < 0.001; d = —0.717). (Cf.
Appendix B) EXO decreased HORs5p when performing the task in Squat style in all directions
(—61.1-—19.8%), and increased HORs5y when performing the Stoop style in ipsilateral and
frontal (+13.2; +20.6%) and decreased HORs5y when performing the Stoop style in contralateral
(—85.5%) (Cf. Table 3).

Exoskeleton had no significant main effect on HORgy. However, there was a significant
interaction effect for E x TO (p < 0.001; 175 = 0.292) and E x LS (p = 0.006; 175 = 0.236), but
without reaching statistical significance in the relevant pairwise comparisons and without
interaction effects for the threefold interaction E x TO x LS (Cf. Appendix B).
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Exoskeleton had a statistically significant main effect on VERT5q (p < 0.001; 17?, =0.376)
without any significant interaction effects (Cf. Appendix B). VERT5 slightly increased
when using the EXO (< 7%) (Cf. Table 3).

Using the EXO had no significant effect on VERTy, (Cf. Appendix B).

3.3. Support Moment

Descriptive information about the 50th and 90th percentile support moment of the
exoskeleton while performing the work tasks is provided in Table 4.

Table 4. Median values and corresponding interquartile ranges (IQR) showing the support moment
provided by the exoskeleton.

. Static Task Squat Lifting Stoop Lifting
Support Moment [Nm]  Trunk Orient

Median (IQR) Median (IQR) Median (IQR)

ipsi 22.72 (7.26) 19.94 (13.21) 19.05 (16.21)

50th Percentile front 23.24 (4.81) 20.79 (15.19) 20.93 (16.90)
cont 22.72 (7.26) 19.94 (13.21) 19.05 (16.21)

ipsi NA NA 29.15 (11.97) 30.25 (10.43)

90th Percentile front NA NA 32.04 (10.61) 32.23 (11.09)
cont NA NA 29.15 (11.97) 30.25 (10.43)

Trunk Orient = Trunk orientation; Nm = Newtonmeter; ipsi = ipsilateral; front = frontal; cont = contralateral.

4. Discussion

Numerous studies have evaluated the use of occupational BSEs on short-term changes
in physical stress and strain parameters in the body region supported by the exoskeleton.
Only a few studies also investigated potential side effects of using occupational BSEs [6].
Therefore, the present study includes the evaluation of biomechanical knee joint loading
when using a BSE. Using the Laevo® exoskeleton had a variable influence on the antero-
posterior acting horizontal forces, which seems to depend on the work task execution
(e.g., lifting style) or posture (e.g., trunk orientation). Yet it remains unclear, whether the
occurring changes are relevant in terms of knee joint health. Furthermore, vertical acting
forces slightly increased due to the exoskeleton’s weight itself.

When performing the static sorting task in a forward bent static upper body posture
with lateral trunk orientation, the ipsilateral knee was heavily loaded and the contralateral
knee was almost unloaded. With respect to the horizontally acting forces on the femoral
part of the knee joint, only the contralateral knee was significantly influenced by wearing
the EXO. Without the EXO, the force mainly acted in anterior direction (Static-Control-
contralateral: 20.7 & 23.4 N), and with the EXO in a more posterior direction (Static-EXO-
contralateral: —5.5 £ 48.3 N). The mechanical principle of transmitting load from the back
to the leg pads via smart joints induced a translation force directed backwards onto the
thighs [12], causing a posteriorly directed knee force.

Performing the dynamic work task using the EXO had an overall influence on HORs.
The major effect for work direction was observed on the contralateral side, reducing the ante-
riorly directed HORs for both Lifting styles (Squat-contralateral: —61.1%; Stoop-contralateral:
—85.5%), while still being anteriorly directed (Squat-EXO-contralateral: 19.6 & 69.5 N; Stoop-
EXO-contralateral: 4.3 £ 58.6 N). Within the E x LS interaction, only the Squat style had a
significant effect, reducing the anteriorly directed HOR5y even during frontally directed
work and on the ipsilateral side during lateral work. In contrast, HORsj tended to increase
when performing Stoop style lifts during frontally directed work and during laterally di-
rected work on the ipsilateral side, similar to our findings for the static work task. Both
tasks were performed while maintaining almost extended knee postures compared to the
Squat style (median flexion in Static: 19.7°; median and peak flexion in Dynamic_Stoop:
17.7°, 31.8°; median and peak flexion in Dynamic_Squat: 39.2°,73.7° (0° flexion referring
to fully extended knees)). Therefore, it is most likely that the effects of using the Laevo®
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exoskeleton on horizontal knee forces depend on the wearer’s body posture (i.e., the knee
flexion angle).

Shear force magnitudes and directions (anteriorly vs. posteriorly directed) have been
shown to vary depending on knee flexion angles in isokinetic knee extension tasks [37,38].
As described in two associated publications [11,16], using the EXO led to more flexed knee
joints in the static and dynamic tasks. The changes were most prominent in those tasks that
included stoop postures (Static; Dynamic_Stoop), particularly contralateral (+95% in Static;
+78.8% in Dynamic_Stoop) where we also detected most HOR5y changes when using the
EXO. Accompanying the knee joint angle changes, the hip joints were also more flexed
by the subjects when using the EXO, particularly in those tasks including stoop postures
and observing the contralateral side [11,16]. Further, the support moment of the Laevo® has
been shown to depend strongly on the flexion angle of the smart joints which are located
close by the hip pivot points [13]. Therefore, the leg pad pressure acting on the thighs must
depend on the hip flexion angle, further influencing the horizontally acting knee forces.

Using the EXO had no effect on HORgy. It is likely that the EXO does not substantially
alter peak horizontal forces when lifting and lowering a load in Stoop and Squat Lifting
styles. Therefore, the Laevo® presumably does not induce high peak horizontal loads on
the knee joint. However, substantial time spent on knee straining work tasks, including
those tasks without substantial force peaks (e.g., holding a posture), has been reported
to be an important risk factor for musculoskeletal disorders in the knee [39,40]. Whether
exoskeleton-induced changes in HORs5 can increase the risk for MSD is beyond the findings
of the present study.

To our knowledge, there is no evidence on quantitatively reported knee forces in
industrial work tasks and on potential changes induced by workplace interventions. Fur-
ther, existing evaluations of knee forces, e.g., during daily activities, have been evaluated
using different methods (i.e., in vivo measurements via telemetry, different biomechanical
models) [41], which makes comparisons difficult. However, in previous studies, anteri-
orly directed knee forces evaluated during activities of daily living (i.e., walking, ascend-
ing and descending stairs, rising from or sitting down in a chair, single or two-legged
stance) were reported to range from 0.04-1.6 times body weight (x BW) (peak) [37,42-46]
and 0.09-0.18 x BW (mean) [43], and during squatting from 0.11-0.15 x BW (peak) and
0.02 x BW (mean) [42,43]. Posteriorly directed horizontal forces were reported to range
from 0.23-1.7 x BW (peak) and 0.12-0.34 x BW (mean) [37,43,44] during daily activities,
and from 0.2-3.6 x BW (peak) [37,47] during squatting. Neglecting bias due to insufficient
comparability between methods and roughly approximating our data into a multiple body
weight (x BW) metric (by dividing each measured force value [N] by the mean body weight
of all included subjects (722.02 N)), we obtained the following forces when using the EXO:
Anteriorly directed horizontal knee forces of <0.12 x BW (median) for static work tasks
and <0.20 x BW (median), and <0.67 x BW (peak) for dynamic work tasks. Posteriorly
directed horizontal knee forces of <0.01 x BW (median) only for the static task. This is
within the force ranges reported for the common activities of daily living, although we
included straining postures and additional loads. Therefore, it is possible that using the
Laevo® does not exert horizontal forces on the knee joints exceeding typical loads. How-
ever, the risk of developing degenerative MSD, such as osteoarthritis in the knee joint, has
been shown to be related to cumulative loading over prolonged durations [40,48-50]. In
Germany, osteoarthritis of the knee and meniscal lesions are listed as occupational diseases
for which cumulative knee exposure is an important factor for their recognition [51]. In
this context, future research should address a possible negative contribution of BSE use on
cumulative loading of the knee joint.

Using the EXO had medium to large significant effects on VERTj5(. The force increased
in the static work task by 0.9-13.7% (8.2-74.2 N) and up to 7.0% (58.1N) in the dynamic
work task, without being influenced by Trunk orientation or Lifting style. EXO had no effect
on VERTy. It can be assumed that the increases in VERT5y were mainly caused by the
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exoskeleton’s own weight (39 N; including the inbuilt force sensor), but probably not by
any additional load transfer from the back to the legs.

Vertical acting knee forces have been reported to range between 1.0-10.0 x BW (peak)
for activities of daily living [37,44,46,52-55], and to range between 0.3-5.6 x BW (peak) for
squat tasks [37,47,54-56]. In the present study, when approximating the data into xBW
metrics, the vertical forces with using the EXO resulted in 0.48-1.25 x BW (median) for
the static task, with 0.54-1.58 x BW (median), and 1.2-2.57 x BW (peak) for the dynamic
work tasks. Similar to HOR, this lies within the range of the reported vertical forces when
neglecting bias due to insufficient comparability between methods. However, in terms of
cumulative knee loading as a risk factor for MSD of the knee, the weight of a BSE may
represent a relevant additional load on the musculoskeletal system of the lower limbs.
While the weight with 2.8 kg of the Laevo® exoskeleton is rather light, other commercially
available BSEs weigh up to 7 kg [57].

Until now, mainly muscle activity has been observed to estimate possible side effects of
using BSEs [6]. The loading of the knee joints is highly influenced by forces exerted by the
knee extensor and flexor muscles [58]. Therefore, it is likely that changes in occurring knee
forces are accompanied by a changed activity of these muscle groups. Previous studies have
reported that the knee extensor muscles are only slightly influenced by the use of the Laevo®
exoskeleton [9,11,16,18,59]. However, the activity of the gastrocnemius medialis muscle
(GM) increased in all dynamic contralateral conditions, possibly due to postural changes [11],
and the activity of the biceps femoris muscle (BF) decreased across all conditions as reported
in two associated publications [11,16], possibly due to the supporting nature of the EXO for
hip extension [11,12,16]. It has been reported that antagonistic coactivation of the hamstring
is one important knee joint stabilizing factor which also influences forces acting on the knee
joint [58]. Both GM and BF contribute to the antagonistic muscle activity with respect to
the knee joint during the tasks observed here. Although a BSE may provoke changes in
musculoskeletal strain (e.g., muscle activity) by addressing a specific joint (e.g., supporting
hip extension), these changes also affect adjacent joints, such as the knee joint. In the present
study, changing the activity of BF and GM by using the EXO may have produced secondary
effects, such as changes of the knee joint forces. This is consistent with the assumptions of
Park et al. (2022), who evaluated a BSE during walking and discussed an accompanying
reduction in knee flexion torque along with a reduction in hip extension torque due to the
hip extension support of the BSE, which may be caused by reduced BF muscle activity [60].

Although this was not explored further in the presented experiment, it is most likely
that possible side effects are nearly proportional to the support provided by the device,
which is caused by the load-transferring character of the BSE. According to our associated
papers, the Laevo® exoskeleton seems to provide a rather low back-relieving effect [11,16].
Consequently, side effects may also occur only slightly. Subsequently, using a BSE that
provides a greater amount of support to the user may also cause more accompanying side ef-
fects. Further, mechanical differences of different devices may lead to different (side) effects
due to the respective mechanical load transfer. For example, Alabdulkarim et al. (2019)
compared three exoskeleton designs of upper body support exoskeletons during simulated
overhead drilling. The findings demonstrated significant differences between the three
exoskeleton designs in muscle activation of the supported area but also different muscle ac-
tivation in non-target region which can be considered as side effects [61]. Therefore, before
implementing a BSE, it is crucial to assess side effects that may occur for each individual
device in its current version.

4.1. Limitations

Several limitations need to be address for the current study. First, the study popu-
lation consisted of healthy male subjects aged 19 to 38 years, which does not reflect the
general working population, also including female, aging, and physically impaired persons.
Therefore, our results cannot be generalized. Second, seven out of originally 36 included
subjects had to be excluded for the knee force calculations, resulting in a sample size of
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29. Data had to be excluded due to technical issues while synchronizing the data for the
first seven subjects. However, the body side that was prepared with the measurement
equipment was still counterbalanced (in 14 subjects on the left, in 15 subjects on the right).
Third, the Laevo® exoskeleton is only partially adaptable to its wearer’s proportions. The
distance between the hip joint and the chest was chosen between two available sizes
(S, L), resulting in a lever arm of 405 mm or 435 mm. Only one of the 29 subjects used the
S-sized model. The distance between the hip joint and the leg pad was not adjustable for
the Laevo®, so the leg pads were not always placed exactly as specified by the manufacturer
(i.e., lower than instructed for shorter subjects). Variations in exoskeleton placement on
the body of the wearer can easily occur when such devices are applied in the field and
must be minimized. Similarly, the exoskeleton cannot always be prevented from shifting
during all movements. However, in our experiments, the fit of the Laevo® was highly
controlled by the examiners. Fourth, all subjects underwent a one-hour familiarization
session, which might be too short to fully adapt to a routine exoskeleton use. Fifth, this
experiment included three highly controlled simulated work tasks (e.g., on working pos-
ture). A real working environment, therefore, was not reflected, and possible variations
of the exoskeletons’ effects are not known. Therefore, field studies under randomized,
controlled conditions are needed to complement laboratory studies, which only provide
initial insights into the acute possible effects of using an exoskeleton. Sixth, this study
focused on acute effects of wearing an exoskeleton. Effects induced by regular long-term
and full-shift use remain unclear and need to be investigated by long-term studies. Seventh,
we used a self-developed biomechanical inverse quasi-static model for calculating moments
and forces acting on the joints. The model includes some simplifications that might cause
deviations from the actual occurring knee joint forces. Generally, in quasi-static models the
dynamic movements are neglected [30] which could have biased the calculated forces in the
dynamic lifting task. A comparison of a quasi-static vs. a dynamic model by Hariri et al.,
(2021) showed an underestimation of peak (19.7%) and cumulative spinal moments (3.6%)
when not including the dynamic movements into the model in manual material handling
tasks [30]. In particular, the 90th percentile knee forces could have been underestimated
in this experiment. Further, only the vertical but not the horizontal components of the
ground reaction force were included into the model. Some simplifications regarding the
joint mechanics were adopted (i.e., neglecting torsional forces, assuming the pivot point
being central and without shifting, treating joints like pure hinge joints, neglecting forces
induced by antagonist muscles). The length of some body segments which were used
for the model was estimated in relation to the respective body length. Only one leg was
prepared with the measurement equipment (i.e., position sensors). Therefore, the force
which was generated by the exoskeleton and acted onto the thighs was distributed onto
both legs to be 50% loaded each. (Cf. Appendix A for detailed information about the model
and its limitations.) Eighth, possible specific effects on the patellofemoral joint could not be
assessed by our analysis. Those effects may be induced by the pressure of the exoskeleton’s
pad onto the anterior upper leg muscles.

4.2. Key Points

e  The changes detected for HOR and VERT seem rather small and may not exceed typical
ranges. However, it remains unclear what additional effect even small increases in
acting knee joint forces have on musculoskeletal knee joint health, considering the
contribution of cumulative loads to MSD of the knee.

e  This evaluation shows that the side effects of using an exoskeleton depend on the work
task executed (i.e., knee and trunk postures). Therefore, the decision to implement a
BSE or not needs to depend on the individual work tasks.

e  Back-support exoskeletons should be as light as possible, as their own weight seems
to directly increase the vertical forces acting on the knee joint.

e  DPotential side effects, such as changes in knee joint forces, should be considered early
in the development of a BSE.
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5. Conclusions

When developing, evaluating, and applying a BSE, it is crucial to also focus on
potential side effects that might occur when using the device during occupational tasks.
We found task and posture-related changes in the loading characteristics of the knee joints
when using the Laevo® exoskeleton using our biomechanical model. Conclusions regarding
the impact on musculoskeletal health risk for the knee would be beyond the present study.
However, due to the cumulative nature of MSD, potential negative effects on the knee joints
when using BSEs should be considered by future research.
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Appendix A. Inverse Quasi-Static Model Used for the Knee Force Calculations

Table A1. Selection of variables used for the model (forces, coordinates, angles, anthropometrics and
segment measures of the subjects).

Ground reaction force (GRF) in three directions [N]: Force plate system linked to a signal conditioner and digitizer
Horizontal mediolateral (x — direction) (Frjpor.x) (FP9090-15-1000; Analog and Digital Amplifier AM6800; resulting
Horizontal anteroposterior (y — direction) (Fplom,.y) resolution 0.5 N and 125 ms in time; Overall maximum error < 6 N *;

vertical (z — direction) (Frjpor.»)

Bertec Corporation, Columbus, OH, USA)

Ground reaction force vector coordinates (x, y) [mm] XFppoors = —My/F;

(xFFloov.z )’ (yFFlnmr.z )

yFFInor.z = MX/FZ
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Table Al. Cont.

Distribution of the vertical ground reaction force
(Fr100r.2) Onto both feet [N]

The vertical ground reaction force vector on the force plate was recorded
continuously, and the x and y coordinates of both ankle joints were kept
constant during the experiments (see explanation above). The total
ground reaction force was distributed over both feet using an equation
estimating the proportion to the ground reaction force of each foot.

FFloo‘r.z.LeftLeg FFloa‘r.z.RightLeg

A 4

FFloor.z.(RightLeg+LeftLeg)

dg | d,.
|

FF/U(JV.:(Rigln‘Leg+L€ftLeg) *d
(dr+dy)

Frioor z(RightLeg + LeftLeg) *AR
FFloor.z.LeftLeg == édRidL)

Following, both legs (left and right) being considered separately in the
model. To simplify, the terms FFloor.z.LeftLeg and FFloor.z.RightLeg
will be omitted and only the formula Fry,,, , will be used.

FFloor.z.RightLeg =

Coordinates (x, y) of both ankle joint centers of the

subjects during the experiments standing on the force

plate [mm]
(xFAnkle )’ (yFAnkle )

The position of both feet was measured and marked prior to the
experiments and controlled to always stay in the preset position (Cf.
manuscript Section 2.4 Experimental procedure and tasks and Figure 2).
The y-position of both, the left and right forefoot was assured to be equal.
The x- and y- coordinates of the lateral and medial malleolus were
marked on the force plate and the midpoint of the tie line connecting
these two points was calculated and used to estimate the x- and y-
coordinates of the ankle joints.

Force of the Laevo® chest pad against the subject’s
sternum [p1V]

(FExo.Thorax )

Measured by a force sensor manually integrated in the chest pad
(diameter 38 x thickness 10 mm; Type KM38-1 kN, ME-Messsysteme
GmbH, Henningsdorf, Germany), connected to a sampling and storage
device (PS12-II; Resolution: 0.1 N; estimated typical error: 0.5 N;
maximum error: 1 N)

An occurring measurement error depends mainly on undesirable shear
forces and undesirable moments acting on the sensor. Estimated typical
and maximum measurement errors were determined using known
applied forces, shear forces and moments. The shear forces and moments
that actually occur during the test were estimated in a qualified manner.

Inclination angles of femur and tibia relative to the
perpendicular [°]
((PFemur.yz)/ ((PTibia.yz)

Measured by gravimetric inclination sensors connected to a sampling
and storage device (PS12-II with 2.5D-gravimetrical sensors; THUMEDI
GmbH & Co. KG, resolution 0.1° and 125 ms in time; maximum static
error 0.5°; maximum repetition error 0.2°)

Body mass [kg]

Measured with a scale prior to the experiment at the subjects’ first visit in
our lab; similar clothing was worn as in the experiment.

Body height [mm]

Measured during an upright stance with the back straight against a wall,
feet hip width apart, facing straight ahead.

Partial foot length (distance of the medial sesamoid
and malleolus) [mm] **

Measured between the most prominent points over the medial sesamoid
and malleolus.

Shank length [mm] Measured on the lateral outside of the shank between the knee joint gap

(Ishank) ** and the malleolus.

Thigh length [mm] Measured on the lateral outside of the thigh between the knee joint gap
IThign) ** and the trochanter major.
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Table Al. Cont.

Foot mass [kg]

Foot mass = body mass % 0.000069 + 0.47 [33]
(mfoot)

Five different sports shoes of different owners were weighed and
their relative weight to the foot mass of the owners was calculated.

Foot + shoe mass [kg] (1 oot 4 shoe) The average relative shoe mass was 0.3229. To estimate the total mass
of foot plus shoe, the previously estimated foot mass was multiplied
by factor 1.3229.

Foot + shoe weight [N] (Fg_FootShoe ) FG.Footshoe = (Foot mass + shoe mass) x 9.81
Shank weight [N] (Fg.snank) FG shank = (body mass % 0.0375 + 0.38) * 9.81 [33]

Distance between the ankle joint center and

= .56 [32
the mass center of the shank [mm] (IpjassCenter.Shank) IMassCenter.Shank = Ishank * 0-56 [32]

Distance between the ankle joint and the center of
mass (COM) of the foot (including the shoe) [mm] IMassCenter.FootShoe = Partial foot length(ma”wlusfsesmoid) % 0.5 [32]

(anssCenter.FootShoe)

T'Achilles = body height x 0.0271

e The factor 0.0271 was estimated by taking measurements of ten
male subjects: measuring the distance of the virtual tangent lines of
the front- and backside of the ankle joint (on malleolus level). The

("achiies) distance was divided by 2 and relatively related to the individual

subjects’ body height. The average of the relative factor of the
10 subjects was calculated and used as factor.

Radius ankle center to Achilles tendon [mm)]

T patella = body height * 0.0358

e The factor 0.0358 was estimated by taking measurements of ten
male subjects: measuring the distance of a virtual tangent line of the
Radius knee center to Patella [mm] (7pger1q) Patella to a virtual tangent line of knee back side. The distance was
divided by 2 and relatively related to the individual subjects” body
height. The average of the relative factor of the 10 subjects was
calculated and used as factor.

Distance smart joint to leg pad: 200 mm
Distance smart joint to chest pad: 405 mm (S-size) /435 mm (L-size)

®

Relevant measures of the Laevo™ exoskeleton

M = moment; F = force/ground reaction force; r = radius; 1 = length; d = distance; L = left; R = right. * The overall
maximum error of GRF was estimated to be < 6 N. Multiple tests were carried out during the measurement
periods and always showed an error below 4 N. ** For all measurements of one individual segment (lower limbs),
we measured either the left or the right body side, which was randomized to be evaluated and therefore prepared
with the measurement equipment, i.e., inclination sensors, in each individual.

Appendix A.1. Description of the Model
Appendix A.1.1. Ankle Joint Forces

Forces and moments acting on the ankle joint are calculated, including the vertical and
horizontal forces acting on the ankle joint (Faukre.. and Faugie,y , respectively) and on the
Achilles tendon (F ¢pijzes )- Therefore, the y-coordinates of the vertical ground reaction force
(YFs0r.)» the y-coordinates of both ankle joints (yf,,,, ), the perpendicular distance between
the pivot point of the ankle joint and the force vector of the Achilles tendon ( 4cpijjes) Were
used. The dead weight of the feet, including shoes (Fg ryotsn0e ), Was considered to not
contributing to the load on the ankle joint. To simplify the model, it is assumed that F 4.j;i1es
acts parallel to the shank.
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Table A2. Symbols with description and Equations as used for the model displayed in Figure A1.

Symbol Description
PTibia.yz Angle between tibia and the perpendicular (in y/z-direction).
Lshank Shank length.
Fachilles Forces acting on the Achilles tendon.
T Achilles Radius of ankle joint center to Achilles tendon.
Fankie Force acting on the ankle joint in z-direction.
Fankiey Force acting on the ankle joint in y-direction.
FG.FootShoe Segment weight of foot + shoe.
Frio0rVirt. Ankle.z Virtual ground reaction force in z-direction, excluding foot + shoe mass.
Frioorz Ground reaction force in z-direction.
YE ke Y-position of the ankle joint.
YEe Footshos Y-position of the force vector of the foot + shoe center of mass.

yFFloaerrI.Ankle.z

Y-position of the virtual ground reaction force vector, excluding foot + shoe mass.

yFFlom.z

Y-position of the total ground reaction force vector.

lMassCenter.FootShoe

Distance between the ankle joint and the mass center of foot + shoe.

Symbol

Equation

FFloorVirt.Ankle.z

= Frioor.z — FG.FootShoe

yFFloathrt.Ankle.z

— FFIOW'Z 'yFFlnm‘.z _FG'F“ms}‘W'yFG.FootShoB
Frioorvirt. Ankle.z

YFs Footshoe = YFame T IMassCenter.FootShoe
. — YErioorvirt. Anktez ~YFankie
FAChlllBS - FFlaorVirt.Ankle.z' FIDD’V";:Z’,]:”“ Akl
= FFioorVirt. Aukie.z + €0S (?Tibiu.yz) “Fachilles
Faukie.z = Frioorz = FG.FootShoe + €05 (?Tibiayz) “Fachilles
YF, —YrF
= Frioor.z — FG.Footshoe + COS (goTibiu.yz) '(FFloor.z - FG.FoatShoe) : erwﬂrﬁz‘,ﬁ;@ Ankle
F = sin <4’Tibm.yz> “Fachilles
Ankle'y o F F YFr100rvirt Auklez —YFAukte
= SN\ PTibia.yz “(FFioor.z = FG.Footshoe)" T Achilles
F = sin <§0Tihia.yz> “Fachilies
A‘ﬂklf.y — i F F, YEr100rvirt. Auklez —YFAnkte
= SN\ PTibia.yz ( Floor.z — G.FootShoE)' T Achilles
— 2 2
FAnkle.yz - FAnkIe.z + FAnkle.y
F e.
(P—FAnkle.yz = arctan (%)
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(pTibia‘yz

F gchittes
Z T—»
T Achille y
A
F Ankle ‘r
F gnkie z i :
Fg Footshllle :
1 : ]
F ! 1
F{nanirt.Ankle.d
| Do
|
YF ankie — > .| Frioorz
lMassCenter.FnatSho
| |
yFG.FoatShae —h : 1
[
» !
YFrioorvirt.ankle.z >
1
»
YFrioor.z g

Figure A1. Calculation of ankle joint forces.

Appendix A.1.2. Knee Joint Forces

The ratio of the weight of the shanks contributing to its segment weight (Fg_ spank)
and the coordinates of these force vectors (yr_,,,.) is calculated using the y-coordinates
of the ankle joints (yf, ,,.), the inclination angles of the tibia (q)T,'b,-ﬂ.yZ), the shanks” weight
and the distance between ankle and shanks’ center of gravity (Injusscenter.shank). These
force components should be considered because they act on the body below the knees and
therefore do not contribute to the force acting on the knee joints.

A resulting “virtual ground reaction force vector”, excluding shank, foot and shoe
(Frioorvirt Knee.z ), is of importance for the calculation of the forces and moments acting on
the knee joints.

In a next step, the force acting on the quadriceps tendon (Fg,,4) is calculated. For
this purpose, the coordinates of the knee joints (yr,, ), which were estimated using the
shank’s inclination angle in the sagittal plane (¢T;pisy-) and the shank’s length (Isyx),

the Frjoorvirt Knee.z » and the distance between the patella and the rotation axis of the knee
—
joint (rpager1q) were used for the model. To simplify the model, we assume F ;44 to act

parallel to the shank. Further, the knee joint moments and the vertical (Fxyee - ), horizontal
(Fknee.y) and resulting total forces acting on the knee joints are calculated using the Fg4,
FrlorVirt Knee,z» and the inclination angle of the femur (@Femur.yz)-
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Table A3. Symbols with description and Equations as used for the model displayed in Figure A2.

Symbol Description
PFemur.yz = Angle between femur and the perpendicular (y/z-direction)
Fouad = Force acting at the Quadriceps tendon
Patella = Radius of knee joint center to patella
Fxnees = Force at the knee joint in z-direction (without exoskeleton)
Frneey = Force at the knee joint in y-direction (without exoskeleton)
PTibia.yz = Angle between tibia and the perpendicular (in y/z-direction)
Ishank = Shank length

lMussCenter.Shank

= Distance between the ankle joint and the mass center of the shank

FG shank = Segment weight of the shank

Frioorvirt Knee.z = Virtual ground reaction force in z-direction, excluding foot + shoe + shank mass
FG FootShoe = Segment weight of foot + shoe

Frioorz = Ground reaction force in z-direction

Y e = Y-position of the knee joint

YFG shank = Y-position of the force vector of the shank center of mass

Y e = Y-position of the ankle joint

YFG Footshoe

= Y-position of the force vector of the foot + shoe center of mass

yFFloaerrt.Knce.z

= Y-position of the virtual ground reaction force vector, excluding foot + shoe and shank mass

yPFloar.z

= Y-position of the total ground reaction force vector

lMassCenter.FootShoe

= Distance between the ankle joint and the mass center of foot + shoe

Symbol

Equation

FFloorVirt.Knee.z

= Frioorvirt. Ankle.z — FG.Shank = Frioorz — FG.Footshoe — FG.Shank

yFmeert.Knee.z

Frioorz YEripor.2 —Fo shank "YFG Shank —Fo Footshoe "YFG Footshoe
FFlm)rVirt.Knee.z

Y Fiee = YEpu. T SN (@Tibia.yz) Isnank
YFG shank = YFume T sin (q’Tibia.yz) 'lMassCenter.Shunk
YE¢ Footshoe = YFume T lMussCenter.PootShoe
_ Y¥knee ~YFrlo0rVirt Kneez
= FrioorVirt Knee.z" W
= oor.z — £G.FootShoe — £'G.Shank)" - -+
v (Fr1 FG Footshoe — FG.shank)
Quad
‘yF +5in((/7Th' ) Tshank — Frioor.2 Y1001z 7FG.SImnk'(}/FAnkle +5i”(q)Tihin.yz)'IMLlssth’r.Shnnk) ~FG.FootShoe’ (yFAnklc +[Maschntar.FoutShou) ‘
Ankle ia-yz an FFloor.z —FG.FootShoe —FG.Shank
" Patella
Fy = FrioorVirt Knee.z + €0S (Q"Femw.yZ) 'FQWd
nee.z
= Frioor.z — FG.FootShoe — FG.Shank + COS((PFemur.yZ) “FQuad
FKnee.y = Si”(QDFemur.yz)'FQuad
_ 2 2
FK”L’E-VZ - FKnee.z + FKnee.y
¢_Fx — arctan ( Hoes
— Rnee.yz - Finee.z

Force acting on the knee joint is induced by the thigh muscles pulling on the anterior and posterior sides
(simplified in this model); therefore, we calculated the absolute value of the “Yr ... = YF o vinknees . Within
the “Fg,44"-calculation. Essential is that the most of the force is acting on the front side of the knee joint,
being transmitted from the quadriceps muscle to the quadriceps tendon. Therefore, the designation “Fg,,4”
was chosen.
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Figure A2. Calculation of knee joint forces.

Appendix A.1.3. Contribution of the Laevo®Exoskeleton

The Laevo® (Laevo®, Delft, The Netherlands) exoskeleton generates a moment about
its rotation axis (“smart joint”) passing through the hip joints, assuming the rotating axis
of the exoskeleton equals the axis which is passing through the rotation points of the hip
joints. Therefore, the exoskeleton is loading the exoskeletons’ contact points, e.g., the chest
at sternum level, the upper legs and the pelvis. The amount of force is determined by (1) the
inclination angle of the exoskeletons “smart joint”, i.e., the angle between the trunk and the
thighs, and by (2) the movement direction (e.g., upwards or downwards). The exoskeleton’s
support moment (MEgy,) and the force acting on the thighs (Fexo.remur.sum) Were recorded
using the measurements of the force sensor that was integrated in the exoskeletons’ chest
pad (Feyo.Thorax) and the geometric dimensions of the exoskeleton’s structures (Igy, Trorax
and lExo.Thigh)-

The forces related to the exoskeleton additionally act on the knee joints, being reduced
by the thigh that acts as the lever arm. These exoskeleton-related forces were considered in
the model as additively overlaying horizontal and vertical components of the forces acting
on the knee joints.

Table A4. Symbols with description and Equations as used for the model displayed in Figure A3.

Symbol Description
IExo Thorax = Distance between the smart joints and the chest pad
IThigh = Thigh length
IExo.Thigh = Distance between the smart joints and the leg pads
PFemur.yz = Angle between femur and the perpendicular (y/z-direction)

FExaThorax

= Force acting on the chest pad

FExo.Thigh.sum

= Force acting on the leg pads

Frxo.Knee = Force acting on the knee induced by the exoskeleton
FEvo.Knee.z = Force acting on the knee induced by the exoskeleton in z — direction
FExo.Kneey = Force acting on the knee induced by the exoskeleton in y-direction

FKneeWithExo.z

= Total force at the knee joint in z-direction (exoskeleton included)

FKneeWIthExa.y

= Total force at the knee joint in y-direction (exoskeleton included)
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Table A4. Cont.

Symbol Equation
MExo = FExo.Thomx'lExo.Thomx
F. . — FExo Thorax "1 Exo. Thorax o MExo
Exo.Thigh.sum Exo.Thigh TExo.Thigh
FEJCO Thigh — FExn.Thr'gh.sum
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Figure A3. Calculations of knee joint forces including the contribution of the exoskeleton.
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Appendix A.1.4. Limitations

Neglecting the dynamic movements
e Cf. Section 4.1 Limitations (manuscript)

Neglecting the horizontal ground reaction forces in this model:

e In this model, solely the vertical component (z-direction) of the ground reaction force
is integrated; both horizontal acting components (x- and y-direction) of the ground
reaction force are presumed to be extremely low in the here presented work tasks due
to the experimental design. (No horizontal movements of the lower limbs and no fast
movements have been included. Horizontal forces may only occur for short moments
and to a small extent, due to the mass inertia during movement.)

Distribution of the exoskeleton’s force acting onto the thighs

e  The calculated sum of the force generated by the exoskeleton and acting on the subject’s
thighs was distributed onto both legs to be loaded by 50% each. This simplification
of the model was applied instead of considering the individual angles between each
upper leg and the trunk, because only one leg was prepared with the measurement
equipment. Assuming that the subjects bent their trunk relative to their upper limbs
similar between both body sides, the resulting division of the forces were exact.
The expected error according to this simplification may be minimal since the main
contribution to the knee joint loading is caused by the subjects’ body weight and not
by the exoskeleton.

Calculation of 7 g 1105 and ' patelia

e  Wedid not find any standard terms for calculating or estimating the # 4 p1jes and #pgyerra
in the available literature; therefore, we used own measurements for calculating an
average ratio of the radius r g¢pijjes and rpgeep, in relation to body size. Errors might
result from this simplification in our model since the real individual distances were
not considered. However, we used a within-subject-design, comparing the different
conditions within each subject. Therefore, the relative changes between conditions can
be used for comparison.

Joints and joint forces

e  The ankle and knee joints were treated like a simple hinge joints; other aspects of the
joint functions and movement variances were neglected.

e Torsional forces were neglected. However, the Laevo® is not designed to support
torsional forces and is unable to absorb those. Therefore, the exoskeleton should not
have any impact on torsional forces at the knee joints.

e  The pivot point of a joint is not necessarily central which is assumed in this model.
Further, when a body is moving the pivot point of a joint is shifting. The virtual pivot
point of the joints is neglected in the model.

e  The model includes forces which are produced by muscles responsible for the main
movement in the work task (agonists). Forces which are induced by the antagonistic
muscles (e.g., the biceps femoris) are not considered. Kellis and Baltzopoulos [58]
showed an influence of including the antagonistic (hamstrings) muscle force into
a two-dimensional tibiofemoral joint force model which increased the posteriorly
directed shear and compression forces. In our force estimating model the antagonistic
muscle force has only been partly included (calf muscle forces but not hamstrings),
which could have biased the calculated knee forces.

Gravimetric position sensors

e  Gravimetric positions sensors provide a very high precision in static postures and
slower movements (standard error < 0.5°). In fast movements including high accel-
erations (which were not included in this experiments) these sensors are less precise;
other techniques (i.e., motion capture systems) should then be applied.
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Appendix B.

Table A5. F-values and p-values of the repeated measures ANOVAs with corresponding effect sizes
(partial eta squared (17%)). Main effects of the Exoskeleton condition (E) and the interaction effects for E
with Trunk orientation (E x TO), E with Lifting style (E x LS) and E with TO and LS (E x TO x LS) for
static and dynamic work tasks.

HORs, HORg VERTs5, VERTjg
Task Effect 3 > > >
F p 1, F p U F p 1, F p Un
) E 0.16 0.696 0.006 - - - 7.41 0.011 0.209 - - -
Static ExTO 2760 <0.001* 0496 1.19 0313 0.041
E 7.24 0.012*  0.205* 0.02 0.888 0.001 16.85  <0.001*  0.376 » 1.64 0211 0.054 ©
D ) E x TO 2334  <0.001*  0.4557 11.90  <0.001*  0.292* 1.02 0.368 0.035 © 0.16 0.852 0.005
ynamic ExLS 2496  <0.001* 04717 8.84 0.006*  0.236" 1.52 0.227 0.052 © 4.06 0053  0121°
ExTO x LS 7.04 0.002*  0.201*" 1.52 0.227 0.049 © 2.96 0.060 0.096 © 2.60 0.083 0.086 ©
* Significant p-values (x < 0.05); A large effect size (17% > 0.26); * medium effect size (r]% > 0.13); © small effect
size (17;27 > 0.02); HORs( = 50th percentile of the horizontal force; HORgy = 90th percentile of the horizontal force;
VERTS5, = 50th percentile of the vertical force; VERTgy = 90th percentile of the vertical force.
Table A6. Pairwise comparisons (p-values and Cohens’d (d)) for the relevant interactions between
E x TO,E x LS, and E x TO x LS for variables with significant interaction effects for static and
dynamic work tasks.
e e HORSO HOR90
Task Effect Trl.mk Lifting
Orient Style p d p d
ipsi 0.372 0.083 n.a. n.a
Stat E x TO front 0.091 0.269 © n.a. n.a
cont <0.001* —0.9127 n.a. n.a
ipsi 0.311 —0.045 0.981 —0.024
E x TO front 0.834 0.018 0.028 0.230 @
cont <0.001* —0.493° 0.013 —0.244 °
Ex LS Squat <0.001* —0.261° 0.033 —0.139
Stoop 0.276 0.072 0.050 0.145
Dyn
y ipsi Squat <0.001 * —0.195 - -
P Stoop 0.024 0.166 - -
Squat 0.001 —0.335° — -
EXTOXLS — front g 0n <0001 0597 M - -
¢ Squat <0.001 * —0.487 ¢ — -
con Stoop ~ <0.001* —0.717 # - -
* Significant p-values (e < 0.00333) for E x TO; (o < 0.00833) for E x LS; (« < 0.00076) for E x TO x LS; * large
effect size (d > 0.8); * medium effect size (d > 0.5); © small effect size (d > 0.2); Trunk Orient = Trunk orientation;
HORs5( = 50th percentile of the horizontal force; HORgy = 90th percentile of the horizontal force; VERT5y = 50th
percentile of the vertical force; VERTqy = 90th percentile of the vertical force.
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This dissertation contributes knowledge of how using occupational exoskeletons—with
a focus on passive back-support exoskeletons—may affect the musculoskeletal system of
humans. It comprises of four publications (Chapters 2—5). One aspect, herein, is the
determination of its positive effects, meaning a potential reduction of work-related stress
or strain in the target body area, namely, the lower back. Another focus of this thesis is
the detection and discussion of possible side-effects impacting areas outside of the target
region. This discussion chapter will highlight key findings of the studies included in this
doctoral thesis, summarize and discuss their contribution to the broader research context,
derive practical implications regarding the use of occupational exoskeletons, and present

recommendations for future research.

6.1 Effects of using occupational back-support exoskeletons

In Bér et al. (2021) we showed that using a BSE in work tasks has the potential to reduce
physical strain parameters (e.g., muscle activity, perceived strain) in the back area, which
has also been reported but not quantitatively investigated by other existing reviews within
this research field (de Looze et al., 2016; Kermavnar et al., 2021; Theurel & Desbrosses,
2019). To date, there are only a few studies focusing on stress parameters, such as forces
and moments, or on physiological strain, such as heart rate and energy expenditure, and

the findings are inconclusive (Bir et al., 2021).

Physical stress and strain

As presented by Bér et al. (2022a) and Luger et al. (2021b), using the Laevo® exoskeleton
in either a static holding or a dynamic lifting task (both being short-term performances)
only slightly reduced muscle activity in the back area. Therefore, its beneficial effect on
the lower back is questionable. Interestingly, hip extensor muscle activity (biceps femoris
muscle) decreased when using this device (Bér et al., 2022a; Luger et al., 2021b), which
is in line with other studies investigating passive BSEs (Bosch et al., 2016; Luger et al.,
2021a). These findings indicate that the trunk extending character of a rigid BSE such as
the Laevo® works due to an extension torque at the hip level than at the lower back level
since the spring joint is located on the outside of the hip joint. Therefore, the designation
of the Laevo® being a “hip-support exoskeleton” (ExR), rather than a BSE, might be

more suitable.
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Although the effects of using occupational BSEs are not yet confirmed, several
literature reviews agree that reducing acute stress and strain in the back area may be one
positive effect, and thus, reducing factors associated with WMSD and injury. However,
the real impact of implementing an exoskeleton intervention on the true risk of developing
WMSD or experiencing injury remains unknown (Bér et al., 2021; de Looze et al., 2016;
Kermavnar et al., 2021; Theurel & Desbrosses, 2019). In this context, it is not clear which
magnitude of the various acute stress and strain reductions has a positive effect on
musculoskeletal health and to what extent. Furthermore, for an estimation of the
exoskeleton’s effects on WMSD risk, the detection of chronic effects is essential, since
cumulative loading plays a substantial role in the development of WMSD (Coenen et al.,

2013; Sandmark et al., 2000; Verbeek et al., 2017; Walzer & Thiede, 2016).

Energy expenditure, metabolism, and cardiovascular demands

Occupational exoskeletons aim to reduce the musculoskeletal load experienced in certain
areas, but they may also affect other physiological processes, such as energy expenditure
and cardiovascular and metabolic workload. In Bir et al. (2021) we showed inconclusive
findings for using BSEs, including decreased (Alemi et al., 2020; Baltrusch et al., 2019;
Baltrusch et al., 2020a; Lotz et al., 2009), unchanged (Godwin et al., 2009; Luger et al.,
2021a), and increased (Baltrusch et al., 2019; Marino, 2019; Miura et al., 2018) metabolic
and cardiovascular parameters. Using the Laevo® slightly reduced the heart rate,
although it was not substantial (Bér et al., 2022a; Luger et al., 2021a, 2021b). Possible
elevations in other devices may be caused by additional weight the exoskeleton user has
to carry or changes in the user’s usual movement pattern. However, this assumption is
beyond the current knowledge. Most occupational exoskeleton research has focused on
acute effects, and only a few studies have used endurance protocols (lasting 45min
(Godwin et al., 2009) to 120min (Marino, 2019)), which are essential for the detection of

metabolic and cardiovascular responses at work.

6.2 Side-effects of using occupational back-support exoskeletons
For a safe application of exoskeletons, potential side-effects need to be clarified before
implementation. Within this new research field, many open questions remain, some of

which were addressed in Chapters 2-5.
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Physical stress and strain

As indicated by Bar et al. (2021), increasing stress and strain in non-target areas when
using a BSE is the main concern of potentially occurring side-effects. Herein, muscle
activity or perceived parameters have been evaluated most frequently (e.g., Alemi et al.,
2019; Bosch et al., 2016; Luger et al., 2021a). However, there is no sufficient evidence
whether using a BSE negatively affects its user or not (Bér et al., 2021). In Bér et al.
(2022a) and Luger et al. (2021b), we confirmed previous findings that only minor changes
in muscle activity of the non-target areas occur when performing either static sorting (Bar
et al., 2022a; Bosch et al., 2016; Kim et al., 2020) or dynamic lifting (e.g., Alemi et al.,
2019, 2020; Baltrusch et al., 2019; Frost et al., 2009; Luger et al., 2021b; Madinei et al.,
2020a) work tasks using the Laevo®. Excluded from this was the biceps femoris muscle,
whose function is mainly to provide a hip extension torque in the here evaluated motoric

tasks and should therefore be considered as the target area of the exoskeleton.

In Bér et al. (2022b) we describe, as far as we are aware for the first time, the knee
joint forces (horizontal-anteroposterior and vertical tibiofemoral joint forces) when using
a BSE. Using the Laevo® during various work tasks resulted in increased vertical
tibiofemoral joint forces, illustrating a clear impact of the device’s weight on the
musculoskeletal structures lying underneath. The influence of the Laevo® on horizontal
tibiofemoral forces seems to depend on the performed work task and a certain maintained
posture, which supports several previous studies evaluating muscle activity and posture
when using BSEs (Bér et al., 2022a; Kim et al., 2020; Luger et al., 2021a, 2021b; Madinei
et al., 2020a).

According to current literature, increased stress may be induced by a load transfer
from one body area to another (Bosch et al., 2016; Frost et al., 2009; Steinhilber et al.,
2020; Theurel & Desbrosses, 2019). Nevertheless, Zelik et al. (2022) warned against a
common assumption that the load taken from a certain area is directly transferred to other
areas. An exoskeleton functions via leverage: less force is needed than the
musculoskeletal structures would need to perform the same task (Zelik, 2020). However,
the occurrence and mechanism of load transfer or newly appearing load on the

musculoskeletal system needs to be investigated in more depth.

92



Kinematic changes—body posture

Body posture was described previously to interact with exoskeleton effects and with
musculoskeletal health. Bér et al. (2022a) and Luger et al. (2021b) show that using the
Laevo® exoskeleton leads to increased hip and knee flexion angles, especially prominent
in the hip joint where the exoskeleton torque applies. Simultaneously, spinal posture only
changed slightly (Bér et al., 2022a; Luger et al., 2021b). This is in line with the results of
investigating the Laevo® in less controlled simulated work tasks (Luger et al., 2021a),
however, the effects of using BSEs on kinematics is conflicting across the literature to

date and their impact on musculoskeletal health is not known.

An adjusted body posture might be taken by the users in order to adopt the most
convenient posture to benefit from the exoskeleton’s supportive torque, to maintain
postural stability when performing a particular work task, or to take a comfortable posture
(e.g., to avoid any discomfort induced by the device’s structures). However, any
kinematic changes may lead to further consequences along the involved postural chain.
Even if an altered joint angle is judged to be positive (e.g., restricted lumbar flexion), it
is associated with further adaptations of the locomotor system, such as inter-joint
coordination (e.g., movement pattern across adjacent joints), inter-muscular coordination
(e.g., co-contraction), intra-muscular coordination (e.g., muscle activity recruitment),
muscle mechanics (e.g., muscle lengths), and centre of gravity shifts (Burgess-Limerick,
2003; Gallagher & Hamrick, 1991). This emphasizes the need for research, including the
entire postural chain, when evaluating occupational exoskeletons (Theurel & Desbrosses,
2019). Except for single joint angles in a few investigations, other kinematic parameters
such as movement velocity, acceleration, and joint range of motion have not been studied
in detail (e.g., Baltrusch et al., 2020a; Koopman et al., 2020a; Madinei et al., 2020a;
Simon et al., 2021).

Muscular co-activation

In Bér et al. (2022b) we discussed the aspect of antagonistic muscle co-contraction and
its contribution to joint stability and joint forces for the knee joint, and the possible
influence of using a BSE on it. Likewise, in the spine area, muscle co-contraction may be
a significant risk factor for back disorders, e.g., resulting in LBP (Theurel & Desbrosses,

2019). When lifting, abdominal muscle activity contributes to the required amount of
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trunk stabilization (de Looze et al., 1999; Ivancic et al., 2002; Koopman et al., 2019) and
may increase to take over while decreasing back muscle activity (de Looze et al., 1999),
for example, in deep stoop trunk flexion when flexion-relaxation occurs (Frost et al.,
2009; Koopman et al., 2019) or when taking advantage of the BSE support (Alemi et al.,
2019; Frost et al., 2009). A disadvantage might be that the increased stiffness caused by
abdominal muscle activity contributes to an elevated spinal compression force (de Looze
et al., 1999). Mostly, this muscle group did not experience major changes when using a
BSE (Bir et al., 2021, 2022a; Luger et al., 2021a, 2021b). In contrast, a few studies
monitored increased abdominal muscle activity that appeared in some of the task
executions, such as stoop lifting (Frost et al., 2009; Koopman et al., 2019), when the
exoskeleton was set to a stiffer mode (Frost et al., 2009), and some results showed high
inter-subject variabilities (Alemi et al., 2019; Koopman et al., 2019). The rationale behind
the increased abdominal muscle activity in some cases (Frost et al., 2009), and the extent
to which this may contribute to spinal compression (Koopman et al., 2019), is not clear
yet. The possible contribution of muscular co-activity to the effects of using occupational
exoskeletons should be considered instead of relying on evaluations of single muscles or

muscle groups.

Balance impairment

A further concern that has been raised is the impairment of the wearers’ balance by
wearing an external structure (de Looze et al., 2016; Howard et al., 2020; Nussbaum et
al., 2019; Zingman et al., 2017). The centre of gravity may shift (Howard et al., 2020;
Zingman et al., 2017), which can lead to a loss of balance and consequently to an increase
of falling risk (Holbein & Chaffin, 1997; Pollock et al., 2000). This requires special
attention for work areas already including environmental hazard risks (e.g., heights, risk
for slipping, etc.). The aspect of balance or postural control in occupational exoskeleton
wearers has received very little attention so far. In a study by Alemi et al. (2020), the
perceived balance remained unchanged in three out of four lifting task conditions and was
improved in one when using the Laevo® V2.5 exoskeleton, while the balance was
reported to remain unchanged in all conditions when using another passive BSE’.

Wearing two lower body exoskeletons in occupational assembly tasks (Luger et al., 2019)

7 BackX™ AC (US Bionics Inc., Berkeley, CA)
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or for load carrying in a military context (Schiffman et al., 2008) resulted in changes in
the centre of pressure trajectory. Changes in balance and postural control are most likely
dependent on an individual exoskeleton design (e.g., the exoskeleton’s individual

mechanical properties) and should be individually estimated prior to an application.

Neuro—cognitive demands

Zhu et al. (2021) highlight possible enhancements of neuro—cognitive demands that, if
substantial, may lead to alterations in muscle recruitment patterns and muscle co-activity.
When lifting and lowering a load while performing an additional cognitive dual-task
(mental arithmetic) they found neuromotor and cognitive adaptation efforts when using a
passive BSE. The consequence could be an increased loading in several body areas. This
may further diminish the original positive effect of reducing the physical load in an
addressed area (e.g., lower back). Considering individual exoskeletons, this effect may
increase with the complexity of the device in terms of use (Zhu et al., 2021). However,

apart from this one study, the discussion is beyond the findings of the current literature.

Perceived strain

Perceived strain has been used as a predictor for the occurrence of musculoskeletal strain.
Subjective perceptions such as perceived discomfort, exertion, and tension were reported
to be increased in non-target areas when using a BSE (Alemi et al., 2020; Bosch et al.,
2016; Gorsic et al., 2022; Kim et al., 2020). However, at present, the picture of increased,
decreased, or unchanged perceived strain in the non-target areas is ambiguous (Bér et al.,
2021). Importantly, negatively perceived subjective parameters do not necessarily
indicate the hazardous nature of an exoskeleton itself. Remediable reasons could be
responsible, such as subjects not being familiarized with wearing the exoskeleton, poor
fit of the device (Zingman et al., 2017; e.g., not being correctly adjusted or no possibility

to adjust the structures to the wearer), or incorrect use (e.g., through incorrect settings).

External hazards and repercussions

There are possible external hazards and repercussions that need to be considered before
approving an exoskeleton for work. First, the aim of anthropomorphic exoskeletons is to
mimic the user’s anthropometry and align their joint rotation axis with the user’s joints.

Although many exoskeletons are constructed to be adjustable to the wearer’s body, the
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alignment of structures may not coincide perfectly with the user. Poor compliance of the
exoskeleton with the human’s anthropometry and mechanics may cause additional,
undesirable forces and subsequent discomfort or elevated injury risk (Huysamen et al.,
2020; Toxiri et al., 2019). Second, mobility may be restricted by wearing an exoskeleton
making fast movements difficult, e.g., in hazardous situations (Zingman et al., 2017). This
may impair dodging an object, quickly escaping from a hazardous place, or regaining
balance after stumbling. Third, the structures of the exoskeleton could get caught on
passing or overhanging objects/structures or machinery (Kim et al., 2019), especially
when being very expansive. Fourth, when falling, injury risk may be increased due to the
structures around the body and the additional weight of the device (DGUV, 2019; Schick,
2018). Fifth, an exoskeleton may hinder accurately wearing a necessary PPE (e.g., fall
arrest harness in hights) and might therefore diminish its protective function (BGHW,
2022; Kim, 2019). Sixth, hygiene issues may occur when exoskeletons are shared
between several users and not cleaned appropriately (Kim, 2019; Zingman et al., 2017).
Seventh, the exoskeleton may give its wearer a false sense of increased safety, and he or

she might take more risks at work or overwork oneself (Kim, 2019; Lowe et al., 2016).

In conclusion, there are various aspects to consider when identifying possible side-
effects and repercussions of using occupational exoskeletons. To date, evidence is lacking
on whether exoskeleton applications adversely affect the musculoskeletal system of the
wearer, especially in the long run. Caution is therefore required for promoting the

application of occupational exoskeletons.

6.3 Factors influencing the effects of back-support exoskeleton use

Work task and execution technique dependency

When observing a certain task execution, including lifting styles and trunk orientation,
the respective posture should be considered as it has been shown to interact with the
(side-) effects of using the Laevo® exoskeleton on stress and strain parameters (Bér et
al., 2022a, 2022b; Luger et al., 2021b). This is not surprising given the provided torque
of an individual device probably depends on the device’s joint angles and the wearer’s

posture, further supporting previous investigations (e.g., Kim et al., 2020; Madinei et al.,

2020a, 2020b).
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In realistic full- or part-time work shifts, a variety of work tasks need to be
performed, and various task executions are possible dependent on the exoskeleton user or
the environment. Several studies have shown that the effects—either positive or
negative—of using a BSE depend on the work tasks performed and vary between distinct
task executions. In lifting tasks, stress and strain parameters were influenced by lifting
style (stoop, squat, freestyle; Bar et al., 2022b; Frost et al., 2009; Luger et al., 2021b),
lifting distance (Koopman et al., 2020a), lifting symmetry (including trunk rotations; Bér
et al., 2022b; Madinei et al., 2020a), and movement direction (up or down) as well as
inclination angle within a lift-lower cycle (Schwartz et al., 2021). In manual assembly
tasks, work hight, distance, and symmetry were determinants for the effects on stress or
strain (Bér et al., 2022a; Kim et al., 2020; Madinei et al., 2020b), and in static trunk
forward bending postures, the bending angles manipulated the effects (Koopman et al.,

2019; Tetteh et al., 2022).

Exoskeletons are usually designed to support specific work tasks which directly
serve a work goal, such as assembly tasks in industries or lifting objects in logistics
(primary tasks). However, in between primary tasks, additional tasks need to be
performed, such as climbing stairs or a ladder, lifting an object (if this is no regular task),
rising from a chair, or simply walking (secondary tasks; BGHW, 2022; Glitsch, 2020).
Using the Laevo® in several functional tasks was reported to increase perceived task
difficulty, to mainly negatively alter task performance (e.g., prolonging task duration;
Baltrusch et al., 2018; Luger et al., 2021a), and to increase discomfort, particularly in
walking tasks and tasks requiring a high joint range of motion (the supportive torque
either being switched on (Baltrusch et al., 2018), or off (Luger et al., 2021a)). Another
passive BSE® was shown to alter gait parameters in simple walking, which may negatively
affect walking energetics and fall risk (Park et al., 2022). This emphasizes the concern of
negative effects occurring as a result of using exoskeletons in secondary tasks that the

devices are not designed for.

Subject dependency

The heterogeneity of human anthropometrics has been described to be one key factor for

the design and fit of anthropomorphic exoskeletons (Cenciarini & Dollar, 2011), and

8 backX™ AC (US Bionics Inc., Berkeley, CA)
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further personal characteristics such as sex, health status, and age may influence the
effects of using the devices. Despite this, most of the current research has included rather
young, healthy (Kermavnar et al., 2021), and male subjects (Bér et al., 2021; Kermavnar
etal., 2021). For example, an exoskeleton may fit differently depending on its user. That
is, it may not be adjustable according to the manufacturer’s instruction (e.g., the leg pad
position is dependent on thigh length; Bir et al., 2022a, 2022b), it may slip in some users
when moving (e.g., a BSE-hip belt dependent on the individual pelvis shapes), it may
induce increased pressure or discomfort (e.g., by the chest pad dependent on an
individual’s thorax size; Alemi et al., 2020; Kim et al., 2020), or users may receive a
different amount of relative support (e.g., too little or too much torque, depending on body
mass; Baltrusch et al., 2020a; Simon et al., 2021). A few studies have addressed possible
interaction effects of sex with intervention and found different effects for males and
females on some evaluated parameters, including perceived discomfort, perceived
exertion, muscle activity in target and non-target areas, and performance when evaluating
distinct BSEs (Alemi et al., 2020; Kim et al., 2020; Madinei et al., 2020a, 2020b; Ulrey
& Fathallah, 2013a) or ULEs (Alabdulkarim et al., 2019; Alabdulkarim & Nussbaum,
2019). However, the nature of such differences is not clear yet. Anthropometric
differences between males and females (e.g., differences in upper body mass) could be
responsible for variations in postures and movements, and distinct exoskeleton design
approaches need to reflect the specific needs of male and female users (e.g., in fit, or
required torque; Alemi et al., 2020; Madinei et al., 2020a). Already in the developmental
stage of an exoskeleton, individual technical requirements for the device of human
characteristics (e.g., sex, anthropometrics, age, and musculoskeletal health) should be

considered. Future research needs to focus on the detection of these.

Design dependency

Another factor that determines the effects of using occupational exoskeletons in work
tasks is their individual design, e.g., their mechanical characteristics (Schwartz et al.,
2021; Theurel & Desbrosses, 2019). To date, only a few studies have focused on
comparing different BSE designs in occupational assembly tasks (Madinei et al., 2020b)
or lifting tasks (Alemi et al., 2020; Madinei et al., 2020a) and found differences in stress
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and strain parameters between the devices’ (working with rigid components). When
comparing five different support settings by modulating the stiffness of the elastic
elements in a soft BSE!? (Frost et al., 2009) and when comparing two distinct support
settings of a rigid BSE!'! (Koopman et al., 2020a; Koopman et al., 2019) distinct effects
on stress and strain parameters between the setting conditions were identified. These
differences interacted with the work task executions, such as the lifting style (Frost et al.,
2009), lifting height (Koopman et al., 2020a), and trunk bending angle (Koopman et al.,
2019).

6.4 Supportive torque characteristics

Upcoming research should focus on the level of physical support provided by the
exoskeleton, as this has been poorly attended to so far (Glitsch, 2020; Huysamen et al.,
2020; Steinhilber et al., 2020). Herein, it needs to be questioned how much supportive
torque provided by an exoskeleton would reduce stress and strain (and to what extent) in
the supported areas and, further, which level of stress and strain reduction would be
effective in terms of reducing WMSD and injury risks. Furthermore, necessary support
may vary across individuals. In a subject with less body mass, the absolute torque of an
exoskeleton is relatively higher than that of a heavier person, and moreover, their personal
force capacity may vary. For example, in a study that evaluated a passive BSE!? that has
a comparatively high supportive torque, one female participant had to be excluded
because “the exoskeleton appeared to be too strong” for her (70 Nm vs 23—50 Nm in some
other BSEs!®; Baltrusch et al., 2019; Bir et al., 2022b; Koopman et al., 2019; Lamers,
2017; Simon et al., 2021). Further, for different work tasks, a different amount of
supportive torque is required (Nif et al., 2018). Lifting style, for example, which depends
on the particular lifting conditions (e.g., object size and height), is a determinant for
lumbar spine moments (Kingma et al., 2010) and the necessary support is therefore

individual (Néf et al., 2018).

® backX™ AC (US Bionics Inc., Berkeley, CA) and Laevo™ V2.5 (Laevo, Delft, The Netherlands)

1" PLAD—personal lift assist device (Abdoli-Eramaki et al., 2006)

! Laevo (V2.4) (Laevo, Delft, The Netherlands)

2VT Lowe (Chang, 2021)

13 PLAD—personal lift assist device (Abdoli-Eramaki et al., 2006), Laevo® V2.4/ V2.5 (Laevo ® Delft, Netherlands),
Biomechanically-Assistive Garment (Lamers et al., 2017), and SPEXOR (Baltrusch et al., 2020)
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In passive BSEs, the angle-force relationship is individual for each design, and
different work tasks need certain force—angle relationships of the supportive torque. The
Laevo® exoskeleton, for example, provides its highest support at a trunk forward flexion
angle of around 40° and substantial supportive torque differences were found between
trunk bending and extending movement (Koopman et al., 2019). The exoskeletons user
may not benefit when holding a trunk forward bent posture differing from the optimal
support angle. Furthermore, the relatively higher supportive torque in a dynamic
movement (e.g., lifting) when bending down may produce additional negative side-

effects, while the upward movement is sufficiently or too little supported.

Taken together, exoskeletons have different support characteristics, and the
required support depends on the individual work tasks and the individuality of humans.
Therefore, for safe and effective applications of BSEs, the optimal assistive torque needs
to be determined for work situations. Unfortunately, there is little guidance regarding the
necessary supportive torque magnitude for developers (Huysamen et al., 2020). In many
studies, the supportive torque was not recorded, considered for the interpretations of the

results, or reported.

6.5 Health-relevant considerations

Prevention of WMSD

The effectiveness of occupational exoskeletons with respect to their central aim to prevent
WMSD must be verified before an application can be considered. The type of application
is determined by three different stages of prevention based on the subject’s health status.
For a primary prevention, exoskeletons would be used regularly in healthy individuals
with the goal of avoiding WMSDs. For a secondary prevention, exoskeletons would be
used to reduce musculoskeletal symptoms or to prevent exacerbation in symptomatic
individuals. For a tertiary prevention, exoskeletons would be used to delay the course of
WMSDs or to help with the individual’s reintegration (Steinhilber et al., 2020). Although
it has been previously described that occupational exoskeletons can reduce parameters
associated with WMSD risk, the authors of several reviews and overview papers agree
that no preventive effects can yet be derived from the current state of research (Bir et al.,
2021; Howard et al., 2020; Steinhilber et al., 2020; Theurel & Desbrosses, 2019). The

majority of the available research to date has focused on healthy subjects. Therefore, the
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usefulness for symptomatic individuals—including secondary and tertiary prevention—
cannot be estimated. To estimate all three types of prevention, a better knowledge of the

long-term effects of using the devices under realistic working conditions is essential.

Appraisal for an application as personal protective equipment

A possible categorization of occupational exoskeletons as an emerging type of personal
protective equipment (PPE) has been suggested, due to their characteristic similarities,
such as their wearable nature and preventive intention (BGHW, 2022; DGUV, 2019;
Lowe et al., 2019). A legal prerequisite for a PPE declaration is the conformity according
to the Personal Protective Equipment Regulation (EU) 2016/425, including a risk
assessment for the device (Regulation, 2016). Accordingly, conventional PPE is intended
to protect the user from external hazards by providing a physical barrier (e.g., protective
shoes, gloves, glasses; Howard et al., 2020; Lowe et al., 2019). However, experts in the
field of occupational exoskeletons express concern that the body of evidence to promote
exoskeletons being qualified does not yet exist (Howard et al., 2020; Kim et al., 2019;
Nussbaum et al., 2019). Additionally, qualification and test standards are still lacking
(Lowe et al., 2019).

In contrast to the idea of external protection, exoskeletons aim to prevent the user
against the internal physical load of the musculoskeletal system or metabolic exertion.
Quantifying the profit of using such a device is challenging, as it depends on various
factors (e.g., physical composition and capacities of the individuals, work tasks, and
exoskeleton design; Lowe et al., 2019), which were discussed in detail in section 6.4. As
addressed in section 6.5, it is not clear how much supportive torque would be necessary
for a certain situation and the extent of risk reduction this would lead to. Certainly, this
information together with the knowledge of occurring side-effects—which was
extensively discussed in section 6.2—should be the basis for the assessments proving

occupational exoskeletons to be qualified as PPE.

6.6 Methodological approach of exoskeleton research
The main issue for a realistic evaluation of occupational exoskeletons, and related
recommendations for practical applications, is the low methodological quality found in

the literature: Studies that include various interrelated parameters, focus on the broad
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spectrum of possible side-effects, and long-term field studies are still missing (Bér et al.,

2021).

Selection of evaluated parameters

An important thing to keep in mind is that primarily only muscle activity—which is
indeed important to evaluate—has been observed without monitoring related parameters
(Bér et al., 2021; Kermavnar et al., 2021; Theurel & Desbrosses, 2019). The relation of
muscle activity to body posture was shown in two BSE evaluations, in which slight
changes in spine postures led to major changes in back muscle activity (Koopman et al.,
2019; Ulrey & Fathallah, 2013a). This may be due to a shift between active and passive
structures (Koopman et al., 2019), as passive structures (such as ligaments and connective
tissue) provide parts of the required torques for movements or holding postures
(Fathallah, 2004; Gallagher & Hamrick, 1991). Especially in lower trunk forward bent
postures, the back extensor muscle activity decreases and the load is absorbed by
stretched passive structures, which then provide the extension torque. Both active and
passive internal forces are responsible for spinal compressive and shear forces affecting
the intervertebral discs (Fathallah, 2004). Therefore, a reduction in strain parameters (e.g.,
muscle activity) may accompany increased stress on other structures (e.g., joint forces).
Thus, an interpretation of strain parameters without additionally monitoring the body

posture and stress parameters should be done cautiously (Koopman et al., 2019).

Further, although many passive BSEs provide a supportive torque at the hip joint
level, most BSE investigations have focussed on only back muscle activity (Bir et al.,
2021). However, especially in stoop postures (which are frequently performed in several
work fields), trunk extension is initiated and supported by pelvic de-rotation requiring the
activity of the gluteal and hamstring muscles. The associated muscle stretch is further
responsible for spinal compression forces (Gallagher & Hamrick, 1991). Nevertheless,
only in some studies, the biceps femoris (e.g., Bér et al., 2022a; Bosch et al., 2016; Luger
et al., 2021a, 2021b) and only in very few studies, the gluteus maximus (e.g., Baltrusch
et al., 2020b; Frost et al., 2009; Hyun et al., 2020) muscle activity, has been monitored.

Comparison across study results

The comparison of exoskeleton effects across different studies remains challenging due

to the heterogeneity of the testing protocols used. Standardizing testing protocols is one
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solution (Kermavnar et al., 2021), however it includes a trade-off with the actual work
representativeness of the experimental design (De Bock et al., 2022). In the project
“Exoworkathlon®”, Fraunhofer IPA and IFF University of Stuttgart developed four work
task courses for evaluating occupational exoskeletons (two for BSEs and two for ULEs)
under conditions closer to industrial work lasting one hour each (Exoworkathlon, 2022;
Kopp, 2022). Using these may be the next step toward a more realistic evaluation and
thus better comparisons across occupational exoskeletons. However, the evaluation
process remains dynamic as the technical development of devices is rapid. Further, as
discussed previously, the application of devices is very individual regarding the users,
work tasks required, and exoskeleton designs. Therefore, standardizing experimental

protocols remains challenging and, with it, the comparison across study results.

6.7 Recommendations for research and practical implementation

Future research

This thesis emphasizes the need for further research in the field of exoskeleton
investigation. First, starting with the main aim of occupational exoskeletons: the
prevention of WMSD. For a realistic determination of exoskeleton effects, prospective
interventional field studies over extended periods of time using both healthy and
symptomatic workers are essential (Howard et al., 2020; Steinhilber et al., 2020). Second,
in order to guarantee safe applications of occupational exoskeletons, the determination of
possible side-effects or any health hazards requires further attention. Third, a critical
selection of outcome parameters should be set for specific work tasks and the goal of
using a certain exoskeleton. Herein, various interrelated parameters need to be assessed
to better understand the background or reason for an adapting parameter. Fourth,
exoskeleton research should include the individuality of humans (e.g., sex,
anthropometrics). It further needs to consider the work task specificities and
individualities across exoskeleton designs since the effects depend on these factors.
Already in the developmental stage, these aspects need to be incorporated. Fifth, there is
a need to determine which supportive torque characteristics are required, depending on
the work task, individual user, and primary goal of using an exoskeleton. Since this aspect
is not yet clear (Huysamen et al., 2020), it remains challenging to develop occupational

exoskeletons. Sixth, before accepting an individual exoskeleton to be classified as PPE,
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it must be tested carefully to meet all legal and health-relevant requirements. Seventh,
further aspects such as sociological questions (e.g., user acceptance) or adaptation barriers
(Howard et al., 2020) should also be investigated. However, performing an extensive
exoskeleton investigation before implementation remains challenging due to the rapid

technical development in this field.

Practical implementation

Industrialists who consider implementing occupational exoskeletons as a workplace
intervention should also confront further open points. For positive implementation and
adoption, obstacles and facilitators such as user acceptance, cognitive requirements, cost—
benefit relation, and others need to be identified (Kim, 2019). It is crucial to carefully
choose the appropriate exoskeleton (e.g., individual support characteristics) related to the
work tasks to be performed. The workplace, with its individual tasks, has to be assessed
and risk assessments must be conducted in relation to each individual device (BGHW,
2022). Prior to use, users must obtain detailed instructions and participate in training
sessions. An adaption period must be carried out as missing familiarization may cause
negative effects such as postural changes (Gordon & Ferris, 2007; Simon et al., 2021).
The introduction and regular use of occupational exoskeletons must be attended to and
monitored by experts. In total, the decision to implement an occupational exoskeleton
must be carefully considered, legal and workplace-specific regulations must be complied

with, and specific monitoring must take place.
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6.8 Strengths and limitations

This doctoral thesis contains a broad overview of the current exoskeleton research by way
of an extensive systematic review with meta-analyses. It includes all types of occupational
exoskeletons, various stress and strain-related outcome parameters, and an extensive
quality assessment. The thesis further provides evidence of the various effects of using
an exemplary commercially available BSE. Besides evaluating the intended effects, a
major focus was on detecting negative side-effects—where a particularly high demand
for research exists. This research is one of the first to include different work task
executions (lifting style, trunk orientation), and additionally monitors body postures.
Additionally, it is the first to focus on knee joint forces in a BSE evaluation. Beyond
discussing the research results of this thesis (Chapters 2—5), associated discussion points
are addressed, and related research gaps are identified. Moreover, current topics regarding
the application of exoskeletons in occupational practice are addressed and discussed in
light of the obtained knowledge and keeping in mind the main objective of promoting

musculoskeletal health.

There are some limitations of the thesis to be noted, however, limitations
regarding the single papers are not discussed in detail here. After evaluating the Laevo®
V2.56 exoskeleton, no common conclusions can be drawn due to the high standardization
of this controlled experiment, including a restricted population group and highly
standardized simulated work tasks. However, the findings contribute to the knowledge
that occurring (side-) effects depend on the individual work task performed and its
execution or style and that they interact with body posture. From this research, no
information about the effects of the Laevo® or any BSE on cumulative strains or muscular
fatigue can be drawn as the presented experiments (Chapters 3—5) and most of the papers
included in the systematic review (Chapter 2) investigated occupational exoskeletons
using short-duration experimental tasks. The main challenge for the topicality of this
research (e.g., the completeness of the systematic review and the main discussion) is the
rapid development and technical improvement of exoskeletal devices and the associated

delay of the research publications.
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6.9 Conclusion

The aim of this doctoral thesis was to investigate positive and negative effects of using
back-support exoskeletons on physical stress and strain in occupational tasks. This
research reveals that using an occupational BSE has the potential to reduce acute
musculoskeletal stress or strain in the back area. However, this was not clearly reproduced
for the Laevo® V2.56 exoskeleton, which seems to support hip rather than back
extension. Using BSEs may negatively affect the human musculoskeletal system
occasionally, however, there is currently insufficient evidence to support this. Generally,
the effects of using occupational BSEs depend on the individual work tasks and their
execution (e.g., the body posture) and may be influenced by both human individuality
and each exoskeleton’s mechanical characteristics. This thesis emphasizes the need for
further research investigating the effects and side-effects of using BSEs at work and
possible influencing factors, by precisely and appropriately selecting and combining the
various outcome parameters. Randomized controlled intervention studies in the field,
including healthy and symptomatic professionals, are required for a realistic estimation
of long-term effects relevant for musculoskeletal health. The preventive effects of BSEs
on WMSDs are beyond the current research, therefore their application as a workplace

intervention to prevent WMSDs cannot be recommended.
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Summary

Exoskeletons are wearable, mechanical structures supporting the musculoskeletal system
(e.g., in physical work) by generating torques which act on the human body. Recently,
they have been introduced as a new prevention approach for work-related
musculoskeletal disorders (WMSDs), receiving growing interest in various occupational
areas and in research. However, their effectiveness on musculoskeletal health has not
been proven, and possible negative effects impacting the musculoskeletal system have
not been sufficiently investigated. Therefore, the aim of this doctoral thesis was to
investigate the effects of using back-support exoskeletons (BSEs) on physical stress and
strain during industrial tasks. Herein, the back, as the main target area, and other

unsupported areas (e.g., the legs, shoulders, abdomen) are focused.

The thesis begins with a systematic review with several meta-analyses (Bér et al.,
2021) outlining the effects of occupational exoskeletons on biomechanical, physiological,
and subjectively perceived stress and strain. The meta-analyses revealed that using a BSE
can potentially reduce the acute stress or strain in the back area during industrial tasks.
Negative side-effects were not identified by the analyses for the BSEs, but occur
occasionally. However, there is still not enough research on this aspect. Overall, research
following high methodological standards and evaluating various health-relevant aspects

is thoroughly lacking.

In response to the findings of Bir et al. (2021), an exploratory laboratory
experiment was conducted to determine the influence of the commercially available
passive BSE Laevo® V2.56 on physical stress and strain during simulated industrial
tasks. Specifically, we investigated the effects of using the device on muscle activity in
various body areas, spine and lower limb postures, and heart rate, focusing on a sorting
task holding a static forward bent posture (including different trunk orientations; Bér et
al., 2022a), and on a dynamic lifting task (including different lifting styles and trunk
orientations; Luger et al., 2021b). Finally, Bér et al. (2022b) presents the exoskeleton’s
effects on vertical and horizontal (anteroposterior) tibiofemoral joint forces during the

static and the dynamic work tasks.

In Bér et al. (2022a) and Luger et al. (2021b) we found that using the Laevo® in

simulated industrial tasks resulted in only minor, reductions of the back extensor muscle
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activity (the erector spinae), but moderate support for hip extension (the biceps femoris).
Meanwhile, minor changes in spinal posture and muscle activity in unsupported body
areas occurred, and hip and knee flexion moderately increased. Thereby, the individual
task executions (lifting style, trunk orientation) influenced the effects. Heart rate slightly
decreased when using the Laevo® across all task executions (Bir et al., 2022a; Luger et
al., 2021b). The vertical tibiofemoral joint forces generally increased with using the
Laevo® without interacting with the task executions, while the device’s effects on the
horizonal (anteroposterior) tibiofemoral joint forces varied across the individual

experimental conditions (Bir et al., 2022b).

This research shows that using a BSE may support either the back or hip extension
and reduce acute stress or strain in target areas. However, changes of only single
parameters (e.g., muscle activity) without monitoring associated musculoskeletal
structures and functions (e.g., joint postures and forces) may prevent correct
interpretations behind possible changes. Furthermore, negative side-effects may occur
when using a BSE, which are insufficiently examined or not yet identified. The detection
and further exclusion of negative side-effects is essential for the safe application of
occupational exoskeletons. Various other factors may also codetermine any effects (either
desired or undesired) associated with the use of occupational BSEs, e.g., individual work
tasks and executions, mechanical characteristics of the device, and human individualities.
Therefore, implementations of occupational exoskeletons at work should be preceded by
individual assessments of the devices, with particular consideration of the various
influencing factors. Overall, definitive conclusions in relation to musculoskeletal health
is still beyond this dissertation and the current literature. Randomized controlled
intervention studies in the field are critical for detecting long-term effects related to
WMSD risk. They must include a well-thought selection and combination of various
outcome parameters and body areas (e.g., relate various interacting stress and strain
parameters, and include several interrelated musculoskeletal structures) and consider

adherence to high methodological quality standards.
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Zusammenfassung

Exoskelette sind tragbare, mechanische Strukturen, die das muskuloskelettale
System, z.B. bei physischen Arbeitstitigkeiten, unterstiitzen, indem sie mit Kriaften und
Drehmomenten auf den menschlichen Korper einwirken. Kiirzlich wurden sie als eine
neue Priventionsmoglichkeit fiir arbeitsbezogene Muskelskeletterkrankungen vorgestellt
und stoflen in verschiedenen Arbeitsfeldern und der Wissenschaft auf ein wachsendes
Interesse. Eine positive Wirksamkeit von Exoskeletten in Bezug auf die
muskuloskelettale Gesundheit wurde allerdings noch nicht erwiesen und mogliche, das
Muskelskelettsystem negativ beeinflussende Parameter wurden noch nicht ausreichend
untersucht. Daraus ergibt sich das Ziel dieser Doktorarbeit: die Erforschung von
Auswirkungen einer Riicken-Exoskelett Nutzung bei industriellen Tétigkeiten auf die
physische Belastung und Beanspruchung. Dabei werden zum einen der Riicken (als
Zielregion) und zum anderen nicht vom Exoskelett unterstiitzte Korperregionen (z.B.

Beine, Schultern, Bauch) fokussiert.

In Bér et al. (2021) wurden mittels eines systematischen Reviews mit mehreren Meta-
Analysen die Effekte von arbeitsbezogenen Exoskeletten auf biomechanische,
physiologische und subjektiv wahrgenommene Belastung und Beanspruchung
untersucht. Die Meta-Analysen zeigen, dass die Nutzung eines riickenunterstiitzenden
Exoskeletts wéhrend industrieller Tatigkeiten kurzfristig die Belastung oder
Beanspruchung in der Riickenregion reduzieren kann. Fiir die Gruppe der
riickenunterstiitzenden Exoskelette ergaben die Meta-Analysen keine statistisch
signifikanten Nebeneffekte, welche aber in Einzelfdllen auftraten. Dieser Aspekt wurde
allerdings bislang noch nicht ausreichend in Studien untersucht. Insgesamt fehlt es an
Forschung, die hohen methodischen Standards folgt wund unterschiedliche

gesundheitsrelevante Aspekte mit einbezieht.

Auf die Ergebnisse aus Bédr et al. (2021) aufbauend wurde ein exploratives
Laborexperiment durchgefiihrt, um den Einfluss des kommerziell erwerbbaren, passiven
Riicken-Exoskeletts Laevo® V2.56 auf die physische Belastung und Beanspruchung
wiéhrend simulierter Arbeitstatigkeiten, wie sie im industriellen Umfeld vorkommen, zu
ermitteln.  Dazu  wurde eine  Sortiertdtigkeit in  statisch  gehaltener

Oberkdrpervorbeugehaltung (einschlieBlich unterschiedlicher Rumpfausrichtungen; Bar
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et al,, 2022a) und eine dynamischen Hebetdtigkeit (einschlieBlich unterschiedlicher
Hebestile und Rumpfausrichtungen; Luger et al., 2021b) mit und ohne eine Verwendung
des Exoskeletts durchgefiihrt. Die Muskelaktivitdt in verschiedenen Korperregionen,
Korperhaltung in Wirbelsdule und unteren Extremitdten und die Herzfrequenz wurden
dabei erfasst (Bir et al., 2022a; Luger et al., 2021b). Im Folgenden présentieren Bér et al.
(2022b) die Auswirkungen des Exoskeletts auf die vertikalen und horizontalen
(anteroposterior) tibiofemoralen Gelenkkrifte wihrend der statischen und der

dynamischen Arbeitstétigkeiten.

Bir et al. (2022a) und Luger et al. (2021b) zeigen, dass die Nutzung des Laevo® in
simulierten Industrietdtigkeiten nur zu geringen, kurzfristigen Reduktionen der
Riickenstreckermuskulatur (M. erector spinae) flihrte, dafiir aber die Hiiftextension (M.
biceps femoris) unterstiitzte. Gleichzeitig zeigten sich nur geringe Verdnderungen der
Wirbelsdulenhaltung und der Muskelaktivitit in den nicht unterstiitzten Korperregionen,
die Hiift- und Knieflexion hingegen stiegen. Dabei wurden die Auswirkungen von der
Tétigkeitsausfiihrung (Hebestil, Rumpfausrichtung) beeinflusst. Die Herzfrequenz nahm
mit Nutzung des Exoskeletts in allen Tétigkeitsausfithrungen leicht ab (Bér et al., 2022a;
Luger et al., 2021b). Die vertikalen tibiofemoralen Gelenkkréfte stiegen insgesamt mit
einer Exoskelett-Nutzung an, ohne eine Interaktion mit der Tatigkeitsausfiihrung
aufzuweisen. Dahingegen variierten die Effekte auf die horizontalen (anteroposterior)
tibiofemoralen Gelenkkréfte in Abhéngigkeit von der Tétigkeitsausfiihrungen (Bér et al.,
2022b).

Diese Forschungsarbeit zeigt, dass die Nutzung eines riickenunterstiitzenden
Exoskeletts die Riicken- oder Hiiftstreckung unterstiitzen und kurzfristig die Belastung
und Beanspruchung in der Zielregion reduzieren kann. Allerdings kdnnte die Bewertung
von alleinigen Parametern (z.B. Muskelaktivitét), ohne eine Kontrolle der assoziierten
muskuloskelettalen Strukturen und Funktionen (z.B. Gelenkkrifte, Korperhaltung), eine
korrekte Interpretation moglicher Wirkungen erschweren. Dariiber hinaus konnen bei
einer Verwendung eines Exoskeletts negative Nebenwirkungen auftreten, die bislang
unzureichend untersucht und womdglich noch nicht aufgedeckt wurden. Fiir eine sichere
Anwendung der Systeme ist die Aufdeckung und der Ausschluss von negativen

Nebenwirkungen ausschlaggebend. Zusitzlich konnen weitere Faktoren, die mit einer
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Exoskelett-Nutzung in Zusammenhang stehenden Effekte (negativ oder positiv)
mitbestimmen, darunter die jeweilige Arbeitstitigkeit und deren individuelle
Ausfiihrung, die mechanischen Eigenschaften eines Exoskeletts und die Individualitit der
nutzenden Person. Einem Exoskelett-Einsatz am Arbeitsplatz sollte daher eine
individuelle Priifung der Systeme unter der Beachtung aller Einflussfaktoren
vorausgehen. Schlussfolgerungen beziiglich der muskuloskelettalen Gesundheit sind auf
einer Grundlage dieser Dissertation und der aktuellen Literatur bislang nicht moglich. Fiir
eine Feststellung von langfristigen Auswirkungen eines Exoskelett-Einsatzes auf das
Risiko fiir arbeitsbezogene Muskelskelettbeschwerden sind randomisierte, kontrollierte
Interventionsstudien in der Arbeitspraxis entscheidend. Dabei sollte eine sinnvolle
Auswahl und Kombination verschiedener Messparameter und Korperregionen
beriicksichtigt werden (z.B. verschiedene miteinander interagierende Belastungs- und
Beanspruchungsparameter und in Zusammenhang stehende muskuloskelettale

Strukturen).
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Appendix 3 Study characteristics 1

Table 2. Study setting, year, sample size and sex of the included participants - number of studies or subjects out if the
included 63 studies.

Setting Laboratory Field
[n of studies] 59 4

North South
Continent of realization America Europe Asia America
[n of studies] 27 22 13 1
Study duration [days] 1 2 3 unknown
[n of studies] 37 8 2 16
Year of publication 2004-2017 2018-2020
[n of studies] 19 44
Sex of included subjects male female unknown
[n of subjects] 496 165 39
Sample size [n of subjects] 1-5 6-10 11-20 21-45
[n of studies] 15 14 31 3

Table 3. Exoskeleton characteristics - (1) number of exoskeletons out of the 44 different exoskeletons evaluated in the 63
included studies and (2) number of studies that evaluated these exoskeletons out of the 63 studies.

Type of exoskeleton passive active mix

[n of exoskeletons] 28 15 1

[n of studies] 45 17 1

Area of support back lower limbs  upper limbs wrist ankle
[n of exoskeletons] 16 9 13 4 2
[n of studies] 30 10 21 2 2

Table 4. Tasks, duration and outcomes - number of studies out of the included 63 studies.

Lifting Isometric
and Static Dynamic force Computer Snow Laparo-
Tasks Carrying  Assembly posture  reaching Walking exertion work Painting shoveling scopy
[n of studies] 25 18 9 8 6 3 1 1 1 1
Duration of <60 1-10 11-60 61-240 241-480
the measures sec min min min min unknown
[n of studies] 10 13 7 1 2 30
Shear and

Muscle compression Joint Heart Energy Blood Perceived
Outcomes activity force moments rate expenditure pressure outcomes
[n of studies] 47 4 7 12 12 1 26
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Explanation of the assessment

Double and single rating of items

The following items have been rated double because of importance and/ or high risk of bias when failing: Items # 1, 2, 7, 11, 12, and 13.
The following items have been rated single because of less importance for the study type and/ or lower risk of bias: ltems #3, 4, 5, 6, 8, 9, 10, and
14.

ltem #1: randomization

Randomization is judged as “yes” when all factors, i.e. independent variables, of the (statistical) analysis have been randomized. This item is
judged as “no” when it appears that only part of the independent variables was randomized.

Item #7: drop out

This item also includes deficits of data, e.g. technical problems were judged as drop out.

ltem #11: selective reporting

This item is judged as “yes” (1) when the validity or reliability of the checklist or scale has been reported, (2) when a checklist or scale is cited
correctly and whose validity or reliability has been proven in the literature but not cited in the text, and (3) when the objective measurement
method, e.g. system with which heart rate is recorded, has been described in detail, i.e. product name, version, and manufacturer.

ltem #13: selective reporting

This item is judged as “no” (1) when the description of the data analysis comes first in the Results section, this also applies to any post hoc
analyses reported in the Results section that have not been specified in the Methods section, and (2) when there is no distinction between the

Methods and Results sections.

Grouping into the seven risk of bias categories

Category 1: Randomization, including items # 1 and 2.

Category 2: Allocation, including items # 3, 6 and 14.

Category 3: Blinding, including items # 4 and 5.

Category 4: Incomplete outcome data, including items # 7 and 8.
Category 5: Selective reporting, including items # 11 and 13.
Category 6: Intervention, including items # 9 and 10.

Category 7: Power, including item # 12.
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Risk of bias assessment of the 65 studies (68 references) using the 14-item checklist.

47 | Rashedi 2014 -

48 | Sado 2019 -

49 | Schmalz 2019 -

50 | Spada 2019 -

51 | Sylla 2014 -

52 | Thalman 2018 -

53 | Theurel 2018 -

# Study 2nd 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Reference

1 | Abdoli-E 2006 e 2 0 0 | NA | NA | 1 2 1 1 1 |co| o 0 1
2 Agnew 2008 - 2 0 0 NA NA 1 2 1 1 1 2 0 2 1
3 Alabdulkarim 2019-| - 0 0 0 NA NA 1 2 1 1 1 2 0 2 1
4 Alabdulkarim 2019-1I - 0 0 0 NA NA 1 2 1 1 1 2 0 2 1
5 Alemi 2019 - 2 0 0 NA NA 1 2 1 1 1 2 0 0 1
6 Alemi 2020 - 0 0 0 NA NA 1 2 1 1 1 0 0 2 1
7 Baltrusch 2018 - 2 0 0 NA NA 1 2 1 1 1 2 0 2 1
8 Baltrusch 2019 - 0 0 0 NA NA 1 0 1 1 1 2 0 2 1
9 Baltrusch 2020 - 2 0 0 NA NA 1 0 1 1 1 2 0 2 1
10 | Bosch 2016 - 0 0 0 NA NA 1 2 1 1 1 2 0 0 1
11 | Bougrinat 2019 - 0 0 0 NA NA 1 2 1 1 1 2 0 0 1
12 | de Vries 2019 - 0 0 0 NA NA 1 2 1 1 1 2 0 2 1
13 | Dezman 2017 - 2 0 0 NA NA 1 2 1 1 1 2 0 2 1
14 | Ferrigno 2009 - 0 0 0 NA NA 1 2 1 1 1 2 0 2 1
15 | Frost 2009 - 0 0 0 NA NA 1 2 1 1 1 2 0 2 1
16 | Gillette 2019 - 0 0 0 NA NA 1 2 1 1 1 0 0 2 1
17 | Godwin 2009 - 2 0 0 NA NA 1 2 1 1 1 0 0 2 1
18 | Graham 2009 - 2 0 0 NA NA 1 2 1 1 1 0 0 2 1
19 | Groos 2020-I - 2 0 0 NA NA 1 2 1 1 1 2 0 0 1
20 | Groos 2020-II - 2 0 0 NA NA 1 2 1 1 1 0 0 0 1
21 | Huysamen 2018-I - 2 0 0 NA NA 1 0 1 1 1 2 0 2 1
22 | Huysamen 2018-I - 2 0 0 NA NA 1 2 1 1 1 2 0 2 1
23 | Hyun 2019 - 0 0 0 NA NA 1 2 1 1 1 2 0 2 1
24 | Johansson 2004 - 2 0 0 NA NA 1 2 1 1 1 2 0 2 1
25 | Kim 2018-I Kim 2018-II 0 0 0 NA NA 1 2 1 1 1 2 0 2 1
26 | Kim 2019 - 0 0 0 NA NA 1 2 1 1 1 2 0 2 1
27 | Kim 2020 - 0 0 0 NA NA 0 2 1 1 1 2 0 0 1
28 | Knott 2017 - 0 0 0 NA NA 1 2 1 1 1 0 0 0 1
29 | Koopman 2019 - 2 0 0 NA NA 1 2 1 1 1 2 0 2 1
30 | Lee 2019 - 0 0 0 NA NA 1 2 1 1 1 2 0 0 1
31 | Lee 2020 - 0 0 0 NA NA 1 0 1 1 1 0 0 0 1
32 | Liu 2018 - 2 0 0 NA NA 1 2 1 1 1 0 0 2 1
33 | Lotz 2009 - 2 0 0 NA NA 1 2 1 1 1 2 0 2 1
34 | Luger 2019-1 Luger 2019-1I NA NA 1
35 | MacLean 2019 - NA NA 1
36 | Madinei 2020 - NA NA 1
37 | Marino 2019 - NA NA 1
38 | Maurice 2020 - NA NA 1
39 | Miura 2018-I Kadone 2017 NA NA 1
40 | Miura 2018-II - NA NA 1
41 | Moyon 2018 - NA NA 1
42 | Muramatsu 2013 - NA NA 1
43 | Nakamura 2017 - NA NA 1
44 | Naf 2018 - NA NA 1
45 | Naruse 2005 - NA NA 1
46 | Pillai 2020 - NA NA 1

1

1

1

1

1

1

1

1

54 | Ulrey 2013 -

55 | Van Engelhoven 2019 | -

56 | von Glinski 2019 -

57 | Wehner 2013 -

58 | Wei 2020 -

alalalalalalalalalalalalalalalalalalalalalalalalala
alalalalalalalalalalalalalalalalalalalalalalalalala
alalalalalalalalalalalalalalalalalalalalalalalalala

59 | Weston 2018 -

60 | Wijegunawardana -
2019

61 [ Yin 2019 -

62 | Yong 2019 -
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Appendix 7 Study findings (i.e. SMD and risk of bias) for studies evaluating the effects of
using a back supporting exoskeleton on physical stress and strain. [IV = inverse variance;
CI= confidence interval; Exo= exoskeleton]

Std. Mean Difference

Study or Subgroup IV, Random, 95% ClI

Std. Mean Difference
IV, Random, 95% Cl

Risk of Bias
ABCDEFG

Agnew 2008 - PLAD
Subtotal (95% Cl)

0.30 [-0.63, 1.23]
0.30 [-0.63, 1.23]

Heterogeneity: Not applicable
Test for overall effect: Z = 0.63 (P = 0.53)

|

7<D7
———

|

|

T

-2

Risk of bias legend

(A) Randomization

(B) Allocation

(C) Blinding

(D) Incomplete outcome data
(E) Selective reporting

(F) Intervention

(G) Power

(®) Low risk of bias
. Unclear risk of bias
@ High risk of bias

T

-1 0 1
decrease with Exo

Figure 7 Back supporting exoskeletons — Shear force

Std. Mean Difference

Study or Subgroup 1V, Random, 95% CI

Std. Mean Difference
1V, Random, 95% CI

T

2

increase with Exo

(1 GO

Risk of Bias
ABCDEFG

Agnew 2008 - PLAD
Subtotal (95% Cl)

0.29 [-0.64, 1.22]
0.29 [-0.64, 1.22]

Heterogeneity: Not applicable
Test for overall effect: Z=0.61 (P = 0.54)

—

———

-1

increase with Exo

Risk of bias legend

(A) Randomization

(B) Allocation

(C) Blinding

(D) Incomplete outcome data
(E) Selective reporting

(F) Intervention

(G) Power

(®) Low risk of bias
. Unclear risk of bias
@ High risk of bias

1
T T
-0.5 0 0.5

Figure 8 Back supporting exoskeletons — Compression force

decrease with Exo

([ _CCC )
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Std. Mean Difference Std. Mean Difference Risk of Bias

Study or Subgroup IV, Random, 95% CI IV, Random, 95% CI ABCDEFG
Abdoli 2006 - PLAD 1.51[0.43, 2.59] —o—— @00HL0H»e
Frost 2009 - PLAD 0.74[-0.06, 1.54] — 0O
Koopman 2019 - Laevo 0.31[-0.53, 1.15] — @R0HHHO
Subtotal (95% CI) 0.78 [0.15, 1.41] e
Heterogeneity: Tau? = 0.10; Chi* = 2.96, df = 2 (P = 0.23); I = 32%
Test for overall effect: Z=2.43 (P = 0.01)

} } } }

2 -1 0 1 2

increase with Exo

Risk of bias legend

(A) Randomization @ Low risk of bias
(B) Allocation . Unclear risk of bias
(C) Blinding Q High risk of bias
(D) Incomplete outcome data

(E) Selective reporting

(F) Intervention

(G) Power

Figure 9 Back supporting exoskeletons — joint moments

decrease with Exo

Std. Mean Difference Std. Mean Difference Risk of Bias
Study or Subgroup 1V, Random, 95% CI IV, Random, 95% CI ABCDEFG
Godwin 2009 - PLAD -0.17 [-0.97, 0.63] o ..e@.@e
Lotz 2009 - PLAD 1.01[0.07, 1.96] B .
Marino 2019 - BackX -1.25[-2.67,0.18] o [
Miura 2018 | - HAL -0.36 [-1.30, 0.57] o
Yin 2019 - WPAD 0.34[-0.47,1.14] —T e.e@@@e
Total (95% CI) 0.01 [-0.61, 0.64] ?
Heterogeneity: Tau? = 0.27; Chi2 = 8.72, df = 4 (P = 0.07); I? = 54% *2 *1 : : ;
Test for overall effect: 2= 0.03 (P = 0.97) increase with Exo decrease with Exo
Risk of bias legend
(A) Randomization @ Low risk of bias
(B) Allocation . Unclear risk of bias
(C) Blinding @ High risk of bias
(D) Incomplete outcome data
(E) Selective reporting
(F) Intervention
(G) Power
Figure 10 Back supporting exoskeletons — Heart rate
Std. Mean Difference Std. Mean Difference Risk of Bias

Study or Subgroup 1V, Random, 95% CI 1V, Random, 95% CI ABCDEFG
Alemi 2020 - BackX™ 0.37[:0.29, 1.03] — o 8000
Alemi 2020 Laevo 0.23[-0.42, 0.89] — O 0.0@.@0
Baltrusch 2019 - Laevo -0.25[-1.02, 0.52] — 0 °.°°®®°
Baltrusch 2020 - SPEXOR 0.72[-0.19, 1.63] T ..ee@@@

Total (95% CI) 0.24[-0.12, 0.61] ?
il | | 1

Heterogeneity: Tau? = 0.00; Chi? = 2.76, T T T
df =3 (P =0.43); 2= 0%

Test for overall effect: Z = 1.31 (P = 0.19) increase with Exo

Risk of bias legend

(A) Randomization (%) Low risk of bias

(B) Allocation . Unclear risk of bias
(C) Blinding e High risk of bias
(D) Incomplete outcome data

(E) Selective reporting

(F) Intervention

(G) Power

-2 -1 0 1 2

decrease with Exo

Figure 11 Back supporting exoskeletons — Energy expenditure
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Std. Mean Difference Std. Mean Difference

Study or Subgroup 1V, Random, 95% ClI 1V, Random, 95% ClI ABCDEFG
Miura 2018 | - HAL 0.41[-0.53, 1.35] I D G.G@.@G
Total (95% Cl) 0.41[-0.53, 1.35]

Heterogeneity: Not applicable
Test for overall effect: Z=0.86 (P = 0.39)

Risk of bias legend
(A) Randomization
(B) Allocation

(C) Blinding

T
-1 -0.5 0 0.5 1

@ Low risk of bias
. Unclear risk of bias
@ High risk of bias

increase with Exo decrease with Exo

(D) Incomplete outcome data
(E) Selective reporting

(F) Intervention

(G) Power

Figure 12 Back supporting exoskeletons — Blood pressure
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Appendix 8 Study findings (i.e. SMD and risk of bias) for studies evaluating the effects of

using a lower limb supporting exoskeleton on physical stress and strain. [IV = inverse

variance; Cl= confidence interval; Exo= exoskeleton]

Mean Difference

Risk of Bias
ABCDEFG

Std. Mean Difference Std.
Study or Subgroup 1V, Random, 95% ClI IV, Random, 95% CI
Shoulder elevation
Luger 2019 - Chairless Chair -0.11[-0.53, 0.30]
Subtotal (95% Cl) -0.11 [-0.53, 0.30]

Heterogeneity: Not applicable
Test for overall effect: Z = 0.53 (P = 0.59)

Trunk extension

Luger 2019 - Chairless Chair 0.07 [-0.35, 0.48]
Pillai 2020 - LegX 0.11[-0.61,0.82]
Subtotal (95% Cl) 0.08 [-0.28, 0.43]

Heterogeneity: Tau? = 0.00; Chiz2=0.01, df = 1 (P = 0.93); I2= 0%
Test for overall effect: Z = 0.41 (P = 0.68)

Hip extension

Pillai 2020 - LegX 0.20[-0.51,0.92]
Subtotal (95% Cl) 0.20 [-0.51,0.92]

Heterogeneity: Not applicable
Test for overall effect: Z = 0.56 (P = 0.58)

Hip flexion
Pillai 2020 - LegX 1.37[0.56, 2.18]
Subtotal (95% CI) 1.37 [0.56, 2.18]

Heterogeneity: Not applicable
Test for overall effect: Z = 3.33 (P = 0.0009)

Knee extension

Luger 2019 - Chairless Chair -0.75[-1.18,-0.33]
Pillai 2020 - LegX 1.37 [0.56, 2.18]
Sado 2019 - act lower limb Exo 1.10[-0.29, 2.48]
Subtotal (95% CI) 0.52[-1.10, 2.13]

Heterogeneity: Tau? = 1.82; Chi? = 24.34, df = 2 (P < 0.00001); I* = 92%
Test for overall effect: Z=0.63 (P = 0.53)

Knee flexion

Luger 2019 - Chairless Chair 1.20[0.75, 1.66]
Pillai 2020 - LegX 0.14[-0.57, 0.86]
Sado 2019 - act lower limb Exo 0.80[-0.52,2.12]
Subtotal (95% CI) 0.75[-0.02, 1.51]

Heterogeneity: Tau? = 0.29; Chi? = 6.05, df = 2 (P = 0.05); 1> = 67%
Test for overall effect: Z = 1.92 (P = 0.06)

Ankle plantarflexion

Luger 2019 - Chairless Chair 1.20[0.75, 1.66]
Pillai 2020 - LegX 0.09 [-0.63, 0.81]
Sado 2019 - act lower limb Exo 0.80[-0.52,2.12]
Subtotal (95% CI) 0.72[-0.08, 1.52]

Heterogeneity: Tau? = 0.34; Chi? = 6.69, df = 2 (P = 0.04); 2= 70%
Test for overall effect: Z=1.76 (P = 0.08)

Ankle dorsiflexion

Pillai 2020 - LegX 1.22[0.43,2.01]
Subtotal (95% CI) 1.22[0.43, 2.01]

Heterogeneity: Not applicable
Test for overall effect: Z = 3.03 (P = 0.002)

} }
-2 -1
increase with Exo

Risk of bias legend

(A) Randomization @ Low risk of bias
(B) Allocation . Unclear risk of bias
(C) Blinding ° High risk of bias

(D) Incomplete outcome data
(E) Selective reporting

(F) Intervention

(G) Power

0 1 2
decrease with Exo

Figure 13 Lower limb supporting exoskeletons — Muscle activity
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Std. Mean Difference Std. Mean Difference Risk of Bias

Study or Subgroup IV, Random, 95% CI IV, Random, 95% CI ABCDEFG
Knott 2017 - passive lower limb Exo -0.08 [-0.55, 0.39] D ‘ °.°®°®°
Total (95% Cl) -0.08 [-0.55, 0.39]
Heterogeneity: Not applicable t t T 1 t

. genely . Pl ~ 05 025 0 025 05
Test for overall effect: 2= 0.33 (P = 0.74) increase with Exo decrease with Exo

Risk of bias legend

(A) Randomization @ Low risk of bias

(B) Allocation . Unclear risk of bias
(C) Blinding @ High risk of bias
(D) Incomplete outcome data

(E) Selective reporting

(F) Intervention

(G) Power

Figure 14 Lower limb supporting exoskeletons — Heart rate

Std. Mean Difference Std. Mean Difference Risk of Bias
Study or Subgroup IV, Random, 95% CI 1V, Random, 95% CI ABCDEFG
Knott 2017 - passive lower limb Exo -0.27 [10.74, 0.20] (-101-16-16[-)
Lee 2020 - active knee Exo 0.01[-0.79, 0.81] 0.000@0
MacLean 2019 — knee device) -0.04 [-1.43, 1.35] 0.0@.@0
Total (95% CI) -0.19 [-0.58, 0.20]

| | |

Heterogeneity: Tau? = 0.00; Chi* = 0.40, df = 2 (P = 0.82); I = 0% t T ! ! !

-2 -1 0 1 2
Testfor overall effect: Z = 0.94 (P = 0.35) increase with Exo decrease with Exo

Risk of bias legend

(A) Randomization (#) Low risk of bias
(B) Allocation . Unclear risk of bias
(C) Blinding @ High risk of bias
(D) Incomplete outcome data

(E) Selective reporting

(F) Intervention
(G) Power

Figure 15 Lower limb supporting exoskeletons — Energy expenditure
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Study or Subgroup

Std. Mean Difference
1V, Random, 95% CI

Std. Mean Difference
1V, Random, 95% CI

Risk of Bias
ABCDEFG

General

Knott 2017 - passive lower limb Exo

Luger 2019 - Chairless Chair
Subtotal (95% CI)

-0.17 [-0.64, 0.30]

-0.52 [-0.94, -0.09]
-0.36 [-0.70, -0.02]

Heterogeneity: Tau? = 0.01; Chiz =1.15,df =1 (P =0.28); I?=13%
Test for overall effect: Z = 2.09 (P = 0.04)

Neck & shoulders & arms

Groos 2020 | - Chairless Chair
Subtotal (95% CI)

Heterogeneity: Not applicable

-0.04 [-0.71, 0.63]
-0.04 [-0.71, 0.63]

Test for overall effect: Z=0.11 (P = 0.91)

Back

Groos 2020 | - Chairless Chair
Subtotal (95% Cl)

Heterogeneity: Not applicable

0.81[0.10, 1.51]
0.81[0.10, 1.51]

Test for overall effect: Z = 2.25 (P = 0.02)

Hips & upper legs

Groos 2020 | - Chairless Chair
Subtotal (95% CI)

Heterogeneity: Not applicable

0.34[-0.34, 1.02]
0.34[-0.34,1.02]

Test for overall effect: Z=0.98 (P = 0.32)

Knees & lower legs & feet

Groos 2020 | - Chairless Chair
Subtotal (95% Cl)

Heterogeneity: Not applicable

-0.09[-0.76, 0.58]
-0.09 [-0.76, 0.58]

Test for overall effect: Z=0.26 (P = 0.80)

Risk of bias legend

(A) Randomization

(B) Allocation

(C) Blinding

(D) Incomplete outcome data
(E) Selective reporting

(F) Intervention

(G) Power

Figure 16 Lower limb supporting exoskeletons — Perceived strain
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Appendix 9 Study findings (i.e. SMD and risk of bias) for studies evaluating the effects of

using an upper limb supporting exoskeleton on physical stress and strain. [IV = inverse

variance; Cl= confidence interval; Exo= exoskeleton]

Std. Mean Difference Std. Mean Difference Risk of Bias
Study or Subgroup 1V, Random, 95% CI IV, Random, 95% ClI ABCDEFG
3.1.7 Trunk flexion
Alabdulkarim 2019 Il - EksoVest™ -0.09[-0.89, 0.71] e.e@@@e
Alabdulkarim 2019 Il - Fawcett Exsovest™ 0.01[-0.79, 0.81] °.°@®@°
Alabdulkarim 2019 Il FORTIS™ 0.08 [-0.72, 0.88] °.°®®®°
Huysamen 2018 |l - passive upper limb Exo 0.24 [-0.74, 1.23] ..0@@@0
Kim 2019 - EksoVest™ 0.21[-0.59, 1.01] % °.°®®®°
Subtotal (95% CI) 0.08 [-0.29, 0.45]
Heterogeneity: Tau® = 0.00; Chi* = 0.40, df = 4 (P = 0.98); I = 0%
Test for overall effect: Z=0.42 (P = 0.67)
3.1.8 Hip extension
Huysamen 2018 Il - passive upper limb Exo 0.14[-0.84, 1.13] i ..0@@@0
Subtotal (95% Cl) 0.14[-0.84, 1.13]
Heterogeneity: Not applicable
Test for overall effect: Z=0.29 (P = 0.77)
3.1.9 Hip flexion
Huysamen 2018 Il - passive upper limb Exo 0.09 [-0.90, 1.07] i ..0@@@0
Subtotal (95% Cl) 0.09 [-0.90, 1.07]
Heterogeneity: Not applicable
Test for overall effect: Z=0.17 (P = 0.87)
3.1.10 Knee extension
Huysamen 2018 Il - passive upper limb Exo 0.09 [-0.90, 1.07] i ..0@@@0
Subtotal (95% CI) 0.09 [-0.90, 1.07]
Heterogeneity: Not applicable
Test for overall effect: Z=0.17 (P = 0.87)
3.1.11 Knee flexion
Huysamen 2018 Il - passive upper limb Exo -0.03 [-1.01, 0.95] i ..0@@@0
Subtotal (95% Cl) -0.03 [-1.01, 0.95]
Heterogeneity: Not applicable
Test for overall effect: Z = 0.05 (P = 0.96)
3.1.12 Ankle plantarflexion
Huysamen 2018 Il - passive upper limb Exo 0.00 [-0.98, 0.98] i ..0@@@0

Subtotal (95% CI) 0.00 [-0.98, 0.98]

Heterogeneity: Not applicable
Test for overall effect: Z=0.00 (P = 1.00)

3.1.13 Ankle dorsiflexion

Huysamen 2018 Il - passive upper limb Exo -0.20[-1.18,0.79]

Theurel 2018- EXHAUSS Stronger -0.33[-1.32, 0.65]
Subtotal (95% CI) -0.26 [0.96, 0.43]

Heterogeneity: Tau? = 0.00; Chi? = 0.04, df = 1 (P = 0.85); I? = 0%
Test for overall effect: Z = 0.74 (P = 0.46)

3.1.14 Wrist flexion

Van Engelhoven 2018 - ShoulderX
Subtotal (95% CI)

0.32[-0.42, 1.07]
0.32[-0.42, 1.07]
Heterogeneity: Not applicable

Test for overall effect: Z=0.85 (P = 0.39)

¢

|

Risk of bias legend

(A) Randomization (®) Low risk of bias

(B) Allocation . Unclear risk of bias
(C) Blinding ° High risk of bias
(D) Incomplete outcome data

(E) Selective reporting

(F) Intervention
(G) Power

| |
T T

40 1

T

2

increased act. with Exo decreased act. with Exo

e

Figure 5 — Part 2 Upper limb supporting exoskeletons — Muscle activity
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Std. Mean Difference Std. Mean Difference Risk of Bias

Study or Subgroup IV, Random, 95% CI IV, Random, 95% CI ABCDEFG
Back (AP)

Kim 2018 | — EksoVest™ 0.23[-0.58, 1.03] — ("] ClCC ]
Weston 2018 - Fawcett Exovest™ -1.22[-2.11,-0.34] — T (] ClCC )

Subtotal (95% Cl) -0.49 [-1.90, 0.93] ——e

Heterogeneity: Tau? = 0.86; Chi? = 5.62, df = 1 (P = 0.02); I = 82%
Test for overall effect: Z = 0.67 (P = 0.50)

Back (ML)

Kim 2018 | — EksoVest™ 0.21[-0.60, 1.01] ] Q.Q@@@Q
Subtotal (95% CI) 0.21[-0.60, 1.01]

Heterogeneity: Not applicable
Test for overall effect: Z=0.51 (P = 0.61)

I I I I
T T T T
-2 -1 0 1 2

increase with Exo decrease with Exo

Risk of bias legend

(A) Randomization @ Low risk of bias
(B) Allocation . Unclear risk of bias
(C) Blinding @ High risk of bias

(D) Incomplete outcome data
(E) Selective reporting

(F) Intervention

(G) Power

Figure 17 Upper limb supporting exoskeletons — Shear force

Std. Mean Difference Std. Mean Difference Risk of Bias
Study or Subgroup 1V, Random, 95% CI 1V, Random, 95% CI ABCDEFG
Kim 2018 | - EksoVest™ -0.27 [-1.07, 0.54] 0.0@@@0
Weston 2018 - Fawcett Exovest™ -1.34 [-2.24, -0.44] —F— 0.0@@@0
Subtotal (95% Cl) -0.79 [-1.84, 0.26]

Heterogeneity: Tau? = 0.38; Chi? = 3.03, df = 1 (P = 0.08); I? = 67%
Test for overall effect: Z= 1.47 (P = 0.14)

| | | |
T T T T T

-2 -1 0 1 2
increase with Exo decrease with Exo

Risk of bias legend

(A) Randomization (® Low risk of bias
(B) Allocation . Unclear risk of bias
(C) Blinding @ High risk of bias

(D) Incomplete outcome data
(E) Selective reporting

(F) Intervention

(G) Power

Figure 18 Upper limb supporting exoskeletons — Compression force
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Std. Mean Difference Std. Mean Difference Risk of Bias
Study or Subgroup IV, Random, 95% CI 1V, Random, 95% CI ABCDEFG
Shoulder
De Vries 2019 - SkelEx 1.56 [0.62, 2.49] i (-0 -l00C-)
Subtotal (95% CI) 1.56 [0.62, 2.49]

Heterogeneity: Not applicable
Test for overall effect: Z = 3.27 (P = 0.001)

Arm

Sylla 2014 - ABLE -0.50 [-1.50, 0.50] —
Subtotal (95% Cl) -0.50 [-1.50, 0.50]

Heterogeneity: Not applicable
Test for overall effect: Z = 0.98 (P = 0.33)

increase with Exo

Risk of bias legend

(A) Randomization (®) Low risk of bias
(B) Allocation . Unclear risk of bias
(C) Blinding ° High risk of bias

(D) Incomplete outcome data
(E) Selective reporting

(F) Intervention

(G) Power

0 1 2

decrease with Exo

Figure 19 Upper limb supporting exoskeletons — joint moments

Std. Mean Difference

Std. Mean Difference

00000

Risk of Bias
ABCDEFG

Study or Subgroup IV, Fixed, 95% CI 1V, Fixed, 95% CI
Groos 2020 |l - Levitate Airframe 0.49[-0.14, 1.12] T
Marino 2019 - Levitate Airframe 0.84 [-0.95, 2.64] - -
Maurice 2020 - PAEXO 0.33[-0.48, 1.13] -t
Moyon 2018 - SkelEx 0.36 [-2.47, 3.18]

Schmalz 2019 - PAEXO 0.26 [-0.54, 1.07] —r—
Theurel 2018- EXHAUSS Stronger -0.13[-1.11, 0.85] — o

Total (95% CI) 0.33 [-0.05, 0.70]
!

Heterogeneity: Chi? = 1.43, df =5 (P = 0.92); I?= 0% :4
Test for overall effect: Z=1.71 (P = 0.09)

Risk of bias legend

(A) Randomization (%) Low risk of bias
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Figure 20 Upper limb supporting exoskeletons — Heart rate
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Std. Mean Difference Std. Mean Difference Risk of Bias

Study or Subgroup 1V, Fixed, 95% CI IV, Fixed, 95% CI ABCDEFG
Maurice 2020 - PAEXO 0.74[-0.09, 1.57] 9.9@@@9
Schmalz 2019 - PAEXO 0.97[0.11, 1.82] —F '.9@@@0

Total (95% Cl) 0.85[0.26, 1.45] .

Heterogeneity: Chiz2=0.14, df =1 (P =0.71); 2= 0% t T T T t

-2 -1 0 1 2
Testfor overall effect: 2= 2.80 (P = 0.005) increase with Exo  decrease with Exo

(A) Randomization (%) Low risk of bias

(B) Allocation @ Unclear risk of bias
(C) Blinding @ High risk of bias
(D) Incomplete outcome data

(E) Selective reporting

(F) Intervention

(G) Power

Figure 21 Upper limb supporting exoskeletons — Energy expenditure

Appendix 10 Study findings (i.e. SMD and risk of bias) for studies evaluating the effects of
using an ankle supporting exoskeleton on physical stress and strain. [IV = inverse variance;

CI= confidence interval; Exo= exoskeleton]

Std. Mean Difference Std. Mean Difference Risk of Bias
Study or Subgroup 1V, Fixed, 95% ClI 1V, Fixed, 95% ClI ABCDETFG
Dezman 2016 - passive ankle Exo~ -0.66 [-2.12, 0.80] 4&7 @e0»®O

Total (95% CI) -0.66 [-2.12, 0.80] ’
| | |

Heterogeneity: Not applicable T T T T }

-2 -1 0 1 2
Testfor overall effect: Z = 0.89 (P = 0.38) increase with exo decrease with exo

Risk of bias legend

(A) Randomization @ Low risk of bias
(B) Allocation @ Unclear risk of bias
(C) Blinding @ High risk of bias

(D) Incomplete outcome data
(E) Selective reporting

(F) Intervention

(G) Power

Figure 22 Ankle supporting exoskeletons — Heart rate

Std. Mean Difference Std. Mean Difference Risk of Bias
Study or Subgroup 1V, Fixed, 95% ClI 1V, Fixed, 95% ClI ABCDETFG
Dezman 2016 - passive ankle Exo ~ -0.45 [-1.87, 0.97] 4|_|>7 @00

Total (95% CI) -0.45[-1.87, 0.97] ’
1 1 1 1

Heterogeneity: Not applicable T T T T T
9 Y PP -2 -1 0 1 2

increase with exo decrease with exo

Test for overall effect: Z = 0.62 (P = 0.54)

Risk of bias legend

(A) Randomization @ Low risk of bias
(B) Allocation . Unclear risk of bias
(C) Blinding @ High risk of bias

(D) Incomplete outcome data
(E) Selective reporting

(F) Intervention

(G) Power

Figure 23 Ankle supporting exoskeletons — Energy expenditure
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Appendix 11 Study findings (i.e. SMD and risk of bias) for studies evaluating the effects of

using a wrist supporting exoskeleton on physical stress and strain. [IV = inverse variance;
CI= confidence interval; Exo= exoskeleton]

Std. Mean Difference

Study or Subgroup IV, Random, 95% CI

Std. Mean Difference
1V, Random, 95% CI

Risk of Bias
ABCDEFG

5.1.1 Shoulder elevation

Ferrigno 2009 - stiff palmar orthosis -0.27 [-0.85, 0.31]
Ferrigno 2009 - stiff thermoplastic orthosis -0.61[-1.20,-0.02]
Subtotal (95% CI) -0.44 [-0.85, -0.02]
Heterogeneity: Tau? = 0.00; Chi? = 0.64, df = 1 (P = 0.42); I?= 0%
Test for overall effect: Z = 2.07 (P = 0.04)

5.1.2 Wrist extension

Ferrigno 2009 - stiff palmar orthosis -0.07 [-0.65, 0.50]
Ferrigno 2009 - stiff thermoplastic orthosis -0.07 [-0.65, 0.51]
Subtotal (95% CI) -0.07 [-0.48, 0.34]
Heterogeneity: Tau? = 0.00; Chi* = 0.00, df = 1 (P = 1.00); I = 0%
Test for overall effect: Z=0.35 (P = 0.73)

5.1.3 Wrist flexion

Ferrigno 2009 - stiff palmar orthosis -0.07 [-0.65, 0.50]
Ferrigno 2009 - stiff thermoplastic orthosis -0.39[-0.98, 0.19]
Subtotal (95% CI) -0.23 [-0.64, 0.18]
Heterogeneity: Tau® = 0.00; Chi* = 0.58, df = 1 (P = 0.44); I>= 0%
Test for overall effect: Z= 1.11 (P = 0.27)
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Risk of bias legend
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Figure 24 Wrist supporting exoskeletons — Muscle activity
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Appendix 1

Appendix 1. A: Reference contractions for the normalization procedures for the six muscles of which muscle activity was
recorded using bipolar surface electromyography. B: Reference posture for the position sensors.

A

Muscle

Reference contractions

Erector spinae

Subjects lay prone with the upper body and hips (hip bones) off the bench and the legs fixed with
straps, performing maximal hip extension against a barrier while keeping the body horizontal and the
arms crossed in front of the chest (modified Biering-Sgrensen test; Biering-Sgrensen, 1984). The
signals from the most stable 1-second period out of the 5-seconds lasting period were used.

Biceps femoris

Subjects lay prone with 90° knee flexion, feet flexed, keeping the position while a rope with a 7-kg
weight hanging over a pulley and pulling in caudal direction was attached around the ankle. The
signals from the most stable 5-seconds out of the 10-seconds lasting period were used.

Rectus
abdominis

Subjects lay supine with the upper body and hips off the bench and the legs fixed with straps,
performing 45° hip flexion while holding an additional 10-kg weight and keeping the arms crossed in
front of the chest (reverse Biering-Sgrensen test; Biering-Sgrensen, 1984). The signals from the most
stable 5-seconds out of the 10-seconds lasting period were used.

Vastus lateralis

Subjects lay prone with 90° knee flexion, feet flexed, keeping the position while a rope with a 10-kg
weight hanging over a pulley and pulling in cranial direction was attached around the ankle. The
signals from the most stable 5-seconds out of the 10-seconds lasting period were used.

Gastrocnemius

Subject stood upright, performing bilateral, isometric plantar flexion, raising their heels. The signals

medialis from the most stable 5-seconds out of the 10-seconds lasting period were used.

Trapezius Subject stood upright, feet hip-width apart, arms in 90° abduction but slightly in the frontal plane,

descendens elbows almost extended but not overstretched, while holding a 2-kg weight in each hand (Mathiassen
et al., 1995). The signals from the most stable 5-seconds out of the 10-seconds lasting period were
used.

B Reference posture

Posture Subjects stood comfortably upright, heels, buttocks and upper back touching the wall, arms hanging

and head facing straight ahead. The signals from a stable 1-second period of the 5-second posture
were used.
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Appendix 2
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Appendix 2. A: An anterior inclination of the position sensors generates positive values. A posterior inclination of the position
sensors generates negative values. B-E: The anteroposterior tangent lines of the position sensors placed over the processus
spinossi were used for the four predefined angle calculations according to the cobb method (Takacs et al., 2018). B: Thoracic
kyphosis = T1-L1. C: Lumbar lordosis = L1-L5. D: Hip flexion = L5-Femur. E: Knee flexion = |Femur-Tibia|. Prior to the
calculations the algebraic signs of the sensors placed on femur and tibia were corrected, means positive values were changed
to negative and negative to positive, as the sensors were placed on the anterior body side and therefore mirror-inverted to
the sensors placed over the spine.
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Appendices

Appendix A

Table A.1. Back-tansformed least squares means (standard deviation; SD) of normalized EMG for erector spinae (ES) and biceps femoris (BF) for all experimental conditions.

E LS LO ES10 (BMVE)  ESso ($MVE)  ESeo (SMVE) | BFio (%RVE)  BFso (%RVE)  BFso (%RVE)
L 4.04 15.79 29.17 6.32 30.35 75.67
(1.76) (1.40) (1.40) (2.49) (2.09) (1.80)
sa z 3.30 17.39 34.25 6.14 19.49 48.86
(1.77) (1.38) (1.35) (2.30) (2.13) (1.86)
o 3.72 18.46 34.77 6.03 19.62 45.98
w/o (1.71) (1.35) (1.32) (2.71) (2.26) (1.98)
o 4.72 15.59 25.21 7.42 42.69 91.58
(1.55) (1.38) (1.39) (2.40) (1.72) (1.61)
& . 3.76 18.44 33.86 5.84 34.62 75.09
(1.71) (1.36) (1.32) (2.44) (1.75) (1.60)
a 3.85 18.90 3432 7.19 31.97 58.03
(1.59) (1.34) (1.32) (2.62) (2.02) (1.79)
L 4.39 15.44 26.70 5.21 26.12 69.45
(1.82) (1.42) (1.41) (2.39) (1.96) (1.64)
sa : 3.74 16.91 32.53 5.13 16.34 45.26
(1.78) (1.39) (1.37) (2.36) (2.12) (1.74)
o 3.58 17.64 32.54 451 16.17 43.36
o (1.79) (1.36) (1.36) (2.78) (2.08) (1.84)
n 537 15.88 25.54 5.96 36.70 85.15
(1.59) (1.41) (1.39) (1.99) (1.74) (1.61)
& . 4.32 18.04 32.78 5.05 28.90 69.26
(1.80) (1.38) (1.35) (2.00) (1.72) (1.58)
a 411 18.20( 33.26 5.84 24.38 50.94
(1.68) (1.34) (1.33) (2.50) (2.02) (1.82)

Factors include exoskeleton (E), lifting style (LS) and lifting orientation (LO). Abbreviations: W/O, without; W, with; SQ, squat; ST, stoop; IL, ipsilateral; F, frontal; CL, contralateral; ES/BFo, 10th
percentile or static EMG activity; ES/BFse, 50t percentile or median EMG activity; ES/BFss, 90t percentile or peak EMG activity; %MVE, EMG normalization to maximal reference contraction; %RVE,
EMG normalization to submaximal reference contraction.

Table A.2. Results of RM-ANOVA for the main and interaction effects on log-transformed normalized EMG of the erector spinae (ES) and biceps femoris (BF).

Effect ES10 ESso ESe0 BFio BFso BFso
6.646 6.377 22.836 20.003 21.858 11.470
3 (0.014, (0.016, (0.000, (0.000, (0.000, (0.002,
0.1641) 0.158%) 0.402%) 0.364%) 0.384%) 0.2471)
9.864 6.487 4.201 1.541 41.463 40.075
Ls (0.004, (0.016, (0.048, (0.223, (0.000, (0.000,
0.2254) 0.1607) 0.110) 0.042) 0.542) 0.534%)
19.864 74.553 112.499 1.060 31.697 61.537
Lo (0.000, (0.000, (0.000, (0.352, (0.000, (0.000,
0.3694%) 0.6874) 0.7684%) 0.029) 0.4754) 0.638%)

1.647 1.404 12.657 0.178 0.485 0.461
ExLS (0.208, (0.244, (0.001, (0.676, (0.491, (0.502,
0.046) 0.040) 0.271%) 0.005) 0.014) 0.013)

5312 7.287 0.643 0.589 1.462 0.292
ExLO (0.007, (0.001, (0.529, (0.558, (0.239, (0.747,
0.1354) 0.176%) 0.019) 0.017) 0.040) 0.008)
2.278 9.508 28.515 5.324 5.368 15.267
LS x LO (0.110, (0.000, (0.000, (0.007, (0.007, (0.000,
0.063) 0.2191) 0.456%) 0.1321) 0.1331) 0.295%)

0.858 1.708 8.461 0.353 0.588 1.627
ExLSxLO (0.429, (0.189, (0.001, (0.704, (0.558, (0.204,
0.025) 0.048) 0.1994) 0.010) 0.017) 0.044)

Note: values display F (with p, nf, in parentheses), and significant effects are displayed bold.
Main and interaction effects include exoskeleton (E), lifting style (LS) and lifting orientation (LO). Abbreviations: ES/BF10, 10 percentile or static EMG activity; ES/BFso, 50t percentile or median
EMG activity; ES/BFao, 90" percentile or peak EMG activity; F, test value; p, significance level; r]%, partial eta-squared effect size; T, median effect size (n§20.13); 1, large effect size {17%20.26).
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Appendix B

Table B.1. Back-transformed least squares means (standard deviation; SD) of normalized EMG for rectus abdominis (RA), vastus lateralis (VL), gastrocnemius medialis (GM) and trapezius
descendens (TD) for all experimental conditions.

c 5 @ RA1p RAso RAg Vi Vlso Vlgo GMyo GMso GMoo TD1o Toss Tozs
(%RVE) (%RVE) (%RVE) (%RVE) (%RVE) (%RVE) (%RVE) (%RVE) (%RVE) (%RVE) (%RVE) (%RVE)

L 1.26 3.45 7.18 27.60 80.84 149.66 8.56 30.47 78.85 3.90 3234 82.86

(2.11) (2.05) (2.06) (1.92) (1.80) (1.79) (2.16) (2.21) (1.99) (2.10) (1.73) (1.49)

sa . 1.24 3.57 7.25 31.05 85.13 141.38 7.49 24.78 66.44 3.71 30.36 87.21

(2.16) (2.05) (2.06) (1.81) (1.77) (1.72) (2.02) (1.88) (1.96) (2.60) (1.86) (1.53)

a 1.24 3.37 7.13 17.61 55.23 100.54 5.29 17.19 55.82 2.87 27.38 76.41

. (2.15) (2.04) (2.08) (2.46) (2.00) (1.98) (2.00) (2.03) (1.85) (2.68) (1.93) (1.50)
I 1.21 3.25 7.33 14.54 3251 59.27 10.12 82.69 186.11 3.30 19.57 67.73

(2.10) (2.09) (2.08) (2.62) (2.03) (1.87) (2.36) (1.91) (1.81) (1.94) (2.23) (1.55)

- ; 1.21 3.37 7.50 10.40 24.61 49.82 9.63 84.70 163.72 3.11 20.96 71.86

(2.13) (1.99) (2.05) (3.09) (2.35) (2.15) (2.24) (1.81) (1.71) (2.06) (2.13) (1.67)

L 121 3.14 7.23 6.03 14.94 31.57 7.88 36.33 71.42 2.30 15.71 63.09

(2.10) (2.08) (2.11) (2.73) (2.55) (2.54) (2.46) (1.76) (1.66) (1.92) (2.24) (1.59)

L 1.19 3.22 6.96 25.61 72.66 134.46 9.69 34.67 88.16 4.53 34.95 81.91

(2.21) (2.11) (2.08) (1.85) (1.78) (1.73) (2.24) (2.16) (1.97) (2.12) (1.70) (1.46)

sa . 1.20 3.46 7.13 30.60 73.88 123.60 8.61 30.04 76.97 414 31.96 83.76

(2.21) (2.09) (2.09) (1.84) (1.86) (1.82) (2.14) (2.01) (1.97) (2.51) (1.89) (1.57)

a 1.16 3.19 6.85 12.83 41.66 81.62 6.87 24.20 63.87 3.33 27.15 73.22

- (2.17) (2.10) (2.12) (2.94) (2.18) (2.04) (2.15) (2.14) (2.00) (2.53) (1.94) (1.60)
A 1.20 3.05 7.08 14.13 32.38 58.86 14.52 90.99 190.64 3.66 24.54 71.99

(2.14) (2.08) (2.09) (2.66) (2.18) (2.02) (2.26) (1.85) (1.76) (1.96) (1.96) (1.51)

- . 1.16 3.20 7.23 10.11 23.67 47.14 12.24 92.95 167.98 3.39 20.25 73.80

(2.07) (2.05) (2.09) (2.96) (2.32) (2.23) (2.45) (1.76) (1.70) (2.16) (2.16) (1.60)

al 1.21 3.10 7.14 6.54 16.87 39.11 10.75 48.36 87.47 2.54 17.67 62.71

(2.15) (2.08) (2.13) (2.63) (2.58) (2.44) (2.40) (1.70) (1.61) (2.05) (2.06) (1.72)

Factors include exoskeleton (E), lifting style (LS) and lifting orientation (LO). Abbreviations: W/O, without; W, with; SQ, squat; ST, stoop; IL, ipsilateral; F, frontal; CL, contralateral; RA/VL/GM/TD10,
10t percentile or static EMG activity; RA/VL/GM/TDso, 50t percentile or median EMG activity; RA/VL/GM/TDso, 90t percentile or peak EMG activity; %RVE, EMG normalization to submaximal
reference contraction.

Table B.2. Results of RM-ANOVA for the main and interaction effects on log-transformed, normalized EMG of the rectus abdominis (RA), vastus lateralis (VL), gastrocnemius medialis (GM) and

trapezius descendens (TD).

Effect RA10 RAso RAg Vi Viso Viso GMio GMso GMao TD1o TDso TDso
5.542 18.812 6.671 1.175 3.266 1.809 54.910 35.868 37.328 13.031 4.905 0.013
E (0.025, (0.000, (0.014, (0.286, (0.080, (0.188, (0.000, (0.000, (0.000, (0.001,  (0.033,  (0.909,
0.1401) 0.356%) 0.1641) 0.035) 0.088) 0.050) 0.611%) 0.506%) 0.516%) 0.271#)  0.123) 0.000)
0.817 14,513 4.607 46.580 85.266 71.432 16.724 149.120 179.860 10.670  54.063  24.956
Ls (0.373, (0.001, (0.039, (0.000, (0.000, (0.000, (0.000, (0.000, (0.000, (0.002,  (0.000,  (0.000,
0.023) 0.299%) 0.119) 0.577%) 0.716%) 0.679%) 0.323%) 0.810%) 0.837%) 0.234%)  0.607#)  0.416%)
0.296 13.901 3.861 37.481 53.564 60.671 13.162 83.256 125.544 29.991 14.137 15.411
Lo (0.745, (0.000, (0.026, (0.000, (0.000, (0.000, (0.000, (0.000, (0.000, (0.000,  (0.000,  (0.000,
0.009) 0.290%) 0.102) 0.524%) 0.611%) 0.639%) 0.273%) 0.704%) 0.7821) 0.461#)  0.288%)  0.306%)

5.209 0.264 0.014 1.946 4.612 4.683 2.775 1.023 1.833 0.526 1.232 5.454
ExLS (0.029, (0.611, (0.906, (0.173, (0.039, (0.038, (0.105, (0.319, (0.185, 0473, 90275,  (0.025,
0.1334) 0.008) 0.000) 0.056) 0.124) 0.124) 0.073) 0.028) 0.050) 0.015) 0.034)  0.135%)

0.180 2.441 0.327 0.626 0.148 1.104 1.174 9.306 5.362 0.228 5.617 1.939
ExLO (0.836, (0.095, (0.723, (0.538, (0.862, (0.338, (0.315, (0.000, (0.007, (0.797,  (0.006,  (0.152,
0.005) 0.067) 0.010) 0.018) 0.004) 0.032) 0.032) 0.2101) 0.1331) 0.006)  0.1387)  0.052)

3.803 0.485 0.491 6.395 5.553 1.294 2.385 24.321 81.465 0.538 0.854 0.085
LS x LO (0.027, (0.618, (0.614, (0.003, (0.006, (0.281, (0.100, (0.000, (0.000, (0586,  (0.430,  (0.918,
0.101) 0.014) 0.014) 0.1574) 0.140%) 0.037) 0.064) 0.410%) 0.699%) 0.015) 0.024) 0.002)

4.879 1.708 1.928 4142 3.531 4.825 1.781 0.365 6.228 0.059 3.717 0.501
ExLSxLO (0.011, (0.189, (0.153, (0.020, (0.035, (0.011, (0.176, (0.696, (0.003, (0.943,  (0.029,  (0.608,
0.125) 0.048) 0.054) 0.110) 0.096) 0.126) 0.048) 0.010) 0.1511) 0.002) 0.096) 0.014)

Note: values display F (with p, 715 in parentheses), and significant effects are displayed bold.

Main and interaction effects include exoskeleton (E), lifting style (LS) and lifting orientation (LO). Abbreviations: RA/VL/GM/TD1o, 10t percentile or static EMG activity; RA/VL/GM/TDsg, 50t

2

percentile or median EMG activity; RA/VL/GM/TDag, 90 percentile or peak EMG activity; F, test value; p, significance; 175, partial eta-squared effect size; t, median effect size (n;20.13); #, large
effect size (n320.26).
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Appendix C

Table C.1. Mean (SD) of joint angles knee flexion (KF), hip flexion (HF), lumbar lordosis (LL) and thoracic kyphosis (TK) and of heart rate (HR) for all experimental conditions.

E LS Lo KFwvin (°) KFso (°) KFmax (°) HFwin (°) HFso (°) HFwvax (°) Ll (°) Lso (°) LLmax (°) TKuin (°) TKso (°) TKwax (°) HR (bpm)
/L -1.24 29.42 65.99 -2.96 36.53 85.71 -3.03 8.35 18.69 -6.60 4.58 14.12 95.05
(4.99) (9.62) (15.67) (4.54) (7.83) (10.30) (4.52) (5.51) (7.63) (6.94) (7.37) (7.76) (11.22)
sa E 0.51 35.04 74.38 -0.93 41.25 89.84 -3.34 8.20 16.53 -9.50 1.68 11.03 94.99
(4.38) (8.61) (14.58) (4.61) (7.10) (9.86) (4.50) (5.63) (7.04) (7.13) (7.48) (7.75) (11.10)
a 133 32,57 72.88 -0.19 34.74 81.10 ) : ) R . R ;
- (5.02) (8.72) (14.15) (5.00) (7.36) (9.01)
/L -1.20 11.92 27.13 -2.56 24.70 62.11 -2.48 9.93 23.75 -5.65 7.19 17.75 92.03
(6.48) (8.05) (10.44) (5.71) (7.61) (11.15) (3.84) (4.62) (7.17) (7.27) (7.27) (7.81) (10.62)
ST 3 -0.89 10.57 23.56 -1.79 27.68 65.47 -3.14 11.38 24.47 -9.52 2.58 12.37 92.52
(5.94) (8.73) (12.54) (5.62) (8.38) (12.79) (4.16) (5.31) (7.61) (7.38) (7.80) (7.84) (10.88)
c -1.00 9.88 22.68 -0.90 21.45 55.77 ) ) ) _ ) _ _
(5.64) (7.58) (12.14) (5.71) (8.21) (12.51)
/L 1.22 32.78 62.88 0.66 41.19 84.30 -2.48 8.87 20.03 -5.32 4.47 13.07 93.67
(5.68) (9.43) (13.96) (5.78) (8.09) (8.48) (4.30) (5.77) (7.38) (6.73) (7.27) (7.63) (11.50)
sa 3 3.45 39.19 73.73 2.02 45.75 88.63 -3.31 8.52 17.29 -8.37 1.92 10.81 93.70
(5.16) (9.41) (14.43) (5.50) (7.61) (8.00) (4.56) (6.38) (7.65) (6.64) (6.91) (6.84) (11.45)
o 4.39 35.36 70.27 2.83 38.69 80.66 R R R R R R
. (6.53) (9.23) (13.64) (6.21) (7.79) (7.64)
/L 1.32 17.53 31.75 1.00 33.09 69.49 -1.69 10.83 26.06 -5.80 5.44 14.91 90.72
(6.95) (9.62) (10.64) (5.83) (9.41) (10.88) (3.81) (5.04) (7.56) (6.75) (7.42) (8.12) (10.05)
ST £ 1.81 16.67 29.61 1.64 35.90 71.25 -2.40 11.84 26.24 -9.54 1.59 10.60 90.15
(5.82) (9.47) (12.32) (6.45) (9.66) (13.21) (4.23) (5.77) (7.94) (7.00) (7.45) (7.17) (11.06)
o 5.68 17.69 28.95 5.59 30.12 59.69 _ _ _ _ _ _ _
(7.17) (10.30) (13.40) (5.89) (9.38) (13.59)
Factors include exoskeleton (E), lifting style (LS) and lifting orientation (LO). Abbreviations: W/0, without; W, with; SQ, squat; ST, stoop; IL, ipsilateral; L, lateral; F, frontal; CL, contralateral;
KF/HF/LL/TKwun, minimum angle; KF/HF/LL/TKso, 50t percentile or median angle; KF/HF/LL/TKmax, maximum angle; bpm, beats per minute.
Table C.2. Results of RM-ANOVA for the main and interaction effects on joint angles knee flexion (KF), hip flexion (HF), lumbar lordosis (LL) and thoracic kyphosis (TK) and on heart rate (HR).
Effect KFymin KFso KFmax HFwin HFso HFwiax LLvin LLso LLmax TKvin TKso TKwviax HR
51.121 55.409 7.783 95.520 78.151 11.509 2.765 3.805 12.921 3.245 5.027 20.856 23.416
E (0.000, (0.000, (0.009, (0.000, (0.000, (0.002, (0.105, (0.105, (0.001, (0.080, (0.031, (0.000, (0.000,
0.594%) 0.613%) 0.1827) 0.732%) 0.691%) 0.2471) 0.073) 0.073) 0.270%) 0.085) 0.126) 0.373%) 0.401%)
3.246 219.195 298.671 0.385 145.410 236.505 5.118 33.530 88.341 0.153 5.034 8.976 48.053
LS (0.080, (0.000, (0.000, (0.539, (0.000, (0.000, (0.030, (0.000, (0.000, (0.698, (0.031, (0.005, (0.000,
0.085) 0.862%) 0.895%) 0.011) 0.806%) 0.871%) 0.128) 0.489%) 0.716%) 0.004) 0.126) 0.2047) 0.579%)
14.081 13.008 9.910 13.626 99.888 117.035 13.042 4.278 9.979 123.507 112.604 126.158 0.010
Lo (0.000, (0.000, (0.000, (0.000, (0.000, (0.000, (0.001, (0.046, (0.003, (0.000, (0.000, (0.000, (0.920,
0.287%) 0.271%) 0.2217) 0.280%) 0.741%) 0.770%) 0.271%) 0.109) 0.2221) 0.779#)  0.763%)  0.783%) 0.000)
0.383 12.378 43.900 0.254 28.341 37.253 1.169 0.397 3.038 5.398 11.286 15.823 0.568
ExLS (0.540, (0.001, (0.000, (0.618, (0.000, (0.000, (0.287, (0.533, (0.090, (0.026, (0.002, (0.000, (0.456,
0.011) 0.261%) 0.556%) 0.007) 0.447%) 0.516%) 0.032) 0.011) 0.080) 0.1347) 0.2447) 0.311%) 0.016)
3.401 0.968 3.822 0.549 0.359 0.944 2.402 3.491 5.392 0.003 3.813 7.398 2.456
ExLO (0.039, (0.385, (0.027, (0.580, (0.700, (0.394, (0.130, (0.070, (0.026, (0.957, (0.059, (0.010, (0.126,
0.089) 0.027) 0.098) 0.015) 0.010) 0.026) 0.064) 0.091) 0.1337) 0.000) 0.098) 0.174%) 0.066)
7.148 40.874 48.526 2.630 3.071 3.112 0.305 26.290 56.033 4.724 19.005 24.212 0.004
LS x LO (0.002, (0.000, (0.000, (0.079, (0.053, (0.051, (0.584, (0.000, (0.000, (0.037, (0.000, (0.000, (0.949,
0.170%) 0.539%) 0.581%) 0.070) 0.081) 0.082) 0.009) 0.429%) 0.616%) 0.119) 0.352#)  0.409%) 0.000)
2.147 4.703 3.524 0.378 0.216 0.720 1.080 0.390 0.003 0.185 0.802 0.273 2.939
ExLSxLO (0.124, (0.012, (0.035, (0.686, (0.807, (0.490, (0.306, (0.537, (0.959, (0.670, (0.377, (0.605, (0.095,
0.058) 0.118) 0.091) 0.011) 0.006) 0.020) 0.030) 0.011) 0.000) 0.005) 0.022) 0.008) 0.077)

Note: values display F (with p, nf, in parentheses), and significant effects are displayed bold.
Main and interaction effects include exoskeleton (E), lifting style (LS) and lifting orientation (LO). Abbreviations: KF/HF/LL/TKnn, minimum angle; KF/HF/LL/TKss, 50t percentile or median angle;
KF/HF/LL/TKnmax, maximum angle; F, test value; p, significance; 17,2,, partial eta-squared effect size; 1, median effect size (r]§>0.13),' 1, large effect size (r]§>0.26).
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