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Abstract

Stroke is the leading cause of motor impairment worldwide. In the last decade, brain-

machine interfaces (BMIs) have emerged as a promising tool for stroke rehabilitation, 

but the rehabilitative outcome is still moderate. This thesis capitalizes on the 

neuroscience behind sensorimotor integration and memory formation that occurs 

during stroke rehabilitation to design a novel BMI-based rehabilitation intervention that 

includes peripheral electrical stimulation and a sleep interface. The first study 

investigates the challenges and biases interpreting EEG during a visuomotor task, 

revealing confounding factors that might bias EEG analyses of a reaching task, a critical 

part of a BMI-based stroke rehabilitation. The second study builds upon the 

neuroscientific knowledge on memory consolidation and uses state-of-the-art 

techniques, like targeted memory reactivation (TMR), to manipulate memory 

consolidation after neuroprosthetic learning, the type of learning that takes place during 

a BMI training. In line with previous animal studies, increased spindle and slow wave 

activity was found over the brain area linked to the BMI control in the intervention night, 

showing that, after TMR, the occurrence of such neural correlates was more lateralized 

towards that brain area. The third and final study integrates peripheral electrical 

stimulation (PES) in a BMI system and explores how this stimulation, when properly 

synchronized with supraspinal activity, can excite the sensorimotor system, potentially 

leading to a better rehabilitative outcome. The findings of this study clearly show a 

higher excitatory state of the sensorimotor system, but no behavioural changes (in a 

motor learning task) could be found. Finally, both studies ended with a test on stroke 

population. Study 2 studied how sleep changes after a BMI-based rehabilitation 

intervention and looked for the same patterns of memory consolidation that could be 

found in healthy participants. Study 3, on the other hand, implemented and tested in a 

two-month intervention a portable home-based BMI system for rehabilitation that 

delivered closed-loop PES to increase excitability of the sensorimotor system. Altogether, 

this thesis sets the basis towards a neurorehabilitation system combining neural 

interfaces, peripheral stimulation, and sleep.
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1 Introduction 

1.1 Stroke

Stroke is a medical emergency that occurs when the blood supply to a part of the brain 

is interrupted or reduced. This can be caused by the rupture of a blood vessel 

(hemorrhagic stroke) or by a blocked artery (ischemic stroke). Its consequences vary 

widely depending on factors like lesion location, extent of the brain damage or 

promptness of the medical intervention. Thus, some stroke survivors may experience 

mild and temporary impairments, while others may encounter more severe and long-

lasting effects.  Stroke is, indeed, one of the main causes of long-term motor disability, 

leading to functional deficits in motor control in more than 85% of the cases (Langhorne 

et al., 2011). 

The consequences of a stroke can be devastating, affecting not only the individuals who 

experience it but also their loved ones and caregivers. Following a stroke, survivors may 

encounter physical and cognitive difÏculties, including speech and language 

comprehension issues, memory problems and paralysis. These changes result in 

important changes in the lives of both patients and their families since patients often 

require daily life support. Additionally, post-stroke treatments represent a financial 

burden both for the families, as well as the healthcare system (Kolominsky-Rabas et al., 

2006; Lee et al., 2010). Thus, patient autonomy is a crucial factor that needs to be 

addressed to improve the quality of life of the patients and their families. 

Strategies like compensating or substituting the lost motor function, by adjusting the 

remaining motor abilities or using technical aids like canes or walkers, can assist stroke 

patients to become more independent. Alternatively, rehabilitation therapies focus on 

restoring the motor function. In this context, physical and behavioral therapy is the 

overall accepted method for motor rehabilitation after stroke. However, the efÏcacy of 

motor rehabilitation is limited when it comes to severely paralyzed and patients in a 

chronic stage (Byblow et al., 2015; Winters et al., 2015). In the last decade, a novel 



4

rehabilitation approach based on the use of brain-machine interfaces (BMIs) has 

emerged as an effective tool for motor stroke rehabilitation (Ramos-Murguialday et al., 

2013).

1.2 Brain machine interfaces

A brain-machine interface is a system that translates neural signals into commands that 

are used to control an external device (e.g., cursor movement, exoskeleton or 

wheelchair). Brain activity can be recorded using a plethora of techniques that measure 

electrical or magnetic fields (i.e., functional MRI, PET or functional near-infrared 

imaging), but the most commonly used method is electroencephalography (EEG). EEG 

records the electrical fields at the scalp that result from brain activity. This technique is 

commonly used due to its relatively low cost, short setup time and non-invasiveness. 

However, this technique presents two main limitations. First, it is more susceptible to 

external electrical contamination, leading to lower signal to noise ratio (Buzsáki et al., 

2012). Thus, electrooculographic and electromyographic activity are prone to pollute the 

EEG recordings, as well as impedance shifts resulting from sensor movements (Kline et 

al., 2015; Lebedev & Nicolelis, 2017; Snyder et al., 2015). Additionally, EEG recordings 

must deal with low spatial resolution a limited frequential range. 

The detection of motor intention from EEG signals has been successfully achieved using 

two brain movement-related brain signatures: event related desynchronizations (ERD) 

and motor related cortical potentials (MRCP).  ERDs, also referred as sensorimotor 

rhythms, reflects the decrease in power resulting from the desynchronization of neural 

activity between 8-30 Hz that occur over the sensorimotor cortices when a movement 

is performed, planned, or imagined (Pfurtscheller & Lopes da Silva, 1999). MRCPs, on 

the other hand, represent slow (0.1-1 Hz) changes in amplitude occurring up to 1.5 

seconds before execution or imagination voluntary of movements (Shibasaki & Hallett, 

2006). Both, and their combination, have been extensively used to discriminate between 

rest and movement states, as well as motor imagery both for healthy (Ibáñez et al., 2015; 

Niazi et al., 2011) and paralyzed individuals (Antelis et al., 2013; E. Lew et al., 2012; 
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López-larraz et al., 2014).  Interestingly, some invasive studies have shown that 

information related to arm movement directions can be identified from low frequency 

components (<4 Hz) (Ball et al., 2009; Waldert et al., 2008). Indeed, in the last years, 

several studies have shown promising results on the decoding of different movements 

from the EEG (Iturrate et al., 2016; Ofner et al., 2017; Pereira et al., 2017; Shiman et al., 

2015). These findings could help design the next generation of BMIs for rehabilitation 

since a precise and accurate decoding of both MRCP and/or ERDs plays a pivotal role on 

such technologies.

BMIs for rehab

The key idea behind BMI-based rehabilitation approaches is that consistently linking 

brain activity with the afferent feedback might induce, and guide, activity-dependent 

brain plasticity that ultimately leads to a restoration of lost motor functions. Thus, Ramos 

and colleagues showed, in a study involving 32 severely paralyzed stroke patients, that 

BMI training led to significantly larger improvements in upper limb motor function, when 

compared to a control group where the feedback, hand orthosis movement, was not 

linked to the brain activity (Ramos-Murguialday et al., 2013). These results elegantly 

demonstrate that it is the contingency between brain activity and feedback (the central 

point of the BMIs) and not the feedback itself, what induces, and guides, activity-

dependent plasticity to restore motor function. Since then, several studies have 

replicated those results but also explored the use of other feedback modalities. 

Other studies that rely on proprioception by the means of moving the paretic limb either 

using an orthoses, hand knobs or exoskeletons (Ang et al., 2014, 2015; Frolov et al., 2017; 

Hu et al., 2020; Ono et al., 2014). Alternatively, several groups have focused on visual, 

achieving remarkable results (Mottaz et al., 2018a; Pichiorri et al., 2015; Rayegani et al., 

2014). Lastly, the use of peripheral electrical stimulation (PES), electrical impulses 

stimulating specific muscles or nerves, to close the loop with the brain activation of the 

patients has also achieved promising results (Biasiucci et al., 2018; T. Kim et al., 2016; 

Mrachacz-Kersting et al., 2016; Ono et al., 2014). Remarkably, as revealed by the meta-

analysis of Nojima and colleagues, the studies using visual feedback, and especially the 
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ones relying on PES, tended to show higher clinical improvements when compared with 

the group of proprioception studies (Nojima et al., 2022).

However, the effect of these studies on motor recovery is still moderate. Several reasons 

might be hampering the effectiveness of BMI-based rehabilitation. Firstly, the attention 

span of this type of patients, together with a relatively long set up time of these BMIs 

result in a short training time. Indeed, in the study of Frolov and colleagues, most of the 

patients reported fatigue after 20-30 minutes of training.  Another limitation comes from 

the characteristics of the EEG signals (low SNR, low spatial resolution), as they only 

enable to reliably extract whether the subject is attempting to initiate movement or not 

during the training. This is a critical step since it limits the contingency between the brain 

activity and the feedback, a crucial element in BMIs and BMI-based rehabilitation. Thus, 

a more precise decoding of the EEG signals that could, for example, extract information 

about the type of movement being performed, would allow for more specific 

feedback/afference, potentially improving the rehabilitative outcome. Thus, the first 

study of this thesis will focus on the extraction of motor-related neural patterns to 

discriminate among reaching directions.

Peripheral electric stimulation 

Focusing on the optimization of the afferent feedback during a BMI-based rehabilitation, 

PES holds a great potential since it can be tailored to deliver contingent feedback that 

both closes the loop and excites sensorimotor pathways, thus enhancing the activity-

dependent plasticity that is behind the efÏcacy of rehabilitative BMIs (Sur & Rubenstein, 

2005). During PES, the electrical currents trigger a sensory response by depolarizing 

sensory axons, directly influencing the sensorimotor cortex, and enhancing cortical 

excitability (Bergquist et al., 2011; Burke et al., 1983; Insausti-Delgado et al., 2020). This 

approach is already being explored by several groups with promising results.

Biasiucci and colleagues showed that a BMI coupled with functional electrical 

stimulation (FES), a type of PES that is focused on elicit muscle contraction to provide 

function, leading to significant and lasting motor recovery in stroke patients (Biasiucci et 
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al., 2018). Interestingly, this recovery remained 6-12 months after the therapy, adding 

evidence to the stability of such recovery that Ramos-Murguialday and colleagues 

confirmed in a follow-up measurement 6 months after the intervention (Ramos-

Murguialday et al., 2019). Authors also found a correlation between connectivity of 

motor areas of the affected hemisphere and recovery, suggesting that functional 

recovery is driven by the plasticity produced by the contingency between efference and 

afference. However, this approach can be further improved by understanding the 

interaction between the afference generated by the electrical stimulation and the 

sensorimotor integration produced during the rehabilitation therapy. Although these 

studies showed a closed-loop PES where stimulation is delivered only during the motor 

attempt of the patients, some studies have recently explored the relationship between 

the phase of certain ongoing sensorimotor rhythms and higher excitatory states (Van 

Elswijk et al., 2010; Zrenner et al., 2018a). These closed-loop approach holds a great 

potential for BMIs for stroke rehabilitation since a stimulation delivered in higher 

excitatory states might facilitate that the impaired sensorimotor system to create new 

connections, a crucial factor in the rehabilitative BMIs.

1.3 Sensorimotor integration and sensory gating

During a movement action, the central nervous system (CNS) integrates different sources 

of stimuli to, simultaneously, generate motor commands (Machado et al., 2010). Thus, a 

correct voluntary movement execution depends on the integration of the relevant 

sensory inputs. In fact, every body movement stimulates peripheral receptors, activating 

neurons in the spinal cord and brain via afferent feedback. This flow of afferent feedback 

during movement is not constant but modulated by top-down mechanisms. This effect, 

known as sensory gating, where afferent information is intermittently reduced has been 

extensively studied in voluntary movements (Angel & Malenka’, 1982; Bays et al., 2006; 

Blakemore et al., 1998). This afference modulation has also been also found in the 

modulation of cortical Somatosensory-evoked potentials (SEPs): attenuation of the 

evoked responses has been found during several phases of self-initiated, but not passive, 

movements (Andrew et al., 2015; Dancey et al., 2016; Haavik & Murphy, 2013; Macerollo 

et al., 2018). This top-down modulation is of special interest for a rehabilitative BMI since 
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an afference timed with a higher excitatory state of the sensorimotor system is more 

likely to drive activity-dependent plasticity. The modulation of the excitability of the 

sensorimotor cortex and how to exploit it to improve BMIs for rehabilitation will be 

investigated in Study 3 of this thesis.

1.4 Neuroprosthetic learning and sleep

In the context of motor rehabilitation after stroke, where the impaired sensorimotor 

system might not be capable of fully encoding and consolidating the newly learned 

information, understanding how memories are being formed (and consolidated) is of 

paramount importance to further improve the outcome of any rehabilitative 

intervention. It is known that memories are formed in a labile state, susceptible to 

interferences and forgetÝng, and need to go through a consolidation process. Sleep plays 

a major role in memory consolidation (Diekelmann & Born, 2010). There is an extensive 

body of research showing the behavioral benefits of sleep on declarative and procedural 

memories. More specifically, the consolidation effect of sleep has been shown in several 

motor learning, a type of procedural learning similar to the one that occurs during a BMI 

task (Fischer et al., 2005; Korman et al., 2007; Walker et al., 2003). 

Neuroprosthetic learning

The process of learning to control a neuroprosthetic device with a BMI can be considered 

as a specific type of instrumental learning (Carmena, 2013; Green & Kalaska, 2011) in 

which a subject learns to control the underlying brain activity by feedback and reward, 

reinforcement and error-based learning, based on the achievement of task-relevant 

goals (Wander et al., 2013). During training of a neuroprosthetic skill, the central nervous 

system modifies the connections of the neuronal populations participating in the control 

of the neural interface (e.g., the neuronal ensembles that produce an EEG signal that is 

translated into robotic movement) and minimizes error of the output (e.g., by visuo-

motor and proprioceptive feedback) through plasticity in the cortex and in the striatum, 

which is associated with reward behavior (Ganguly et al., 2011; Koralek et al., 2012). The 
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direct control of feedback based on activity of neural populations makes neural 

interfaces an exquisite neuroscientific tool to study learning at the level of brain activity, 

as represents a causal link between brain activity and behavior. Considering BMI control 

as a form of sensorimotor learning helps us to study how to optimize BMI systems using 

the extensive body of research on sensorimotor learning as a framework (Krakauer & 

Mazzoni, 2011). Conversely, BMI learning also allows us to investigate processes 

happening during motor learning, such as changes in directional tuning of neurons with 

learning (Ganguly et al., 2011). Improving control of neural interfaces is critical, since it 

has been shown that only a subset of the population is able to learn to control a brain-

machine interface and that neural activity is easily contaminated by other physiological 

and non-physiological signals (Bibián et al., 2021; Vidaurre & Blankertz, 2010). Hence, a 

better understanding on how these neuroprosthetic memories are created and 

consolidated would lead to very promising applications, especially in the population of 

patients that could potentially benefit from BMIs as assistive or rehabilitative platforms. 

Sleep and memory consolidation

Sleep plays a paramount role in the retention of memories, or memory consolidation, 

through the reactivation of prior experiences (Diekelmann & Born, 2010; Mander et al., 

2011; Schönauer et al., 2015). More specifically, Slow-wave sleep has been associated 

with a replay of behaviors learned during the day (Rasch and Born, 2007). This process 

is understood to be responsible for the reinforcement of new neuronal connections 

made during the day, thereby leading to improvements in task performance. Several 

brain correlates of sleep have been identified to play a role in this memory consolidation: 

slow-wave and spindle activity in sleep increases after motor learning, specifically over 

motor areas (Huber et al., 2004; Latchoumane et al., 2017; Vahdat et al., 2017), and the 

increasing slow-wave activity strengthens memory consolidation (Marshall et al., 2006; 

Ngo et al., 2013). These processes have been largely studied for both declarative and 

procedural memories (Korman et al., 2007; Vahdat et al., 2017), but the mechanisms 

behind the consolidation of neuroprosthetic memories are now starting to be unveiled.
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Recent work has demonstrated in rodents that successful neuroprosthetic learning 

(direct neural control of an external actuator) is linked to enhanced phase-locking and 

emergence of coherent task-related activity during post-learning slow-wave sleep (SWS) 

(Gulati et al., 2014; J. Kim et al., 2019). In contrast, task-unrelated activity either 

remained unchanged or experienced a reduction in phase-locking and coherent 

activation. Other studies have also evaluated activity during SWS after learning to control 

an invasive BMI in humans (Johnson et al., 2012). They showed a local increase in sleep 

spindle occurrence and during SWS after BMI training, with higher spindle rate located 

close to the electrodes used for training. In contrast, control subjects did not present 

such local modulation of spindle activity. These results are in line with the findings 

observed in other motor learning paradigms and give additional support for viewing 

sensorimotor rhythm-based BMI control (and BMI-based motor rehabilitation) and its 

effects on sleep as a surrogate of motor learning and consolidation (Landsness et al., 

2009; Nishida & Walker, 2007). 

Targeted memory reactivation

Manipulating memory consolidation has been proven to be possible through the 

reactivation of the previously learned memories during sleep (Schouten et al., 2017). 

This technique, called targeted memory reactivation (TMR), can be achieved through 

stimulation during sleep with odor cues (Rasch & Born, 2007) or auditory stimuli that 

have been associated with the learning material before sleep (Antony et al., 2012; 

Antony & Paller, 2017; Schönauer et al., 2013). However, most of these studies have been 

done on healthy young individuals, and little is known about the older population or 

stroke patients. Thus, a better understanding of these new memories being formed 

could allow us to exploit the potential of targeted memory reactivation to help the 

impaired sensorimotor system consolidate the newly acquired rehabilitative memories. 
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1.5 Objectives and hypothesis

A decade after the first BMI for stroke rehabilitation was presented, the clinical outcome 

of such intervention remains modest. This thesis aims at redefining some aspects of a 

BMI-based rehabilitation that could have a major impact on the effectiveness of such 

interventions. 

The first study, published in Bibian et al. 21,  was conducted to investigate the challenges 

that arise in the analysis and interpretation of EEG data from a visuomotor task, similar 

to what is used in BMI-based rehabilitative interventions. The main hypothesis of this 

study is that, when eye and head movements concurrently occur with the motor task of 

study (i.e., reaching movements), the EEG recordings are contaminated with external 

activity that might bias the interpretation of the data. 

The second study explores how learning occurs during a BMI task, how this learning is 

consolidated throughout the night and explores state-of-the-art techniques, such as 

TMR, to manipulate memory consolidation. The hypothesis is that after sensorimotor-

rhythm BMI training, sleep can be manipulated to enhance the consolidation of this 

learning. Additionally, we hypothesize that PES is an effective stimuli modality to apply 

targeted memory reactivation. 

The third study of this thesis investigates the top-down modulation of the excitability of 

the sensorimotor system. Additionally, it develops and tests, both in healthy and stroke 

participants, a closed-loop system to further excite the sensorimotor system during a 

BMI task, potentially improving the behavioral outcome. We hypothesize that if PES is 

synchronized with supraspinal activity from sensorimotor cortex, targeting higher states 

of excitability, the plasticity effect of BMI intervention can be fully exploited (Zanos et 

al., 2018).
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2 Studies

2.1 Study 1: Extraction of neural correlates of upper limb visuomotor task 

2.1.1 Introduction

In this study, we explore how "natural" head and eye movements that naturally occur 

during a visuomotor task affect the recorded EEG signals and if and how they influence 

the analysis and interpretation of EEG data. The primary objective is to evaluate the 

impact of concurrent eye and head movements on EEG during reaching movements 

conducted under constrained versus unconstrained conditions without specific 

instructions. We comprehensively analyzed EEG, electro-oculographic (EOG) signals, and 

accelerometer data to discern the contributions of head and eye movements to EEG 

recordings. Additionally, we employ a multivariate pattern classification (MVPC) 

approach to gain insights into the nature of the recorded EEG signals.

2.1.2 Materials & Methods

2.1.2.1 Experimental design

Ten healthy participants (four females, mean age: 29.3 ± 6.3 years) took part in a cross-

over study where they engaged in reaching tasks under two conditions: 1) deliberately 

avoiding head and eye movements during the task, and 2) performing the task naturally, 

allowing their gaze and head to follow their arm movements in a natural manner. All the 

procedures were approved by the Ethics Committee of the Faculty of Medicine of the 

University of Tübingen, Germany.

The setup aimed to assess the impact of head and eye movements on EEG-based 

movement decoding for the same limb in a realistic BMI-based rehabilitative scenario. 

Subjects were comfortably seated with their right arm wearing a rehabilitative 

exoskeleton (ISMORE exoskeleton, Tecnalia) (Figure 1a). In the present study, however, 

we used a passive version of the exoskeleton to reduce its weight as the subjects are 

meant to actively move their arms. Thus, in addition to recreating a rehabilitative 



13

scenario, this version of the exoskeleton was used as a tracking device for the reaching 

movements. More details on the exoskeleton can be found in (Bibián et al., 2021). 

The subjects performed reaching movements under two different conditions: a 

constrained approach in which the subjects were explicitly instructed to avoid head and 

eye movements; and an unconstrained approach in which the subjects’ head and gaze 

could follow their arm movements freely, as a patient would do during a rehabilitative 

intervention. This way, we aimed at testing if and how head and eye movements 

influence the EEG-based decoding of movements from the same limb. All the subjects 

performed the two conditions in two separate sessions following a cross-over design 

(half of the subjects performed the constrained approach first, and the other half 

performed the unconstrained approach first).

During these sessions, participants were asked to perform reaching movements to four 

different targets and returning to the starting position. Each experimental session 

comprised five runs, each consisting of 40 trials arranged in a randomized sequence, with 

10 trials for each target. The average trial duration was approximately 7.5 seconds and 

included a rest period (2–3 seconds), a readiness period (2 seconds), and a movement 

period (3 seconds), all signaled by auditory cues (see Figure 1b).

2.1.2.2 Data Acquisition and Preprocessing

We recorded brain activity using a 64-electrode EEG cap and collected EOG data with 

four passive electrodes (see montage in Figure 1b). Impedance for both EEG and EOG 

signals was maintained below 1kohm. Additionally, an accelerometer sensor on the head 

monitored head movements. After synchronization, all data was downsampled to 100 

Hz (after antialiasing filtering below 45 Hz) and a common average reference (CAR) 

spatial filter was applied to the sensorimotor cortex electrodes (highlighted in yellow in 

Figure 1b). Movement onset used in later analyses was determined based on the 

kinematic data from the exoskeleton. Thus, a movement onset was defined as the time 

point in which the exoskeleton position crossed the threshold =5% of its maximum 

distance moved during each trial (Niazi et al., 2011). After that, the signal from all the 
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sensors was segmented into 8-second trials from -5 to 3 seconds, with t=0 indicating 

movement onset.

2.1.2.3 Topography of the EEG Activation

First, we wanted to examine how reaching directions were represented in the 

topography of the EEG recordings. To do that, we generated topographical plots or 

"topoplots" of EEG activation for each electrode. The raw EEG signals were filtered within 

the movement-related cortical potential (MRCP) frequency band (0.05–2 Hz). After that, 

we created individual topoplots for each 0.5 seconds calculating the amplitude of each 

electrode in 0.5-seconds intervals, after baseline correction (subtracting the mean 

amplitude value between -5 and -4 seconds). We did that separately for each reaching 

direction (see Figure 2). 

Figure 1. (a) Experimental setup. Subject performing a reaching movement toward a target while wearing the 
exoskeleton. (b) Trial structure. (c) EEG setup. Electrodes included in the recording displayed in green. Yellow color 
indicates the electrodes used for the CAR filter. The electrodes colored as red, further referred to as contralateral motor 
cortex electrodes, were used for the subsequent feature extraction and classification processes. (d) Positioning of the 
EOG electrodes. Figure adapted Bibian et al. 21.



15

2.1.2.4 Disentangling Brain’ External and Internal Activities from EEG

For this analysis, we selected four categories of features that are characteristic from 

movement-related neural activity, eye movements and head motion. The first two 

features are the most used to describe the neural activity during a motor task: MRCP 

(Shibasaki & Hallett, 2006) and ERD (Pfurtscheller & Lopes da Silva, 1999). Secondly, to 

assess the influence of eye movement artifacts on EEG recordings, we extracted low-

frequency features from FP1 and FP2 electrodes, which are typically most affected by 

ocular activity. Lastly, for characterizing head movements during the task, we extracted 

features from the accelerometer signal. 

1) MRCP Features: We processed epochs from the 10 electrodes over the contralateral 

motor cortex (highlighted in red in Figure 1b) by applying a causal first-order Butterworth 

band-pass filter in the [0.05 to 2] Hz, following (Bibian et al., 2017). After that, the filtered 

signal was down sampled to 10 Hz to extract temporal, resulting in 10 features per 

electrode and thus 100 features per epoch.

2) ERD Features: Power spectral density was computed for epochs extracted from the 10 

electrodes over the contralateral motor cortex (also marked in red in Figure 1b). These 

epochs were windowed using a Hamming function, followed by power spectrum 

estimation using a 16th-order autoregressive model solved with the Burg's algorithm. 

Subsequently, we calculated the mean logarithmic power within the alpha ([7–13] Hz) 

and beta ([14–25] Hz) bands, resulting in 2 features per electrode and 20 features per 

epoch.

3) FP1 and FP2 Features: Temporal features were extracted from FP1 and FP2 electrodes 

using the same procedure as for the MRCP features, yielding 20 features per epoch (10 

features per electrode, covering two electrodes). 

4) Accelerometer Features: After applying a first-order Butterworth filter to the 

accelerometer signal within the [0.1 to 1] Hz range, we extracted the orientation of the 

accelerometer on the horizontal plane and computed the signal magnitude vector from 

its three components (Zhang et al., 2012).
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To better distinguish the variations in EEG activity between the two conditions, we 

applied a MVPC technique utilizing a linear Support Vector Machine (SVM) (Mika et al., 

1999). Our approach involved two distinct phases of EEG analysis for both conditions: 1) 

The discriminability between EEG from movement and rest periods, in a binary 

classification task. 2) The discriminability among the EEG activity of four reaching 

directions, in a multiclass classification approach. To assess the performance, we 

employed a block-based 5-fold cross-validation, training the SVM in four blocks and 

testing in the remaining block. In the training data, we used two 1-second epochs for 

training the binary SVM classifier: [−5, −4] for rest and [0, 1] for movement. For training 

the multiclass SVM classifier, only the movement epochs, [0, 1] seconds, were 

considered.  To evaluate the SVM in the test block, we used sliding windows with a sliding 

step of 50 miliseconds (López-Larraz, Figueiredo, et al., 2018).Thus, each 1-second epoch 

was classified by both the binary and multiclass classifiers, yielding two classification 

outputs every 50 milliseconds from -4 to 3 seconds (indicating rest/movement for the 

binary classifier and one of the four movement directions for the multiclass classifier). 

These SVM classifiers were trained and tested independently for each of the features 

groups (explained before) explained before. After extracting the features, and right 

before training/testing the SVM, we applied z-score normalization resulting in 

distributions with a mean of zero and unit variance. 

Finally, to assess the performance obtained using each group of features, for the binary 

classification we calculated the percentage of outputs correctly identified as movement 

during the movement task period, we refer to this metric as "performance" (López-

Larraz et al., 2017).In the case of the multiclass classifier, we evaluated its accuracy using 

decoding accuracy (DA), indicating the number of correctly identified target directions 

(E. Y. L. Lew et al., 2014) .

2.1.2.5 Impact of the Ocular and Movement Artifacts on the DA

Finally, we wanted to assess the impact of eye and head movements on the performance 

by using artifact reduction techniques and applying the MVPC methods described before 

on the cleaned data. It is important to note that this analysis does not aim at completely 
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removing the effect of eye and head movements on the performance but to rather 

evaluate how the discriminability changes when the most contaminated trials are 

removed from the analysis. To do so, we incorporated an artifact removal pipeline into 

the training dataset processing (López-Larraz, Figueiredo, et al., 2018). This pipeline 

consists of two main steps:

1) Ocular Artifacts Removal: To reduce the influence of eye movements on EEG signals, 

we employed a linear regression-based method that decorrelates EEG and EOG 

recordings (Schlögl et al., 2007). This algorithm was applied to all EEG channels before 

feature extraction in the training data and later in the test data using coefÏcients 

obtained from the training data. 

2) Motion and Muscular Artifacts Rejection: To quantify to what extent the trials were 

contaminated with motion or muscular artifacts, we computed power in the delta ([0.1–

4] Hz) and gamma ([30–45] Hz) frequency bands, known to be susceptible to motion and 

muscular artifacts (Castermans et al., 2014; Muthukumaraswamy, 2013). A trial was 

rejected if delta or gamma power exceeded three standard deviations above the mean 

in any of the classes contained in the trial (e.g., rest and one of the reaching directions). 

Additional details on the application of this method can be found in (López-Larraz, 

Figueiredo, et al., 2018). 

2.1.2.6 Statistical Analysis

The primary outcome measures for the previously described analysis were the 

performance and the DA, for the binary and multiclass analysis respectively. For the 

statistical analysis, we focused on the early movement epochs so we calculated the 

average performance and DA between [0.5–1.5] seconds obtaining one value per metric 

(2), condition (2) and feature (4). Thus, to evaluate whether any of the conditions and 

features had a significant effect on the metrics, we calculated a two-way repeated 

measures ANOVA with the factors “feature” (four levels: MRCP, ERD, FP1 and FP2, and 

accelerometer) and “condition” (two levels: constrained and unconstrained) separately 

for the binary and multiclass metrics. We calculated the Mauchly’s test of Sphericity was 

computed and applied the Greenhouse–Geisser correction when assumption of 

sphericity was violated. After that, one-way repeated measures ANOVAs were calculated 
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for each factor if significant interactions were detected. If a significant effect was found 

for any factor, we compared the different levels of that factor by calculating a paired t-

test with Bonferroni correction was calculated. Finally, to evaluate the effect of the 

artifact removal methods we computed a three-way repeated measures ANOVA with the 

factors “feature” (four levels: MRCP, ERD, FP1 and FP2, and accelerometer), “condition” 

(two levels: constrained and unconstrained) and “artifact removal” (two levels: with and 

without applying the artifact removal).

Figure 2. Topography EEG activation: amplitude of the EEG, in μV (color bar), every 0.5 s, for each reaching for each 
target in the constrained (a) and unconstrained (b) conditions in the low-frequency band (MRCP, FP1, and FP2). The 
upper part of each panel shows the EOG, accelerometer, and arm kinematic activations through the trial. The lower 
part of each panel shows the topographic distribution of the EEG for each of the reaching directions. The activations 
are divided by its SD so that scales are similar and fit into the same plot (thus, the only information this plot provides 
is when the activation happens for each signal). Figure adapted Bibian et al. 21. 
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2.1.3 Results

2.1.3.1 Topography of the EEG Activation

From the topographical analysis of the EEG low-frequency activation in the non-

constrained condition, where subjects were moving freely, the activation shows a clear 

laterality among the reaching directions that starts around 1.5 seconds before the 

movement onsets and that co-occurs with the eye and head movements. This activity 

seems to overlap the MRCP characteristic negativity over the central electrodes and that 

can be clearly seen in the data from the constrained condition when this eye and head 

movements were minimized (see Figure 2). 

2.1.3.2 Disentangling Brain’s External and Internal Activities from EEG

In the binary classification analysis, that focuses on the discrimination between rest and 

movement conditions, we observed that the four features (MRCP, ERD, FP1 and FP2, and 

Figure 3. Binary and the multiclass classifier performances for both conditions. The Y-axes represent performance in 
%, and the X-axes the trial time, with time = 0 being the time in which the “GO” cue was presented to the participants. 
The performance of the binary and multiclass analyses are shown in the first and second row respectively. Constrained 
and unconstrained conditions are shown in the first and second column respectively. The 95% confidence interval (gray 
shaded area) of the chance level (black dotted line), calculated according to Müller-Putz et al. (2008). Brown shaded 
area on the time axis shows the window used to train the classifier. Figure adapted Bibian et al. 21.
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accelerometer) showed similar performances, all above 70% in both conditions and that 

no important differences were found between constrained and unconstrained 

conditions (see Figure 3). In the multiclass classification analysis, we found that no EEG 

features could identify reaching directions in the constrained conditions.  Interestingly, 

in the unconstrained condition, both MRCP, eyes (FP1 and FP2 features) and 

accelerometer led to accuracies above 50 % (see Figure 3).

2.1.3.3 Influence of the Constrained/Unconstrained Conditions

In line with the results of previous sections, the binary classification analysis showed no 

significant interaction between the factor conditions and feature (F3,27 = 0.402, P = 

0.753) nor a significant effect of condition (F1,9 = 1.338, P = 0.277) or feature (F3,27 = 

1.094, P = 0.369) (two-way repeated measures ANOVA) (Figure 4a).

 

Figure 4. Average performances, between 0.5 and 1.5 s, for binary and multiclass classifies with and without artifact 
removal. Binary and multiclass classifiers are showed in the first and second rows, respectively. First column shows the 
results without applying artifact removal, and second one, corresponds to the results after applying it. Dotted lines show 
the theoretical chance level for each classification problem. Figure adapted Bibian et al. 21.
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For the multiclass classification, both condition and type of feature influenced the 

classification accuracy—significant interaction between condition and feature (F3,27 = 

20.66, P < 0.001) as well as a significant effect of condition (F1,9 = 80.301, P < 0.001) and 

feature (F3,27 = 19.123, P < 0.001). In the constrained condition, accelerometer features 

showed significantly better performances than all the other features (P < 0.01, post hoc 

paired samples t-test calculated after finding a significant effect of feature under both 

conditions in the subsequent one-way ANOVA). In the unconstrained condition, the low-

frequency features (MRCP, FP1 and FP2, and accelerometer) performances were 

significantly higher than the ERD features (P < 0.01, post hoc paired samples t-test) (Fig. 

4b). Lastly, the comparison between conditions for each feature showed that the results 

were significantly lower in the constrained condition for all the low-frequency features: 

MRCP (P < 0.001), FP1 and FP2 (P < 0.001) and accelerometer (P < 0.044) features.

2.1.3.4 Influence of the Artifact Removal

Applying the artifact removal techniques had no effect on the binary classification --no 

significant interaction between artifact removal, experimental condition, and feature 

(F1.67,14.55 = 1.179, P = 0.325) (Figure 4a,c). For the multiclass classification we found 

a significant interaction among the three factors (condition, feature, and artifact 

removal). However, the subsequent two-way ANOVA found no interaction between 

feature and condition after applying artifact removal (F1.6,27 = 2.452, P = 0.129) (Fig. 

4d).

2.1.4 Discussion

In this study, published in Bibian et al. 21, we have addressed the potential challenges 

and biases that can affect the interpretation of EEG data when studying brain oscillatory 

activity during motor tasks. Here, we have found that visuomotor tasks (task that involve 

a visuo-motor response) can introduce confounding factors in the EEG data collections. 

We designed a study to evaluate the impact of concurrent external activations that occur 

during reaching movements (i.e., eye and head movements) and how that affects EEG 
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data. More specifically, we found that reaching directions could only be discriminated 

from EEG signals when subjects followed their arm movements with their gaze and head 

movements. This concerning finding suggests that, in this context, EEG signals mostly 

reflect the influence of head and eye movements and not the neural correlates of upper-

limb motor-related activity. Although some technical improvements could help isolating 

the two sources of information (e.g., wireless sensors that reduce cable artifacts, source 

localization algorithms…), this study highlights the importance of taking head an eye 

movement into account when designing an EEG study of reaching movements, or any 

other visuo-motor task. Especially, when designing rehabilitative EEG based BMIs, in 

which the contingency from the brain and the feedback are key to induce instrumental 

and Hebbian learning.

2.2 Study 2: Neuroprosthetic learning and sleep

2.2.1 Introduction

Ever since the first study BMI for motor rehabilitation was presented, several research 

groups have investigated ways to maximize the rehabilitative outcome of such 

intervention. However, although significant and promising, the functional motor 

recovery achieved by stroke patients with novel BMI rehabilitative interventions (as well 

as with long-dose intensive therapies) remains modest (López-Larraz, Sarasola-Sanz, et 

al., 2018). Most of the attempts to improve these therapies have focused on improving 

the technology, for instance proposing algorithms to more precisely detect the brain 

commands, improve the link between brain and muscles to enhance Hebbian learning 

and plasticity or developing more sophisticated devices to mobilize the paralyzed limb 

of the patients. However, little attention has been paid to the process of learning and 

consolidation of the new skill being trained with the BMI, which could play a key role in 

how this new skill is integrated to the cerebro-spinal network (Dimyan & Cohen, 2011; 

Krakauer, 2006; Krakauer & Mazzoni, 2011).

In this study, we hypothesize that sleep after sensorimotor-rhythm-based BMI training 

can be manipulated to reinforce and consolidate this learning both in healthy young and 
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stroke individuals. Furthermore, we hypothesize that peripheral electrical stimulation 

(PES) during sleep can be used to trigger memory reactivation and consolidation, thus 

contributing to further improving the neuroprosthetic learning and the rehabilitation 

outcome. We used the EEG-based BMI as a neuroscientific tool to study the oscillatory 

neurophysiology of sensorimotor recall during sleep and its effect on learning and 

sensorimotor integration. Furthermore, we developed the hardware, investigated the 

effect of post-learning sleep, and tested the efÏcacy of PES to boost neuroprosthetic 

learning in healthy participants. Lastly, we investigated the effect BMI-based 

rehabilitation has on the sleep of stroke patients. 

2.2.2 Methods

To test the hypotheses mentioned before, two studies were conducted on healthy and 

stroke participants respectively. First, we designed a study on healthy participants to 

investigate the effects of neuroprosthetic learning on sleep and to evaluate the effect of 

TMR using PES to boost memory consolidation. Secondly, we studied the changes of 

sleep in a stroke population that underwent a BMI-based rehabilitative experiment. 

2.2.2.1 TMR to boost neuroprosthetic learning

Experimental design

Twelve healthy participants without cognitive and neurologic impairment or sleep 

disorders (10 females, 23 and 2.4 years) took part in a within subject design that 

consisted of 2 conditions separated in different sessions (plus a calibration session). 

Subjects who perform any kind of shift work are excluded from taking part in this study. 

Participants were randomly divided in 2 groups: one group receiving condition 1 

(experimental session B: closed-loop PES during NREM sleep targeting memory 

reactivation) in the first session and condition 2 (experimental session A: control sleep 

without any stimulation) in the second, while the second group will receive condition 2 



24

the first session and condition 1 the second session. Before and after both nights, the 

subjects trained in a neuroprosthetic task for around 30 minutes (see Figure 5a). From 

those, two subjects had to be removed from the study due to technical difÏculties.

Data acquisition

During the neuroprosthetic task, we recorded brain activity using a 32-electrode EEG cap 

and collected EOG data with four passive electrodes. The Impedance for EEG and EOG 

signals was kept below 1 kOhm. EEG signals were re-referenced (during the post 

processing) using a common average reference (CAR) over the sensorimotor cortex 

electrodes similarly to the study 1 (Bibián et al., 2021).

During the night, a standard polysomnographic recording, that included 

electroencephalographic (EEG), electromyographic (EMG), and electrooculographic 

(EOG) was recorded with a sampling rate of 200 Hz. EEG was recorded from six scalp 

electrodes (F3, F4, C3, C4, P3 and P4 following the International 10–20 System) with the 

reference on combined signal from the left and right mastoids. Additionally, a PES 

electrode was placed on the extensor digitorum of the dominant arm during the task 

and during the night. This electrode was used to deliver electrical stimulation both 

during the neuroprosthetic task as well as for the TMR during the night.

BMI Task

Participants underwent a neuroprosthetic task (hereafter referred to as BMI), designed 

as surrogate of sensorimotor learning. Here, the participants had to control the 

movement of a robotic exoskeleton along a predefined trajectory based on their 

sensorimotor rhythm activity. Subjects were instructed to perform a motor imagery task 

with their upper limb to move the exoskeleton. Thus, the alpha-band ERD (neural activity 

associated with movement execution/imagery) was computed for contralateral 

electrode over the motor cortex (C3 or C4, hereafter referred as “feedback electrode”) 

and a threshold was applied. If the value of power was below the threshold, the 

exoskeleton would move towards the target. This threshold was customized for every 
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subject on the first training day (during adaptation session). Both experimental sessions 

started with the threshold from the adaptation session. After that, within each training 

period, the threshold was continuously updated using the signal of the last every 2 

minutes to account for the within session variability of the EEG signals. Subjects had 15 

seconds to reach the target position before trial was finished and the exoskeleton moved 

back to the initial position. Each block training (i.e., evening and training) consisted of 6 

runs of around 5 minutes (trial duration depends on the performance of the subject) 

leading to a total training length of around 30 minutes. During the training, feedback was 

provided to the subjects in two ways: movement of the exoskeleton and PES was 

delivered on the extensor digitorum at the sensory threshold (interstimulus interval of 1 

second). Both things occurred simultaneously.

Targeted memory reactivation

Directly after the BMI task, subjects slept 8 h with targeted memory reactivation during 

the first sleep cycle. The TMR consisted in PES pulses (on the same muscle and intensity 

as during the BMI task) delivered in a closed-loop manner following Antony et all. For 

that, we implemented a real-time algorithm that detected spindles and generated a 

trigger so that the PES was delivered 2.5 seconds after the spindle was detected. For the 

spindle detection algorithm (Antony et al., 2018), the signal from the feedback electrode 

was filtered between 11 and 16 Hz using a 2nd order Butterworth filter. After that we 

calculated the root-mean-square (RMS) values with sliding 200-ms intervals and 

compared the signal with two different thresholds. The lower and upper thresholds were 

set to, respectively, 2 and 4.5 times the RMS of the data from the previous 600 s of signal 

without artifacts. When the RMS values stayed between the lower and upper thresholds 

for a period between 0.5-3 seconds, a spindle was detected.

Behavioral data analysis 

First, we wanted to check whether neuroprosthetic learning had occurred. This is a 

critical in our protocol step since EEG data can easily be contaminated by electrical 

artifacts due to the closed-loop PES. Since the neuroprosthetic task was designed so that 
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subjects learn to desynchronize their sensorimotor rhythm (lowering the power of alpha 

oscillations during movement), we first evaluated whether we could observe a decrease 

in alpha power during the training, used to control the neuroprosthesis, by calculating 

the difference in power between early and late trials (first and last 20% of the trials 

respectively) of the evening training for each experimental day. The EEG from the 

subjects showing an increased in alpha power was further analyzed to confirm that the 

feedback was, indeed, corrupted by electrical artifacts. Thus, subjects that did not show 

a decrease in alpha power in both experimental days were excluded from further 

analysis regardless of whether they showed behavioral changes (improvement in 

exoskeleton control) or not. To quantify the task performance from the behavioral data, 

we used the distance to target. This metric represents the distance from the final 

position to the target at the end of each trial. Thus, a distance to target of value zero 

would mean that the subject has reached the target within this trial whereas a value of 

one implies that the subject has not moved during the trial. All the intermediate values 

represent how far in the trajectory the subject has got in each trial. To assess whether 

both experimental conditions had different learning levels before the experimental 

nights we compared the learning at the end of the evening sessions in the control and 

intervention days. We did that by comparing both the distance to target and alpha power 

in the late trials (last 20% of the training) of the evening trainings. Finally, to evaluate the 

effect of TMR, we compared the drop in performance (distance to target) from the late 

evening trials to the early morning trials between control and intervention experimental 

days. We used a paired t-test to assess statistical significance.

Additionally, we assessed the learning by calculating the alpha power evolution. For that, 

we calculated the alpha power during the movement period of each trial. After that, the 

power of the first and last 20% of the trials within the training block were calculated 

(hereafter referred as alpha power early/late values). Then, the evolution of the ERD 

value was assessed subtracting the alpha power late – alpha power early values.
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Sleep data analysis

The neurophysiological data recorded during the night was used to study learning-

related sleep activity (occurrence of spindles, SWS and lateralization indexes) and to 

investigate whether reactivation of sensorimotor neural networks can be influenced 

during sleep using TMR. 

In the ofnine analysis, we detected discrete slow oscillations (SO) and sleep spindles 

within the NREM periods. The detection algorithm both for the SO and spindles was 

based on the work by Mölle and colleagues (Mölle et al., 2011). The signal of the 

feedback electrode was filtered between 0.05 and 3.5 Hz. A peak-to-peak amplitude 

larger than 75 microV, a SO was marked as detected. For the spindle detection, the same 

procedure as for the online detection was implemented (see Targeted memory 

reactivation section). Finally, we calculated the density of SO-spindle complexes by 

detecting the amount of SO with a nested spindle in the upstate of the SO (Staresina et 

al., 2015).

We also wanted to test the influence of neuroprosthetic learning on any of those brain 

signatures. To do that, we calculated the SO and spindle occurrence also for the 

ipsilateral electrode (opposite to the feedback electrode). Thus, we can compare the 

values between the brain area where the learning is expected to occur (feedback 

electrode) and those of the opposite hemisphere. Lastly, to investigate whether these 

differences between hemispheres were affected by the TMR, we calculated the laterality 

index by dividing the SO and spindle density values of the feedback electrode and the 

ipsilateral electrode. Separately for the learning hemisphere and the lateralization, we 

performed a two-way repeated-measures ANOVA with multiple comparisons with the 

factors experimental night (intervention or control) and sleep signature (SO, spindle or 

SO-spindle complex), to evaluate the effect of TMR on any of the sleep signatures 

extracted.
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2.2.2.2 Effect of BMI-based stroke rehabilitation on sleep

We next wanted to investigate the effects of a BMI-based rehabilitation on sleep. For 

that, we performed polysomnographic recordings on stroke patients right before and 

after they participated in a BMI-base rehabilitation intervention.

Experimental design

All the chronic stroke subjects underwent a 10-sessions BMI-based rehabilitative 

intervention. In this intervention, subjects learned to control a robotic exoskeleton 

(described in Study 1) using their brain and muscle activity. In this approach, the EEG 

signal recorded in the perilesional motor cortex was use activate/de-activate the 

movement of the exoskeleton whereas the EMG activity recorded over the paretic arm 

was used to define the trajectory and velocity of the exoskeleton’s movement. More 

details on the BMI intervention can be found in (Sarasola-Sanz et al., 2017). Right before 

and after the subjects participated in the BMI rehabilitation, we recorded the 

polysomnographic activity. In those recordings, referred as to Pre and Post respectively, 

we performed polysomnography recordings that included EEG, EMG and EOG activity. 

For the EEG recordings, we recorded six as in the study 2.1: F3, F4, C3, C4, P3 and P4, 

according to the International 10-20 system.

Sleep data analysis

In this study, we used the same methods as in Study 2.1 on healthy participants. Thus, 

we calculated SO and spindle occurrences as well as the SO amplitude over the 

ipsilesional motor cortex, used for the control of the BMI. Additionally, we calculated the 

lateralization indexes for those brain signatures. For these analyses we also evaluated 

which subjects showed a successful BMI learning, reduction of the distance to target 

after the 10 sessions. Thus, the sleep signatures and their lateralization were reported 

indicating whether that subject learned or not. In these analyses SO-spindle complexes 

were not calculated due to the lower occurrence of SO. Additionally, as it greatly differs 
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from sleep on healthy participants, we analyzed the sleep architecture by calculating the 

percentage of time spent in each of the sleep stages both for the Pre and Post sessions.

Figure 5. Neuroprosthetic task. (a) Experimental design. BMI training was performed before and after a 8hrs sleep 
period. TMR was only performed in the night of the intervention experimental day, and not in the control. (b) Change 
of alpha power (%) during the control of the BMI during the evening training session (c) Distance to target as a function 
of the percentage of session completed.  For each group (Control and Intervention) average and s.e.m are showed. 
The gap between BMI training and BMI recall correspond to the night sleep. (d) Comparison of alpha power during 
the neuroprosthetic task at the end of the evening training sessions for the intervention and control day. (e) Changes 
in distance to target within the evening training sessions for intervention and control day. (f) Comparison of distance 
to target during the neuroprosthetic task at the end of the evening training sessions for the intervention and control 
days. 
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2.2.3 Results

2.2.3.1 TMR to boost neuroprosthetic learning

Behavioral data 

The ofnine analysis showed that four subjects learned to control the BMI without a 

modulation of the neural activity of the motor cortex for at least one of the training 

sessions (Intervention and control). These subjects were discarded for further analyses 

since neuroprosthetic skill learning cannot be assured. The remaining subjects (six) 

showed a consistent reduction in alpha power that led to improvement in the behavioral 

results (Figure 5b, 5c and 6a). Over the course of the average 30 minutes of training 

sessions, all the remaining participants showed improvement in performance (i.e., 

neuroprosthetic skill learning) as shown by a significant reduction in distance to target 

(paired t-test, P < 0.001; Figure 5e). Additionally, the pre-sleep learning showed no 

differences between control and intervention conditions both in alpha power reduction 

(paired t-test, P = 0.94; Figure 5d) and distance to target (paired t-test, P = 0.85; Figure 

5f). Furthermore, we did not find statistical difference between control and intervention 

(were TMR was applied) in the overnight drop in performance (paired t-test, P = 0.31; 

Figure 6b).

Sleep data

The repeated measures two-way ANOVA on the density of SO, spindle and SO-spindle 

complex over the learning hemisphere revealed no significant interaction between 

condition (control and intervention) and sleep signature (SO, spindle and SO-spindle 

complex), (𝐹(2,12)= 0.025, P = 0.975; Figure 6c) as well as non-significant main effect of 

condition (𝐹(1,6)= 0.091, P = 0.774; Figure 6c). Similarly, we found no significant 

interaction on the lateralization between condition and sleep signature, (𝐹(2,12)= 3.002, 

P = 0.09; Figure 6c), and no significant main effects (𝐹(1,6)= 0.013, P = 0.914; Figure 6c). 

Lastly, we calculated the evoked spindle response after the TMR was delivered (Figure 

6d). We found that around 15% of the cues evoked a spindle with a peak of occurrence 
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between 2 and 3 seconds. No correlations could be found between this value and any of 

the behavioral results. 

Figure 6. Effect of TMR on neuroprosthetic learning. a) Evolution of distance to target for each training session (evening 
and morning) and experimental day (control and intervention). The performance of the first and last 20% of the 
training, referred as BMI early and BMI late respectively, was calculated for each training session. (b) Drop in 
performance after the 8-hours sleep period as the change in distance to target from the last 20% of the evening training 
to the first 20% of the morning training. (c) Density over the learning hemisphere (left) and Lateralization (right) of the 
occurrence of each neural correlate of sleep (SO, Spindle and SO-spindle complex) after neuroprosthetic learning. 
Lateralization (calculated as contra/ipsilateral motor cortex) of the density of SO, spindle and SO-spindle complexes 
respectively, for control (blue) and intervention (red) nights. A lateralization value higher than one indicates that the 
density is higher over the contralateral motor cortex, where the learning is expected to occur. (d) Spindle occurrence 
around the TMR cues. Y-axis represents the percentage of cues that evoked a spindle for a given time point relative to 
the time where the cue was presented, x-axis, being t=0s the time of the stimulus.

2.2.3.2 Effect of BMI-based stroke rehabilitation on sleep

In line with previous research, stroke subjects spent 70-80% of the night in NREM sleep. 

For these patients, NREM sleep was mostly composed of S2 (Figure 7a), with very short 

time spent in SWS (<10%). After the rehabilitation intervention, we found a small 

increase in percentage of the sleep spent in REM and S2, together with a slightly shorter 

time spent in SWS and NREM. We first assessed the learning of each subject as distance 
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to target reduction from the first to the last 2 experimental sessions (Figure 7b). 

Interestingly, we found an increase in the spindle density in the ipsilesional 

(contralateral) hemisphere after the rehabilitation only for the subjects who showed a 

consistent learning (dotted lines in the Figure 7c). However, spindle density lateralization 

did show lower values after the intervention, and with values lower than one, showing 

an increase in spindle activity towards the contralesional hemisphere, opposite to the 

learning hemisphere, and to what we found in healthy individuals (Figure 7f). Both the 

ipsilesional SO density and its lateralization did not show any change after the 

rehabilitation (Figure 7d and g). However, SO amplitudes over the ipsilesional motor 

cortex were lower after the rehabilitation for the subjects who did show a decrease in 

distance to target (Figure 7e). In line with these findings, the laterality also showed a 

decrease in the laterality of the SO amplitude for the subjects who did not manage to 

reduce the distance to target, indicating a higher SO amplitude change over the 

contralesional motor cortex after the BMI learning/rehabilitation (Figure 7h).  

  

Figure 7. Sleep after a BMI-based stroke rehabilitation. (a) Sleep architecture before (red) and after (blue) the block of 
ten sessions of BMI-based stroke rehabilitation. (c) Spindle density over the ipsilesional motor cortex. Dotted lines show 
the patients that showed positive behavioral results in the control of the exoskeleton (d) SO density over the ipsilesional 
motor cortex (e) SO amplitude over the ipsilesional motor cortex (f) Laterality of the spindle density calculated as the 
ipsi/contralesional motor cortex density, being the ipsilesional the one used for the BMI-control. (g) Laterality of the 
SO density calculated as the ipsi/contralesional motor cortex density (h) Laterality of the SO amplitude calculated as 
the SO amplitude of the ipsi/contralesional motor cortex.
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2.2.4 Discussion

In this study, we explored the potential of Targeted memory reactivation to enhance 

sensorimotor-rhythm-based neuroprosthetic learning on healthy and stroke individuals. 

Firstly, we explored whether post-training sleep could be used to reinforce the 

consolidation of the newly acquired sensorimotor skills on healthy participants. To do 

so, we introduced peripheral electrical stimulation (PES) during sleep as a task-

associated stimulus for the targeted memory reactivation (TMR). A sleep interface was 

implemented to deliver closed-loop PES following the findings by Antony et al 2018. Here 

we could study how neuroprosthetic learning affects post-learning sleep. Lastly, we 

investigated the changes in sleep of stroke patients that underwent a BMI-based 

rehabilitative therapy.

Learning to control a neuroprosthetic device can be considered a type of instrumental 

learning where the subject learns to modulate the brain activity by feedback and reward 

(Carmena, 2013; Green & Kalaska, 2011). During the training, subjects adapt their neural 

connections to minimize output errors, through plasticity in the cortex and striatum 

(Ganguly et al., 2011; Koralek et al., 2012). The direct link between the neural activity 

and the feedback makes neuroprosthetic learning an invaluable tool to study the 

relationship between brain activity and behavior. Thus, although our behavioral results 

showed that subjects could learn the task, a subsequent analysis on the evolution of 

sensorimotor rhythm alpha activity during the learning showed that an important 

portion of our participants (around 40%) could not learn the neuroprosthetic task in any 

of the sessions. This could be due a lower EEG signal quality that led to the electrical 

artifact corrupting the alpha band, or to their inability to modulate their brain activity to 

successfully control the neuroprosthetic. The latter concept, defined as “BMI illiteracy” 

has been extensively investigated and refers to the idea that a subset of the population 

might find challenging to learn and proficiently use a BMI (Vidaurre & Blankertz, 2010). 

However, another alternative is that some of the subjects could have found alternative 

ways to complete the task: artifact-driven control of the neuroprosthetic. As we 

discussed in the previous study, it is crucial to improve the control of neural interfaces 
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and to ensure that the control is not biased by external activity, from both physiological 

and non-physiological origins (Bibián et al., 2021; Vidaurre & Blankertz, 2010). 

Successful learning could be achieved by all the remaining subjects, as shown by the 

significant reduction in distance to target (Figure 5e). Contrarily to our hypothesis, we 

did not find statistical difference between control and intervention (where TMR was 

applied) in the overnight drop in performance (Figure 6b). However, the mean 

differences we obtained in a relatively low sample size are promising and further 

experiments with a larger sample size could potentially result in significant differences 

between conditions. A growing body of evidence supports the effectiveness of TMR for 

procedural memories (Cellini & Capuozzo, 2018). Laventure and colleagues presented  

task-related odor cues to successfully improve the post sleep performance of a motor 

sequence learning (MSL) task (Laventure et al., 2016). On the other hand, several studies 

have used auditory cues in a finger tapping task, showing the same positive effects 

(Antony et al., 2012; Schönauer et al., 2013). Interestingly there is very little evidence on 

the use of somatosensory feedback for TMR. In fact, Pereira and colleagues found no 

effect of tactile stimulation on post sleep MSL performance (R. Pereira et al., 2017). The 

variance in outcomes across these studies may be attributed to the differences in brain 

areas related to the afferent stimuli of each TMR modality. TMR can stimulate the 

memory reactivation network indirectly (a stimulus non-related directly to the neural 

network recruited during the task, e.g., an auditory stimulus during a motor task) or 

directly (e.g., electrical stimulation of the motor neurons involved in the motor task). In 

our protocol we have implemented a PES-based TMR because the afference during PES 

directly targets sensorimotor areas, where neuroprosthetic learning is produced, 

potentially enhancing the slow-waves and spindles activity in sensorimotor areas 

pushing sensorimotor learning and consolidation.      

When investigating the effect of PES-based TMR on sleep, we did not find any statistical 

differences between control and intervention (when TMR was used) in the occurrence 

of slow oscillations, spindles or SO-spindle complexes over the learning hemisphere or 

in its lateralization (density over the learning hemisphere divided by the density over the 

opposite hemisphere). However, a larger sample size is necessary to better understand 
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the efÏcacy of PES for TMR. In fact, although no differences in average are observed over 

the learning hemisphere (Figure 6c, left), we can observe a promising effect of TMR on 

the spindle density lateralization with an increased lateralization in the intervention 

night, where TMR was applied. Spindle activity, and more specifically spindle activity 

over the learning areas, has been linked to the memory reactivation processes occurring 

during sleep (Bergmann et al., 2012; Schönauer, 2018). Cairney and colleagues found 

that when previously learned words were presented during NREM, on top of the 

expected improvement on memory compared to non-presented words, they evoked a 

higher spindle response than non-studied words (Cairney et al., 2018). Additionally, this 

study showed that it is possible to decode the category of the word being presented 

from the evoked spindle response (2-3 seconds after the word was presented). In our 

study, we found a high occurrence of spindles 2-3 seconds after the presentation of the 

stimulus, around 15%. This, together with the TMR-driven lateralization of the spindle 

density towards the learning hemisphere suggests a biasing effect of the TMR on the 

reactivation processes, enhancing the neural reprocessing of the neuroprosthetic skill 

trained. Similarly, the lateralization of SO-spindle complexes seems to increase towards 

the learning hemisphere when TMR is presented, adding further evidence to the 

reactivation processes occurring over the learning hemisphere due to the TMR. The 

validation of PES as an effective method for TMR is especially relevant since, to the best 

of our knowledge, no single study has evaluated the efÏcacy of electrical stimulation as 

a cueing mechanism for memory reactivation during sleep. PES-based TMR holds a great 

potential for the reactivation of rehabilitative memories after stroke, where the impaired 

sensorimotor is not capable of fully encoding and consolidating newly acquired 

memories.

Additionally sleep quality indicators decrease with age, while the incidence of stroke 

shows the opposite trend. Aging is typically associated by a decrease of the time spent 

in slow-wave sleep and a decrease in the amplitude and occurrence of slow waves.  

Importantly, stroke patients exhibit significant disruptions of their sleep patterns (Bakken 

et al., 2012, Terzoudi et al., 2007). Indeed, chronic stroke patients spent similar time in 

REM but more time in S2 than age-matched individuals. Here we investigated the sleep 

patterns of 5 stroke patients that participated in a 10-day BMI-based rehabilitation 
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intervention. The baseline sleep, measured before they started the rehabilitation, 

showed sleep architecture very similar to what has been previously reported: 15% REM 

and 85% NREM (with a very low, <10%, presence of SWS). When comparing the sleep 

architecture before and after the BMI intervention, we found an increase in time spent 

in REM and S2 with a small reduction in the time spent in SWS. These results are in line 

with previous research on motor memory consolidation that showed increases in REM 

during post learning sleep. Additionally, the amount of REM sleep has also been linked 

to the improvement of performance in a finger tapping sequence (Siengsukon & Boyd, 

2009). In line with our results, a study on stroke patients showed that time spent in REM 

sleep was positively correlated with ofnine motor learning while NREM3 showed a 

negative correlation (Siengsukon et al., 2015). REM sleep has also been associated with 

poor rehabilitative outcome in acute stroke patients (Pace et al., 2018). 

On the other hand, procedural motor learning has been associated with sleep S2 (Walker 

et al., 2002). It has been proposed that this association between S2 and motor learning 

derives from the presence of sleep spindles during S2 (Rauchs et al., 2005). Interestingly, 

in our study we observed that spindle occurrence was higher after the rehabilitative 

intervention for the subjects that showed a successful learning (i.e., reduction in distance 

to target).  Interestingly, Gottselig and colleagues showed a positive correlation between 

ipsilesional spindles in an acute phase after stroke and functional outcome after one 

year, thus highlighting the relevance of sleep spindles for stroke rehabilitation (Gottselig 

et al., 2002). This effect could also be found for the SO amplitude: subjects who learned 

to control the exoskeleton (reduction of the distance to target), showed a higher 

amplitude SOs over the ipsilesional cortex. Interestingly, the change of lateralization of 

SO amplitude showed a higher amplitude SO over the contralesional motor cortex 

(opposite to the control) after the rehabilitation for those subjects who did not learn to 

control the neuroprosthesis. Altogether, these results are in line with previous studies 

that have associated both spindle occurrence and SO amplitude with the reactivation of 

previously learned memories. 

In summary, in this study we have investigated the relationship between neuroprosthetic 

learning and sleep. We have found an effect of our BMI learning reflected on the sleep 
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data, with an increase in spindle and slow-wave activity over the contralateral 

hemisphere, used to control the BMI, in healthy subjects and stroke patients. 

Furthermore, we showed a consolidation effect of sleep in a neuroprostehtic skill 

learning and the potential benefit of TMR to improve the speed of learning. Additionally, 

our findings present PES-based TMR as a highly promising tool, especially suitable for 

memory consolidation of sensorimotor tasks, like BMI-based rehabilitation, and patients 

with an impaired sensorimotor system, like stroke patients. However, our findings also 

raise questions regarding BMI literacy and highlight the importance of a highly controlled 

BMI task, to ensure that subjects rely on the target neural population to control the 

neuroprosthetic and not on compensatory strategies (e.g., head or eye movements or 

neck and cranial muscles contractions). Future studies might further investigate the 

effects of neuroprosthetic learning on a larger number of healthy subjects and will need 

to be expanded to stroke patients to test the possibility to manipulate memory 

consolidation during sleep.

2.3 Study 3: Subliminal rehabilitation for stroke patients

2.3.1 Introduction 

Neuromuscular electrical stimulation (NMES) is a type of PES technique that consists of 

applying electrical currents on the skin to depolarize motor and sensory nerves beneath 

the stimulating electrodes (Bergquist et al., 2011). NMES has been used as a 

neuroscientific tool to study sensorimotor neural mechanisms and structures (Carson & 

Buick, 2019), and as a clinical application, e.g., in neurorehabilitation to reduce muscle 

atrophy, and to improve muscle tone and motor function in patients with paralysis after 

stroke (Knutson et al., 2016). The working principle of rehabilitative PES is based on: 1) 

the direct effect on muscle tone; and 2) the activation of receptors that generate afferent 

volleys that induce cortical excitation. The expected neuromodulation is based on the 

pioneering work from Fetz and Baker (1973), who used operant conditioning to generate 

patterns on precentral activity units and correlated responses in adjacent cells and 

contralateral muscles (Fetz & Baker, 1973). One promising area of application for PES is 

the oscillation dependent (closed-loop) electrical stimulation to induce plasticity 
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measured by evoked responses. Recent studies have investigated its application in 

animal models (Capogrosso et al., 2016; Nishimura et al., 2013) and humans (Van Elswijk 

et al., 2010; Zrenner et al., 2018a). Most of those works assume a gain modulation of 

the incoming stimulus depending on the phase of the ongoing oscillation, thus a neuro 

facilitatory/inhibitory effect. Together, brain machine interfaces and PES, BMI-PES 

therapies have been proven to drive significant functional recovery and purposeful 

plasticity in stroke patients (Biasiucci et al., 2018). 

However, one of the problems to be addressed when translating these findings into a 

rehabilitative scenario is the short intervention time due to, among other factors, the 

dose effect of the stimulation (Insausti-Delgado et al., 2020). Previous work described 

that brain activation due to PES, studied by functional magnetic resonance imaging 

(fMRI) and near infrared spectroscopy (NIRS), is proportional to the applied intensity 

(Blickenstorfer et al., 2009; Smith et al., 2003). These findings rely on the fact that as the 

stimulation intensity increases, there is a progressive recruitment of more afferent 

receptors that modulate brain activity (Golaszewski et al., 2012; MafÏuletÝ, 2010). 

However, there is evidence suggesting that below-motor-threshold stimulation activates 

cutaneous mechanoreceptors that provide feedback to areas 3b and 1 in the 

somatosensory cortex (S1), while above-motor-threshold stimulation generates muscle 

contractions that activate muscle spindles and Golgi tendon organs that send afference 

to areas 3a and 2 in S1 (Carson & Buick, 2019). It is believed that muscle spindles can 

directly project to the motor cortex (M1) via area 3a, whereas neural transmission due 

to cutaneous activation from area 3b to M1 is scarce (Carson & Buick, 2019). Thus, the 

presence or absence of muscle contraction elicited by PES has a direct impact on 

somatosensory cortex, and in turn, on motor cortex excitability (Sasaki et al., 2017). 

Recent findings further support this approach, reporting that a low-intensity sensory 

threshold PES can also induce significant activation over sensorimotor areas and 

enhance brain connectivity patterns (Mottaz et al., 2018b). This low intensity PES could 

offer a solution for longer interventions in which subjects are subliminally stimulated 

while performing daily tasks. In fact, low-intensity PES showed treatment effects like 

high-intensity PES in stroke patients (Hsu et al., 2010; Tu-Chan et al., 2017). Additionally, 

understanding how the afferent feedback is modulated in the sensorimotor system 
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increases the excitatory effect of PES. Indeed, it is known that afferent information is 

reduced during voluntary movements (Angel & Malenka’, 1982; Bays et al., 2006; 

Blakemore et al., 1998). This afference modulation is a critical factor in a BMI-PES since 

a stimulation timed with higher excitatory states of the sensorimotor system is more 

likely to drive activity-depended plasticity  (Mrachacz-Kersting et al., 2012). Here we 

hypothesize that the plasticity effect of ultra-low-sensory ("subliminal") peripheral 

electrical stimulation on corticomuscular connections can be fully exploited if this is 

synchronized with supraspinal activity from the sensorimotor cortex. 

2.3.2 Methods

2.3.2.1 Modulation of the excitability of the sensorimotor system

This part of Study 3 constitutes the first step towards a rehabilitative closed-loop PES 

that optimally excites the sensorimotor system to improve the rehabilitative outcome.  

Here, we studied the if, and how, the excitability of the sensorimotor system is 

modulated by endogenous sensorimotor cortical oscillations.

Experimental paradigm 

Fourteen right-handed subjects with no history of nervous or cognitive disorders were 

recruited for a one-session experiment (age: 22 ± 3 years, 12 females). All the procedures 

were approved by the Ethics Committee of the Faculty of Medicine of the University of 

Tübingen, Germany. During the experiment, the subjects were comfortably seated in 

front of a computer screen with the hand positioned on a pressure-sensitive device and 

the palm facing upwards.  The screen subsequently cued blocks of 60 seconds of either 

rest or isometric contraction conditions (20% of a maximal voluntary contraction). 

During the blocks, peripheral electrical stimulation was delivered on the median nerve 

with the parameters described below.
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Electrophysiological recordings and Peripheral electrical stimulation

We recorded Electroentephalographic activity (EEG) data from 64 Ag/AgCl electrodes 

(Easycap GmbH, Germany) and 24bit EEG amplifiers (NeurOne Tesla, BitÝum, Finland) in 

DC mode at a sampling rate of 5 kHz. The electrodes for the PES were placed on the 

surface of the skin of the non-dominant hand in the center of the wrist above the median 

nerve with the cathode being more distal. Single pulses of 1 ms with a biphasic square 

wave at an intensity that produced H-reflexes with half of the H-maximal amplitude. 

Data preprocessing

Firstly, to improve the quality of the data applied, we implemented an automated trial-

rejection algorithm. This algorithm, used also in the first study (section 2.1.2.5) and 

similar to (López-Larraz, Figueiredo, et al., 2018), computes the mean and standard 

deviation power for the frequency bands that contain movement and muscle artifacts: 

[0.1–4] Hz and [30–45] Hz, respectively (Castermans et al., 2014; Muthukumaraswamy, 

2013). If the power of, at least, one of the bands exceeds three standards deviations from 

the mean, the trial is marked as noisy and removed from further analysis. Additionally, 

after noisy trials were removed, we calculated the mean and standard deviation of each 

channel for each condition and, after visual inspection, removed the channels that 

showed abnormal oscillations.

Modulation of somatosensory excitability during motor activation

To assess the somatosensory excitability during rest and movement conditions, we 

selected the parietal N20 and the frontal N30. We selected those potentials because 

they have been described to provide insights on the integration of sensory information 

during motor task and the integration between sensory and motor processing 

(Macerollo et al., 2018). Thus, we first extracted the somatosensory evoked potentials 

both for the rest and motor condition from the contralateral F and CP channels (for the 

frontal N30 and parietal N20 respectively). Once the data was cleaned, following the 
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procedures described before, trials were extracted from -1000 to 120 ms, being t = 0 the 

delivery of the PES. A baseline correction method was applied. To do so, the mean value 

of the 1 second before the stimulation [-1000 0] ms was calculated and subtracted to all 

the values of the trial. After that, we calculated the grand averages for each condition 

and subject. From the grand averages of each subject and condition, we extracted the 

amplitude of the N20 and N30 potentials (from the parietal and frontal electrodes 

respectively) by visually finding the latency of each potential for each subject. 

Cortical modulation of somatosensory excitability during rest and during movement

We subsequently assessed whether the somatosensory excitability during rest was 

modulated by sensorimotor cortical oscillations. We calculated the pre stimulus phase 

of the EEG for each frequency between 3 and 35 Hz. To do so, the EEG signal was 

individually bandpass filtered for each frequency (f) using a 1st order Butterworth filter 

between (f-1.5, f+1.5). Then, from each of those signals and only for the stimulations 

delivered during the rest condition, we extracted pre-stimulation trials of 2 wavelength 

durations [-2/f,0] seconds, being t = 0 seconds the moment of the stimulation. Then, the 

pre-stimulus phase for each trial and frequency was calculated using the Fast Fourier 

transform (FFT) on the windowed (Hanning) trials of each frequency, resulting in a value 

of pre-stimulus phase for each trial and each frequency.

To evaluate if, and how, the phase of the cortical oscillations was related to the 

sensorimotor excitability, we divided the 400 trials based on the pre-stimulus phase into 

eight clusters (with centroids: -180º : 45 : 145º). To do so, the 100 trials that were closest 

to the centroid value, were assigned to that cluster, averaged and the N20 and N30 

potentials were calculated following the methods explained before. To quantify the 

phase modulation of each potential a least-squares cosine function was fitted to each 

the values for of each cluster. Thus, the amplitude of the fitted cosine was defined as the 

modulation depth (no relation between cluster phase and amplitude of the potential 

would result in a low amplitude whereas if the phase modulates the amplitude of the 

potential the cosine amplitude will reflect that modulation). This process was repeated 

for each frequency and each potential independently, resulting in a value of modulation 
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depth for each frequency and potential. Lastly, a cluster-based permutation test was 

performed to look for significant differences between the modulation depth of each 

frequency against a bias estimate. The bias estimate was calculated following the same 

steps as the modulation depth but on trials clustered based on a randomized pre-

stimulus phase. Finally, to evaluate the pre-stimulus phase modulation effect during the 

movement condition, we repeated the same procedure on the movement condition 

trials.

Changes of somatosensory excitability after a motor task

We next determined whether somatosensory excitability changes after a motor task has 

been performed. Given that both conditions are intercalated throughout the 

experimental session, we analyzed the evolution of N20 and N30 potentials when the 

time of the experiment (and the time of execution of the motor task) increases. Thus, 

for the rest and movement condition separately, we divided the data into eight groups 

of 100 trials. After that, we extracted the N20 and N30 potentials with the methods 

explained before. Then we used a linear regression to evaluate whether there is any 

trend in the change of N20 and N30 potentials through the session. We then wanted to 

evaluate whether this evolution of the somatosensory excitability throughout the 

experimental session, investigated in the previous analysis, had any effect on the 

modulation of somatosensory excitability. To do so, we divided the dataset into an early 

and late blocks (first and second half of the dataset). Thus, we repeated the 

aforementioned analysis separately for each 20-min block (see Cortical modulation of 

somatosensory excitability during rest and during movement subsection) but using 

separately the first and the last 20 minutes of data. 

2.3.2.2 PES to boost motor learning

Building upon the findings of the previous study, where we confirmed the modulation of 

sensorimotor excitability by the motor cortex oscillations, and following previous work 

on somatosensory excitability modulation, this study evaluates the use of a closed-loop 

BMI to boost motor learning (Van Elswijk et al., 2010; Zrenner et al., 2018a). This BMI 
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has been designed to deliver PES precisely during the optimal phase of the SMC activity 

(alpha oscillations in particular). Additionally, since the work of our research group goes 

towards the use of this technology at home, we have integrated the BMI into a portable 

setup that relies on a dry EEG cap. Thus, we designed an experiment to test our primary 

scientific hypothesis, while evaluating the functionality of the setup. Our primary 

hypothesis is that PES optimally locked to the negative phase of the SMC alpha 

oscillations will increase the excitability of the sensorimotor system and facilitate motor 

learning.

Experimental design

Subjects. 14 subjects (10 females, 25 ± 3.81 years) without any neurologic disease history 

participated to the study. All the procedures were approved by the Ethics Committee of 

the Faculty of Medicine of the University of Tübingen, Germany. During the experiment, 

subjects were comfortably seated on a chair in front of a computer screen and a 

keyboard. To test our scientific hypothesis, we designed a between subject experiment 

where participants were randomly assigned to either the intervention or the control 

group. In both groups, subjects had to learn a finger tapping sequence (more details 

below). While no PES was delivered in the control group, the intervention group received 

closed-loop PES during the finger tapping training. To evaluate whether the closed-loop 

PES could be used as feedback in a BMI system and further improve motor learning by 

exciting the sensorimotor system, the stimulation was only delivered during the finger 

tapping time, and not within the rest periods. Right before and after the training, to 

evaluate the changes in the excitability of the sensorimotor system due to the 

intervention SEPs were recorded by delivering PES on the medial nerve as we did in the 

study 3.1. Finally, a pre and post finger tapping assessment block was performed so that 

learning withing the session could be assessed.  

Finger tapping task

To evaluate whether motor learning could be boosted by closed-loop PES, we 

implemented a finger tapping task based on (Schönauer et al., 2013). The task consists 

in a 12 digits sequence (423121432413) that is performed with digits 2 to 5 (index to 
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little finger). This sequence has been designed so that each transition between fingers is 

present only once. In our experiment, subjects had to perform this sequence as fast and 

as accurately as possible with their non-dominant hand. During the learning, subjects 

had 3 blocks of 12 trials of finger tapping. Each of those trials consisted on 30 seconds 

of rest followed by 30 seconds finger tapping. Additionally, before and after the three 

blocks, a pre and a post assessment block was performed. Those blocks consisted of 3 

trials each, following the same structure as the learning blocks.

Closed-loop PES

Given that the previous study has showed that PES could excite the sensorimotor system 

if delivered in the right phase of sensorimotor oscillations, we implemented a closed-

loop algorithm that extracted the phase of alpha oscillations over the motor cortex and 

delivered PES accordingly. Thus, when the alpha oscillations were detected to be in the 

depolarising phase, a triplet of PES stimulations was delivered (Zanos et al., 2018). This 

triplet was delivered with an interstimulus interval of 100 ms, so that stimulations hit the 

consecutive depolarising phases (assuming no phase drift occurs within the period). The 

stimulation was delivered on the extensor digitorum and at the sensory threshold 

intensity. 

Behavioural analysis

To assess the learning that occurred during the training session, we calculated the 

number of successful full sequences within each block. Additionally, we also calculated 

the number of successful tapping transitions. To do that, we calculated, within each 

attempt, how far in the sequence the subjects got before making a mistake. Once a 

mistake is detected, the sequence is considered as restarted and the algorithm looks for 

correct transitions, starting again from the first digit of the sequence. To evaluate the 

learning change within the session, both metrics were calculated for Pre and Post blocks 

and the relative change (calculated as (Post-Pre)/Pre) was computed for each 

experimental group. 
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Lastly, to investigate how the learning occurred during the training, these metrics were 

also computed for each of the three training blocks independently. Here, to assess the 

learning that occurred in each training block we computed the behavioral metrics for the 

first and last 20% of the trials withing each block. Then we calculated the relative change 

for each block, following the methods used before.

Physiological data analysis (SEP)

We subsequently wanted to investigate whether the closed-loop PES resulted in any 

changes on the excitability of the sensorimotor cortex. We characterized the excitability 

of the sensorimotor cortex as the amplitude of the N20 potential, calculated from the 

pre and post SEP recordings. Thus, we calculated the relative changes of N20 amplitude 

for each experimental group and compared those values with an independent samples 

t-test.

2.3.2.3 Subliminal PES for home rehabilitation

The aim of this final part of Study 3 is to evaluate the viability of a closed-loop ultra-low-

sensory stimulation to improve motor rehabilitation in stroke patients. To investigate 

that, ultra-low-sensory stimulation was delivered on the median and ulnar nerves, while 

the patients were performing rehabilitative exercises with their paretic limb. This study 

was part of a European project in collaboration with two partners (Bitbrain, Spain and 

Promotion Software, Germay). 

Experimental design

In this pilot study, a repeated measures experimental design was used to assess whether 

closed loop ultra-low sensory stimulation can be used to enhance motor rehabilitation 

in stroke patients.  Thus, all the subjects were assigned to the same experimental group, 

in which the PES was delivered based on the ongoing brain activity of the subjects. 

Although the number of subjects (2) is insufÏcient to statistically validate our main 

scientific hypothesis, this pilot study allowed us to test the viability of the system as well 



46

as to get feedback from the subjects on the usage of the rehabilitative system, 

ergonomics and its overall acceptance.

Before and after the two months, the patient was invited to our lab to conduct the 

evaluation, where clinical scales, as well as usability, ergonomics and satisfaction 

questionnaires were measured. After that, the patients were able to use the system 

autonomously at their homes. During the first days, daily phone calls were made to 

interview the patient, solve questions about the system and make sure that everything 

worked as intended. During the whole process, the participants and their caregivers 

were able to contact (via phone call or message) a member of the lab at any time to solve 

any question or report any issues with the system.

Experimental setup

In the project, together with our partners, we designed a fully portable system that 

included EEG, inertial recordings (IMU) and PES. To analyze the signals and store the 

data, a computational unit and a battery were included in a small side bag that the 

subject carries. To record the EEG signals, we used a portable dry-electrodes EEG 

HeroTM system (Bitbrain, Spain). Additionally, the system included a programmable 

neuromuscular stimulator Bonestim (Tecnalia, Serbia) and a bracelet that included 

electrodes to deliver the PES as well as an IMU sensor. The EEG and IMU data was 

processed in a Raspberry Pi 4 Model B, that stored the data and generated the outputs 

for the PES to be delivered. The system was extensively tested (technically and 

ergonomically) on healthy participants before the field evaluation at home started. 

Lastly, a serious game was developed to engage the patients in the rehabilitation 

process. For that, a tablet was provided to the subject for the duration of the experiment. 

The game generated cues for the rehabilitative exercises and provided feedback on the 

quality of the movements. These movements were designed in collaboration with a 

physiotherapist and customized for every subject after the first session. We also 

designed a therapist interface so that the therapist could access information on quality 

of the movements and number of repetitions performed. This information was used by 
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the therapist to track the progress of the patient and to update the exercise list after 

some weeks of training. 

Rehabilitative intervention

The game provided a battery of upper limb movements to perform. Those movements, 

and the feedback about them, were presented via visual feedback in the tablet/laptop. 

As we described before, this list of movements was designed in collaboration with 

physiotherapists with experience in rehabilitation of stroke patients. Subjects were able 

to start and stop the intervention anytime during the day. However, they are encouraged 

to use the system for at least 20-30 minutes per day. Once the training was finished, the 

participants could move to a “subliminal” use of the system, in which they continue 

wearing the system during their daily life activities. In this mode of use, the system 

continued delivering ultra-low PES based on their detected arm movements and EEG 

activity. Additionally, some extra points in the game were provided. This subliminal use 

was limited to 1 hour maximum each day.

Outcome measures

Both before and after the rehabilitative intervention, we collected information about the 

ergonomics of the system, the time that it took the subjects to set the system working 

and the overall feel. Clinical scales like Ashworth, Fugl-Meyer and Broetz scales were also 

performed. Additionally, to evaluate the acceptance of the system, we analyzed the 

number of sessions that patients used the system at home, the length of the 

rehabilitative sessions, the quality of the IMUs and EEG data, and the duration of the 

setup time.
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2.3.3 Results

2.3.2.1 Modulation of the excitability of the sensorimotor system

Modulation of somatosensory excitability during motor activation

We first evaluated the differences between the rest and active conditions for the N20 

and N30 potentials. The results show significantly smaller N30 potentials, but not N20, 

during movement, when compared to the rest condition (paired samples t-test, P < 0.001 

and P = 0.44 respectively).

 

Changes of somatosensory excitability after a motor task

We next investigated the relationship between the motor task length and the changes in 

excitability. Here, we found a significant positive relation between the amount of 

movement trials performed and the N30 amplitude during the rest condition (p = 0.042). 

Interestingly, during the movement condition, this correlation was also significant, but 

negative (p=0.026; Figure 9d). We did not find any correlation for N20 potential (see 

Figure 9c).

Figure 8 Sensory gating. (a) Somatosensory evoked potentials for frontal and parietal contralateral cortex during rest 
(blue) and active condition (red). (b) Amplitude of N20 and N30 potentials for rest and active conditions. (c) N20 
potential for every 100 trials of experiment for rest (blue) and active (red) condition. (d) Same as (c) but for N30 
potentials. 
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Figure 9. Modulation of excitability of the sensorimotor system. (a) Modulation of the N20 potentials by cortical 
oscillation within the frequency range 3-35 Hz (x-axis) during the rest condition. Blue line represents the mean and 
s.e.m. of the modulation depth, and dark grey line the bias estimate. Grey area indicates significant differences 
between Modulation depth and bias estimate for a specific cluster of frequencies. (b) Same as a) but during the active 
condition. (c) Modulation of N20 by cortical oscillations (12 Hz) during rest and active condition for every subject. Color 
plot shows the N20 modulation for each subject (y-axis) as the amplitude of N20 (yellow representing the higher values 
and blue the lower) based on the pre-stimulation phase (x-axis). The black line shows the grand average of the N20 
modulation 12 Hz for all the subjects. (d) Polar plot of the N20 modulation by cortical oscillations (12Hz) for rest and 
active conditions. (e) Preferred phase of stimulation. It shows, blue area, the pre-stimulation phase that evoked a 
higher amplitude N20.

Cortical modulation of somatosensory excitability during rest and during movement

Finally, we studied whether pre-stimulus cortical oscillation is related to the modulation 

of the excitability of the sensorimotor system. During rest, we found a significant 

modulation of the N20 potentials by cortical oscillations between 8 and 20 Hz (see Figure 

10a). During the movement condition, we did not find any significant modulation of N20 
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for any of the frequencies studied (see Figure 9b). The N30 potentials did not show any 

significant modulation for any of the conditions (rest and active).  However, given that 

we observed a change in N30 amplitude during the experiment, we wanted to assess 

whether the modulation was also changed throughout the experiment (Figure 10). As 

expected, no differences in modulation could be found for N20 modulation between the 

early and late stimulations, first and last 20 minutes (Figure 10a). Interestingly, in the 

early stimulations, the N30 potential showed a significant modulation during the active 

condition for the frequencies between 8 and 16 Hz. This modulation could not be found 

for the late stimulations, where subjects had already performed at least 20 minutes of 

isometric contractions.

2.3.2.2 PES to boost motor learning

We found no significant differences in performance between the Control and 

Intervention for the successful transitions or the number of successful sequences (Figure 

11c). When comparing between conditions withing the 3 blocks of training data, no 

differences could be found in the learning of each block. 

Figure 10. Changes in the modulation of somatosensory excitability. (a) Modulation of N20 potential in the first and 
last half of the experiment, Early and Late stimulations respectively, (columns) during the rest and active conditions 
(rows). (b) Same as (a) but for the modulation of the N30 potential.
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The physiological data revealed no significant differences in the N20 changes (pre to 

post) between the intervention and the control group (p = 0.09, independent samples t-

test; Figure 11b).

2.3.2.3 Subliminal PES for home rehabilitation

The usability evaluation revealed positive ergonomic scores for our system. Both patients 

found the system easy to set up and comfortable to use. While overall acceptance was 

high, a common concern centered around the cable connecting the bracelet to the 

backpack, which was seen as somewhat inconvenient. This feedback provides valuable 

insights as we continue to refine our system for improved user experience. Another 

important factor was the setup of the EEG headset because patients had to be able to 

set it up themselves without any external help. As shown by the questionnaires, in both 

cases the participants felt comfortable about using the headset and found the 

instructions clear and easy to learn. In fact, the setup time for each patient was 

Figure 11. Peripheral electrical stimulation to boost motor learning. (a) Experimental protocol. (b) SEP change. It shows 
the change, as 100*(Post-Pre)/Pre, of the N20 potentials for the control (blue) and intervention (red) groups. (c) 
Performance of the Finger tapping post training assessment for the control (blue) and intervention (red) condition as 
the number of successful typing transitions. (d) Difference in number of successful transitions withing for each of the 
three training blocks, calculated as the change between the first and last 20% of the block.
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measured at 3.1 ± 2. 5 and 7.46 ± 14 minutes, respectively. We consider these times as 

adequate and realistic for a home environment use of the system. 

The questionnaire about usability of the system showed that subjects felt “highly 

confident” about setÝng the system up without any external help. Indeed, after the two 

months, subjects reported that they were able to finish the setup process in less than 10 

minutes, something we confirmed in the post session, when they repeated the whole 

process with us in the lab. When analyzing the data generated by their patients during 

the use of the system at home, we could confirm that setup time was 3.1 ± 2. 5 and 7.46 

± 14 minutes for each subject.

The acceptance of the system and the rehabilitation approach was also high as shown 

by the feedback received by the patients as well as the usage data. Thus, patients actively 

used the system for a total of 51 sessions (16 and 35 sessions each). Withing these 

sessions, the participants were training for 15. 7 ± 5.3 and 23.6 ± 11.3 minutes 

respectively. Lastly, the subliminal mode was used for an average of 10 ± 4.6 minutes 

after the training sessions.

No changes were found in Fugl-Meyer or Ashworth scales. However, one subject showed 

improvement in the Broetz score, a more functional and sensitive scale presenting an 

improvement from 19 to 29 pre to post intervention (Broetz et al., 2014). 

2.3.4 Discussion

The integration of peripheral electrical stimulation (PES) into BMI-based rehabilitation 

interventions represents a promising alternative to enhance the outcome of 

rehabilitative interventions. Thus, a system that promotes the use of the paralyzed limb 

into daily life activities, while incorporating closed-loop PES would both increase the 

amount of training while exciting the sensorimotor system, thus creating optimal 

conditions for plasticity-driven rehabilitation. In this study, we investigated the 

interaction between PES and sensorimotor cortical oscillations to take advantage of the 
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endogenous modulation of the excitability of the sensorimotor system.  After that, we 

evaluated the if the increase in excitability could be translated into behavioural 

outcomes (i.e., motor learning in healthy participants and clinical improvement in stroke 

patients). Finally, we tested a home-based closed-loop PES rehabilitative system that 

allowed patients to train at home while optimizing the excitability of the sensorimotor 

system to help rehabilitation. This line of research holds a great potential for 

rehabilitative BMIs for stroke, where the sensorimotor integration is compromised.

Modulation of the excitability of the sensorimotor system

Sensory gating is a well-studied neurophysiological process where the central nervous 

system actively attenuates the processing of sensory inputs and plays an important role 

of sensorimotor integration. In our study, we compared the excitability of the 

sensorimotor pathways during a motor task and a resting state. In line with previous 

findings, we found a sensory gating effect during the motor task with significantly lower 

N30 potentials (Figure 8b). Interestingly, we did not find a significant attenuation of the 

N20 potentials, which is also in line with previous sensory gating studies that showed no 

gating effects on N20 (Akaiwa et al., 2023; Kirimoto et al., 2014; Lei & Perez, 2017). This 

idea is supported by the fact that N20 is generated in areas of the primary 

somatosensory cortex, without connexions to the primary motor cortex (Macerollo et 

al., 2018). On the other hand, N30 represents early somatosensory input into non-

primary motor areas with potential oscillatory contributions from primary motor cortex 

and prefrontal cortex and has been previously reported to show modulation during 

movement preparation and execution, suggesting the interaction between 

somatosensory processing and motor control in non-primary motor areas (Macerollo et 

al., 2018).

This modulation of the sensorimotor excitability could be further investigated in this 

study by analysing if, and how, pre-stimulus cortical oscillations are related to the 

excitability of the sensorimotor pathways. We did that both for rest and motor condition. 

Interestingly, we could only find a significant modulation effect for the rest condition and 

only on N20, but not on N30 potentials. Here, we found that N20 potentials were 
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significantly modulated according to the phase of the cortical oscillations of the motor 

cortex that include alpha and low beta activity (8 – 20 Hz).  The fact that N20 was 

modulated during rest but not during motor execution might suggest that during rest 

intervals (intercalated between movement periods), subjects are in an “alert” 

preparatory state that might involve integrating sensory information with motor 

planning. Thus, N20 is primarily originated in S1, and has been linked to this integration 

between sensory processing and motor planning (Lei & Perez, 2017).

On the other hand, N30 showed no modulation during rest or movement conditions 

when analysing the 40 minutes of experimental data as a whole. An important factor 

that could result in lower modulation during the movement task that should be 

considered, especially for future experiments with patients, is the lower signal-to-noise 

ratio during the motor task (with lower amplitude of alpha and beta oscillations due to 

ERD and higher occurrence of movement and muscle artifacts), that could have resulted 

in a less accurate phase estimation. However, a more interesting explanation for this lack 

of N30 modulation is the dynamic nature of the N30 gating. Previous studies have linked 

N30 gating with the degree of movement skill, suggesting this dynamic nature of the 

degree of gating, linked to the learning stage (Akaiwa et al., 2022). In our protocol, 

subjects are required to perform an isometric contraction of the flexors to keep the angle 

of a pressure-sensitive between a certain range. This task, although it is not a typical 

motor learning task, did require for the subjects to learn how to keep the angle withing 

this range for the 30 seconds of each movement interval. Thus, we decided to analyze 

the N30 gating and its modulation after dividing the data in two blocks, thus being able 

to explore the differences in the early and late learning blocks (first and second half of 

the dataset). In line with previous studies like Akaiwa et al 2022, we found a greater 

modulation of N30 during the late block of movement, suggesting a more refined motor 

execution (Akaiwa et al., 2022, 2023). 

Earlier stages of motor learning heavily rely on premotor area (PMA) activation when 

somatosensory information feedback is more important, whereas in later stages of 

motor learning, when switching to a more automatic performance, the supplementary 

motor area (SMA) shows greater activation (Jenkins, et al., 1994). In this line, it has been 
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shown that during motor learning, changes in S1 excitability precede those in M1 

(Bernardi et al., 2015; Ohashi et al., 2019). This transition from a preference of S1 during 

early stages of learning would support the heavier modulation of N30 potentials by 

cortical oscillations between 8-16 Hz that we found only in the first half of the 

experiment (Figure 10b), suggesting an increased integration of sensory information in 

these early stages of motor learning. 

For that frequency range (8-16 Hz), we found that when the PES was delivered in the 

depolarizing phase, the stimulation resulted in a larger potential, indicating a state of 

higher excitability. On the other hand, when the stimulation was delivered in the 

hyperpolarizing phase, we found a smaller evoked response. These results go in line with 

a growing body of research that showed that TMS stimulation, when delivered on the 

depolarizing phase of the ongoing sensorimotor alpha rhythms, lead to larger motor 

evoked potentials (Zrenner et al., 2018b). Altogether, these results suggest a cumulative 

effect on N30 only, which indeed is the potential related to M1 neural activity. Some 

studies have previously reported the change of both N20 and N30 after movement 

execution suggesting that this inhibitory/excitatory effect has cumulative effects 

resulting in short-term plasticity-like changes (Andrew et al., 2015; Dancey et al., 2016; 

Haavik & Murphy, 2013).

PES to boost motor learning

Based on these findings, we implemented a closed-loop PES that increases the 

excitability of the sensorimotor system and evaluated whether this could be translated 

into behavioral results. Although, we ultimately wanted to use the system for motor 

rehabilitation of stroke patients, we first designed an experiment in healthy participants 

where motor learning was used as a “healthy” surrogate of motor recovery in stroke 

patients. Here, we compared the motor learning between two groups of healthy 

subjects, one that received closed-loop PES during training and one that received no PES. 

Interestingly, although we could find a significant trend that suggests higher excitability 

of the sensorimotor system for the subjects that received PES, we did not find any 

difference in motor learning performance.
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As revealed in our ofnine analysis, PES was consistently delivered on the depolarizing 

phase of the sensorimotor rhythms during the training. However, the stimulation of the 

phase heavily depends on the quality of the data. In the context of our experiment, 

subjects were performing a finger tapping task and freely moving during the task. This, 

as we studied in Study 1, has a great impact in the SNR of the EEG signal. Additionally, as 

we discussed above, during the movement ERD is produced and the amplitude of both 

alpha and beta oscillations is reduced, making the phase estimation even harder in a 

noisy environment. Altogether, these factors result in a PES that, although delivered 

predominantly on the depolarizing phase, is quite spread along the phase of the SMR. 

Thus, one potential hypothesis for the lack of behavioral results could be the cancelling 

effect produced by stimulations being accidentally delivered on the hyperpolarizing 

phase.

Further investigation is needed to confirm whether these technical challenges are 

behind our results. Some factors, like the quality of the signal, can be improved in a more 

controlled experimental setup. However, we wanted to evaluate our scientific hypothesis 

in a more realistic scenario, since the next step in our project was to test it on stroke 

subjects while they perform rehabilitation at home. In any case, a more controlled 

experimental setup that ensures a more precise PES might be necessary. Additionally, an 

additional experimental group where subjects receive the stimulation on the 

hyperpolarizing phase would help to better evaluate the effect of PES on excitability and 

motor learning. Lastly, in our experiments PES was delivered during the training as we 

ultimately want to apply this approach to a BMI-based rehabilitation for stroke patients, 

where the link between brain activation during movement and feedback is crucial. 

However, our previous study showed that the excitability of the sensorimotor system is 

modulated mostly during rest. Thus, a potential alternative would be to apply the closed-

loop PES during rest, before the training occurs, exciting the sensorimotor system 

potentially enhancing the learning capabilities of the system, in an even more practical 

and ergonomic fashion.
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Subliminal PES for home rehabilitation 

The closed-loop PES system used in the previous study was then evaluated in a 

rehabilitative scenario. This evaluation included the participation of two severely 

paralyzed stroke patients, who were actively engaged with the system at home for a 

period of two months. It is important to note that, although the sample size in the study 

is small, the results represent an important step towards a home-based rehabilitation 

system that optimizes PES to boost rehabilitation. 

The evaluation of the usability showed very positive feedback about the ergonomics and 

usability of the system. Both patients found the system easy to set up and comfortable 

to use. While overall acceptance was high, some minor issues were reported (like the 

inconvenience of a cable connecting the bracelet to the backpack). This feedback 

provides valuable insights as we continue to refine our system for improved user 

experience in the future. Another important factor was the setup of the system since 

patients had to be able to set it up themselves without any external help. Both 

participants felt comfortable about using the headset and found the instructions we 

provided clear and easy to learn. In fact, we could see that the setup time for each 

patient was measured at 3.1 ± 2. 5 and 7.46 ± 14 minutes, respectively. We consider 

these times as adequate and realistic for a home environment use of the system. 

The favorable response to the system could also be seen in the usage of the system. 

Indeed, both participants actively engaged in numerous sessions, with a combined total 

of 51 sessions (16 and 35 sessions each). Each session extended to 15.7 ± 5.3 and 23.6 ± 

11.3 minutes respectively, showing a clear commitment to integrate the system into 

their daily routines. Another innovative feature of the system was its subliminal mode, 

that allowed participants to engage in rehabilitation subtly throughout the day. This 

feature was used for an average of 10 ± 4.6 minutes daily. Altogether, this data highlights 

the system's potential to be integrated into patients' daily lives, potentially promoting 

consistent and valuable engagement in their rehabilitation routine.

Even though no changes could be found in Fugl-Meyer or Ashworth scales, one of the 

subjects showed a notable improvement in the Broetz score, indicating a positive 
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response to the intervention (Broetz et al., 2014). However, it's important to be very 

cautious in interpreting this result considering the limited sample size. In conclusion, 

while the current findings are preliminary and limited by the small sample size (but very 

intensive, longitudinal-like design), the early results obtained from the participation of 

two patients are very promising. Additionally, the feedback obtained represents a vital 

first step towards a more mature home-based rehabilitation system. 

3 Conclusions and general discussion

The studies conducted in this thesis constitute the first steps towards a rehabilitative 

system that includes PES and sleep. First, they show the challenges and biases that EEG 

analyses face in a visuomotor task, what is of upmost importance for a rehabilitative BMI 

system that relies on the contingency of the link between brain activity and afference. In 

this line, optimizing the afference produced by a BMI system has the potential to further 

improve the outcome of a rehabilitative intervention. 

In this thesis, we have confirmed the top-down regulation of the excitability of the 

sensorimotor system and build a system that delivers PES so that the afference y 

synchronized with states of higher excitability, potentially enhancing the plasticity effect 

of the BMI. Behavioural results could not confirm this hypothesis in healthy participants, 

so further investigation is needed. Additionally, we designed, implemented, and tested 

on stroke participants a home-based rehabilitative BMI for stroke patients that relies on 

PES and includes a serious game to further engage the patients. This pilot study provided 

unvaluable feedback and constituted a great step towards a more mature system that 

can be used in a clinical by a larger population of patients. 

Before that, some additional studies might be needed to elucidate why the closed-loop 

stimulation did not show any effect on the behavioural results. For that, an experiment 

that includes two control groups: one with PES on the depolarizing phase (higher 

excitability state), one with PES on the hyperpolarizing phase (lower excitability state) 

and one with no stimulation would give us a better understanding of the neuroscience 

behind the behavioural results. Another alternative that could be explored is to deliver 
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PES during rest, before the training occurs, since our study showed a significant 

modulation of the excitability of the sensorimotor system only during rest. This way, we 

might use the periods in right before the training to excite the sensorimotor system for 

the upcoming training period. Interestingly, this approach could be tested for any type 

of training, and it is not necessarily restricted to BMI rehabilitation, since it does not rely 

on the link between afference and brain activation during the training. 

Lastly, the memory consolidation processes that occur after BMI have been explored in 

this thesis both in healthy and stroke participants. We also implemented a closed-loop 

system to trigger TMR during sleep that aims at enhancing memory consolidation. The 

results of this study, although preliminary, are promising and encourage us to continue 

developing a sleep interface that improves the memory consolidation processes that 

occur after a BMI-based rehabilitation system for stroke. A larger study on healthy 

participants, ensuring that neuroprosthetic learning occurs, is necessary to investigate 

the effects of TMR on this type of memories before it is applied in a clinical study with 

stroke participants.

In summary, the findings in this thesis suggest the potential for an ideal rehabilitation 

system that integrates brain-machine interfaces (BMIs) with closed-loop PES, to enhance 

the activity-dependent plasticity effects that occur during a BMI training, and targeted 

memory reactivation during sleep, to help the impaired sensorimotor system 

consolidate those memories.
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