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Abstract

The decisions of state-of-the-art image classifiers based on neural networks can be easily changed
by small perturbations of the input which, at the same time, would not fool humans. These
adversarial points are ubiquitous and question the deployment of such models in safety-critical
systems. Moreover, this phenomenon shows that the networks learn to rely, for classification, on
different features of the input images compared to people.

The discovery of the existance of adversarial examples opened up several rich research di-
rections: adversarial attacks want to efficiently generate perturbations to fool a target classifier
while preserving the original semantic content of the input. To make sure that the ground truth
class is not altered, one typically imposes constraints on some lp-norm of the perturbations, or on
the number (and location) of modified pixels (sparse attacks). Conversely, defensive mechanisms
aim at training models which are not (or less) vulnerable to adversarial manipulations. The
effectiveness of empirical defenses is in practice evaluated by measuring the success of adversar-
ial attacks against them. Then it is important to design strong and reliable attacking schemes:
in fact, it has been shown that some initially successful defenses were still vulnerable to more
sophisticated attacks. An alternative approach which avoids relying on attacks for robustness
evaluation is represented by certified defenses. These methods provide guarantees that no ad-
versarial perturbation smaller than some threshold exists for a given clean point. The drawback
of this approach is that it is either limited to small networks and datasets or incurs in high
computational cost (and the decisions of the classifier become stochastic).

In this work, we touch these various aspects of adversarial robustness: first, we derive lower
bounds of the adversarial perturbations of ReLU networks, and we use them as regularization
during training to obtain provably robust classifiers against either a single or multiple threats.

Second, we propose algorithms to generate adversarial perturbations in different threat mod-
els, both in the white- and black-box scenarios, i.e. with and without having access to the
target network parameters. We consider various lp-bounded attacks for p ∈ {∞, 2, 1}, sparse
attacks (individual pixels, patches, frames), and imperceivable perturbations which are defined
adaptively for each input image.

We then gather a subset of those methods to form AutoAttack, a protocol for reliable evalua-
tion of adversarial robustness which does not require parameter tuning. Exploiting AutoAttack,
we introduce RobustBench, a standardized benchmark to evaluate the progress of the robustness
of classifiers against adversarial attacks in the lp-threat models, which also provides access to
a larger zoo of adversarially robust models. Since RobustBench imposes some restrictions on
the allowed models, we complement it with a study on adaptive test-time defenses which do not
satisfy such restrictions but are popular in the literature.

Finally, we analyze how to quickly adapt the type of robustness of a given model: a short
fine-tuning, even of single epoch, is sufficient to make a classifier adversarially trained against an
lp-attack robust to a different lq-bounded threat.

3



Kurzfassung

Die Entscheidungen moderner Bildklassifizierer, die auf neuronalen Netzen basieren, können
leicht durch kleine Störungen der Eingaben verändert werden, die den Menschen jedoch nicht
täuschen würden. Diese adversarial images sind allgegenwärtig und stellen den Einsatz solcher
Modelle in sicherheitskritischen Systemen in Frage. Darüber hinaus zeigt dieses Phänomen, dass
die Netze lernen, sich bei der Klassifizierung auf andere Merkmale der Eingabebilder zu verlassen
als Menschen.

Die Entdeckung von adversarial examples eröffnete mehrere interessante Forschungsrichtun-
gen: Attacken zielen darauf ab, effizient Störungen zu erzeugen, um einen Zielklassifikator
zu täuschen, während der ursprüngliche semantische Inhalt der Eingabe erhalten bleibt. Um
sicherzustellen, dass der semantische Inhalt der wahren Klasse nicht verändert wird, wird typ-
ischerweise die lp-Norm der Störungen oder die Anzahl (und der Ort) der veränderten Pixel
(spärliche Angriffe) beschränkt. Umgekehrt zielen defensive Mechanismen darauf ab, Modelle
zu trainieren, die nicht (oder weniger) anfällig für bösartige Manipulationen sind. Die Wirk-
samkeit empirischer Abwehrmechanismen wird in der Praxis durch Messung des Erfolgs bösartige
Angriffe auf das Modell bewertet. In diesem Fall ist es wichtig, starke und zuverlässige An-
griffsverfahren zu entwickeln: Es hat sich nämlich gezeigt, dass einige ursprünglich erfolgreiche
Verteidigungsmechanismen immer noch anfällig für ausgefeiltere Angriffe waren. Ein alterna-
tiver Ansatz, der es vermeidet, sich bei der Bewertung der Robustheit auf Angriffe zu stützen,
ist der der zertifizierten Verteidigungsmaßnahmen. Diese Methoden garantieren, dass es für
einen gegebenen für ein gegebenes Bild keine bösartige Störung durch einen Angreifer existiert,
die kleiner als ein bestimmter Schwellenwert ist. Der Nachteil dieses Ansatzes ist, dass er en-
tweder auf kleine Netze und Datensätze beschränkt ist oder hohe Rechenkosten verursacht (und
Klassifikationsentscheidungen stochastisch werden).

In dieser Arbeit bearbeiten wir diese verschiedenen Aspekte der Robustheit gegenüber nachteili-
gen Einflüssen: Erstens leiten wir untere Schranken für die bösartigen Störungen von ReLU-
Netzwerken ab und verwenden sie als Regularisierung während des Trainings, um nachweislich
robuste Klassifikatoren gegen ein oder mehrere Störungsmodelle zu erhalten.

Zweitens schlagen wir Algorithmen vor, um bösartige Störungen in verschiedenen Bedro-
hungsmodellen zu erzeugen, sowohl imWhite- als auch im Black-Box-Szenario, d.h. mit und ohne
Zugriff auf die Parameter des Zielnetzwerks. Wir betrachten verschiedene lp-begrenzte Angriffe
für p ∈ {∞, 2, 1}, spärliche Angriffe (einzelne Pixel, Patches, Frames) und nicht wahrnehmbare
Störungen, die adaptiv für jedes Eingabebild definiert werden.

Anschließend fassen wir eine Teilmenge dieser Methoden zu AutoAttack zusammen, einem
Protokoll zur zuverlässigen Bewertung der Robustheit gegen bösartige Attacken, das keine Pa-
rametereinstellung erfordert. Unter Ausnutzung von AutoAttack entwickeln wir RobustBench,
einem standardisierten Benchmark der es erlaubt den Fortschritt der Robustheit von Klassifika-
toren gegen bösartige Attacken bezüglich der lp Bedrohungsmodelle zu evaluieren, und auch
Zugang zu einem größeren Zoo widerstandsfähiger Modelle bietet. Da RobustBench einige
Beschränkungen an die zulässigen Modelle aufstellt, ergänzen wir es durch eine Studie über
adaptive Verteidigung zur Testzeit, die diese Beschränkungen nicht erfüllen, aber in der Liter-
atur beliebt sind.

Schließlich analysieren wir, wie man die Art der Robustheit eines gegebenen Modells schnell
anpassen kann: ein kurzes Feintuning, sogar von einer einzigen Epoche, reicht aus, um einen
Klassifikator, der gegen einen lp-Angriff trainiert wurde, robust gegenüber einer anderen lq-
begrenzten Bedrohung zu machen.
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Chapter 1

Introduction

The first theoretical bases and implementation of neural networks (NNs) as tools for solving
learning problems appeared in the second half of 1900s [Schmidhuber, 2015], but their popularity
quickly increased when their training and inference could be successfully combined with hardware
advancements, that is the computations were efficiently parallelized on GPUs [Chellapilla et al.,
2006, Ciresan et al., 2011, Krizhevsky et al., 2012]. The last decade has seen NNs-based models
achieving outstanding performance in several domains, ranging from computer vision [Krizhevsky
et al., 2012, He et al., 2016a,b, Zagoruyko and Komodakis, 2016], natural language processing
[Amodei et al., 2016, Devlin et al., 2018, Brown et al., 2020] to mastering classical and computer
games [Mnih et al., 2013, Silver et al., 2018], getting in most of the cases super-human results.
Moreover, NNs are now being integrated in safety-critical systems like autonomous driving,
medical diagnosis, malware detection and financial risk assessment.

Despite their success on multiple tasks, it has been early on discovered [Biggio et al., 2013,
Szegedy et al., 2014] that the decisions of NNs-based models are not robust to small perturbations
of the input if those are crafted in an adversarial way, i.e. with the specific goal of misleading
the model. For example, for image classification tasks, it is now well-known that an image can
be altered with imperceptible perturbations which make a well-trained classifier, which correctly
identifies the original image and has high generalization performance, predict the wrong class,
possibly with high confidence. This phenomenon is consistently present across architectures,
datasets and even domains, and it is not limited to vision problems as shown in Szegedy et al.
[2014] but appears in, among others, natural language processing [Li et al., 2018, Jin et al.,
2019, Boucher et al., 2022], malware detection [Grosse et al., 2016, Kolosnjaji et al., 2018], and
reinforcement learning [Huang et al., 2017, Lin et al., 2017] tasks. Such inputs are referred to as
adversarial samples.

While it is hard to provide a comprehensive formal definition, adversarial perturbations should
i) modify the original input in a way that either is unnoticeable to humans or does not make
humans to change their decision in the considered task, and ii) lead the model to modify its
output to a wrong one (e.g. predicting the wrong class). It is worth noting that the vulnerability
to adversarial samples is not exclusive of (deep) neural networks, but affects also traditional
learning systems like SVMs [Demontis et al., 2016], decision stumps and trees [Andriushchenko
and Hein, 2019, Zhang et al., 2020a], k-nearest neighbors [Sitawarin and Wagner, 2020], and it
had been already studied by Lowd and Meek [2005] for linear classifiers for spam filtering. This
phenomenon is of particular concern when it comes to deploying the decision systems in high
stake situations e.g. on autonomous vehicles, medical tasks or malware detection, where it is
vital for the user to have a certain degree of trust in the system. In particular, it has been
shown that adversarial manipulations are not only realizable in the digital world but even in the
physical one, for example by stickers on traffic signs or adversarial T-shirts and glasses [Evtimov
et al., 2018, Li et al., 2019b, Lee and Kolter, 2019, Thys et al., 2019, Xu et al., 2020b, Sharif
et al., 2019].

While it has been debated whether an adversary would be able to manipulate real-world
systems in a practical scenario, the existence of adversarial samples poses by itself interesting
questions about which features are actually learnt by neural networks, and how these differ from
human perceptions. Consequently, the field of adversarial machine learning has grown rapidly
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over the last few years, and counts now more than 6000 papers1 which analyze a variety of
aspects of the problem. The most numerous subsets of such works are probably those which
focus on either generating adversarial perturbations (adversarial attacks) [Szegedy et al., 2014,
Carlini and Wagner, 2017a] or training models which are robust to them (empirical defenses)
[Goodfellow et al., 2015, Madry et al., 2018]. Moreover, important lines of work investigate from
a theoretical standpoint the existence of adversarial samples [Allen-Zhu and Li, 2020, Bubeck
et al., 2021], how to certify that a model is adversarially robust at a given input (certification
methods) [Raghunathan et al., 2018, Wong and Kolter, 2018, Lecuyer et al., 2019] or how to find
the minimal modifications which change its decisions (verification methods) [Katz et al., 2017,
Tjeng et al., 2019]. Another major subfield consists in the study of the properties of adversarially
robust models: it has been in fact shown that those present significantly different characteristics
compared to standard ones, e.g. tend to have lower generalization performance on non adversarial
data [Tsipras et al., 2019], more interpretable gradients [Santurkar et al., 2019], and are more
suitable for transfer learning [Salman et al., 2020]. At the same time, training such robust models
presents specific challenges like catastrophic [Wong et al., 2020] and robust [Rice et al., 2020]
overfitting, which do not appear in the natural (i.e. non adversarial) setup. A further research
direction focuses on defining metrics which are well aligned with human perception [Laidlaw
et al., 2021]: in fact, in order to be imperceivable, adversarial changes are often constrained to
have small lp-norm, for some p, but this has been at times criticized since such norms, while
practical, are not always good proxies of visual similarity. Finally, a line of work tries to track the
progress of the field over time, which is not a simple task given its activity and variety [Kurakin
et al., 2018, Brendel et al., 2018, Dong et al., 2020].

Since attacks and (provable and empirical) defenses for image classifiers are the main focus
of this work, we will provide a more detailed description of them in the next section, together
with an overview of the most relevant related papers.

Contributions. In this work, we focus on different aspects of the robustness of image classifiers.
We provide below a summary of our contributions, with an outline of the rest of the manuscript
and references to the papers on which the various parts are based.

• Provable robustness: First, in Sec. 3 we exploit the structure of piecewise affine function
of ReLU networks to derive either the exact value or a lower bound on the size of smallest
(wrt an lp-norm) perturbation which changes the decision of the classifier for a given input.
This motivates a regularization scheme which provides models with high provable robustness
to lp-bounded perturbations for a single p (see Croce et al. [2019a]). We then extend such
approach to obtain guarantees for multiple threat models, i.e. all p ≥ 1, simultaneously [Croce
and Hein, 2020b].

• Adversarial attacks: We present several adversarial attacks in the l∞- and l2-threat models,
which are the most popular ones in the literature, in both black- and white-box scenarios
(i.e. without or with access to the internals of the target classifier). In details, we introduce
the Fast Adaptive Boundary Attack [Croce and Hein, 2020a] in Sec. 4.1, the Square Attack
[Andriushchenko et al., 2020] in Sec. 4.2, and Auto-PGD [Croce and Hein, 2020c] in Sec. 4.3.
Moreover, in Sec. 4.4 we analyze the l1-threat model, and extend Square Attack and Auto-
PGD to that case (see Croce and Hein [2021]). For space constraints we omit the description
of the Linear Region Attacks, specialized for ReLU networks, from Croce and Hein [2018],
Croce et al. [2019b].

• Benchmarking adversarial robustness: In Sec. 5.1 we combine a subset of the attacks
previously introduced to create AutoAttack [Croce and Hein, 2020c], a protocol for robustness
evaluation without the need of parameter tuning. AutoAttack is then used as a first step to
define a standardized benchmark of adversarial robustness, named RobustBench [Croce et al.,
2021] (see Sec. 5.2). It aims at systematically tracking the progress of the field, which requires
imposing some restrictions on the allowed classifiers. Moreover, its Model Zoo gives easy access
to many robust models, which facilitates the analyses of their properties. Finally, we conduct a
study on adaptive test-time defenses, a class of methods which is excluded from RobustBench,
in Sec. 5.3 (see Croce et al. [2022b]).

1https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html
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• Sparse attacks: Sec. 6 presents algorithms to generate sparse attacks which modify only a
small percentage of the pixels of every image, including adversarial patches and frames, and
shows how to combine these techniques with imperceptibility constraints. In particular, we
introduce methods which either minimize the number of perturbed pixels [Croce and Hein,
2019] or have a fixed budget and aim at query efficiency, i.e. succeeding with the smallest
amount of queries to the target classifier [Croce et al., 2022a].

• Adaptation of robust classifiers via fine-tuning: In Sec. 7 we study how to achieve with
low computational budget empirical robustness in multiple threat models. In particular, we
show that one can obtain models robust to a single or multiple lp-norm bounded attacks by a
short fine-tuning, with adversarial training, of classifiers initially robust to an lq-attack with
q ̸= p [Croce and Hein, 2022].

Note that in the following we will refer as state-of-the-art to the best methods or results
available at the time of writing the papers the corresponding section is based on. Similarly,
we might report statistics which reflect the status at that time. We will add for completeness,
when necessary, a paragraph commenting on the relevant progress in the field which followed our
contributions.

List of references. We list below the references to the papers on which this work is based.
Additional experiments and analyses of the presented methods can be found in the corresponding
papers.

• Francesco Croce, Maksym Andriushchenko, and Matthias Hein. Provable robustness of relu
networks via maximization of linear regions. In AISTATS, 2019a.

• Francesco Croce and Matthias Hein. Sparse and imperceivable adversarial attacks. In ICCV,
2019.

• Francesco Croce and Matthias Hein. Provable robustness against all adversarial lp-
perturbations for p ≥ 1. In ICLR, 2020b.

• Francesco Croce and Matthias Hein. Minimally distorted adversarial examples with a fast
adaptive boundary attack. In ICML, 2020a.

• Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an
ensemble of diverse parameter-free attacks. In ICML, 2020c.

• Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein. Square
attack: a query-efficient black-box adversarial attack via random search. In ECCV, 2020.

• Francesco Croce and Matthias Hein. Mind the box: l1-apgd for sparse adversarial attacks on
image classifiers. In ICML, 2021.

• Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas
Flammarion, Mung Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a stan-
dardized adversarial robustness benchmark. In NeurIPS Datasets and Benchmarks Track,
2021.

• Francesco Croce, Maksym Andriushchenko, Naman D Singh, Nicolas Flammarion, and
Matthias Hein. Sparse-rs: a versatile framework for query-efficient sparse black-box adver-
sarial attacks. In AAAI, 2022a.
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• Francesco Croce, Sven Gowal, Thomas Brunner, Evan Shelhamer, Matthias Hein, and Taylan
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2022b.

Omitted works. We list below the works which will not be discussed in this thesis.
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Chapter 2

Background and Related Work

In the following we first provide the main definitions which we use in the next sections, together
with the relative notation. Then we give an overview of adversarial attacks, empirical defenses,
and methods for certified robustness.

2.1 Notation

A NN-based classifier can be described as a function f : X ×Θ→ RK , where X and Θ are the
input and weight space respectively, andK the number of classes of the problem. Let θ ∈ Θ ⊆ Rw

contain the parameters which identify the neural network, and x ∈ X ⊆ Rd be a generic input,
then z = f(x, θ) is a vector of dimension the number of classes, referred to as logits, and the
decision of f is given by argmax

r=1,...,K
fr(x, θ), i.e. the index of the maximal logit. When θ is fixed,

we might omit to explicitly indicate the dependence of f on θ and write f(x) for brevity. The
architecture of a neural network usually consists in a sequence of affine and non-linear, possibly
non-parametric, functions, referred to as layers: the vector θ stores all the parameters describing
the layers and which are typically learnt during training. Since we consider image classification
tasks, the inputs are mostly three dimensional tensors with shape h × w × c, where c is the
number of color channels (e.g. c = 1 for grayscale images, c = 3 for RGB ones) and h ·w · c = d.
Moreover, x is scaled to be in the image domain, meaning that each of its components belongs
to [0, 1] (other types of normalization are possible, but we do not consider them here).

The classification accuracy of f on a set D = {(xi, yi)}Ni=1, whose elements are pairs of an
input xi ∈ X and its corresponding ground-truth label yi ∈ {1, . . . ,K}, is defined, with 1(·) the
indicator function, as

1

N

N∑
i=1

1(argmax
r=1,...,K

fr(xi, θ) = yi), (2.1)

that is the fraction of data points for which the prediction of the classifier matches the correct
label. In particular, when D contains unperturbed images, e.g. the test set, Eq. (2.1) provides
the clean or standard accuracy, while if D is formed by adversarial samples it gives the robust
accuracy of f under the considered threat model. Additionally, the complementary metrics clean
and robust test error are sometimes used, indicating the percentage of (clean or advervarial) test
points which are misclassified. A closely related metric which is mostly used for assessing the
effectiveness of adversarial attacks is the success rate, which measures the percentage of points
for which f changes its decision (possibly into a specific target class) after they are adversarially
perturbed. Moreover, we denote as Bp(x, ϵ) the lp-ball of radius ϵ ≥ 0 around x ∈ Rd, i.e.
Bp(x, ϵ) = {z ∈ Rd : ∥z − x∥p ≤ ϵ}.

2.2 Adversarial attacks

The common goal of adversarial attacks is to find a small perturbation δ ∈ Rd which changes the
decision of a classifier f at an input x ∈ Rd with correct label y: in the untargeted scenario any
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misclassification is acceptable, i.e. argmax
r=1,...,K

fr(x+ δ) ̸= y is sufficient, while for targeted attacks

one wants the decision of f to match a target label t, i.e. argmax
r=1,...,K

fr(x+ δ) = t. We recall that

adversarial samples should differ from the original ones in such a way that the ground-truth class
is still clearly recognizable. In practice, this is reflected by enforcing x and x+ δ to be close wrt
some distance measure µ : X ×X → R+ which approximates human perception.

Attack types. There exist two main types of attacks: a first group minimizes the distance
between original and manipulated image, i.e., formally, they try to solve the problem

argmin
δ∈Rd

µ(x, x+ δ) s. th. argmax
r=1,...,K

fr(x+ δ) ̸= y, x+ δ ∈ X. (2.2)

Another group fixes instead a maximal size ϵ > 0 on the perturbation and approximately solves

argmax
δ∈Rd

L(f, x, δ, y) s. th. µ(x, x+ δ) ≤ ϵ, x+ δ ∈ X, (2.3)

where L is a surrogate loss which induces misclassification e.g. cross-entropy. Note that Eq. (2.2)
is stated for the untargeted case but can be easily extended to the targeted scenario by adapting
the first constraint. The first formulation yields an optimization problem which is in general
hard to solve directly because of the misclassification constraint. Then, prior works have, for
example, rephrased it via penalty methods [Carlini and Wagner, 2017a] or replacing f with
its local linear approximation [Moosavi-Dezfooli et al., 2016] to make it tractable. The second
formulation, in Eq. (2.3), has the advantage that can be solved with standard methods for
constrained optimization, e.g. projected gradient descent (PGD) when {δ ∈ Rd : µ(x, x+δ) ≤ ϵ}
is a set onto which a projection exists [Madry et al., 2018]. Since the optimization problems
in Eq. (2.2) and Eq. (2.3) have different objective functions, it is not straightforward how to
compare their results. Possible solutions are i) running fixed budget attacks with several values
of ϵ to find the smallest δ which fools the classifier, or ii) considering a solution δ∗ of Eq. (2.2)
successful only if µ(x, x+ δ∗) ≤ ϵ. We will use mostly the latter, since it translates directly into
robust accuracy which is the most popular metric for measuring robustness.

Level of knowledge. One can further distinguish adversarial attacks according to the level of
knowledge of the target classifier they have. In the white-box scenario, the attacker has access
to the weights θ parameterizing the neural network, the training data and the training scheme,
and is aware of any defense mechanism adopted to improve the robustness (even at test time).
This also means that it can compute the gradient wrt the input of any function applied on top
of the logits. White-box algorithms [Goodfellow et al., 2015, Carlini and Wagner, 2017a, Madry
et al., 2018] typically provide the strongest (and most computationally efficient) evaluation of
robustness since they have full knowledge of the target classifier. Conversely, black-box attacks
can only query the victim model, i.e. they can feed it with an arbitrary input and receive back
either the values of the corresponding logits (score based attacks) [Fawzi and Frossard, 2016,
Ilyas et al., 2018, Moon et al., 2019, Guo et al., 2019] or only the predicted class (decision
based attacks) [Brendel et al., 2018, Brunner et al., 2019, Chen and Gu, 2020]. Moreover, some
black-box attacks leverage a surrogate model similar to the target one to generate more effective
perturbations [Papernot et al., 2016a, Cheng et al., 2019, Huang and Zhang, 2020]: in this case
the similarity between substitute and victim models is key for the success of the attack.

Perturbation constraints. The most popular metrics used to enforce similarity between
the original and perturbed images are lp-norms with p ∈ {∞, 2, 1}, since these lead to more
tractable optimization problems. Using other (fractional) lp-norms is also possible [Boreiko et al.,
2022] although less common. These attacks typically modify all input components of a small
magnitude. An opposite approach is that of sparse attacks, which instead perturb only a small
fraction of the input, e.g. a few pixels of an image, but possibly with visible modifications. These
include l0-bounded attacks [Carlini and Wagner, 2017a], adversarial patches [Brown et al., 2017]
and frames [Zajac et al., 2019]. Moreover, metrics other than lp-norms which are better aligned
to human perception have been recently proposed, e.g. Wasserstein distance [Wong et al., 2019,
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Hu et al., 2020] or neural-network based metrics such as LPIPS [Zhang et al., 2018, Laidlaw
et al., 2021]. Finally, Xiao et al. [2018] create adversarial attacks via spatial transformations,
while Kang et al. [2019b] propose adversarial corruptions which try to mimic naturally occurring
modifications of an image like snow or fog.

2.2.1 lp-bounded white-box attacks

This is the most popular type of attacks, as it involves a well-defined set of perturbations and
allows the attacker to access all elements of the target classifier. Goodfellow et al. [2015] first
propose to generate perturbations with fixed l∞-norm with the Fast Gradient Sign Method
(FGSM), which takes a single gradient step to maximize a target loss function (see Eq. (2.3)).
Iterative versions of FGSM have been later proposed by Kurakin et al. [2017a] (BIM) and Madry
et al. [2018] (PGD), which rely on projecting each iterate onto the target l∞-ball to ensure that
the perturbations remain imperceivable. With small modifications to the gradient step and the
projection algorithm, these methods, and PGD in particular, are then adapted to the l2 [Madry
et al., 2018, Rony et al., 2019] and l1 [Tramèr and Boneh, 2019, Maini et al., 2020] threat models,
and enriched by several variants [Dong et al., 2018, Zheng et al., 2019]. The most common choices
as objective functions are cross-entropy and margin loss [Madry et al., 2018, Gowal et al., 2019b].
An alternative approach which does not need to project onto the feasible set is represented by
attacks based on Frank-Wolfe schemes [Chen et al., 2020a].

Carlini and Wagner [2017a] aim instead at minimizing the lp-norm of the perturbations, by
adding a penalization term to the loss which is optimized by the attack, for p ∈ {∞, 2, 0}, and
Chen et al. [2018] later extended it to the l1 case. Since these methods rely on a bilevel op-
timization procedure to find the parameter which yields the best performance, they have high
computational cost. Efficient lp-attacks are introduced by Moosavi-Dezfooli et al. [2017], Modas
et al. [2019]: they replace at each iteration the target classifier with its first-order approxima-
tion for which the smallest adversarial perturbations can be found in closed form. While such
algorithms typically find perturbations in a few steps, those have large size. Several more sophis-
ticated techniques of similar spirit have been later proposed [Rony et al., 2021, Brendel et al.,
2019, Pooladian et al., 2020, Matyasko and Chau, 2021, Pintor et al., 2021], and manage to
improve both quality and runtime of the attacks.

These methods are developed to perform well on a variety of classifiers, which are typically
deterministic and differentiable. Therefore they might fail on defenses with some unexpected
components which violate such conditions (see Sec. 5.2 for a more detailed discussion). Then,
Athalye et al. [2018] introduced tools to, at least partially, adapt common attacks to such cases:
Expectation over Transformations (EoT) for randomized defenses and Backward Pass Differen-
tiable Approximation (BPDA) for non-differentiable layers. Evaluating the robustness of such
defenses in a standardized way remains however a challenging task, and typically requires adap-
tive techniques [Tramèr et al., 2019].

2.2.2 lp-bounded score-based attacks

Score-based black-box attacks have only access to the score predicted by a classifier for each
class for a given input. Most of such attacks in the literature are based on gradient estimation
through finite differences. The first papers in this direction [Bhagoji et al., 2018, Ilyas et al., 2018,
Uesato et al., 2018] propose attacks which approximate the gradient by sampling from some noise
distribution around the point. While this approach can be successful, it requires many queries
of the classifier, particularly in high dimensional input spaces as in image classification. Thus,
improved techniques reduce the dimension of the search space via using the principal components
of the data [Bhagoji et al., 2018], searching for perturbations in the latent space of an auto-
encoder [Tu et al., 2019] or using a low dimensional noise distribution [Ilyas et al., 2019]. Other
attacks exploit evolutionary strategies or random search, e.g. Alzantot et al. [2019] use a genetic
algorithm to generate adversarial examples and alleviate gradient masking as they can reduce
the robust accuracy on randomization- and discretization-based defenses, while the l2-attack of
Guo et al. [2019] can be seen as a variant of random search which chooses the search directions
in an orthonormal basis and tests up to two candidate updates at each step. A recent line of
work has pursued black-box attacks which are based on the observation that successful adversarial
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perturbations are attained at corners of the l∞-ball intersected with the image space [0, 1]d [Moon
et al., 2019, Al-Dujaili and O’Reilly, 2020, Meunier et al., 2019]. Searching over the corners allows
to apply discrete optimization techniques to generate adversarial attacks, significantly improving
the query efficiency. Both Moon et al. [2019] and Al-Dujaili and O’Reilly [2020] divide the image
according to some coarse grid, perform local search in this lower dimensional space allowing
componentwise changes only of −ϵ and ϵ, then refine the grid and repeat the scheme. Recently,
Meunier et al. [2019] proposed several attacks based on evolutionary algorithms, using discrete
and continuous optimization, achieving nearly state-of-the-art query efficiency for the l∞-norm.
In order to reduce the dimensionality of the search space, they use the “tiling trick” of Ilyas
et al. [2019] where they divide the perturbation into a set of squares and modify the values
in these squares with evolutionary algorithms. A related idea also appeared earlier in Fawzi
and Frossard [2016] where they introduced black rectangle-shaped perturbations for generating
adversarial occlusions. Despite their effectiveness for the l∞-norm, these discrete optimization
based attacks are not straightforward to adapt to e.g. the l2-norm. Finally, approaches based on
Bayesian optimization exist, e.g. Shukla et al. [2019], but show competitive performance only in
a low-query regime.

2.2.3 Sparse attacks

Sparse attacks pursue a particular strategy: they perturb only a small portion of the original
input but possibly with large modifications. Thus, the perturbations are indeed visible but do
not alter the semantic content, and can even be applied in the physical world [Lee and Kolter,
2019, Thys et al., 2019, Li et al., 2019b]. Sparse attacks include l0-attacks [Narodytska and
Kasiviswanathan, 2017, Carlini and Wagner, 2017a, Papernot et al., 2016b, Schott et al., 2019],
adversarial patches [Brown et al., 2017, Karmon et al., 2018, Lee and Kolter, 2019] and frames
[Zajac et al., 2019], where the perturbations have some predetermined structure. Moreover,
sparse attacks generalize to tasks outside computer vision, such as malware detection or natural
language processing, where the nature of the domain imposes to modify only a limited number
of input features [Grosse et al., 2016, Jin et al., 2019]. Finally, sparsity in the adversarial
perturbations has also been linked to better interpretability of the attacks [Xu et al., 2018].

For the l0-threat model, only a few score-based black-box attacks exist [Narodytska and
Kasiviswanathan, 2017, Schott et al., 2019, Zhao et al., 2019]. Since they do not focus on
query efficiency, they hardly scale to datasets like ImageNet [Deng et al., 2009] without suffering
from prohibitive computational cost. For adversarial patches and frames, black-box methods are
mostly limited to transfer attacks, that is a white-box attack is performed on a surrogate model,
with the exception of Yang et al. [2020a] who use a predefined dictionary of patches.

2.3 Empirical defenses

Goodfellow et al. [2015] first proposed to increase the robustness of classifiers by adversarial
training: adversarial points for the training images are generated with FGSM at every training
step for the current network, and the classification loss is minimized at such points. However,
the resulting classifiers are still vulnerable to multi-step attacks [Kurakin et al., 2017b]. Then,
Madry et al. [2018] used PGD within the adversarial training framework, and this formulation re-
mains the only general method ensuring adversarial robustness across architectures and datasets
[Athalye et al., 2018]. Other types of defenses use more sophisticated techniques, typically pre-
venting the direct optimization of the attack: however, adaptive attacks specifically designed
for these defenses have often shown that these alternative techniques are non-robust or much
less robust than claimed [Tramèr et al., 2020]. Recent improvements of adversarial training
have been achieved by using different objectives [Zhang et al., 2019b], unlabeled data [Carmon
et al., 2019, Alayrac et al., 2019], adversarial weights perturbations [Wu et al., 2020a] and wider
networks [Wu et al., 2021a]. In Gowal et al. [2020] several recent variants were systematically
explored and for a very large architecture they obtain the most robust models for l∞ and l2 for
CIFAR-10. These results were improved later on by using particular data augmentation [Rebuffi
et al., 2021a] or synthetic data [Gowal et al., 2021, Wang et al.].

It was early on discovered that adversarial robustness against a specific lp-threat model does
not typically transfer to lq-threat models for p ̸= q (see Kang et al. [2019a], Tramèr and Boneh

18



[2019] for extensive studies). On the other hand to achieve really reliable machine learning models
lp-robustness wrt all p is necessary. The first approach to general robustness [Schott et al., 2019]
uses multiple variational auto-encoders for an analysis by synthesis (ABS) architecture. While
ABS is restricted to MNIST, it is robust against l0, l2 and l∞-attacks. Tramèr and Boneh [2019],
Maini et al. [2020], Madaan et al. [2021] propose variants of adversarial training to achieve
robustness in multiple norms which differ from each other in how the perturbations for different
threat models are combined. Madaan et al. [2021] additionally present a meta-learning approach
where one learns optimal noise to augment the samples and uses consistency regularization to
enforce similar predictions on clean, augmented and adversarial samples. Finally, Stutz et al.
[2020] combine adversarial training with a reject option: while that is effective, the comparison
to normal adversarially trained models is difficult as their model is non-robust without the reject
option.

While fine-tuning of an existing neural network is a commonly used technique in deep learning
[Goodfellow et al., 2016] to quickly adapt a model to a different objective e.g. for language models
[Howard and Ruder, 2018], it has been recently shown in the area of adversarial robustness
that fine-tuning of pre-trained models, possibly using self-supervision, yields better adversarial
robustness [Hendrycks et al., 2019, Chen et al., 2020b, Xu and Yang, 2020]. Jeddi et al. [2020]
show that fine-tuning of non-robust models with 10 epochs can yield robust models with the
caveat that their robustness evaluation is done using only a single run of PGD with 20 steps.

2.4 Certified robustness

The effectiveness of methods which aim at empirical robustness is commonly evaluated by ad-
versarial attacks. However, in some cases such evaluation is not straightforward: for example,
it turned out that for many proposed defenses there still exist ways to successfully attack the
classifier [Carlini and Wagner, 2017b, Athalye et al., 2018, Mosbach et al., 2018], possibly via
adaptive attacks [Tramèr et al., 2020]. Thus, considering the high importance of robustness in
safety-critical machine learning applications, we might need robustness guarantees, where one
can provide for each test point the radius of a ball on which the classifier will not change the
decision, independently of the deployed attack. Therefore recent research has focused on such
provable guarantees of a classifier, mostly with respect to the lp-norms, and existing methods
compute either the norm of the minimal perturbation changing the decision at a point (e.g. Katz
et al. [2017], Tjeng et al. [2019]) or lower bounds on it [Hein and Andriushchenko, 2017, Raghu-
nathan et al., 2018, Wong and Kolter, 2018]. Several new training schemes and architectures
[Hein and Andriushchenko, 2017, Raghunathan et al., 2018, Wong and Kolter, 2018, Mirman
et al., 2018, Xiao et al., 2019, Gowal et al., 2019a, Zhang et al., 2020a, Mueller et al., 2023,
Leino et al., 2021, Hu et al., 2023, Araujo et al., 2023] aim at both enhancing the robustness of
networks and producing models more amenable to certification techniques. However, all of them
are only able to prove robustness against a single kind of perturbations, typically either l2- or
l∞-bounded, and not wrt all the lp-norms simultaneously.

Randomized smoothing [Lecuyer et al., 2019, Li et al., 2019a, Cohen et al., 2019] provides
instead probabilistic guarantees on the robustness of a given classifiers. While it is a compu-
tationally expensive, it applies to any type of network and yields guarantees for large datasets
which are difficult to handle for deterministic techniques.
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Chapter 3

Provable Robustness of ReLU
Networks

ReLU networks are feedforward neural networks which use ReLU [Fukushima, 1975] as activation
functions, and include convolutional and residual architectures with max- or sum-pooling layers.
In the following we propose a regularization scheme for the class of ReLU networks which provably
increases the adversarial robustness of the corresponding classifiers.

First, we explicitly rewrite these networks as continuous piecewise affine functions, see Sec. 3.1.
Then we leverage this characterization to get either the minimal adversarial perturbation or a
lower bound on its size. As a result of this analysis we introduce a new regularization scheme
which directly maximizes the lower bound on the robustness guarantee: this allows us to get clas-
sifiers with low test error and good robustness guarantees at the same time (Sec. 3.2). While we
first focus on robustness with respect to l2- and l∞-distance, our approach applies to any lp-norm.
Thanks to this property, in Sec. 3.3 we generalize our analysis and regularization scheme to get
robustness guarantees in the union of multiple threat models (lp-balls in our case). We show in
experiments on four datasets that our approach improves lower bounds as well as upper bounds
on the robust test error, and can be successfully integrated with adversarial training. Our main
observation is that our proposed regularizer significantly improves provable robustness evaluated
with the certification method of Wong and Kolter [2018], and especially with the combinatorial
solver of Tjeng et al. [2019], since it yields models with properties desirable for applying such
techniques. Finally, we provide in Sec. 3.4 visualizations of how the structure of robust models
different from that of standard ones.

3.1 Local properties of ReLU networks

Feedforward neural networks which use piecewise affine activation functions (e.g. ReLU, leaky
ReLU [Maas et al., 2013]) and are linear in the output layer can be rewritten as continuous
piecewise affine functions [Arora et al., 2018].

Definition 3.1.1 A function f : Rd → R is called piecewise affine if there exists a finite set of
polytopes {Qr}Mr=1 (referred to as linear regions of f) such that ∪Mr=1Qr = Rd and f is an affine
function when restricted to every Qr.

In the following we introduce the notation required for the explicit description of the linear
regions and decision boundaries of a multi-class ReLU classifier f : Rd → RK (where d is the
input space dimension and K the number of classes) which has no activation function in the
output layer. Moreover, we assume that the only non-linear components of the architecture is
represented by the activation functions: we show in Sec. 3.1.1 how to derive a similar description
for networks with other types of layers e.g. max-pooling. The decision of f at a point x is given
by argmax

r=1,...,K
fr(x). The discrimination between linear regions and decision boundaries allows us

to share the linear regions across classifier components.
We denote by σ : R→ R, σ(t) = max{0, t}, the ReLU activation function, L+1 is the number

of layers, with nl the numbers of units in the l-th layer and n0 = d. Moreover, W (l) ∈ Rnl×nl−1
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and b(l) ∈ Rnl are the weights and offset vectors of layer l, for l = 1, . . . , L + 1. If x ∈ Rd and
g(0)(x) = x we define recursively the pre- and post-activation output of every layer as

f (l)(x) = W (l)g(l−1)(x) + b(l) and g(l)(x) = σ(f (l)(x)), l = 1, . . . , L,

so that the resulting classifier is obtained as f ≡ f (L+1)(x) = W (L+1)g(L)(x) + b(L+1).
We derive the description of the polytope Q(x) in which x lies and the resulting affine function

when f is restricted to Q(x). We assume for this that x does not lie on the boundary between
two polytopes (which is almost always true as the faces shared by two or more polytopes have
dimension strictly smaller than d). Let ∆(l),Σ(l) ∈ Rnl×nl for l = 1, . . . , L be diagonal matrices
defined elementwise as

∆(l)(x)ij =

{
sign(f

(l)
i (x)) if i = j,

0 else.
and Σ(l)(x)ij =

{
1 if i = j and f

(l)
i (x) > 0,

0 else.
.

This allows us to write f (l)(x) as composition of affine functions, that is

f (l)(x) =W (k)Σ(l−1)(x)
(
W (l−1)Σ(l−2)(x)

(
. . .
(
W (1)x+ b(1)

)
. . .
)
+ b(l−1)

)
+ b(l),

We can further simplify the previous expression as f (l)(x) = V (l)x+ a(l), with V (l) ∈ Rnl×d and
a(l) ∈ Rnl given by

V (l) = W (l)
( l−1∏

k=1

Σ(l−k)(x)W (l−k)
)

and

a(l) = b(l) +

l−1∑
k=1

( l−k∏
m=1

W (l+1−m)Σ(l−m)(x)
)
b(k).

Note that a forward pass through the network is sufficient to compute V (l) and a(l) for every
l, which results in only a small overhead compared to the usual effort necessary to compute
the output of f at x. We are then able to characterize the polytope Q(x) as intersection of

N =
∑L

l=1 nl half spaces given by

Γl,i =
{
z ∈ Rd

∣∣∣∆(l)(x)ii
(
V

(l)
i z + a

(l)
i

)
≥ 0
}

for l = 1, . . . , L, i = 1, . . . , nl, namely

Q(x) =
⋂

l=1,...,L

⋂
i=1,...,nl

Γl,i.

Note that N is also the number of hidden units of the network. Finally, we can write

f (L+1)(z)
∣∣∣
Q(x)

= V (L+1)z + a(L+1),

which represents the affine restriction of f to Q(x). One can further distinguish the subset Qc(x)
of Q(x) assigned to a specific class c, among the K available ones, which is given by

Qc(x) =
⋂

s=1,...,K
s̸=c

{
z ∈ Rd

∣∣ 〈V (L+1)
c − V (L+1)

s , z
〉
+ a(L+1)

c − a(L+1)
s ≥ 0

}
∩Q(x),

where V
(L+1)
r is the r-th row of V (L+1). The set Qc(x) is again a polytope as it is an intersection

of polytopes and it holds Q(x) =
⋃

c=1,...,K Qc(x).

3.1.1 Extension to other types of layer

Modern convolutional architectures use several types of layers, but most of them parameterize
affine functions. The main exception is constituted by max-pooling which instead gives a piece-
wise affine functions. However, even when these layers appear, we can derive a characterization
of the network similar to the one above.
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Skip connections and normalization layers. Both types layers are already affine operations
(with BatchNorm [Ioffe and Szegedy, 2015] used in evaluation mode) and do not affect the
polytope.

Pooling layers. Average pooling computes the mean over certain subsets of the input vector.
For example, the average of the first four entries of a vector z ∈ Rnl−1 is obtained, introducing

w =

(
1

4
,
1

4
,
1

4
,
1

4
, 0, . . . , 0

)
∈ Rnl−1 ,

as ⟨w, z⟩. In general, each output unit of a pooling layer can be obtained as the inner product
of a vector wi, with entries equal to 1/p in the positions of the p elements we want to average
and zero else, and the layer input. If we use the vectors wi as rows of the matrix A(l), then the
avg-pooling layer at position l can be written as f (l)(z) = A(l)z. We notice that A(l) does not
depend on the input x and is already an affine function. The construction of A(l) for max-pooling
layers is analogue (as these layers return the maximum instead of the mean). The main difference
is that in this case A(l) may change as z does. In fact, if we want to extract the maximum among
the first four entries of z and assume that it is realized by the second component, we can set
a = (0, 1, 0, 0, . . . , 0) ∈ Rnl . If the position of the maximum changes also the vector a changes.
Again, ⟨a, z⟩ returns the value we are interested in. If p1, . . . , pnl

are the positions of the maxima
for each of the nl pools, we can then build A(l) ∈ Rnl×nl−1 as

A(l)
rs =

{
1 if s = pr
0 else

, s = 1, . . . , nl−1, r = 1, . . . , nl,

so that f (l)(z) = A(l)z. When f (l) is a max-pooling layer, the local linear representation A(l)

is preserved as long as the maximum within each pool is realized at the same position. We can
denote the nl pools as the sets P 1, . . . , Pnl , whose elements are the indices of the components
of the input (of the max-pooling layer) involved in the pool. Moreover we define for every
r = 1, . . . , nl

prmax = argmax
i∈P r

x
(l−1)
i ,

that is the index of the component of the input x(l−1) ∈ Rnl−1 of the max-pooling layer attaining
the maximum for each pool P r. Then, for r = 1, . . . , nl,

S(l)
r (x(j−1)) = {z ∈ Rnl−1 | zpr

max
≥ zi, ∀i ∈ P r}

is the subset of Rnl−1 preserving the position of the maximum computed at x(j−1) for pool P r.
Similar to what has been done for ReLU layers above, we define the polytopes where the r-th
max-pooling unit can be replaced by a linear function as

Γl,r =
{
z ∈ Rd |

(
V

(l−1)
pr
max
− V

(l−1)
i

)
z +a

(l−1)
pr
max
− a

(l−1)
i ≥ 0, ∀i ∈ P r

}
, (3.1)

with V (l−1) and a(l−1) as introduced above. Finally, Γl =
⋂nl

r=1 Γl,i is the subset of the input
space containing x on which f (l) is an affine function.

3.2 Provable robustness in a single threat model

In the following we first derive robustness guarantees for ReLU networks (Sec. 3.2.1), then we
introduce a regularization scheme to obtain classifiers with high provable robustness (Sec. 3.2.2).
Finally, we test the proposed method in experiments on several datasets (Sec. 3.2.4).

3.2.1 Robustness guarantees for ReLU networks

We call a decision of a classifier f robust at x if small changes of the input do not alter the
decision. Formally, this can be described as optimization problem (3.2) [Szegedy et al., 2014].
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If the classifier outputs class c for input x, assuming a unique decision, the robustness wrt the
lp-norm of f at x is given by

rp(x) = min
δ∈Rd

∥δ∥p , s.th. max
l ̸=c

fl(x+ δ) ≥ fc(x+ δ), x+ δ ∈ C (3.2)

where C is a constraint set which the generated point x + δ has to satisfy, e.g., an image has
to be in [0, 1]d. The complexity of the optimization problem (3.2) depends on the classifier f ,
but it is typically non-convex, see Katz et al. [2017] for a hardness result for neural networks.
For standard neural networks ∥δ∥p is very small for almost any input x of the data generating
distribution, which questions the use of such classifiers in safety-critical systems.

For a linear classifier, f(x) = Wx+ b, with C = Rd one can compute the solution of (3.2) in
closed form [Huang et al., 2016]

∥δ∥p = min
s̸=c

| ⟨Wc −Ws, x⟩+ bc − bs|
∥Wc −Ws∥q

,

where ∥·∥q is the dual norm of ∥·∥p, that is
1
p +

1
q = 1. In Hein and Andriushchenko [2017] it has

been shown that box constraints C = [a, b]d can be integrated for linear classifiers which results in
simple convex optimization problems. In the following we use the intuition from linear classifiers
and the particular structures derived in Sec. 3.1 to come up with robustness guarantees, that
means lower bounds on the optimal solution of (3.2), for ReLU networks. Moreover, we show
that it is possible to compute the minimal perturbation for some of the inputs x even though
the general problem is NP-hard [Katz et al., 2017].

Let us start analyzing how we can solve efficiently problem (3.2) inside each linear region
Q(x). We first need the definition of two important quantities.

Lemma 3.2.1 The lp-distance d
B
p (x) = minz∈∂Q(x) ∥z − x∥p of x to the boundary of the polytope

Q(x) is given by

dBp,l,j =

∣∣ 〈V (l)
j , x

〉
+ a

(l)
j

∣∣∥∥∥V (l)
j

∥∥∥
q

, dBp = min
l=1,...,L

min
j=1,...,nl

dBp,l,j , (3.3)

where V
(l)
j is the j-th row of V (l) and ∥·∥q is the dual norm of ∥·∥p ( 1p + 1

q = 1).

Proof. Due to the polytope structure of Q(x) it holds that dBp (x) is the minimum distance to

the hyperplanes,
〈
V

(l)
j , z

〉
+a

(l)
j = 0, which constitute the boundary of Q(x). It is straightforward

to check that the minimum lp-distance of a hyperplane H = {z | ⟨w, z⟩+ b = 0} to x is given by
|⟨w,x⟩+b|

∥w∥q
where ∥·∥q is the dual norm. This can be obtained as follows

min
z∈Rd

{
∥x− z∥p

∣∣ ⟨w, z⟩+ b = 0
}

(3.4)

Introducing δ = z − x we get

min
δ∈Rd

{
∥δ∥p

∣∣ ⟨w, δ⟩+ ⟨w, x⟩+ b = 0
}

(3.5)

Note that by Hölder inequality one has −∥w∥q ∥δ∥p ≤ ⟨w, δ⟩ ≤ ∥w∥q ∥δ∥p, which yields ∥δ∥p ≥
|⟨w,δ⟩|
∥w∥p

. Noting that ⟨w, δ⟩ = −(⟨w, x⟩+ b) we get ∥δ∥p ≥
|⟨w,x⟩+b|

∥w∥p
and equality is achieved when

one has equality in the Hölder inequality. □

For the decision boundaries in Q(x), with c = argmax
r=1,...,K

f
(L+1)
r (x), we define the quantities

dDp,s(x) =

∣∣∣ 〈V (L+1)
c − V

(L+1)
s , x

〉
+ a

(L+1)
c − a

(L+1)
s

∣∣∣∥∥∥V (L+1)
c − V

(L+1)
s

∥∥∥
q

and dDp (x) = min
s=1,...,K

s̸=c

dDp,l,j(x).
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Figure 3.1: Left: the input x is closer to the boundary of the polytope Q(x) (black) than to the decision
boundary (red). In this case the smallest perturbation that leads to a change of the decision lies outside
the linear region Q(x). Right: the input x is closer to the decision boundary than to the boundary of
Q(x), so that the projection of the point onto the decision hyperplane provides the adversarial example
with the smallest norm.

Lemma 3.2.2 If dDp (x) ≤ dBp (x), then dDp (x) is the minimal lp-distance of x to the decision

boundary of the ReLU network f (L+1).

Proof. First we note that dDp (x) is the distance of x to the decision boundary for the linear

multi-class classifier h(x) = V (L+1)x+a(L+1) which is equal to f (L+1) on Q(x). If dDp (x) ≤ dBp (x)

then the point realizing the minimal distance to the decision boundary dDp (x) is inside Q(x) and

as dDp (x) ≤ dBp (x) there cannot exist another point on the decision boundary of f (L+1) outside

of Q(x) having a smaller lp-distance to x. Thus dDp (x) is the minimal lp-distance of x to the

decision boundary of f (L+1). □

The next theorem combines both results to give a lower bound or the optimal solution rp(x)
to the optimization problem (3.2).

Theorem 3.2.1 We get the following robustness guarantees:

1. If dBp (x) < dDp (x), then dBp (x) is a lower bound on the minimal lp-norm of the perturbation
necessary to change the class (optimal solution of (3.2)).

2. If dDp (x) ≤ dBp (x), then dDp (x) is equal to the minimal lp-norm necessary to change the
class (optimal solution of (3.2)).

Proof. If dBp (x) < dDp (x), then the ReLU classifier does not change on Bp(x, d
B
p (x)) and thus

dBp (x) is a lower bound on the minimal lp-norm perturbation necessary to change the class. The
second statement follows directly by Lemma 3.2.2. □

In Fig. 3.1 we illustrate the different cases for p = 2. On the left hand side dBp (x) < dDp (x) and
thus we get that on the ball B2(x, dB(x)) the decision does not change, whereas in the rightmost
plot we have dDp (x) < dBp (x) and thus we obtain the minimum distance to the decision boundary.
Using Theorem 3.2.1 we can provide robustness guarantees for every point and for some even
compute the optimal robustness guarantees. We describe in Sec. 3.2.3 how one can improve the
lower bounds by checking neighboring regions of Q(x). Compared to the bounds of Wong and
Kolter [2018], Weng et al. [2018] ours are slightly worse (see Table 3.6). However, our bounds
can be directly maximized and have a clear geometrical meaning and thus motivate directly a
regularization scheme for ReLU networks which we propose in the next section.

3.2.2 Large margin and region boundary regularization

Using the results of Sec. 3.2.1, a classifier with guaranteed robustness requires large distance
to the boundaries of the linear region as well as to the decision boundary. Even the optimal
guarantee (solution of (3.2)) can be obtained in some cases. Unfortunately, as illustrated in
Fig. 3.2 for simple one hidden layer networks, the linear regions Q(x) are small for normally-
trained networks and thus no meaningful guarantees can be obtained (first and third plots).
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Thus we propose a new regularization scheme which simultaneously aims for each training point
to achieve large distance to the boundary of the linear region it lies in, as well as to the decision
boundary. Using Theorem 3.2.1 this directly leads to non-trivial robustness guarantees of the
resulting classifier.

However, note that just maximizing the distance to the decision boundary might be misleading
during training as this does not discriminate between points which are correctly (correct side of
the decision hyperplane) or wrongly classified (wrong side of the decision hyperplane). Thus we
introduce the signed version of dDp (x), where y is the true label of the point x, via

dDp,s(x) =
f
(L+1)
y (x)− f

(L+1)
s (x)∥∥∥V (L+1)

y − V
(L+1)
s

∥∥∥
q

and dDp (x) = min
s=1,...,K

s̸=y

dDp,s(x) (3.6)

Please note that if dDp (x) ≥ 0, then x is correctly classified, whereas dDp (x) < 0 if x is wrongly

classified. If |dDp (x)| ≤ dBp (x), then it follows from Lemma 3.2.2 that |dDp (x)| is the distance to the

decision hyperplane. If |dDp (x)| > dBp (x) this does not need to be any longer true, but |dDp (x)| is
at least a good proxy as

∥∥∥V (L+1)
y − V

(L+1)
s

∥∥∥
q
is an estimate of the local cross Lipschitz constant

[Hein and Andriushchenko, 2017]. Finally, we propose to use the following regularization scheme:

Definition 3.2.1 (MMR) Let x be a point of the training set. We define the Maximum Margin
Regularizer (MMR) for x, for some γB , γD ∈ R++, as

MMR-lp(x) = max
(
0, 1−

dBp (x)

γB

)
+max

(
0, 1−

dDp (x)

γD

)
. (3.7)

The MMR penalizes distances to the boundary of the polytope if dBp (x) ≤ γB and positive

distances (x is correctly classified) if dDp (x) ≤ γD. Notice that wrongly classified points are

always penalized. The part of the regularizer corresponding to dDp (x) has been suggested in
Elsayed et al. [2018] in a similar form as a loss function for general neural networks without
motivation from robustness guarantees. They have an additional loss penalizing difference in
the outputs with respect to changes at the hidden layers which is completely different from our
geometrically motivated regularizer penalizing the distance to the boundary of the linear region.
The choice of γB , γD allows different trade-off between the terms. In particular γD < γB (stronger
maximization of dBp (x)) leads to more points for which the optimal robustness guarantee (case

dDp (x) ≤ dBp (x)) can be proved.

For practical reasons, sorting in increasing order dBp,l,j and dDp,s, that is the lp-distances to the

hyperplanes defining Q(x) and to decision hyperplanes, and denoting them as dB
p,πB

i
and dD

p,πD
i

respectively, we also propose a variation of our MMR regularizer in (3.7):

kMMR-lp(x) =
1

kB

kB∑
i=1

max
(
0, 1−

dB
p,πB

i
(x)

γB

)
+

1

kD

kD∑
i=1

max
(
0, 1−

dD
p,πD

i

(x)

γD

)
, (3.8)

with kB , kD ≤ 1. Basically, we are optimizing, instead of the closest decision hyperplane, the
kD-closest ones and analogously the kB-closest hyperplanes defining the linear region Q(x) of
x. This speeds up the training time as more hyperplanes are moved in each update. Moreover,
when deriving lower bounds using more than one linear region, one needs to consider more than
just the closest boundary hyperplane. Finally, many state-of-the-art schemes for proving lower
bounds [Tjeng et al., 2019, Wong and Kolter, 2018, Weng et al., 2018] work well only if the
activation status of most neurons is constant for small changes of the points. This basically
amounts to ensure that all the hyperplanes are sufficiently far away, which is exactly what our
regularization scheme is aiming at. Thus our regularization scheme also helps to achieve state-of-
the-art provable robustness with other certification methods [Tjeng et al., 2019, Wong and Kolter,
2018]. This is also the reason why the term pushing the polytope boundaries away is essential.
Just penalizing the distance to the decision boundary is not sufficient to prove good lower bounds
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Figure 3.2: The effects of MMR. Fist and second plots: we train two networks with one hidden layer,
100 units, on 128 points belonging to two classes (red and blue). The first plot shows the points and
how the input space is divided in regions on which the classifier is linear. The second one is the analogue
for our MMR regularized model. Third and fourth plots: we show region boundaries (one hidden layer,
1024 units) on a 2D slice of R784 spanned by three random points from different classes of the MNIST
training set. We observe a clear maximization of the linear regions for the MMR-regularized case (right)
versus the non-regularized case (left).

on the minimal distance to the decision boundary as we will show in our experiments (Table 3.4).
Compared to the regularization scheme in Wong and Kolter [2018] using a dual feasible point of
the robust loss, our approach has a direct geometric interpretation and allows us to derive the
exact minimal perturbation for some fraction of the test points (it varies from dataset to dataset
but it can be as high as 99%). In practice, we gradually decrease kB and kD in (3.8) during
training so that only the closest hyperplanes of each training point influence the regularizer.

Denoting the cross entropy loss CE(f(x), y), the final objective of our models is

1

n

n∑
i=1

CE(f(xi), yi) + λ kMMR-lp(xi), (3.9)

where (xi, yi)
n
i=1 is the training data and λ ∈ R+ the regularization parameter. Fig. 3.2 shows

the effect of the regularizer: compared to the unregularized case the size of the linear regions is
significantly increased.

3.2.3 Improving lower bounds

Integration of box constraints into robustness guarantees. Note that in many applica-
tions the input space is not full Rd but a certain subset C due to constraints e.g. images belong
to C = [0, 1]d. These constraints typically increase the norm of the solution of (3.2). Thus it is
important to integrate the constraints in the generation of adversarial samples (providing upper
bounds on the size of the minimal perturbation) as done e.g. in Carlini and Wagner [2017a], as
well as in the computation of the lower bounds, which is in our case based on the computation
of distances to hyperplanes. The computation of the lp-distance of y to a hyperplane (w, b) has
a closed form solution:

min{∥y − x∥p | ⟨w, x⟩+ b = 0} = | ⟨w, y⟩+ b|
∥w∥q

, (3.10)

The additional box constraints lead to the following optimization problem,

min{∥y − x∥p | ⟨w, x⟩+ b = 0, x ∈ [0, 1]d}, (3.11)

which is convex but has no analytical solution. However, its dual is just a one-dimensional convex
optimization problem which can be solved efficiently. In fact a reformulation of this problem has
been considered in Hein and Andriushchenko [2017], where fast solvers for p ∈ {1, 2,∞} are
proposed. Moreover, when computing the distance to the boundary of the polytope or the
decision boundaries one does not need to solve always the box-constrained distance problem
(3.11). It suffices to compute first the distances (3.10) as they are smaller or equal to the ones
of (3.11) and sort them in ascending order. Then one computes the box-constrained distances
in the given order and stops when the smallest computed box-constrained distance is smaller
than the next original distance in the sorted list. In this way one typically just needs to solve
a very small fraction of all box-constrained problems. The integration of the box constraints
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is important as the lower bounds improve on average by 20% and this can make the difference
between having a certified optimal solution and just a lower bound.

Checking neighboring regions. In order to improve the lower bounds we can use not only
the linear region Q(x) where x lies but also some neighboring regions. The following description
is just a sketch as one has to handle several case distinctions. Let x be the original point and
H = {π1, ..., πn} the set of hyperplanes defining the polytope Q(x) sorted so that dC(x, πi) <
dC(x, πj) if i < j, where dC is the distance including box constraints. If we do not directly
get the guaranteed optimal solution, we get an upper bound (u, namely the distance to the
decision boundary inside Q(x)) and a lower bound for the norm of the adversarial perturbation
(l = dC(x, π1)). If l < u, we can check the region that we find on the other side of π1. In order to
get the corresponding description of the polytope on the other side, we just have to change the
corresponding entry in the activation matrix Σ of the layer where π1 belongs to and recompute
the hyperplanes of the new linear region R. Solving (3.2) on the second region we get a new
upper bound if the distance of x to the decision boundary in R is smaller than u. Moreover we
update H with the hyperplanes given by the second region. Finally, if u < dC(x, π2) then u is the
optimal solution, otherwise l = dC(x, π2) and we can repeat this process with the next closest
hyperplane. At the moment we stop after checking maximally 5 neighboring linear regions.

3.2.4 Experiments

We provide a variety of experiments aiming to show the ability of MMR to achieve provably robust
classifiers. We make our code and models publicly available.1 We use four datasets: MNIST
[LeCun et al., 2010], German Traffic Signs (GTS) [Stallkamp et al., 2012], Fashion MNIST [Xiao
et al., 2017] and CIFAR-10 [Krizhevsky, 2012]. We consider in the paper robustness wrt l2 and
l∞ distances, and measure it with upper and lower bounds on the robust test error for a given
threshold ϵ, that is the largest achievable test error if every test input can be modified with a
perturbation δ such that ∥δ∥p ≤ ϵ and δ is chosen so that x+ δ is classified wrongly. Moreover,
we show in Sec. 3.2.5 results for lower and upper bounds on the minimal ∥δ∥p from (3.2).

Upper bounds on the robust test error are computed using the approach of Wong and Kolter
[2018]. Additionally, the method of Tjeng et al. [2019] yields upper and lower bounds on the
robust test error via mixed integer programming (MIP). We use the solver for the MIP with a
timeout of 120s per point, that is if the point has not been verified in this time the solver is
stopped. This technique is currently effective for l∞ but not for l2, where basically in almost
every case the timeout is reached and thus we discard for l2 the MIP evaluation. Finally, we
combine the upper bounds on the robust test error found by the two methods by counting the
fraction of points that can be certified with at least one of them. We compare our own guarantees
from Theorem 3.2.1 with the ones of Wong and Kolter [2018] in Sec. 3.2.5. Lower bounds on the
robust test error are computed using the attack via Projected Gradient Descent (PGD) [Madry
et al., 2018], MIP and Linear Region Attack (see Sec. 4).

We compare six training scheme: plain training, adversarial training (AT) of Madry et al.
[2018] which has been shown to significantly increase robustness, the robust loss of Wong and
Kolter [2018] which supports both l2 and l∞ norms (denoted as KW), the method of Xiao
et al. [2019], our regularization scheme MMR and MMR together with adversarial training. All
schemes are evaluated on a one hidden layer fully connected network with 1024 hidden units
(FC1) and a convolutional network (CNN) with 2 convolutional and 2 dense layers as used in
Wong and Kolter [2018]. For more details see Sec. 3.2.6. Since code for Xiao et al. [2019] is not
available, we just show the l∞ results from their paper (evaluated on full test sets with PGD
lower bounds, and MIP upper bounds), which are available only for MNIST and CIFAR-10 for
the same CNN architecture.

Improvement of robustness. The results can be found in Table 3.1. For CIFAR-10 we show
only CNN models as fully connected networks do not have good test performance. We report
clean test error, lower and upper bounds on robust test error at the threshold indicated in Table
3.1, computed on 1000 points for l∞, and on the full test sets for l2 (as we do not do the MIP

1https://github.com/max-andr/provable-robustness-max-linear-regions
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Table 3.1: Comparison of different methods regarding robustness. We here report the statistics
of 6 training schemes: plain (usual training), AT (adversarial training Madry et al. [2018]), KW Wong
and Kolter [2018], Xiao et al. [2019], MMR (ours), and MMR+AT (MMR plus adversarial training). We
show, in percentage, test error (TE), lower (LB) and upper (UB) bounds on the robust test error at the
threshold ϵ indicated for each dataset. The robustness statistics are computed on the first 1000 points of
the respective test sets for l∞-robustness, on the full test set for l2-robustness. KW models marked with
* are taken from Wong and Kolter [2018], Wong et al. [2018], while the other are retrained according
to the available code (but the bounds are again evaluated with the discussed combination of multiple
techniques). The results and bounds of Xiao et al. [2019] are taken directly from the original paper. The
model indicated by 1 has been obtained at epoch 50 instead of 100 due to optimization issues. We do
not include FC1 on CIFAR-10 since even for plain training it yields poor performance.

l∞-norm robustness l2-norm robustness

training
scheme

FC1 CNN FC1 CNN

TE LB UB TE LB UB TE LB UB TE LB UB

MNIST ϵ = 0.1 ϵ = 0.3

plain 1.44 93.0 100 0.91 74.0 100 1.73 9.7 66.3 0.85 3.1 100
at 0.92 10.0 99.0 0.82 3.0 100 1.15 2.6 16.9 0.87 1.8 100
KW 3.19 10.9 10.9 1.26* 4.4 4.4 1.19 2.4 5.2 1.11 2.2 6.0
Xiao et al - - - 1.32 4.9 5.7 - - - - - -
MMR 2.11 22.5 24.9 1.65 6.0 6.0 2.40 5.9 8.8 2.57 5.8 11.6
MMR+AT 2.04 14.0 14.1 1.19 3.6 3.6 1.77 3.8 6.4 2.121 4.6 9.7

F-MNIST ϵ = 0.1 ϵ = 0.3

plain 9.49 100 100 9.50 96.0 100 9.70 42.8 91.8 9.32 57.1 100
at 11.69 29.5 95.5 11.54 21.5 73.0 9.15 19.9 61.4 8.10 20.4 100
KW 21.31 32.8 32.8 21.73* 32.4 32.4 11.24 17.2 22.7 13.08 18.5 21.7
MMR 18.11 37.6 42.0 14.52 33.2 33.6 13.28 25.0 28.0 12.85 25.4 35.3
MMR+AT 15.84 31.3 34.8 14.50 26.6 30.7 12.12 19.7 23.4 13.42 26.2 39.1

GTS ϵ = 4/255 ϵ = 0.2

plain 12.72 61.0 77.0 7.11 63.0 99.5 12.24 37.5 44.7 6.78 33.3 99.2
at 9.33 34.5 48.5 6.84 29.5 81.0 13.55 33.1 43.2 8.75 23.8 98.6
KW 13.99 33.0 33.0 15.56 36.1 36.6 16.84 16.9 31.2 14.33 28.7 34.7
MMR 14.29 39.8 39.8 13.31 49.5 49.6 14.55 33.2 34.7 14.22 36.2 36.9
MMR+AT 13.10 33.1 35.4 14.88 38.3 38.4 13.94 29.7 32.1 15.35 32.1 33.2

CIFAR-10 ϵ = 2/255 ϵ = 0.1

plain - - - 24.63 91.0 100 - - - 23.31 47.2 100
at - - - 27.04 52.5 88.5 - - - 25.82 35.8 100
KW - - - 38.91* 46.6 48.0 - - - 40.24 43.9 49.0
Xiao et al - - - 38.88 50.1 54.1 - - - - - -
MMR - - - 34.61 57.5 61.0 - - - 40.92 50.6 57.1
MMR+AT - - - 35.38 47.9 54.2 - - - 37.75 43.9 53.3
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Figure 3.3: Verifiability of models. We show the runtime (left) in minutes that MIP [Tjeng et al.,
2019] takes to verify 1000 points, setting a timeout of 120s (that is the mixed-integer optimization stops
anyway after the time limit is reached), with models trained with different values of λ (see Eq. (3.9)).
Note that a logarithmic scale is used on the y-axis. Moreover, we report (right) lower (red) and upper
(green) bounds on robust test error (TE). The plain model, trained without MMR (λ = 0) needs 51
times more to be verified, with only 1% of the points certified. Conversely, even with a light MMR
regularization lower and upper bounds are tight.

evaluation there). Both KW and MMR+AT achieve similar performance regarding lower and
upper bounds on the robust test error. For l∞ our MMR+AT achieves overall better performance
than KW, sometimes with significantly better clean test error like on F-MNIST. In some cases,
e.g. on CIFAR-10, MMR+AT provides slightly worse upper bounds, but instead preserves better
test error. For l2 KW performs better than MMR+AT with the exception of GTS. This is to be
expected as we use for the evaluation of the upper bounds on the robust test error the approach
of Wong and Kolter [2018] which are directly optimized by their robust training procedure. Note
that both KW and MMR/MMR+AT outperform by large margin plain and adversarial training
regarding provable robustness (upper bounds on the robust test error). With the exception of the
CNN-l2 models for MNIST and F-MNIST, the upper bound on robust test error of MMR+AT
is smaller than the lower bound of the plain model. Thus our models are provably better than
the plain models regarding robust test error. Moreover, regarding robustness wrt l∞ the gaps
between lower and upper bounds are often very small for KW and MMR/MMR+AT showing
that both techniques lead to models which are easier to check via the MIP which we discuss next
in more detail.

Enhancing verifiability. A key aspect of any robust training should be the ability of pro-
ducing models both resistant to adversarial manipulation and being verifiable, in the sense of
having guarantees on the minimal perturbation changing the decision for a test input. In fact,
even if empirically model seems to be robust, only computing certificates allows to completely
trust it. In our experiments, we could use successfully the method of Wong and Kolter [2018]
to get meaningful guarantees, which so far, as noted in Raghunathan et al. [2018], could be
achieved only on models provided by the specific training of Wong and Kolter [2018]. Moreover,
the MIP is too slow to run on standard models, so that ad hoc techniques have been developed to
train classifiers verifiable by MIP. Our MMR training produces models which can be checked by
MIP. This is due to the fact that the hyperplanes representing the boundary of the polytope are
actually the boundary between the different regimes (identity or zero function) of ReLU units,
so that pushing the hyperplanes implies that many inputs of ReLU units have constant sign in
a wide region around the data points (and having ReLU units with unstable signs is the main
slowdown factor for the MIP solver). In this context, Xiao et al. [2019] develop a specific tech-
nique aiming at inducing stability of ReLU signs. Therefore, we provide a comparison of MMR
to the ReLU-stability loss of Xiao et al. [2019] in Table 3.1. On MNIST our MMR+AT model of
the same CNN architecture has much tighter upper bounds on the robust error (3.6% compared
to 5.7%). Moreover, we have no gap between the lower and upper bounds on the robust test
error, and our upper bounds are lower than the lower bounds of Xiao et al. [2019]. This suggests
that our training scheme is better at both improving robustness and enhancing verifiability than
the approach of Xiao et al. [2019]. Additionally, on CIFAR-10 we have similar upper bounds,
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Table 3.2: Comparison of different methods regarding robustness wrt l2-norm. We here report
the statistics of the 5 different training schemes: test error (TE), average of lower (LB) and upper (UB)
bounds on the robustness ∥δ∥2, where δ is the solution of (3.2). The robustness statistics are computed
on the first 1000 points of the respective test sets (including misclassified images) against all the possible
target classes.

dataset
training
scheme

FC1 FC10 CNN

TE(%) LB UB TE(%) LB UB TE(%) LB UB

MNIST

plain 1.59 0.34 0.98 1.81 0.13 0.70 0.97 0.04 1.03
at 1.29 0.25 1.23 0.93 0.14 1.59 0.86 0.14 1.67
KW 1.37 0.70 1.75 1.69 0.75 1.74 1.04 0.32 1.84
MMR 1.51 0.69 1.69 1.87 0.48 1.48 1.17 0.38 1.70
MMR+AT 1.59 0.70 1.70 1.35 0.40 1.60 1.14 0.38 1.86

GTS

plain 12.24 0.33 0.57 11.25 0.08 0.48 6.73 0.06 0.43
at 13.55 0.34 0.66 13.01 0.10 0.56 8.12 0.06 0.53
KW 13.06 0.35 0.63 13.56 0.16 0.52 8.44 0.11 0.52
MMR 11.15 0.69 0.69 12.82 0.64 0.67 7.40 0.09 0.59
MMR+AT 11.72 0.72 0.72 13.36 0.64 0.66 10.50 0.11 0.62

F-MNIST

plain 9.61 0.18 0.53 10.53 0.05 0.44 8.86 0.03 0.32
at 9.89 0.11 1.00 9.89 0.11 1.00 8.77 0.07 0.80
KW 9.95 0.46 1.11 11.42 0.47 1.22 10.37 0.17 0.96
MMR 10.22 0.50 0.85 11.73 0.68 1.18 10.30 0.17 0.88
MMR+AT 10.94 0.66 1.45 11.39 0.67 1.24 10.48 0.21 1.14

but better test error and better lower bounds. To illustrate the speed-up in verification time for
MMR models, we show in Fig. 3.3 the time MIP needs to run on 1000 points (with timeout of
120s per point) and lower and upper bounds on robust test error wrt l∞-distance at ϵ = 0.1.
We use CNNs trained on MNIST with γB = γD = 0.15 and different values of λ representing
the weight of our regularizer in the loss (3.9) (for λ = 0 one gets the plain model). It is clear
that MIP performs poorly both in runtime (almost 2000 minutes) and performance (LB=1%,
UB=100%) on the plain model. In contrast, the MMR models are verified quickly (between 35
and 79 minutes) and almost completely (the rate of certified points is between 99.3% and 100%),
that is lower and upper bounds are close or even equal. Please note that both statistics improve
with increasing λ up to 2, while runtime gets worse with a larger value (as at λ = 3 the classifier
becomes less robust and then requires a higher computational effort to be certified).

3.2.5 Additional results

We present a series of experiments for a detailed understanding of how MMR works. For this
section we consider models trained to be l2-robust and evaluate robustness as the average l2-
norm of the perturbations necessary to change the class. Lower bounds on this perturbation are
computed either as in Wong and Kolter [2018] or with our method (Theorem 3.2.1), while upper
bounds are provided by Carlini-Wagner l2-attack (CW) [Carlini and Wagner, 2017a]. We also
introduce a second fully connected architecture, FC10, with 10 hidden layers (see Sec. 3.2.6 for
details).

Analysing l2-robustness with different metrics. We want here to repeat the experiment
of Sec. 3.2.4 wrt l2-norm but evaluating robustness as the average norm of the perturbation
necessary to change the classification of a point. When our technique (Theorem 3.2.1) provides
the optimal solution, we set both lower and upper bounds to this value. We report test error
of the model and the average lower and upper bounds in Tables 3.2 and 3.3, computed on 1000
points of the test set. For KW, MMR and MMR + adversarial training we report the solutions
which achieve similar test error than the plain model. There are several interesting observations.
First of all, while adversarial training improves the upper bounds compared to the plain setting
often quite significantly, the lower bounds almost never improve, often they get even worse. This
is in contrast to the methods, KW and our MMR, which optimize the robustness guarantees. For
MMR we see in all cases significant improvements of the lower bounds over plain and adversarial
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Table 3.3: Comparison of different training schemes wrt l2-norm on CIFAR-10. For each
model, we show test error, average of lower and upper bounds on ∥δ∥2, where δ is the solution of problem
(3.2). The statistics are computed on the first 1000 points of the test set (including misclassified images)
against all the possible target classes.

training
scheme

CNN

TE(%) LB UB

plain 25.98 0.02 0.16
at 25.36 0.04 0.42
KW 41.52 0.16 0.66
MMR 41.86 0.16 0.39
MMR+AT 41.11 0.13 0.57

Table 3.4: Full version of MMR is necessary. We compare the statistics of models trained with
the full version of MMR as in (3.7) and (3.8) (MMR-full) and with only the second part penalizing the
distance to the decision boundary (MMR-dD2 ). While the test error is for the full test set, the lower and
upper bounds on the l2-norm of the optimal adversarial manipulation are compared on the first 1000
points of the test set. One can clearly see that the lower bounds improve significantly when one uses the
full MMR regularization.

MMR-full MMR-dD2

dataset model
average r2(x) average r2(x)

TE LB UB TE LB UB

MNIST
FC1 1.51% 0.69 1.69 0.93% 0.35 1.69
FC10 1.87% 0.48 1.48 1.21% 0.20 1.62

GTS
FC1 11.15% 0.69 0.69 12.09% 0.48 0.63
FC10 12.82% 0.64 0.67 12.41% 0.12 0.48

F-MNIST
FC1 10.22% 0.50 0.85 9.83% 0.31 1.30
FC10 11.73% 0.68 1.18 10.32% 0.13 1.15

training, for KW this is also true but the improvements on GTS are much smaller. Notably, for
the fully connected networks FC1 and FC10 on GTS and F-MNIST , the lower bounds achieved
by MMR and/or MMR+AT are larger than the upper bounds of the plain training for F-MNIST
and better than plain and adversarial training as well as KW on GTS. Thus MMR is provably
more robust than the competing methods in these configurations. Moreover, the achieved lower
bounds of MMR are only worse than the ones of KW on MNIST for FC10. Also for the achieved
upper bounds MMR is most of the time better than KW and always improves over adversarial
training. For the CNNs the improvements of KW and MMR over plain and adversarial training
in terms of lower and upper bounds are smaller than for the fully connected networks and it is
harder to maintain similar test performance. The differences between KW and MMR for the
lower bounds are very small so that for CNNs both robust methods perform on a similar level.

Importance of linear regions maximization. In order to highlight the importance of both
parts of the MMR regularization, i) penalization of the distance to decision boundary and ii)
penalization of the distance to boundary of the polytope, we train, for each dataset/architecture,
models penalizing only the distance to the decision boundary, that is the second term in the
r.h.s. of (3.7) and (3.8). We call this partial regularizer MMR-dDp , in contrast to the full version

MMR-full. Then we compare the lower and upper bounds on the solution of (3.2) for MMR-dDp
and MMR-full models. For a fair comparison we consider models with similar test error. We
clearly see in Table 3.4 that the lower bounds are always significantly better when MMR-full is
used, while the behavior of the upper bounds does not clearly favor one of the two. This result
shows that in order to get good lower bounds one has to increase the distance of the points to
the boundaries of the polytope.

Guaranteed optimal solutions via MMR. Theorem 3.2.1 provides a simple and efficient
way to obtain in certain cases the solution of (3.2). Although for normally trained networks
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Table 3.5: Occurrence of guaranteed optimal solutions. For each dataset and architecture we
report the percentage of points of the test set for which we can compute the guaranteed optimal solution
of (3.2) for models trained without (plain setting) and with MMR regularization. We show the test
error of the models as well. In most of the fully connected cases, we achieve certified optimal solutions
for a significant fraction of the points without degrading significantly, or sometimes improving, the test
error. Moreover, where we have a meaningful number of points with provable minimal perturbation, it
is interesting to check how much worse the lower bounds computed by Wong and Kolter [2018] (LB)
are. Thus the column opt vs LB indicates, in percentage, how much larger the l2-norm of the optimal

solution of (3.2) is compared to its lower bound, explicitly
(
∥δopt∥2/LB − 1

)
× 100%.

MMR training plain training
dataset model test error optimal points opt vs LB test error optimal points

MNIST
FC1 1.51% 0.20% 14.11% 1.59% 0.02%
FC10 1.87% 0.06% - 1.81% 0.02%
CNN 1.17% 0.00% - 0.97% 0.00%

GTS
FC1 11.15% 99.97% 0.59% 12.27% 1.12%
FC10 12.82% 94.86% 0.66% 11.28% 0.14%
CNN 7.40% 0.00% - 6.73% 0.00%

F-MNIST
FC1 10.22% 11.22% 6.53% 9.61% 0.37%
FC10 11.73% 9.90% 7.27% 10.53% 0.04%
CNN 10.30% 0.09% - 8.86% 0.00%

the conditions are rarely satisfied, we show in Table 3.5 that, for the MMR-models with fully
connected networks, for a significant fraction of the test set we obtain the globally optimal
solution of (3.2), that is the true l2-robustness. Moreover, we report how much better our globally
optimal solutions are compared to the lower bounds of Wong and Kolter [2018]. Interestingly,
we can provably get the true robustness for around 10% of points for F-MNIST and for over
98% of the points on GTS for the case of fully connected networks. For these cases the optimal
solutions have roughly 7% larger l2-norm for F-MNIST and 0.5% larger for GTS than the lower
bounds. Globally optimal solutions for larger networks achieved via our method can serve as a
test both for lower and upper bounds.

Table 3.6: Lower bounds computed by our method. We report here for the fully connected models
trained with either MMR or MMR+AT the lower bounds computed by our technique, that is exploiting
Theorem 3.2.1 and integrating box constraints without and with checking additional neighboring regions
(improved lower bounds) versus KW [Wong and Kolter, 2018].

dataset model test error KW LB Th. 3.2.1 LB improved LB

MNIST

FC1 MMR 1.51% 0.69 0.22 0.29
FC1 MMR+AT 1.59% 0.70 0.25 0.33
FC10 MMR 1.87% 0.48 0.31 0.33
FC10 MMR+AT 1.35% 0.40 0.21 0.26

GTS

FC1 MMR 11.15% 0.69 0.69 0.69
FC1 MMR+AT 11.72% 0.72 0.72 0.72
FC10 MMR 12.82% 0.64 0.63 0.63
FC10 MMR+AT 13.36% 0.64 0.63 0.63

F-MNIST

FC1 MMR 10.22% 0.50 0.30 0.41
FC1 MMR+AT 10.94% 0.66 0.33 0.42
FC10 MMR 11.73% 0.68 0.56 0.64
FC10 MMR+AT 11.39% 0.67 0.53 0.60

Comparison of lower bounds. In Table 3.6 we compare, for fully connected models, the
lower bounds on the distance to the decision boundary computed by Wong and Kolter [2018]
and our technique using Theorem 3.2.1 with integration of box constraints once just checking the
initial linear region Q(x) where the point x lies versus also checking neighboring linear regions.
We see that Wong and Kolter [2018] obtain better lower bounds, and this is why we use their
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method for the main evaluation of provable robustness in Table 3.1. Nevertheless, the gap is
not too large and while the lower bounds are worse, the achieved robustness using our MMR
regularization is mostly better as shown in Table 3.1.

3.2.6 Experimental details

By FC1 we denote a 1 hidden layer fully connected network with 1024 hidden units. By FC10
we denote a 10 hidden layers network that has 1 layer with 124 units, 7 layers with 104 units
and 2 layers with 86 units (so that the total number of units is again 1024). The convolutional
architecture that we use is identical to Wong and Kolter [2018], which consists of 2 convolutional
layers with [16, 32] filters of size 4x4 and 2 fully connected layers with 100 hidden units. For
all the experiments we use batch size 100 and we train the FC models for 300 epochs and the
CNNs for 100 epochs. Moreover, we use Adam optimizer [Kingma and Ba, 2014] with the default
learning rate 0.001. We reduce the learning rate by a factor of 10 for the last 10% of epochs. For
training on CIFAR-10 dataset we apply random crops and random mirroring of the images. For
the FC models we use MMR regularizer in the formulation in Eq. (3.8) with kB , kD = 10 for the
first 50% epochs and in the formulation in Eq. (3.7) for the rest of epochs. For CNNs we used
the formulation (3.8) with fixed kD = 10, and we gradually change kB from 400 hyperplanes in
the beginning to 100 hyperplanes towards the end of training. In order to find the optimal set
of hyperparameters we performed a grid search over λ from {0.1, 0.25, 0.5, 1.0, 2.0}, γB and γD
from {0.25, 0.5, 0.75} for CIFAR-10 and GTS, from {0.25, 0.5, 1.0} for FMNIST and from {1.0,
1.5, 2.0} for MNIST. In order to make a comparison to the robust training of Wong and Kolter
[2018] we adapted it for the l2-norm, and performed a grid search over the radius of the l2-norm
from {0.05, 0.1, 0.2, 0.3, 0.4, 0.6} used in their robust loss, aiming at a model with non-trivial
lower bounds with a little or no loss in test error.

We perform adversarial training using the PGD attack of Madry et al. [2018]. However, since
we focus on l2-norm, we adapted the implementation from Papernot et al. [2018] to perform
the plain gradient update instead of the gradient sign (which corresponds to l∞-norm and thus
irrelevant for l2 case) on every iteration. We use the following l2-norm of the perturbation: 2.0
for MNIST, 1.0 for F-MNIST, 0.5 for GTS and CIFAR-10 using the step size of 0.5, 0.25 and
0.125 respectively. We perform 40 iterations of the PGD attack for every batch. During the
training, every batch contains 50% of adversarial examples and 50% of clean examples. We use
the untargeted formulation of the Carlini-Wagner l2 attack in order to evaluate the upper bounds
on the l2-norm required to change the class. We use the settings provided in the original paper
and in their code, including 20 restarts, 10000 iterations, learning rate 0.01 and initial constant
of 0.001.

3.3 Provable robustness in the union of threat models

In the previous section we have considered robustness against a single type of attack. However,
we are more broadly interested in guarantees which cover a variety of threat models, since an
attacker is not restricted to use only one of them. Then, in the following we aim at providing
guarantees that a point is simultaneously robust to multiple lp-bounded attacks, i.e. robust in
the union of lp-threat models. First, we show in Sec. 3.3.1 which information on the size of
smallest adversarial perturbation wrt lp for p ∈ (1,∞) one can obtain by computing only bounds
for p = 1 and p = +∞, and we analyze it in Sec. 3.3.2. Then, we derive guarantees on the
robustness of ReLU networks in the union of threat models, and extend MMR to such scenario,
introducing MMR-Universal (Sec. 3.3.3). Finally, we test the effectiveness of MMR-Universal
with experiments on four datasets (Sec. 3.3.4).

3.3.1 Minimal lp-norm of the complement of the union of l1- and l∞-ball
and its convex hull

Let B1 = {x ∈ Rd : ∥x∥1 ≤ ϵ1} and B∞ = {x ∈ Rd : ∥x∥∞ ≤ ϵ∞} be the l1-ball of radius
ϵ1 > 0 and the l∞-ball of radius ϵ∞ > 0 respectively, both centered at the origin in Rd. We
also assume ϵ1 ∈ (ϵ∞, dϵ∞), so that B1 ⊈ B∞ and B∞ ⊈ B1. Suppose we can guarantee that
the classifier does not change its label in U1,∞ = B1 ∪ B∞. Which guarantee does that imply
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Figure 3.4: Visualization of the l2-ball contained in the union resp. the convex hull of the union of l1-
and l∞-balls in R3. First column: co-centric l1-ball (blue) and l∞-ball (black). Second: in red the
largest l2-ball completely contained in the union of l1- and l∞-ball. Third: in green the convex hull of
the union of the l1- and l∞-ball. Fourth: the largest l2-ball (red) contained in the convex hull. The
l2-ball contained in the convex hull is significantly larger than that contained in the union of l1- and
l∞-ball.

for all intermediate lp-norms? This question can be simply answered by computing the minimal
lp-norms over Rd \U1,∞, namely minx∈Rd\U1,∞ ∥x∥p. By the standard norm inequalities it holds,

for every x ∈ Rd, that

∥x∥p ≥ ∥x∥∞ and ∥x∥p ≥ ∥x∥1 d
1−p
p ,

and thus a naive application of these inequalities yields the bound

min
x∈Rd\U1,∞

∥x∥p ≥ max
{
ϵ∞, ϵ1d

1−p
p

}
. (3.12)

However, this naive bound does not take into account that we know that ∥x∥1 ≥ ϵ1 and ∥x∥∞ ≥
ϵ∞. Our first result yields the exact value taking advantage of this information.

Proposition 3.3.1 If d ≥ 2 and ϵ1 ∈ (ϵ∞, dϵ∞), then

min
x∈Rd\U1,∞

∥x∥p =

(
ϵp∞ +

(ϵ1 − ϵ∞)p

(d− 1)p−1

) 1
p

. (3.13)

Proof. We first note that for ϵ1 < ϵ∞ it holds B1 ⊂ B∞ and the proof follows from the
standard inequality ∥x∥p ≥ ∥x∥∞ where equality is attained for x = ϵ∞ei, where ei are standard
basis vectors. Moreover, if ϵ1 > dϵ∞ it holds B∞ ⊂ B1 as maxx∈B∞ ∥x∥1 = dϵ∞ and the result

follows by ∥x∥p ≥ ∥x∥1 d
1−p
p . The equality is realized by the vector with all the entries equal to

ϵ1
d .

For the second case we first note that using Hölder inequality | ⟨u, v⟩ | ≤ ∥u∥p ∥v∥q where
1
p + 1

q = 1, it holds
k∑

i=1

|xi| ≤
( k∑

i=1

|xi|p
) 1

p

k
1
q .

Let x ∈ Rd. Without loss of generality after a potential permutation of the coordinates it holds
|xd| = ∥x∥∞. Then we get

∥x∥pp =

d∑
i=1

|xi|p = |xd|p +
d−1∑
i=1

|xi|p ≥ |xd|p +

(∑d−1
i=1 |xi|

)p
(d− 1)

p
q

.

We have

min
∥x∥∞≥ϵ∞,∥x∥1≥ϵ1

|xd|p +

(∑d−1
i=1 |xi|

)p
(d− 1)

p
q

= ϵp∞ +
(ϵ1 − ϵ∞)p

(d− 1)p−1
,

noting that |xd| = ∥x∥∞ and
∑d−1

i=1 |xi| ≥ ϵ1 − ϵ∞.
Finally, we note that the vector

v =

d−1∑
i=1

ϵ1 − ϵ∞
d− 1

ei + ϵ∞ed,
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realizes equality. Indeed, ∥v∥pp = (d− 1) (ϵ1−ϵ∞)p

(d−1)p + ϵp∞, which finishes the proof. □

Thus a guarantee both for l1- and l∞-ball yields a guarantee for all intermediate lp-norms.
However, for affine classifiers a guarantee for B1 and B∞ implies a guarantee wrt the convex
hull C of their union B1 ∪ B∞. This can be seen by the fact that an affine classifier generates
two half-spaces, and the convex hull of a set A is the intersection of all half-spaces containing A.
Thus, inside C the decision of the affine classifier cannot change if it is guaranteed not to change
in B1 and B∞, as C is completely contained in one of the half-spaces generated by the classifier
(see Fig. 3.4 for illustrations of B1, B∞, their union and their convex hull). With the following
theorem, we characterize, for any p ≥ 1, the minimal lp-norm over Rd \ C.

Theorem 3.3.1 Let C be the convex hull of B1 ∪B∞. If d ≥ 2 and ϵ1 ∈ (ϵ∞, dϵ∞), then

min
x∈Rd\C

∥x∥p =
ϵ1

(ϵ1/ϵ∞ − α+ αq)
1/q

, (3.14)

where α = ϵ1
ϵ∞
− ⌊ ϵ1

ϵ∞
⌋ and 1

p + 1
q = 1.

Proof. We first note that the minimum of the lp-norm over Rd \C lies on the boundary of C
(otherwise any point on the segment joining the origin and y and outside C would have lp-norm
smaller than y). Moreover, the faces of C are contained in hyperplanes constructed as the affine
hull of a subset of d points from the union of the vertices of B1 and B∞.

The vertices of B1 are V1 = {ϵ1ei,−ϵ1ei | i = 1, . . . , d}, where ei is the i-th element of the
standard basis of Rd, and that of B∞ are V∞, consisting of the 2d vectors whose components are
elements of {ϵ∞,−ϵ∞}. Note that V1 ∩ V∞ = ∅. Any subset of d vertices from V1 ∪ V∞ defines
a hyperplane which contains a face of C if it does not contain any point of the interior of C.

Let S be a set of vertices defining a hyperplane containing a face of C. We first derive con-

ditions on the vertices contained in S. Let k =
⌊

ϵ1
ϵ∞

⌋
∈ N and α = ϵ1

ϵ∞
− k ∈ [0, 1). Note that

k + 1 > ϵ1
ϵ∞

. Then no more than k vertices of B1 belong to S, that is to a face of C. In fact,
if we consider k + 1 vertices of B1, namely wlog {ϵ1e1, . . . , ϵ1ek+1}, and consider their convex

combination z = ϵ1
∑k+1

i=1
1

k+1ei then ∥z∥∞ = ϵ1
k+1 < ϵ∞ by the definition of k. Thus S cannot

contain more than k vertices of B1.

Second, assume ϵ1ej is in S. If any vertex v of B∞ with vj = −ϵ∞ is also in S then, with
α′ = ϵ∞

ϵ1+ϵ∞
∈ (0, 1), we get

∥α′ϵ1ej + (1− α′)v∥∞ = max{|α′ϵ1 − (1− α′)ϵ∞|, (1− α′)ϵ∞},

where (1− α′)ϵ∞ < ϵ∞ and

|α′ϵ1 − (1− α′)ϵ∞| = |α′(ϵ1 + ϵ∞)− ϵ∞| = 0 < ϵ∞.

Thus S would not span a face as a convex combination intersects the interior of C. This implies
that if ϵ1ej is in S then all the vertices v of B∞ in S need to have vj = ϵ∞, otherwise S would
not define a face of C. Analogously, if −ϵ1ej ∈ S then any vertex v of B∞ in S has vj = −ϵ∞.
However, we note that out of symmetry reasons we can just consider faces of C in the positive
orthant and thus we consider in the following just sets S which contain vertices of “positive type”
ϵ1ej .

Let now S be a set (not necessarily defining a face of C) containing h ≤ k vertices of B1

and d− h vertices of B∞ and P the matrix whose columns are these points. The matrix P has
the form

P =



ϵ1 0 . . . 0 ϵ∞ . . . ϵ∞
0 ϵ1 . . . 0 ϵ∞ . . . ϵ∞
. . .
0 . . . 0 ϵ1 ϵ∞ . . . ϵ∞
0 . . . 0
. . . A
0 . . . 0
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where A ∈ Rd−h,d−h is a matrix whose entries are either ϵ∞ or −ϵ∞. If the matrix P does not
have full rank then the origin belongs to any hyperplane containing S, which means it cannot
be a face of C. This also implies A has full rank if S spans a face of C.

We denote by π the hyperplane generated by the affine hull of S (the columns of P ) assum-
ing that A has full rank. Every point b belonging to the hyperplane π generated by S is such
that there exists a unique a ∈ Rd which satisfies

P ′a =

(
11,d

P

)
a =



1 . . . 1
ϵ1 0 . . . 0 ϵ∞ . . . ϵ∞
0 ϵ1 . . . 0 ϵ∞ . . . ϵ∞
. . .
0 . . . 0 ϵ1 ϵ∞ . . . ϵ∞
0 . . . 0
. . . A
0 . . . 0


a =

(
1
b

)
= b′,

where 1d1,d2
is the matrix of size d1 × d2 whose entries are 1.

The matrix (P ′, b′) ∈ Rd+1,d+1 need not have full rank, so that

rankP ′ = rank(P ′, b′) = dim a = d

and then the linear system P ′a = b′ has a unique solution.
We define the vector v ∈ Rd as solution of PT v = 1d,1, which is unique as P has full rank. From
their definitions we have Pa = b and 1Ta = 1, so that

1 = 1Ta = (PT v)Ta = vTPa = vT b,

and thus
⟨b, v⟩ = 1, (3.15)

noticing that this also implies that any vector b ∈ Rd such that ⟨b, v⟩ = 1 belongs to π (suppose
that ∃q /∈ π with ⟨q, v⟩ = 1, then define c as the solution of Pc = q and then 1 = ⟨q, v⟩ =
⟨Pc, v⟩ =

〈
c, PT v

〉
= ⟨c,1⟩ which contradicts that q /∈ π).

Applying Hölder inequality to (3.15) we get for any b ∈ π,

∥b∥p ≥
1

∥v∥q
, (3.16)

where 1
p + 1

q = 1. Moreover, as p ∈ (1,∞) there exists always a point b∗ for which (3.16) holds
as equality.

In the rest of the proof we compute ∥v∥q for any q > 1 when S is a face of C and then (3.16)
yields the desired minimal value of ∥b∥p over all b lying in faces of C.

Let v = (v1, v2), v1 ∈ Rh, v2 ∈ Rd−h and Ih denotes the identity matrix of Rh,h. It holds

PT v =

(
ϵ1Ih 0

ϵ∞1d−h,h AT

)(
v1
v2

)
=

(
1h,1

1d−h,1

)
= 1d,1,

which implies

v1 =

(
1

ϵ1
, . . . ,

1

ϵ1

)
and AT v2 = 1d−h,1 −

hϵ∞
ϵ1

1d−h,1 =

(
1− h

ϵ∞
ϵ1

)
1d−h,1.

Moreover, we have

∥v∥1 = ∥v1∥1 + ∥v2∥1 =
h

ϵ1
+ ∥v2∥1 , ∥v∥∞ = max

{
1

ϵ1
, ∥v2∥∞

}
. (3.17)

If S generates a face, then by definition π does not intersect with the interior of C and thus
it holds for all b ∈ π: ∥b∥1 ≥ ϵ1 and ∥b∥∞ ≥ ϵ∞. Suppose ∥v∥1 = c > 1

ϵ∞
. Then there exists
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b∗ ∈ π such equality in Hölder’s equality is realized, that is 1 = ⟨b∗, v⟩ = ∥b∗∥∞ ∥v∥1, and thus
∥b∗∥∞ = 1

c < ϵ∞, which contradicts ∥b∥∞ ≥ ϵ∞ for all b ∈ π and thus it must hold ∥v∥1 ≤
1
ϵ∞

.

Similarly, one can derive ∥v∥∞ ≤
1
ϵ1
. Combining (3.17) with the just derived inequalities we get

upper bounds on the norms of v2,

∥v2∥1 ≤
1

ϵ∞
− h

ϵ1
and ∥v2∥∞ ≤

1

ϵ1
. (3.18)

Furthermore v2 is defined as the solution of

AT

ϵ∞
v2 =

(
1

ϵ∞
− h

ϵ1

)
1d−h,1.

We note that all the entries of AT

ϵ∞
are either 1 or −1, so that the inner product between each row

of AT and v2 is a lower bound on the l1-norm of v2. Since every entry of the r.h.s. of the linear
system is 1

ϵ∞
− h

ϵ1
we get ∥v2∥1 ≥

1
ϵ∞
− h

ϵ1
, which combined with (3.18) leads to ∥v2∥1 = 1

ϵ∞
− h

ϵ1
.

This implies that AT

ϵ∞
v2 = ∥v2∥1. In order to achieve equality ⟨u, v⟩ = ∥v∥1 it has to hold

ui = sgn(vi) for every vi ̸= 0. If at least two components of v were non-zero, the corresponding
columns of AT would be identical, which contradicts the fact that AT has full rank. Thus v2
can only have one non-zero component which in absolute value is equal to 1

ϵ∞
− h

ϵ1
Thus, after

a potential reordering of the components, v has the form

v =

 1

ϵ1
, . . . ,

1

ϵ1︸ ︷︷ ︸
h times

,
1

ϵ∞
− h

ϵ1
, 0, . . . , 0

 .

From the second condition in (3.18), we have 1
ϵ∞
− h

ϵ1
≤ 1

ϵ1
and h+ 1 ≥ ϵ1

ϵ∞
= k + α. Recalling

h ≤ k, we have
h ∈ [k + α− 1, k] ∩ N.

This means that, in order for S to define a face of C, we need h = k if α > 0, h ∈ {k − 1, k} if
α = 0 (in this case choosing h = k − 1 or h = k leads to the same v, so in practice it is possible
to use simply h = k for any α).

Once we have determined v, we can use again (3.15) and (3.16) to see that

∥b∥p ≥
1

∥v∥q
=

1(
k
ϵq1

+
(

1
ϵ∞
− k

ϵ1

)q) 1
q

=
ϵ1

(ϵ1/ϵ∞ − α+ αq)
1/q

. (3.19)

Finally, for any v there exists b∗ ∈ π for which equality is achieved in (3.19). Suppose that this
b∗ does not lie in a face of C. Then one could just consider the line segment from the origin to
b∗ and the point intersecting the boundary of C would have smaller lp-norm contradicting the
just derived inequality. Thus the b∗ realizing equality in (3.19) lies in a face of C. □

3.3.2 Comparison of the robustness guarantee for the union of B1 and
B∞ and for its convex hull

First, we note that our expression in Theorem 3.3.1 is exact and not just a lower bound. Moreover,
the minimal lp-distance of Rd \ C to the origin in Eq. (3.14) is independent from the dimension
d, in contrast to the expression for the minimal lp-norm over Rd \ U1,∞ in Eq. (3.13) and its
naive lower bound in Eq. (3.12), which are both decreasing for increasing d and p > 1.

In Fig. 3.4 we visually compare the largest l2-balls (in red) fitting inside either U1,∞ or the
convex hull C in R3, showing that the one in C is clearly larger. In Fig. 3.5 we provide a
quantitative comparison in high dimensions. We plot the minimal l2-norm over Rd \C (as in Eq.
(3.14), blue curve) and over Rd \ U1,∞ (Eq. (3.13), red) and its naive lower bound (Eq. (3.12),
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Figure 3.5: Comparison of the minimal l2-norm over Rd \ C (3.14) (blue), Rd \ U1,∞ (3.13) (red) and
its naive lower bound (3.12) (green). We fix ϵ∞ = 1 and show the results varying ϵ1 ∈ (1, d), for d = 784
and d = 3072. We plot the value (or a lower bound in case of (3.12)) of the minimal ∥x∥2, depending on
ϵ1, given by the different approaches (first and third plots). The red curves are almost completely hidden
by the green ones, as they mostly overlap, but can be seen for small values of ∥x∥1. Moreover, we report
(second and fourth plots) the ratios of the minimal ∥x∥2 for Rd \ conv(B1 ∪ B∞) and Rd \ (B1 ∪ B∞).
The values provided by (3.14) are much larger than those of (3.13).

green). We fix ∥x∥∞ = ϵ∞ = 1 and vary ϵ1 ∈ [1, d], with either d = 784 (left) or d = 3072 (right),
i.e. the dimensions of the input spaces of MNIST and CIFAR-10. One sees clearly that the blue
line corresponding to (3.14) is significantly higher than the other two. In the second and fourth
plots of Fig. 3.5 we show, for each ϵ1, the ratio of the l2-distances given by (3.14) and (3.13).
The maximal ratio is about 3.8 for d = 784 and 5.3 for d = 3072, meaning that the advantage of
(3.14) increases with d.

As further analysis, we want to determine the ratio δ = ϵ1
ϵ∞
∈ [1, d] for which the gain in

the robustness guarantee bC for the convex hull is maximized compared to just considering the
robustness guarantee bU for the union as a function of the dimension d of the input space. Let
us denote

bU = min
x∈Rd\U1,∞

∥x∥p =

(
ϵp∞ +

(ϵ1 − ϵ∞)p

(d− 1)p−1

) 1
p

, bC = min
x∈Rd\C

∥x∥p =
ϵ1

(ϵ1/ϵ∞ − α+ αq)
1/q

the two bounds from (3.13) and (3.14) respectively, which can be rewritten as

bU (δ) = ϵ∞

(
1 +

(δ − 1)p

(d− 1)p−1

) 1
p

, bC(δ) =
ϵ∞δ

(δ − α+ αq)
1/q
∼ ϵ∞δ

1
p ,

where α = δ − ⌊δ⌋. We note that

δ − 1 ≤ δ − α+ αq = ⌊δ⌋+ (δ − ⌊δ⌋)q ≤ δ.

As the differences are very small, we use instead the lower bound

b∗C(δ) =
ϵ∞δ

(δ)
1/q

= ϵ∞δ
1
p .

We want to find the value δ∗ which maximizes
b∗C
bU

(δ) varying d (a numerical evaluation is pre-
sented in Fig. 3.5). Notice first that δ∗ maximizes also

(b∗C(δ))
p

(bU (δ))p
= δ

(
1 +

(δ − 1)p

(d− 1)p−1

)−1

≥ 1

and can be found as the solution of

∂

∂δ

(b∗C(δ))
p

(bU (δ))p
=

∂

∂δ
l

[
δ

(
1 +

(δ − 1)p

(d− 1)p−1

)−1
]

=

(
1 +

(δ − 1)p

(d− 1)p−1

)−1

− δ

(
1 +

(δ − 1)p

(d− 1)p−1

)−2
p(δ − 1)p−1

(d− 1)p−1
= 0,

which is equivalent to
(d− 1)p−1 + (δ − 1)p − pδ(δ − 1)p−1 = 0.
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Restricting the analysis to p = 2 for simplicity, we get

d− 1 + (δ − 1)2 − 2δ(δ − 1) = −δ2 + d = 0 =⇒ δ∗ =
√
d,

and one can check that δ∗ is indeed a maximizer. Moreover, at δ∗ we have a ratio between the
two bounds

bC
bU

∣∣∣∣
δ∗
≥ b∗C

bU

∣∣∣∣
δ∗

= d
1
4

(
1 +

(
√
d− 1)2

(d− 1)

)− 1
2

∼ d
1
4

√
2
.

We observe that the improvement of the robustness guarantee by considering the convex hull
instead of the union is increasing with dimension and is ≈ 3.8 for d = 784 and ≈ 5.3 for d = 3072,
as shown by the illustration in Fig. 3.5.

These examples indicate that the lp-balls contained in C can be a few times larger than those
in U1,∞. Recall that we deal with piecewise affine networks. If we could enlarge the linear regions
on which the classifier is affine so that it contains the l1- and l∞-ball of some desired radii, we
would automatically get the lp-balls of radii given by Theorem 3.3.1 to fit in the linear regions.
The next section formalizes the resulting robustness guarantees.

3.3.3 Universal provable robustness with respect to all lp-norms for
p ≥ 1

Combining the results of Theorems 3.2.1 and 3.3.1, in the next theorem we derive lower bounds
on the robustness of a continuous piecewise affine classifier f , e.g. a ReLU network, at a point

x wrt any lp-norm with p ≥ 1 using only dB1 (x), d
D
1 (x), dB∞(x) and dD∞(x) (see (3.3) and (3.6)).

Theorem 3.3.2 Let dBp (x), d
D
p (x) be defined as in (3.3) and (3.6) and ρ1 = min{dB1 (x), |dD1 (x)|}

and ρ∞ = min{dB∞(x), |dD∞(x)|}. If d ≥ 2 and x is correctly classified, then

rp(x) ≥
ρ1

(ρ1/ρ∞ − α+ αq)
1/q

, (3.20)

for any p ∈ (1,∞), with α = ρ1

ρ∞
− ⌊ ρ1

ρ∞
⌋ and 1

p + 1
q = 1.

Proof. From the definition of dBp (x) and dDp (x) we know that none of the hyperplanes {πj}j
(either boundaries of the polytope Q(x) or decision hyperplanes) identified by V (l) and v(l),

l = 1, . . . , L + 1, is closer than min{dBp (x), |dDp (x)|} in lp-distance. Therefore the interior of the
l1-ball of radius ρ1 (namely, B1(x, ρ1)) and of the l∞-ball of radius ρ∞ (B∞(x, ρ∞)) centered in
x does not intersect with any of those hyperplanes. This implies that {πj}j are intersecting the
closure of Rd \ conv(B1(x, ρ1) ∪B∞(x, ρ∞)). Then, from Theorem 3.3.1 we get

min{dBp (x), |dDp (x)|} ≥ ρ1

(ρ1/ρ∞ − α+ αq)
1/q

.

Finally, exploiting Theorem 3.2.1, rp(x) ≥ min{dBp (x), |dDp (x)|} holds. □

For our goal of simultaneous lp-robustness guarantees for all p ≥ 1, we use the insights
obtained from Theorem 3.3.2 to propose a combination of MMR-l1 and MMR-l∞, called MMR-
Universal. It enhances implicitly robustness wrt every lp-norm without actually computing and

modifying separately all the distances dBp (x) and dDp (x) for the different values of p. In the
following we keep the notation used in Eq. 3.8.

Definition 3.3.1 (MMR-Universal) Let x be a training point. We define the regularizer

MMR-Universal(x) =
1

kB

kB∑
i=1

λ1 max
(
0, 1−

dB
1,πB

1,i
(x)

γ1

)
+ λ∞ max

(
0, 1−

dB∞,πB
∞,i

(x)

γ∞

)

+
1

K − 1

K−1∑
i=1

λ1 max
(
0, 1−

dD
1,πD

1,i

(x)

γ1

)
+ λ∞ max

(
0, 1−

dD∞,πD
∞,i

(x)

γ∞

)
,

(3.21)

where kB ∈ {1, . . . , N}, λ1, λ∞, γ1, γ∞ > 0.
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Even if the formulation of MMR-Universal is based on MMR-lp, it is just thanks to the novel
geometrical motivation provided by Theorem 3.3.1 and its interpretation in terms of robust-
ness guarantees of Theorem 3.3.2 that we have a theoretical justification of MMR-Universal.
Moreover, we are not aware of any other approach which can enforce simultaneously l1- and
l∞-guarantees, which is the key property of MMR-Universal.

The loss function which is minimized while training the classifier f is then, with {(xi, yi)}Ti=1

being the training set and CE the cross-entropy loss,

L
(
{(xi, yi)}Ti=1

)
=

1

T

T∑
i=1

CE(f(xi), yi) +MMR-Universal(xi).

During the optimization our regularizer aims at pushing both the polytope boundaries and the
decision hyperplanes farther than γ1 in l1-distance and farther than γ∞ in l∞-distance from the
training point x, in order to achieve robustness close or better than γ1 and γ∞ respectively.
According to Theorem 3.3.2, this enhances also the lp-robustness for p ∈ (1,∞). Note that if the

projection of x on a decision hyperplane does not lie inside Q(x), dDp (x) is just an approximation
of the signed distance to the true decision surface, in which case one can argue that it is an
approximation of the local Cross-Lipschitz constant which is also associated to robustness [Hein
and Andriushchenko, 2017]. The regularization parameters λ1 and λ∞ are used to balance the
weight of the l1- and l∞-term in the regularizer, and also wrt the cross-entropy loss. Note

that the terms of MMR-Universal involving the quantities dD
p,πD

p,i

(x) penalize misclassification,

as they take negative values in this case. Similarly to MMR for a single norm, we take into
account the kB closest hyperplanes and not just the closest one as done in Theorem 3.3.2.
This has two reasons: first, in this way the regularizer enlarges the size of the linear regions
around the training points more quickly and effectively, given the large number of hyperplanes
defining each polytope. Second, pushing many hyperplanes influences also the neighboring linear
regions of Q(x). This comes into play when, in order to get better bounds on the robustness
at x, one wants to explore also a portion of the input space outside of the linear region Q(x),
which is where Theorem 3.3.2 holds. As noted in Raghunathan et al. [2018], Xiao et al. [2019],
established methods to compute lower bounds on the robustness are loose or completely fail
when using normally trained models. In fact, their effectiveness is mostly related to how many
ReLU units have stable sign when perturbing the input x within a given lp-ball. This is almost
equivalent to having the hyperplanes far from x in lp-distance, which is what MMR-Universal
tries to accomplish. This explains why in Sec. 3.3.4 we can certify the models trained with
MMR-Universal with the methods of Wong and Kolter [2018] and Tjeng et al. [2019].

3.3.4 Experiments

We compare the models obtained via our MMR-Universal regularizer2 to state-of-the-art methods
for provable robustness and adversarial training. Similar to what done for single norm robustness
(see Sec. 3.2.4), we compute lower and upper bound on the robust test error, corresponding to
empirical and provable robustness, for each lp-balls with radius ϵp for p ∈ {1, 2,∞}. Moreover,
we report the results for the union of the three threat models. For computing the upper bounds
we additionally use FAB attack, which will be described in Sec. 4.1 (more details in Sec. 3.3.5).

Choice of ϵp. In choosing the values of ϵp for p ∈ {1, 2,∞}, we try to be consistent with
previous literature (e.g. Wong and Kolter [2018]) for the values of ϵ∞ and ϵ2. Eq. (3.14) provides,
given ϵ1 and ϵ∞, a value at which one can expect l2-robustness (approximately ϵ2 =

√
ϵ1ϵ∞).

Then we fix ϵ1 such that this approximation is slightly larger than the desired ϵ2. We show in
Table 3.7 the values chosen for ϵp, p ∈ {1, 2,∞}, and used to compute the robust test error
in Table 3.8. Notice that for these values no lp-ball is contained in the others. Moreover, we
compute for the plain models the percentage of adversarial examples given by an l1-attack (we
use the PGD-attack) with budget ϵ1 which have also l∞-norm smaller than or equal to ϵ∞, and
vice versa. These percentages are zero for all the datasets, meaning that being (provably) robust
in the union of these lp-balls is much more difficult than in just one of them.
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Table 3.7: The values chosen for ϵp on the different datasets and the expected l2-robustness level (last
column) given ϵ1 and ϵ∞, computed according to Eq. (3.14).

dataset ϵ1 ϵ∞ ϵ2 ϵ2 by Eq. (3.14)

MNIST / F-MNIST 1 0.1 0.3 0.3162
GTS 3 4/255 0.2 0.2170
CIFAR-10 2 2/255 0.1 0.1252

Main results. We train CNNs on MNIST, Fashion-MNIST, German Traffic Sign (GTS) and
CIFAR-10, with several training schemes: plain training, adversarial training (AT) for individual
norms and its extension to multiple lp-balls in Tramèr and Boneh [2019], the robust training
KW, MMR, either alone or with adversarial training (MMR+AT), and the training with MMR-
Universal. We use AT, KW, MMR and MMR+AT wrt l2 and l∞, as these are the norms for
which such methods have been used in the original papers. More details about the architecture
and models in Sec. 3.3.5.

In Table 3.8 we report test error (TE) computed on the whole test set and lower (LB) and
upper (UB) bounds on the robust test error obtained considering the l∞-, l2- and l1-balls, and
the union of the three lp-balls, indicated by l1 + l2 + l∞ (these statistics are on the first 1000
points of the test set). The lower bounds l1 + l2 + l∞-LB are given by the fraction of test
points for which one of the adversarial attacks wrt l1, l2 and l∞ is successful. The upper bounds
l1 + l2 + l∞-UB are computed as the percentage of points for which at least one of the three
lp-balls is not certified to be free of adversarial examples (lower is better). This last one is the
metric of main interest, since we aim at universally provably robust models.

MMR-Universal is the only method which can give non-trivial upper bounds on the robust
test error for all datasets, while almost all other methods aiming at provable robustness have
l1 + l2 + l∞-UB close to or at 100%. Notably, on GTS the upper bound on the robust test error
of MMR-Universal is lower than the lower bound of all other methods except AT-(l1, l2, l∞),
showing that MMR-Universal provably outperforms existing methods which provide guarantees
wrt individual lp-balls, either l2 or l∞, when certifying the union l1 + l2 + l∞. The test error
is slightly increased wrt the other methods giving provable robustness, but the same holds true
for combined adversarial training AT-(l1, l2, l∞) compared to standard adversarial training AT-
l2/l∞. We conclude that MMR-Universal is the only method so far being able to provide non-
trivial robustness guarantees for multiple lp-balls in the case that none of them contains any
other.

3.3.5 Experimental details

The convolutional architecture is identical to the one used in Sec. 3.2. The AT-l∞, AT-l2, KW,
MMR and MMR+AT models are the same reported in Sec. 3.2. We trained the AT-(l1, l2, l∞)
performing for each batch of 128 images the PGD-attack wrt the three norms (40 steps for MNIST
and F-MNIST, 10 steps for GTS and CIFAR-10) and then training on the point realizing the
maximal loss (the cross-entropy function is used), for 100 epochs. For all experiments with MMR-
Universal we use batch size 128 and we train the models for 100 epochs. Moreover, we use Adam
optimizer with learning rate of 5× 10−4 for MNIST and F-MNIST, 0.001 for the other datasets.
We also reduce the learning rate by a factor of 10 for the last 10 epochs. On CIFAR-10 dataset
we apply random crops and random mirroring of the images as data augmentation. For training
we use MMR-Universal as in (3.21) with kB linearly (wrt the epoch) decreasing from 20% to 5%
of the total number of hidden units of the network architecture. We also use a training schedule
for λp where we linearly increase it from λp/10 to λp during the first 10 epochs. We employ
both schemes since they increase the stability of training with MMR. In order to determine the
best set of hyperparameters λ1, λ∞, γ1, and γ∞ of MMR, we perform a grid search over them
for every dataset. In particular, we empirically found that the optimal values of γp are usually
between 1 and 2 times the ϵp used for the evaluation of the robust test error, while the values
of λp are more diverse across the different datasets. Specifically, for the models we reported in
Table 3.8 the following values for the (λ1, λ∞) have been used: (3.0, 12.0) for MNIST, (3.0, 40.0)

2Code available at https://github.com/fra31/mmr-universal.
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Table 3.8: Provable robustness against multiple perturbations. We report, for the different
datasets and training schemes, the test error (TE) and lower (LB) and upper (UB) bounds on the robust
test error (in percentage) wrt the lp-norms at thresholds ϵp, with p = 1, 2,∞ (that is the largest test error
possible if any perturbation of lp-norm equal to ϵp is allowed). Moreover we show the l1 + l2 + l∞-UB,
that is the upper bound on the robust error when the attacker is allowed to use the union of the three
lp-balls. The training schemes compared are plain training, adversarial training of Madry et al. [2018],
Tramèr and Boneh [2019] (AT), robust training of Wong and Kolter [2018], Wong et al. [2018] (KW),
MMR regularization, MMR combined with AT (MMR+AT) and our MMR-Universal regularization.
One can clearly see that our MMR-Universal models are the only ones which have non trivial upper
bounds on the robust test error wrt all the considered norms.

l1 l2 l∞ l1 + l2 + l∞

model TE LB UB LB UB LB UB LB UB

MNIST ϵ1 = 1 ϵ2 = 0.3 ϵ∞ = 0.1

plain 0.85 2.3 100 3.1 100 88.5 100 88.5 100

AT-l∞ 0.82 1.8 100 1.7 100 4.7 100 4.7 100

AT-l2 0.87 2.1 100 2.2 100 25.9 100 25.9 100

AT-(l1, l2, l∞) 0.80 2.1 100 1.7 100 4.9 100 4.9 100

KW-l∞ 1.21 3.6 100 2.8 100 4.4 4.4 4.8 100

KW-l2 1.11 2.4 100 2.3 6.6 10.3 10.3 10.3 100

MMR-l∞ 1.65 10.0 100 5.2 100 6.0 6.0 10.4 100

MMR-l2 2.57 4.5 62.3 6.7 14.3 78.6 99.9 78.6 99.9

MMR+AT-l∞ 1.19 3.6 100 2.4 100 3.6 3.6 4.1 100

MMR+AT-l2 1.73 3.6 99.9 3.7 12.1 15.3 76.8 15.3 99.9

MMR-Universal 3.04 6.4 20.8 6.2 10.4 12.4 12.4 12.4 20.8

F-MNIST ϵ1 = 1 ϵ2 = 0.3 ϵ∞ = 0.1

plain 9.32 31.3 100 65.8 100 100 100 100 100

AT-l∞ 11.54 19.0 100 17.1 100 25.4 73.0 26.3 100

AT-l2 8.10 15.9 100 20.6 100 98.8 100 98.8 100

AT-(l1, l2, l∞) 14.13 22.2 100 20.3 100 28.3 98.6 29.6 100

KW-l∞ 21.73 42.7 100 30.5 99.2 32.4 32.4 43.6 100

KW-l2 13.08 15.8 19.8 15.9 19.9 66.7 86.8 66.7 86.8

MMR-l∞ 14.51 28.5 100 23.5 100 33.2 33.6 36.7 100

MMR-l2 12.85 18.2 39.4 24.8 33.2 95.8 100 95.8 100

MMR+AT-l∞ 14.52 27.3 100 22.9 100 27.5 30.7 31.8 100

MMR+AT-l2 13.40 17.2 55.4 20.2 37.8 66.5 99.1 66.5 99.1

MMR-Universal 18.57 25.0 52.4 24.3 37.4 43.5 44.3 43.5 52.9

GTS ϵ1 = 3 ϵ2 = 0.2 ϵ∞ = 4/255

plain 6.77 60.5 100 38.4 99.3 71.1 98.4 71.5 100

AT-l∞ 6.83 64.0 100 24.9 99.2 31.7 82.3 64.0 100

AT-l2 8.76 44.0 100 27.2 98.4 58.9 97.1 59.0 100

AT-(l1, l2, l∞) 8.80 41.8 100 24.0 93.7 41.2 79.4 45.2 100

KW-l∞ 15.57 87.8 100 41.1 77.7 36.1 36.6 87.8 100

KW-l2 14.35 46.5 100 30.8 35.3 57.0 63.0 57.6 100

MMR-l∞ 13.32 71.3 99.6 40.9 41.7 49.5 49.6 71.3 99.6

MMR-l2 14.21 54.6 80.4 36.3 36.6 62.3 63.6 62.6 80.9

MMR+AT-l∞ 14.89 82.8 100 39.9 44.7 38.3 38.4 82.8 100

MMR+AT-l2 15.34 49.4 84.3 33.2 33.8 57.2 60.2 58.1 84.8

MMR-Universal 15.98 49.7 51.5 34.3 34.6 47.0 47.0 51.6 52.4

CIFAR-10 ϵ1 = 2 ϵ2 = 0.1 ϵ∞ = 2/255

plain 23.29 61.0 100 48.9 100 88.6 100 88.6 100

AT-l∞ 27.06 39.6 100 33.3 99.2 52.5 88.5 52.5 100

AT-l2 25.84 41.9 100 35.3 99.9 62.1 99.4 62.1 100

AT-(l1, l2, l∞) 35.41 47.7 100 41.7 88.2 57.0 76.8 57.1 100

KW-l∞ 38.91 51.9 100 39.9 66.1 46.6 48.0 51.9 100

KW-l2 40.24 47.3 100 44.6 49.3 53.6 54.7 54.0 100

MMR-l∞ 34.61 54.1 100 42.3 68.4 57.7 61.0 58.7 100

MMR-l2 40.93 58.9 98.0 50.4 56.3 72.9 86.1 72.9 98.0

MMR+AT-l∞ 35.38 50.6 100 41.2 84.7 48.7 54.2 50.8 100

MMR+AT-l2 37.78 50.4 99.9 46.1 54.2 61.3 74.1 61.3 99.9

MMR-Universal 46.96 56.4 63.4 51.9 53.6 63.8 63.8 63.8 64.642



for F-MNIST, (3.0, 12.0) for GTS and (1.0, 6.0) for CIFAR-10. In Table 3.8, while the test error
which is computed on the full test set, the statistics regarding upper and lower bounds on the
robust test error are computed on the first 1000 points of the respective test sets. For the lower
bounds we use the FAB-attack with the original parameters, 100 iterations and 10 restarts. For
PGD we use also 100 iterations and 10 restarts: the directions for the update step are the sign of
the gradient for l∞, the normalized gradient for l2 and the normalized sparse gradient suggested
by Tramèr and Boneh [2019] with sparsity level 1% for MNIST and F-MNIST, 10% for GTS and
CIFAR-10. Finally we use the Liner Region Attack (see Sec. 4). In order to compute the upper
bounds on the robust test error in Tables 3.8 we use the method of Wong and Kolter [2018] for
all the three lp-norms and that of Tjeng et al. [2019] only for the l∞-norm. This second one
exploits a reformulation of the problem in (3.2) in terms of mixed integer programming (MIP),
which is able to exactly compute the solution of (3.2) for p ∈ {1, 2,∞}. However, such technique
is strongly limited by its high computational cost. The only reason why it is possible to use it
in practice is the exploitation of some presolvers which are able to reduce the complexity of the
MIP. Unfortunately, such presolvers are effective just wrt l∞. On the other hand, the method
of Wong and Kolter [2018] applies directly to every lp-norm. This explains why the bounds
provided for l∞ are tighter than those for l1 and l2.

3.3.6 Recent advancements

After the publication of our works, several new techniques for provable robustness in single threat
models have appeared: for l∞, Interval Bound Propagation (IBP) [Gowal et al., 2019a], with its
improvements [Zhang et al., 2020a, Mueller et al., 2023], and Lipschitz networks [Zhang et al.,
2022a,b] have achieved state-of-results. Many methods for l2-robustness exist [Leino et al., 2021,
Hu et al., 2023, Araujo et al., 2023], while l1 remains a less explored threat models [Levine
and Feizi, 2021]. These notable advances have been achieved with techniques specialized in
the individual threat models. Provable robustness in the union of lp-balls, which our approach
obtains since it can be applied to any lp-norm, has instead received significantly less attention,
with, to our knowledge, only Voráček and Hein [2022] providing a new method.

3.4 Visualizing the structure of provably robust models

Here we analyse the effect of MMR regularization on the gradient of cross entropy loss wrt the
input and on the structure of the convolutional filters. We focus on models trained for l∞-
robustness on MNIST, GTS, and CIFAR-10. We provide the plain and adversarially trained
model as reference. In Figures 3.6, 3.8, 3.10 we visualize the gradients computed for 10 images
of the corresponding test sets (shown in the first row) for the different training procedures.
For MNIST, zero values are represented in white, negative in blue and positive in red, where
every image is rescaled independently. For GTS and CIFAR-10, we follow Tsipras et al. [2019]
and clip the gradient values to ±3 standard deviations and then rescale them to [0, 1]d. We
visualize models obtained with plain training (second row), adversarial training (third), KW
robust training (fourth), MMR (fifth), MMR + adversarial training (last row). Figures 3.7, 3.9,
3.11 show the structure of the weights of the filters of the two convolutional layers. The top five
rows are the filters from the first layer, either all of them for MNIST, or the first five for GTS and
CIFAR-10 (reshaped from 4× 4× 3 to 4× 12). The bottom five are the filters from the second
convolution layer (reshaped from 4× 4× 16 to 16× 16). We present the filters for plain training
(first and sixth row), adversarial training (second and seventh), KW robust training (third and
eighth), MMR (fourth and ninth), MMR + adversarial training (fifth and last row). The white
color corresponds to zero weights, and the farther the value is from zero, the more intense is the
color. Note that each row is scaled independently.

MNIST (Figures 3.6, 3.7): As noted in Tsipras et al. [2019], adversarial training leads to
more interpretable gradients that focus on salient features of the digits. All robust training
schemes have the effect of creating both interpretable and sparse gradients, which is reasonable
considering that a sparse gradient implies that there are less directions along which abrupt
variations in the value of the loss are possible. While the KW model seems to highlight more the
borders of the images, MMR models have the most concentrated gradients. In line with what
has been reported in Madry et al. [2018], Wong and Kolter [2018], the filters of adversarially
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trained and provably robust models (Fig. 3.7) have significantly higher sparsity than the plain
model. Interestingly, in contrast to the others, MMR models preserve sparsity also in the filters
on the second convolutional layer. This seems to be important for obtaining tight certificates by
the KW method and for fast verification with the MIP solver.

GTS (Figures 3.8, 3.9): For GTS we also observe that all robust training schemes lead to a
qualitatively different behaviour of the gradient. In particular, the models become less sensitive
to variations of the background, and instead they highlight more the traffic signs. We observe
that the gradients for the MMR and adversarially trained models are the most interpretable. We
note that the similarity between the gradients of the KW model and MMR+AT is possibly due
to their similar test error and robustness (Table 3.1). Similarly to MNIST, we observe that the
convolutional filters are sparser for the adversarially trained model than for the plain model. The
filters of KW and MMR models are the sparsest, while MMR+AT is less sparse and resembles
more the adversarially trained model.

CIFAR-10 (Figures 3.10, 3.11): First of all, we note that the considered shallow CNNs are
not able to achieve very low clean test error (the best is 24.63% for the plain model and 34.61%
for provably robust models). This may explain why we cannot observe interpretable gradients
as clearly as in Tsipras et al. [2019] even for the adversarially trained model. However, we note
that the gradients for the robustly trained models are still qualitatively different from the plain
model. While the gradients of the plain model just consist of high-frequency noise, e.g. the MMR
model concentrates more on the objects rather than on the background. For the convolutional
filters of the CIFAR-10 models, we make conclusions similar to GTS. In particular, the filters of
KW and MMR models are the sparsest, while MMR+AT is less sparse and is more similar to
the adversarially trained model.
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Figure 3.6: Gradient of l∞-robust models. We visualize the gradients of the cross entropy loss wrt
the input for different images of MNIST test set for every model: plain training, adversarial training
[Madry et al., 2018], KW robust training of Wong and Kolter [2018], MMR, MMR + adversarial training.
We can see for robust models the gradients are much sparser, while only for plain training it does not
clearly highlights relevant features.
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Figure 3.7: Filters of l∞-robust models. We visualize all the filters of the first convolutional layer
(first five rows) and 16 filters of the second layer (last five rows) for every MNIST model (trained for
l∞-robustness): plain training, adversarial training [Madry et al., 2018], KW robust training of Wong
and Kolter [2018], MMR, MMR + adversarial training. We can see that MMR and MMR+AT leads to
very sparse filters, especially in the second layer. Note that each row is rescaled independently.
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Figure 3.8: Gradient of l∞-robust models. We visualize the gradients of the cross entropy loss wrt
the input for different images of GTS test set (first row) for every model: plain training, adversarial
training [Madry et al., 2018], KW robust training of Wong and Kolter [2018], MMR, MMR + adversarial
training. We can see for robust models the gradients are much sparser, while only for plain training it
does not clearly highlights relevant features.
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Figure 3.9: Filters of l∞-robust models. We visualize the first five filters of the first convolutional
layer (first five rows) and 16 filters of the second layer (last five rows) for every GTS model (trained for
l∞-robustness): plain training, adversarial training [Madry et al., 2018], KW robust training of Wong
and Kolter [2018], MMR, MMR + adversarial training. We can see that MMR leads to sparser filters,
especially in the second layer (each row is rescaled independently).
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Figure 3.10: Gradient of l∞-robust models. We visualize the gradients of the cross entropy loss wrt
the input for different images of CIFAR-10 test set for every model: plain training, adversarial training
[Madry et al., 2018], KW robust training of Wong and Kolter [2018], MMR, MMR + adversarial training.
We can see for robust models the gradients are sparser than for plain training and they tend to highlight
relevant features of the images.
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Figure 3.11: Filters of l∞-robust models. We visualize the first five filters of the first convolutional
layer (first five rows) and 16 filters of the second layer (last five rows) for every CIFAR-10 model (trained
for l∞-robustness): plain training, adversarial training [Madry et al., 2018], KW robust training of Wong
and Kolter [2018], MMR, MMR + adversarial training. We see that MMR and KW lead to sparser filters,
especially in the second layer (each row is rescaled independently).
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Chapter 4

Adversarial Attacks in
lp-Bounded Threat Models

In the following we present several algorithms to generate adversarial perturbations in lp-threat
models. They differ from each other in either the level of access to the target model, the optimiza-
tion problem they solve or the strategies they rely on. Table 4.1 summarizes the characteristics
of each method: Square Attack is the only black-box attack, while the Linear Region Attack
(LRA) is specialized for the l2-threat model. Both LRA and the Fast Adaptive Boundary Attack
(FAB) try to minimize, with different strategies, the lp-norm of the adversarial perturbations.
Converserly, Square Attack and Auto-PGD optimize some loss function in a fixed lp-ball which
determines the set of allowed perturbations. We present FAB in Sec. 4.1, then the l∞ and l2
versions of Square Attack (Sec. 4.2) and Auto-PGD (Sec. 4.3), and their extensions to the l1-
threat model in Sec. 4.4. We omit the detailed presentation of LRA since it applies only to ReLU
networks and in the l2-threat model.

Table 4.1: Summary of algorithms for generating lp-attacks.

attack bounds type knowledge goal

Linear Region Attack l2 white-box norm minimization
Fast Adaptive Boundary Attack l∞, l2, l1 white-box norm minimization

Square Attack l∞, l2, l1 black-box loss optimization in fixed ball
Auto-PGD l∞, l2, l1 white-box loss optimization in fixed ball

4.1 Fast Adaptive Boundary Attack

The first algorithm we present aims at finding adversarial perturbations with minimal lp-norm
for p ∈ {1, 2,∞}. In practice, given a classifier f : Rd → RK and a point xorig ∈ Rd with true
class c, we define the minimal adversarial perturbation for xorig wrt the lp-norm as

δmin,p = argmin
δ∈Rd

∥δ∥p , s.th. max
l ̸=c

fl(xorig + δ) ≥ fc(xorig + δ), xorig + δ ∈ C, (4.1)

where C represents the domain constraints. Note that the optimization problem (4.1) is non-
convex and NP-hard for non-trivial classifiers [Katz et al., 2017], and thus δmin,p is usually
approximated by an attack algorithm, which can be seen as a heuristic to solve (4.1).

The high-level idea is that, first, we use the linearization of the classifier at the current iterate
x(i) to compute the box-constrained projections of x(i) respectively xorig onto the approximated
decision hyperplane and, second, we take a convex combinations of these projections depending
on the distance of x(i) and xorig to the decision hyperplane. Finally, we perform an extrapolation
step. We explain below the geometric motivation behind these steps. The attack closest in spirit
is DeepFool [Moosavi-Dezfooli et al., 2016] which is known to be very fast but suffers from low
quality. DeepFool just tries to find the decision boundary quickly but has no incentive to provide
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a solution close to xorig. Our scheme resolves this main problem and, together with the exact
projection we use, leads to a principled way to track the decision boundary (the surface where
the decision of f changes) close to xorig.

We first recall the definition and properties of the projection wrt the lp-norms of a point
on the intersection of a hyperplane and box constraints, as they are an essential part of our
attack. Then, we present our FAB-attack algorithm to generate minimally distorted adversarial
examples.

4.1.1 Projection on a hyperplane with box constraints

Let w ∈ Rd and b ∈ R be the normal vector and the offset defining the hyperplane π : ⟨w, x⟩+b =
0. Let x ∈ Rd, we denote by the box-constrained projection wrt the lp-norm of x on π (projection
onto the intersection of the box C = {z ∈ Rd : li ≤ zi ≤ ui} and the hyperplane π) the following
minimization problem:

z∗ = argmin
z∈Rd

∥z − x∥p s.th. ⟨w, z⟩+ b = 0, li ≤ zi ≤ ui, i = 1, . . . , d, (4.2)

where li, ui ∈ R are lower and upper bounds on each component of z. For p ≥ 1 the optimization
problem (4.2) is convex. Hein and Andriushchenko [2017] proved that for p ∈ {1, 2,∞} the
solution can be obtained in O(d log d) time, that is the complexity of sorting a vector of d
elements, as well as determining that there exists no feasible point.

Since this projection is part of our iterative scheme, we need to handle specifically the case
of (4.2) being infeasible. In this case, defining ρ = sign(⟨w, x⟩ + b), we instead compute z′ =
argmin
li≤zi≤ui

ρ · (⟨w, z⟩+ b), whose solution is

z′i =


li if ρwi > 0,

ui if ρwi < 0,

xi if wi = 0

for i = 1, . . . , d. (4.3)

Assuming that the point x satisfies the box constraints (as it holds in our algorithm), this is
equivalent to identifying the corner of the d-dimensional box, defined by the componentwise
constraints on z, closest to the hyperplane π. Note that if (4.2) is infeasible then the objective
function of (4.3) stays positive and the points x and z are strictly contained in the same of the
two halfspaces divided by π. Finally, we define the projection operator

projp : (x, π, C) 7−→
{

z∗ if (4.2) is feasible
z′ else

(4.4)

which yields the point as close as possible to π without violating the box constraints.

4.1.2 FAB-attack

We now describe the details of the algorithm of our attack. If f was a linear classifier then
the closest point to x(i) on the decision hyperplane could be found in closed form. However
neural networks are highly non-linear (although ReLU networks, i.e. neural networks which use
ReLU as activation function, are piecewise affine functions and thus locally a linearization of the
network is an exact description of the classifier). Let l ̸= c, then the decision boundary between
classes l and c can be locally approximated using a first order Taylor expansion at x(i) by the
hyperplane

πl(z) : fl(x
(i))− fc(x

(i)) +
〈
∇fl(x(i))−∇fc(x(i)), z − x(i)

〉
= 0. (4.5)

Moreover the lp-distance dp(x
(i), πl) of x

(i) to πl is given, assuming 1
p + 1

q = 1, by

dp(x
(i), πl) =

|fl(x(i))− fc(x
(i))|∥∥∇fl(x(i))−∇fc(x(i))

∥∥
q

. (4.6)
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Note that if dp(x
(i), πl) = 0 then x(i) belongs to the true decision boundary. Moreover, if the

local linear approximation of the network is correct then the class s with the decision hyperplane
closest to the point x(i) can be computed as

s = argmin
l ̸=c

|fl(x(i))− fc(x
(i))|∥∥∇fl(x(i))−∇fc(x(i))

∥∥
q

. (4.7)

Thus, given that the approximation holds in some large enough neighborhood, the projection
projp(x

(i), πs, C) of x(i) onto πs lies on the decision boundary (unless (4.2) is infeasible).

Biased gradient step. The iterative algorithm x(i+1) = projp(x
(i), πs, C) would be similar to

DeepFool except that our projection operator is exact whereas they project onto the hyperplane
and then clip to [0, 1]d. This scheme is not biased towards the original target point xorig, thus
it goes typically further than necessary to find a point on the decision boundary as basically the
algorithm does not aim at the minimal adversarial perturbation. Then we consider additionally
projp(xorig, πs, C) and use instead the iterative step, with x(0) = xorig and α ∈ [0, 1], defined as

x(i+1) = (1− α) projp(x
(i), πs, C) + α projp(xorig, πs, C), (4.8)

which biases the step towards xorig (see Fig. 4.1). Note that this is a convex combination of
two points on πs and in C and thus also x(i+1) lies on πs and is contained in C. As we wish
a scheme with minimal amount of parameters, our goal is an automatic selection of α based on
the available geometric quantities. Let

δ(i) = projp(x
(i), πs, C)− x(i), and δ

(i)
orig = projp(xorig, πs, C)− xorig.

Note that
∥∥δ(i)∥∥

p
and

∥∥∥δ(i)orig

∥∥∥
p
are the distances of x(i) and xorig to πs (inside C). We propose

to use for the parameter α the relative magnitude of these two distances, that is

α = min


∥∥δ(i)∥∥

p∥∥δ(i)∥∥
p
+
∥∥∥δ(i)orig

∥∥∥
p

, αmax

 ∈ [0, 1]. (4.9)

The motivation for doing so is that if x(i) is close to the decision boundary then we should stay
close to this point (note that πs is the approximation of f computed at x(i) and thus it is valid
in a small neighborhood of x(i), whereas xorig is farther away). On the other hand we want to
have the bias towards xorig in order not to go too far away from xorig. This is why α depends
on the distances of x(i) and xorig to πs but we limit it from above with αmax. Finally, we use
a small extrapolation step as we noted empirically, similarly to Moosavi-Dezfooli et al. [2016],
that this helps to cross faster the decision boundary and get an adversarial sample. This leads
to the final scheme:

x(i+1) = projC

(
(1− α)

(
x(i) + ηδ(i)

)
+ α

(
xorig + ηδ

(i)
orig

))
, (4.10)

where α is chosen as in (4.9), η ≥ 1 and projC is the projection onto the box which can be done
by clipping. In Fig. 4.1 we visualize the scheme: in black one can see the hyperplane πs and the

vectors δ
(i)
orig and δ(i), in blue the step not biased towards xorig, while in red the biased step of

FAB-attack, see (4.10). The green vector shows the bias towards the original point we introduce.
On the left of Fig. 4.1 we use η = 1, while on the right we use extrapolation η > 1.

Interpretation of projp(xorig, πs, C). The projection of the target point xorig onto the inter-
section of πs and C is

argmin
z∈Rd

∥z − xorig∥p s.th. ⟨w, z⟩+ b = 0, li ≤ zi ≤ ui,

Note that replacing z by x(i) + δ we can rewrite this as

argmin
δ∈Rd

∥∥∥x(i) + δ − xorig

∥∥∥
p
s.th.

〈
w, x(i) + δ

〉
+ b = 0, li ≤ xi + δi ≤ ui.

50



Figure 4.1: Visualization of FAB-attack scheme. Left, case η = 1, right, η > 1 (extrapolation). In
blue we show projp(x(i), πs, C), the iterate one would get without any bias towards xorig, in green the

effect of the bias we introduce and in red the actual iterate x(i+1) of FAB-attack in (4.10). FAB-attack
stays closer to xorig compared to the unbiased gradient step with projp(x(i), πs, C).

This can be interpreted as the minimization of the distance of the next iterate x(i) + δ to the
target point xorig so that x(i)+δ lies on the intersection of the (approximate) decision hyperplane
and the box C. This point of view on the projection projp(xorig, πs, C) again justifies using a
convex combination of the two projections in our scheme in (4.10).

Backward step. The described scheme finds in a few iterations adversarial perturbations.
However, we are interested in minimizing their norms. Thus, once we have a new point x(i+1),
we check whether it is assigned by f to a class different from c. In this case, we apply

x(i+1) = (1− β)xorig + βx(i+1), β ∈ (0, 1), (4.11)

that is we go back towards xorig on the segment [x(i+1), xorig], effectively starting again the
algorithm at a point which is close to the decision boundary. In this way, due to the bias of the
method towards xorig we successively find adversarial perturbations of smaller norm, meaning
that the algorithm tracks the decision boundary while getting closer to xorig. We fix β = 0.9 in
all experiments.

Final search. Our scheme finds points close to the decision boundary but often they are slightly
off as the linear approximation is not exact and we apply the extrapolation step with η > 1. Thus,
after finishing Niter iterations of our algorithmic scheme, we perform a last, fast step to further
improve the quality of the adversarial examples. Let xout be the closest point to xorig classified
differently from c, say s ̸= c, found with the iterative scheme. It holds that fs(xout)−fc(xout) > 0
and fs(xorig) − fc(xorig) < 0. This means that, assuming f continuous, there exists a point x∗

on the segment [xout, xorig] such that fs(x
∗)− fc(x

∗) = 0 and ∥x∗ − xorig∥p < ∥xout − xorig∥p. If
f is linear

x∗ = xout −
(fs(xout)− fc(xout)) (xout − xorig)

fs(xout)− fc(xout) + fs(xorig)− fc(xorig)
. (4.12)

Since f is non-linear, we compute iteratively for a few steps

xtemp = xout −
(fs(xout)− fc(xout)) (xout − xorig)

fs(xout)− fc(xout) + fs(xorig)− fc(xorig)
, (4.13)

each time replacing in (4.13) xout with xtemp if fs(xtemp)− fc(xtemp) > 0 or xorig with xtemp if
instead fs(xtemp)−fc(xtemp) < 0. With this kind of modified binary search one can find a better
adversarial sample with the cost of a few forward passes (which is fixed to 3 in all experiments).

Random restarts. So far all the steps are deterministic. To improve the results, we introduce
the option of random restarts, that is x(0) is randomly sampled in the proximity of xorig instead
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Algorithm 1: FAB-attack

Input : xorig original point, c original class, Nrestarts, Niter, αmax, β, η, ϵ, p
Output: xout adversarial example

1 u← +∞
2 for j = 1, . . . , Nrestarts do
3 if j = 1 then x(0) ← xorig;

4 else x(0) ← randomly sampled s.th.
∥∥x(0) − xorig

∥∥
p
= min{u,ϵ}/2;

5 for i = 0, . . . , Niter − 1 do

6 s← argmin
l ̸=c

|fl(x(i))−fc(x
(i))|

∥∇fl(x(i))−∇fc(x(i))∥
q

7 δ(i) ← projp(x
(i), πs, C)

8 δ
(i)
orig ← projp(xorig, πs, C)

9 compute α as in Eq. (4.9)

10 x(i+1) ← projC

(
(1− α)

(
x(i) + ηδ(i)

)
+ α(xorig + ηδ

(i)
orig)

)
11 if x(i+1) is not classified as c then
12 if

∥∥x(i+1) − xorig

∥∥
p
< u then

13 xout ← x(i+1)

14 u←
∥∥x(i+1) − xorig

∥∥
p

15 end

16 x(i+1) ← (1− β)xorig + βx(i+1)

17 end

18 end

19 end
20 perform 3 steps of final search on xout as in (4.13)

of being xorig itself. Most attacks benefit from random restarts, e.g. Madry et al. [2018], Zheng
et al. [2019], especially dealing with models trained for robustness [Mosbach et al., 2018], as it
allows a wider exploration of the input space. We choose to sample from the lp-sphere centered
in the original point with radius half the lp-norm of the current best adversarial perturbation
(or a given threshold if no adversarial example has been found yet).

Computational cost. Our attack, in Alg. 1, consists of two main operations: the computation
of f and its gradients and solving the projection (4.2). We perform, for each iteration, a forward
and a backward pass of the network in the gradient step and a forward pass in the backward
step. The projection can be efficiently implemented to run in batches on the GPU and its
complexity depends only on the input dimension. Thus, except for shallow models, its cost is
much smaller than the passes through the network. We can approximate the computational cost
of our algorithm by the total number of calls of the classifierNiter×Nrestarts×(2×forward passes+
1× backward pass). Per restart one has to add the three forward passes for the final search.

4.1.3 Scale invariance of FAB-attack

For a given classifier f , the decisions and thus adversarial samples do not change if we rescale the
classifier g = αf for α > 0 or shift its logits as h = f + β for β ∈ R. The following proposition
states that FAB-attack is invariant under both rescaling and shifting.

Proposition 4.1.1 Let f : Rd → RK be a classifier. Then for any α > 0 and β ∈ R the output
xout of Algorithm 1 for the classifier f is the same as of the classifiers g = αf and h = f + β.

Proof. It holds ∇gi = ∇αfi = α∇fi and ∇hi = ∇(fi + β) = ∇fi for i = 1, . . . ,K and thus
the definition of the hyperplane πl(z) in (4.5) is not affected by rescaling or shifting. The same
holds for the distance of x(i) to the hyperplane πl(z) in (4.7). Note that the rest of the steps just
depends on geometric quantities derived from these quantities and are independent of f . Finally,
also the iterates of the final search in (4.13) are invariant under rescaling and shifting and thus
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Figure 4.2: Ablation study to DeepFool for l∞-attacks. The curves show the robust accuracy as a
function of the threshold ϵ under different attacks on the l∞-AT model on MNIST (lower values mean
stronger attacks). The introduction of the convex combination (αmax = 0.1, no backward step) already
improves over DeepFool. If one uses the backward step, the case αmax = 0 (which can be seen as an
improved iterative DF) is worse than αmax = 0.1 with the same number of restarts.

the output xout of Alg. 1 is invariant under rescaling of f . □

We note that the cross-entropy loss CE(x, y, f) = − log(efy(x)/
∑K

j=1 e
fj(x)) used as objective

in the normal PGD attack and its gradient wrt x

∇xCE(x, y, f) = −∇xfy(x) +

∑K
j=1 e

fj(x)∇xfj(x)∑K
j=1 e

fj(x)

are not invariant under rescaling. Moreover, we observe that the gradient vanishes for αf if
fy(x) > fj(x) for j ̸= y (correctly classified point) as α → ∞. Due to finite precision the
gradient becomes zero for finite α and it is obvious that in this case PGD gets stuck. Due to the
rescaling invariance FAB-attack is not affected by gradient masking due to this phenomenon as
it uses the gradient of the differences of the logits and not the gradient of the cross-entropy loss.
The latter runs much earlier into numerical problems when one upscales the classifier due to the
exponential function. In the experiments (see below) we show that PGD can catastrophically
fail due to a “wrong” scaling whereas FAB-attack is unaffected.

4.1.4 Comparison to DeepFool

The idea of exploiting the first order local approximation of the decision boundary is not novel
but the basis of one of the first white-box adversarial attacks, DeepFool (DF). While DF and our
FAB-attack share the strategy of using a linear approximation of the classifier and projecting on
the decision hyperplanes, we want to point out many key differences: first, DF does not solve
the projection (4.2) but its simpler version without box constraints, clipping afterwards. Second,
their gradient step does not have any bias towards the original point, that is equivalent to α = 0
in (4.10). Third, DF does not have any backward step, final search or restart, as it stops as
soon as a misclassified point is found (its goal is to provide quickly an adversarial perturbation
of average quality). We perform an ablation study of the differences to DF in Fig. 4.2, where we
show robust accuracy as a function of the threshold ϵ (lower is better). We present the results
of DeepFool (blue) and FAB-attack with the following variations: αmax = 0.1 and no backward
step (magenta), αmax = 0 (that is no bias in the gradient step) and no restarts (light green),
αmax = 0.1 and no restarts (orange), αmax = 0 and 100 restarts (dark green) and αmax = 0.1 and
100 restarts, that is FAB-attack, (red). We can see how every addition we make to the original
scheme of DeepFool contributes to the significantly improved performance of FAB-attack when
compared to the original DeepFool.
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l1-attack:

Figure 4.3: Evolution of robust accuracy across iterations for different step sizes for PGD wrt l1, l2, l∞
for three different models on MNIST. In red we highlight the step size we used for each norm in the
experiments, which performs on average the best.

4.1.5 Experiments

Models. We run experiments on MNIST, CIFAR-10 and Restricted ImageNet [Tsipras et al.,
2019]. For each dataset we consider a normally trained model (plain) and two adversarially
trained ones as in Madry et al. [2018] wrt the l∞-norm (l∞-AT) and the l2-norm (l2-AT) (see
Sec. 4.1.7 for details).

Attacks. We compare the performance of FAB-attack1 to those of attacks representing the
state-of-the-art in each norm: DeepFool (DF), Carlini-Wagner l2-attack (CW), Linear Region l2-
Attack (LRA), Projected Gradient Descent on the cross-entropy function (PGD), Distributionally
Adversarial Attack (DAA) [Zheng et al., 2019], SparseFool (SF) [Modas et al., 2019], Elastic-
net Attack (EAD) [Chen et al., 2018]. We use DF from Rauber et al. [2017], CW and EAD
as in Papernot et al. [2018], DAA and LRA with the code from the original papers, while we
reimplemented SF and PGD. For MNIST and CIFAR-10 we used DAA with 50 restarts, PGD and
FAB with 100 restarts. For Restricted ImageNet, we used DAA, PGD and FAB with 10 restarts
(for l1 we used 5 restarts, since the methods benefit from more iterations). Moreover, we could
not use LRA since it hardly scales to models of such scale and CW and EAD for compatibility
issues between the implementations of attacks and models. See Sec. 4.1.7 for more details e.g.
regarding number of iterations and hyperparameters of all attacks. In order to select the optimal
step size for PGD for each norm, we performed a grid search on the step size parameter in ϵ/t for
t ∈ {1, 2, 4, 10, 25, 75} for different models and thresholds, and took the values working best on
average, see Fig. 4.3 for an illustration of the results on MNIST. As a result we use for PGD wrt
l∞ step size ϵ/10 and the direction is the sign of the gradient of the cross-entropy loss, for PGD
wrt l2 we do a step in the direction of the l2-normalized gradient with step size ϵ/4, for PGD wrt
l1 we use the gradient step suggested in Tramèr and Boneh [2019] (with sparsity levels of 1%
for MNIST and 10% for CIFAR-10 and Restricted ImageNet) with step size ϵ/2. For FAB-attack
we use always β = 0.9 and on MNIST and CIFAR-10: αmax = 0.1, η = 1.05 and on Restricted
ImageNet: αmax = 0.05, η = 1.3. These parameters are the same for all norms.

1https://github.com/fra31/fab-attack
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Table 4.2: Performance summary of all attacks on MNIST and CIFAR-10 (aggregated). We report, for
each norm, “avg. rob. acc.”, the mean of robust accuracies across all models and datasets (lower is
better), “# best”, number of times the attack is the best one, “avg. diff. to best” and “max diff. to
best”, the mean and maximum difference of the robust accuracy of the attack to the robust accuracy of
the best attack for each model/threshold (on the first 1000 points for l∞ and l1, 500 for l2, of the test
sets). The numbers after the name of the attacks indicate the number of restarts. In total we have 5
thresholds × 6 models = 30 cases for each of the 3 norms. *Note that for FAB-10 (i.e. with 10 restarts)
the “# best” is computed excluding the results of FAB-100.

statistics on MNIST + CIFAR-10

l∞-norm DF DAA-50 PGD-100 FAB-10 FAB-100

avg. rob. acc. 58.81 60.67 46.07 46.18 45.47
# best 0 8 12 13* 17
avg. diff. to best 14.58 16.45 1.85 1.96 1.25
max diff. to best 78.10 49.00 10.70 20.30 17.10

l2-norm CW DF LRA PGD-100 FAB-10 FAB-100

avg. rob. acc. 45.09 56.10 36.97 44.94 36.41 35.57
# best 4 1 9 11 19* 23
avg. diff. to best 9.65 20.67 1.54 9.51 0.98 0.13
max diff. to best 65.40 91.40 13.60 64.80 8.40 1.60

l1-norm SF EAD PGD-100 FAB-10 FAB-100

avg. rob. acc. 64.47 35.79 49.51 33.26 29.46
# best 0 13 0 10* 17
avg. diff. to best 35.31 6.63 20.35 4.10 0.30
max diff. to best 95.90 58.40 74.00 21.80 1.60

Table 4.3: As in Table 4.2 we report statistics of the performance of different attacks on Restricted
ImageNet (on the first 500 points of the validation set). In total we consider 5 thresholds × 3 models =
15 cases for each of the 3 norms.

statistics on Restricted ImageNet

l∞-norm l2-norm l1-norm
DF DAA-

10
PGD-

10
FAB-

10
DF PGD-

10
FAB-

10
SF PGD-

5
FAB-

5

avg. rob. acc. 35.61 38.44 26.91 27.83 45.69 31.75 33.24 71.31 40.64 38.12
# best 0 1 13 3 0 14 1 0 3 12
avg. diff. best 8.75 11.57 0.04 0.96 13.99 0.04 1.53 33.52 2.85 0.33
max diff. best 14.60 37.20 0.40 2.00 25.40 0.60 3.40 59.00 6.20 2.40

Evaluation metrics. The robust accuracy for a threshold ϵ is the classification accuracy when
an adversary is allowed to change every test input with perturbations of lp-norm smaller than
ϵ in order to change the decision. Thus stronger attacks produce lower robust accuracy. For
each model and dataset we fix five thresholds at which we compute the robust accuracy for each
attack (we choose the thresholds so that the robust accuracy covers the range between clean
accuracy and 0). We evaluate the attacks by the following statistics: i) avg. rob. accuracy:
the mean of the robust accuracy achieved by the attack over all models and thresholds (lower
is better), ii) # best: how many times the attack achieves the lowest robust accuracy (it is
the most effective), iii) avg. difference to best: for each model/threshold we compute the
difference between the robust accuracy of the attack and the best one across all the attacks,
then we average over all models/thresholds, iv) max difference to best: as “avg. difference
to best”, but with the maximum difference instead of the average one.

Results. We summarize the results in Table 4.2 (MNIST and CIFAR-10 aggregated, as we
used the same attacks) and Table 4.3 (Restricted ImageNet). Our FAB-attack achieves the best
results in all statistics for every norm (with the only exception of “max diff. to best” in l∞)
on MNIST+CIFAR-10. In particular, while on l∞ the “avg. robust accuracy” of PGD is not
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far from that of FAB, the gap is large when considering l2 and l1 (we provide in Table 4.6 the
aggregate statistics without the result on l∞-AT MNIST, showing that FAB is still the best
attack even if one leaves out this failure case of PGD). Interestingly, the second best attack in
terms of average robust accuracy, is different for every norm (PGD for l∞, LRA for l2, EAD for
l1), which implies that FAB outperforms algorithms specialized in the individual norms. We also
report the results of FAB-10, that is our attack with only 10 restarts, to show that FAB yields
high quality results already with a low budget in terms of time/computational cost. In fact, FAB-
10 has “avg. robust accuracy” better than or very close to that of the strongest versions of the
other attacks (see below for a runtime analysis, where one observes that FAB-10 is the fastest
attack when excluding the significantly worse DF and SF attacks). On Restricted ImageNet,
FAB-attack gets the best results in all statistics for l1, while for l∞ and l2 PGD performs on
average better, but the difference in “avg. robust accuracy” is small. In general, both average
and maximum difference to best of FAB-attack are small for all the datasets and norms, implying
that it does not suffer from severe failures, which makes it an efficient, high quality technique to
evaluate the robustness of classifiers for all lp-norms.

Average perturbations size. In Table 4.4 we report the average lp-norm of the adversarial
perturbations found by the different attacks, computed on the originally correctly classified points
on which the attack is successful. Note that we cannot show this statistic for the attacks which
do not minimize the distance of the adversarial example to the clean input (PGD and DAA).
FAB-attack produces also in this metric the best results in most of the cases, being the best for
every model when considering l∞ and l2, and the best in 4 out of 6 cases in l1 (lower values mean
a stronger attack).

Resistance to gradient masking. It has been argued [Tramèr and Boneh, 2019] that models
trained with first-order methods to be resistant wrt l∞-attacks on MNIST (adversarial training)
give a false sense of robustness in l1 and l2 due to gradient masking. This means that standard
gradient-based methods like PGD have problems to find adversarial examples while they still
exist. In contrast, FAB does not suffer from gradient masking. In Table 4.5 we see that it is
extremely effective also wrt l1 and l2 on the l∞-robust model, outperforming by a large margin
the competitors. The reason is that FAB is not dependent on the norm of the gradient but
just its direction matters for the definition of the hyperplane in (4.5). While we believe that
resistance to gradient masking is a key property of a solid attack, we recompute the statistics
of Table 4.2 excluding l1 and l2 attacks on the l∞-AT model on MNIST in Table 4.6. FAB still
achieves in most of the cases the best aggregated statistics, implying that our attack is effective
whether or not the attacked classifier tends to “mask” the gradient.

We have shown in Sec. 4.1.3 that FAB-attack is invariant under rescaling of the classifier.
We provide an example why this is a desirable property of an adversarial attack. We consider
the defense proposed in Pang et al. [2020a], in particular their ResNet-110 (without adversarial
training) for CIFAR-10. In Table 5 in Pang et al. [2020a] it is claimed that this model has a
robust accuracy of 31.4% for 8/255 obtained by a PGD attack on their new loss function, and that
a standard PGD attack on the cross-entropy loss performs much worse. We test the performance
of PGD on the cross-entropy loss, both using the original classifier and the same scaled down
by a factor of 106. Moreover, we use the default step size ϵ/10 together with ϵ/2. The results are
reported in Table 4.7. We can see that PGD on the original model yields more than 90% robust
accuracy which confirms the statement in Pang et al. [2020a] about the cross-entropy loss being
unsuitable for this case. However, PGD applied to the rescaled classifier reduces robust accuracy
below 13%. The better step size ϵ/2 decreases it to 2.5% which shows that tuning the step size
is important for PGD. At the same time, FAB achieves a robust accuracy of 0.3% without any
need of parameter tuning or rescaling of the classifier. This exemplifies the benefit of the scaling
invariance of FAB. Moreover, as a side result this shows that the new loss alone in Pang et al.
[2020a] is an ineffective defense.

Runtime comparison. DF and SF are much faster than the other attacks as their primary
goal is to find as fast as possible adversarial examples, without emphasis on minimizing their
norms, while LRA is rather expensive. PGD needs a forward and a backward pass of the network
per iteration whereas FAB requires three passes for each iteration. Thus PGD is given 1.5 times
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Table 4.4: We report mean lp-norm of the adversarial perturbations found by the attacks (when suc-
cessful, excluding the already misclassified points) for every model.

dataset model
l∞-norm l2-norm l1-norm

DF FAB DF CW LRA FAB EAD FAB

MNIST

plain 0.078 0.066 1.13 1.01 1.00 1.00 6.38 6.04

l∞-AT 0.508 0.326 4.95 1.76 1.25 1.12 8.26 3.36

l2-AT 0.249 0.170 3.10 2.35 2.25 2.24 12.18 12.16

CIFAR-10

plain 0.008 0.006 0.28 0.21 0.22 0.21 3.01 2.87

l∞-AT 0.032 0.024 0.96 0.74 0.74 0.73 5.79 6.03

l2-AT 0.026 0.019 0.91 0.71 0.72 0.70 7.94 8.05

Table 4.5: Comparison of l∞-, l2- and l1-attacks on an l∞-robust model on MNIST. We report the
accuracy on the test set if the attack is allowed to perturb the test points of ϵ in lp-distance. The
statistics are computed on the first 1000 points on the test set for l∞ and l1, on 500 points for l2.

metric ϵ DF DAA-1 DAA-
50

PGD-1 PGD-
10

PGD-
100

FAB-1 FAB-10 FAB-
100

l∞

0.2 95.2 94.6 93.7 95.0 94.2 93.7 94.6 94.4 93.9
0.25 94.7 92.7 91.1 93.1 91.8 91.4 93.3 92.1 91.7
0.3 93.9 89.5 87.2 91.3 88.3 87.6 91.2 89.2 88.5

0.325 92.5 72.1 64.2 74.9 68.4 64.7 86.2 83.1 81.3
0.35 89.8 19.7 11.7 32.1 19.3 13.8 48.7 32.0 23.8

CW DF LRA PGD-1 PGD-
10

PGD-
100

FAB-1 FAB-10 FAB-
100

l2

1 88.8 94.6 73.6 92.2 90.8 89.8 84.2 70.6 65.4
1.5 77.6 93.0 25.8 86.0 81.2 77.0 47.0 20.6 12.2
2 64.4 91.6 3.2 77.8 67.0 57.8 15.6 1.8 0.2

2.5 53.8 89.6 0.4 68.2 49.6 36.4 3.8 0.0 0.0
3 46.8 84.6 0.0 59.8 29.6 13.4 1.4 0.0 0.0

SparseFool EAD PGD-1 PGD-
10

PGD-
100

FAB-1 FAB-10 FAB-
100

l1

2.5 96.8 92.2 94.1 93.7 93.6 88.0 74.3 56.9
5 96.5 76.0 90.9 88.9 88.2 78.3 39.4 17.6

7.5 96.4 49.5 85.2 81.4 79.0 66.1 19.8 5.0
10 96.4 27.4 80.2 73.5 70.3 49.3 11.9 2.4

12.5 96.4 14.6 74.9 65.6 58.7 35.6 7.7 0.5

Table 4.6: We recompute the statistics reported in Table 4.2 for l2 and l1 attacks excluding the l∞-AT
model on MNIST from Madry et al. [2018] where PGD fails because of gradient masking.

l2-norm CW DF LRA PGD-100 FAB-10 FAB-100

avg. rob. acc. 40.85 49.18 40.25 42.95 39.98 39.57
# best 4 1 8 11 14* 18
avg. diff. to best 1.44 9.78 0.84 3.54 0.57 0.16
max diff. to best 8.80 44.00 4.00 22.00 4.20 1.60

l1-norm SF EAD PGD-100 FAB-10 FAB-100

avg. rob. acc. 58.06 32.56 43.82 33.79 32.06
# best 0 13 0 5* 12
avg. diff. to best 26.36 0.87 12.12 2.10 0.36
max diff. to best 53.10 4.80 31.90 3.90 1.60
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Table 4.7: We attack the ResNet-110 in Pang et al. [2020a] on CIFAR-10 at ϵ = 8/255. The performance
of the PGD attack on the cross entropy loss (CE) heavily depends on both scale of the classifier and
the step size. In contrast, the scaling invariant FAB-attack works well even on the original (unscaled)
model.

attack step size robust accuracy

PGD-CE ϵ/10 90.2%
PGD-CE ϵ/2 90.2%
PGD-CE rescaled ϵ/10 12.9%
PGD-CE rescaled ϵ/2 2.5%
FAB - 0.3%

more iterations than FAB, so that overall they have same budget of forward/backward passes
(and thus runtime). Below we report the runtimes (for 1000 points on MNIST and CIFAR-10, 50
on R-ImageNet) for the attacks as used in the experiments (if not specified otherwise, it includes
all the restarts). For PGD and DAA this is the time for evaluating the robust accuracy at 5
thresholds, while for the other methods a single run is sufficient to compute the robust accuracy
for all five thresholds. MNIST: DAA 11736s, PGD 3825s for l∞/l2 and 14106s for l1, CW 944s,
EAD 606s, FAB-10 161s, FAB-100 1613s. CIFAR-10: DAA 11625s, PGD 31900s for l∞/l2 and
70110s for l1, CW 3691s, EAD 3398s, FAB-10 1209s, FAB-100 12093s. R-ImageNet: DAA
6890s, PGD 4738s for l∞/l2 and 24158s for l1, FAB 2268s for l∞/l2 and 3146s for l1 (note that
for l1 different numbers of restarts/iterations are used on R-ImageNet). We note that for PGD
the robust accuracy for the five thresholds can be computed faster by exploiting the fact that
points which are non-robust for a thresholds ϵ are also non-robust for thresholds larger than
ϵ. However, even when taking this into account FAB-10 would still be significantly faster than
PGD-100 and has better quality on MNIST and CIFAR-10. Moreover, when just considering a
fixed number of thresholds, one can stop FAB-attack whenever it finds an adversarial example for
the smallest threshold which also leads to a speed-up. However, in real world applications a full
picture of robustness as a continuous function of the threshold is the most interesting evaluation
scenario.

4.1.6 FAB-attack with a large number of classes

The standard algorithm of FAB-attack requires to compute at each iteration the Jacobian matrix
of the classifier f wrt the input x and then the closest approximated decision hyperplane. The
Jacobian matrix has dimension K × d, recalling that K is the number of classes and d the
input dimension. Although this can be in principle obtained with a single backward pass of the
network, it becomes computationally expensive on datasets with many classes. Moreover, the
memory consumption of FAB-attack increases with K. As a consequence, using FAB-attack in
the normal formulation on datasets like ImageNet which has K = 1000 classes may be inefficient.

Then, we propose a targeted version of our attack which performs at each iteration the
projection onto the linearized decision boundary between the original class and a fixed target
class. This means that in (4.8) the hyperplane πs is not selected via (4.7) as the closest one to
the current iterate but rather s ≡ t, with t the target class used. Note that in practice we do not
constrain the final outcome of the algorithm to be assigned to class t, but any misclassification
is sufficient to have a valid adversarial example. The target class t is selected as the second most
likely one according to the score given by the model to the target point, and if k restarts are
allowed one can use the classes with the k+1 highest scores as target (excluding the correct one
c). In this way, only the gradient of ft − fc : Rd → R needs to be computed, which is a cheaper
operation than getting the full Jacobian of f and with computational cost independent of the
total number of classes. We will exploit this targeted version of FAB-attack in Sec. 5.1.

4.1.7 Experimental details

Models. The plain and l∞-AT models on MNIST are publicly available available2 and consist
of two convolutional and two fully-connected layers. The architecture of the CIFAR-10 models

2https://github.com/MadryLab/mnist challenge
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has 8 convolutional layers (with number of filters increasing from 96 to 384) and 2 dense layers
and we make the classifiers available3, while on Restricted ImageNet we use the models4 (ResNet-
50 [He et al., 2016a]) from Tsipras et al. [2019]. The models on MNIST achieve the following
clean accuracy: plain 98.7%, l∞-AT 98.5%, l2-AT 98.6%. The models on CIFAR-10 achieve the
following clean accuracy: plain 89.2%, l∞-AT 79.4%, l2-AT 81.2%.

Attacks. We use CW with 40 binary search steps, 10000 iterations and confidence 0, EAD
with 1000 iterations, l1 decision rule and β = 0.05. In both cases we set the parameters to
achieve minimally (wrt l2 for CW and l1 for EAD) distorted adversarial examples. We could
not use these methods on Restricted ImageNet since, to be compatible with the attacks from
Papernot et al. [2018], it would be necessary to reimplement from scratch the models of Tsipras
et al. [2019], as done in https://github.com/tensorflow/cleverhans/tree/master/cleverh

ans/model zoo/madry lab challenges for a similar situation. For DAA we use 200 iterations
for MNIST, 50 for the other datasets and, given a threshold ϵ, a step size of ϵ/30 for MNIST, ϵ/10
otherwise. We apply PGD with 150 iterations, except for the case of l1 on Restricted ImageNet
where we use 450 iterations. For FAB-attack we set 100 iterations, except for the case of l1 on
Restricted ImageNet where we use 300 iterations.

4.2 Square Attack

In the following we present Square Attack, a score-based adversarial attack, i.e. it can query
the probability distribution over the classes predicted by a classifier but has no access to the
underlying model. Moreover, unlike transfer-based black-box methods [Papernot et al., 2016a,
Yan et al., 2019, Cheng et al., 2019, Du et al., 2020, Suya et al., 2019], it does not leverage
any surrogate model similar to the target classifier to craft perturbations. The Square Attack
exploits random search5 [Rastrigin, 1963, Schumer and Steiglitz, 1968] which is one of the simplest
approaches for black-box optimization. Due to a particular sampling distribution, it requires
significantly fewer queries compared to the state-of-the-art black-box methods in the score-based
threat model while outperforming them in terms of success rate, i.e. the percentage of successful
adversarial examples. This is achieved by a combination of a particular initialization strategy
and our square-shaped updates. We motivate why these updates are particularly suited to attack
neural networks and provide convergence guarantees for a variant of our method. In an extensive
evaluation with untargeted and targeted attacks, three datasets (MNIST, CIFAR-10, ImageNet),
normal and robust models, we show that Square Attack outperforms state-of-the-art methods in
the l2- and l∞-threat model.

4.2.1 General algorithmic scheme of the Square Attack

If f : [0, 1]d → RK is a classifier, we want to find adversarial points x̂ with an lp-norm bound of
ϵ for x which satisfy

argmax
k=1,...,K

fk(x̂) ̸= y, ∥x̂− x∥p ≤ ϵ and x̂ ∈ [0, 1]d,

where we have added the additional constraint that x̂ is an image. The task of finding x̂ can be
rephrased as solving the constrained optimization problem

min
x̂∈[0,1]d

L(f(x̂), y), s.th. ∥x̂− x∥p ≤ ϵ, (4.14)

for a loss L. In our experiments, we use L(f(x̂), y) = fy(x̂)−maxk ̸=y fk(x̂).
Square Attack is based on random search which is a well known iterative technique in opti-

mization introduced by Rastrigin [1963]. The main idea of the algorithm is to sample a random
update δ at each iteration, and to add this update to the current iterate x̂ if it improves the objec-
tive function. Despite its simplicity, random search performs well in many situations [Zabinsky,
2010] and does not depend on gradient information from the objective function g.

3https://github.com/fra31/fab-attack
4Available at https://github.com/MadryLab/robust-features-code
5It is an iterative procedure different from random sampling inside the feasible region.
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Algorithm 2: The Square Attack via random search

Input: classifier f , point x ∈ Rd, image size w, number of color channels c, lp-radius ϵ,
label y ∈ {1, . . . ,K}, number of iterations N

Output: approximate minimizer x̂ ∈ Rd of the problem stated in Eq. (4.14)
1 x̂← init(x), l∗ ← L(f(x), y), i← 1
2 while i < N and x̂ is not adversarial do
3 h(i) ← side length of the square to modify (according to some schedule)

4 δ ∼ P (ϵ, h(i), w, c, x̂, x) (see Alg. 3 and 4 for the sampling distributions)

5 x̂new ← Project x̂+ δ onto {z ∈ Rd : ∥z − x∥p ≤ ϵ} ∩ [0, 1]d

6 lnew ← L(f(x̂new), y)
7 if lnew < l∗ then x̂← x̂new, l

∗ ← lnew ;
8 i← i+ 1

9 end

Many variants of random search have been introduced [Matyas, 1965, Schumer and Steiglitz,
1968, Schrack and Choit, 1976], which differ mainly in how the random perturbation is chosen at
each iteration (the original scheme samples uniformly on a hypersphere of fixed radius). For our
goal of crafting adversarial examples we come up with two sampling distributions specific to the
l∞- and the l2-attack (Sec. 4.2.2 and Sec. 4.2.3), which we integrate in the classic random search
procedure. These sampling distributions are motivated by both how images are processed by neu-
ral networks with convolutional filters and the shape of the lp-balls for different p. Additionally,
since the considered objective is non-convex when using neural networks, a good initialization is
particularly important. We then introduce a specific one for better query efficiency.

Our proposed scheme differs from classical random search by the fact that the perturbations
x̂− x are constructed such that for every iteration they lie on the boundary of the l∞- or l2-ball
before projection onto the image domain [0, 1]d. Thus we are using the perturbation budget
almost maximally at each step. Moreover, the changes are localized in the image in the sense
that at each step we modify just a small fraction of contiguous pixels shaped into squares. Our
overall scheme is presented in Alg. 2. First, the algorithm picks the side length h(i) of the square
to be modified (step 3), which is decreasing according to an a priori fixed schedule. This is in
analogy to the step size reduction in gradient-based optimization. Then in step 4 we sample
a new update δ and add it to the current iterate (step 5). If the resulting loss (obtained in
step 6) is smaller than the best loss so far, the change is accepted otherwise discarded. Since
we are interested in query efficiency, the algorithm stops as soon as an adversarial example is
found. The time complexity of the algorithm is dominated by the evaluation of f(x̂new), which is
performed at most N times, with N total number of iterations. We plot the resulting adversarial
perturbations in Fig. 4.5 and additionally in Sec. 4.2.10.

We note that previous works [Ilyas et al., 2019, Moon et al., 2019, Meunier et al., 2019]
generate perturbations containing squares. However, while those use a fixed grid on which the
squares are constrained, we optimize the position of the squares as well as the color, making
our attack more flexible and effective. Moreover, unlike previous works, we motivate squared
perturbations with the structure of the convolutional filters (see Sec. 4.2.5).

Size of the squares. Given images of size w × w, let p ∈ [0, 1] be the percentage of ele-
ments of x to be modified. The length h of the side of the squares used is given by the closest
positive integer to

√
p · w2 (and h ≥ 3 for the l2-attack). Then, the initial p is the only free

parameter of our scheme. With N = 10000 iterations available, we halve the value of p at
i ∈ {10, 50, 200, 1000, 2000, 4000, 6000, 8000} iterations. For different N we rescale the schedule
accordingly.

4.2.2 The l∞-Square Attack

Initialization. As initialization we use vertical stripes of width one where the color of each
stripe is sampled uniformly at random from {−ϵ, ϵ}c (c number of color channels). We found
that convolutional networks are particularly sensitive to such perturbations, see also Yin et al.
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[2019] for a detailed discussion on the sensitivity of neural networks to various types of high
frequency perturbations.

Sampling distribution. Similar to Moon et al. [2019] we observe that successful l∞-perturbations
usually have values ±ϵ in all the components (note that this does not hold perfectly due to the
image constraints x̂ ∈ [0, 1]d). In particular, it holds

x̂i ∈ {max{0, xi − ϵ},min{1, xi + ϵ}}.

Our sampling distribution P for the l∞-norm described in Alg. 3 selects sparse updates of x̂
with ∥δ∥0 = h · h · c where δ ∈ {−2ϵ, 0, 2ϵ}d and the non-zero elements are grouped to form
a square. In this way, after the projection onto the l∞-ball of radius ϵ (step 5 of Alg. 2) all
components i for which ϵ ≤ xi ≤ 1 − ϵ satisfy x̂i ∈ {xi − ϵ, xi + ϵ}, i.e. differ from the original
point x in each element either by ϵ or −ϵ. Thus x̂ − x is situated at one of the corners of the
l∞-ball (modulo the components which are close to the boundary). Note that all projections
are done by clipping. Moreover, we fix the elements of δ belonging to the same color channel
to have the same sign, since we observed that neural networks are particularly sensitive to such
perturbations (see Sec. 4.2.9).

Algorithm 3: Sampling distribu-
tion P for l∞-norm

Input: maximal norm ϵ, window size
h, image size w, color
channels c

Output: New update δ
1 δ ← array of zeros of size w × w × c
2 sample uniformly

r, s ∈ {0, . . . , w − h} ⊂ N
3 for i = 1, . . . , c do
4 ρ← Uniform({−2ϵ, 2ϵ})
5 δr+1:r+h, s+1:s+h, i ← ρ · 1h×h

6 end

Figure 4.4: Perturbation of the l2-attack

4.2.3 The l2-Square Attack

Initialization. The l2-perturbation is initialized by generating a 5×5 grid-like tiling by squares
of the image, where the perturbation on each tile has the shape described next in the sampling
distribution. The resulting perturbation x̂− x is rescaled to have l2-norm ϵ and the resulting x̂
is projected onto [0, 1]d by clipping.

Sampling distribution. First, let us notice that the adversarial perturbations typically found
for the l2-norm tend to be much more localized than those for the l∞-norm [Tsipras et al., 2019],
in the sense that large changes are applied on some pixels of the original image, while many
others are minimally modified. To mimic this feature we introduce a new update η which has
two “centers” with large absolute value and opposite signs, while the other components have
lower absolute values as one gets farther away from the centers, but never reaching zero (see
Fig. 4.4 for one example with h = 8 of the resulting update η). In this way the modifications
are localized and with high contrast between the different halves, which we found to improve
the query efficiency. Concretely, we define η(h1,h2) ∈ Rh1×h2 (for some h1, h2 ∈ N+ such that
h1 ≥ h2) for every 1 ≤ r ≤ h1, 1 ≤ s ≤ h2 as

η(h1,h2)
r,s =

M(r,s)∑
k=0

1

(n+ 1− k)2
, with n = ⌊h1

2
⌋,

and M(r, s) = n−max{|r−⌊h1

2 ⌋− 1|, |s−⌊h2

2 ⌋− 1|}. The intermediate square update η ∈ Rh×h

is then selected uniformly at random from either

η =
(
η(h,k),−η(h,h−k)

)
, with k = ⌊h/2⌋, (4.15)
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Algorithm 4: Sampling distribution P for l2-norm

Input: maximal norm ϵ, window size h, image size w, number of color channels c,
current image x̂, original image x

Output: New update δ
1 ν ← x̂− x
2 sample uniformly r1, s1, r2, s2 ∈ {0, . . . , w − h}
3 W1 := r1 + 1 : r1 + h, s1 + 1 : s1 + h, W2 := r2 + 1 : r2 + h, s2 + 1 : s2 + h

4 ϵ2unused ← ϵ2 − ∥ν∥22, η∗ ← η/∥η∥2 with η as in (4.15)
5 for i = 1, . . . , c do
6 ρ← Uniform({−1, 1})
7 νtemp ← ρη∗ + νW1,i/∥νW1,i∥

2

8 ϵiavail ←
√
∥νW1∪W2,i∥

2
2 +

ϵ2unused/c

9 νW2,i ← 0, νW1,i ← (νtemp/∥νtemp∥2)ϵ
i
avail

10 end
11 δ ← x+ ν − x̂

original l∞-attack - ϵ∞ = 0.05 l2-attack - ϵ2 = 5

Figure 4.5: Visualization of the adversarial perturbations and examples found by the l∞- and l2-versions
of the Square Attack on ResNet-50.

or its transpose (corresponding to a rotation of 90◦).
Second, unlike l∞-constraints, l2-constraints do not allow to perturb each component inde-

pendently from the others as the overall l2-norm must be kept smaller than ϵ. Therefore, to
modify a perturbation x̂− x of norm ϵ with localized changes while staying on the hypersphere,
we have to “move the mass” of x̂−x from one location to another. Thus, our scheme consists in
randomly selecting two squared windows in the current perturbation ν = x̂−x, namely νW1 and
νW2

, setting νW2
= 0 and using the budget of ∥νW2

∥2 to increase the total perturbation of νW1
.

Note that the perturbation of W1 is then a combination of the existing perturbation plus the
new generated η. We report the details of this scheme in Alg. 4 where step 4 allows to utilize the
budget of l2-norm lost after the projection onto [0, 1]d. The update δ output by the algorithm
is such that the next iterate x̂new = x̂+ δ (before projection onto [0, 1]d by clipping) belongs to
the hypersphere B2(x, ϵ) as stated in the following proposition.

Proposition 4.2.1 Let δ be the output of Alg. 4. Then ∥x̂+ δ − x∥2 = ϵ.

Proof. Let δ be the output of Alg. 4. We prove here that ∥x̂+ δ − x∥2 = ϵ. From Step 13 of
Alg. 4, we directly have the equality ∥x̂+ δ − x∥2 = ∥ν∥2. Let νold be the update at the previous
iteration, defined in Step 1 and W1 ∪W2 the indices not belonging to W1 ∪W2. Then,

∥ν∥22 =

c∑
i=1

∥νW1∪W2,i∥
2
2 +

c∑
i=1

∥∥∥νW1∪W2,i

∥∥∥2
2
=

c∑
i=1

∥νW1,i∥
2
2 +

c∑
i=1

∥∥∥νW1∪W2,i

∥∥∥2
2

=

c∑
i=1

(ϵiavail)
2 +

c∑
i=1

∥∥∥νW1∪W2,i

∥∥∥2
2
=

c∑
i=1

∥∥νoldW1∪W2,i

∥∥2
2
+ ϵ2unused +

c∑
i=1

∥∥∥νW1∪W2,i

∥∥∥2
2

(i)
=

c∑
i=1

∥∥νoldW1∪W2,i

∥∥2
2
+ ϵ2unused +

c∑
i=1

∥∥∥νoldW1∪W2,i

∥∥∥2
2
=
∥∥νold∥∥2

2
+ ϵ2unused

(ii)
= ϵ2,

where (i) holds since νold
W1∪W2

≡ νW1∪W2
as the modifications affect only the elements in the two
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windows, and (ii) holds by the definition of ϵunused in Step 4 of Alg. 4. □

Next, we provide high-level theoretical justifications and empirical evidence regarding the
algorithmic choices in Square Attack, with focus on the l∞-version (the l2-version is significantly
harder to analyze).

4.2.4 Convergence analysis of random search

First, we want to study the convergence of the random search algorithm when considering an
L-smooth objective function g (such as neural networks with activation functions like softplus,
swish, ELU, etc) on the whole space Rd (without projection6) under the following assumptions
on the update δt drawn from the sampling distribution Pt:

E∥δt∥22 ≤ γ2
tC and E|⟨δt, v⟩| ≥ C̃γt∥v∥2, ∀v ∈ Rd, (4.16)

where γt is the step size at iteration t, C, C̃ > 0 some constants and ⟨·, ·⟩ denotes the inner
product. We obtain the following result, similar to existing convergence rates for zeroth-order
methods [Nemirovsky and Yudin, 1983, Nesterov and Spokoiny, 2017, Duchi et al., 2015]:

Proposition 4.2.2 Suppose that E[δt] = 0 and the assumptions in Eq. (4.16) hold. Then for
step-sizes γt = γ/

√
T , we have

mint=0,...,TE∥∇g(xt)∥2≤
2

γC̃
√
T

(
g(x0)− Eg(xT+1) +

γ2CL

2

)
.

Proof. Using the L-smoothness of the function g, that is it holds for all x, y ∈ Rd,

∥∇g(x)−∇g(y)∥2 ≤ L ∥x− y∥2 .

we obtain (see e.g. Boyd and Vandenberghe [2004]):

g(xt + δt) ≤ g(xt) + ⟨∇g(xt), δt⟩+
L

2
∥δt∥22,

and by definition of xt+1 we have

g(xt+1) ≤ min{g(xt), g(xt + δt)}

≤ g(xt) + min{0, ⟨∇g(xt), δt⟩+
L

2
∥δt∥22}.

Using the definition of the min as a function of the absolute value (2min{a, b} = a+ b− |a− b|)
yields

g(xt+1) ≤ g(xt) +
1

2
⟨∇g(xt), δt⟩+

L

4
∥δt∥22 −

1

2
|⟨∇g(xt), δt⟩+

L

2
∥δt∥22|.

And using the triangular inequality (|a+ b| ≥ |a| − |b|), we have

g(xt+1) ≤ g(xt) +
1

2
⟨∇g(xt), δt⟩+

L

2
∥δt∥22 −

1

2
|⟨∇g(xt), δt⟩|.

Therefore taking the expectation and using that Eδt = 0, we get

Eg(xt+1) ≤ Eg(xt)−
1

2
E|⟨∇g(xt), δt⟩|+

L

2
E∥δt∥22.

Therefore, together with the assumptions in Eq. (4.16) this yields to

Eg(xt+1) ≤ Eg(xt)−
C̃γt
2

E∥∇g(xt)∥2 +
LCγ2

t

2
.

6Nonconvex constrained optimization under noisy oracles is notoriously harder [Davis and Drusvyatskiy, 2019].
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Algorithm 5: Sampling distribution Pmultiple for l∞-norm

Input: maximal norm ϵ, window size h, image size w, color channels c
Output: New update δ

1 δ ← array of zeros of size w × w × c
2 sample uniformly r, s ∈ {0, . . . , w} ⊂ N
3 for i = 1, . . . , c do
4 δr+1:r+h, s+1:s+h, i ← Uniform({−2ϵ, 2ϵ}h×h)
5 end

and thus

E ∥∇g(xt)∥2 ≤
2

γtC̃

(
Eg(xt)− Eg(xt+1) +

LCγ2
t

2

)
.

Thus for γt = γ we have summing for t = 0 : T

min0≤i≤T E∥∇g(xi)∥2 ≤
1

T

T∑
t=0

E∥∇g(xt)∥2 ≤
2

C̃γT

[
g(x0)− Eg(xT+1) +

TLCγ2

2

]
.

We conclude setting the step-size to γ = Θ(1/
√
T ). □

This basically shows for T large enough one can make the gradient arbitrary small, meaning
that the random search algorithm converges to a critical point of g (one cannot hope for much
stronger results in non-convex optimization without stronger conditions).

Unfortunately, the second assumption in Eq. (4.16) does not directly hold for our sampling
distribution P for the l∞-norm. In fact, let us consider an update δ with a window size h = 2
and the direction v ∈ {−1, 1}w×w×c defined as

vik,l = (−1)kl for all i, k, l.

It is easy to check that any update δ drawn from the sampling distribution P is orthogonal to
this direction v:

⟨v, δ⟩ =
c∑

i=1

r+2∑
k=r+1

s+2∑
l=s+1

(−1)kl = c(−1 + 1− 1 + 1) = 0.

Thus, E|⟨v, δ⟩| = 0 and the assumptions in Eq. (4.16) do not hold. This means that the conver-
gence analysis does not directly hold for the sampling distribution P .

However, such assumption holds for a similar sampling distribution, Pmultiple, where each
component of the update δ is drawn uniformly at random from {−2ϵ, 2ϵ}. Let us consider the
sampling distribution Pmultiple where different Rademacher ρk,l,i are drawn for each pixel of
the update window δr+1:r+h, s+1:s+h, i. We present it in Alg. 5 with the convention that any
subscript k > w should be understood as k−w. This technical modification is greatly helpful to
avoid side effect.

Let v ∈ Rw×w×c for which we have using the Khintchine inequality [Haagerup, 1981]:

E|⟨δ, v⟩| = E|
r+h∑

k=r+1

s+h∑
l=s+1

c∑
i=1

δik,lv
i
k,l|

(i)
= E(r,s)Eρ|

r+h∑
k=r+1

s+h∑
l=s+1

c∑
i=1

δik,lv
i
k,l|

(ii)

≥ 2ε√
2
E(r,s)∥V(r,s)∥2

(iii)

≥
√
2ε∥E(r,s)V(r,s)∥2 ≥

√
2εh2

w2
∥v∥2,

where we define by V(r,s) = {vik,l}k∈{r+1,...,r+h},l∈{s+1,...,s+h},i∈{1,...,c} and (i) follows from the
decomposition between the randomness of the Rademacher and the random window, (ii) follows
from the Khintchine inequality and (iii) follows from Jensen inequality. In addition we have for
the variance:

E∥δ∥22 = E(r,s)

r+h∑
k=r+1

s+h∑
l=s+1

c∑
i=1

Eρ(δ
i
k,l)

2 = E(r,s)

r+h∑
k=r+1

s+h∑
l=s+1

c∑
i=1

4ε2 = 4cε2h2.
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Thus the assumptions in Eq. (4.16) hold for the sampling distribution Pmultiple. Moreover, while
Pmultiple performs worse than the distribution used in Alg. 3, we show in Sec. 4.2.9 that it already
reaches state-of-the-art results.

4.2.5 Why square updates of equal sign?

Why squares? Previous works [Moon et al., 2019, Meunier et al., 2019] build their l∞-attacks
by iteratively adding square modifications. Likewise we change square-shaped regions of the
image for both our l∞- and l2-attacks, but with the difference that we can sample any square
subset of the input, while the grid of the possible squares is fixed in [Moon et al., 2019, Meunier
et al., 2019]. This leads naturally to wonder why squares are superior to other shapes, e.g.
rectangles.

Let us consider the l∞-threat model, with bound ϵ, input space Rd×d and a convolutional
filter w ∈ Rs×s with entries unknown to the attacker. Let δ ∈ Rd×d be the sparse update with
∥δ∥0 = k ≥ s2 and ∥δ∥∞ ≤ ϵ. We denote by S(a, b) the index set of the rectangular support
of δ with |S(a, b)| = k and shape a × b. We want to provide intuition why sparse square-
shaped updates are superior to rectangular ones in the sense of reaching a maximal change in
the activations of the first convolutional layer. Let z = δ ∗ w ∈ Rd×d denote the output of the
convolutional layer for the update δ. The l∞-norm of z is the maximal componentwise change
of the convolutional layer:

∥z∥∞ = max
u,v
|zu,v| = max

u,v

∣∣∣ s∑
i,j=1

δu−⌊ s
2 ⌋+i,v−⌊ s

2 ⌋+j · wi,j

∣∣∣
≤ max

u,v
ϵ
∑
i,j

|wi,j |1(u−⌊ s
2 ⌋+i,v−⌊ s

2 ⌋+j)∈S(a,b),

where elements with indices exceeding the size of the matrix are set to zero. Note that the
indicator function attains 1 only for the non-zero elements of δ involved in the convolution to
get zu,v. Thus, to have the largest upper bound possible on |zu,v|, for some (u, v), we need the
largest possible amount of components of δ with indices in

C(u, v) =
{
(u− ⌊s

2
⌋+ i, v − ⌊s

2
⌋+ j) : i, j = 1, . . . , s

}
to be non-zero (that is in S(a, b)). Therefore, it is desirable to have the shape S(a, b) of the
perturbation δ selected so to maximize the number N of convolutional filters w ∈ Rs×s which fit
into the rectangle a× b. Let F be the family of the objects that can be defined as the union of
axis-aligned rectangles with vertices on N2, and G ⊂ F be the squares of F of shape s× s with
s ≥ 2. We have the following proposition:

Proposition 4.2.3 Among the elements of F with area k ≥ s2, those which contain the largest
number of elements of G have

N∗ = (a− s+ 1)(b− s+ 1) + (r − s+ 1)+ (4.17)

of them, with a = ⌊
√
k⌋, b = ⌊ka⌋, r = k − ab and z+ = max{z, 0}.

Proof. Let x ∈ F , and N(x) the number of elements of G that x contains. Let initialize x as
a square of size s × s, so that N(x) = 1. We then add iteratively the remaining k − s2 unitary
squares to x so to maximize N(x). In order to get N(x) = 2 it is necessary to increase x to have
size s× (s+ 1). At this point, again to get N(x) = 3 we need to add s squares to one side of x.
However, if we choose to glue them so to form a rectangle s× (s+ 2), then N(x) = 3 and once
more we need other s squares to increase N , which means overall s2+3s to achieve N(x) = 4. If
instead we glue s squares along the longer side, with only one additional unitary square we get
N(x) = 4 using s2+2s+1 < s2+3s unitary squares (as s ≥ 2), with x = (s+1)× (s+1). Then,
if the current shape of x is a × b with a ≥ b, the optimal option is adding a unitary squares to
have shape a× (b+ 1), increasing the count N of a− s+ 1. This strategy can be repeated until
the budget of k unitary squares is reached. Finally, since we start from the shape s × s, then
at each stage b− a ∈ {0, 1}, which means that the final a will be ⌊

√
k⌋. A rectangle a× b in F
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contains (a− s+ 1)(b− s+ 1) elements of G. The remaining k − ab squares can be glued along
the longer side, contributing to N(x) with (k − ab− s+ 1)+. □

This proposition states that, if we can modify only k elements of δ, then shaping them to
form (approximately) a square allows to maximize the number of pairs (u, v) for which |S(a, b)∩
C(u, v)| = s2. If k = l2 then a = b = l are the optimal values for the shape of the perturbation
update, i.e. the shape is exactly a square.

Why updates of equal sign? Proposition 4.2.2 underlines the importance of a large inner
product E[|⟨δt,∇g(xt)⟩|] in the direction of the gradients. This provides some intuition explaining
why the update δsingle, where a single Rademacher is drawn for each window, is more efficient
than the update δmultiple where different Rademacher values are drawn. Following the observation
that the gradients are often approximately piecewise constant [Ilyas et al., 2019], we consider, as
a heuristic, a piecewise constant direction v for which we will show that

E[|⟨δsingle, v⟩|] = Θ(∥v∥1) and E[|⟨δmultiple, v⟩|] = Θ(∥v∥2).

Therefore the directions sampled by our proposal are more correlated with the gradient direction
and help the algorithm to converge faster. This is also verified empirically in our experiments
(see the ablation study in Sec. 4.2.9).

Let us consider the direction v ∈ Rw×w composed of different blocks {V(r,s)}(r,s)∈{0,...,w/h} of

constant sign. For this direction v we compare two different proposal Pmultiple and P single where
we choose uniformly one random block (r, s) and we either assign a single Rademacher ρ(r,s) to the

whole block (this is P single) or we assign multiple Rademacher values {ρ(k,l)}k∈{rh+1,...,(r+1)h},l∈{sh+1,...,(s+1)h}
(this is Pmultiple). Using the Khintchine and Jensen inequalities similarly to Sec. 4.2.4, we have

E|⟨δmultiple, v⟩| = E|
(r+1)h∑
k=rh+1

(s+1)h∑
l=sh+1

δk,lvk,l| ≥
2ε√
2
E(r,s)∥V(r,s)∥2 ≥

√
2εh2

w2
∥v∥2.

Moreover, we can show the following upper bound using the Khintchine inequality and the
inequality between the l1- and l2-norms:

E|⟨δmultiple, v⟩| = E|
(r+1)h∑
k=rh+1

(s+1)h∑
l=sh+1

δk,lvk,l| ≤ 2εE(r,s)∥V(r,s)∥2

=
2εh2

w2

w/h∑
r=1

w/h∑
s=1

∥V(r,s)∥2 ≤
2εh

w
∥v∥2

Thus, E[|⟨δmultiple, v⟩|] = Θ(∥v∥2). For the update δsingle we obtain

E|⟨δsingle, v⟩| = E|
(r+1)h∑
k=rh+1

(s+1)h∑
l=sh+1

δr,svk,l| = E|δr,s
(r+1)h∑
k=rh+1

(s+1)h∑
l=sh+1

vk,l|

(i)
= 2εE(r,s)∥V(r,s)∥1 =

2εh2

w2
∥v∥1

where (i) follows from the fact the V(r,s) has a constant sign. We recover then the l1-norm of the

direction v, i.e. we conclude that E[|⟨δsingle, v⟩|] = Θ(∥v∥1).
This implies that for an approximately constant block E|⟨δsingle, v⟩| will be larger than

E|⟨δmultiple, v⟩|. For example, in the extreme case of constant binary block |V(r,s)| = 11⊤, we
have

E|⟨δsingle, v⟩| = 2εh2 >> E|⟨δmultiple, v⟩| ≍ 2εh.

4.2.6 Experiments

In this section we show the effectiveness of the Square Attack. Here we concentrate on untar-
geted attacks since our primary goal is query efficient robustness evaluation, while the targeted
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Table 4.8: Results of untargeted attacks on ImageNet with a limit of 10,000 queries. For the l∞-attack
we set the norm bound ϵ = 0.05 and for the l2-attack ϵ = 5. Models: normally trained I: Inception v3, R:
ResNet-50, V: VGG-16-BN. The Square Attack outperforms for both threat models all other methods
in terms of success rate and query efficiency. The missing entries correspond to the results taken from
the original paper where some models were not reported

Norm Attack
Failure rate Avg. queries Med. queries

I R V I R V I R V

l∞

Bandits 3.4% 1.4% 2.0% 957 727 394 218 136 36
Parsimonious 1.5% - - 722 - - 237 - -
DFOc–CMA 0.8% 0.0% 0.1% 630 270 219 259 143 107

DFOd–Diag. CMA 2.3% 1.2% 0.5% 424 417 211 20 20 2
SignHunter 1.0% 0.1% 0.3% 471 129 95 95 39 43

Square Attack 0.3% 0.0% 0.0% 197 73 31 24 11 1

l2

Bandits 9.8% 6.8% 10.2% 1486 939 511 660 392 196
SimBA-DCT 35.5% 12.7% 7.9% 651 582 452 564 467 360

Square Attack 7.1% 0.7% 0.8% 1100 616 377 385 170 109

Table 4.9: Query statistics for untargeted l2-attacks computed for the points for which all three attacks
are successful for fair comparison

Attack
Avg. queries Med. queries

I R V I R V

Bandits 536 635 398 368 314 177
SimBA-DCT 647 563 421 552 446 332

Square Attack 352 287 217 181 116 80

attacks are postponed to Sec. 4.2.10. We follow the standard setup [Ilyas et al., 2019, Meunier
et al., 2019] of comparing black-box attacks on three ImageNet models in terms of success rate
and query efficiency for the l∞- and l2-untargeted attacks. We provide more experimental details
in Sec. 4.2.8, ablation studies in Sec. 4.2.9 and additional results in Sec. 4.2.10.

Evaluation on ImageNet. We compare the Square Attack to state-of-the-art score-based
black-box attacks (without any extra information such as surrogate models) on three pretrained
models in PyTorch [Paszke et al., 2019] (Inception v3, ResNet-50, VGG-16-BN) using 1,000
images from the ImageNet validation set. Unless mentioned otherwise, we use the code from
the other papers with their suggested parameters. As it is standard in the literature, we give a
budget of 10,000 queries per point to find an adversarial perturbation of lp-norm at most ϵ. We
report the average and median number of queries each attack requires to craft an adversarial
example, together with the failure rate. All query statistics are computed only for successful
attacks on the points which were originally correctly classified.

Tables 4.8 and 4.9 show that the Square Attack, despite its simplicity, achieves in all the
cases (models and norms) the lowest failure rate, (< 1% everywhere except for the l2-attack
on Inception v3), and almost always requires fewer queries than the competitors to succeed.
Fig. 4.6 shows the progression of the success rate of the attacks over queries, with an additional
zoom on the first 200 queries. Even in the low query regime the Square Attack outperforms
the competitors for both norms. Finally, we highlight that the only hyperparameter of our
attack, p, regulating the size of the squares, is set for all the models to 0.05 for l∞ and 0.1 for
l2-perturbations.

l∞-attacks. We compare our attack to Bandits [Ilyas et al., 2019], Parsimonious [Moon et al.,
2019], DFOc / DFOd [Meunier et al., 2019], and SignHunter [Al-Dujaili and O’Reilly, 2020]. In
Table 4.8 we report the results of the l∞-attacks with norm bound of ϵ = 0.05. The Square
Attack always has the lowest failure rate, notably 0.0% in 2 out of 3 cases, and the lowest query
consumption. Interestingly, our attack has median equal 1 on VGG-16-BN, meaning that the
proposed initialization is particularly effective for this model. The closest competitor in terms
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of the average number of queries is SignHunter, which still needs on average between 1.8 and 3
times more queries to find adversarial examples and has a higher failure rate than our attack.
Moreover, the median number of queries of SignHunter is much worse than for our method (e.g.
43 vs 1 on VGG). We note that although DFOc–CMA is competitive to our attack in terms of
median queries, it has a significantly higher failure rate and between 2 and 7 times worse average
number of queries. Additionally, our method is also more effective in the low-query regime
(Fig. 4.6) than other methods on all the models. For this comparison we include the success
rates of the attacks from Meunier et al. [2019] (DFOc–CMA–50 and DFOd–Diag. CMA–30)
and Shukla et al. [2019] (BayesAttack), obtained via personal communication directly from the
authors, and were calculated on 500 and 10,000 randomly sampled points, respectively. The gap
in the success rate gets larger in the range of 100-1000 queries for the more challenging Inception-
v3 model, where we observe over 10% improvement in the success rate of Square Attack over all
other methods including SignHunter. Our method also outperforms the BayesAttack in the low
query regime, i.e. less than 200 queries, by approximately 20% on every model. We note that
DFOd–Diag. CMA–30 method is also quite effective in the low query regime showing results
close to BayesAttack. However, it is also outperformed by our Square Attack.

l2-attacks. We compare our attack to Bandits [Ilyas et al., 2019] and SimBA [Guo et al., 2019]
for ϵ = 5, while we do not consider SignHunter since it is not as competitive as for the l∞-
norm, and in particular worse than Bandits on ImageNet (see Fig. 2 in Al-Dujaili and O’Reilly
[2020]). As Table 4.8 and Fig. 4.6 show, the Square Attack outperforms by a large margin the
other methods in terms of failure rate, and achieves the lowest median number of queries for
all the models and the lowest average one for VGG-16-BN. However, since it has a significantly
lower failure rate, the statistics of the Square Attack are biased by the “hard” cases where the
competitors fail. Then, we recompute the same statistics considering only the points where all
the attacks are successful (Table 4.9). In this case, our method improves by at least 1.5× the
average and by at least 2× the median number of queries. The l2-Square Attack outperform the
competitors particularly in the low query regime (Fig. 4.6). We note that the success rate of
SimBA plateaus after some iteration. This happens due to the fact that their algorithm only adds
orthogonal updates to the perturbation, and does not have any way to correct the greedy decisions
made earlier. Thus, there is no progress anymore after the norm of the perturbation reaches the
ϵ = 5 (note that we used for SimBA the same parameters of the comparison between SimBA and
Bandits in Guo et al. [2019]). Contrary to this, both Bandits and our attack constantly keep
improving the success rate, although with a different speed.

4.2.7 Square Attack can be more accurate than white-box attacks

Table 4.10: On the robust models of Madry et al.
[2018] and Zhang et al. [2019b] on MNIST l∞-
Square Attack with ϵ = 0.3 achieves state-of-the-
art (SOTA) results outperforming white-box at-
tacks in terms of robust accuracy.

Model SOTA Square

AT 88.13% 88.25%
TRADES 93.33% 92.58%

Here we test our attack on problems which are
challenging for both white-box PGD and other
black-box attacks. We use for evaluation robust
accuracy, defined as the worst-case accuracy of
a classifier when an attack perturbs each input
in some lp-ball. We show that our algorithm
outperforms the competitors both on state-of-
the-art robust models and defenses that induce
different types of gradient masking. Thus, our
attack is useful to evaluate robustness without
introducing adaptive attacks designed for each
model separately.

Outperforming white-box attacks on robust models. The models obtained with the
adversarial training (AT) of Madry et al. [2018] and TRADES [Zhang et al., 2019b] are standard
benchmarks to test adversarial attacks, which means that many papers have tried to reduce
their robust accuracy, without limit on the computational budget and primarily via white-box
attacks. We test our l∞-Square Attack on these robust models on MNIST at ϵ = 0.3, using
p = 0.8, 20k queries and 50 random restarts, i.e., we run our attack 50 times and consider it
successful if any of the runs finds an adversarial example (Table 4.10). On the AT model Square
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Inception v3 ResNet-50 VGG-16-BN

l∞-attacks

l∞-attacks
low query regime

l2-attacks

l2-attacks
low query regime

Figure 4.6: Success rate vs number of queries for different attacks on ImageNet on three standardly
trained models. The low query regime corresponds to up to 200 queries, while the standard regime
corresponds to 10,000 queries. ∗ denotes the results obtained via personal communication with the
authors and evaluated on 500 and 10,000 randomly sampled points for DFO [Meunier et al., 2019] and
BayesAttack [Shukla et al., 2019] methods, respectively.

Attack is only 0.12% far from the white-box state-of-the-art, achieving the second best result
(also outperforming the 91.47% of SignHunter by a large margin). On the TRADES benchmark,
our method obtains a new SOTA7 of 92.58% robust accuracy outperforming the white-box FAB
attack introduced in Sec. 4.1. In Sec. 5.1 we will show that the Square Attack outperforms other
white-box attacks on 9 out of 9 MNIST evaluated models. Thus, our black-box attack can be
also useful for robustness evaluation of new defenses in the setting where gradient-based attacks
require many restarts and iterations.

Resistance to gradient masking. In Table 4.11 we report the robust accuracy at different
thresholds ϵ of the l∞-adversarially trained models on MNIST of Madry et al. [2018] for the l2-
threat model. It is known that the PGD is ineffective since it suffers from gradient masking (see
discussion and results in Sec. 4.1.5) Unlike PGD and other black-box attacks, our Square Attack
does not suffer from gradient masking and yields robust accuracy close to zero for ϵ = 2.5,
with only a single run. Moreover, the l2-version of SignHunter fails to accurately assess the
robustness because the method optimizes only over the extreme points of the l∞-ball of radius
ϵ/
√
d embedded in the target l2-ball.

Attacking Clean Logit Pairing and Logit Squeezing. These two l∞ defenses proposed in
Kannan et al. [2018] were broken in Mosbach et al. [2018]. However, Mosbach et al. [2018] needed

7This refers to SOTA results at the time of publication, and slightly better values have been later reported
(see https://github.com/MadryLab/mnist challenge and https://github.com/yaodongyu/TRADES.
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Table 4.11: Robust accuracy wrt l2 of the l∞-adversarially trained models of Madry et al. [2018] at
different thresholds ϵ. PGD is shown with 1, 10, 100 random restarts. The black-box attacks are given
a 10k queries budget.

ϵ2
White-box Black-box

PGD1 PGD10 PGD100 SignHunter Bandits SimBA Square

2.0 79.6% 67.4% 59.8% 95.9% 80.1% 87.6% 16.7%
2.5 69.2% 51.3% 36.0% 94.9% 32.4% 75.8% 2.4%
3.0 57.6% 29.8% 12.7% 93.8% 12.5% 58.1% 0.6%

Table 4.12: l∞-robustness of Clean Logit Pairing (CLP), Logit Squeezing (LSQ) [Kannan et al., 2018].
The Square Attack is competitive to white-box PGD with many restarts (R=10,000, R=100 on MNIST,
CIFAR-10 resp.) and more effective than other black-box attacks.

ϵ∞ Model
White-box Black-box

PGD1 PGDR Bandits SignHunter Square

0.3
CLPMNIST 62.4% 4.1% 33.3% 62.1% 6.1%
LSQMNIST 70.6% 5.0% 37.3% 65.7% 2.6%

16/255
CLPCIFAR 2.8% 0.0% 14.3% 0.1% 0.2%
LSQCIFAR 27.0% 1.7% 27.7% 13.2% 7.2%

up to 10k restarts of PGD which is computationally prohibitive. Using the publicly available
models from Mosbach et al. [2018], we run the Square Attack with p = 0.3 and 20k query limit
(results in Table 4.12). We obtain robust accuracy similar to PGDR in most cases, but with a
single run, i.e. without additional restarts. At the same time, although on some models Bandits
and SignHunter outperform PGD1, they on average achieve significantly worse results than the
Square Attack. This again shows the utility of the Square Attack to accurately assess robustness.

4.2.8 Experimental details

In this section, we list the main hyperparameters and various implementation details for the
experiments done in the main experiments (Sec. 4.2.6).

Experiments on ImageNet. For the untargeted Square Attack on the ImageNet models,
we used p = 0.05 and p = 0.1 for the l∞- and l2- versions respectively. For Bandits, we used
their code with their suggested hyperparameters (specified in the configuration files) for both l∞
and l2. For SignHunter, we used directly their code which does not have any hyperparameters
(assuming that the finite difference probe δ is set to ϵ). For SimBA-DCT, we used the default
parameters of the original code apart from the following, which are the suggested ones for each
model: for ResNet-50 and VGG-16-BN freq dims = 28, order = “strided” and stride = 7,
for Inception v3 freq dims = 38, order = “strided” and stride = 9. Notice that SimBA tries
to minimize the l2-norm of the perturbations but it does not have a bound on the size of the
changes. Then we consider it successful when the adversarial examples produced have norm
smaller than the fixed threshold ϵ. The results for all other methods were taken directly from
the corresponding papers.

Evaluation of Bandits. The code of Bandits [Ilyas et al., 2018] does not have image stan-
dardization at the stage where the set of correctly points is determined.8 As a result, the attack
is run only on the set of points correctly classified by the network without standardization, al-
though the network was trained on standardized images. We fix this bug, and report the results
in Table 4.8 based on the fixed version of their code. We note that the largest difference of our
evaluation compared to the l∞ results reported in Appendix E of Ilyas et al. [2019] is obtained
for the VGG-16-BN network: we get 2.0% failure rate while they reported 8.4% in their paper.
Also, we note that the query count for Inception v3 we obtain is also better than reported in Ilyas
et al. [2019]: 957 instead of 1117 with a slightly better failure rate. Our l2 results also differ –
we obtain a significantly lower failure rate (9.8%, 6.8%, 10.2% instead of 15.5%, 9.7%, 17.2% for

8See https://github.com/MadryLab/blackbox-bandits/issues/3

70

https://github.com/MadryLab/blackbox-bandits/issues/3


the Inception v3, ResNet-50, VGG-16-BN networks respectively) with improved average number
of queries (1486, 939, 511 instead of 1858, 993, 594).

Comparison to white-box attacks. For the l∞-Square Attack, we used p = 0.3 for all
models on MNIST and CIFAR-10. For Bandits on MNIST and CIFAR-10 adversarially trained
models we used exploration = 0.1, tile size = 16, gradient iters = 1 following Moon et al.
[2019]. For the comparison of l2-attacks on the l∞-adversarially trained model of Madry et al.
[2018] we used the Square Attack with the usual parameter p = 0.1. For Bandits we used the
parameters exploration = 0.01, tile size = 28, gradient iters = 1, after running a grid
search over the three of them (all the other parameters are kept as set in the original code). For
SimBA we used the “pixel attack” with parameters order = “rand”, freq dims = 28, step size
of 0.50, after a grid search on all the parameters.

4.2.9 Ablation study

We present ablation studies about the algorithmic choices for our attacks, and its properties.
Unless stated otherwise, we perform these experiments on ImageNet with a standardly trained
ResNet-50.

Algorithmic choices in l∞-Square Attack. We perform an ablation study to show how
the individual design decisions for the sampling distribution of the random search improve the
performance of l∞-Square Attack, confirming the theoretical arguments above. The comparison
is done for an l∞-threat model of radius ϵ = 0.05 on 1, 000 test points with a query limit of
10, 000, and the results are shown in Table 4.13. Our sampling distribution is special in two
aspects: i) we use localized update shapes in form of squares and ii) the update is constant in
each color channel. First, one can observe that our update shape “square” performs better than
“rectangle” as we discussed in the previous section, and it is significantly better than “random”
(the same amount of pixels is perturbed, but selected randomly in the image). This holds both
for c (constant sign per color channel) and c · h2 (every pixel and color channel is changed
independently of each other) random signs, with an improvement in terms of average queries of
339 to 73 and 401 to 153 respectively. Moreover, with updates of the same shape, the constant
sign over color channels is better than selecting it uniformly at random (improvement in average
queries: 401 to 339 and 153 to 73). In total the algorithm with “square-c” needs more than 5×
less average queries than “random-c · h2”, showing that our sampling distribution is the key to
the high query efficiency of Square Attack.

The last innovation of our random search scheme is the initialization, crucial element of
every non-convex optimization algorithm. Our method (“square-c”) with the vertical stripes
initialization improves over a uniform initialization on average by ≈ 25% and, especially, median
number of queries (more than halved). We want to also highlight that the sampling distribution
“square-c · h2” for which we shown convergence guarantees in Sec. 4.2.4 performs already better
in terms of the success rate and the median number of queries than the state of the art (see
Sec. 4.2.6). Moreover, we test the performance of using a single random sign for all the elements
for the update, “square-1”, which turns out to be comparable to “square-c · h2”, i.e. every
component of the update has sign independently sampled, but worse than keeping the sign
constant within each color channel (“square-c”). In order to implement update shape “rectangle”,
on every iteration and for every image we sample α, β ∼ Exp(1) and take a rectangle with sides
α · s and β · s, so that in expectation its area is equal to s2, i.e. to the area of the original
square. This update scheme performs significantly better than changing a random subset of
pixels (93 vs 339 queries on average), but worse than changing squares (73 queries on average)
as discussed in Sec. 4.2.5. Finally, we show the results with two more initialization schemes:
horizontal stripes (instead of vertical), as well as initialization with randomly placed squares.
While both solutions lead to the state-of-the-art query efficiency (83 and 90 queries on average)
compared to the literature, they achieve worse results than the vertical stripes we choose for our
Square Attack.

Algorithmic choices in l2-Square Attack. We analyze in Table 4.13 the sensitivity of the
l2-attack to different choices of the shape of the update and initialization. In particular, we test
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Table 4.13: An ablation study for the performance of the l∞- and l2-Square Attack under various
algorithmic choices of the attack. The metrics are calculated on 1,000 ImageNet images for a ResNet-
50 model. The last row represents our recommended setting. For all experiments we used the best
performing p (0.05 for l∞ and 0.1 for l2)

l∞ ablation study
Update shape # random signs Initialization Failure rate Avg. queries Median queries

random c · h2 vert. stripes 0.0% 401 48
random c · h2 uniform rand. 0.0% 393 132
random c vert. stripes 0.0% 339 53
square c · h2 vert. stripes 0.0% 153 15
square 1 vert. stripes 0.0% 129 18

rectangle c vert. stripes 0.0% 93 16
square c uniform rand. 0.0% 91 26
square c rand. squares 0.0% 90 20
square c horiz. stripes 0.0% 83 18
square c vert. stripes 0.0% 73 11

l2 ablation study
Update Initialization Failure rate Avg. queries Median queries

ηrand ηrand-grid 3.3% 1050 324

ηsingle ηsingle-grid 0.7% 650 171
η gaussian 0.4% 696 189
η uniform 0.8% 660 187
η vert. stripes 0.8% 655 186
η η-grid 0.7% 616 170

an update with only one “center” instead of two, namely ηsingle = ηh,h (following the notation
of Eq. 4.15) and one, ηrand, where the step 7 in Alg. 4 is ρ ← Uniform({−1, 1}h×h) instead
of ρ← Uniform({−1, 1}), which means that each element of η is multiplied randomly by either
−1 or 1 independently (instead of all elements multiplied by the same value). We can see that
using different random signs in the update and initialization (ηrand) significantly (1.5× factor)
degrades the results for the l2-attack, which is similar to the observation made for the l∞-attack.
Alternatively to the grid described in Sec. 4.2.3, we consider as starting perturbation i) a random
point sampled according to Uniform({−ϵ/

√
d, ϵ/
√
d}w×w×c), that is on the corners of the largest

l∞-ball contained in the l2-ball of radius ϵ (uniform initialization), ii) a random position on the
l2-ball of radius ϵ (Gaussian initialization) or iii) vertical stripes similarly to what done for the
l∞-Square Attack, but with magnitude ϵ/

√
d to fulfill the constraints on the l2-norm of the

perturbation. We note that different initialization schemes do not have a large influence on the
results of our l2-attack, unlike for the l∞-attack.

Sensitivity of Square Attack to the hyperparameter p. Fig. 4.7 shows the effect of
varying the value p on the results of our attack. For the l∞-threat model, we note that for all
values of p (from 0.0125 to 0.4) we achieve 0.0% failure rate, as well as state-of-the-art query
efficiency, i.e. we have the average number of queries below 140, and the median below 20 queries.
Therefore, we conclude that the attack is robust to a wide range of p, which is an important
property of a black-box attack. In fact, since the target model is unknown, and one aims at
minimizing the number of queries needed to fool the model, doing even an approximate grid
search over p might be prohibitively expensive. Similarly, we observe that the l2-Square Attack
is robust to different choices in the range between 0.05 and 0.4 showing approximately the same
failure rate and query efficiency for all values of p in this range, while its performance degrades
slightly for very small initial squares p ∈ {0.0125, 0.025}.

Stability under different random seeds. Here we study the stability of the Square Attack
over the randomness in the algorithm, i.e. in the initialization, in the choice of the locations of
square-shaped regions, and in the choice of the values in the updates δ. We repeat 10 times a
subset of the experiments reported in Sec. 4.2.6 and Sec. 4.2.7 with different random seeds for
our attack, and report all the metrics with standard deviations in Table 4.14. On ImageNet, we
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failure rate avg. queries median queries

l∞ - ϵ = 0.05

l2 - ϵ = 5.0

Figure 4.7: Sensitivity of the Square Attack to different choices of p ∈
{0.0125, 0.025, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4}, i.e. the initial fraction of pixels changed by
the attack, on ImageNet for a ResNet-50 model

Table 4.14: Mean and standard deviation of the main performance metrics of the Square Attack across
10 different runs with different random seeds

ImageNet

Norm ϵ Failure rate
Avg.

queries
Median
queries

l∞ 0.05 0.0% ± 0.0% 72 ± 2 11 ± 1
l2 5 0.6% ± 0.1% 638 ± 12 163 ± 8

MNIST

Norm ϵ
Robust

accuracy
Avg.

queries
Median
queries

l∞ 0.3 87.0% ± 0.1% 299 ± 47 52 ± 7
l2 2 16.0% ± 1.4% 1454 ± 71 742 ± 78

evaluate the failure rate (over initially correctly classified points) and query efficiency on 1,000
images using ResNet-50. On MNIST, we evaluate the robust accuracy (i.e. the failure rate over
all points) and query efficiency on 1,000 images using the l∞-adversarially trained LeNet from
Madry et al. [2018]. Note that unlike in Sec. 4.2.7 in both cases we use a single restart for the
attack on MNIST, and we compute the statistics on 1,000 points instead of 10,000, thus the final
results will differ.

On the ImageNet model, all these metrics are very concentrated for both the l∞- and the l2-
norms. Moreover, we note that the standard deviations are much smaller than the gap between
the Square Attack and the competing methods reported in Table 4.8. Thus we conclude that
the results of the attack are stable under different random seeds. On the adversarially trained
MNIST model from Madry et al. [2018], the robust accuracy is very concentrated showing only
0.1% and 1.4% standard deviations for the l∞- and the l2-norms respectively. Importantly, this
is much less than the gaps to the nearest competitors reported in Tables 4.10 and 4.11. We
also show query efficiency for this model, although for models with non-trivial robustness it is
more important to achieve lower robust accuracy, and query efficiency on successful adversarial
examples is secondary. We note that the standard deviation of the mean and median number
of queries is higher than for ImageNet, particularly for the l∞-ball of radius ϵ = 0.3 where the
robust accuracy is much higher than for the l2-ball of radius ϵ = 2. This is possibly due to the
fact that attacking more robust models (within a certain threat model) is a more challenging
task than, e.g., attacking standardly trained classifiers, as those used on ImageNet, which means
that a favorable random initialization or perturbation updates can have more influence on the
query efficiency.
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Table 4.15: Results of targeted attacks on ImageNet for Inception-v3 model using 100k query limit
for l∞, 60k for l2. The results for the competing methods for l∞ are taken from Meunier et al. [2019],
except SignHunter which we evaluated using their code.

Norm Attack Failure rate Avg. queries Median queries

l∞

Bandits 7.5% 25341 18053
SignHunter 1.1% 8814 5481

Parsimonious 0.0% 7184 5116
DFOc – Diag. CMA 6.0% 6768 3797

DFOc – CMA 0.0% 6662 4692
Square Attack 0.0% 4584 2859

l2

Bandits 24.5% 20489 17122
SimBA-DCT 25.5% 30576 30180

Square Attack 33.5% 19794 15946

4.2.10 Additional results

Targeted Square Attack. While in Sec. 4.2.6 we considered only untargeted attacks, here we
report the results of the different attacks in the targeted scenario. In order to adapt our scheme
to targeted attacks, where one first choose a target class t and then tries to get the model f to
classify a point x as t, we need to modify the loss function L which is minimized (see Eq. (4.14)).
For the untargeted attacks we used the margin-based loss L(f(x), y) = fy(x) − maxk ̸=y fk(x),
with y the correct class of x. This loss could be straightforwardly adapted to the targeted case
as L(f(x), t) = −ft(x) + maxk ̸=t fk(x). However, in practice we observed that this loss leads to
suboptimal query efficiency. We hypothesize that the drawback of the margin-based loss in this
setting is that the maximum over k ̸= t is realized by different k at different iterations, and then
the changes applied to the image tend to cancel each other. We observed this effect particularly
on ImageNet which has a very high number of classes. Instead, we use here as objective function
the cross-entropy loss on the target class, defined as

L(f(x), t) = −ft(x) + log

(
K∑
i=1

efi(x)

)
. (4.18)

Minimizing L is then equivalent to maximizing the confidence of the classifier in the target class.
Notice that in Eq. (4.18) the scores of all the classes are involved, so that it increases the relative
weight of the target class respect to the others, making the targeted attacks more effective.

Comparison in the targeted scenario. We present the results for targeted attacks on Im-
ageNet for Inception-v3 model in Table 4.15. We calculate the statistics on 1,000 images (the
target class is randomly picked for each image) with query limit of 100,000 for l∞ and on 200
points and with query limit 60,000 for l2, as this one is more expensive computationally because
of the lower success rate, with the same norm bounds ϵ used in the untargeted case. We use the
Square Attack with p = 0.01 for l∞ and p = 0.02 for l2. The results for the competing methods
for l∞ are taken from Meunier et al. [2019], except SignHunter which was not evaluated in the
targeted setting before, thus we performed the evaluation using their code on 100 test points
using the cross-entropy as the loss function. For l2, we use Bandits with the standard parameters
used in the untargeted scenario, while we ran a grid search over the step size of SimBA (we set
it to 0.03) and keep the other hyperparameters as suggested for the Inception-v3 model. The
targeted l∞-Square Attack achieves 100% success rate and requires 1.5 times fewer queries on
average than the nearest competitor from Meunier et al. [2019], showing that even in the targeted
scenario our simple scheme outperforms the state-of-the-art methods. On the other hand, our
l2-attack suffers from higher failure rate than the competitors, but achieves lower average and
median number of queries although on a different number of successful points.

Analysis of adversarial examples that require more queries. Here we provide more
visualizations of adversarial perturbations generated by the untargeted Square Attack for ϵ = 0.05
on ImageNet. We analyze here the inputs that require more queries to be misclassified. We
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Figure 4.8: Visualization of adversarial examples for which the untargeted l∞ Square Attack requires
more queries. We visualize adversarial examples and perturbations after 10, 100 and 500 iterations
of the attack. The experiment is done on ImageNet using ResNet-50 for ϵ∞ = 0.05. Note that a
misclassification is achieved when the margin loss becomes negative
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present the results in Fig. 4.8 where we plot adversarial examples after 10, 100 and 500 iterations
of our attack. First, we note that a misclassification is achieved when the margin loss becomes
negative. We can observe that the loss decreases gradually over iterations, and a single update
only rarely leads to a significant decrease of the loss. As the attack progresses over iterations,
the size of the squares is reduced according to our piecewise-constant schedule leading to more
refined perturbations since the algorithm accumulates a larger number of square-shaped updates.

4.3 Auto-PGD: a budget-aware step size-free variant of
PGD

In this section we introduce Auto-PGD, a white-box attack for fixed-size perturbations, which
aims at providing an adaptive variant of the commonly used PGD attack [Madry et al., 2018]
which does not require parameter tuning when using different classifiers, datasets or threat
models.

PGD algorithm. Projected Gradient Descent (PGD) [Madry et al., 2018] is the most popular
white-box method to generate norm-bounded adversarial perturbations. Similarly to Square
Attack (Sec. 4.2), it aims at finding adversarial points z for a clean point xorig with label c such
that

argmax
k=1,...,K

fk(z) ̸= c, ∥xorig − z∥p ≤ ϵ and z ∈ [0, 1]d,

by solving the optimization problem

max
z∈Rd

L(f(z), c) such that ∥xorig − z∥p ≤ ϵ, z ∈ [0, 1]d (4.19)

for some objective function L which induces misclassification. PGD approximately solves (4.19)
with the iterative scheme

x(k+1) = PS

(
x(k) + η(k)∇f(x(k))

)
,

where η(k) is the step size at iteration k, S denotes the feasible set, in our case {z ∈ Rd :
∥xorig − z∥p ≤ ϵ} ∩ [0, 1]d, and PS is the projection onto S. In the formulation of Madry et al.

[2018], η(k) = η for every k, i.e. the step size is fixed, and as initial point x(0) either xorig or
xorig + ζ is used, where ζ is randomly sampled such that x(0) satisfies the constraints. Moreover,
instead of the plain gradient, one typically uses steepest descent in the given threat model (e.g.
for l∞ the sign of the gradient) as update direction.

Weaknesses in PGD algorithm. We identify three weaknesses in the standard formulation
of the PGD-attack and how it is used in the context of adversarial robustness. First, the fixed
step size is suboptimal, as even for convex problems this does not guarantee convergence, and
the performance of the algorithm is highly influenced by the choice of its value, see e.g. Mosbach
et al. [2018]. Second, the overall scheme is in general agnostic of the budget given to the
attack: as we show, the loss plateaus after a few iterations, except for extremely small step sizes,
which however do not translate into better results. As a consequence, judging the strength of
an attack by the number of iterations is misleading, see also Carlini et al. [2019a]. Finally, the
algorithm is unaware of the trend, i.e. does not consider whether the optimization is evolving
successfully and is not able to react to this.

4.3.1 Auto-PGD (APGD) algorithm

In our automatic scheme we aim at fixing the weaknesses of PGD highlighed above. The main idea
is to partition the available Niter iterations in an initial exploration phase, where one searches
the feasible set for good initial points, and an exploitation phase, during which one tries to
maximize the knowledge so far accumulated. The transition between the two phases is managed
by progressively reducing the step size. In fact, a large step size allows to move quickly in
S, whereas a smaller one more eagerly maximizes the objective function locally. However, the
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Algorithm 6: APGD

Input: f , S, x(0), η, Niter, W = {w0, . . . , wn}
Output: xmax, fmax

1 x(1) ← PS
(
x(0) + η∇f(x(0))

)
2 fmax ← max{f(x(0)), f(x(1))}
3 xmax ← x(0) if fmax ≡ f(x(0)) else xmax ← x(1)

4 for k = 1, . . . , Niter−1 do
5 z(k+1) ← PS

(
x(k) + η∇f(x(k))

)
6 x(k+1) ← PS

(
x(k) + α(z(k+1) − x(k)) +(1− α)(x(k) − x(k−1))

)
7 if f(x(k+1)) > fmax then
8 xmax ← x(k+1) and fmax ← f(x(k+1))
9 end

10 if k ∈W then
11 if Condition 1 or Condition 2 then
12 η ← η/2 and x(k+1) ← xmax

13 end

14 end

15 end

reduction of the step size is not a priori scheduled, but rather governed by the trend of the
optimization: if the value of the objective grows sufficiently fast, then the step size is most likely
proper, otherwise it is reasonable to reduce it. While the update step in APGD is standard, what
distinguishes our algorithm from usual PGD is the choice of the step size across iterations, which
is adapted to the overall budget and to the progress of the optimization, and that, once the step
size is reduced, the maximization restarts from the best point so far found. We summarize our
scheme in Alg. 6 and analyze the main features in the following.

Gradient ascent step. The update of APGD closely follows the classic algorithm and only
adds a momentum term. Let η(k) be the step size at iteration k, then the update step is

z(k+1) = PS

(
x(k) + η(k)∇f(x(k))

)
x(k+1) = PS

(
x(k) + α · (z(k+1) − x(k)) + (1− α) · (x(k) − x(k−1))

)
,

(4.20)

where α ∈ [0, 1] (we use α = 0.75) regulates the influence of the previous update on the current
one. Since in the early iterations of APGD the step size is particularly large, we want to keep a
bias from the previous steps.

Step size selection. We start with step size η(0) at iteration 0 (we fix η(0) = 2ϵ), and given
a budget of Niter iterations, we identify checkpoints w0 = 0, w1, . . . , wn at which the algorithm
decides whether it is necessary to halve the current step size. We have two conditions:

1.
wj−1∑

i=wj−1

1f(x(i+1))>f(x(i)) < ρ · (wj − wj−1),

2. η(wj−1) ≡ η(wj) and f
(wj−1)
max ≡ f

(wj)
max ,

where f
(k)
max is the highest objective value found in the first k iterations. If one of the conditions

is true, then step size at iteration k = wj is halved and η(k) := η(wj)/2 for every k = wj +
1, . . . , wj+1. More explicitly,

Condition 1: counts in how many cases since the last checkpoint wj−1 the update step has
been successful in increasing f . If this happened for at least a fraction ρ of the
total update steps, then the step size is kept as the optimization is proceeding
properly (we use ρ = 0.75).
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Condition 2: holds true if the step size was not reduced at the last checkpoint and there has
been no improvement in the best found objective value since the last checkpoint.
This prevents getting stuck in potential cycles.

Restart from the best point. If at a checkpoint wj the step size gets halved, then we set
x(wj+1) := xmax, that is we restart at the point attaining the highest objective fmax so far.
This makes sense as reducing η leads to a more localized search, and this should be done in a
neighborhood of the current best candidate solution.

Exploration vs exploitation. We want the algorithm to transit gradually from exploring the
whole feasible set S to a local optimization. This transition is regulated by progressively reducing
the step size and by the choice of when to decrease it, i.e. the checkpoints wj . In practice, we
want to allow a relatively long initial exploration stage and then possibly update the step size
more often moving toward exploitation. In fact, with smaller step sizes the improvements in the
objective function are likely more frequent but also of smaller magnitude, while the importance
of taking advantage of the whole input space is testified by the success of random restarts in the
usual PGD-attack. We fix the checkpoints as wj = ⌈pjNiter⌉ ≤ Niter, with pj ∈ [0, 1] defined as
p0 = 0, p1 = 0.22 and

pj+1 = pj +max{pj − pj−1 − 0.03, 0.06}.
Note that the period length pj+1 − pj is reduced in each step by 0.03 but they have at least a
minimum length of 0.06.

While the proposed scheme has a few parameters which could be adjusted, we fix them to
the values indicated so that the only free variable is the budget Niter.

4.3.2 Comparison of APGD and PGD algorithms

We compare our APGD to PGD with and without Momentum in terms of achieved CE loss and
robust accuracy, focusing here on l∞-attacks with perturbation size ϵ. We attack the robust mod-
els on MNIST and CIFAR-10 from Madry et al. [2018] and Zhang et al. [2019b]. We run 1000 iter-
ations of PGD with and without Momentum with step sizes ϵ/t with t ∈ {0.5, 1, 2, 4, 10, 25, 100},
and APGD with a budget of Niter ∈ {25, 50, 100, 200, 400, 1000} iterations. In Fig. 4.9 (compar-
ison to PGD with Momentum) and Fig. 4.10 (comparison to plain PGD) we show the evolution
of the current best average cross-entropy loss and robust accuracy (i.e. the percentage of points
for which the attack could not find an adversarial example) for 1000 points of the test as a
function of iterations. In all cases APGD achieves the highest loss (higher is better as it is a
maximization problem) and this holds for any budget of iterations. Similarly, APGD attains
always the lowest (better) robust accuracy and thus is the stronger adversarial attack on these
models (see Sec. 4.3.4 for a comparison across more models and different losses). One can ob-
serve the adaptive behaviour of APGD: when the budget of iterations is larger the value of the
objective (the CE loss) increases more slowly, but reaches higher values in the end. This is due to
the longer exploration phase, which sacrifices smaller improvements to finally get better results.
In contrast, the runs of PGD, both with and without Momentum, tend to plateau at suboptimal
values, regardless of the choice of the step size.

4.3.3 Difference of Logits Ratio loss

If x has correct class y, the cross-entropy loss at x is

CE(x, y) = − log py = −zy + log
( K∑
j=1

ezj
)
, (4.21)

with pi = ezi/
∑K

j=1 e
zj , i = 1, . . . ,K, which is invariant to shifts of the logits z but not to

rescaling, similarly to its gradient wrt x, given by

∇xCE(x, y) = (−1 + py)∇xzy +
∑
i ̸=y

pi∇xzi. (4.22)
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Figure 4.9: PGD with Momentum vs APGD: best cross-entropy loss (top) and robust accuracy
(bottom) obtained so far as function of iterations for the models of Madry et al. [2018] and TRADES
[Zhang et al., 2019b] for PGD with a momentum term (α = 0.75, as used in APGD) (dashed lines)
with different fixed step sizes (always 1000 iterations) and APGD (solid lines) with different budgets of
iterations. APGD outperforms PGD with Momentum for every budget of iterations in achieved loss and
almost always in robust accuracy.

Madry et al. [2018] Zhang et al. [2019b]
MNIST - ϵ = 0.3 CIFAR-10 - ϵ = 8/255 MNIST - ϵ = 0.3 CIFAR-10 - ϵ = 0.031
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Figure 4.10: PGD vs APGD: best cross-entropy loss (top) and robust accuracy (bottom) so far found
as function of iterations for the models of Madry et al. [2018] and TRADES [Zhang et al., 2019b] for
PGD (dashed lines) with different fixed step sizes (always 1000 iterations) and APGD (solid lines) with
different budgets of iterations. APGD outperforms PGD for every budget of iterations in robust accuracy.

79



Figure 4.11: Percentage of zeros in the gradients and robust accuracy, computed by PGD on the CE
loss, of the classifiers g/α, where g is the CIFAR-10 model of Atzmon et al. [2019] and α a rescaling
factor. The performance of PGD depends on the scale of the logits.

If py ≈ 1 and consequently pi ≈ 0 for i ̸= y, then ∇xCE(x, y) ≈ 0 and finite arithmetic yields
∇xCE(x, y) = 0 (this phenomenon of gradient vanishing is observed in Carlini and Wagner
[2017a]). As noticed in Sec. 4.1.3, one can achieve py ≈ 1 with a classifier h = αg equivalent to
g (i.e. they take the same decision for every x) but rescaled by a constant α > 0. To exemplify
how this can lead to overestimation of robustness, we run 100 iterations of the l∞ PGD-attack
on the CE loss on the CIFAR-10 model from Atzmon et al. [2019], with ϵ = 0.031, dividing
the logits by a factor α ∈ {1, 101, 102, 103}. In Fig. 4.11 we show the fraction of entries in the
gradients of g/α (g is the original model) equal to zero and the robust accuracy achieved by
the attack in dependency on α (we use 1000 test points, the gradient statistic is computed for
correctly classified points). Without rescaling (α = 1) the gradient vanishes almost for every
coordinate, so that PGD is ineffective, but simply rescaling the logits is sufficient to get a much
more accurate robustness assessment.

The CW loss [Carlini and Wagner, 2017a] defined as

CW(x, y) = −zy +max
i ̸=y

zi. (4.23)

has in contrast to the CE loss a direct interpretation in terms of the decision of the classifier. If
an adversarial example exists, then the global maximum of the CW loss is positive. However,
the CW loss is not scaling invariant and thus again an extreme rescaling could in principle be
used to induce gradient masking.

We propose the Difference of Logits Ratio (DLR) loss which is both shift and rescaling
invariant and thus has the same degrees of freedom as the decision of the classifier:

DLR(x, y) = −
zy −max

i ̸=y
zi

zπ1 − zπ3

, (4.24)

where π is the ordering of the components of z in decreasing order. The required shift-invariance
of the loss is achieved by having a difference of logits also in the denominator. Maximizing DLR
wrt x allows to find a point classified not in class y (DLR is positive only if argmaxizi ̸= y) and,
once that is achieved, minimizes the score of class y compared to that of the other classes. If
x is correctly classified we have π1 ≡ y, so that DLR(x, y) = − zy−zπ2

zy−zπ3
and DLR(x, y) ∈ [−1, 0].

The role of the normalization zπ1
− zπ3

is to push zπ2
to zy = zπ1

as it prefers points for which
zy ≈ zπ2

> zπ3
and thus is biased towards changing the decision. Furthermore, we adapt our

DLR loss to induce misclassification into a target class t by

Targeted-DLR(x, y) = − zy − zt
zπ1 − (zπ3 + zπ4)/2

. (4.25)

Thus, we preserve both the shift and scaling invariance of DLR loss, while aiming at getting
zt > zy, and modify the denominator in (4.24) to ensure that the loss is not constant.
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4.3.4 APGD versus PGD on different losses

We compare PGD, PGD with Momentum (same momentum as in APGD) and APGD with
the same budget, i.e. 100 iterations and 5 restarts, on a large number of classifiers trained l∞-
robustness (which we will be also used in the evaluation in Sec. 5.1), optimizing the CE, CW
and DLR loss. The complete results are reported in Tables 4.16, 4.17, 4.18. For both PGD
and PGD with Momentum we use three step sizes (ϵ/10, ϵ/4, 2ϵ, with ϵ the bound on the norm
of the perturbations). APGD outperforms the best among the 6 versions of PGD on 32 of the
43 models with CE, 37/43 with CW and 35/43 with DLR, and the models where APGD is
worse are mainly the ones where the extreme step size 2ϵ is optimal as the defenses lead to
gradient masking/obfuscation. The version of standard PGD achieving most often the lowest
robust accuracy is for all three losses PGD with Momentum and step size ϵ/4, with average
robust accuracy (over all models) of 54.84%, 50.42% and 50.47% on the CE, CW and DLR loss
respectively. In the same metric, APGD achieves 54.00%, 49.46%, 48.53%. Comparing CW
and DLR loss per model (over all PGD versions and APGD) the CW loss is up to 21% worse
than the DLR loss, while it is never better by more than 5% and thus the DLR-loss is more
stable. Moreover, the only cases where PGD is more than 1% better than APGD consists of
cases where the very large step size 2ϵ outperforms all other step sizes. Note that the step size
2ϵ works significantly worse than the smaller step sizes for most of the other models. It is likely
that these defenses modify the loss landscape to make it unsuitable for standard gradient-based
optimization, and an informed random search (as PGD with such a large step size can be seen)
works better. The same happens with the CE loss, where PGD yields the best results (with a
non-negligible gap to APGD) also on the models of Kim and Wang [2020] and Taghanaki et al.
[2019]. However, notice that for these classifiers optimizing the DLR loss is significantly more
effective than using the CE loss.

In total these experiments show: i) APGD outperforms PGD/PGD with Momentum con-
sistently regardless of the employed loss, ii) our DLR loss improves upon the CE loss and is
comparable to the CW loss, but with less severe failure cases.

Finally, we run a similar comparison for models trained to be robust wrt l2 and report the
results in Tables 4.19, 4.20 and 4.21. APGD again yields most often the best results for all the
losses. The difference of the losses is for l2 marginal.
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Table 4.16: Comparison PGD vs APGD on the cross-entropy loss in the l∞-threat model.
We run PGD and PGD with Momentum (the same used for APGD) with three different step sizes: ϵ/10,
ϵ/4 and 2ϵ. Similarly to APGD, we use 100 iterations and 5 restarts for PGD, and report the resulting
robust accuracy on the whole test set (1000 images for ImageNet). For each model we boldface the best
attack and underline the best version of PGD (i.e. we exclude APGD).

PGD PGD with Momentum
# paper clean ϵ/10 ϵ/4 2ϵ ϵ/10 ϵ/4 2ϵ APGD

CIFAR-10 - ϵ = 8/255

1 Carmon et al. [2019] 89.69 62.01 61.86 63.15 61.98 61.79 61.84 61.47
2 Alayrac et al. [2019] 86.46 60.78 60.72 61.87 60.70 60.58 60.73 59.86
3 Hendrycks et al. [2019] 87.11 57.24 57.13 57.88 57.28 57.14 57.13 57.00
4 Rice et al. [2020] 85.34 56.87 56.82 57.55 56.88 56.78 56.81 56.76
5 Qin et al. [2019] 86.28 55.50 55.48 56.42 55.50 55.47 55.62 55.45
6 Engstrom et al. [2019a] 87.03 52.06 51.90 53.30 52.08 51.87 51.85 51.52
7 Kumari et al. [2019] 87.80 51.85 51.75 52.95 51.87 51.65 51.68 51.56
8 Mao et al. [2019] 86.21 49.71 49.59 50.69 49.72 49.56 49.61 49.39
9 Zhang et al. [2019a] 87.20 46.15 46.08 47.18 46.13 46.08 46.04 45.91

10 Madry et al. [2018] 87.14 44.93 44.83 46.46 44.94 44.81 44.99 44.56
11 Pang et al. [2020a] 80.89 56.02 56.04 56.22 56.02 56.01 56.04 55.91
12 Wong et al. [2020] 83.34 46.10 45.93 47.45 46.06 45.90 46.03 45.60
13 Shafahi et al. [2019] 86.11 44.45 45.60 48.83 43.63 44.50 47.07 43.30
14 Ding et al. [2020] 84.36 50.57 50.36 50.16 50.58 50.41 49.66 49.36
15 Moosavi-Dezfooli et al. [2019] 83.11 41.76 41.71 42.33 41.70 41.68 41.58 41.59
16 Zhang and Wang [2019] 89.98 67.38 66.79 57.31 67.40 66.50 61.15 62.03
17 Zhang and Xu [2020] 90.25 71.69 71.42 62.52 71.77 71.48 68.88 69.36
18 Jang et al. [2019] 78.91 38.00 37.88 39.72 37.90 37.73 37.90 37.40
19 Kim and Wang [2020] 91.51 59.16 58.24 51.29 59.12 58.23 54.17 54.80
20 Moosavi-Dezfooli et al. [2019] 80.41 36.86 36.74 37.92 36.81 36.74 36.61 36.53
21 Wang and Zhang [2019] 92.80 61.92 60.61 54.96 62.05 60.66 56.89 57.19
22 Wang and Zhang [2019] 92.82 69.63 69.10 61.03 69.60 69.06 67.71 67.77
23 Mustafa et al. [2019] 89.16 17.04 13.79 4.39 17.06 13.33 5.57 4.48
24 Chan et al. [2020] 93.79 1.89 1.89 9.67 1.91 1.90 5.93 1.90
25 Pang et al. [2020a] 93.52 85.72 85.73 85.67 85.72 85.72 86.23 85.58

CIFAR-10 - ϵ = 0.031

1 Zhang et al. [2019b] 84.92 55.28 55.24 56.24 55.25 55.21 55.30 55.08
2 Atzmon et al. [2019] 81.30 78.94 78.94 78.94 78.94 78.94 78.94 78.94
3 Xiao et al. [2020] 79.28 36.32 36.03 34.19 36.27 36.04 35.97 32.38

CIFAR-10 - ϵ = 4/255

1 Song et al. [2019a] 84.81 57.42 57.40 57.60 57.42 57.41 57.43 57.43

CIFAR-10 - ϵ = 0.02

1 Pang et al. [2019] 91.22 7.27 5.96 17.23 7.00 5.44 9.52 3.53
2 Pang et al. [2019] 93.44 0.36 0.24 3.37 0.41 0.17 1.22 0.04

CIFAR-100 - ϵ = 8/255

1 Hendrycks et al. [2019] 59.23 33.01 32.91 33.17 33.02 32.83 32.76 32.83
2 Rice et al. [2020] 53.83 20.61 20.57 21.08 20.57 20.52 20.47 20.32

MNIST - ϵ = 0.3

1 Zhang et al. [2020b] 98.38 95.25 95.23 95.21 95.06 94.98 94.99 94.58
2 Gowal et al. [2019a] 98.34 94.67 94.58 94.39 94.38 94.23 94.19 93.81
3 Zhang et al. [2019b] 99.48 94.07 94.10 95.27 93.97 93.80 94.32 93.14
4 Ding et al. [2020] 98.95 94.44 94.42 95.96 94.04 93.53 95.43 93.51
5 Atzmon et al. [2019] 99.35 98.79 98.83 98.94 98.79 98.83 98.93 98.79
6 Madry et al. [2018] 98.53 90.75 90.88 91.97 90.37 90.29 91.03 89.40
7 Jang et al. [2019] 98.47 93.05 93.66 95.34 92.73 92.47 94.47 92.45
8 Wong et al. [2020] 98.50 87.16 87.40 90.19 86.51 86.30 87.23 84.74
9 Taghanaki et al. [2019] 98.86 20.61 20.27 20.23 20.56 20.27 20.43 23.83

ImageNet - ϵ = 4/255

1 Engstrom et al. [2019a] 63.4 31.5 31.4 34.0 31.5 31.4 31.9 30.982



Table 4.17: Comparison PGD vs APGD on the CW loss in the l∞-threat model. We run PGD
and PGD with Momentum (the same used for APGD) with three different step sizes: ϵ/10, ϵ/4 and
2ϵ. Similarly to APGD, we use 100 iterations and 5 restarts for PGD, and report the resulting robust
accuracy on the whole test set (1000 images for ImageNet). For each model we boldface the best attack
and underline the best version of PGD (i.e. we exclude APGD).

PGD PGD with Momentum
# paper clean ϵ/10 ϵ/4 2ϵ ϵ/10 ϵ/4 2ϵ APGD

CIFAR-10 - ϵ = 8/255

1 Carmon et al. [2019] 89.69 60.73 60.72 62.20 60.73 60.69 61.02 60.48
2 Alayrac et al. [2019] 86.46 61.78 61.85 63.23 61.69 61.61 62.10 61.13
3 Hendrycks et al. [2019] 87.11 56.44 56.42 57.15 56.45 56.41 56.39 56.20
4 Rice et al. [2020] 85.34 55.24 55.21 56.04 55.23 55.19 55.26 55.07
5 Qin et al. [2019] 86.28 55.10 55.10 55.95 55.10 55.11 55.22 54.99
6 Engstrom et al. [2019a] 87.03 52.24 52.17 53.61 52.26 52.16 52.36 51.94
7 Kumari et al. [2019] 87.80 51.13 51.07 52.67 51.14 51.03 51.22 50.88
8 Mao et al. [2019] 86.21 49.88 49.84 51.18 49.88 49.84 50.02 49.71
9 Zhang et al. [2019a] 87.20 47.13 47.09 48.27 47.11 47.06 47.08 46.89

10 Madry et al. [2018] 87.14 45.98 45.82 47.47 45.95 45.77 46.11 45.67
11 Pang et al. [2020a] 80.89 44.40 44.41 45.83 44.41 44.36 44.66 44.11
12 Wong et al. [2020] 83.34 46.04 45.94 47.72 46.03 45.93 46.26 45.66
13 Shafahi et al. [2019] 86.11 44.89 45.93 49.27 44.16 45.10 47.43 43.90
14 Ding et al. [2020] 84.36 51.60 51.44 51.09 51.59 51.29 50.63 50.25
15 Moosavi-Dezfooli et al. [2019] 83.11 40.21 40.18 40.93 40.20 40.16 40.22 40.10
16 Zhang and Wang [2019] 89.98 55.98 55.30 48.59 55.99 55.27 50.91 51.65
17 Zhang and Xu [2020] 90.25 67.00 66.61 57.87 67.02 66.67 64.19 64.46
18 Jang et al. [2019] 78.91 36.85 36.81 39.32 36.85 36.83 37.30 36.52
19 Kim and Wang [2020] 91.51 56.85 55.90 50.26 56.94 55.92 52.54 53.04
20 Moosavi-Dezfooli et al. [2019] 80.41 35.38 35.37 36.86 35.38 35.35 35.48 35.29
21 Wang and Zhang [2019] 92.80 59.93 58.42 52.56 60.01 58.46 54.51 54.77
22 Wang and Zhang [2019] 92.82 66.49 65.86 56.71 66.60 65.76 63.53 63.80
23 Mustafa et al. [2019] 89.16 18.27 14.75 4.42 18.44 14.66 5.46 4.73
24 Chan et al. [2020] 93.79 1.32 1.28 5.51 1.30 1.29 1.29 1.23
25 Pang et al. [2020a] 93.52 1.88 0.54 1.42 1.59 0.53 0.47 0.11

CIFAR-10 - ϵ = 0.031

1 Zhang et al. [2019b] 84.92 54.05 54.06 55.16 54.08 54.03 54.22 53.90
2 Atzmon et al. [2019] 81.30 40.37 40.28 42.30 40.36 40.21 40.56 40.05
3 Xiao et al. [2020] 79.28 35.77 35.53 34.04 36.14 35.31 35.76 32.09

CIFAR-10 - ϵ = 4/255

1 Song et al. [2019a] 84.81 57.54 57.53 57.78 57.52 57.53 57.51 57.49

CIFAR-10 - ϵ = 0.02

1 Pang et al. [2019] 91.22 7.12 6.09 16.15 6.87 5.57 9.49 3.82
2 Pang et al. [2019] 93.44 0.47 0.26 3.13 0.42 0.13 1.22 0.12

CIFAR-100 - ϵ = 8/255

1 Hendrycks et al. [2019] 59.23 30.64 30.61 31.19 30.63 30.61 30.56 30.45
2 Rice et al. [2020] 53.83 20.22 20.21 21.06 20.22 20.22 20.35 19.98

MNIST - ϵ = 0.3

1 Zhang et al. [2020b] 98.38 95.22 95.21 95.17 95.10 94.97 95.04 94.61
2 Gowal et al. [2019a] 98.34 94.63 94.48 94.39 94.49 94.12 94.23 93.58
3 Zhang et al. [2019b] 99.48 94.40 94.35 95.23 94.18 94.04 94.33 93.35
4 Ding et al. [2020] 98.95 94.49 94.52 95.85 93.98 93.81 95.38 93.53
5 Atzmon et al. [2019] 99.35 94.43 94.69 95.98 94.03 93.74 95.21 92.98
6 Madry et al. [2018] 98.53 90.82 90.96 91.94 90.39 90.30 91.07 89.39
7 Jang et al. [2019] 98.47 93.28 93.64 95.26 92.68 92.71 94.49 92.40
8 Wong et al. [2020] 98.50 87.32 87.55 90.20 86.74 86.62 87.25 84.97
9 Taghanaki et al. [2019] 98.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ImageNet - ϵ = 4/255

1 Engstrom et al. [2019a] 63.4 31.7 31.6 34.5 31.7 31.7 32.5 31.583



Table 4.18: Comparison PGD vs APGD on the DLR loss in the l∞-threat model. We run
PGD and PGD with Momentum (the same used for APGD) with three different step sizes: ϵ/10, ϵ/4 and
2ϵ. Similarly to APGD, we use 100 iterations and 5 restarts for PGD, and report the resulting robust
accuracy on the whole test set (1000 images for ImageNet). For each model we boldface the best attack
and underline the best version of PGD (i.e. we exclude APGD).

PGD PGD with Momentum
# paper clean ϵ/10 ϵ/4 2ϵ ϵ/10 ϵ/4 2ϵ APGD

CIFAR-10 - ϵ = 8/255

1 Carmon et al. [2019] 89.69 60.98 60.88 62.41 60.93 60.82 61.25 60.64
2 Alayrac et al. [2019] 86.46 63.27 63.15 64.71 63.16 63.00 63.55 62.03
3 Hendrycks et al. [2019] 87.11 57.27 57.18 57.98 57.27 57.18 57.22 56.96
4 Rice et al. [2020] 85.34 55.89 55.86 56.75 55.90 55.85 55.93 55.72
5 Qin et al. [2019] 86.28 55.73 55.70 56.47 55.73 55.68 55.70 55.46
6 Engstrom et al. [2019a] 87.03 53.13 53.04 54.41 53.09 52.95 53.29 52.62
7 Kumari et al. [2019] 87.80 51.97 51.92 53.58 51.98 51.89 52.11 51.68
8 Mao et al. [2019] 86.21 50.79 50.57 52.03 50.74 50.52 50.79 50.33
9 Zhang et al. [2019a] 87.20 47.70 47.58 48.84 47.71 47.57 47.53 47.33

10 Madry et al. [2018] 87.14 46.49 46.30 48.13 46.51 46.30 46.58 46.03
11 Pang et al. [2020a] 80.89 44.97 44.91 46.36 44.96 44.87 45.21 44.56
12 Wong et al. [2020] 83.34 47.20 47.05 48.62 47.18 47.01 47.22 46.64
13 Shafahi et al. [2019] 86.11 45.46 46.43 50.03 44.74 45.51 47.89 44.56
14 Ding et al. [2020] 84.36 51.67 51.44 51.46 51.68 51.39 50.93 50.32
15 Moosavi-Dezfooli et al. [2019] 83.11 40.36 40.33 41.29 40.37 40.32 40.43 40.29
16 Zhang and Wang [2019] 89.98 55.69 54.73 46.57 55.68 54.68 48.53 48.96
17 Zhang and Xu [2020] 90.25 59.16 56.77 46.72 59.13 56.61 49.07 49.43
18 Jang et al. [2019] 78.91 37.41 37.30 39.77 37.38 37.27 37.69 37.01
19 Kim and Wang [2020] 91.51 52.42 51.41 48.09 52.43 51.30 48.51 48.41
20 Moosavi-Dezfooli et al. [2019] 80.41 35.57 35.53 37.25 35.57 35.52 35.68 35.47
21 Wang and Zhang [2019] 92.80 61.40 53.79 38.23 61.31 53.27 39.16 40.69
22 Wang and Zhang [2019] 92.82 54.84 49.01 35.15 54.83 48.62 36.05 36.72
23 Mustafa et al. [2019] 89.16 22.16 17.10 4.90 22.18 17.42 5.57 4.54
24 Chan et al. [2020] 93.79 9.52 7.11 10.41 7.56 5.38 5.30 1.20
25 Pang et al. [2020a] 93.52 1.94 0.47 1.75 2.06 0.58 0.75 0.49

CIFAR-10 - ϵ = 0.031

1 Zhang et al. [2019b] 84.92 54.25 54.20 55.28 54.23 54.16 54.34 54.04
2 Atzmon et al. [2019] 81.30 57.45 51.99 44.62 56.19 50.03 44.45 44.50
3 Xiao et al. [2020] 79.28 37.74 36.33 33.46 37.49 36.92 35.80 31.27

CIFAR-10 - ϵ = 4/255

1 Song et al. [2019a] 84.81 57.85 57.83 58.07 57.84 57.83 57.81 57.79

CIFAR-10 - ϵ = 0.02

1 Pang et al. [2019] 91.22 15.83 13.33 18.98 15.23 12.38 16.31 8.61
2 Pang et al. [2019] 93.44 1.53 0.98 3.58 1.25 0.68 2.59 0.26

CIFAR-100 - ϵ = 8/255

1 Hendrycks et al. [2019] 59.23 32.05 31.91 32.14 32.03 31.92 31.70 31.68
2 Rice et al. [2020] 53.83 20.41 20.34 21.41 20.40 20.33 20.47 20.20

MNIST - ϵ = 0.3

1 Zhang et al. [2020b] 98.38 95.65 95.52 95.26 95.41 95.17 95.14 94.82
2 Gowal et al. [2019a] 98.34 94.93 94.73 94.28 94.72 94.45 94.22 93.87
3 Zhang et al. [2019b] 99.48 94.84 94.78 95.53 94.63 94.50 94.79 93.89
4 Ding et al. [2020] 98.95 94.69 94.78 95.80 94.16 94.00 95.40 93.86
5 Atzmon et al. [2019] 99.35 94.70 94.99 96.32 94.10 93.95 95.53 94.54
6 Madry et al. [2018] 98.53 91.08 91.21 92.15 90.65 90.51 91.51 89.74
7 Jang et al. [2019] 98.47 93.19 93.79 94.74 92.72 92.99 94.49 92.15
8 Wong et al. [2020] 98.50 87.58 87.65 90.40 86.99 86.87 87.74 85.39
9 Taghanaki et al. [2019] 98.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ImageNet - ϵ = 4/255

1 Engstrom et al. [2019a] 63.4 32.1 32.1 35.0 32.1 32.1 32.8 32.084



Table 4.19: Comparison PGD vs APGD on the cross-entropy loss in the l2-threat model. We
run PGD and PGD with Momentum (the same used for APGD) with three different step sizes: ϵ/10,
ϵ/4 and 2ϵ. Similarly to APGD, we use 100 iterations and 5 restarts for PGD, and report the resulting
robust accuracy on the whole test set (1000 images for ImageNet). For each model we boldface the best
attack and underline the best version of PGD (i.e. we exclude APGD).

PGD PGD with Momentum
# paper clean ϵ/10 ϵ/4 2ϵ ϵ/10 ϵ/4 2ϵ APGD

CIFAR-10 - ϵ = 0.5

1 Augustin et al. [2020] 91.08 74.81 74.74 74.60 74.81 74.75 74.63 74.65
2 Engstrom et al. [2019a] 90.83 69.68 69.65 69.58 69.69 69.63 69.62 69.60
3 Rice et al. [2020] 88.67 68.64 68.60 68.55 68.64 68.58 68.56 68.53
4 Rony et al. [2019] 89.05 66.60 66.58 66.63 66.59 66.58 66.58 66.57
5 Ding et al. [2020] 88.02 66.22 66.21 66.29 66.22 66.21 66.21 66.19

ImageNet - ϵ = 3

1 Engstrom et al. [2019a] 55.3 31.9 31.6 31.6 31.9 31.5 31.6 31.5

Table 4.20: Comparison PGD vs APGD on the CW loss in the l2-threat model. We run PGD
and PGD with Momentum (the same used for APGD) with three different step sizes: ϵ/10, ϵ/4 and
2ϵ. Similarly to APGD, we use 100 iterations and 5 restarts for PGD, and report the resulting robust
accuracy on the whole test set (1000 images for ImageNet). For each model we boldface the best attack
and underline the best version of PGD (i.e. we exclude APGD).

PGD PGD with Momentum
# paper clean ϵ/10 ϵ/4 2ϵ ϵ/10 ϵ/4 2ϵ APGD

CIFAR-10 - ϵ = 0.5

1 Augustin et al. [2020] 91.08 74.57 74.54 74.55 74.56 74.55 74.53 74.49
2 Engstrom et al. [2019a] 90.83 70.08 70.07 70.06 70.08 70.07 70.06 70.06
3 Rice et al. [2020] 88.67 68.73 68.71 68.72 68.73 68.72 68.71 68.71
4 Rony et al. [2019] 89.05 67.00 67.00 67.03 67.00 67.00 66.99 66.99
5 Ding et al. [2020] 88.02 66.55 66.54 66.64 66.55 66.54 66.53 66.54

ImageNet - ϵ = 3

1 Engstrom et al. [2019a] 55.3 30.7 30.7 30.8 30.8 30.7 30.7 30.7

Table 4.21: Comparison PGD vs APGD on the DLR loss in the l2-threat model. We run PGD
and PGD with Momentum (the same used for APGD) with three different step sizes: ϵ/10, ϵ/4 and
2ϵ. Similarly to APGD, we use 100 iterations and 5 restarts for PGD, and report the resulting robust
accuracy on the whole test set (1000 images for ImageNet). For each model we boldface the best attack
and underline the best version of PGD (i.e. we exclude APGD).

PGD PGD with Momentum
# paper clean ϵ/10 ϵ/4 2ϵ ϵ/10 ϵ/4 2ϵ APGD

CIFAR-10 - ϵ = 0.5

1 Augustin et al. [2020] 91.08 75.06 75.00 74.99 75.06 75.00 74.99 74.94
2 Engstrom et al. [2019a] 90.83 70.20 70.19 70.17 70.20 70.19 70.17 70.20
3 Rice et al. [2020] 88.67 69.02 69.01 68.96 69.02 69.02 68.94 68.95
4 Rony et al. [2019] 89.05 67.03 67.02 67.06 67.03 67.02 67.02 67.02
5 Ding et al. [2020] 88.02 66.61 66.56 66.64 66.61 66.55 66.54 66.53

ImageNet - ϵ = 3

1 Engstrom et al. [2019a] 55.3 30.9 30.9 30.9 30.9 31.1 30.9 30.9
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4.4 Auto-PGD and Square Attack for the l1-bounded threat
model

While l∞ and l2 are the most popular threat models for adversarial attacks, l1-bounded attacks
represent a complementary type of perturbations. In the following we identify reasons why the
current versions of l1-PGD attacks are weaker than SOTA l1-attacks [Chen et al., 2018, Rony
et al., 2021], including FAB (Sec. 4.1). A key issue is that in image classification we have the
additional constraint that the input has to lie in the box [0, 1]d and thus the effective threat model
is the intersection of the l1-ball and [0, 1]d. However, current l1-PGD attacks only approximate
the correct projection onto this set [Tramèr and Boneh, 2019] and argue for a steepest descent
direction without taking into account the box constraints.

We first show that the correct projection onto the intersection can be computed in essentially
the same time as the projection onto the l1-ball, and then we discuss theoretically and empirically
that using the approximate projection leads to a worse attack as it cannot access certain parts
of the threat model. Moreover, we derive the correct steepest descent step for the intersection
of l1-ball and [0, 1]d which motivates an adaptive sparsity of the chosen descent direction. Then,
inspired by Auto-PGD (APGD) for l2 and l∞ introduced in Sec. 4.3, we design a novel fully
adaptive parameter-free PGD scheme so that the user does not need to do step size selection for
each defense separately which is known to be error prone. Interestingly, using our l1-APGD we
are able to train the model with the highest l1-robust accuracy for ϵ = 12 while standard PGD
fails due to catastrophic overfitting [Wong et al., 2020] and/or overfitting to the sparsity of the
standard PGD attack. Finally, we use the same insights about the geometry of the l1-threat
model to develop an l1-adaptation of the black-box Square Attack presented in Sec. 4.2.

Figure 4.12: Left: the l1-ball B1(x, 1) centered at the (randomly chosen) target point x ∈ [0, 1]3. Right:
the intersection S = B1(x, 1) ∩ [0, 1]3 of B1(x, 1) with the box [0, 1]3.

4.4.1 Mind the box [0, 1]d in l1-PGD

We recall that Projected Gradient Descent is a simple first-order method which consists in a
descent step followed by a projection onto the feasible set S, that is, given the current iterate
x(i), the next iterate x(i+1) is computed as

u(i+1) =x(i) + η(i) · s(∇L(x(i))), (4.26)

x(i+1) =PS(u
(i+1)), (4.27)

where d is the input dimension, η(i) > 0 the step size at iteration i, s : Rd → Rd determines
the descent direction as a function of the gradient of the loss L at x(i) and PS : Rd → S is
the projection on S. With an l1-perturbation model of radius ϵ, we denote by B1(x, ϵ) := {z ∈
Rd | ∥z − x∥1 ≤ ϵ} the l1-ball around a target point x ∈ [0, 1]d and define S = [0, 1]d ∩ B1(x, ϵ).
The main difference to prior work is that we take explicitly into account the image constraint
[0, 1]d. Note that the geometry of the effective threat model is actually quite different from
B1(x, ϵ) alone, see Fig. 4.12 for an illustration. In the following we analyse the projection and
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the descent step in this effective threat model S. As ϵ is significantly higher for l1 (we use ϵ = 12
similar to Maini et al. [2020]) as for l2 (standard 0.5) and l∞ (standard 8

255 ) the difference of the
intersection with [0, 1]d to the lp-ball alone is most prominent for the l1-case.

4.4.2 Projection onto S

With B1(x, ϵ) as defined above and denoting H = [0, 1]d the image box, we consider the two
projection problems:

PS(u) = argmin
z∈Rd

∥u− z∥22 s.th. ∥z − x∥1 ≤ ϵ, z ∈ [0, 1]d. (4.28)

and
PB1(x,ϵ)(u) = argmin

z∈Rd

∥u− z∥22 s.th. ∥z − x∥1 ≤ ϵ. (4.29)

It is well known that the l1-projection problem in (4.29) can be solved in O(d log d) [Duchi et al.,
2008, Condat, 2016]. We show now that also the exact projection onto S can be computed with
the same complexity (after this paper has been accepted we got aware of Wang et al. [2019b]
who derived also the form of the solution of (4.28) but provided no complexity analysis or an
algorithm to compute it).

Proposition 4.4.1 The projection problem (4.28) onto S = B1(x, ϵ) ∩ H can be solved in
O(d log d) with solution

z∗i =



1 for ui ≥ xi and 0 ≤ λ∗
e ≤ ui − 1

ui − λ∗
e for ui ≥ xi and ui − 1 < λ∗

e ≤ ui − xi

xi for λ∗
e > |ui − xi|

ui + λ∗
e for ui ≤ xi and − ui < λ∗

e ≤ xi − ui

0 for ui ≤ xi and 0 ≤ λ∗
e ≤ −ui

,

where λ∗
e ≥ 0. With γ ∈ Rd defined as

γi = max{−xisign(ui − xi), (1− xi)sign(ui − xi)},

it holds λ∗
e = 0 if

∑d
i=1 max{0,min{|ui − xi|, γi} ≤ ϵ and otherwise λ∗

e is the solution of

d∑
i=1

max
{
0,min{|ui − xi| − λ∗

e, γi}
}
= ϵ.

Proof. By introducing the variable w′ = z − x we transform (4.28) into

min
w′∈Rd

1

2
∥u− x− w′∥22 s.th. ∥w′∥1 ≤ ϵ, w′ + x ∈ [0, 1]d.

Moreover, by introducing w = sign(u− x)w′ we get

min
w∈Rd

1

2

d∑
i=1

(|ui − xi| − wi)
2 s.th.

d∑
i=1

wi ≤ ϵ, wi ≥ 0, sign(ui − xi)wi + xi ∈ [0, 1].

The two componentwise constraints can be summarized with

γi := max{−xi sign(ui − xi), (1− xi) sign(ui − xi)}

as wi ∈ [0, γi]. Note that if γi = 0 this fixes the variable wi = 0 and we then remove this
variable from the optimization problem. Thus wlog we assume in the following that γi > 0. The
corresponding Lagrangian becomes

L(w,α, β, λe) =
1

2

d∑
i=1

(|ui − xi| − wi)
2 + λe(⟨1, w⟩ − ϵ) + ⟨α,w − γ⟩ − ⟨β,w⟩ ,
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which yields the KKT optimality conditions for the optimal primal variable w∗ and dual variables
α∗, β∗, λ∗

e

∇wLi = w∗
i − |ui − xi|+ λ∗

e + α∗
i − β∗

i = 0

λ∗
e(

d∑
i=1

w∗
i − ϵ) = 0

α∗
i (wi − γi) = 0, β∗

i wi = 0

λ∗
e ≥ 0, α∗

i ≥ 0, β∗
i ≥ 0

Thus β∗
i > 0 implies w∗

i = 0 and with γi > 0 this yields α∗
i = 0 and thus β∗ = λe − |ui − xi| and

we get
β∗
i = max{0, λ∗

e − |ui − xi|}.

On the other hand α∗
i > 0 implies w∗

i = γi and β∗
i = 0 and thus α∗

i = |ui−xi|−γi−λ∗
e and thus

α∗
i = max{0, |ui − xi| − γi − λ∗

e}.

Thus we have in total

w∗
i =


γi if |ui − xi| − γi − λ∗

e > 0

0 if λ∗
e − |ui − xi| > 0

|ui − xi| − λ∗
e else.

which can be summarized as w∗
i = max{0,min{|ui−xi|−λ∗

e, γi}}. Finally, if
∑d

i=1 max{0,min{|ui−
xi|, γi}} < ϵ then λ∗

e = 0 is optimal, otherwise λ∗
e > 0 and we get the solution from the KKT

condition
d∑

i=1

max{0,min{|ui − xi| − λ∗
e, γi}} = ϵ. (4.30)

Noting that
ϕ(λe) = max{0,min{|ui − xi| − λe, γi}}

is a piecewise linear and monotonically decreasing function in λe, the solution can be found by
sorting the union of |ui − xi| − γi and |ui − xi| in non-decreasing order π and then starting with
λe = 0 and then going through the sorted list until ϕ(λe) < ϵ. In this case one has identified the
interval which contains the optimal solution λ∗

e and computes the solution with the “active” set
of components

{i | 0 < |ui − xi| − λe < γi},

via Eq. (4.30). The algorithm is provided in Alg. 7, where the main complexity is the initial
sorting step O(2d log(2d)) and some steps in O(d) so that the total complexity is O(2d log(2d)).
Once we transform back to the original variable of (4.28) we get with the form of γ the solution

z∗i = xi + sign(ui − xi)w
∗
i =



1 for ui ≥ xi and 0 ≤ λ∗
e ≤ ui − 1

ui − λ∗
e for ui ≥ xi and ui − 1 < λ∗

e ≤ ui − xi

xi for λ∗
e > |ui − xi|

ui + λ∗
e for ui ≤ xi and − ui < λ∗

e ≤ xi − ui

0 for ui ≤ xi and 0 ≤ λ∗
e ≤ −ui

□

The two prior versions of PGD [Tramèr and Boneh, 2019, Maini et al., 2020] for the l1-threat
model use the approximation A : Rd → S

A(u) = (PH ◦ PB1(x,ϵ))(u),

instead of the exact projection PS(u) (see below for a proof that A(u) ∈ S for any u ∈ Rd).
However, it turns out that the approximation A(u) “hides” parts of S due to the following
property.
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Algorithm 7: Projection onto B1(x, ϵ) ∩ [0, 1]d

Input: point to be projected u, x and radius ϵ
Output: projection z onto B1(x, ϵ) ∩ [0, 1]d

1 γi = max{−xi sign(ui − xi), (1− xi) sign(ui − xi)}, λ∗ = 0
2 zi = min{|ui − xi|, γi}
3 S =

∑d
i=1 zi

4 if S > ϵ then
5 sort ti = {|ui − xi|, |ui − xi| − γi} in decreasing order π and memorize if it is |ui − xi|

(category 0) or |ui − xi| − γ (category 1)
6 M = |{i | zi = |ui − xi| and |ui − xi| > 0}|
7 λ = 0
8 for j = 1, . . . , 2d do
9 λold = max{0, λ}

10 λ = tπj

11 S = S −M(λ− λold)
12 if category(πj) = 0 then
13 M = M + 1
14 else
15 M = M − 1
16 end
17 if S < ϵ then
18 if category(πj) = 0 then
19 M = M − 1
20 else
21 M = M + 1
22 end
23 S = S +M(λ− λold)
24 λ∗ = λold + (S − ϵ)/M
25 BREAK

26 end

27 end

28 end
29 zi = max{0,min{|ui − xi| − λ∗, γi}}, i = 1, . . . , d
30 PS(u)i = xi + sign(ui − xi) · zi;

Lemma 4.4.1 It holds for any u ∈ Rd,

∥PS(u)− x∥1 ≥ ∥A(u)− x∥1 .

In particular, if PB1(x,ϵ)(u) /∈ H and ∥u− x∥1 > ϵ and one of the following conditions holds

• ∥PS(u)− x∥1 = ϵ

• ∥PS(u)− x∥1 < ϵ and ∃ui ∈ [0, 1] with ui ̸= xi

then
∥PS(u)− x∥1 > ∥A(u)− x∥1 .

Proof. It holds A(u) ∈ H but also A(u) ∈ B1(x, ϵ) as with z1 := PB1(x,ϵ)(u)

∥z1 − x∥ ≤ ϵ,

and it holds with PH(z) = max{0,min{z, 1}} and zA := PH(z1) = A(u) that

|z1,i − xi| = |z1,i − zA,i + zA,i − xi| = |z1,i − zA,i|+ |zA,i − xi|,

which follows as if z1,i > 1 then z1,i − zA,i = z1,i − 1 > 0 and 1− xi ≥ 0 whereas if z1,i < 0 then
z1,i − zA,i = z1,i − 0 < 0 and 0− xi ≤ 0. Thus we get

∥z1 − x1∥1 = ∥z1 − zA∥1 + ∥zA − x∥1 , (4.31)
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Thus it holds ∥zA − x∥1 ≤ ∥z1 − x∥1 ≤ ϵ and we get A(u) ∈ H ∩ B1(x, ϵ). and thus it is a
feasible point of the optimization problem in (4.28) and by the optimality of ze := PB1(x,ϵ)∩H(u)
it follows

∥ze − u∥2 ≤ ∥A(u)− u∥2 .
If ∥z1 − x∥1 < ϵ then z1 = u and thus with (4.31) one gets ∥zA − x∥1 < ϵ as well. In this case

zA is the optimal projection if we just had the box constraints. However, as ∥zA − x∥1 < ϵ it is
also feasible for (4.28) and thus optimal, ze = zA. Moreover, if ∥u− x∥1 = ϵ then z1 = u and
thus with the same argument we get ze = zA. On the other hand if ∥z1 − x∥1 = ϵ and z1 ∈ H,
then z1 is feasible for (4.28) and the minimum over a larger set and thus ze = z1 = zA.

Suppose now that ∥u− x∥1 > ϵ and z1 /∈ H. Then ∥z1 − u∥1 = ϵ and there exists λ∗
1 > 0

(optimal solution of the l1-projection problem) such that

zA =


min{ui − λ∗

1, 1} for ui ≥ xi and λ∗
1 ≤ |ui − xi|

xi for λ∗
1 > |ui − xi|

max{ui + λ∗
1, 0} for ui ≤ xi and λ∗

1 ≤ |ui − xi|
,

where we have used that ui − λ∗
1 ≥ xi for ui ≥ xi resp. ui + λ∗

1 ≤ xi for ui ≤ xi. Moreover,
as z1 /∈ H this implies that ∥zA − x∥1 < ∥z1 − x∥1 = ϵ. Then if ∥ze − x∥1 = ϵ (which implies
λ∗
e ≤ λ∗

1) there is nothing to prove (we get ∥ze − x∥1 > ∥zA − x∥1 and this represents the first
condition in the Lemma for strict inequality) so suppose that λ∗

e = 0 (that is ∥ze − x∥1 < ϵ) and
thus

ze =


min{ui, 1} for ui ≥ xi and |ui − xi| ≥ 0

xi for |ui − xi| < 0

max{ui, 0} for ui ≤ xi and |ui − xi| ≥ 0

.

Then we get
|(ze)i − xi| ≥ |(zA)i − xi| ∀i = 1, . . . , d.

and thus ∥ze − x∥1 ≥ ∥zA − x∥1. In fact, a stronger property can be derived under an extra
condition on u. As ∥z1 − x∥1 = ϵ it must hold ∥u− x∥1 ≥ ϵ and thus u ̸= x. Now suppose that
wlog ui > xi and ui ∈ [0, 1] then (zA)i = ui − λ∗

1 if |ui − xi| ≥ λ∗
1 or (zA)i = xi if |ui − xi| < λ∗

1.
However, in both cases we get

(ze)i − xi = ui − xi > max{ui − xi − λ∗
1, 0} ≥ (zA)i − xi,

and thus ∥ze − x∥1 > ∥zA − x∥1. If ui < xi and ui ∈ [0, 1] then

(ze)i − xi = ui − xi < min{ui − xi − λ∗
1, 0} ≤ (zA)i − xi

and thus ∥ze − x∥1 > ∥zA − x∥1. □

The previous lemma shows that the approximation A(u) of PS(u) used by Maini et al. [2020],
Tramèr and Boneh [2019] is definitely suboptimal under relatively weak conditions and has a
smaller l1-distance to the target point x:

∥PS(u)− x∥1 > ∥A(u)− x∥1 .

Effectively, a part of S is hidden from the attack when A(u) instead of PS(u) is used. In Fig. 4.13
we simulate the projections after the steepest descent step (4.36) (for varying level of sparsity)
to get a realistic picture of the influence of the approximation A(u) versus the exact projection
PS(u). For sparse updates (less than 50 non-zero components) the approximation behaves quite
poorly in comparison to the exact projection in the sense that the true projection is located at
the boundary of the l1-ball around the target point x whereas A(u) is located far into the interior
of the l1-ball. Note that such sparse updates are used in SLIDE [Tramèr and Boneh, 2019].

This discrepancy between approximate and exact projection in turn leads to suboptimal
performance both in the maximization of the loss, which is important for adversarial training,
but also in terms of getting low robust accuracy: the plots in Fig. 4.14 show the performance
of PGD-based attacks with A(u) (dashed line) vs the same methods with the correct projection
PS(u) (solid line). Our proposed l1-APGD largely benefits from using PS(u) instead of A(u),
and this even slightly improves the existing l1-versions of PGD, SLIDE and the one of Maini
et al. [2020]. Thus we use in our scheme always the correct projection onto S.
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Figure 4.13: In order to simulate update steps of PGD, we sample target points x ∼ U([0, 1]d) and
w ∈ N (0, 1) and define v = PS(w) and project the point u = v + ϵδ, where δ is generated as the descent
step in (4.36) for different sparsity levels k. Then we plot ∥PS(u) − x∥1 and ∥A(u) − x∥1 for varying
sparsity k of the update (for each level k we show average and standard deviation over 100 samples). It
can clearly be seen that the approximate projection is highly biased towards interior regions of the set
S = B1(x, ϵ)∩ [0, 1]d in particular for small levels of k whereas the correct projection stays on the surface
of S. Note that SLIDE uses k = 31 (corresponds to 99% quantile) and thus is negatively affected by this
strong bias as effectively large portions of the threat model S cannot be easily explored by SLIDE.
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Figure 4.14: Plots of the best robust loss obtained so far (first/third) and robust accuracy (second/fourth)
as a function of the iterations for the l1-PGD of Tramèr and Boneh [2019] (SLIDE), the one of Maini
et al. [2020] and our single ϵ-APGD and multi ϵ-APGD for two models (left: our own l1-robust model
APGD-AT, right: the l2-robust model of Rice et al. [2020]). All of them are once run with the correct
projection PS(u) (solid) and once with the approximation A(u) (dashed). The exact projection improves
in almost all cases for all attacks loss and robust accuracy. Moreover, our single- and multi-ϵ APGD
improve significantly the robust loss as well as robust accuracy over SLIDE and the l1-PGD of Maini
et al. [2020]. Multi ϵ-APGD is only partially plotted as only the last 40% of iterations are feasible.

4.4.3 Descent direction

The next crucial step in the PGD scheme in (4.26) is the choice of the descent direction which
we wrote as the mapping s(∇f(xi)) of the gradient. For the l∞- and l2-threat models [Madry
et al., 2018], the steepest descent direction [Boyd and Vandenberghe, 2004] is used in PGD, that
is

δ∗p = argmax
δ∈Rd

⟨w, δ⟩ s.th. ∥δ∥p ≤ ϵ, (4.32)

with w = ∇f(x(i)) ∈ Rd, which maximizes a linear function over the given lp-ball. Thus one
gets δ∗∞ = ϵ sign(w) and δ∗2 = ϵw/ ∥w∥2 for p = ∞ and p = 2 respectively, which define the
function s in (4.26). For p = 1, defining j = argmax

i
|wi| the dimension corresponding to the

component of w with largest absolute value and B = {ei}i the standard basis of Rd, we have
δ∗1 = ϵ sign(wj)ej . Obviously, for a small number of iterations this descent direction is not
working well and thus in SLIDE suggest to use the top-k components of the gradient (ordered
according to their magnitude) and use the sign of these components.

In the following we show that when one takes into account the box-constraints imposed by
the image domain the steepest descent direction becomes automatically less sparse and justifies
at least partially what has been done by Tramèr and Boneh [2019] and Maini et al. [2020] out
of efficiency reasons. More precisely, the following optimization problem defines the steepest
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Figure 4.15: Histogram of the sparsity level ∥δ∗∥0 of the steepest descent step from Proposition 4.4.3 for
d = 3024 and ϵ = 12 (histogram computed using 100.000 samples from x ∈ U([0, 1]d) and w ∈ N (0, I)).
The exact expected sparsity can be computed as E[∥δ∗∥0] ≈ 24.6667.

descent direction:

δ∗ = argmax
δ∈Rd

⟨w, δ⟩ s.th. ∥δ∥1 ≤ ϵ, x+ δ ∈ [0, 1]d. (4.33)

Proposition 4.4.2 Let zi = max{(1 − xi) sign(wi),−xi sign(wi)}, π the ordering such that

|wπi
| ≥ |wπj

| for i > j and k the smallest integer for which
∑k

i=1 zπi
≥ ϵ, then the solution

of (4.33) is given by

δ∗πi
=


zπi
· sign(wπi

) for i < k,

(ϵ−
∑k−1

i=1 zπi
) · sign(wπk

) for i = k,

0 for i > k

. (4.34)

Proof. We introduce the new variable αi := sign(wi)δi, with the convention sign(t) = 0 if
t = 0. Then we get the equivalent optimization problem:

max
α∈Rd

+

∑
i

|wi|αi s.th.

d∑
i=1

αi ≤ ϵ, αi ≥ 0,

− xi ≤ sign(wi)αi ≤ 1− xi, i = 1, . . . , d,

(4.35)

and thus
0 ≤ αi ≤ max{−xisign(wi), (1− xi)sign(wi)}.

Given the positivity of α and the upper bounds the maximum is attained when ordering |wi|
in decreasing order π and setting always απi to the upper bound until the budget

∑d
i=1 αi = ϵ

is attained. Thus with k being the smallest integer in [1, d] such that
∑k

i=1 ui ≤ ϵ we get the
solution

α∗
πi

=


zπi for i < k,

(ϵ−
∑k−1

i=1 zπi) for i = k,

0 for i > k

.

Noting that δi = sign(wi)αi we get

δ∗πi
=


zπi

sign(wπi
) for i < k,

(ϵ−
∑k−1

i=1 zπi)sign(wπi) for i = k,

0 for i > k

.

□
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Proposition 4.4.2 shows that adding the box-constraints leads to a steepest descent direction
δ∗ of sparsity level k which depends on the gradient direction w and the target point x. Fig. 4.15
provides an empirical evaluation of the distribution of the sparsity level ∥δ∗∥0. The following
proposition computes the expected sparsity of the steepest descent step δ∗ for ϵ ≤ d−1

2 , together
with a simple lower bound.

Proposition 4.4.3 Let w ∈ Rd with wi ̸= 0 for all i = 1, . . . , d and x ∈ U([0, 1]d). Then it holds
for any d−1

2 ≥ ϵ > 0,

E
[
∥δ∗∥0

]
=⌊ϵ+ 1⌋+

d∑
m=⌊ϵ⌋+2

⌊ϵ⌋∑
k=0

(−1)k (ϵ− k)m−1

k! (m− 1− k)!
≥ ⌊3ϵ⌋+ 1

2
.

Proof. We first note that the components zi defined in Proposition 4.4.2 are independent and
have distribution zi ∼ U([0, 1]), i = 1, . . . , d as both 1− xi and xi are uniformly distributed and
the xi are independent. As the zi are i.i.d. the distribution of k is independent of the ordering
of w and thus we can just consider the probability

∑k
i=1 zi ≥ ϵ. Note that for any ϵ > 0, we have

1 ≤ k ≤ d. Moreover, we note that

k > m ⇐⇒
m∑
i=1

zi < ϵ and k = d⇐⇒
d∑

i=1

zi ≤ ϵ,

and as k is an integer valued random variable we have

k ≥ m ⇐⇒ k > m− 1.

Thus as k is a non-negative integer valued random variable, we have

E[k] =
d∑

m=1

P(k ≥ m) =

d∑
m=1

P
(
k > m− 1

)
=

d∑
m=1

P
(m−1∑

i=1

zi < ϵ
)
=

d∑
m=1

P
(m−1∑

i=1

zi ≤ ϵ
)

where in the last step we use that
∑m−1

i=1 zi is a continuous random variable and thus we add a set
of measure zero. The sum of uniformly distributed random variables on [0, 1] has the Irwin-Hall
distribution with a cumulative distribution function [Irwin, 1927, Hall, 1927] given by

P
(m−1∑

i=1

zi ≤ ϵ
)
=

1

(m− 1)!

⌊ϵ⌋∑
k=0

(−1)k
(
m− 1

k

)
(ϵ− k)m−1.

Note that the distribution of
∑m−1

i=1 zi is symmetric around the mean value m−1
2 and thus the

median is also m−1
2 . We note that for m = 1 the first sum is empty and thus P

(∑0
i=1 zi ≤ ϵ

)
= 1

and in general as 0 ≤ z1 ≤ 1 it holds for d− 1 ≥ ϵ ≥ m− 1:

P
(m−1∑

i=1

zi ≤ ϵ
)
= 1

Thus
d∑

m=1

P
(m−1∑

i=1

zi ≤ ϵ
)
= ⌊ϵ+ 1⌋+

d∑
m=⌊ϵ+1⌋+1

P
(m−1∑

i=1

zi ≤ ϵ
)
.

As the median is given by m−1
2 we get for ϵ ≥ m−1

2

P
(m−1∑

i=1

zi ≤ ϵ
)
≥ 1

2
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Algorithm 8: Single-ϵ APGD

Input: loss L, initial point xinit, feasible set S, Niter, η
(0), k(0), checkpoints M , input

dimension d
Output: approximate maximizer of the loss xbest

1 x(0) ← xinit, xbest ← xinit, Lbest ← L(xinit)
2 for i = 0, . . . , Niter −1 do
3 // adjust sparsity and step size

4 if i+ 1 ∈M then
5 k(i+1) ← sparsity as in Eq. (4.37)

6 η(i+1) ← step size as in Eq. (4.38)

7 if η(i+1) = η(0) then
8 x(i) ← xbest

9 end

10 end
11 // update step

12 u(i+1) ← x(i) + η(i) · s(∇L(x(i)), k(i+1) · d)
13 x(i+1) ← PS(u

(i+1))
14 // update best point found

15 if L(x(i+1)) > Lbest then
16 xbest ← x(i+1), Lbest ← L(x(i+1))
17 end

18 end

and thus

d∑
m=1

P
(m−1∑

i=1

zi ≤ ϵ
)
≥⌊ϵ+ 1⌋+ ⌊2ϵ+ 1⌋ − ⌊ϵ+ 1⌋

2
+

d∑
m=⌊2ϵ+1⌋+1

P
(m−1∑

i=1

zi ≤ ϵ
)

≥⌊ϵ+ 1⌋+ ⌊2ϵ+ 1⌋
2

≥ ⌊3ϵ⌋+ 1

2

□

While the exact expression is hard to access, the derived lower bound ⌊3ϵ⌋−1
2 shows that the

sparsity is non-trivially bounded away from 1. For a reasonable range of ϵ the expectation is
numerically larger than 2ϵ. In this way we provide a justification for the heuristic non-sparse
update steps used in Tramèr and Boneh [2019], Maini et al. [2020].

Finally, in our PGD scheme given g = ∇L(x(i)), t ∈ N and T (t) the set of indices of the t
largest components of |g|, we define the function s used in (4.26) via

h(t)i =

{
sign(gi) if i ∈ T (t)

0 else
, s(g, t) = h(t)/ ∥h(t)∥1 (4.36)

defines the function s used in (4.26). The form of the update is the same as in SLIDE which
use a fixed k. However, as derived above, the sparsity level k of the steepest descent direction
depends on ∇f and x and thus we choose k our scheme in a dynamic fashion depending on the
current iterate, as described in the next section.

4.4.4 l1-APGD minds [0, 1]d

The goal of our l1-APGD is similar to that of APGD for l2/l∞. It should be parameter-free for
the user and adapt the trade-off between exploration and local fine-tuning to the given budget
of iterations.

Proposition 4.4.2 suggests the form of the steepest descent direction for the l1-ball ∩ [0, 1]d

threat model, which has an expected sparsity on the order of 2ϵ but the optimal sparsity depends
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on the target point and the gradient of the loss. Thus fixing the sparsity of the update indepen-
dent of the target point as in SLIDE is suboptimal. In practice we have ϵ≪ d (e.g. for CIFAR-10
d = 3072 and commonly ϵ = 12) and thus 2ϵ sparse updates would lead to slow progress which
is in strong contrast to the tight iteration budget used in adversarial attacks. Thus we need a
scheme where the sparsity is adaptive to the chosen budget of iterations and depends on the
current iterate. This motivates two key choices in our scheme: 1) we start with updates with
low sparsity, 2) the sparsity of the updates is then progressively reduced and adapted to the
sparsity of the difference of our currently best iterate (highest loss) to the target point. Thus,
initially many coordinates are updated fostering fast progress and exploration of the feasible set,
while later on we have a more local exploitation with significantly sparser updates. We observe
that, although we do not enforce this actively, the average (over points) sparsity of the updates
selected by our adaptive scheme towards the final iterations is indeed on the order of 2ϵ, i.e.
around to what theoretically expected, although the exact value varies across models. In the fol-
lowing we describe the details of our l1-APGD, see Alg. 8, and a multi-ϵ variant which increases
the effectiveness, and finally discuss its use for adversarial training.

Single-ϵ l1-APGD. Our scheme should automatically adapt to the total budget of iterations.
Since the two main quantities which control the optimization in the intersection of l1-ball and
[0, 1]d are the sparsity of the updates and the step size, we propose to adaptively select them
at each iteration. In particular, we adjust both every m = ⌈0.04 ·Niter⌉ steps, with Niter being
the total budget of iterations, so that every set of parameters is applied for a minimum number

of steps to achieve improvement. In the following we denote by x
(i)
max the point attaining the

highest loss found until iteration i, and by M = {n ∈ N |n mod m = 0} the set of iterations at
which the parameters are recomputed, and describe how the adaptation is performed.

Selection of sparsity. We choose an update step for l1-APGD whose sparsity is automatically
computed by considering the best point found so far. In order to have both sufficiently fast
improvements and a good exploration of the feasible set in the first iterations of the algorithm,
we start with updates with d/5 nonzero elements, that is a sparsity k(0) = 0.2 (in practice this
implies k(0) ≫ 2ϵ/d). Then, the sparsity of the updates is adjusted as

k(i) =

{∥∥∥x(i−1)
max − x

∥∥∥
0
/(1.5 · d) if i ∈M,

k(i−1) else.
(4.37)

Note that k(i) is smaller than the sparsity of the current best perturbation since the initial
perturbations have much larger l0-norm than the expected 2ϵ, and we want to refine them.

Selection of the step size. Simultaneously to the sparsity of the updates, we adapt the step
size to the trend of the optimization. As high level idea: if the l0-norm of the best solution is not
decreasing significantly for many iterations, this suggests that it is close to the optimal value and
that the step size is too large to make progress, then we reduce it. Conversely, when the sparsity
of the updates keeps increasing we want to allow large step sizes since the region of the feasible
set which can be explored by sparser updates is different from what can be seen with less sparse
steps. We set the initial step size η(0) = ϵ (the radius of the l1-ball), so that the algorithm can
search efficiently the feasible set, and then adjust the step size at iterations i ∈M according to

η(i) =

{
max{η(i−m)/1.5, ηmin} if k(i)/k(i−m) ≥ 0.95,

η(0) else,
(4.38)

where ηmin = ϵ/10 is the smallest value we allow for the step size. Finally, when the step size is

set to its highest value, the algorithm restarts from x
(i)
max.

Multi-ϵ l1-APGD. In the described l1-APGD all iterates belong to the feasible set S. How-
ever, since the points maximizing the loss are most likely on the low dimensional faces of S,
finding them might require many iterations. We notice that the same points are instead in the
interior of any l1-ball with radius larger than ϵ. Thus we propose to split Niter into three phases
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Figure 4.16: Plots of best robust loss obtained so far (first/third) and robust accuracy (second/fourth)
over iterations for the l1-PGD of Tramèr and Boneh [2019] (SLIDE), the one of Maini et al. [2020] and
our single-ϵ l1-APGD with 10 (the version used for adversarial training), 25, 50 and 100 iterations for
two models (left: our own l1-robust model, right: the l2-robust one of Rice et al. [2020]). Since our
method relies on an adaptive scheme, it automatically adjusts the parameters to the number of available
iterations, outperforming the competitors.

with 30%, 30% and 40% of the iteration budget, where we optimize the objective L in l1-balls of
radii 3ϵ, 2ϵ and ϵ (always intersected with [0, 1]d) respectively. At the beginning of each phase
the output of the previous one is projected onto the intersection of the next l1-ball and [0, 1]d

and used as starting point for l1-APGD with smaller radius. In this way we efficiently find good
regions where to start the optimization in the target feasible set, see Fig. 4.14 for an illustration.

Comparison PGD vs single-ϵ and multi-ϵ l1-APGD. In Fig. 4.14 we compare the per-
formance of the versions of PGD used by Tramèr and Boneh [2019] and Maini et al. [2020] to
our l1-APGD, in both single- and multi-ϵ variants. For two models on CIFAR-10, we plot the
best average (over 1000 test points) cross-entropy loss achieved so far and the relative robust
accuracy (classification accuracy on the adversarial points), with a total budget of 100 iterations.
For multi-ϵ APGD, we report the results only from iteration 60 onward, since before that point
the iterates are outside the feasible set and thus the statistics not comparable. We see that the
single-ϵ APGD achieves higher (better) loss and lower (better) robust accuracy than the existing
PGD-based attacks, which tend to quickly plateau. Also, multi-ϵ APGD provides an additional
improvement: exploring the larger l1-ball yields an initialization in S with high loss, from where
even a few optimization steps are sufficient to outperform the other methods. Additionally, we
observe that using the exact projection (solid lines) boosts the effectiveness of the attacks com-
pared to the approximated one (dashed lines), especially on the l2-robust model of Rice et al.
[2020] (the two rightmost plots). Moreover, we show in Fig. 4.16 how our single-ϵ APGD adapts
to different budgets of iterations: when more steps are available, the loss improves more slowly
at the beginning, favoring the exploration of the feasible set, but it finally achieves better values.
Note that in this way, even with only 25 steps, l1-APGD outperforms existing methods with 100
iterations both in terms of loss and robust accuracy attained.

4.4.5 Adversarial training with l1-APGD

A natural application of a strong PGD-based attack is to maximize the loss in the inner maxi-
mization problem of adversarial training (AT) [Madry et al., 2018] and finding points attaining
higher loss should lead to more adversarially robust classifiers. Prior works have shown that
performing adversarial training wrt l1 is a more delicate task than for other lp-threat models:
for CIFAR-10, Maini et al. [2020] report that using PGD wrt l1 in AT led to severe gradient
obfuscation, and the resulting model is less than 8% robust at ϵ = 12. A similar effect is reported
in Liu et al. [2020], where the B&B attack of Brendel et al. [2019] more than halves the robust
accuracy computed by l1-PGD used for their l1-AT model. Both report the highest robustness
to l1-attacks when training for simultaneous robustness against different lp-norms.

In our own experiment, we observe that using the multi-step PGD-based attack SLIDE with
the standard sparsity of the updates k = 0.01 (here and in the following k indicates the percentage
of non-zero elements) leads to catastrophic overfitting when training classifiers on CIFAR-10 with
ϵ = 12 and 10 steps. Here we mean by catastrophic overfitting that model is robust against the
attack used during training even at test time but it fails completely against a stronger attack
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Figure 4.17: Left: Illustration of catastrophic overfitting in l1 adversarial training when using the 10-
step PGD-attack SLIDE [Tramèr and Boneh, 2019] with k = 0.01 for training. While the model is robust
against the 10-step SLIDE attack, it is completely non-robust when running our stronger l1-APGD attack
with 100 iterations. Right: Catastrophic overfitting does not happen when using 10-step l1-APGD for
adversarial training to train AT-APGD, even when one attacks the model with much stronger attacks
at test time, see the evaluation in Table 5.6. In both plots we report the robust accuracy on training
and test set over the 30 epochs of training.

(APGD in the left part of Fig. 4.17). This is similar to what has been reported by Wong et al.
[2020] in the l∞-threat model using FGSM [Goodfellow et al., 2014], i.e. a single step method,
in adversarial training might produce classifiers resistant to FGSM but not to a stronger PGD
attack. Moreover, the robustness against PGD drops abruptly during training, on both training
and test sets. In our scenario, as illustrated in Fig. 4.17 by the left plot, a similar phenomenon
happens: when we use SLIDE in adversarial training the classifier is initially robust against both
SLIDE with 10 steps (blue and yellow curves) and the stronger l1-APGD (green and red) with
100 iterations, but around iteration 4000 the robustness computed with l1-APGD goes close to
0%, while the model is still very robust against the attack used for training (which is a 10-step
attack and not a single step attack). Conversely, when l1-APGD (single-ϵ formulation with initial
sparsity k(0) = 0.05) with 10 steps is used for training (right plot) the model stays robust against
both l1-APGD with 100 iterations and SLIDE (and other attacks as shown in Sec. 4.4.7).

Moreover, We could prevent catastrophic overfitting by decreasing the sparsity in SLIDE to
k = 0.05, but this yields poor final robustness (around 50%) compared to what we achieved
using l1-APGD (59.7% against multiple attacks, see Table 5.5 for the detailed evaluation), since
a weaker attack is used at training time. In fact, we show in Sec. 4.4.9 that values k > 0.01 in
SLIDE lead to worse performance in most of the cases. We hypothesize that l1-APGD, adapting
the sparsity of the updates per point, first prevents the model from seeing only perturbations with
similar sparsity and second is able to effectively maximize the loss, allowing adversarial training
to perform. We note that even Tramèr and Boneh [2019] observed that using the standard fixed
value of k leads to overfitting, and proposed as remedies random sparsity levels and 20 steps.
We instead keep the usual 10 steps, and have a scheme which adaptively chooses the sparsity
rather than randomly. We leave it to future work to do a more thorough investigation of this
interesting phenomenon.

4.4.6 l1-Square Attack

In Sec. 4.2 we have introduced Square Attack, a query efficient score-based black-box adversarial
attack for l∞- and l2-bounded perturbations. It is based on random search and does not rely on
any gradient estimation technique. We adapt its l2 version to our l1-threat model, by modifying
Alg. 4 (Sec. 4.2.3) so that all normalization operations are computed wrt the l1-norm. For
p ∈ {2,∞} we create at every iteration perturbations on the surface of the lp-ball and then clip
them to [0, 1]d, but this results in poor performance for the l1-ball, likely due to the complex
structure of the intersection of l1-ball and [0, 1]d (see discussion above). Thus, at each iteration,
we upscale the square-shaped candidate update by a factor of 3 and then project the resulting
iterate onto the intersection of the l1-ball and [0, 1]d and accept this update if it increases the
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Algorithm 9: Sampling distribution in Square Attack for l1 ∩ [0, 1]d

Input: target point x of shape h× h× c, radius ϵ, current iterate x(i), size of the
windows w

Output: new update δ
1 ν ← x(i) − x
2 sample uniformly r1, s1, r2, s2 ∈ {0, . . . , w − h}
3 W1 := r1 + 1 : r1 + h, s1 + 1 : s1 + h, W2 := r2 + 1 : r2 + h, s2 + 1 : s2 + h
4 ϵunused ← ϵ− ∥ν∥1
5 η∗ ← η/∥η∥1 with η as in Eq. 4.15 (Sec. 4.2)
6 for i = 1, . . . , c do
7 ρ← Uniform({−1, 1})
8 νtemp ← ρη∗ + νW1,i/∥νW1,i∥

1

9 ϵiavail ← ∥νW1∪W2,i∥1 + ϵunused/c
10 νW2,i ← 0, νW1,i ← (νtemp/∥νtemp∥1)ϵ

i
avail

11 end
12 z ← PS(x+ 3ν)

13 δ ← z − x(i)

loss. This procedure increases the sparsity of the iterates and in turn the effectiveness of the
attack, showing again the different role that the box has in the l1-threat model compared to the
l∞- and l2-threat models.

We summarize the sampling distribution for the l1 ∩ [0, 1]d threat model in Alg. 9. The input
w controls the size of the update and is progressively reduced according to a piecewise constant
schedule, in turn regulated by the only free parameter of the method p. We show below that our
resulting scheme, l1-Square Attack, outperforms the existing black-box methods [Schott et al.,
2019, Zhao et al., 2019] on a variety of models, often with margin.

4.4.7 Experiments

In the following we test the effectiveness of our proposed attacks.9 Here, we compare l1-APGD
(with CE loss) and our l1-Square Attack to existing white- and black-box attacks in the low
budget regime, that is without random restarts. We will include a comparison in the high
budget regime in Sec. 5.1.3. All attacks are evaluated on models trained on CIFAR-10, CIFAR-
100 and ImageNet, and we report robust accuracy at ϵ = 12 for CIFAR-10 and CIFAR-100 and
ϵ = 60 for ImageNet on 1000 test points.

Models. The selected models are (almost all) publicly available and are representative of dif-
ferent architectures and training schemes: the models of Carmon et al. [2019], Engstrom et al.
[2019a], Xiao et al. [2020], Kim et al. [2020], Xu and Yang [2020] are robust wrt l∞, where the
model of Xiao et al. [2020] is known to be non-robust but shows heavy gradient obfuscation,
those of Augustin et al. [2020], Engstrom et al. [2019a], Rice et al. [2020] wrt l2, while those of
Maini et al. [2020], Madaan et al. [2021] are trained for simultaneous robustness wrt l∞-, l2- and
l1-attacks. To our knowledge no prior work has focused on training robust models for solely l1
(see discussion in Sec. 4.4.5). Additionally, we include the classifier we trained with l1-APGD
integrated in the adversarial training of Madry et al. [2018] and indicated as APGD-AT (see
Sec. 4.4.5).

Attacks. We compare our attacks to the existing SOTA attacks for the l1-threat model using
their existing code (see Sec. 4.4.8 for hyperparameters). In detail, we consider SLIDE [Tramèr
and Boneh, 2019] (which is based on PGD), EAD [Chen et al., 2018], FABT (the targeted
version of FAB introduced in Sec. 4.1.6), B&B [Brendel et al., 2019] and the recent ALMA [Rony
et al., 2021]. As reported in Rony et al. [2021] B&B crashes as the initial procedure to sample
uniform noise to get a decision different from the true class fails. Thus we initialize B&B with

9Code available at https://github.com/fra31/auto-attack.
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Table 4.22: Robust accuracy achieved by the SOTA l1 adversarial attacks on various models and
datasets. The statistics are computed on 1000 points of the test set. PA and Square are black-box
attacks. The budget is 100 iterations for white-box attacks (×9 for EAD and +10 for B&B) and 5000
queries for our l1-Square-Attack. ∗ indicates retrained models.

model clean EAD ALMA SLIDE B&B FABT APGDCE PA Square

CIFAR-10 (ϵ = 12)

APGD-AT (ours) 87.1 64.6 65.0 66.6 62.4 67.5 61.3 79.7 71.8
Madaan et al. [2021] 82.0 55.3 58.1 56.1 55.2 56.8 54.7 73.1 62.8
Maini et al. [2020] - AVG 84.6 51.8 54.2 53.8 52.1 61.8 50.4 77.4 68.4
Maini et al. [2020] - MSD 82.1 51.6 55.4 53.2 50.7 54.6 49.7 72.7 63.5
Augustin et al. [2020] 91.1 48.9 50.7 48.8 42.1 50.4 37.1 73.2 56.8
Engstrom et al. [2019a] - l2 91.5 40.3 46.4 35.1 36.8 39.9 30.2 71.7 52.7
Rice et al. [2020] 89.1 37.7 45.2 32.3 35.2 37.0 27.1 70.5 50.3
Xiao et al. [2020] 79.4 44.9 74.5 33.3 72.6 78.9 41.4 36.2 20.2

Kim et al. [2020]* 81.9 26.7 31.8 25.1 23.8 32.4 18.9 54.9 36.0
Carmon et al. [2019] 90.3 25.1 18.4 19.7 18.7 31.1 13.1 60.8 34.5
Xu and Yang [2020] 83.8 20.1 24.0 18.2 14.7 27.8 10.9 57.0 32.0
Engstrom et al. [2019a] - l∞ 88.7 14.5 19.4 14.2 12.2 20.9 8.0 57.6 28.0

CIFAR-100 (ϵ = 12)

Rice et al. [2020] - l2 58.7 19.5 24.4 17.7 19.3 19.6 14.6 37.0 23.8
Rice et al. [2020] - l∞ 54.5 8.6 9.9 6.0 6.5 13.0 4.5 23.0 10.6

ImageNet (ϵ = 60)

Engstrom et al. [2019a] - l2 56.6 45.6 50.8 44.7 44.4 44.8 43.6 - 50.2
Engstrom et al. [2019a] - l∞ 61.9 11.7 26.6 11.5 9.5 34.6 6.3 - 23.9

random images from CIFAR-100 (the results do not improve when starting at CIFAR-10 images).
Besides white-box methods we include the black-box Pointwise Attack (PA) [Schott et al., 2019],
introduced for the l0-threat model but successfully used as l1-attack by e.g. Maini et al. [2020].
We always use our l1-APGD in the multi-ϵ version.

CIFAR-10. We compare the attacks with a limited computational budget, i.e. 100 iterations,
with the exception of EAD for which we keep the default 9 binary search steps (that is 9× 100
iterations), B&B which performs an initial 10 step binary search procedure (10 additional forward
passes). Moreover, we add the black-box attacks Pointwise Attack and our l1-Square Attack
with 5000 queries (no restarts). Table 4.22 reports the robust accuracy at ϵ = 12 achieved by
every attack: in all but one case l1-APGDCE maximizing the cross-entropy loss outperforms the
competitors, in 6 out of 11 cases with a gap larger than 4% to the second best method. Note that
l1-APGDCE consistently achieves lower (better) robustness with a quite significant gap to the
non adaptive PGD-based attack SLIDE. Note also that l1-APGDCE, SLIDE and ALMA are the
fastest attacks for the budget of 100 iterations (see Sec. 4.4.8 for more details). The model from
Xiao et al. [2020] exemplifies the importance of testing robustness also with black-box attacks:
their defense generates gradient obfuscation so that white-box attacks have difficulties to perform
well (in particular ALMA, FABT and B&B yield a robust accuracy close to the clean one), while
Square Attack is not affected and achieves the best results with a large margin. Moreover, it
outperforms on all models the other black-box attack PA. The most robust model is APGD-AT
trained with our single-ϵ APGD for ϵ = 12. It improves by 7.9% over the second best model
Madaan et al. [2021] (see Table 5.5). This highlights how effective our l1-APGD maximizes the
target loss, even with only 10 steps used in AT.

Other datasets. We test the effectiveness of our proposed attacks on CIFAR-100 and ImageNet-
1k, with ϵ = 12 and ϵ = 60 respectively, in the same setup above. For CIFAR-100 we use the
models (PreAct ResNet-18) from Rice et al. [2020], for ImageNet those (ResNet-50) of Engstrom
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Table 4.23: Comparison of black-box attacks in the l1-threat model on CIFAR-10, ϵ = 12. l1-Square
Attack outperforms both the Pointwise Attack [Schott et al., 2019] and the l1-ZO-ADMM-Attack [Zhao
et al., 2019] by large margin.

model clean ADMM PA Square

APGD-AT (ours) 87.1 86.3 79.7 71.8
Maini et al. [2020] - AVG 84.6 81.3 77.4 68.4
Maini et al. [2020] - MSD 82.1 77.5 72.7 63.5
Madaan et al. [2021] 82.0 78.4 73.1 62.8
Augustin et al. [2020] 91.1 88.9 73.2 56.8
Engstrom et al. [2019a] - l2 91.5 89.8 71.7 52.7
Rice et al. [2020] 89.1 85.9 70.5 50.3

Kim et al. [2020]* 81.9 67.8 54.9 36.0
Carmon et al. [2019] 90.3 64.1 60.8 34.5
Xu and Yang [2020] 83.8 66.0 57.0 32.0
Engstrom et al. [2019a] - l∞ 88.7 69.3 57.6 28.0
Xiao et al. [2020] 79.4 78.5 36.2 20.2

et al. [2019a]: in both cases one classifier is trained for l∞-robustness, the other one for l2, all are
publicly available.10,11 On ImageNet, because of the different input dimension, we use k = 0.001
for SLIDE (after tuning it), and we do not run Pointwise Attack since it does not scale. For
B&B we use random images not classified in the target class from the respective test or valida-
tion sets as starting points. We observe that on ImageNet, the gap in runtime between B&B
and the faster attacks increases significantly: for example, to run 100 steps for 1000 test points
B&B takes 3612 s, that is around 14 times more than l1-APGD (254 s). Thus B&B scales much
worse to high-resolution datasets. Also, while B&B and l1-APGD have in principle a similar
budget in terms of forward/backward passes, one could do much more restarts for l1-APGD in
the same time as for B&B. We report in Table 4.22 the robust accuracy given by every attack
on 1000 points of test set of CIFAR-100 or validation set of ImageNet. Similarly to CIFAR-10,
our l1-APGD achieves the best results for all models in the low budget regime with a significant
gap to the second best, either B&B or SLIDE.

Comparison of black-box attacks. While many black-box attacks are available for the l∞-
and l2-threat model, and even a few have recently appeared for l0, the l1-threat model has
received less attention: in fact, Tramèr and Boneh [2019], Maini et al. [2020] used the Pointwise
Attack, introduced for l0, to test robustness wrt l1. To our knowledge only Zhao et al. [2019]
have proposed l1-ZO-ADMM, a black-box method to minimize the l1-norm of the adversarial
perturbations, although only results on MNIST are reported. Since no code is available for
ZO-ADMM for l1, we adapted the l2 version following Zhao et al. [2019] (see Sec. 4.4.8). As
for our l1-Square Attack, we give to l1-ZO-ADMM a budget of 5000 queries of the classifier.
Table 4.23 shows the robust accuracy on 1000 test points achieved by the three black-box attacks
considered on CIFAR-10 models, with ϵ = 12: Square Attack outperforms the other methods on
all models, with a significant gap to the second best. Note that l1-ZO-ADMM does not consider
norm-bounded attacks, but minimizes the norm of the modifications. While it is most of the
time successful in finding adversarial perturbations, it cannot reduce their l1-norm below the
threshold ϵ within the given budget of queries.

4.4.8 Experimental details

We here report details about the experimental setup used in Sec. 4.4.7.

Models. Almost all the models we used are publicly available: the classifiers from Engstrom
et al. [2019a], Carmon et al. [2019], Rice et al. [2020], Augustin et al. [2020] are provided in
the library RobustBench12 (see also Sec. 5.2). Those of Maini et al. [2020], Xu and Yang [2020]

10https://github.com/locuslab/robust overfitting
11https://github.com/MadryLab/robustness/tree/master/robustness
12https://robustbench.github.io/
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Table 4.24: Architecture of the models used in the experimental evaluation on CIFAR-10.

model architecture

APGD-AT (ours) PreAct ResNet-18
Madaan et al. [2021] WideResNet-28-10
Maini et al. [2020] - AVG PreAct ResNet-18
Maini et al. [2020] - MSD PreAct ResNet-18
Augustin et al. [2020] ResNet-50
Engstrom et al. [2019a] - l2 ResNet-50
Rice et al. [2020] PreAct ResNet-18
Xiao et al. [2020] DenseNet-121
Kim et al. [2020] ResNet-18
Carmon et al. [2019] WideResNet-28-10
Xu and Yang [2020] ResNet-18
Engstrom et al. [2019a] - l∞ ResNet-50

can be found in the official pages.13,14 Moreover, Madaan et al. [2021], Xiao et al. [2020] made
models available via OpenReview.15,16 Upon request, Kim et al. [2020] could not give access
to the original models out of privacy reasons. Therefore we trained new classifiers using the
official code17 following the suggested parameters. For the models denoted in Kim et al. [2020]
by “RoCL” and “RoCL+rLE” we could reproduce both clean and robust accuracy wrt l∞ with
the original evaluation code, while for “RoCL+AT+SS” we could match the robust accuracy
but not the clean one (here robust accuracy is the one computed using their code). However,
we used this last one in our experiments since it is the most robust one wrt l1. For APGD-AT
we trained a PreAct ResNet-18 [He et al., 2016b] with softplus activation function, using cyclic
learning rate with maximal value 0.1 for 100 epochs, random cropping and horizontal flipping
as training set augmentations. We set 10 steps of APGD for maximizing the robust loss in the
standard adversarial training setup [Madry et al., 2018]. Table 4.24 reports the architecture of
every model. As mentioned in Sec. 4.4.7, we chose such models to have different architectures,
training schemes and even training data, as Carmon et al. [2019], Augustin et al. [2020] use
unlabeled data in their methods.

Attacks. In the following we report the details of the presented attacks. We use ALMA from
Adversarial Library [Rony and Ben Ayed, 2020], with the default parameters for the l1-threat
models, in particular α = 0.5 with 100 iterations, α = 0.9 with 1000. EAD, B&B and Pointwise
Attack (PA) are available in FoolBox [Rauber et al., 2017]: for EAD we use the l1 decision
rule and regularization β = 0.01, for B&B we keep the default setup, while PA does not have
tunable parameters. We reimplemented SLIDE following the original code, according to which
we set sparsity of the updates k = 0.01 for CIFAR-10 and step size η = 3.06, which is obtained
rescaling the one used in Tramèr and Boneh [2019] η = 2 for ϵ = 2000/255 (see below for a
study of the effect of different values of k). Also, since no code is available for ZO-ADMM for l1,
we adapted the l2 version following Zhao et al. [2019] and then optimized its parameters, using
ρ = 2, γ = 0.1. Finally, we use FABT with 100 iterations and default parameters used later in
also Sec. 5.1. For l1-APGD we fix the values of all parameters to those mentioned in Sec. 4.4.4.
Moreover, we set p = 0.8 in l1-Square Attack.

Attacks runtime. Direct comparison of runtime is not necessarily representative of the com-
putational cost of each method since it depends on many factors including implementation and
tested classifier. We gave similar budget to (almost all) attacks: for the low budget comparison
(see Table 4.22) we use 100 iterations, which are equivalent to 100 forward and 100 backward
passes for ALMA, SLIDE and l1-APGD, 110 forward and 100 backward passes for B&B (because
of the initial binary search), 150 forward and 100 backward passes for FABT. EAD has instead a

13https://github.com/locuslab/robust union
14https://github.com/MTandHJ/amoc
15https://openreview.net/forum?id=tv8n52XbO4p
16https://github.com/iclrsubmission/kwta
17https://github.com/Kim-Minseon/RoCL
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Table 4.25: Effect of the sparsity k of the updates in SLIDE Tramèr and Boneh [2019], whose default
value is k = 0.01.

model k = 0.001 k = 0.003 k = 0.01 k = 0.03 k = 0.1 APGDCE

APGD-AT (ours) 74.5 70.1 66.6 64.4 65.7 61.3
Madaan et al. [2021] 61.9 58.2 56.1 57.0 66.2 54.7
Maini et al. [2020] - AVG 71.7 64.4 53.8 51.8 64.7 50.4
Maini et al. [2020] - MSD 63.6 58.5 53.2 51.7 62.2 49.7
Augustin et al. [2020] 60.9 53.0 48.8 59.3 74.1 37.1
Engstrom et al. [2019a] - l2 49.6 40.0 35.1 47.4 67.4 30.2
Xiao et al. [2020] 28.2 30.1 33.3 36.1 45.4 41.4
Rice et al. [2020] 47.0 37.6 32.3 45.2 65.2 27.1

Kim et al. [2020]* 38.4 30.6 25.1 34.9 58.3 18.9
Carmon et al. [2019] 41.4 29.9 19.7 24.2 64.4 13.1
Xu and Yang [2020] 35.3 24.9 18.2 21.1 58.2 10.9
Engstrom et al. [2019a] - l∞ 34.0 23.6 14.2 17.0 59.4 8.0

Table 4.26: Evaluation at larger threshold: Robust accuracy achieved by the SOTA l1-adversarial
attacks on models for CIFAR-10 at ϵ = 16.

model clean EAD ALMA SLIDE B&B FABT APGDCE PA Square

APGD-AT (ours) 87.1 55.2 55.3 59.1 52.7 59.7 50.6 78.5 66.4
Madaan et al. [2021] 82.0 46.2 50.0 47.7 46.0 48.2 45.6 70.4 58.5
Maini et al. [2020] - MSD 82.1 43.9 46.2 44.9 43.2 48.5 40.9 69.8 57.9
Maini et al. [2020] - AVG 84.6 43.7 44.9 45.9 43.0 55.3 38.9 75.1 62.9

9 times larger budget since we keep the default 9 binary search steps. As an example, when run
using a classifier on CIFAR-10 with PreAct ResNet-18 as architecture, 1000 test points, ALMA
and SLIDE take around 25 s, l1-APGD 27 s, FABT 32 s, EAD 105 s, B&B 149 s.

4.4.9 Additional results

Effect of sparsity in SLIDE. Since the sparsity k of the updates is a key parameter in SLIDE,
the PGD-based attack for l1 proposed in Tramèr and Boneh [2019], we study the effect of varying
k on its performance. In Table 4.25 we report the robust accuracy achieved by SLIDE with 5
values of k ∈ {0.001, 0.003, 0.01, 0.03, 0.1} on the CIFAR-10 models used for the experiments in
Sec. 4.4.7, with a single run of 100 iterations. As a reference, we also show the results of our
l1-APGD with the same budget (grey column). We observe that while the default value k = 0.01
performs best in most of the cases, for 3/12 models the lowest robust accuracy is obtained by
k = 0.03, for 1/12 by k = 0.001. This means that SLIDE would require to tune the value of k for
each classifier to optimize its performance. Moreover, l1-APGD, which conversely automatically
adapts the sparsity of the updates, outperforms the best out of the 5 versions of SLIDE in 11
out of 12 cases, with the only exception of the model from Xiao et al. [2020] which is know to
present heavy gradient obfuscation and on which the black-box Square Attack achieves the best
result (see Sec. 4.4.7).

Larger threshold ϵ. We here test that the performance of our attacks at the larger thresh-
old ϵ = 16. In Table 4.26 we run all the methods, with the lower budget, on the four most
robust models: one can observe that even with a larger threshold our l1-APGD outperforms the
competitors on all models.
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Chapter 5

Benchmarking Adversarial
Robustness

Since the finding that state-of-the-art deep learning models are vulnerable to adversarial exam-
ples, achieving adversarially robust models has become one of the most studied topics in the
machine learning community. The main difficulty of robustness evaluation is that it is a compu-
tationally hard problem even for simple lp-bounded perturbations [Katz et al., 2017] and exact
approaches [Tjeng et al., 2019] do not scale to large enough models, and then one has to rely on
adversarial attacks. Due to the many broken defenses, the field is currently in a state where it
is very difficult to judge the value of a new defense without an independent test. This limits the
progress as it is not clear how to distinguish bad from good ideas. A seminal work to mitigate
this issue are the guidelines for assessing adversarial defenses by Carlini et al. [2019a]. However,
as we see in our experiments, even papers trying to follow these guidelines can fail in obtaining
a proper evaluation. In our opinion the reason is that at the moment there is no protocol which
works reliably and autonomously, and does not need the fine-tuning of parameters for every new
defense.

AutoAttack. As discussed in Sec. 4.3, the widely used PGD attack, which is computationally
cheap and performs well in many cases, may overestimate robustness. Another cause of poor
evaluations is the lack of diversity among the attacks used, as most papers rely solely on the
results given by PGD or weaker versions of it like FGSM. Of different nature are for example
two attacks introduced in the previous sections: the white-box FAB (Sec. 4.1) and the black-
box Square Attack (Sec. 4.2). Importantly, these methods have a limited amount of parameters
which generalize well across classifiers and datasets. In Sec. 5.1, we combine two versions of Auto-
PGD, which aims at overcoming the weaknesses of PGD (see Sec. 4.3), with FAB and Square
Attack to form a parameter-free, computationally affordable and user-independent ensemble of
complementary attacks to estimate adversarial robustness, named AutoAttack. Note that we do
not argue that AutoAttack is the ultimate adversarial attack but rather that it can be used as
minimal test for new defenses, since it reliably reaches good performance in all tested models,
without any hyperparameter tuning and at a relatively low computational cost.

RobustBench. Since we show that AutoAttack is effective across models, datasets and threat
models, we can use it as standard evaluation to benchmark the evolution of defensive mecha-
nisms. Then, we introduced RobustBench, a standardized benchmark to track the progress of
adversarial defenses (Sec. 5.2). For this, we need to impose some restrictions on the allowed
classifiers, to exclude defenses which make standard attacks fail without improving robustness
(e.g. randomized defenses, input quantization), and include adaptive attacks to complement the
results of AutoAttack when available. Moreover, RobustBench allows us to collect a large pool
of robust classifiers which are made easily accessible via its Model Zoo.

Evaluation of adaptive test-time defenses. Since defenses which perform some form of
optimization at inference time to counter adversarial perturbations have recently become popu-
lar, we provide in Sec. 5.3 a categorization of such methods. Moreover, we discuss their possible
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advantages and drawbacks, especially about how to evaluate their robustness. Finally, we test
several existing adaptive test-time defenses: based on these experiments, we provide recommen-
dations about how to conduct such evaluations. This complements the results of RobustBench
whose restrictions exclude most of adaptive test-time defenses.

5.1 AutoAttack: an ensemble of parameter-free attacks

We combine two parameter-free versions of PGD, i.e. Auto-PGD with cross-entropy loss (APGDCE)
and on the targeted version of DLR loss (APGDDLR), with two complementary attacks, FAB
and Square Attack, to form the ensemble AutoAttack, which is automatic in the sense that it
does not require to specify any free parameters1.

Since we want our protocol to be effective, computationally affordable and general, we select
the following variants of the attacks to compose AutoAttack: APGDCE without random restarts,
APGDT

DLR, i.e. on the Targeted-DLR loss (see Eq. (4.25)), with 9 target classes, the targeted
version of FAB, namely FABT, with 9 target classes and Square Attack with one run of 5000
queries. We use 100 iterations for each run of the white-box attacks. While the runtime depends
on the model, its robustness and even the framework of the target network, APGD is the fastest
attack, as it requires only one forward and one backward pass per iteration. The computational
budget of AutoAttack is similar to what has been used, on average, in the evaluation of the
defenses considered.

A key property of AutoAttack is the diversity of its components: APGD is a white-box attack
aiming at any adversarial example within an lp-ball, and we use it with different loss functions.
Also, FAB minimizes the norm of the perturbation necessary to achieve a misclassification, and,
although it relies on the gradient of the logits, it appears to be effective also on models affected
by gradient masking as shown in Sec. 4.1.3. On the other hand, Square Attack is a score-based
black-box attack for norm bounded perturbations which uses random search and does not exploit
any gradient approximation. It outperforms other black-box attacks in terms of query efficiency
and success rate and has been shown to be even competitive with white-box attacks (see Sec. 4.2).
Both methods have few parameters which generalize well across models and datasets, so that we
will keep them fixed for all experiments. The diversity within the ensemble helps for two reasons:
first, there exist classifiers for which some of the attacks dramatically fail, but always at least
one of them works well. Second, on the same model diverse attacks might have similar robust
accuracy but succeed on different points: then considering the worst case over all attacks, as we
do for AutoAttack, improves the performance.

Implementation details. The hyperparameters of all attacks in AutoAttack are fixed for all
experiments across datasets, models and norms. In Sec. 5.1.2 we show that AutoAttack evaluates
adversarial robustness reliably and cost-efficiently despite its limited budget and running fully
automatic, without any hyperparameter tuning. We report all the hyperparameters used in
AutoAttack. For APGD, we use as direction in the update step the sign of the gradient for the
l∞-threat model and, as common in literature (see e.g. Tsipras et al. [2019]), the normalized (wrt
l2) gradient for the l2-threat model. Moreover, we set the momentum coefficient to α = 0.75,
ρ = 0.75 (Condition 1, see Sec. 4.3), initial step size η(0) = 2ϵ where ϵ is the maximum lp-norm of
the perturbations. For FAB we keep the standard hyperparameters, but remove the final search
(see Sec. 4.1.2). For Square Attack we keep the algorithm as presented in Sec. 4.2, using as initial
value for the size of the squares p = 0.8. Moreover, we use the piecewise constant schedule for p
as it is suggested for a query limit of 10000 without any rescaling (although we use only up to
5000 queries).

5.1.1 Untargeted vs targeted attacks

We here discuss why we choose the targeted versions of APGDDLR and FAB, considering both the
scalability and the effectiveness of the attacks. Note that we keep the untargeted formulation of
the CE loss, as it is widely used and achieves the best results for randomized defenses (Table 5.3).

1AutoAttack is available at https://github.com/fra31/auto-attack.
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Table 5.1: Comparison untargeted vs targeted attacks. We report clean test accuracy and robust
accuracy achieved by APGDDLR, APGDT

DLR, FAB and FABT. Moreover, we show the difference between
the results of the targeted and untargeted attacks, and boldface it when is negative (that is the targeted
attack is stronger). FAB does not scale to CIFAR-100/ImageNet due to the large number of classes.

# paper clean APGDDLRAPGDT
DLR diff. FAB FABT diff.

CIFAR-10 - l∞ - ϵ = 8/255

1 Carmon et al. [2019] 89.69 60.64 59.54 -1.10 60.62 60.12 -0.50
2 Alayrac et al. [2019] 86.46 62.03 56.27 -5.76 58.20 56.81 -1.39
3 Hendrycks et al. [2019] 87.11 56.96 54.94 -2.02 55.40 55.27 -0.13
4 Rice et al. [2020] 85.34 55.72 53.43 -2.29 54.13 53.83 -0.30
5 Qin et al. [2019] 86.28 55.46 52.85 -2.61 53.77 53.28 -0.49
6 Engstrom et al. [2019a] 87.03 52.65 49.32 -3.33 50.37 49.81 -0.56
7 Kumari et al. [2019] 87.80 51.68 49.15 -2.53 49.87 49.54 -0.33
8 Mao et al. [2019] 86.21 50.33 47.44 -2.89 48.32 47.91 -0.41
9 Zhang et al. [2019a] 87.20 47.33 44.85 -2.48 45.66 45.39 -0.27

10 Madry et al. [2018] 87.14 46.03 44.28 -1.75 45.41 44.75 -0.66
11 Pang et al. [2020a] 80.89 44.56 43.50 -1.06 44.47 44.06 -0.41
12 Wong et al. [2020] 83.34 46.64 43.22 -3.42 44.05 43.74 -0.31
13 Shafahi et al. [2019] 86.11 44.56 41.64 -2.92 42.90 43.44 0.54
14 Ding et al. [2020] 84.36 50.26 41.74 -8.52 47.18 42.47 -4.71
15 Moosavi-Dezfooli et al. [2019] 83.11 40.29 38.50 -1.79 39.04 38.97 -0.07
16 Zhang and Wang [2019] 89.98 48.96 37.29 -11.67 40.84 38.48 -2.36
17 Zhang and Xu [2020] 90.25 49.40 37.54 -11.86 40.36 38.99 -1.37
18 Jang et al. [2019] 78.91 37.01 34.96 -2.05 35.54 35.50 -0.04
19 Kim and Wang [2020] 91.51 48.41 35.93 -12.48 38.88 35.41 -3.47
20 Moosavi-Dezfooli et al. [2019] 80.41 35.47 33.70 -1.77 34.08 34.08 0.00
21 Wang and Zhang [2019] 92.80 40.33 33.61 -6.72 33.51 31.19 -2.32
22 Wang and Zhang [2019] 92.82 36.58 29.73 -6.85 31.82 29.10 -2.72
23 Mustafa et al. [2019] 89.16 4.54 1.13 -3.41 1.12 0.71 -0.41
24 Pang et al. [2020a] 93.52 0.49 0.00 -0.49 0.03 0.00 -0.03

CIFAR-10 - l∞ - ϵ = 0.031

1 Zhang et al. [2019b] 84.92 54.04 53.10 -0.94 53.79 53.45 -0.34
2 Atzmon et al. [2019] 81.30 44.50 41.16 -3.34 40.92 40.73 -0.19
3 Xiao et al. [2020] 79.28 31.27 32.34 1.07 79.28 79.28 0.00

CIFAR-100 - l∞ - ϵ = 8/255

1 Hendrycks et al. [2019] 59.23 31.66 28.48 -3.18 - 28.74 -
2 Rice et al. [2020] 53.83 20.25 18.98 -1.27 - 19.24 -

MNIST - l∞ - ϵ = 0.3

1 Zhang et al. [2020b] 98.38 94.77 94.88 0.11 95.60 96.84 1.24
2 Gowal et al. [2019a] 98.34 93.84 93.93 0.09 94.72 97.03 2.31
3 Zhang et al. [2019b] 99.48 93.96 93.58 -0.38 94.12 94.62 0.50
4 Ding et al. [2020] 98.95 94.03 94.62 0.59 94.33 95.37 1.04
5 Atzmon et al. [2019] 99.35 94.54 94.16 -0.38 94.12 95.26 1.14
6 Madry et al. [2018] 98.53 89.75 90.57 0.82 91.75 93.69 1.94
7 Jang et al. [2019] 98.47 92.15 93.56 1.41 93.24 94.74 1.50
8 Wong et al. [2020] 98.50 85.39 86.34 0.95 87.30 88.28 0.98
9 Taghanaki et al. [2019] 98.86 0.00 0.00 0.00 0.02 0.01 -0.01

ImageNet - l∞ - ϵ = 4/255

1 Engstrom et al. [2019a] 63.4 32.0 27.7 -4.3 - 28.4 -

CIFAR-10 - l2 - ϵ = 0.5

1 Augustin et al. [2020] 91.08 74.94 72.91 -2.03 74.13 73.18 -0.95
2 Engstrom et al. [2019a] 90.83 70.20 69.24 -0.96 69.54 69.46 -0.08
3 Rice et al. [2020] 88.67 68.95 67.68 -1.27 68.03 67.97 -0.06
4 Rony et al. [2019] 89.05 67.02 66.44 -0.58 66.81 66.74 -0.07
5 Ding et al. [2020] 88.02 66.53 66.09 -0.44 66.43 66.33 -0.10

ImageNet - l2 - ϵ = 3

1 Engstrom et al. [2019a] 55.3 30.9 28.3 -2.6 - 28.5 -105



In Table 5.1 we compare the untargeted attacks, APGDDLR and FAB, to their respective
targeted versions in terms of the robust accuracy achieved on classifiers trained with recently
proposed adversarial defenses (see below for details), for different threat models. We use the
untargeted methods with 5 random restarts, the targeted ones with 9 target classes, those at-
taining the 9 highest scores at the original point (excluding the correct one). One can see that
on CIFAR-10, CIFAR-100 and ImageNet in almost all the cases (35/36 for APGDDLR, 29/32 for
FAB) the targeted attacks provide lower (better) results, sometimes with a large gap especially
for APGDT

DLR. Although on MNIST the opposite situation occurs, we show in the next section
that Square Attack is a stronger adversary than both APGDT

DLR and FABT for this dataset, and
thus we favor the targeted attacks when selecting our ensemble in AutoAttack.

5.1.2 Experiments

In order to test the performance of AutoAttack, but also the individual performances of each
attack, we evaluate the adversarial robustness in the l∞- and l2-threat models of over 50 mod-
els of 35 defenses from recent conferences like ICML, NeurIPS, ICLR, ICCV, CVPR, using
MNIST, CIFAR-10, CIFAR-100 and ImageNet as datasets. We report first results for deter-
ministic defenses and then for randomized ones, i.e. classifiers with a stochastic component.
AutoAttack improves almost all evaluations, showing that its good performance generalizes well
across datasets, models and threat models with the same hyperparameters.

Deterministic defenses. In Tables 5.2 and 5.4 we report the results on 49 models, 43 trained
for l∞- and 6 for l2-robustness, from recent defense papers (for some of them multiple networks
are considered, possibly on more datasets and norms). When possible we used the originals
models (which are either publicly available or we obtained them via personal communication
from the authors). Otherwise we retrained the models with the code released by the authors.
For each classifier we report the clean accuracy and robust accuracy, at the ϵ specified in the
table, on the whole test set (except for ImageNet where we use 1000 points from the validation
set) obtained by the individual attacks APGDCE, APGDT

DLR, FABT and Square Attack, together
with our ensemble AutoAttack, which counts as a success every point on which at least one of the
four attacks finds an adversarial example (worst case evaluation). Additionally, we provide the
reported robust accuracy of the respective papers (please note that in some cases their statistics
are computed on a subset of the test set) and the difference between our robust accuracy and
the reported one. The reduction is highlighted in red in the last column of Table 5.2 if it is
negative (we get a lower robust accuracy). Finally, we boldface the attack which obtains the
best individual robust accuracy and underline those achieving a robust accuracy lower than
reported.

Notably, in all but one case AutoAttack achieves a lower robust accuracy than reported in the
original papers, and the improvement is larger than 10% in 13 out of 49 cases, larger than 30%
in 8 cases (AutoAttack yields also significantly lower values on the few models on CIFAR-100
and ImageNet). Thus AutoAttack would almost always have provided a better estimate of the
robustness of the models than in the original evaluation, without any adaptation to the specific
defense. In the only case where it does not reduce the reported robust accuracy it is only 0.03%
far from it, and this result has been obtained with a variant of PGD with 180 restarts and 200
iterations (see Qin et al. [2019]), which is way more expensive than our evaluation.

In most of the cases more than one of the attacks included in AutoAttack achieves a lower
robust accuracy than reported (APGDCE improves the reported evaluation in 21/49 cases,
APGDT

DLR in 45/49, FABT in 39/49 and Square Attack in 17/49, but 9/9 on MNIST). APGDT
DLR

most often attains the best result for CIFAR-10, CIFAR-100 and ImageNet, Square Attack on
MNIST. Also, APGDT

DLR is the most reliable one as it has the least severe failure which we define
as the largest difference in robust accuracy to the best performing attack (maximal difference
less than 12%, compared to 89% for APGDCE, 59% for FABT and 70% for Square Attack). Thus
our new DLR loss is able to resist gradient masking.

Note that, in Table 5.2 and Table 5.4, the models of Pang et al. [2019] and Pang et al.
[2020a] appears twice as they are evaluated both with and without the addition of adversarial
training. The models of Wang and Zhang [2019] are the networks named “R-MOSA-LA-4” and
“R-MC-LA-4”.
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Table 5.2: Robustness evaluation of adversarial defenses by AutoAttack. We report clean test
accuracy, the robust accuracy of the individual attacks as well as the combined one of AutoAttack (AA
column). We also provide the robust accuracy reported in the original papers (“rep.”) and compute
the difference to the one of AutoAttack. If negative (in red) AutoAttack provides lower (better) robust
accuracy. Note that APGD uses the (untargeted) cross-entropy loss, APGDT the targeted DLR loss.

# paper clean APGD APGDT FABT Square AA rep. reduct.

CIFAR-10 - l∞ - ϵ = 8/255

1 Carmon et al. [2019] 89.69 61.74 59.54 60.12 66.63 59.53 62.5 -2.97
2 Alayrac et al. [2019] 86.46 60.17 56.27 56.81 66.37 56.03 56.30 -0.27
3 Hendrycks et al. [2019] 87.11 57.23 54.94 55.27 61.99 54.92 57.4 -2.48
4 Rice et al. [2020] 85.34 57.00 53.43 53.83 61.37 53.42 58 -4.58
5 Qin et al. [2019] 86.28 55.70 52.85 53.28 60.01 52.84 52.81 0.03
6 Engstrom et al. [2019a] 87.03 51.72 49.32 49.81 58.12 49.25 53.29 -4.04
7 Kumari et al. [2019] 87.80 51.80 49.15 49.54 58.20 49.12 53.04 -3.92
8 Mao et al. [2019] 86.21 49.65 47.44 47.91 56.98 47.41 50.03 -2.62
9 Zhang et al. [2019a] 87.20 46.15 44.85 45.39 55.08 44.83 47.98 -3.15

10 Madry et al. [2018] 87.14 44.75 44.28 44.75 53.10 44.04 47.04 -3.00
11 Pang et al. [2020a] 80.89 57.07 43.50 44.06 49.73 43.48 55.0 -11.52
12 Wong et al. [2020] 83.34 45.90 43.22 43.74 53.32 43.21 46.06 -2.85
13 Shafahi et al. [2019] 86.11 43.66 41.64 43.44 51.95 41.47 46.19 -4.72
14 Ding et al. [2020] 84.36 50.12 41.74 42.47 55.53 41.44 47.18 -5.74
15 Moosavi-Dezfooli et al. [2019] 83.11 41.72 38.50 38.97 47.69 38.50 41.4 -2.90
16 Zhang and Wang [2019] 89.98 64.42 37.29 38.48 59.12 36.64 60.6 -23.96
17 Zhang and Xu [2020] 90.25 71.40 37.54 38.99 66.88 36.45 68.7 -32.25
18 Jang et al. [2019] 78.91 37.76 34.96 35.50 44.33 34.95 37.40 -2.45
19 Kim and Wang [2020] 91.51 56.64 35.93 35.41 61.30 34.22 57.23 -23.01
20 Moosavi-Dezfooli et al. [2019] 80.41 36.65 33.70 34.08 43.46 33.70 36.3 -2.60
21 Wang and Zhang [2019] 92.80 59.09 33.61 31.19 64.22 29.35 58.6 -29.25
22 Wang and Zhang [2019] 92.82 69.62 29.73 29.10 66.77 26.93 66.9 -39.97
23 Mustafa et al. [2019] 89.16 8.16 1.13 0.71 33.91 0.28 32.32 -32.04
24 Chan et al. [2020] 93.79 2.06 0.53 58.13 71.43 0.26 15.5 -15.24
25 Pang et al. [2020a] 93.52 89.48 0.00 0.00 35.82 0.00 31.4 -31.40

CIFAR-10 - l∞ - ϵ = 0.031

1 Zhang et al. [2019b] 84.92 55.28 53.10 53.45 59.43 53.08 56.43 -3.35
2 Atzmon et al. [2019] 81.30 79.67 41.16 40.73 47.99 40.22 43.17 -2.95
3 Xiao et al. [2020] 79.28 39.99 32.34 79.28 20.44 18.50 52.4 -33.90

CIFAR-100 - l∞ - ϵ = 8/255

1 Hendrycks et al. [2019] 59.23 33.02 28.48 28.74 34.26 28.42 33.5 -5.08
2 Rice et al. [2020] 53.83 20.57 18.98 19.24 23.57 18.95 28.1 -9.15

MNIST - l∞ - ϵ = 0.3

1 Zhang et al. [2020b] 98.38 95.32 94.88 96.84 93.97 93.96 96.38 -2.42
2 Gowal et al. [2019a] 98.34 94.79 93.93 97.03 92.88 92.83 93.88 -1.05
3 Zhang et al. [2019b] 99.48 93.60 93.58 94.62 92.97 92.81 95.60 -2.79
4 Ding et al. [2020] 98.95 94.58 94.62 95.37 91.42 91.40 92.59 -1.19
5 Atzmon et al. [2019] 99.35 99.10 94.16 95.26 90.86 90.85 97.35 -6.50
6 Madry et al. [2018] 98.53 90.57 90.57 93.69 88.56 88.50 89.62 -1.12
7 Jang et al. [2019] 98.47 94.05 93.56 94.74 88.00 87.99 94.61 -6.62
8 Wong et al. [2020] 98.50 86.68 86.34 88.28 83.07 82.93 88.77 -5.84
9 Taghanaki et al. [2019] 98.86 30.50 0.00 0.01 0.00 0.00 64.25 -64.25

ImageNet - l∞ - ϵ = 4/255

1 Engstrom et al. [2019a] 63.4 31.0 27.7 28.4 46.8 27.6 33.38 -5.78

CIFAR-10 - l2 - ϵ = 0.5

1 Augustin et al. [2020] 91.08 74.70 72.91 73.18 83.10 72.91 73.27 -0.36
2 Engstrom et al. [2019a] 90.83 69.62 69.24 69.46 80.92 69.24 70.11 -0.87
3 Rice et al. [2020] 88.67 68.58 67.68 67.97 79.01 67.68 71.6 -3.92
4 Rony et al. [2019] 89.05 66.59 66.44 66.74 78.05 66.44 67.6 -1.16
5 Ding et al. [2020] 88.02 66.21 66.09 66.33 76.99 66.09 66.18 -0.09

ImageNet - l2 - ϵ = 3

1 Engstrom et al. [2019a] 55.3 31.5 28.3 28.5 46.6 28.3 35.09 -6.79
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Table 5.3: Robustness evaluation of randomized l∞-adversarial defenses by AutoAttack. We
report the clean test accuracy (mean and standard deviation over 5 runs) and the robust accuracy of the
individual attacks as well as the combined on of AutoAttack (again over 5 runs). We also provide the
robust accuracy reported in the respective papers and compute the difference to the one of AutoAttack
(negative means that AutoAttack is better). The statistics of our attack are computed on the whole test
set except for the ones of Yang et al. [2019], which are on 1000 test points due to the computational cost
of this defense. The ϵ is the same as used in the papers. APGD1 and APGD2 indicate APGDCE and
APGDDLR respectively.

# paper model clean APGD1APGD2 FAB Square AA rep. red.

CIFAR-10 - ϵ = 8/255

1 Wang et al. [2019a] En5RN 82.39±0.14 48.81 49.37 - 78.61 45.56±0.20 51.48 -5.9
2 Yang et al. [2019] w/ AT 84.9±0.6 30.1 31.9 - - 26.3±0.85 52.8 -26.5
3 Yang et al. [2019] pure 87.2±0.3 21.5 24.3 - - 18.2±0.82 40.8 -22.6
4 Grathwohl et al. [2020] JEM-10 90.99±0.03 11.69 15.88 63.07 79.32 9.92±0.03 47.6 -37.7
5 Grathwohl et al. [2020] JEM-1 92.31±0.04 9.15 13.85 62.71 79.25 8.15±0.05 41.8 -33.6
6 Grathwohl et al. [2020] JEM-0 92.82±0.05 7.19 12.63 66.48 73.12 6.36±0.06 19.8 -13.4

CIFAR-10 - ϵ = 4/255

1 Grathwohl et al. [2020] JEM-10 91.03±0.05 49.10 52.55 78.87 89.32 47.97±0.05 72.6 -24.6
2 Grathwohl et al. [2020] JEM-1 92.34±0.04 46.08 49.71 78.93 90.17 45.49±0.04 67.1 -21.6
3 Grathwohl et al. [2020] JEM-0 92.82±0.02 42.98 47.74 82.92 89.52 42.55±0.07 50.8 -8.2

Randomized defenses. Another line of adversarial defenses relies on adding to a classifier
some stochastic component. In this case the output (hence the decision) of the model might
change across different runs for the same input. Thus we compute in Table 5.3 the mean (standard
deviation in brackets) of our statistics over 5 runs. Moreover the results of AutoAttack are given
considering, for each point, the attack performing better on average across 5 runs. To counter
the randomness of the classifiers, for APGD we compute the direction for the update step as
the average of 20 computations of the gradient at the same point (known as Expectation over
Transformation [Athalye et al., 2018]) and use the untargeted losses (1 run). We do not run
FAB here since it returns points on or very close to the decision boundary, so that even a small
variation in the classifier is likely to undo the adversarial change. We modify Square Attack
to accept an update if it reduces the target loss on average over 20 forward passes and, as this
costs more time we use only 1000 iterations. For the models from Grathwohl et al. [2020], we
attack that named JEM-0 with 5 restarts with the deterministic versions (i.e. without averaging
across multiple passes of the networks), since the stochastic component has little influence, and
then reuse the same adversarial examples on JEM-1 and JEM-10 (the results of FAB confirm
that it is not suitable to test randomized defenses). Table 5.3 shows that AutoAttack achieves
always lower robust accuracy than reported in the respective papers, with APGDCE being the
best performing attack, closely followed by APGDDLR. In 7 out of 9 cases the improvement is
significant, larger than 10% (and in 3/9 cases larger than 25%). Thus AutoAttack is also suitable
for the evaluation of randomized defenses.

Note that for the models of Grathwohl et al. [2020], only plots of robust accuracy vs size
of the perturbation ϵ are available in their paper. Thus the reported values are obtained by
extrapolating the values in the tables from the most recent version of the paper, that is the one
available at https://arxiv.org/abs/1912.03263v2.

Analysis of adversarial defenses. While the main goal of the evaluation is to show the
effectiveness of AutoAttack, at the same time it provides an assessment of the SOTA of adversarial
defenses. The most robust defenses rely on variations or fine-tuning of adversarial training
introduced in Madry et al. [2018]. One step forward has been made by methods which use
additional data for training, like Carmon et al. [2019] and Alayrac et al. [2019]. Moreover,
several defenses which claim SOTA robustness turn out to be significantly less robust than Madry
et al. [2018]. Interestingly, the most (empirically) resistant model on MNIST is one trained for
obtaining provable certificates on the exact robust accuracy, and comes with a verified lower
bound on it of 93.32% [Zhang et al., 2020b].
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Table 5.4: Robustness evaluation of additional adversarial defenses by AutoAttack. We report
clean test accuracy, the robust accuracy of the individual attacks and the combined one of AutoAttack
(AA column). We also provide the robust accuracy reported in the original papers and compute the
difference to that of AutoAttack. If negative (in red) AutoAttack provides lower (better) robust accuracy.

# paper clean APGDCEAPGDT
DLRFABT Square AA rep. reduct.

CIFAR-10 - l∞ - ϵ = 4/255

1 Song et al. [2019a] 84.81 57.43 56.51 56.86 64.67 56.51 58.1 -1.59

CIFAR-10 - l∞ - ϵ = 0.02

1 Pang et al. [2019] 91.22 5.02 1.74 2.45 29.52 1.02 34.0 -32.98
2 Pang et al. [2019] 93.44 0.18 0.01 0.06 88.55 0.00 30.4 -30.40

Recent advancements. After the publication of our work, several techniques improved SOTA
of adversarial defenses, using for example better data augmentation [Gowal et al., 2021], improved
loss functions [Rade and Moosavi-Dezfooli, 2021] or synthetic data [Rebuffi et al., 2021a, Wang
et al.]. However all still rely on adversarial training as main component to achieve robustness.

5.1.3 Extension to the l1-threat model

We here extend AutoAttack to the l1-threat model. As noted in Sec. 4.4 this case might present
some differences to the more common l∞ and l2. Then, for AutoAttack wrt l1 we use our multi-ϵ
l1-APGD with 5 runs (with random restarts) of 100 iterations for the CE and the T-DLR loss
(total budget of 1000 steps), FABT exploits 9 restarts of 100 iterations and l1-Square Attack has
a budget of 5000 queries (the total budget is the same as for the other threat models). Since
there are no defenses focusing specifically on l1, we use the various robust models from Sec. 4.4
to test our l1-AutoAttack.

Experiments on CIFAR-10. We follow a similar setup to that in Sec. 4.4.7. However, this
time we give the attacks a higher budget: we use SLIDE and B&B with 10 random restarts
of 100 iterations (the reported accuracy is then the pointwise worst case over restarts). B&B
has a default value of 1000 iterations but 10 restarts with 100 iterations each yield much better
results. For ALMA and EAD we use 1000 resp. 9 × 1000 iterations (note that EAD does a
binary search) since they do not have the option of restarts. We compare these strong attacks to
the combination of l1-APGDCE and l1-APGDT-DLR denoted as APGDCE+T with 100 iterations
and 5 restarts each. These runs are also part of our ensemble l1-AutoAttack which includes
additionally, FABT (100 iterations and 9 restarts as used in l∞- and l2-AA) and Square Attack
(5000 queries). Note that APGDCE+T has the same or smaller budget than the other attacks and
it performs very similar to the full l1-AutoAttack (AA). In Table 5.5 and Table 5.6 we report the
results achieved by all methods for ϵ = 12 resp. ϵ = 8. AA outperforms for ϵ = 12 the individual
competitors in all cases except one, i.e. B&B on the APGD-AT model, where however it is only
0.5% far from the best. Also, note that all the competitors have at least one case where they
report a robust accuracy more than 10% worse than AA. The same also holds for the case ϵ = 8.
Note that for ϵ = 12 APGDCE+T is the best single attack in 10 out of 12 cases (B&B 3, SLIDE
1) and for ϵ = 8 APGDCE+T is the best in 9 out of 12 cases (B&B 2, SLIDE 1).

Since AA is an ensemble of methods, as a stronger baseline we additionally report the worst
case robustness across all the methods not included in AA (indicated as “WC” in the tables),
that is EAD, ALMA, SLIDE, B&B and Pointwise Attack. l1-AA achieves better results in most
of the cases (7/12 for ϵ = 12, 9/12 for ϵ = 8) even though it has less than half of the total budget
of WC. AA is 0.6% worse than WC for the APGD-AT model (at ϵ = 12), which is likely due
to the fact that l1-APGD is used to generate adversarial examples at training time and thus
there seems to be a slight overfitting effect to this attack. However, note that standard AT with
l1-PGD has been reported to fail completely. We report the results of the individual methods of
l1-AA below. We also list in Table 5.5 the l1-robust accuracy reported in the original papers, if
available. The partially large differences indicate that a standardized evaluation with AA would
lead to a more reliable assessment of l1-robustness.
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Table 5.5: Evaluation of l1-robustness: Robust accuracy achieved by the SOTA l1 -adversarial attacks
on various models and datasets. The statistics are computed on 1000 points of the test set. “WC”
denotes the pointwise worst-case over all restarts/runs of EAD, ALMA, SLIDE, B&B and Pointwise
Attack. Note that APGD, the combination of APGDCE and APGDT-DLR (5 restarts each), yields a
similar performance as AA (ensemble of APGDCE+T, l1-FABT and l1-Square Attack) with the same or
smaller budget than the other individual attacks. AA performs the same or beats the worst case WC of
five SOTA l1-attacks in 8 out of 12 cases. “rep.” denotes the reported robust accuracy in the original
papers. ∗ the models of Kim et al. [2020] were not available on request and thus are retrained with their
code. ∗∗ In Madaan et al. [2021] evaluation is done at ϵ = 2000

255
, but by personal communication with

the authors we found that the reported 55.0% corresponds to ϵ = 12.

model clean EAD ALMA SLIDE B&B APGD WC AA rep.

CIFAR-10 (ϵ = 12)

APGD-AT (ours) 87.1 63.3 61.4 65.9 59.9 60.3 59.7 60.3 -

Madaan et al. [2021] 82.0 54.5 54.3 55.1 51.9 51.9 51.8 51.9 55.0**

Maini et al. [2020] - AVG 84.6 50.0 49.7 52.3 49.0 46.8 47.3 46.8 54.0
Maini et al. [2020] - MSD 82.1 50.1 49.8 51.7 47.7 46.5 46.8 46.5 53.0
Augustin et al. [2020] 91.1 46.0 42.9 41.5 32.9 31.1 31.9 31.0 -
Engstrom et al. [2019a] - l2 91.5 36.4 34.7 30.6 27.5 27.0 27.1 26.9 -
Rice et al. [2020] 89.1 33.9 32.4 28.1 24.2 24.2 23.7 24.0 -
Xiao et al. [2020] 79.4 34.4 75.0 22.5 59.3 27.2 20.2 16.9 -

Kim et al. [2020]* 81.9 24.4 22.9 19.9 15.7 15.4 15.1 15.1 81.18
Carmon et al. [2019] 90.3 26.2 13.6 13.6 10.4 8.3 8.5 8.3 -
Xu and Yang [2020] 83.8 18.1 14.5 13.9 7.8 7.7 6.9 7.6 59.63
Engstrom et al. [2019a] - l∞ 88.7 12.5 10.0 8.7 5.9 4.9 5.1 4.9 -

CIFAR-100 (ϵ = 12)

Rice et al. [2020] - l2 58.7 18.4 17.1 15.5 13.1 12.1 12.7 12.1 -
Rice et al. [2020] - l∞ 54.5 8.1 5.5 4.5 3.0 3.4 2.9 3.1 -

ImageNet (ϵ = 60)

Engstrom et al. [2019a] - l2 56.6 44.1 45.6 44.2 40.3 40.5 40.3 40.5 -
Engstrom et al. [2019a] - l∞ 61.9 9.6 17.1 8.5 6.2 4.6 5.8 4.4 -

Experiments on other datasets. We test the effectiveness of our proposed attacks on
CIFAR-100 and ImageNet-1k, with ϵ = 12 and ϵ = 60 respectively, in the same setup of Sec. 4.4.7.
Table 5.5 l1-AutoAttack gives the lowest robust accuracy in 2/4 cases, improving up 1.4% over
WC, the pointwise worst case over all attacks not included in AA, while in the other cases it
is only 0.2% worse than WC, showing that it gives a good estimation of the robustness of the
models.

Composition of l1-AutoAttack. We report in Table 5.7 the individual performance of the 4
methods constituting l1-AutoAttack, recalling that each version of l1-APGD, with either cross-
entropy or targeted DLR loss, is used with 5 runs of 100 iterations, FABT exploits 9 restarts of
100 iterations and l1-Square Attack has a budget of 5000 queries. Note that the robust accuracy
given by l1-AutoAttack is in all cases lower than that of the best individual attack, which varies
across models.
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Table 5.6: Evaluation at smaller radius (ϵ = 8): see Table 5.5 for details, the only change is the
evaluation of robust accuracy at the smaller value ϵ = 8.

model clean EAD ALMA SLIDE B&B APGDCE+TWC AA

APGD-AT (ours) 87.1 71.6 71.8 72.9 70.6 70.6 70.6 70.6
Madaan et al. [2021] 82.0 62.6 63.3 62.7 60.6 60.7 60.6 60.6
Maini et al. [2020] - AVG 84.6 62.9 63.1 63.1 62.4 60.3 61.3 60.3
Maini et al. [2020] - MSD 82.1 60.2 61.0 61.6 58.6 58.3 58.2 58.2
Augustin et al. [2020] 91.1 60.9 60.1 60.8 52.6 50.7 52.0 50.7
Engstrom et al. [2019a] - l2 91.5 54.0 54.9 52.3 46.0 44.4 45.9 44.2
Rice et al. [2020] 89.1 52.5 51.5 49.9 44.3 42.9 44.1 42.9

Kim et al. [2020]* 81.9 38.7 38.9 36.6 31.8 30.4 31.4 30.1
Xiao et al. [2020] 79.4 41.2 75.3 30.7 60.6 33.8 27.9 22.4
Carmon et al. [2019] 90.3 37.8 29.7 28.8 25.1 21.1 22.6 21.1
Xu and Yang [2020] 83.8 33.1 30.2 27.6 22.6 21.4 21.6 21.0
Engstrom et al. [2019a] - l∞ 88.7 28.8 24.9 23.1 17.5 16.5 16.4 16.0

Table 5.7: Individual performance of the components of l1-AutoAttack.

model clean APGDCE APGDT
DLR FABT Square AA

CIFAR-10 (ϵ = 12)

APGD-AT (ours) 87.1 60.8 60.8 65.9 71.8 60.3
Madaan et al. [2021] 82.0 54.2 52.0 54.7 62.8 51.9
Maini et al. [2020] - AVG 84.6 48.9 47.5 59.5 68.4 46.8
Maini et al. [2020] - MSD 82.1 48.6 47.4 53.5 63.5 46.5
Augustin et al. [2020] 91.1 34.7 34.5 42.4 56.8 31.0
Engstrom et al. [2019a] - l2 91.5 27.9 29.3 32.9 52.7 26.9
Rice et al. [2020] 89.1 25.5 26.3 30.3 50.3 24.0
Xiao et al. [2020] 79.4 32.2 33.4 78.6 20.2 16.9

Kim et al. [2020]* 81.9 17.0 16.9 22.2 36.0 15.1
Carmon et al. [2019] 90.3 9.9 9.9 21.5 34.5 8.3
Xu and Yang [2020] 83.8 9.6 9.3 17.7 32.0 7.6
Engstrom et al. [2019a] - l∞ 88.7 6.1 6.7 13.0 28.0 4.9

CIFAR-100 (ϵ = 12)

Rice et al. [2020] - l2 58.7 13.4 13.8 16.4 23.8 12.1
Rice et al. [2020] - l∞ 54.5 3.8 4.2 7.7 10.6 3.1

ImageNet (ϵ = 60)

Engstrom et al. [2019a] - l2 56.6 42.8 40.8 43.1 50.2 40.5
Engstrom et al. [2019a] - l∞ 61.9 5.7 5.5 18.9 23.9 4.4
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5.2 RobustBench

Figure 5.1: The top-3 entries of our CIFAR-10 leaderboard hosted at https://robustbench.github.io/
for the l∞-perturbations of radius ϵ∞ = 8/255.

As mentioned above, benchmarking the progress of adversarial robustness might be challeng-
ing: there are already more than 6000 papers on this topic [Carlini, 2021], but it is often unclear
which defenses against adversarial examples indeed improve robustness and which only make
the typically used attacks overestimate the actual robustness. As shown in Sec. 5.1, AutoAttack
may represent a suitable standardized tool to evaluate robustness, which can be complemented
with adaptive attacks. However, recently Tramèr et al. [2020] observe that although several
recently published defenses have tried to perform adaptive evaluations, many of them could still
be broken by new adaptive attacks. We observe that there are repeating patterns in many of
these defenses that prevent standard attacks from succeeding. This motivates us to impose re-
strictions on the defenses we consider in our proposed benchmark, RobustBench, which aims at
standardized adversarial robustness evaluation. Specifically, we rule out i) classifiers which have
zero gradients with respect to the input [Buckman et al., 2018, Guo et al., 2018], ii) randomized
classifiers [Yang et al., 2019, Pang et al., 2020b], and iii) classifiers that use an optimization loop
at inference time [Samangouei et al., 2018, Li et al., 2019c]. Often, non-certified defenses that
violate these three restrictions only make gradient-based attacks harder but do not substantially
improve robustness [Carlini et al., 2019a]. However, we will lift (some of) these constraints if
a standardized reliable evaluation method for those defenses becomes available. We start from
benchmarking robustness with respect to the l∞- and l2-threat models, since they are the most
studied settings in the literature. We use AutoAttack as our current standard evaluation which
is an ensemble of diverse parameter-free attacks (white- and black-box) that has shown reliable
performance over a large set of models that satisfy our restrictions. Moreover, we accept and
encourage external evaluations, e.g. with adaptive attacks, to improve our standardized evalua-
tion, especially for the leaderboard entries whose evaluation may be unreliable according to the
flag that we propose. Additionally, we collect models robust against common image corruptions
[Hendrycks and Dietterich, 2019] as these represent another important type of perturbations
which should not change the decision of a classifier.

Components of RobustBench. We make following key contributions with our RobustBench
benchmark:

• Leaderboard (https://robustbench.github.io/): a website with the leaderboard (see
Fig. 5.1) based on more than 120 evaluations where it is possible to track the progress and
the current state of the art in adversarial robustness based on a standardized evaluation using
AutoAttack complemented by (external) adaptive evaluations. The goal is to clearly identify
the most successful ideas in training robust models to accelerate the progress in the field.

• Model Zoo (https://github.com/RobustBench/robustbench): a collection of the most
robust models that are easy to use for any downstream applications. As an example, we
expect that this will foster the development of better adversarial attacks by making it easier
to perform evaluations on a large set of more than 80 models.
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• Analysis: based on the collected models from the Model Zoo, we provide an analysis of
how robustness affects the performance on distribution shifts, calibration, out-of-distribution
detection, fairness, privacy leakage, smoothness, and transferability. In particular, we find
that robust models are significantly underconfident that leads to worse calibration, and that
not all robust models have higher privacy leakage than standard models.

Threat models. We focus on the fully white-box setting, i.e. the model f is assumed to be
fully known to the attacker, and perturbations with bounded lp-norm since those are the most
widely studied ones. We rely on thresholds ϵp established in the literature which are chosen such
that the true label should stay the same for each in-distribution input within the perturbation set.
We note that robustness towards small lp-perturbations is a necessary but not sufficient notion
of robustness which has been criticized in the literature [Gilmer et al., 2018]. It is an active area
of research to develop threat models which are more aligned with the human perception such as
spatial perturbations [Fawzi and Frossard, 2015, Engstrom et al., 2019c], Wasserstein-bounded
perturbations [Wong et al., 2019, Hu et al., 2020], perturbations of the image colors [Laidlaw
and Feizi, 2019] or lp-perturbations in the latent space of a neural network [Laidlaw et al., 2021,
Wong and Kolter, 2021]. However, despite the simplicity of the lp-perturbation model, it has
numerous interesting applications that go beyond security considerations [Tramèr et al., 2019,
Saadatpanah et al., 2020] and span transfer learning [Salman et al., 2020, Utrera et al., 2020],
interpretability [Tsipras et al., 2019, Kaur et al., 2019, Engstrom et al., 2019b], generalization
[Xie et al., 2020, Zhu et al., 2019, Bochkovskiy et al., 2020], robustness to unseen perturbations
[Kang et al., 2019a, Xie et al., 2020, Laidlaw et al., 2021, Kireev et al., 2021], stabilization of
GAN training [Zhong et al., 2020]. Thus, improvements in lp-robustness have the potential to
improve many of these downstream applications.

Additionally, we provide leaderboards for common image corruptions [Hendrycks and Di-
etterich, 2019] that try to mimic modifications of the input images which can occur naturally.
Unlike lp adversarial perturbations, they are not imperceptible and evaluation on them is done in
the average-case fashion, i.e. there is no attacker who aims at changing the classifier’s decision.
In this case, the robustness of a model is evaluated as classification accuracy on the corrupted
images, averaged over corruption types and severities.

5.2.1 Comparison to existing benchmarks

Related libraries and benchmarks. There are many libraries that focus primarily on im-
plementations of popular adversarial attacks such as FoolBox [Rauber et al., 2017], Cleverhans
[Papernot et al., 2018], AdverTorch [Ding et al., 2019], AdvBox [Goodman et al., 2020], ART
[Nicolae et al., 2018], SecML [Melis et al., 2019], DeepRobust [Li et al., 2020]. Some of them also
provide implementations of several basic defenses, but they do not include up-to-date state-of-
the-art models. The two challenges [Kurakin et al., 2018, Brendel et al., 2018] hosted at NeurIPS
2017 and 2018 aimed at finding the most robust models for specific attacks, but they had a pre-
defined deadline, so they could capture the best defenses only at the time of the competition.
Ling et al. [2019] proposed DEEPSEC, a benchmark that tests many combinations of attacks
and defenses, but suffers from a few shortcomings as suggested by Carlini [2019]: i) reporting
average-case instead of worst-case performance over multiple attacks, ii) evaluating robustness in
threat models different from the ones used for training, iii) using excessively large perturbations.
Chen and Gu [2020] proposed a new hard-label black-box attack, RayS, and evaluated it on a
range of models which led to a leaderboard.2 Despite being a state-of-the-art hard-label black-
box attack, the robust accuracy in the leaderboard given by RayS still tends to be overestimated
even compared to the original evaluations.

Recently, Dong et al. [2020] have provided an evaluation of a few defenses (in particular, 3
for l∞- and 2 for l2-norm on CIFAR-10) against multiple commonly used attacks. However, they
did not include some of the best performing defenses [Hendrycks et al., 2019, Carmon et al.,
2019, Gowal et al., 2020, Rebuffi et al., 2021b] and attacks [Gowal et al., 2019b, Croce and Hein,
2020a], and in a few cases, their evaluation suggests robustness higher than what was reported
in the original papers. Moreover, they do not impose any restrictions on the models they accept

2https://github.com/uclaml/RayS
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to the benchmark. RobustML3 aims at collecting robustness claims for defenses together with
external evaluations. Their format does not assume running any baseline attack, so it relies
entirely on evaluations submitted by the community, which however do not occur often enough.
Thus even though RobustML has been a valuable contribution to the community, now it does
not provide a comprehensive overview of the recent state of the art in adversarial robustness.

Finally, it has become common practice to test new attacks wrt l∞ on the publicly available
models from Madry et al. [2018] and Zhang et al. [2019b], since those represent widely accepted
defenses which have stood many thorough evaluations. However, having only two models per
dataset (MNIST and CIFAR-10) does not constitute a sufficiently large testbed, and, because of
the repetitive evaluations, some attacks may already overfit to those defenses.

What is different in RobustBench. Learning from these previous attempts, RobustBench
presents a few different features compared to the aforementioned benchmarks: i) a baseline worst-
case evaluation with an ensemble of strong, standardized attacks [Croce and Hein, 2020c] which
includes both white- and black-box attacks, unlike RobustML which is solely based on adaptive
evaluations, integrated by external evaluations, ii) we add a flag in AutoAttack raised when the
evaluation might be unreliable, in which case we do additional adaptive evaluations ourselves
and encourage the community to contribute,iii) clearly defined threat models that correspond to
the ones used during training of submitted models, iv) evaluation of not only standard defenses
[Madry et al., 2018, Zhang et al., 2019b] but also of more recent improvements such as Carmon
et al. [2019], Gowal et al. [2020], Rebuffi et al. [2021b]. Moreover, RobustBench is designed as
an open-ended benchmark that keeps an up-to-date leaderboard, and we welcome contributions
of new defenses and evaluations using adaptive attacks. Finally, we open source the Model Zoo
for convenient access to the 80+ most robust models from the literature which can be used for
downstream tasks and facilitate the development of new standardized attacks.

5.2.2 Leaderboard

Restrictions. We argue that accurate benchmarking adversarial robustness in a standardized
way requires some restrictions on the type of considered models. The goal of these restrictions
is to prevent submissions of defenses that cause some standard attacks to fail without truly
improving robustness. Specifically, we consider only classifiers f : Rd → RC that

• have in general non-zero gradients with respect to the inputs. Models with zero gradients, e.g.,
that rely on quantization of inputs [Buckman et al., 2018, Guo et al., 2018], make gradient-
based methods ineffective thus requiring zeroth-order attacks, which do not perform as well as
gradient-based attacks. Alternatively, specific adaptive evaluations, e.g. with Backward Pass
Differentiable Approximation [Athalye et al., 2018], can be used which, however, can hardly
be standardized. Moreover, we are not aware of existing defenses solely based on having zero
gradients for large parts of the input space which would achieve competitive robustness.

• have a fully deterministic forward pass. To evaluate defenses with stochastic components,
it is a common practice to combine standard gradient-based attacks with Expectation over
Transformations [Athalye et al., 2018]. While often effective it might be not sufficient, as
shown by Tramèr et al. [2020]. Moreover, the classification decision of randomized models
may vary over different runs for the same input, hence even the definition of robust accuracy
differs from that of deterministic networks. We note that randomization can be useful for
improving robustness and deriving robustness certificates [Lecuyer et al., 2019, Cohen et al.,
2019], but it also introduces variance in the gradient estimators (both white- and black-box)
making standard attacks much less effective.

• do not have an optimization loop in the forward pass. This makes backpropagation through it
very difficult or extremely expensive. Usually, such defenses [Samangouei et al., 2018, Li et al.,
2019c] need to be evaluated adaptively with attacks that rely on a combination of hand-crafted
losses.

3https://www.robust-ml.org/
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Figure 5.2: Visualization of the robustness and accuracy of 54 CIFAR-10 models from the RobustBench
l∞-leaderboard. Robustness is evaluated using l∞-perturbations with ϵ∞ = 8/255.

Some of these restrictions were also discussed by Brown et al. [2018] for the warm-up phase of
their challenge. We refer the reader to Appendix E therein for an illustrative example of a trivial
defense that bypasses gradient-based and some of the black-box attacks they consider. We believe
that such constraints are necessary at the moment since they allow an accurate standardized
evaluation which makes the leaderboard meaningful and sustainable. In fact, for defenses not
fulfilling the restrictions there is no standard evaluation which is shown to generalize and perform
well across techniques, thus one has to resort to time-consuming adaptive attacks specifically
tailored for each case. In the design of our benchmark, we thought that it is more important
that the robustness evaluation is reliable, rather than being open to all possible defenses with
the risk that the robustness is drastically overestimated. As this can lead to a potential bias in
our leaderboard, we will lift the restrictions if reliable standardized evaluation methods for these
modalities become available in the literature.

Overall setup. We set up leaderboards for the l∞, l2 and common corruption threat models
on CIFAR-10, CIFAR-100, and ImageNet datasets (see Table 5.8 for details). We use the fixed
budgets of ϵ∞ = 8/255 and ϵ2 = 0.5 for the l∞ and l2 leaderboards for CIFAR-10 and CIFAR-
100. For ImageNet, we use ϵ∞ = 4/255 and in Sec. 5.2.5 we discuss how we handle that
different models use different image resolutions for ImageNet. Most of the models shown in the
leaderboards are taken from papers published at top-tier machine learning and computer vision
conferences as shown in Fig. 5.2 (left). For each entry we report the reference to the original
paper, standard and robust accuracy under the specific threat model (see the next paragraph
for details), network architecture, venue where the paper appeared and possibly notes regarding
the model. We also highlight when extra data (often, the dataset introduced by Carmon et al.
[2019]) is used since it gives a clear advantage for both clean and robust accuracy. If any other
attack achieves lower robust accuracy than AutoAttack then we also report it. Moreover, the
leaderboard allows to search the entries by their metadata (such as title, architecture, venue)
which can be useful to compare different methods that use the same architecture or to search
for papers published at some conference.

Evaluation of defenses. The evaluation of robust accuracy on common corruptions [Hendrycks
and Dietterich, 2019] involves simply computing the average accuracy on corrupted images over
different corruption types and severity levels.4 To evaluate robustness of l∞ and l2 defenses, we
currently use AutoAttack (see Sec. 5.1). We choose AutoAttack as it includes both black-box
and white-box attacks, does not require hyperparameter tuning (in particular, the step size), and
consistently improves the results reported in the original papers for almost all the models (see
Fig. 5.2 (middle)). If in the future some new standardized and parameter-free attack is shown
to consistently outperform AutoAttack on a wide set of models given a similar computational
cost, we will adopt it as standard evaluation. In order to verify the reproducibility of the results,
we perform the standardized evaluation independently of the authors of the submitted models.
We encourage evaluations of the models in the leaderboard with adaptive or external attacks to
reflect the best available upper bound on the true robust accuracy (see a pre-formatted issue

4A breakdown over corruptions and severities is also available, e.g. for CIFAR-10 models see: https://gith

ub.com/RobustBench/robustbench/blob/master/model info/cifar10/corruptions/unaggregated results.csv
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template in our repository5), in particular in the case where AutoAttack flags that it might not
be reliable (see paragraph below). For example, Gowal et al. [2020] and Rebuffi et al. [2021b]
evaluate their models with a hybrid of AutoAttack and MultiTargeted attack [Gowal et al.,
2019b], that in some cases reports slightly lower robust accuracy than AutoAttack alone. We
reflect the additional evaluations in our leaderboard by reporting in a separate column the robust
accuracy for the worst case of AutoAttack and all other evaluations. Below we show an example
of how one can use our library to easily benchmark a model (either external one or taken from
the Model Zoo):

from robustbench.eval import benchmark

clean_acc, robust_acc = benchmark(model, dataset='cifar10', threat_model='Linf')

Moreover, in Sec. 5.2.5 we also show the variability of the robust accuracy given by AutoAttack
over random seeds and report its runtime for a few models from different threat models.

Identifying potential need for adaptive attacks. Although AutoAttack provides an accu-
rate estimation of robustness for most models that satisfy the restrictions mentioned above, there
might still be corner cases when AutoAttack overestimates robustness of a model that satisfies
the restrictions. Carlini et al. [2019a] suggest that one indicator of possible overestimation of
robustness is when black-box attacks are more effective than white-box ones. We noticed that
this is the case for the model from Xiao et al. [2020] where the black-box Square Attack improves
by more than 10% the robust accuracy given by the previous white-box attacks in AutoAttack.
We run a simple adaptive attack: Square Attack with multiple random restarts (30 instead of 1)
decreases the robust accuracy from the 18.50% of AutoAttack to 7.40%. We note that AutoAt-
tack did not fail completely for this model and correctly revealed a lower level of robustness than
reported (52.4%), although the exact robust accuracy was overestimated. Based on this case,
we integrate a flag in AutoAttack: a warning is output whenever Square Attack reduces of more
than 0.2% the robust accuracy compared to the white-box gradient-based attacks in AutoAttack.
In this case, AutoAttack evaluation might be not fully reliable and adaptive attacks might be
necessary, so we flag the corresponding entries in the leaderboard (currently, only the model of
Xiao et al. [2020]). Moreover, for the sake of convenience, we also integrate in AutoAttack flags
that automatically inform the user if the restrictions are violated.6

Adding new defenses. We believe that the leaderboard is only useful if it reflects the latest
advances in the field, so it needs to be constantly updated with new defenses. We intend to include
evaluations of new techniques and we welcome contributions from the community which help to
keep the benchmark up-to-date. We require new entries to i) satisfy the three restrictions stated
above, ii) to be accompanied by a publicly available paper (e.g., an arXiv preprint) describing
the technique used to achieve the reported results, and iii) share the model checkpoints (not
necessarily publicly). We also allow temporarily adding entries without providing checkpoints
given that the authors evaluate their models with AutoAttack. However, we will mark such
evaluations as unverified, and to encourage reproducibility, we reserve the right to remove an
entry later on if the corresponding model checkpoint is not provided. It is possible to add a new
defense to the leaderboard and (optionally) the Model Zoo by opening an issue with a predefined
template in our repository,7 where more details about new additions can be found.

5.2.3 Model Zoo

We collect the checkpoints of many networks from the leaderboard in a single repository hosted
at https://github.com/RobustBench/robustbench after obtaining the permission of the
authors (see the website for the information on the licenses). The goal of this repository, the
Model Zoo, is to make the usage of robust models as simple as possible to facilitate various
downstream applications and analyses of general trends in the field. In fact, even when the
checkpoints of the proposed method are made available by the authors, it is often time-consuming
and not straightforward to integrate them in the same framework because of many factors such

5https://github.com/RobustBench/robustbench/issues/new/choose
6See https://github.com/fra31/auto-attack/blob/master/flags doc.md for details
7https://github.com/RobustBench/robustbench
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Table 5.8: The total number of models in the Model Zoo and leaderboards per dataset and threat model.

CIFAR-10 CIFAR-100 ImageNet

Threat model Model Zoo Leaderboard Model Zoo Leaderboard Model Zoo Leaderboard

l∞ 39 63 14 14 5 6
l2 17 18 - - - -
Common corruptions 7 15 2 4 5 7

as small variations in the architectures, custom input normalizations, etc. For simplicity of
implementation, at the moment we include only models implemented in PyTorch [Paszke et al.,
2019]. Below we illustrate how a model can be automatically downloaded and loaded via its
identifier and threat model within two lines of code:

from robustbench.utils import load_model

model = load_model(model_name='Ding2020MMA', dataset='cifar10', threat_model='L2')

We include the most robust models, e.g. those from Rebuffi et al. [2021b], but there are also
defenses which pursue additional goals alongside adversarial robustness at the fixed threshold
we use: e.g., Sehwag et al. [2020] consider networks which are robust and compact, Wong et al.
[2020] focus on computationally efficient adversarial training, Ding et al. [2020] aim at input-
adaptive robustness as opposed to robustness within a single lp-radius. All these factors have to
be taken into account when comparing different techniques, as they have a strong influence on
the final performance. Thus, we highlight these factors in the footnotes below each paper’s title.

A testbed for new attacks. Another important use case of the Model Zoo is to simplify com-
parisons between different adversarial attacks on a wide range of models. First, the leaderboard
already serves as a strong baseline for new attacks. Second, as mentioned above, new attacks are
often evaluated on the models from Madry et al. [2018] and Zhang et al. [2019b], but this may
not provide a representative picture of their effectiveness. For example, currently the difference
in robust accuracy between the first and second-best attacks in the CIFAR-10 leaderboard of
Madry et al. [2018] is only 0.03%, and between the second and third is 0.04%. Thus, we believe
that a more thorough comparison should involve multiple models to prevent overfitting of the
attack to one or two standard robust defenses.

5.2.4 Analysis

With unified access to multiple models from the Model Zoo, one can easily compute various
performance metrics to see general trends. We analyze various aspects of robust classifiers for
robust models on CIFAR-10.

Performance across various distribution shifts. We test the performance of the models
from the Model Zoo on different distribution shifts ranging from common image corruptions
(CIFAR-10-C) to dataset resampling bias (CIFAR-10.1 [Recht et al., 2018]) and image source
shift (CINIC-10 [Darlow et al., 2018]). For each of these datasets, we measure standard accuracy,
and Fig. 5.3 shows that improvement in robust accuracy (which often comes with an improvement
in standard accuracy) on CIFAR-10 correlates with an improvement in standard accuracy across
distributional shifts. On CIFAR-10-C, robust models (particularly with respect to the l2-norm)
tend to give a significant improvement which agrees with the findings in Ford et al. [2019].
Concurrently with our work, Taori et al. [2020] study the robustness to different distribution
shifts of many models trained on ImageNet, including some lp-robust models. Our conclusions
qualitatively agree with theirs, and we hope that our collected set of models will help to provide
a more complete picture. Moreover, we measure robust accuracy, in the same threat model used
on CIFAR-10, using AutoAttack (see Fig. 5.4), in order to see how lp adversarial robustness
generalizes across the datasets representing different distributions shifts, and observe a clear
positive correlation between robust accuracy on CIFAR-10 and its variations.
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Figure 5.3: Standard accuracy of classifiers trained against l∞ (left), l2 (middle), and common corrup-
tion (right) threat model respectively, from our Model Zoo on various distribution shifts.
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Figure 5.4: Robust accuracy of the robust classifiers, trained against l∞ and l2 threat model, respectively,
from our Model Zoo on various distribution shifts. The data points with 0% robust accuracy correspond
to a standardly trained model.

Calibration. A classifier is calibrated if its predicted probabilities correctly reflect the actual
accuracy [Guo et al., 2017]. In the context of adversarial training, calibration was considered in
Hendrycks et al. [2020] who focus on improving accuracy on common corruptions and in Augustin
et al. [2020] who focus mostly on preventing overconfident predictions on out-of-distribution in-
puts. We instead focus on in-distribution calibration. We compute the expected calibration error
(ECE) without and with temperature rescaling [Guo et al., 2019] to minimize the ECE (which
is a simple but effective post-hoc calibration method) using the code of Guo et al. [2017]. We
use their default settings to compute the calibration error which includes, in particular, binning
of the probability range onto 15 equally-sized bins. However, we use our own implementation
of the temperature rescaling algorithm which is close to that of Augustin et al. [2020]. Since
optimization of the ECE over the softmax temperature is a simple one-dimensional optimization
problem, we can solve it efficiently using a grid search. Moreover, the advantage of performing
a grid search is that we can optimize directly the metric of interest, i.e. ECE, instead of the
cross-entropy loss as in Guo et al. [2017] who had to rely on a differentiable loss since they used
LBFGS [Liu and Nocedal, 1989] to optimize the temperature. We perform a grid search over the
interval t ∈ [0.001, 1.0] with a grid step 0.001 and we test both t and 1/t temperatures. Moreover,
we check that for all models the optimal temperature t is situated not at the boundary of the
grid.

In Fig. 5.5 we plot the expected calibration error (ECE) without and with temperature
rescaling together with the optimal temperature for a large set of classifiers. We observe that
most of the l∞ (top row of Fig. 5.5) robust models are significantly underconfident since the
optimal calibration temperature is less than one for most models. The only two models which are
overconfident are the standard model and the model of Ding et al. [2020] that aims to maximize
the margin. We see that temperature rescaling is even more important for robust models since
without any rescaling the ECE is as high as 70% for the model of Pang et al. [2020c] (and 21%
on average) compared to 4% for the standard model. Temperature rescaling significantly reduces
the ECE gap between robust and standard models but it does not fix the problem completely
which suggests that it is worth incorporating calibration techniques also during training of robust
models.

We show additional calibration results for l2-robust models in the bottom row of Fig. 5.5.
The overall trend of the ECE is the same as for l∞-robust models: most of the l2 models are
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underconfident (since the optimal temperature is less than one) and lead to worse calibration
before and after temperature rescaling. The main difference compared to the l∞ threat model is
that among the l2 models there are two models that are better-calibrated : one before (Engstrom
et al. [2019a] with 1.41% ECE vs 3.71% ECE of the standard model) and one after (Gowal et al.
[2020] with 1.00% ECE vs 1.11% ECE of the standard model) temperature rescaling. Moreover,
we can see that similarly to the l∞ case, the only overconfident models are either the standard
one or models that maximize the margin instead of using norm-bounded perturbations, i.e. Ding
et al. [2020] and Rony et al. [2019].
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Figure 5.5: Expected calibration error (ECE) before (left) and after (middle) temperature rescaling,
and the optimal rescaling temperature (right) for the l∞-anf l2-robust models.

Out-of-distribution detection. Ideally, a classifier should exhibit high uncertainty in its
predictions when evaluated on out-of-distribution (OOD) inputs. One of the most straightforward
ways to extract this uncertainty information is to use some threshold on the predicted confidence
where OOD inputs are expected to have low confidence from the model [Hendrycks and Gimpel,
2017]. An emerging line of research aims at developing OOD detection methods in conjunction
with adversarial robustness [Hein et al., 2019, Sehwag et al., 2019, Augustin et al., 2020]. In
particular, Song et al. [2020] demonstrated that adversarial training leads to degradation in the
robustness against OOD data. We further test this observation on all l∞-models trained on
CIFAR-10 from the Model Zoo on three OOD datasets: CIFAR-100, SVHN [Netzer et al., 2011],
and Describable Textures Dataset [Cimpoi et al., 2014]. We use the area under the ROC curve
(AUROC) to measure the success in the detection of OOD data, and show the results in Fig. 5.6.
With l∞ robust models, we find that compared to standard training, various robust training
methods indeed lead to degradation of the OOD detection quality. While extra data in standard
training can improve robustness against OOD inputs, it fails to provide similar improvements
with robust training. We further find that l2 robust models have in general comparable OOD
detection performance to standard models, while the model of Augustin et al. [2020] achieves even
better performance since their approach explicitly optimizes both robust accuracy and worst-case
OOD detection performance.

Fairness in robustness. Recent works [Benz et al., 2021, Xu et al., 2020a] have noticed that
robust training [Madry et al., 2018, Zhang et al., 2019b] can lead to models whose performance
varies significantly across subgroups, e.g. defined by classes. We will refer to this performance
difference as fairness, and here we study the influence of robust training methods on fairness.
In Fig. 5.7 we show the breakdown of standard and robust accuracy for the robust models,
where one can see how the achieved robustness largely varies over classes. While in general the
classwise standard and robust accuracy correlate well, the class “deer” in l∞-threat model suffers
a significant degradation, unlike what happens for l2, which might indicate that the features of
such class are particularly sensitive to l∞-bounded attacks. Moreover, we measure fairness with
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Figure 5.6: Visualization of the OOD detection quality (higher AUROC is better) for the l∞-robust
models trained on CIFAR-10 on three OOD datasets: CIFAR-100 (left), SVHN (middle), Describable
Textures (right). We detect OOD inputs based on the maximum predicted confidence [Hendrycks and
Gimpel, 2017].

the relative standard deviation (RSD), defined as the standard deviation divided over the average
of robust accuracy over classes, for which lower values mean more uniform distribution and higher
robustness. We observe that better robust accuracy generally leads to lower RSD values which
implies that the disparity among classes is reduced (with a strong linear trend): improving the
robustness of the models has then the effect of reducing the disparities among classes. However,
some training techniques like MART [Wang et al., 2020] for l∞ can noticeably increase the RSD
and thus increase the disparity compared to other methods which achieve similar robustness
(around 57%).

To compute the robustness for the experiments about fairness we used APGD on the targeted
DLR loss (see Sec. 4.3) with 3 target classes and 20 iterations each on the whole test set. Note
that even with this smaller budget we achieve results very close to that of the full evaluation,
with an average difference smaller than 0.5%.

Privacy leakage. Deep neural networks are prone to memorizing training data [Shokri et al.,
2017, Carlini et al., 2019b]. Recent work has highlighted that robust training exacerbates this
problem [Song et al., 2019b]. We closely follow the methodology described in Song and Mittal
[2021] to calculate inference accuracy. In particular, we measure the confidence in the correct
class for each input image with a pre-trained classifier. We measure the confidence for both
training and test set images and calculate the maximum classification accuracy between train
and test images based on the confidence values. We refer to this accuracy as inference accu-
racy using confidence. Inference accuracy using confidence measures how accurately we can infer
whether a sample was present in the training dataset. Additionally, we follow the recommenda-
tion from Song et al. [2019b] where they show that adversarial examples are more successful in
estimating inference accuracy on robust networks. In our experiments, we also find that using
adversarial examples leads to higher inference accuracy than benign images (Fig. 5.8). More-
over, robust networks in the l2 threat model have relatively higher inference accuracy than robust
networks in the l∞ threat model.

A key reason behind privacy leakage through membership inference is that deep neural net-
works often end up overfitting on the training data. One standard metric to measure overfitting
is the generalization gap between train and test set. Naturally, this difference in the accuracy on
the train and test set is the baseline of inference accuracy. We refer to it as inference accuracy
using label and report it in Fig. 5.9. Thus one might expect lower privacy leakage in robust net-
works as previous work explicitly aimed to reduce the generalization gap in robust training e.g.
via early stopping [Rice et al., 2020, Zhang et al., 2019b, Gowal et al., 2020]. We consider both
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CIFAR-10, l∞-robust model
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Figure 5.7: Fairness of l∞-robust models. Left: classwise standard (dotted lines) and robust (solid)
accuracy. Right: relative standard deviation (RSD) of robust accuracy over classes vs its average.

benign and adversarial images. When using benign images, we find confidence information does
lead to higher inference accuracy than using only labels. However, with adversarial examples,
which achieve higher inference accuracy than benign images, we find that inference accuracy
based on confidence information closely follows the inference accuracy calculate from labels.

Smoothness. Previous work [Yang et al., 2020b] has shown that smoothness of a model, to-
gether with enough separation between the classes of the dataset for which it is trained, is
necessary to achieve both natural and robust accuracy.Yang et al. [2020b] use local Lipschitz-
ness as a measure for model smoothness, and observe empirically that robust models are more
smoother than models trained in a standard way. Our Model Zoo enables us to check this fact
empirically on a wider range of robust models, trained with a more diverse set of techniques,
in particular with and without extra training data. Moreover, as we have access to the model
internals, we can also compute local Lipschitzness of the model up to arbitrary layers, to see how
smoothness changes between layers.

We compute local Lipschitzness using projected gradient descent (PGD) on the following
optimization problem:

L =
1

N

N∑
i=1

maxx1:∥x1−xi∥∞≤ε,
x2:∥x2−xi∥∞≤ε

∥f(x1)− f(x2)∥1
∥x1 − x2∥∞

, (5.1)

where xi represents each sample around which we compute local Lipschitzness, N is the number
of samples across which we average (N = 256 in all our experiments), and f represents the
function whose Lipschitz constant we compute. As mentioned above, this function can be either
the full model, or the model up to an arbitrary intermediate layer. Since the models can have
similar smoothness behavior, but at a different scale, we also consider normalizing the models
outputs. One such normalization we use is given by the projection of the model outputs on the
unit l2-ball. This normalization aims at capturing the angular change of the output, instead of
taking in consideration also its magnitude. We compute the “angular” version of the Lipschitz
constant as

L =
1

N

N∑
i=1

maxx1:∥x1−xi∥∞≤ε,
x2:∥x2−xi∥∞≤ε

∥∥∥ f(x1)
∥f(x1)∥2

− f(x2)
∥f(x2)∥2

∥∥∥
1

∥x1 − x2∥∞
. (5.2)
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Figure 5.8: Comparing privacy leakage of different networks. We compare membership inference
accuracy from benign and adversarial images across both l∞ and l2 threat model.
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Figure 5.9: Comparing privacy leakage with different output statistics. We measure privacy
leakage using membership inference accuracy, i.e., classification success between train and test set. We
measure it using two baselines 1) based on correct prediction i.e., using predicted class label and 2)
based on classification confidence in correct class. We also measure it using both benign and adversarial
images.
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For both variations of Lipschitzness, we compute it with ϵ = 8/255, running the PDG-like
procedure for 50 steps, with a step size of ϵ/5.
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Figure 5.10: Lipschitzness. Computation of the local Lipschitz constant of the WRN-28-10 l∞-robust
models in our Model Zoo with ϵ = 8/255. The color coding of the models is the same across both figures.
For the correspondence between model IDs (shown in the legend) and papers that introduced them.
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Figure 5.11: Lipschitzness vs Robustness. Local Lipschitz constant of the output layer vs. robust
accuracy of a subset of the l∞-robust models in our Model Zoo.

In Fig. 5.10 we compute the layerwise Lipschitzness for all l∞ models trained on CIFAR-10
from the Model Zoo that have the WideResNet-28-10 architecture. We observe that the standard
model is the least smooth at all the layers, and that all the robustly trained models are smoother.
Moreover, we can notice that in the left plot of Fig. 5.10 there are two models in the middle
ground: these are the models by Gowal et al. [2020] and Rebuffi et al. [2021b], which are the
most robust ones, up to the last layer, the smoothest. Nonetheless, in the middle layers, they
are the second and third least smooth, according to the unnormalized local Lipschitzness. This
can be due to the different activation function used in these models (Swish vs ReLU). For this
reason, we also compute “angular” Lipschitzness according to Eq. (5.2). Indeed, in the right plot
of Fig. 5.10, all the robust models are in the same order of magnitude at all layers.

Finally, we also show the Lipschitz constants of the output layer for a larger set of l∞ models
from the Model Zoo that are not restricted to the same architecture. We plot the Lipschitz
constant vs. the robust accuracy for these models in Fig 5.11. We see that there is a clear
relationship between robust accuracy and Lipschitzness, hence confirming the findings of Yang
et al. [2020b].

Transferability. We generate adversarial examples for a network, referred to as source net-
work, and measure robust accuracy of every other network, referred to as target network, from
the model zoo on them. We also include additional non-robust models8, to name a few, VGG-
19, ResNet-18, and DenseNet-121, in our analysis. We use 10 step PGD attack to generate
adversarial examples, with the cross-entropy loss and step size ϵ/4. We present our results in
Fig. 5.12 and Fig. 5.13 where the correspondence between model IDs and papers that introduced
them can be found in the Model Zoo website. We find that transferability to each robust target
network follows a similar trend where adversarial examples transfer equally well from another
robust networks. Though slight worse than robust network, adversarial points from non-robust

8We train then for 200 epochs and achieve 93-95% clean accuracy for all networks on the CIFAR-10 dataset.
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networks also transfer equally well to robust networks. We observe a strong transferability among
non-robust networks with adversarial examples generated from PGD attacks. Intriguingly, we
observe the weakest transferability from a robust to a non-robust network. This observation
holds for all robust source networks in both l∞ and l2 threat model.
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Figure 5.12: Measuring transferability of adversarial examples (l∞, ϵ = 8/255). Lower robust accuracy
implies better transferability.

5.2.5 Additional details

Details of the ImageNet leaderboard. Extending the benchmark to ImageNet presents
some challenges compared to CIFAR-10 and CIFAR-100. First, the ImageNet validation set
(usually used as the test set) contains 50’000 images which makes it infeasible to run expensive
evaluations on it. Thus, we define a fixed subset (5’000 randomly sampled images in our case)
for faster evaluation, whose image IDs we make available in the Model Zoo. Second, it is not
obvious how to handle the fact that different models may use different preprocessing techniques
(e.g., different resolution, cropping, etc) which makes the search space for an attack not fully
comparable across defenses. For this, we decide to allow models with different preprocessing steps
and input resolution, considering them yet another design choice similarly to the choice of the
network architecture which also has a large influence on the final results. Since in the l∞-threat
model the constraints are componentwise independent, we use the same threshold ϵ∞ = 4/255 for
every classifier, regardless of the input dimensionality which is used after preprocessing. Note
that we use the same set of images for lp-robustness and for common corruptions, in which case
for every point 15 types of corruptions at 5 severity levels are applied, consistently with the other
datasets.
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Figure 5.13: Measuring transferability of adversarial examples (l2, ϵ = 0.5). Lower robust accuracy
implies better transferability.

Reproducibility and runtime. Here we discuss the main aspects of the reproducibility of
the benchmark. First of all, the code to run the benchmark on a given model is available in
our repository, and an example of how to run it is given in the README file. The installation
instructions are also provided in the README file and the requirements will be installed au-
tomatically. To satisfy other points from the reproducibility checklist9 which are applicable to
our benchmark, we also discuss next the variability of the robust accuracy over random seeds
and the average runtime of the benchmark. Evaluation of the accuracy on common corruptions
is deterministic if we do not take into account non-deterministic operations on computational
accelerators such as GPUs10 which, however, do not affect the resulting accuracy. On the other
hand, robustness evaluation using AutoAttack has an element of randomness since it relies on
random initialization of the starting points and also on the randomness in the update of the
Square Attack. To show the effect of randomness on the robust accuracy given by AutoAttack,
we repeat evaluation over four random seeds on four models available in the Model Zoo from
different threat models covering all datasets considered. In Table 5.9, we report the average
robust accuracy with its standard deviation and observe that different seeds lead to very similar
results. Moreover, we indicate the runtime of each evaluation, which is largely influenced by the
size of the model, the computing infrastructure (every run uses a single Tesla V100 GPU), and
the dataset. Moreover, less robust models require less time for evaluation which is due to the
fact that AutoAttack does not further attack a point if an adversarial example is already found
by some preceding attack in the ensemble.

Finally, when we extended the benchmark to ImageNet, we noticed that different versions
of PyTorch and torchvision may lead to small differences in the standard accuracy (up to

9https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist.pdf
10https://pytorch.org/docs/stable/notes/randomness.html
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0.16% on 5000 points for the same model). We suspect this is due to minor variations in the
implementation of the preprocessing functions (such as resizing). Thus, we fix in the requirements
torch==1.7.1 and torchvision==0.8.2 to ensure reproducibility. Note that the overall ranking
and level of robustness of the defenses should not be influenced by using different versions of
these libraries. We have not noticed similar issues for the other datasets.

Table 5.9: Statistics about the standardized evaluation with AutoAttack when repeated for four random
seeds. We can see that the robust accuracy has very small fluctuations. We also report the runtime for
the different models which is much smaller for less robust models.

dataset norm paper architecture clean acc. robust acc. time

CIFAR-10 l∞ Gowal et al. [2020] WRN-28-10 89.48% 62.82% ± 0.016 11.8 h
CIFAR-10 l2 Rebuffi et al. [2021b] WRN-28-10 91.79% 78.80% ± 0.000 15.1 h
CIFAR-100 l∞ Wu et al. [2020a] WRN-34-10 60.38% 28.84% ± 0.018 6.6 h
ImageNet l∞ Salman et al. [2020] ResNet-18 52.92% 25.31% ± 0.010 1.6 h

5.2.6 Recent developments

After its publication, RobustBench has kept growing, and at the time of writing this thesis it
includes more than 200 entries in the leaderboards and over 150 classifiers in the Model Zoo.
Moreover, we have expanded the evaluation of robustness on ImageNet with the recently proposed
3D common corruptions dataset [Kar et al., 2022].

5.3 Evaluation of adaptive test-time defenses

Standardizing evaluation allows for the systematic tracking of real progress on adversarial robust-
ness. However, to guarantee that standardized evaluations are accurate, defenses must adhere
to some practical restrictions. In fact, RobustBench (Sec. 5.2) rules out i) models which have
zero gradients with respect to the input [Buckman et al., 2018, Guo et al., 2018], ii) randomized
models [Yang et al., 2019, Pang et al., 2020b], and iii) models that optimize during inference
[Samangouei et al., 2018, Li et al., 2019c, Schott et al., 2019]. These restrictions may unneces-
sarily limit the development of robust models and, as a consequence, several researchers have
offered general recommendations on how to evaluate adversarial defenses [Carlini et al., 2019a].
However, the evaluation of each new defense raises non-trivial choices.

In this section, we focus on adaptive test-time defenses that apply iterative optimization
during inference, which promise to circumvent limitations of static defenses. In the context of
adversarial robustness, the optimization is designed to “purify” inputs before feeding them to a
static model or to adapt the model itself (we elaborate on categorizations of adaptive test-time
defenses below). We restrict our analysis to image classification because it is the most common
test-bed for studying robustness against lp-norm bounded attacks.

We foresee adaptive defenses as an important step towards building robust defenses. How-
ever, given their novelty, the evaluation of such defenses has not been standardized. Indeed,
test-time optimization can prevent the proper operation of standardized attacks established for
static defenses, such as AutoAttack. This optimization also renders approximations such as
the Backward Pass Differentiable Approximation (BPDA) [Athalye et al., 2018] more difficult
to apply. As a result, recent works make strong robustness claims that turn out to be void or
significantly weaker than claimed. Then,

• We categorize adaptive test-time defenses and explain their potential benefits and drawbacks;

• We evaluate 9 recent defenses (see Table 5.10), and show that they significantly overestimate
their robustness. Relative to static defenses, most provide little improvement, and some are
even detrimental. Furthermore all require more inference computation;

• Finally, we provide recommendations for evaluating such defenses and explain under which
circumstances standard evaluations, like AutoAttack, are accurate.

126



Figure 5.14: Adaptive test-time defenses operate by adapting their computation to the input. A first
category of adaptive test-time defenses operate in the input space and aim to “purify” inputs before
they are fed to the standard pre-trained model. A second category aims at adapting model parameters
or intermediate activations.

In the following we provide a taxonomy of adaptive test-time defenses. We highlight their
operating principles in Sec. 5.3.1, identify their building blocks in Sec. 5.3.2, and elaborate
on potential pitfalls in Sec. 5.3.3. We also clearly delineate the threat model and adversarial
capabilities that we assume during our case study of various techniques in Sec. 5.3.4.

5.3.1 Principles

Static defenses (e.g., standard deep networks) use a trained model for which the inputs and
parameters are fixed at inference. In contrast, adaptive test-time defenses can alter the input or
parameters for test inputs, either by optimizing an auxiliary loss or conditioning directly on the
input. We identify two principles (highlighted in Fig. 5.14).
Input purification (IP): A model (possibly pre-trained for robustness) is augmented with
test-time optimization to alter its inputs before the model is applied. The input optimization
procedure may rely on hand-crafted [Alfarra et al., 2022, Wu et al., 2021b] or learned objectives
[Qian et al., 2021, Mao et al., 2021, Hwang et al., 2021] which may involve auxiliary networks
such as generative models [Song et al., 2018, Samangouei et al., 2018, Yoon et al., 2021, Nie
et al., 2022].

Model adaptation (MA): A model is made adaptive by applying an optimization procedure
to alter its parameters or state (e.g., batch normalization statistics) [Wang et al., 2021a] or
activations [Chen et al., 2021] during inference. Other iterative schemes, such as implicit layers
[Kang et al., 2021], define their inference as an optimization process.

5.3.2 Building blocks

To carry out input purification or model adaptation, adaptive test-time defenses can rely on
distinct building blocks. We identify common blocks that span current defenses.
Iterative algorithm (IA): All defenses in our case study use an iterative algorithm. Five in
nine solve their test-time optimization approximately by gradient descent, with some defenses
using a single normalized gradient step [Qian et al., 2021] and others using as many as 40 gradient
descent steps [Mao et al., 2021]. Other defenses may also use layers defined via implicit functions
whose output is computed with iterative algorithms (e.g., neural ODE [Kang et al., 2021]) or
may rely on iterative generative models (e.g., energy-based models [Yoon et al., 2021]).

Auxiliary networks (AN): A significant proportion of adaptive test-time defenses (seven in
nine defenses studied) rely on an external network besides the underlying static model. This
network typically helps to compute the optimization objective (such as a self-supervised objective
[Shi et al., 2020]) or directly manipulates inputs (using a generative model for example [Yoon
et al., 2021]). It might be bound to [Mao et al., 2021, Hwang et al., 2021] and possibly trained
jointly with [Qian et al., 2021, Shi et al., 2020, Chen et al., 2021] the static model, or used as a
standalone component [Yoon et al., 2021].
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Randomness (R): Three in nine defenses studied are randomized either explicitly (e.g., by
adding noise to the input [Wu et al., 2021b]) or implicitly (e.g., by sampling different batches of
inputs [Mao et al., 2021]). As such, the same inputs may yield different outputs. We exclude
pure randomization defenses (without test-time optimization).

External data (ED): One of the defenses studied exploits a collection of additional images,
which are combined with the inputs. As such, inference does not depend only on the given input
for classification [Mao et al., 2021].

5.3.3 Advantages, drawbacks and pitfalls

Test-time adaptation by optimization has shown promising results for robustness to natural
shifts like common corruptions [Sun et al., 2020, Wang et al., 2021b], and has the potential
to likewise improve adversarial robustness. Unlike static defenses, adaptive defenses have the
freedom to alter an input (almost) arbitrarily or even update their own parameters on the
input. This additional complexity seems to offer an advantage over static defenses that rely
on adversarial training but remain fixed during testing. However, complex defenses are often
difficult to evaluate [Tramèr et al., 2020], and adaptation might require techniques than those
needed for static defenses. The accurate evaluation of adaptive test-time defenses presents several
challenges:
Obfuscated gradients: First and foremost, iterative optimizers might be not differentiable
(e.g., when using projections). BPDA, which is typically used in such circumstances and usu-
ally implemented as an identity function for the backward pass, can be weaker for procedures
consisting of many iterations. Even in cases where the optimization is differentiable, gradients
might vanish or explode when a large number of iterations is used.

Randomness: The use of randomized elements requires to resort to methods like Expecta-
tion over Transformation (EoT) [Athalye et al., 2018] and make the task of the attacker more
expensive.

Runtime: The cost of inference is significantly higher than for static models, up to hundreds
of times, which clearly impacts the amount of effort required for an accurate evaluation. Such
high computational complexity calls into question the applicability of these defenses in the first
place. Regardless of running attacks for evaluation, classification in deployment can be extremely
slow. Hence, the trade-off in potential improvement versus additional computation should be
the subject of further research.

5.3.4 Threat model and adversarial capabilities

We focus exclusively on the robustness of image classifiers to lp-norm bounded input perturba-
tions. Given a K-way classifier f : Rd → RK , a test input x ∈ [0, 1]d with label y and a norm
bound ϵ > 0, an attack succeeds if it finds a perturbation δ such that

argmax
k∈{1,...,K}

[f(x+ δ)]k ̸= y, with ∥δ∥p ≤ ϵ and x+ δ ∈ [0, 1]d. (5.3)

where [a]i represents the i-th coordinate of a. We assume that the attacker has full white-box
access to the defense. In other words, the attacker is aware of the test-time optimization in place,
and has access to the parameters of the classifier and any auxiliary model(s). For randomized
defenses, the attacker does not have access to the state of the random number generator. In
some cases, we will fix the random seed to evaluate whether the impact of a proposed defense
is mostly driven by optimization or randomization. Finally, when the defense uses external
data, the attacker may have access to the set of images used (when fixed and hard-coded by the
defense) or may try to infer the distribution from which these external images are drawn. For
defenses that operate on a full batch of images, the attacker may be able to influence either one
image from the batch or the whole batch. For all defenses, we respect the threat model defined
by each defense when clearly defined in the corresponding paper or code.

5.3.5 Case study of adaptive methods

In our case study, we evaluate nine adaptive test-time defenses which rely on the adaptation
principles elaborated above. Table 5.10 summarizes the defenses considered in this case study,

128



Table 5.10: Summary of the nine adaptive test-time defenses evaluated in our case study. We categorize
each defense by its principles—input purification (IP) and model adaptation (MA)—and its building
blocks: iterative algorithm (IA), auxiliary network (AN), randomization (R), and external data (ED).
We measure the robust accuracy of each defense (and in parenthesis that of its underlying static model)
against l∞-norm bounded perturbations of size ϵ = 8/255 on CIFAR-10 (“Ours”) along with the robust
accuracy measured by the respective papers (“Reported”). * This evaluation uses ϵ = 2/255. ** This
evaluation uses batch size 50 instead of the original 512.

Defense Venue
Principles Building blocks Infer.

time
Evaluation method

Robust Accuracy

IP MA IA AN R ED Reported Ours

Kang et al. [2021] NeurIPS 2× Transfer APGD 57.76% 52.2% (53.9%)
Chen et al. [2021]* ICLR 59× APGD+BPDA 34.5% 5.6% (0.0%)
Wu et al. [2021b] ArXiv 46× Transfer APGD+BPDA+EoT 65.70% 61.0% (63.0%)
Alfarra et al. [2022] AAAI 8× RayS (decision-based) 79.2% 66.6% (66.6%)
Shi et al. [2020] ICLR 518× APGD+BPDA (traj.) 51.02% 3.7% (0.0%)
Qian et al. [2021] ArXiv 4× APGD 65.07% 12.6% (7.7%)
Hwang et al. [2021] ICML(W) 40× APGD+BPDA 52.65% 43.8% (49.3%)
Mao et al. [2021]** ICCV 407× APGD+BPDA+EoT 63.83% 58.4% (59.4%)
Yoon et al. [2021] ICML 176× APGD+EoT 69.71% 33.7% (0.0%)

categorizes each defense (according to Sec. 5.3.1 and Sec. 5.3.2), and details the corresponding
results against l∞-norm bounded attacks with budget ϵ = 8/255 on CIFAR-10 (which is com-
monly evaluated by all defenses in their respective papers).11 In particular, we report the robust
accuracy (i.e., the classification accuracy on adversarially-perturbed inputs) originally reported
in each work and the result of our evaluation. In parentheses, we report the robust accuracy
of the underlying static model. We also measure the cost of inference computation in relation
to performing the same inference with the underlying static model. Note that many factors
can influence this value (e.g., architecture of the classifier, compute infrastructure, optimized
implementation) and we use the runtime observed in our evaluation.

Overall, we find that the reported accuracy is consistently overestimated in all papers. Five
defenses [Yoon et al., 2021, Hwang et al., 2021, Qian et al., 2021, Shi et al., 2020, Chen et al.,
2021] have robust accuracies well below 50% and are not competitive with state-of-the-art static
models (even of moderate size; Gowal et al., 2021, Rade and Moosavi-Dezfooli, 2021). Most
importantly, four defenses [Wu et al., 2021b, Kang et al., 2021, Hwang et al., 2021, Mao et al.,
2021] weaken the underlying static defense (when it is already robust), while the others provide
minor improvements at major computational cost.

In contemporary work, Chen et al. [2022] carry out a complementary analysis of transductive
test-time defenses [Wu et al., 2020b, Wang et al., 2021a], which depend on multiple test inputs
and even joint optimization across training and testing data.

5.3.6 Evaluation methods

For completeness, we give a short overview of the attacks and techniques used in our case
study. More details are described in the evaluation of each defense. AutoAttack (Sec. 5.1 is a
common benchmark for evaluating static defenses, but it is not designed for adaptive test-time
defenses. AutoPGD (APGD) (Sec. 4.3 is a variant of Projected Gradient Descent (PGD),
one of the most popular technique for lp-norm bounded adversarial attacks. Its varied surrogate
losses include cross-entropy, Carlini-Wagner (CW), margin [Carlini and Wagner, 2017a], or the
(targeted) Difference of Logits Ratio (DLR). RayS [Chen and Gu, 2020] is a decision-based
attack designed for l∞-norm bounded perturbations. It only requires the label predicted by
the model. BPDA [Athalye et al., 2018] permits the attack of non-differentiable defenses by
approximating them with differentiable functions during gradient computation. The identity is a
common approximation. EoT [Athalye et al., 2018] permits the attack of randomized defenses.
The predictions and gradients are computed in expectation over the randomness of the model,
approximated by averaging the results of multiple runs with the same input. Transfer attacks
generate adversarial perturbations on a surrogate model and use them on the target model.

11With the exception of ϵ = 2/255 for Chen et al. [2021].
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Table 5.11: Robust accuracy on 1000 points against lp-norm bounded attacks: TRADES is tested with
AutoAttack, and SODEF with transferring APGD from the static TRADES model.

Threat model
Static with SODEF
AA AA (transf.) APGD (transf.)

l∞ 53.9% 60.9% 52.2%
l2 59.1% 66.8% 58.2%

5.3.7 Stable Neural ODE with Lyapunov-Stable Equilibrium Points
for Defending against Adversarial Attacks [Kang et al., 2021]

Summary of method. This defense applies a neural Ordinary Differential Equation (ODE)
layer to improve robustness against lp-norm bounded attacks by the stability of equilibrium points
of the underlying ODE. The proposed SODEF model consists of a feature extractor followed by
a neural ODE layer and finally one or multiple fully connected layers. The feature extractor is
a standard convolutional network, while the neural ODE can be solved with numerical methods
(Runge-Kutta of order 5 in this case) up to some integration time T .

Evaluation. While Kang et al. consider many scenarios in their experimental evaluation, we
test SODEF when the feature extractor consists of a robust classifier, trained with TRADES
[Zhang et al., 2019b] against l∞-norm perturbations of size 8/255 on CIFAR-10, without the last
linear layer (since checkpoints are available online). We use the original implementation with
corresponding parameters, including integration time T = 5. A significant improvement in ro-
bustness against l∞- and l2-norm perturbations is reported (57.76% and 67.75%) when compared
to the original TRADES model (53.69% and 59.42%), under the evaluation of AutoAttack. In
particular, AutoAttack is used both directly on the SODEF model and as the basis for a transfer
attack from the TRADES classifier. However, we note that by default AutoAttack returns the
original images when they are originally misclassified or when no adversarial perturbation is
found. This means that, in practice, most of the transferred points are clean images (since the
TRADES model is highly robust). Moreover, AutoAttack does not aim at maximizing the con-
fidence in the misclassification after this is achieved and, as such, it might be not the strongest
method for transfer attacks. As a consequence, we use APGD to maximize different target losses
on all clean inputs using the TRADES classifier and then test them on SODEF. We run APGD
for 100 iterations with cross-entropy, Carlini-Wagner (CW) and targeted DLR (with 3 target
classes) loss, and consider the transfer attack successful if any of the resulting points fools the
SODEF model. Table 5.11 shows the results of the described experiments for l∞- and l2-norm
bounded attacks (on 1000 test images with ϵ = 8/255 and ϵ2 = 0.5, respectively). When trans-
ferring inputs that maximize the surrogate losses, the robustness of SODEF is lower than that
of the original TRADES classifiers.

Additional evaluation details. We use the original implementation of the defense and the
corresponding checkpoints which are publicly available.12 In the previous experiments, we use a
WideResNet-34-10 as the underlying architecture for the static model. As a point of comparison,
we also evaluate SODEF when combined with a larger WideResNet-70-16. The base model from
Rebuffi et al. [2021b] achieves a robust accuracy of 66.56%. According to Kang et al. [2021], this
model combined with SODEF achieves 71.28% when evaluated with AutoAttack. Similarly to
what is described above, we use APGD to maximize different loss functions (cross-entropy, margin
and targeted DLR with 9 restarts) on the base model, and transfer the obtained perturbations
to the SODEF model. This yields a robust accuracy of 65.02%, which can be further decreased
to 64.20% by taking the worst-case between the transfer attack and AutoAttack.

12https://github.com/kangqiyu/sodef
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5.3.8 Towards Robust Neural Networks via Close-loop Control [Chen
et al., 2021]

Summary of method. Using the assumption that the representation of an adversarial input
becomes progressively more corrupted as it moves through the layers of a deep network, this de-
fense corrects its trajectory by adding offsets to intermediate activations of a pre-trained static
model. At each layer i, control parameters ui are added to its output. These control parame-
ters are optimized to reduce the reconstruction error between the original activations and corre-
sponding “reduced” activations. These reduced activations are encoded onto a lower-dimensional
manifold and decoded back to the full state space using Principal Component Analysis (PCA) or
shallow auto-encoders. At inference time, the parameters ui are jointly optimized with multiple
steps of gradient descent and then used to produce the final prediction.

Evaluation. Chen et al. report 11% robust accuracy against PGD attacks of size ϵ = 8/255.
This is not competitive with state-of-art robust classifiers and already hints that the defense may
be ineffective. As such, we focus on their strongest result, at the smaller ϵ = 2/255, where they
report 50% robust accuracy. Even this reduced claim is voided by further evaluation. Crucially,
their attack is not adaptive, as it does not exploit knowledge of the defense. Chen et al. argue
that adaptive attacks are infeasible, as they would need to steer the control parameters ui toward
zero. They also argue that calculating the gradients of the optimization process is too difficult.
Neither argument is sound, as the defense might still fail for nonzero values of ui, and obfuscated
gradients can be approximated. We demonstrate this by combining PGD and BPDA.

As pre-trained models are not publicly available, we train our own ResNet-20 model, and learn
the linear embeddings with PCA using the code available. Unfortunately, some hyperparameters
are not documented, and so we find a working configuration (using 5 iterations and a learning
rate of 5 · 10−3) by grid search that approximately reproduces the results of the paper. The
resulting defense obtains 89.1% accuracy on clean images. We also reproduce their 20-step PGD
evaluation by attacking the underlying classifier and testing the adversarial examples against their
defense, and measure a robust accuracy of 34.5% (compared with 0% for the static model). The
robustness gain is slightly less than reported (i.e., 50%) but still enough for our demonstration.13

Each prediction takes 4 backward passes and 5 forward passes.
We now mount an adaptive attack. At test-time, the defense runs multiple iterations of

gradient descent to optimize the control parameters ui. The optimized u∗
i are then used for the

final prediction. Since u∗
i is merely added to the activations of the i-th layer, it is possible to

derive an adversarial gradient for this final forward pass. Although this can only approximate the
gradient of the full defense, we find that it suffices to drastically improve the attack success rate.
We use this gradient with BPDA and repeat the same 20-step PGD attack. The dynamic model
now achieves only 9.5% robust accuracy (instead of 34.5%). Finally, the gradient approximation
also enables attack by APGD with BPDA, which drops the robust accuracy further to 5.6%.

Additional evaluation details. We use the official implementation of the defense, which is
publicly available.14 At the time of our evaluation, some hyperparameter choices in the code
deviated from those in the paper while others were included in neither. Hoping to reproduce the
results in the paper, we evaluate the following configuration:
• We use 5000 images from the CIFAR-10 training set to learn the linear projection.
• We set the regularization strength (decaying the magnitude of control parameters) to zero,
disabling regularization. This matches the published code. We do not observe any notable
effect from using regularization.

• We set the number of defense iterations to N = 5 and learning rate to α = 10−3, which we
find to be the only configuration that is close to the robustness results claimed in the paper,
while at the same time retaining good accuracy on clean images.

• We apply the defense to a ResNet-20 trained with the provided code. As no pre-trained
checkpoints are available, we refrain from performing costly adversarial training and evaluate
only on this normally-trained model.

13This is the only configuration matching the reported accuracy on clean images while having non-trivial
robustness against PGD.

14https://github.com/zhuotongchen/Towards-Robust-Neural-Networks-via-Close-loop-Control
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Table 5.12: Robust accuracy on 1000 points of various static models (measured by APGD) and their
adaptive version with Hedge Defense (HD) (using 20 steps), where we transfer APGD attacks obtained
on the static model and APGD with BPDA and EoT attacks from the model using HD with 5 steps.
We also include the worst-case among both transfer attacks.

Underlying model
Static Transfer to HD with 20 steps using as surrogate

defense Static HD (5 steps) Worst-case

Gowal et al. [2020] 63.0% 65.9% ± 0.09 61.1% ± 0.14 61.0% ± 0.14
Carmon et al. [2019] 59.2% 65.5% ± 0.34 59.6% ± 0.22 59.2% ± 0.32
Andriushchenko and Flammarion [2020] 45.0% 54.1% ± 0.15 45.8% ± 0.12 45.2% ± 0.28

For the attack, we first run PGD with 20 steps of size ϵ
4 , mirroring the evaluation by Chen

et al. [2021] but adding BPDA. We then run APGD with BPDA using the cross-entropy loss for
100 iterations (no restarts).

5.3.9 Attacking Adversarial Attacks as a Defense [Wu et al., 2021b]

Summary of method. The HD proposed by Wu et al. aims to defend against adversarial
perturbations by maximizing the cross-entropy loss of the classifier’s predictions summed over
all classes. The intuition is that the images that are wrongly classified have stronger gradients,
which dominate the optimization and easily reduce the confidence in the initial decision, while
correctly classified points are minimally impacted by the defense. The proposed method does
not require modifications of the training scheme of the underlying static model. HD solves, for
a classifier f ,

argmax
δ

K∑
k=1

Lce(f(x+ δ), k), with ∥δ∥∞ ≤ ϵd, x+ δ ∈ [0, 1]d (5.4)

with 20 steps of PGD (and random initialization), ϵd = 8/255 (the same used by the attacker)
and step size η = 4/255. This preprocesses the input to the classifier f , and therefore applies to
any model. Inference with HD costs 21 forward and 20 backward passes of the model.

Evaluation. The main experimental evaluation in Wu et al. [2021b] consists in transferring
perturbations generated by several attacks on the underlying classifier f to the model equipped
with HD. This results in absolute improvements of 2% to 4% in robust accuracy. An adaptive
attack, equivalent to BPDA, is developed on the full defense, but it does not consider the ran-
domness of the defense. This attack is reported to slightly reduce the effectiveness of HD on one
model. The official code is not provided. Hence, we implement the defense algorithm ourselves
using the details available in the paper.

Wu et al. report that PGD is often more effective than stronger methods like AutoAttack.
We hypothesize that this is caused by the original implementation of AutoAttack which returns
copies of unperturbed inputs when the attack is unsuccessful or when the original input is
already misclassified. However, HD might also turn an originally correctly classified input into
a misclassified one, and this is more likely if it is close to the decision boundary (as we expect
an unsuccessful adversarial example to be). Ultimately, we use APGD on the targeted DLR loss
with 5 target classes (that is 5 restarts of 50 iterations). We use BPDA and reduce the number
of steps of HD to 5 when crafting the perturbations. To counter the randomness of the initial
step of HD, we use 4 steps of EoT. We evaluate the obtained perturbations on the full defense
with 20 steps. In Table 5.12, we report the robust accuracy obtained with our evaluation on
static models available in RobustBench [Croce et al., 2021]. We also report the robust accuracy
obtained by transferring adversarial perturbations from the underlying static models. We observe
that HD does not provide clear improvements to the robustness of static models, and in one case
it weakens it.

Additional evaluation details. The official code for HD is not available. As such, we imple-
ment it by following the details provided by Wu et al. [2021b]. The models used in our evaluation
are the WideResNet-28-10 trained with extra data [Gowal et al., 2020, Carmon et al., 2019] and
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the PreAct ResNet-18 [Andriushchenko and Flammarion, 2020]. As stated above, the default
implementation of APGD (within the AutoAttack library) returns adversarial points only when
they are successful (i.e., when misclassification occurs). When we use this default implementa-
tion, the HD model which uses the WideResNet-70-16 from Gowal et al. [2020] obtains 69.2%
± 0.10 (compared to 65.9% when using the points maximizing the target loss, see Table 5.12),
which is in line with what reported by Wu et al. [2021b] for the same classifier. This gives us
confidence that our implementation matches the one from Wu et al..

5.3.10 Online Adversarial Purification based on Self-Supervision [Shi
et al., 2020]

Summary of method. This defense purifies adversarial perturbations by minimizing an aux-
iliary loss before performing inference. The auxiliary loss is connected to a self-supervised task,
which may require an additional network which shares some feature representation with the
classifier. Since the auxiliary loss is also optimized at training time, the system should learn to
perform classification based on robust features that are shared across the supervised and auxil-
iary tasks. In the evaluation of Shi et al. [2020], Fast Gradient Sign Method (FGSM) is often a
stronger attack than PGD, which contradicts the principles of Carlini et al. [2019a].

We focus on the defense variant that uses label consistency as auxiliary task since it does not
require an additional network at test-time and yields the best results on CIFAR-10. It uses as
auxiliary loss

Laux(f,x) = ∥f(a1(x))− f(a2(x))∥2 , (5.5)

with f the classifier and a1, a2 augmentations of the input. At test-time, the problem

argmin
δ

Laux(f,x+ δ), with ∥δ∥∞ ≤ ϵd, x+ δ ∈ [0, 1]d (5.6)

is optimized with 5 steps of PGD (without random initialization). The procedure is repeated for
eleven values of ϵd and that attaining the lowest loss is chosen. Overall, inference requires 5 ·11 ·2
forward and backward passes during purification plus 1 forward pass for the final classification.

Evaluation. We consider the small pre-trained model (referred to as ResNet-18 in Shi et al.,
2020). It achieves a clean accuracy of 83.7% (after purification) on the first 1000 test images of
CIFAR-10. The original evaluation reports for this model a robust accuracy of 51.02% under
transfer from an FGSM attack on the static model. We run APGD with BPDA on the cross-
entropy loss, but, instead of using as update direction (the sign of) the gradient of f with respect
to the final purified image only (as one would get by approximating the whole purification process
with the identity function), we average gradients over intermediate iterates produced by the
purification process. Intuitively, this steers all intermediate images towards misclassification and
make the attack more effective. Running this attack with 1000 iterations reduces the robust
accuracy of the defense to 3.7%.

Additional evaluation details. We use the official implementation of the defense and the
pre-trained model both publicly available.15 Moreover, when transferring FGSM attacks from
the static model, the defended adaptive classifier obtains a robust accuracy of 54.5%, which is
in line with what is reported by Shi et al. [2020].

5.3.11 Adversarial Attacks are Reversible with Natural Supervision
[Mao et al., 2021]

Summary of method. This defense states that images contain intrinsic structure that enables
the reversal of adversarial attacks. In particular, they modify the inference step to purify the
input using a trained contrastive representation g that leverages the intermediate activations of

15https://github.com/Mishne-Lab/SOAP
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a pre-trained static model f . Given an input x, the defense creates a modified input x + δ⋆

where δ⋆ is the solution to

argmin
δ

Laux(g(t1(x+ δ)), g(t2(x+ δ))), with ∥δ∥∞ ≤ 2ϵ, x+ δ ∈ [0, 1]d, (5.7)

and is found using N PGD steps. Laux is the contrastive loss and t1, t2 are two transformations
randomly sampled from a set of predefined image augmentations. The authors use either two or
four augmentations for each image and leverage a separate set of images to build negative pairs
(to be used in the contrastive loss). The paper remains unclear about the provenance of these
additional images. The released code uses augmented views of other attacked images to build
the negative pairs and thus operates at the level of a batch, which can both weaken the defense
and attack. At inference, the modified input is fed to a static model. In practice, Mao et al. set
N = 40.

Evaluation. According to Mao et al.’s evaluation their best model achieves a robust accu-
racy of 67.79% against AutoAttack, 64.64% against PGD with 50 steps and 63.83% against the
Carlini-Wagner attack with 200 steps [Carlini and Wagner, 2017a] on CIFAR-10 against l∞-norm
bounded perturbations of size ϵ = 8/255. These attacks are performed on the underlying static
model and transferred to the full defense. At first sight, it can seem surprising that AutoAttack
is weaker since it consists of a suite of attacks with numerous restarts and many steps. However,
by default AutoAttack returns the original images when these are originally misclassified or when
no adversarial perturbation is found. This means that, in practice, most of the transferred points
are clean images (since the underlying static model is already robust).

We replicate the setup from the authors which operates at the batch level. We use four image
transformations and set the number of iterations to 40. For the purpose of this demonstration,
and to be able to run our evaluation on a single NVIDIA V100 GPU, we reduce the batch size
to 50 (instead of 512). While this change may negatively impact the defense, we found that
transfer attacks match the results from Mao et al. [2021]: Using AutoAttack from the static
model yields a robust accuracy of 67.0% (compared to 67.79%); Using a custom implementation
of APGD (which returns worst-case adversarial examples) on the cross-entropy and DLR losses
with 10 steps and 10 restarts, we obtain a robust accuracy of 63.9%, which in line with the
worst-case robust accuracy obtained by Mao et al. (i.e., 63.83%). We note that under the same
APGD attack, the static model obtains a robust accuracy of 59.4%. When attacking the full
adaptive defense, we use BPDA and 16 EoT iterations. We obtain a robust accuracy of 58.4%
and conclude that the proposed defense weakens the underlying static model. To determine the
effect of randomness, we also perform our evaluation by fixing the random seed (and removing
EoT). Without randomness, we obtain a robust accuracy of 56.4%.

Additional experimental details. We use the official implementation and pre-trained clas-
sifier publicly available.16 We focus our evaluation on the Semi-SL model (from Carmon et al.,
2019). The original implementation of the defense retrieves negative pairs of images (to construct
the contrastive loss) from the batch of images produced by the attacker. As such, we follow the
same protocol and allow the attacker to modify all the images of each batch. Unfortunately, as
the setup from Mao et al. [2021] uses a batch size of 512 and requires several GPUs to work in
parallel, we are forced to change the default batch size to 50, which may negatively impact the
defense. Other than that we keep all hyperparameters identical.

To evaluate whether the attacker obtains an unfair advantage by allowing it to modify the
whole batch, we also re-implement our own version of the input purification procedure described
by Mao et al. [2021] with the negative images kept separate and hidden from the attacker. In
that setup, we were unable to improve upon the robust accuracy of the underlying static model
when using transfer attacks (using APGD on the static model) to the contrary of the full-batch
setup.

16https://github.com/cvlab-columbia/SelfSupDefense
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Table 5.13: Robust accuracy on 1000 points against l∞-norm bounded attacks of static models alone
and with AID-purifier.

Dataset ϵ Static model
AID-purified model
Transfer Direct

CIFAR-10 8/255 49.3% 56.0% 43.8%
CIFAR-100 8/255 23.3% 32.3% 18.2%
SVHN 12/255 10.5% 62.0% 29.1%

5.3.12 AID-purifier: A Light Auxiliary Network for Boosting Adver-
sarial Defense [Hwang et al., 2021]

Summary of method. This defense, proposed by Hwang et al. [2021], uses a discriminator
to purify the input of a pre-trained classifier. The discriminator is trained to distinguish adver-
sarially perturbed from clean inputs. It exploits the intermediate activations of the underlying
static model. At inference time, every input is purified by minimizing the probability of pertur-
bation according to the discriminator, with the goal of reducing any adversarial effect the input
may have. Given a discriminator g, an input x, ϵd > 0, AID-purifier approximately solves the
problem

δ⋆ ≈ argmin
δ

g(x+ δ) with ∥δ∥∞ ≤ ϵd, x+ δ ∈ [0, 1]d (5.8)

with N steps of PGD and a fixed step-size α (the values of N and α vary across datasets).
Inference is performed using the pre-trained classifier on the point x + δ⋆. The inference costs
N additional forward and backward passes of the discriminator compared to the standard one
(in practice T = 10 is used).

Evaluation. The original evaluation relies mostly on transferring perturbations adversarial to
the pre-trained classifier to the classifier endowed with purification. The authors also propose an
adaptive attack which optimizes a convex combination of the classification loss and the output
of the discriminator. This adaptive attack is not effective in decreasing the robust accuracy
compared to the non-adaptive counterpart. We focus our analysis on static models trained
using adversarial training [Madry et al., 2018] as their respective pre-trained discriminators are
available publicly. We note that the reported improvement of AID-purifier on these models is
rather small (1 to 2%) for all datasets, with the exception of SVHN where clean and robust
accuracy increase by 22% and 27%, respectively. In the following, we consider the l∞-norm
bounded perturbations of size ϵ = 8/255 for CIFAR-10 and CIFAR-100, and of size ϵ = 12/255
for SVHN. We evaluate the robustness of the static models with AutoAttack, and that of the
dynamic models with APGD combined with BPDA. Table 5.13 shows that for CIFAR-10 and
CIFAR-100 the dynamic classifiers have lower robustness than the original static models. While
AID-purifier seems to improve robustness on SVHN, we notice that, unlike on the other datasets,
the static model has a low robust accuracy.17

Additional evaluation details. In our evaluation, we use the pre-trained classifiers, with
WideResNet-34-10 as architecture, and discriminators, as well as the publicly available18 original
implementation of the defense. For the parameters of AID-purifier we use the values provided by
Hwang et al. [2021]. Since on SVHN the defense seems to be beneficial, we further test it with
APGD with 1000 iterations and 10 restarts (divided between cross-entropy and targeted DLR
loss). This reduces the robust accuracy to 25.0%, suggesting that the robustness can be reduced
by increasing the budget available to the attacker.

17For reference, we can obtain a classifier with more than 40% robust and 86% clean accuracy by standard
adversarial training.

18https://openreview.net/forum?id=3Uk9 JRVwiF
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5.3.13 Combating Adversaries with Anti-Adversaries [Alfarra et al.,
2022]

Summary of method. This defense tries to counter gradient-based based attacks during
inference by maximizing the classifier’s confidence. It uses a static model f to predict pseudo-
labels ŷ = argmax

k
[f(x)]k for each input x, and optimizes x′ = argmin

x′
Lce(f(x

′, ŷ)) with N

gradient descent steps to increase the classifier’s confidence in ŷ (with Lce being the cross-entropy
loss). The goal is to cancel out attacks that aim to decrease this confidence score. In practice,
N is set to 2, which leads to an increase in inference time of 8× (the original implementation
also makes an additional unnecessary forward pass).

This design implies that the defense inherits the decision boundary of the underlying classi-
fier, as increasing a classifier’s confidence in its own predictions will not change its decision.19

Consequently, there is no fundamental gain in robustness and any measured increase can only
be the result of obfuscation: forcing the classifier to report high confidence almost everywhere
flattens the loss landscape of the cross-entropy loss and causes numerical problems not only for
PGD, but also for any score-based attack such as the Square Attack.

Evaluation. We focus on the strongest result reported by Alfarra et al. which consists of
applying their defense for two iterations to a robust static CIFAR-10 model pre-trained with
Adversarial Weight Perturbation (AWP) [Wu et al., 2020a]. As noted above and as noted by
Alfarra et al., the defense can easily be circumvented by transferring adversarial examples from
the underlying static model. Using APGD on the cross-entropy loss, we can reduce the robust
accuracy of both the static and adaptive model to 63.7% against l∞-norm bounded perturbations
of size ϵ = 8/255 on CIFAR-10.

However, we find that the defense is ineffective even against black-box decision-based attacks
that require no knowledge of the static model at all. Testing the defense against a range of
attacks (which exclude transfer attacks), Alfarra et al. report a robust accuracy of 79.21%.
They also conduct an evaluation against decision-based attacks with inconclusive results as they
report a robust accuracy of 86.0% against both the adaptive and static model, which is close
the clean baseline of 88.0%. This suggests an incorrect use of the attack, or perhaps not enough
iterations. As a consequence, we apply the more efficient RayS attack with 10K queries. We
obtain a robust accuracy of 66.6%, which is much lower than the result reported by Alfarra et al.
(i.e., 79.2%). We also obtain 66.6% against the static model, which shows that the defense has
no effect against an attack that does not use confidence scores.

Additional experimental details. We use the official implementation of the defense, which
is publicly available.20 For the underlying classifier, we use a WideResNet-28-10 trained with
AWP, with pre-trained weights obtained from the official AWP code repository.21 Specifically, we
use the RST-AWP checkpoint, which is also referenced by Alfarra et al. [2022] in their evaluation
code. Further following the implementation by Alfarra et al. [2022], we set the number of defense
iterations to N = 2 and the step size to α = 0.15.

5.3.14 Adversarial Purification with Score-based Generative Models
[Yoon et al., 2021]

Summary of method. This defense preprocesses the input of a classifier with an Energy-
Based Model (EBM) trained, with Denoising Score-Matching (DSM), to learn a score function
to denoise perturbed images. A particularity is that they allow only a few deterministic updates
in the purification process (after adding noise to the initial input).

The proposed defense, named Adaptive Denoising Purification (ADP), purifies an input x
with the iterative scheme, for i = 1, . . . , T .

x0 = x+ ξ, xi = xi−1 + αi−is(xi−1) (5.9)

19We observe that the decision boundary can sometimes change due to numerical inaccuracies. This effect is
rare and disappears when reducing the defense step-size.

20https://github.com/MotasemAlfarra/Combating-Adversaries-with-Anti-Adversaries
21https://github.com/csdongxian/AWP
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with ξ ∼ N (0, σ2I) an initial noise addition, αi an adaptive step-size, and s the score function

approximated by the EBM. The procedure is repeated S times, getting S points x
(1)
T , . . . ,x

(S)
T .

Given a classifier f , the final classification is obtained as

argmax
k=1,...,K

1

S

S∑
s=1

[softmax(f(x
(s)
T )]k. (5.10)

In practice, Yoon et al. set T = 10, S = 10 and σ = 0.25, and f is a pre-trained classifier. Hence,
the inference costs S forward passes of f and 2 · T · S forward passes of s (since an additional
call of the score networks is necessary for the computation of αi).

Evaluation. In their experimental evaluation, Yoon et al. [2021] report that ADP achieves
69.71% against l∞-norm bounded perturbations of size ϵ = 8/255 on CIFAR-10. The strongest
attack is reported to be PGD with BPDA and EoT, where BPDA approximates the iterative
purification process with an identity. However, we note BPDA is not necessary since the defense
consists only in forward passes of the score network and of the classifier from which gradients
can be computed. As such, we apply 10 steps of APGD combined with 200 EoT iterations to
alleviate the randomness induced by ξ. This attack yields a robust accuracy of 33.7% ± 0.54
averaged over 1000 images.22

Additional experimental details. As base classifier we use the WideResNet-28-10 model
(as evaluated by Yoon et al., 2021) from RobustBench. The score network is provided by Song
and Ermon [2020] online23 (we use the checkpoint named best checkpoint with denoising).
The ADP classifier attains a clean accuracy of 86.9%± 0.44 on the 1000 points used for testing
robustness. In our evaluation, we exclude the computation of the adaptive step size when getting
the gradient of the target loss via backpropagation for simplicity (including it did not yield any
improvements).

5.3.15 Improving Model Robustness with Latent Distribution Locally
and Globally [Qian et al., 2021]

Summary of method. This defense introduces a new technique called Adversarial Training
with Latent Distribution (ATLD). ATLD builds adversarial examples by fooling a discriminator
network g. The discrimator has C + 1 outputs, where the zero-th output distinguishes between
clean and adversarial images, while the remaining outputs predict the class. In a process similar
to Madry et al. [2018], adversarial examples are used within a cross-entropy loss to train a
static model. The claimed benefit of this approach is that adversarial examples are not biased
towards the decision boundary of the classifier. The experiments demonstrate that the resulting
model (denoted ATLD-) is more robust to weak adversarial attacks such as PGD with 10 steps.
In addition to ATLD, the authors also propose a modification to the inference process called
Inference with Manifold Transformation (IMF). They modify inference by repairing inputs x to
x+ δ⋆ such that the trained discrimator is more likely to classify them as clean examples. The
optimal purification offset δ⋆ is found using PGD with N steps to solve the problem

argmin
δ

Lsoftmax[g(x+ δ)]0, with ∥δ∥∞ ≤ ϵd, x+ δ ∈ [0, 1]d. (5.11)

The resulting models, dubbed ATLD and ATLD+, are seemingly more robust to evaluation
pipelines like AutoAttack (reaching 65.07% robust accuracy against l∞-norm bounded pertur-
bations of size ϵ = 8/255). In practice, Qian et al. set N = 1 and ϵd = 2ϵ.

Evaluation. As noted by Qian et al., the ATLD- model is only robust to weak attacks and
completely breaks under AutoAttack. In our evaluation, using APGD on cross-entropy and
targeted DLR losses (with 9 targets), the robust accuracy of the ATLD- model reduces to 7.7%

22Average and standard deviation are computed over 5 repeated evaluations over ADP of the adversarially
perturbed points.

23https://github.com/ermongroup/ncsnv2
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(compared to 65.40% against CW with 100 steps). The authors evaluate their full defense, which
includes IMF, by transferring attacks from various static models. Surprisingly, transferring from
the underlying ATLD- model results in weaker attacks than transferring from another model
trained through adversarial training [Madry et al., 2018]. This suggests that the underlying
static model obfuscates gradients. Consequently, we increase the number of restarts to 100.
Since the defense consists of a single differentiable step, we attack the full defense with APGD
on the cross-entropy and targeted DLR losses. Overall, we obtain a robust accuracy of 12.6%
for the ATLD+ model, which is significantly lower than reported (i.e., 65.07%).

Additional evaluation details. We use the official implementation of the defense and the
pre-trained models publicly available.24 All hyperparameters are set as specified by Qian et al.
[2021]. Our only modification consists in allowing gradients to flow through the optimization
steps. We use the standard implementation of AutoAttack.

5.3.16 Discussion and recommendations

Our case study shows that evaluating adaptive test-time defenses is more challenging than eval-
uating static defenses because of several complicating factors. These factors include the possibly
intricate optimization process, randomness, and the large computational requirements of running
these defenses. Moreover, each defense has its own peculiarities, which frustrates attempts at
standardizing evaluation. In fact, Table 5.10 shows that the most effective attack differs across
cases. At the same time, the main elements constituting such attacks consist of techniques
proposed in prior works, which can be adaptively combined depending on the elements of the
defense. The main challenge is therefore to find the attack setup which is the most suitable for
each case.

Carlini et al. [2019a] proposed guidelines to evaluate adversarial robustness, and applied their
principles to build a strong attack methodology. Moreover, they identify signs of overestimated
robustness (e.g., single-step attacks stronger than multi-step ones), which also hold for adaptive
test-time defenses. Our case study suggests taking the following steps to extend their founda-
tional guidance:
❶ Transfer attacks that are effective against the underlying static model. Consider using other

models as surrogates, such as those available in the RobustBench model zoo. When transfer-
ring attacks, make sure to transfer unsuccessful adversarial attacks (i.e., perturbations that
attain high loss but do not lead to misclassification) rather than transferring the unperturbed
input (as a library may do by default, e.g., AutoAttack).

❷ Verify with various black-box attacks that the adaptive test-time defense is more robust than
the underlying static model. Consider Square Attack which is score-based and RayS [Chen
and Gu, 2020] which is decision-based for this purpose.

❸ Apply strong white-box attacks to the full defense when possible. We found APGD (with
multiple losses and restarts) to be a reliable gradient-based attack in most cases. Modern
frameworks such as PyTorch [Paszke et al., 2019] and JAX [Bradbury et al., 2018] enable easy
gradient computation.

❹ When gradient attacks fail, due to non-differentiability or vanishing gradients caused by ex-
cessive iteration, consider combining APGD with BPDA and try various approximations for
the backward pass. In particular, BPDA can simply replace the backward pass for the opti-
mization process with the identity, or make use of intermediate iterates (see Sec. 5.3.10).

❺ When randomness is present, explicitly or implicitly, use EoT, or remove randomness alto-
gether by fixing the seed at each attack step.

❻ Ultimately, although they can serve as baselines, attacks developed for static defenses are
not guaranteed to be effective for adaptive test-time defenses. Consequently, always try to
implement adaptive attacks that are specific to adaptive defenses. These attacks should be
stronger than their non-adaptive counterparts, unlike the results reported in Mao et al. [2021]
and Hwang et al. [2021].
Adaptive test-time defenses complicate robustness evaluation due to their complexity and

computational cost. Despite these complications, our evaluation succeeds in reducing the appar-
ent robustness of the studied defenses, with a relative reduction of more than 50% for four of

24https://github.com/LitterQ/ATLD-pytorch
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the nine defenses. In all cases with an adversarially robust static model (five out of nine), the
adaptive test-time defense does not improve upon it and might even weaken it. These results are
disappointing, but we foresee that adaptive test-time defenses can still potentially lead to signif-
icant robustness gains, and clearly our results do not challenge the whole idea. While we could
not provide a standardized evaluation protocol for adaptive test-time defenses, we hope that our
case study and recommendations can guide future evaluations as new defenses are developed.
eFurthermore, we emphasize the need to measure gains in robustness against the computation
required. This weakness may be turned into a potential strength, if the additional computation
used by the defender can impose even more computation on the attacker. Finally, we make that
the code developed for our case study available.25

Recent advancements. After the appearance of our work, many techniques which can be
categorized in our taxonomy for adaptive test-time defenses. While we could not expand our
evaluation to include such more recent methods, this highlights the relevance of guidelines for
evaluating the robustness of this type of defenses.

25https://github.com/fra31/evaluating-adaptive-test-time-defenses
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Chapter 6

Sparse Adversarial Attacks

In Sec. 4 we have presented several algorithms to generate adversarial perturbations in the lp-
threat models. These methods have in common the tendency to perturb all pixels in an image:
however, the pixelwise changes are, in most cases, of small magnitude. This ensures that the
semantic content, and then the ground truth label, of the original image is preserved by the
attack. Sparse attacks take instead a different approach: only a small fraction of input dimensions
can be perturbed, but with very large modifications. Depending on the structure imposed on
the perturbed pixels, sparse threat models include l0-perturbations [Carlini and Wagner, 2017a]
(pixels at any position can be modified), adversarial patches [Brown et al., 2017] (including only
neighboring pixels) and frames [Zajac et al., 2019] (only the borders of the image are perturbed).
In Sec. 6.1 and Sec. 6.2, we introduce several algorithms for such threat models.

Since sparse attacks do not constrain the size of the perturbations on a single pixel, they
are localized but often very visible (e.g. introducing bright colors which stick out on uniform
backgrounds). One option to limit this phenomenon is to add bounds on the l∞-norm of the
perturbations. Alternatively, we propose to adaptively decide how much each pixel can be
perturbed, depending on e.g. how different it is from its neighbors or if it lays along a straight
edge: this yields a set (named σ-map) of pixelwise constraints. We propose attacks for both
cases in Sec. 6.1. We summarize the proposed algorithms in Table 6.1.

Table 6.1: Summary of algorithms for generating sparse attacks.

attack bounds type knowledge goal

CornerSearch l0, l0 + l∞, l0 + σ-map black-box sparsity maximization
PGD0 l0, l0 + l∞, l0 + σ-map white-box fixed sparsity

Sparse-RS l0, patches, frames black-box fixed sparsity

6.1 Sparse and imperceivable attacks

In this section we focus on sparse adversarial attacks which modify the smallest amount of
pixels in order to change the decision. There are currently white-box attacks based on variants
of gradient based methods integrating the l0-constraint [Carlini and Wagner, 2017a, Papernot
et al., 2016b] or mainly black-box attacks which use either local search or evolutionary algorithms
[Narodytska and Kasiviswanathan, 2017, Su et al., 2019, Schott et al., 2019]. In particular, 1) we
suggest a novel black-box attack based on local search which outperforms all existing l0-attacks,
2) we present closed form expressions or simple algorithms for the projections onto the l0-ball
(or intersection of l0-ball and componentwise constraints) in order to extend the PGD attack of
Madry et al. [2018] to the considered scenario, and 3) since sparse attacks are often clearly visible
and thus, at least in some cases, easy to detect (see second image of Fig. 6.1), we combine the
sparsity constraint (l0-ball) with componentwise constraints, and we extend the two l0-attacks
mentioned above to produce sparse and imperceivable adversarial perturbations. Compared to
Modas et al. [2019] who introduce global componentwise constraints (see third image of Fig. 6.1)
we propose to use locally adaptive componentwise constraints. These local constraints ensure
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original l_0 l_0 + l_inf l_0 + <-map

Figure 6.1: First image: original image with box for zoom, Second: our l0-attack, very few pixels, only
0.04%, are changed, but the modified pixels are clearly visible, Third: the result of the l0 + l∞-attack as
proposed in Modas et al. [2019], the modifications are sparse, 2.7% of the pixels are changed, but clearly
visible, Fourth: our sparse, 2.7% of the pixels are changed, but imperceivable attack (l0 + σ-map).

that the change is typically not visible, that is we neither change color too much, nor we change
pixels along edges aligned with the coordinate axis (see Sec. 6.1.6 for a visualization) or in regions
which have uniform color (see fourth image of Fig. 6.1). This is in line with, and significantly
improves upon, Luo et al. [2018], who suggest to perturb pixels in regions of high variance to
have less recognizable modifications. In fact the often employed l∞-attacks which modify each
pixel only slightly but have to manipulate all pixels seem not to model perturbations which could
actually occur. We think that our sparse and imperceivable attacks could happen in practice
and correspond to modifications which do not change the semantics of the images even on very
small scales. The good news of our paper is that the success rate of such attacks (50-70% success
rate for standard models) is smaller than that of the commonly used ones. Nevertheless we find
it disturbing that such manipulations are possible at all. Thus we also test if adversarial training
can reduce the success rate of such attacks. We find that adversarial training wrt l2 partially
decreases the effectiveness of l0-attacks, while adversarial training wrt either l2 or l∞ helps to be
more robust against sparse and imperceivable attacks. Finally, we introduce adversarial training
aiming specifically at robustness wrt both our attack models.

6.1.1 Input constraints for sparse (and imperceivable) attacks

We recall that, given a classifier f , minimal adversarial perturbation y∗ of x ∈ Rd with respect to
a distance function γ : Rd −→ R+ is given as the solution y∗ ∈ Rd of the optimization problem

min
y∈Rd

γ(y − x) s.th. argmax
r=1,...,K

fr(y) ̸= argmax
r=1,...,K

fr(x), y ∈ C, (6.1)

where C is a set of constraints valid inputs need to satisfy (e.g. images are scaled to be in [0, 1]d).

Sparse l0-attacks. In an l0-attack one is interested in finding the smallest number of pixels
which need to be changed so that the decision changes. We write in the following gray-scale
images x with d pixels as vectors in [0, 1]d and color images x with d pixels as matrices x in
[0, 1]d×3, and xi denotes the i-th pixel with the three color channels in RGB. The corresponding
distance function γ is thus given for gray-scale images as the standard l0-norm

γ(y − x) =

d∑
i=1

1|yi−xi|≠0, (6.2)

and for color images as

γ(y − x) =

d∑
i=1

max
j=1,...,3

1|yij−xij |≠0, (6.3)

where the inner maximization checks if any color channel j of the pixel i is changed. From a
practical point of view the l0-attack tests how vulnerable the model is to failure of pixels or large
localized changes on an object e.g. a sticker on a refrigerator or dirt/dust on a windshield.
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Introducing imperceptibility constraints. The problem of l0-attacks is that they are com-
pletely unconstrained in the way how they change each pixel. Thus the perturbed pixels have
usually completely different color than the surrounding ones and thus are easily visible. On the
other hand l∞-attacks, using the distance function

γ(y − x) = max
i=1,...,d

max
j=1,...,3

|yij − xij |,

are known to result in very small changes per pixel but have to modify every pixel and color
channel. This seems to be a quite unrealistic perturbation model from a practical point of view.
A more realistic attack model which could happen in a practical scenario is when the changes are
sparse but also imperceivable. In order to achieve this we come up with additional constraints
on the allowed channelwise change. In Modas et al. [2019] they suggest to have global bounds,
for some fixed δ > 0, in the form

xij − δ ≤ yij ≤ xij + δ,

which should ensure that the changes are not visible (we call an attack with l0-norm and these
global componentwise bounds an l0 + l∞-attack in the following). However, these global bounds
are completely agnostic of the image and thus δ has to be really small so that the changes are
not visible even in regions of homogeneous color, e.g. sky, where almost any variation is easily
spotted. We suggest image-specific local bounds taking into account the image structure. We
have two specific goals:

1. We do not want to make changes along edges which are aligned with the coordinate axis
as they can be easily spotted and detected.

2. We do not want to change the color too much and rather just adjust its intensity and keep
approximately also its saturation level.

In order to achieve this we compute the standard deviation of each color channel in x- and y-axis
directions with the two immediate neighboring pixels and the original pixel. We denote the

corresponding values as σ
(x)
ij and σ

(y)
ij and define σij =

√
min{σ(x)

ij , σ
(y)
ij }. Since σ

(x)
ij , σ

(y)
ij ∈ [0, 1]

the square root increases more significantly, in relative value, smaller min{σ(x)
ij , σ

(y)
ij }. In this

way we both enlarge the space of the possible adversarial examples and prevent perturbations in
areas of zero variance. In fact we allow the changed image y just to have values given by

yij = (1 + λiσij)xij , with − κ ≤ λi ≤ κ, (6.4)

where κ > 0. Additionally, we enforce box constraints y ∈ [0, 1]d×3. Note that the parameter λi

corresponds to a change in intensity of pixel i by maximally plus/minus κ
∑3

j=1 σijxij as

3∑
j=1

yij =

3∑
j=1

xij + λi

3∑
j=1

σijxij .

Thus we are just changing intensity of the pixel instead of the actual color. Moreover, note that
this change also preserves the saturation of the color value1 if the σij are equal for j = 1, . . . , 3.
Thus we fulfill the second requirement from above. Moreover, the first requirement is satisfied

as σij =
√
min{σ(x)

ij , σ
(y)
ij }, meaning that if along one of the coordinates there is no change in

all color channels then the pixel cannot be modified at all. Thus pixels along a coordinate-
aligned edge showing no change in color will not be changed. The attack model of sparse and
imperceivable attacks will be abbreviated as l0+σ-map. For gray-scale images x ∈ [0, 1]d we use
instead

yi = xi + λiσi, with − κ ≤ λi ≤ κ. (6.5)

as there the approximate preservation of color saturation is not needed.

1In the HSV color space the saturation of a color is defined as 1 − min{R,G,B}
max{R,G,B} , where R,G,B are the

red/green/blue color channels in RGB color space.
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6.1.2 Score-based attacks

Most of the existing black-box l0-attacks either start with perturbing a small set of pixels and
then enlarge this set until they find an adversarial example [Papernot et al., 2016b, Narodytska
and Kasiviswanathan, 2017] or, given a successful adversarial manipulation, try to progressively
reduce the number of pixels exploited to change the classification [Carlini and Wagner, 2017a,
Schott et al., 2019]. Instead we introduce a flexible attack scheme where at the beginning one
checks pixelwise targeted attacks and then sorts them according to the resulting gap in the
classifier outputs. Then we introduce a probability distribution on the sorted list and sample
one-pixel changes to generate attacks where more pixels are manipulated simultaneously. The
distribution we use is biased towards the one-pixel perturbations which produce, when applied
individually, already large changes in the classifier output. In this non-iterative scheme there is
thus no danger to get stuck in suboptimal points. Moreover, while the attack has to test many
points, its non-iterative nature allows to check the perturbed points in large batches which is
thus much faster than an evolutionary attack. Even if the scheme is simple it outperforms all
existing methods including white-box attacks.

One-pixel modifications. In the first step we check all one pixel modifications of the original
image x ∈ [0, 1]d×3 (color) or x ∈ [0, 1]d (gray-scale). The tested modifications depend on the
attack model.

1. l0-attack: for each pixel i we generate 8 = 23 images changing the original color value to
one of the 8 corners of the RGB color cube. Thus we name our method CornerSearch.
This results in a set of 8d images, all one pixel modifications of the original image x, which
we denote by (z(j))8dj=1. For gray-scale images one just checks the extreme gray-scale values

(black and white) and gets (z(j))2dj=1.

2. l0 + l∞-attack: for each pixel i we generate 8 images changing the original color value of
(xij)

3
j=1 by the corners of the cube [−ϵ, ϵ]3 resulting again in (z(j))8dj=1 images. For gray-

scale we use xi ± ϵ resulting in total in (z(j))2dj=1 images. If necessary we clip to satisfy the

constraint z(j) ∈ [0, 1]d×3 or z(j) ∈ [0, 1]d.

3. l0 + σ-map attack: for color images we generate for each pixel i two images by setting

yij = (1± κσij)xij , j = 1, . . . , 3,

where κ and σij are as defined in Sec. 6.1.1. For gray scale images x ∈ [0, 1]d we use

yi = xi ± κσi.

Finally, we clip yij and yi to [0, 1]. Thus, this results in (z(j))2dj=1 images. We call it
σ-CornerSearch.

After the generation of all the images we get the classifier output f(z(j))Mj=1 for each of them,
where M is the total number of generated images, either M = 2d or M = 8d. Then, separately
for each class r ̸= c, where c = argmax

r=1,...,K
fr(x), we sort the values of fr(z

(j))−fc(z(j)) in decreasing

order π(r). That means for all 1 ≤ s ≤M − 1

fr(z
(π(r)

s ))− fc(z
(π(r)

s )) ≥ fr(z
(π

(r)
s+1))− fc(z

(π
(r)
s+1)).

We introduce also an order π(c), sorting in decreasing order the quantities

maxr ̸=c fr(z
(j))− fc(z

(j)).

The idea behind generating these one-pixel perturbations is to identify the pixels which push
most the decision towards a particular class r or in case of the set π(c) towards an unspecific

change. If fr(z
(π

(r)
1 ))−fc(z(π

(r)
1 )) > 0 for some r, then the decision has changed by only modifying

one pixel. In this case the algorithm stops immediately. Otherwise, one could try to iteratively
select the most effective change and repeat the one-pixel perturbations. However, this is overly
expensive and again suffers if suboptimal pixel modifications are chosen in the initial steps of
the iterative scheme. Thus we suggest in the next paragraph a sampling scheme based on the
obtained orderings, where one randomly selects k one-pixel modifications to combine in order to
produce a multi-pixels attack.
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Algorithm 10: CornerSearch

Input : x original image classified as class c, K number of classes, N, kmax, Niter

Output: y adversarial example
1 y ← ∅
2 create one-pixels modifications (z(i))Mi=1

3 if exists u ∈ (z(i))Mi=1 classified not as c then
4 y ← u, return
5 end

6 compute orderings π(1), . . . , π(K),
7 k ← 2
8 while k ≤ kmax do
9 for r = 1, . . . ,K do

10 create the set Y (r) of Niter “k-pixels modifications” towards class r (see
paragraph above)

11 if ∃u ∈ Y (r) classified not as c then
12 y ← u, return
13 end

14 end
15 k ← k + 1

16 end

Multi-pixels modifications. Most of the times the modifications of one pixel are not sufficient
to change the decision. Suppose we want to generate a candidate for a targeted adversarial sample
towards class r by changing at most k pixels, choosing among the first N one-pixel perturbations
according to the ordering π(r). We do this by sampling k indices (s1, . . . , sk) in {1, . . . , N} from
the probability distribution on {1, . . . , N} defined as

P (Z = i) =
2N − 2i+ 1

N2
, i = 1, . . . , N. (6.6)

The candidate image y(r) is generated by applying all the k one-pixel changes defined in the

images z(π
(r)
s1

), . . . , z(π
(r)
sk

) to the original image x. Please note that we only sample from the top
N one-pixel changes found in the previous paragraph and that the distribution on {1, . . . , N}
is biased towards sampling on the top of the list e.g. P (Z = 1) = 2N−1

N2 is 2N − 1 larger
than P(Z = N) = 1

N2 . This bias ensures that we are mainly accumulating one-pixel changes
which have led individually already to a larger change of the decision towards the target class
r. We produce candidate images y(1), . . . , y(K) for all K classes, having K − 1 candidate images
targeted towards changes in a particular class and one image where the attack is untargeted (for
r = c). In total we repeat this process Niter times. The big advantage of the sampling scheme
compared to an iterative scheme is that all these images can be fed into the classifier in batches
in parallel which compared to a sequential processing is significantly faster. Moreover, it does
not depend on previous steps and thus cannot get stuck in some suboptimal regions. As shown
in the experiments this relatively simple sampling scheme performs better than sophisticated
evolutionary algorithms (black-box attacks) and even white-box attacks.

Since we want to find adversarial examples differing from x in as few pixels as possible, we
generate the batches y(1), . . . , y(K) of candidate images as described above, gradually increasing
k, up to a threshold kmax, until we get a classification different from the original class c. Alg. 10
summarizes the main steps.

6.1.3 PGD-based attacks

The projected gradient descent (PGD) attack of Madry et al. [2018] is not aiming at finding the
smallest adversarial perturbation but instead argues from the viewpoint of robust optimization
about maximizing the loss

max
z∈C(x)

L(c, f(z)),

144



where L : {1, . . . ,K} × RK → R+ is usually chosen to be the cross-entropy loss, c is the correct
label of the point x and the set C(x) ⊂ [0, 1]d×3 (color images with d pixels) or C(x) ⊂ [0, 1]d

(gray-scale images). The interpretation in terms of robust optimization [Madry et al., 2018] has
led to a now well-accepted way of adversarial training with the goal of getting robust wrt a fixed
set of perturbations. The usage of PGD attacks during training is the de facto standard for
adversarial training, which we will also use later on in Sec. 6.1.4. Commonly used as the set of
allowed perturbations is the l∞-ball: C(x) = {z | ∥z − x∥∞ ≤ ϵ, z ∈ [0, 1]d} as the projection
can be done analytically.

In order to extend PGD to l0, l0 + l∞ and l0 + σ-map attacks, we first have to capture the
sets allowed in our attack models in Sec. 6.1.1 and then find fast algorithms for the projections
onto these sets. In the following we derive such projection algorithms, then define the gradient
step used in PGD: in this way we introduce PGD0 for the l0 and l0 + l∞-threat models, and
σ-PGD for imperceivable manipulations.

Projection onto the l0-ball and l0+l∞-ball. Given an original color image x ∈ [0, 1]d×3 we
want to project a given point y ∈ Rd×3 onto the set

C(x) =
{
z ∈ Rd×3

∣∣ d∑
i=1

max
j=1,2,3

1|zij−xij |>0 ≤ k, lij ≤ zij ≤ uij

}
.

We can write the projection problem onto C(x) as

min
z∈Rd×3

d∑
i=1

3∑
j=1

(yij − zij)
2 s.th. lij ≤ zij ≤ uij , i = 1, . . . , d, j = 1, . . . , 3

d∑
i=1

max
j=1,2,3

1|zij−xij |>0 > 0 ≤ k

Ignoring the combinatorial constraint, we first solve for each pixel i the problem

min
zi∈R3

d∑
i=1

3∑
j=1

(yij − zij)
2 s.th. lij ≤ zij ≤ uij , i = 1, . . . , d, j = 1, . . . , 3.

The solution is given by z∗ij = max{lij ,min{yij , uij}}. We note that each pixel can be optimized
independently from the other pixels. Thus we sort in decreasing order π the gains

ϕi :=

3∑
j=1

(yij − xij)
2 −

3∑
j=1

(yij − z∗ij)
2.

achieved by each pixel i. Thus the final solution differs from x in the k pixels (or less if there
are less than k pixels with positive ϕi) which have the largest gain and is given by

zπij =

{
z∗πij

for i = 1, . . . , k, j = 1, . . . , 3,

xπij else.
.

Using lij = 0 and uij = 1 we recover the projection onto the intersection of l0-ball and
[0, 1]d×3. For l0 + l∞ note that the two constraints

0 ≤ zij ≤ 1, −ϵ ≤ zij − xij ≤ ϵ,

are equivalent to:
max{0,−ϵ+ xij} ≤ zij ≤ min{1, xij + ϵ}.

Thus by using
lij = max{0,−ϵ+ xij}, uij = min{1, xij + ϵ},

the set C(x) is equal to the intersection of the l0-ball of radius k, the l∞-ball of radius ϵ around
x and [0, 1]d×3.
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Projection onto the intersection of the l0-ball and the σ-map constraints: color
images. We here present the projection step which is used for the σ-PGD attack, where we
allow perturbations on at most k pixels and respecting the σ-map constraints which are defined
in (6.4). Given a color image x ∈ [0, 1]d×3, we want to project a given point y ∈ Rd×3 onto the
set

C(x) =
{
z ∈ Rd×3

∣∣ d∑
i=1

max
j=1,...,3

1|zij−xij |>0 ≤ k, (1− κσij)xij ≤ zij ≤ (1 + κσij)xij , 0 ≤ zij ≤ 1
}
,

where d is the number of pixels, σij are the pixelwise, channel-specific bounds defined in Sec. 6.1.1
and κ > 0 a given parameter. We can write the projection problem as

min
λ∈Rd

d∑
i=1

3∑
j=1

(yij − (1 + λiσij)xij)
2 s.th. − κ ≤ λi ≤ κ, i = 1, . . . , d

0 ≤ (1 + λiσij)xij ≤ 1, i = 1, . . . , d, j = 1, . . . , 3

d∑
i=1

1|λi|>0 ≤ k

Ignoring the combinatorial constraint, we first solve for each pixel the problem

min
λi∈R

3∑
j=1

(yij − (1 + λiσij)xij)
2s.th. − κ ≤ λi ≤ κ, 0 ≤ (1 + λiσij)xij ≤ 1, j = 1, . . . , 3.

We first note that the last constraint is always fulfilled if xij = 0 or σij = 0. In the other case
we can rewrite the constraint as

− 1

σij
≤ λi ≤

1

σij

( 1

xij
− 1
)
, j = 1, . . . , 3.

Combining all constraints yields

λ
(l)
i :=max

{
− κ, max

j

xij ̸=0,σij ̸=0

− 1

σij

}
≤ λi ≤ min

{
κ, min

j

xij ̸=0,σij ̸=0

1

σij

( 1

xij
− 1
)}

:= λ
(u)
i .

The unconstrained solution is given by

λ′
i =

∑3
j=1 σijxij(yij − xij)∑3

j=1 σ
2
ijx

2
ij

.

Thus the optimal solution for each pixel i is given by

λ∗
i = max{λ(l)

i ,min{λ′
i, λ

(u)
i }}.

The final solution of the original problem allows only to choose k pixels to be changed. For each
pixel i the quantity

ϕi :=

3∑
j=1

(yij − xij)
2 −

3∑
j=1

(yij − (1 + λ∗
i σij)xij)

2

represents the difference in how much the objective increases between the cases λi = 0 (that is yi
is projected to xi) and λi = λ∗

i . Since we want to minimize the objective function, the optimal
solution is obtained by sorting (ϕi)

d
i=1 in decreasing order π and setting

λ(final)
πi

=

{
λ∗
πi

if i = 1, . . . , k,

0 else .
.

Finally, the point belonging to C(x) onto which y is projected is z ∈ Rd×3 defined componentwise
by

zij = (1 + λ
(final)
i σij)xij , i = 1, . . . , d, j = 1, . . . , 3.
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Table 6.2: Comparison of different l0-attacks. While SparseFool is always successful it requires
significantly more pixels to be changed. Our method CornerSearch requires out of all attacks the least
median amount of pixels to be changed.

LocSearchAdv PA 10x CW SparseFool JSMA CornerSearch

black-box Yes Yes No No No Yes

MNIST

success rate 91.39% 92.35% 87.9% 100% 99.6% 97.38%
mean (pixels) 17.56 8.82 46.04 19.44 83.92 9.21
median (pixels) - 8 44 12 46 7

CIFAR-10

success rate 97.32% 100% 100% 100% 100% 99.56%
mean (pixels) 38.4 4.63 16.55 16.10 54.5 2.75
median (pixels) - 3 11 12 47 2

Projection onto the intersection of the l0-ball and the σ-map constraints: color
images: gray-scale images. Since gray-scale images have only one color channel and, to get
imperceivable manipulations, we use additive modifications as defined in (6.5), we project onto
the set, given the original image x,

C(x) =
{
z ∈ Rd

∣∣ d∑
i=1

1|zi−xi|>0 ≤ k, xi − κσi ≤ zi ≤ xi + κσi, 0 ≤ zi ≤ 1
}
.

Defining

li := max{xi − κσi, 0}, ui := min{xi + κσi, 1},

we can see that in this case the problem is equivalent to the projection onto the intersection of
an l0-ball and box constraints and then solved as illustrated above.

PGD0 algorithm. Using the derivation above of the projection onto the l0- resp. l0+ l∞-ball,
we introduce an l0 version of the well-known PGD attack on the cross-entropy function L, namely
PGD0. The iterative scheme, to be repeated for a fixed number of iterations, is, given an input
x assigned to class c,

z(i) = x(i−1) + η · ∇L(c,f(x(i−1))/∥∇L(c,f(x(i−1))∥
1

x(i) = Pk(z
(i)),

(6.7)

where η ∈ R+, x
(0) = x, Pk(z) represents the projection onto the l0-ball, with the radius fixed

at k, and the l∞-ball defined by the box constraint x ∈ [0, 1]d. Note that PGD0 needs k to be
specified and thus does not aim at the minimal modification to change the decision. Finally,
changing the projection as described above, we obtain σ-PGD for the l0 + σ-map threat model.

6.1.4 Experiments

In the experimental section, we evaluate the effectiveness of our score-based l0-attack Cor-
nerSearch and our white-box attack PGD0. Moreover, we give illustrative examples of our
sparse and imperceivable l0 + σ-map attacks σ-CornerSearch and σ-PGD (the latter in the Ap-
pendix). Finally, we test adversarial training wrt various norms as a defense against our l0- and
l0 + σ-map-attacks.2

Evaluation of l0-attacks. We compare CornerSearch with state-of-the-art attacks for sparse
adversarial perturbations: LocSearchAdv [Narodytska and Kasiviswanathan, 2017], Pointwise
Attack (PA) [Schott et al., 2019], Carlini-Wagner l0-attack (CW) [Carlini and Wagner, 2017a],

2The code is available at https://github.com/fra31/sparse-imperceivable-attacks.
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Table 6.3: l0-attacks on Restricted ImageNet. We attack the 89 correctly classified points out of
100 points from the validation set with SparseFool and our algorithm CornerSearch. Due to the limit
on the allowed number of pixel changes, CornerSearch is not always successful, but requires many less
pixels to be changed.

SparseFool CornerSearch

black-box No Yes

success rate 100% 93.26%
mean (pixels) 143.2 106.7
median (pixels) 101 50

Figure 6.2: Evaluation of PGD0. We compute for 1000 test points the robust accuracy of the classifier
when the attack is allowed to perturb at most k pixels. We can see that PGD0 (red dots) outperforms
SparseFool, thus being the best “cheap” attack, and it is even the best one on MNIST for k ≥ 4.

SparseFool (SF) [Modas et al., 2019], JSMA [Papernot et al., 2016b]. The first two operate
in a black-box scenario, exploiting only the classifier output, like our method, while the latter
three require access to the network itself (white-box attacks). Note that SparseFool is actually
an l1-attack, that means it uses the l1-norm as distance measure in (6.1) in order to avoid the
combinatorial problem arising from the usage of the l0-norm. However, SparseFool can produce
sparse attacks and in Modas et al. [2019] has been shown to outperform l0-attacks in terms
of sparsity. We use the implementation of the Pointwise Attack in Rauber et al. [2017] with
10 restarts as done in Schott et al. [2019], CW and JSMA from Papernot et al. [2018], while
we reimplemented SparseFool. Since neither the code nor the models used in Narodytska and
Kasiviswanathan [2017] are available (the results for LocSearchAdv are taken from Narodytska
and Kasiviswanathan [2017]), we decided to compare the performance of the different attacks
on one of the architectures reported in Narodytska and Kasiviswanathan [2017], the Network in
Network [Lin et al., 2014] with batch normalization, retrained on MNIST and CIFAR-10.

We run the attacks on the first 1000 points of the corresponding test sets. We use Cor-
nerSearch with kmax = 50, N = 100 and Niter = 1000. In Table 6.2 we report the success rate of
each method, that is the fraction of correctly classified points which can be successfully attacked,
mean and median number of pixels that every attack needs to modify to change the decision.
Please recall that MNIST consists of images with 784 pixels and CIFAR-10 of images with 1024
pixels. Although CornerSearch does not find an adversarial example for each test point, since we
fix the maximum number of pixels that can be modified, both the average and median number
of changed pixels are lower than those of the other methods, that is less pixels need to be per-
turbed by our method to change the decision (with the only exception of the mean on MNIST,
where anyway CornerSearch has higher success rate and lower median than PA). On MNIST
CornerSearch requires for at least 50% of all test images 0.89% of the pixels to be changed and
for CIFAR-10 it is even just 0.2%.

Since PGD0 needs k to be specified, in order to evaluate the robust accuracy, that is the
accuracy of the classifier when the goal of the attacker is to change the decision of all correctly
classified images using k-pixels modifications, one needs to evaluate PGD0 for each value of k
separately, whereas all other attacks yield the robust accuracy for all levels of sparsity in one
run. For comparison we run PGD0, using 20 iterations and 10 random restarts, with 10 sparsity
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values k on the networks of Table 6.2 (see Sec. 6.1.5 for more details). In Fig. 6.2 we show the
robust accuracy of the different attacks. PGD0 achieves the best results on MNIST for k ≥ 4,
outperforms SparseFool and is even close to CornerSearch on CIFAR-10. As PGD0 is very fast,
it is a valuable alternative to our more expensive score-based attack.

l0-attacks on Restricted ImageNet. We further test CornerSearch on Restricted ImageNet,
that is a subset of ImageNet where some of the classes are grouped to form 9 distinct macro-
classes. We use the ResNet-50 from Tsipras et al. [2019] and compare our attack to SparseFool
(we do not run the other methods as either no code is available or they do not scale to the
size of the images). The images have 50176 pixels. In Table 6.3 we report the statistics on
100 points for SparseFool and our attack with kmax = 1000, Niter = 1000. As for the other
datasets, SparseFool always finds an adversarial example, whereas the smallest mean and median
adversarial modification is achieved by CornerSearch, although with an inferior success rate. The
runtime for SparseFool is around 55 times smaller than for CornerSearch. The runtime of our
attack directly scales with the number of pixels and the time of a forward pass of the network,
both large in this case. However, please note that SparseFool is a white-box attack, whereas
ours is a black-box attack. For a comparison to PGD0, given 100 pixels of budget, SF achieves
a success rate of 49.4%, CS 64.0%, PGD0 39.3%.

Sparse and imperceivable manipulations. We illustrate the differences of the adversarial
modifications found by l0-, l0 + l∞- and l0 + σ-map attacks. In Figures 6.3 and 6.4 we show
some examples. As discussed before the adversarial modifications produced wrt only the l0-norm
are the sparsest but also the easiest to recognize. The l0 + l∞-attack provides images where,
although the absolute value of the individual modification is bounded (we use here δ = 0.1 for
CIFAR-10, δ = 0.05 for ImageNet), some perturbations are visible since either colors are not
homogeneous with the neighbors (second rows of the top part of Fig. 6.3 and bottom part of
Fig. 6.4) or modifications of an uniform background are introduced (second row of the bottom
part of Fig. 6.3 and top part of Fig. 6.4). On the other hand, the adversarial modifications of
σ-CornerSearch are imperceivable while still being very sparse (third rows of Figures 6.3 and
6.4), showing that the σ-map, also shown in the Figures rescaled so that the largest component
is equal to 1, is able to correctly identify the area where a change is difficult to perceive (see in
particular the zoomed images). We provide a comparison of the adversarial examples crafted by
σ-CornerSearch and σ-PGD in Sec. 6.1.6.

Table 6.4: Evaluation of adversarial training. Robust accuracy (%) given by l0- and l0 + σ-attacks
(changing at most k pixels and for l0 + σ-attacks fixing κ = 0.8 for MNIST and κ = 0.4 for CIFAR-10)
on models adversarially trained wrt different metrics.

l0 l0 + σ

training PA SF PGD0 CS σPGD σCS

MNIST k = 15 k = 50

plain 25.6 41.2 3.6 9.2 49.2 80.4
l∞-at 1.6 96.0 60.0 0.0 88.2 90.0
l2-at 73.0 85.0 34.0 55.4 80.2 89.2
l0-at 55.8 63.6 74.6 39.8 57.8 73.8
l0 + σ-at 19.4 26.8 9.4 15.4 93.6 95.4

CIFAR-10 k = 10 k = 100

plain 15.2 57.0 7.0 2.2 27.6 52.4
l∞-at 28.6 57.6 22.6 10.8 50.4 63.6
l2-at 37.6 60.6 25.4 13.8 53.2 66.0
l0-at 64.2 63.8 54.8 46.0 34.6 58.2
l0 + σ-at 41.6 54.4 6.0 5.6 62.8 67.6

Adversarial training. In order to increase robustness of the models to sparse adversarial
manipulations, we adapt adversarial training to our cases. We use PGD0 presented above for
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original l_0 perturbation sparsity:0.2%

l_0 + l_inf perturbation sparsity:1.2%

<-map l_0 + <-map perturbation sparsity:7.9%

original l_0 perturbation sparsity:0.098%

l_0 + l_inf perturbation sparsity:0.59%

<-map l_0 + <-map perturbation sparsity:3.3%

Figure 6.3: Different attacks on CIFAR-10. We illustrate the differences of the adversarial examples
(second column) found by CornerSearch (l0), l0+l∞-attack and σ-CornerSearch respectively first, second
and third row. The third column shows the adversarial perturbations rescaled to [0, 1], the fourth the
map of the modified pixels (sparsity column). The original image can be found top left and the RGB
representation of the σ-map bottom left.
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original l_0 zoom sparsity:0.05%

l_0 + l_inf zoom sparsity:2.7%

<-map l_0 + <-map zoom sparsity:2.7%

original l_0 zoom sparsity:0.05%

l_0 + l_inf zoom sparsity:1.8%

<-map l_0 + <-map zoom sparsity:2.3%

Figure 6.4: Different attacks on Restricted ImageNet. We illustrate the differences of the ad-
versarial examples (second column, zoom in third column) found by CornerSearch (l0), l0 + l∞-attack
and σ-CornerSearch, respectively first, second and third row. The fourth column shows the map of the
modified pixels (sparsity column). The original image is in the top left and the RGB representation of
the rescaled σ-map in the bottom left.
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Table 6.5: Accuracy of the attacked models. We here report the accuracy on the test (validation
set for Restricted ImageNet) set of the models introduced in Section 5.

experiments dataset model accuracy

Comparison of l0-attacks
MNIST NiN [Lin et al., 2014] 99.66%
CIFAR-10 NiN [Lin et al., 2014] 90.62%
R-ImageNet ResNet-50 [Tsipras et al., 2019] 94.46%

Sparse and imperceivable
manipulation,
Adversarial training

MNIST

plain [Madry et al., 2018] 99.17%
l∞-at [Madry et al., 2018] 98.53%
l2-at 98.95%
l0-at 96.38%
l0 + σ-at 99.29%

CIFAR-10

plain 88.38%
l∞-at 79.90%
l2-at 80.44%
l0-at 82.31%
l0 + σ-at 76.24%

R-ImageNet ResNet-50 [Tsipras et al., 2019] 94.46%

adversarial training in order to achieve robustness against l0-attacks (l0-at), while we use σ-
PGD to enhance robustness against sparse and imperceivable attacks (l0 + σ-at). With these
two techniques we train models on MNIST and CIFAR-10 (more details about the architectures
and hyerparameters in Sec. 6.1.5). We compare them to the models trained on the plain training
set and with adversarial training wrt the l∞- and l2-norm (l∞-at and l∞-at). In Table 6.4 we
report the robust accuracy on 500 points (we fix the maximum number of pixels to be modified
to k, and the parameter of the l0 + σ attacks defined in (6.4) and (6.5) to κ = 0.8 for MNIST
and κ = 0.4 for CIFAR-10).

On MNIST the models trained on l2 and l0 perturbations are the most robust against l0-
attacks, while on CIFAR-10 the l0-at model is more than 3 times more resistant than all the
others. Similarly to Modas et al. [2019] we find that l∞-at does not help for l0-robustness.
Notably, on both dataset our attacks PGD0 and CornerSearch (CS) achieve the best results and
then are the most suitable to evaluate robustness. Regarding the l0+σ-map attacks, we see that
the l0 + σ-at models are the least vulnerable, but also l∞-at and l2-at show some robustness.
Note that σ-PGD is more successful than σ-CornerSearch but produces less sparse perturbations
as it always fully exploits the budget of k pixels to modify while σ-CS mostly uses just a few of
them, making the modifications even more difficult to spot (see Sec. 6.1.6).

6.1.5 Experimental details

We here report the details about the attacks, the attacked models and the parameters used
in Sec. 6.1.4. The test accuracy (validation accuracy for Restricted ImageNet) of every model
introduced in the paper is reported in Table 6.5.

Evaluation of l0-attacks. The architecture used for this experiment is the Network in Network
from Lin et al. [2014], which we trained according to a publicly available implementation,3

adapting it also to the case of MNIST (which has different input dimension). For Restricted
ImageNet, the attacked model is the ResNet-50 from Tsipras et al. [2019] (both weights and
code are available4). We run PGD0 with ten thresholds k (that is the maximum number of
pixels that can be modified), which are k ∈ {2, 3, 4, 5, 6, 8, 10, 12, 15, 20} for MNIST and k ∈
{1, 2, 3, 4, 6, 8, 10, 12, 15, 20} for CIFAR-10.

Running times. We report the average running times for one image for the experiments
in Sec. 6.1.4 (the times for SparseFool are those given by our reimplementation, which uses
DeepFool as implemented in Rauber et al. [2017]). MNIST: LocSearchAdv 0.6s (from [25]), PA

3https://github.com/BIGBALLON/cifar-10-cnn
4https://github.com/MadryLab/robust-features-code
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Figure 6.5: Left: original. Right: l0-adversarial example with clearly visible changes along axis-aligned
edges.

21s, CW 300s, SparseFool 2.5s, CornerSearch 9.8s, PGD0 0.06s (one threshold). CIFAR-10:
LocSearchAdv 0.7s [25], PA 22s, CW 283s, SparseFool 1.0s, CornerSearch 3.6s, PGD0 0.19s (one
threshold). ImageNet: SparseFool 17s, CornerSearch 953s, PGD0 13s (one threshold).

Adversarial training. For MNIST, the architecture used is the same as in Madry et al. [2018],
consisting of 2 convolutional layers, each followed by a max-pooling operation, and 2 dense layers.
We trained our classifiers for 100 epochs with Adam [Kingma and Ba, 2014]. The plain and l∞-at
models are publicly available5 while we trained l2-at using the plain gradient as direction of the
update for PGD, in contrast to the sign of the gradient which is used for adversarial training wrt
the l∞-norm. For adversarial training wrt l0-norm we use k = 20 (maximal number of pixels to
be changed), 40 iterations and step size η = 30000/255. For l0 + σ-at we set k = 100, κ = 0.9 (for
the bounds given by the σ-map), 40 iterations of gradient descent with step size η = 30000/255.
On CIFAR-10, we use a CNN with 8 convolutional layers, consisting of 96, 96, 192, 192, 192, 192,
192 and 384 feature maps respectively, and 2 dense layers of 1200 and 10 units. ReLU activation
function is applied on the output of each layer, apart from the last one. We perform the training
with data augmentation (in particular, random crop and random mirroring are applied) for 100
epochs and with Adam optimizer. For adversarial training wrt l0-norm we use k = 20 (number
of pixels to be changed), 10 iterations of PGD with step size η = 30000/255. For l0 + σ-at, we use
k = 120, κ = 0.6, 10 iterations of PGD with step size η = 30000/255.

6.1.6 Additional experiments

Stability of CornerSearch. Since Alg. 10 involves a component of random sampling, we want
to analyse here how the performance of CornerSearch depends on it. Then, we run CornerSearch
for 10 times on the models used in Table 6.2 and get the following statistics: MNIST, success
rate (%) 97.37± 0.13, mean 9.12± 0.05, median 7± 0. CIFAR-10, success rate (%) 99.33± 0.12,
mean 2.71± 0.02, median 2± 0. This means that our attack is stable across different runs.

An example of visible changes. In Fig. 6.5 we show an example of how changes along axis-
aligned edges are evident and easy to detect, even if the color is similar to that of some of the
neighboring pixels. This provides a further justification of the heuristic we use to decide where
the images can be perturbed in an invisible way.

Sparse and imperceivable manipulations on MNIST. In Fig. 6.6 we show the differences
among the adversarial examples found by our attacks CornerSearch (l0), black-box l0+ l∞-attack
and σ-CornerSearch. We see that our l0+σ-map attack does not modify pixels in the background,
far from the digit or in areas of uniform color in the interior of the digit itself. Moreover, while, in
the example shown in the lower left quadrant of Fig. 6.6, the original image is correctly classified
as a “4”, we notice that the adversarial example found by l0+ l∞-attack shows features of a new
class. The modified pixels bridge the gap between the vertical segments in the upper part of the
digit, making it similar to a “9”. This means that this image does not clearly belong to any class
and thus cannot be considered as an obvious adversarial sample. Conversely, the l0 + σ-attack
does not change the shape of the digit, which can still be clearly recognized as belonging to the

5https://github.com/MadryLab/mnist challenge
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original class “4”. The attacked model is the plain model. For the l0+ l∞-attack we use a bound
on the l∞-norm of the perturbation of δ = 0.2.

Additional figures. We show in Fig. 6.7 more examples on CIFAR-10 built as those in Fig. 6.3
(same attacked model). For the l0+l∞-attack we use a bound on the l∞-norm of the perturbation
of δ = 0.1. For Restricted ImageNet we show in Fig. 6.8 more examples created as those in
Fig. 6.4. For the l0 + l∞-attack we use δ = 0.05 as bound on the l∞-norm of the perturbation.

Adversarial examples of σ-PGD. We want here to compare the adversarial examples gen-
erated by our two methods, σ-CornerSearch and σ-PGD. In Fig. 6.9 (MNIST) and Fig. 6.10
(CIFAR-10) we show the perturbed images crafted by the two attacks, as well as the original
images and the modifications rescaled so that each component is in [0, 1] and the largest one
equals 1. Moreover, for σ-PGD we report the results obtained with a smaller κ. The gray im-
ages indicate unsuccessful cases. It is clear that σ-CornerSearch produces sparser perturbations.
Moreover, σ-PGD with the same κ used for σ-CS gives more visible manipulations. We think
that this is due to two reasons: first, the whole budget of k pixels to modify is always used by
σ-PGD, while this does not happen with σ-CS, and second, σ-PGD aims at maximizing the loss
inside the space of the allowed perturbations. This is possibly achieved by modifying neighboring
pixels, which sometimes have slightly different colors, in opposite directions (that is with λi with
different signs for different i). Conversely, σ-CornerSearch does not consider spatial relations
among pixels, and thus it does not show this behaviour. However, as showed in the Figures, it is
possible to recover less visible changes also for σ-PGD by decreasing κ, at the cost of a smaller
success rate.

6.1.7 Recent advancements

Many new methods for sparse l0-attacks have appeared after the publication of our work [Poola-
dian et al., 2020, Césaire et al., 2020, Fan et al., 2020, Matyasko and Chau, 2021, Pintor et al.,
2021]. We discuss these attacks in the next section, where we also introduce a new framework
for black-box sparse attacks.
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original l_0 zoom sparsity:0.64% original l_0 zoom sparsity:0.38%

l_0 + l_inf zoom sparsity:4.2% l_0 + l_inf zoom sparsity:1.9%

<-map l_0 + <-map zoom sparsity:5.4% <-map l_0 + <-map zoom sparsity:2.4%

Figure 6.6: Different attacks on MNIST. We illustrate the differences of the adversarial examples
(second column) found by CornerSearch (l0), l0 + l∞- and σ-CornerSearch, respectively first, second and
third row. The third column shows the zoom of the area highlighted by the red box while the fourth
column contains the map of the modified pixels (sparsity column). The original image can be found top
left and the visualization of the σ-map (rescaled so that maxi σi = 1) bottom left.

original l_0 perturbation sparsity:0.29% original l_0 perturbation sparsity:0.2%

l_0 + l_inf perturbation sparsity:1.7% l_0 + l_inf perturbation sparsity:2.3%

<-map l_0 + <-map perturbation sparsity:7.1% <-map l_0 + <-map perturbation sparsity:6.6%

Figure 6.7: Different attacks on CIFAR-10. We illustrate the differences of the adversarial examples
(second column) found by CornerSearch (l0), l0+l∞-attack and σ-CornerSearch, respectively first, second
and third row. The third column shows the adversarial perturbations rescaled to [0, 1], the fourth the
map of the modified pixels (sparsity column). The original image can be found top left and the RGB
representation of the σ-map, rescaled so that maxi,j σij = 1, bottom left.
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original l_0 zoom sparsity:0.2% original l_0 zoom sparsity:0.05%

l_0 + l_inf zoom sparsity:7.4% l_0 + l_inf zoom sparsity:3.2%

<-map l_0 + <-map zoom sparsity:6.5% <-map l_0 + <-map zoom sparsity:2.7%

original l_0 zoom sparsity:0.03% original l_0 zoom sparsity:0.11%

l_0 + l_inf zoom sparsity:5.7% l_0 + l_inf zoom sparsity:4.1%

<-map l_0 + <-map zoom sparsity:3.5% <-map l_0 + <-map zoom sparsity:3.5%

Figure 6.8: Different attacks on Restricted ImageNet. We illustrate the differences of the ad-
versarial examples (second column, zoom in third column) found by CornerSearch (l0), l0 + l∞-attack
and σ-CornerSearch, respectively first, second and third row. The fourth column shows the map of the
modified pixels (sparsity column). The original image is in the top left and the RGB representation of
the σ-map, rescaled so that maxi,j σij = 1, bottom left.
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original σ-CornerSearch, κ = 0.8 σ-PGD, κ = 0.8 σ-PGD, κ = 0.6

Figure 6.9: Comparison σ-CornerSearch and σ-PGD on MNIST. We show the adversarial exam-
ples generated by σ-CornerSearch with κ = 0.8, σ-PGD with κ = 0.8 and σ-PGD with κ = 0.6, together
with the respective perturbations rescaled to [0,1]. The sparsity level used for σ-PGD is k = 50.

original σ-CornerSearch, κ = 0.4 σ-PGD, κ = 0.4 σ-PGD, κ = 0.25

Figure 6.10: Comparison σ-CornerSearch and σ-PGD on CIFAR-10. We show adversarial ex-
amples generated by σ-CornerSearch with κ = 0.4, σ-PGD with κ = 0.4 and σ-PGD with κ = 0.25,
together with the respective perturbations rescaled to [0,1]. The sparsity level used is k = 100. The gray
images means the method could not find an adversarial manipulation.
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6.2 Sparse-RS: a versatile framework for query-efficient
sparse black-box adversarial attacks

Parrot  Turtle→ Lynx  Website→Elephant  Jeep→

Figure 6.11: Adversarial examples for sparse threat models (l0-bounded, patches, frames) generated
with our black-box Sparse-RS framework which does not require surrogate models and is more query
efficient.

We now consider sparse black-box adversarial attacks where the number of pixels which can
be perturbed is fixed. Similarly to the setup used in Sec. 4.2, we compare attacks in term of
both success rate and query efficiency, since we seek methods which are able to efficiently fool a
target model. We can generate such attacks by solving

min
δ∈Rd

L(f(x+ δ), c) s.t. x+ δ ∈ [0, 1]d and δ ∈ T (6.8)

by choosing a label c, a loss function L whose minimization leads to the desired classification,
and a set of allowed perturbations T . In our case T captures the various sparse constraints:
for l0-attacks any set of at most k pixels can be perturbed, for adversarial patches we restrict
the perturbations to be squares of size s × s pixels, and for adversarial frames of width w, T
contains the pixels which are at most w pixels away from the image borders. We illustrate the
three threat models in Fig. 6.11.

Random search is particularly suitable for zeroth-order optimization in presence of compli-
cated combinatorial constraints, as those of sparse threat models. Then, we design specific
sampling distributions for the random search algorithm to efficiently generate sparse black-box
attacks. The resulting Sparse-RS is a simple and flexible framework which handles

• l0-perturbations: Sparse-RS significantly outperforms the existing black-box attacks in
terms of the query efficiency and success rate, and leads to a better success rate even when
compared to the state-of-the-art white-box attacks on standard and robust models.

• Adversarial patches: Sparse-RS achieves better results than both TPA [Yang et al., 2020a]
and a black-box adaptations of projected gradient descent (PGD) attacks via gradient estima-
tion.

• Adversarial frames: Sparse-RS outperforms the existing adversarial framing method [Zajac
et al., 2019] with gradient estimation and achieves a very high success rate even with 2-pixel
wide frames.

Our approach is close in spirit to that of Square Attack (Sec. 4.2) for lp-bounded pertur-
bations, which shows how random search can be effective to build adversarial attacks. In the
following we show that random search is ideally suited for sparse attacks, where the non-convex,
combinatorial constraints are not easily handled even by gradient-based white-box attacks.
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Algorithm 11: Sparse-RS

Input: loss L, input xorig, max query N , sparsity k, input space constraints S
Output: approximate minimizer of L

1 M ← k indices of elements to be perturbed
2 ∆← values of the perturbation to be applied
3 z ← xorig, zM ← ∆ // set elements in M to values in ∆
4 L∗ ← L(z), i← 0 // initialize loss

5 while i < N and success not achieved do
6 M ′ ← sampled modification of M // new set of indices

7 ∆′ ← sampled modification of ∆ // new perturbation

8 z ← xorig, zM ′ ← ∆′ // create new candidate in S
9 if L(z) < L∗ then

10 L∗ ← L(z), M ←M ′, ∆← ∆′ // if loss improves, update sets

11 end
12 i← i+ 1

13 end
14 z ← xorig, zM ← ∆ // return best ∆
15 return z

6.2.1 Sparse-RS framework

As mentioned in Sec. 4.2, random search (RS) is a well known scheme for derivative free opti-
mization [Rastrigin, 1963]. Given an objective function L to minimize, a starting point x(0) and
a sampling distribution D, an iteration of RS at step i is given by

δ ∼ D(x(i)), x(i+1) = argmin
y∈{x(i), x(i)+δ}

L(y). (6.9)

At every step an update of the current iterate x(i) is sampled according to D and accepted only
if it decreases the objective value, otherwise the procedure is repeated. Although not explicitly
mentioned in Eq. (6.9), constraints on the iterates x(i) can be integrated by ensuring that δ is
sampled so that x(i)+δ is a feasible solution. Thus even complex, e.g. combinatorial, constraints
can easily be integrated as RS just needs to be able to produce feasible points in contrast to
gradient-based methods which depend on a continuous set to optimize over. While simple and
flexible, RS is an effective tool in many tasks [Zabinsky, 2010], with the key ingredient for its
success being a task-specific sampling distribution D to guide the exploration of the space of
possible solutions.

We summarize our general framework based on random search to generate sparse adversarial
attacks, Sparse-RS, in Alg. 11, where the sparsity k indicates the maximum number of features
that can be perturbed. A sparse attack is characterized by two variables: the set of components
to be perturbed M and the values ∆ to be inserted at M to form the adversarial input. To
optimize over both of them we first sample a random update of the locations M of the current
perturbation (step 6) and then a random update of its values ∆ (step 7). In some threat models
(e.g. adversarial frames) the set M cannot be changed, so M ′ ≡ M at every step. How ∆′ is
generated depends on the specific threat model, so we present the individual procedures in the
next sections. We note that for all threat models, the runtime is dominated by the cost of a
forward pass through the network, and all other operations are computationally inexpensive.

Common to all variants of Sparse-RS is that the whole budget for the perturbations is fully
exploited both in terms of number of modified components and magnitude of the elementwise
changes (constrained only by the limits of the input domain S). This follows the intuition that
larger perturbations should lead faster to an adversarial example. Moreover, the difference of
the candidates M ′ and ∆′ with M and ∆ shrinks gradually with the iterations which mimics
the reduction of the step size in gradient-based optimization: initial large steps allow to quickly
decrease the objective loss, but smaller steps are necessary to refine a close-to-optimal solution
at the end of the algorithm. Finally, we impose a limit N on the maximum number of queries of
the classifier, i.e. evaluations of the objective function.
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As objective function L to be minimized, we use in the case of untargeted attacks the margin
loss Lmargin(f(·), y) = fy(·)−maxr ̸=y fr(·), where y is the correct class, so that L < 0 is equivalent
to misclassification, whereas for targeted attacks we use the cross-entropy loss LCE of the target

class t, namely LCE(f(·), t) = −ft(·) + log
(∑K

r=1 e
fr(·)

)
.

The code of the Sparse-RS framework is available at https://github.com/fra31/sparse-
rs.

6.2.2 Sparse-RS for l0-bounded attacks

The first threat model we consider is that of l0-bounded adversarial examples where only up to k
pixels or k features/color channels of an input xorig ∈ [0, 1]h×w×c (width w, height h, color c) can
be modified, but there are no constraints on the magnitude of the perturbations except for those
of the input domain. Note that constraining the number of perturbed pixels or features leads to
two different threat models which are not directly comparable. Due to the combinatorial nature
of the l0-threat model, this turns out to be quite difficult for continuous optimization techniques
which are more prone to get stuck in suboptimal maxima.

l0-RS algorithm. We first consider the threat model where up to k pixels can be modified.
Let U be the set of the h · w pixels. In this case the set M ⊂ U from Alg. 11 is initialized
sampling uniformly k elements of U , while ∆ ∼ U({0, 1}k×c), that is random values in {0, 1}
(every perturbed pixel gets one of the corners of the color cube [0, 1]c). Then, at the i-th iteration,
we randomly select A ⊂M and B ⊂ U \M , with |A| = |B| = α(i) ·k, and createM ′ = (M \A)∪B.
∆′ is formed by sampling random values from {0, 1}c for the elements in B, i.e. those which
were not perturbed at the previous iteration. The quantity α(i) controls how much M ′ differs
from M and decays following a predetermined piecewise constant schedule rescaled according to
the maximum number of queries N . The schedule is completely determined by the single value
αinit, used to calculate α(i) for every iteration i, which is also the only free hyperparameter of our
scheme. We provide details about the algorithm, schedule, and values of αinit in Sec. 6.2.10, and
ablation studies for them in Sec. 6.2.11. For the feature based threat model each color channel
is treated as a pixel and one applies the scheme above to the “gray-scale” image (c = 1) with
three times as many “pixels”.

6.2.3 Comparison of query efficiency of l0-RS

We compare pixel-based l0-RS to other black-box untargeted attacks in terms of success rate
versus query efficiency. The results of targeted attacks are in Sec. 6.2.5. Here we focus on
attacking normally trained VGG-16-BN and ResNet-50 models on ImageNet, which contains
RGB images resized to shape 224 × 224, that is 50,176 pixels, belonging to 1,000 classes. We
consider perturbations of size k ∈ {50, 150} pixels to assess the effectiveness of the untargeted
attacks at different thresholds with a limit of 10,000 queries. We evaluate the success rate on
the initially correctly classified images out of 500 images from the validation set.

Competitors. Many existing black-box pixel-based l0-attacks [Narodytska and Kasiviswanathan,
2017, Schott et al., 2019] do not aim at query efficiency and rather try to minimize the size of
the perturbations. Among them, only CornerSearch (Sec. 6.1.2) and ADMM attack [Zhao et al.,
2019] scale to ImageNet. However, CornerSearch requires 8×#pixels queries only for the initial
phase, exceeding the query limit we fix by more than 40 times. The ADMM attack tries to
achieve a successful perturbation and then reduces its l0-norm. Moreover, we introduce black-
box versions of PGD0 (Sec. 6.1.3) with the gradient estimated by finite difference approximation
as done in prior work, e.g., see Ilyas et al. [2018]. As a strong baseline, we introduce JSMA-CE
which is a version of the JSMA algorithm [Papernot et al., 2016b] that we adapt to the black-
box setting: 1) for query efficiency, we estimate the gradient of the cross-entropy loss instead of
gradients of each class logit, 2) on each iteration, we modify the pixels with the highest gradient
contribution. More details about the attacks can be found in Sec. 6.2.5.

Results. We show in Fig. 6.12 the success rate vs the number of queries for all black-box
attacks. In all cases, l0-RS outperforms its competitors in terms of the final success rate by a
large margin, e.g. the second best method (PGD0 w/ GE) is at least 30% worse. Moreover,
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Figure 6.12: Progression of the success rate vs number of queries for black-box pixel-based l0-attacks
on ImageNet in the untargeted setting. At all sparsity levels l0-RS (red) outperforms PGD0 (blue) and
JSMA-CE (green) with gradient estimation and ADMM attack (black).

Table 6.6: ImageNet: Robust test error of l0-attacks. The entries with ∗ are evaluated on 100 points
instead of 500 because of their high computational cost. All black-box attacks use 10k queries except
CornerSearch which uses 600k. l0-RS outperforms all black- and white-box attacks.

attack type VGG ResNet

l0-bound in pixel space k = 50

JSMA-CE white-box 42.6% 39.6%
PGD0 white-box 87.0% 81.2%

ADMM black-box 30.3% 29.0%
JSMA-CE with GE black-box 49.6% 44.8%

PGD0 with GE black-box 61.4% 51.8%
CornerSearch∗ black-box 82.0% 72.0%

l0-RS black-box 98.2% 95.8%

attack type VGG ResNet

l0-bound in feature space k = 50

SAPF∗ white-box 21.0% 18.0%
ProxLogBarrier white-box 33.0% 28.4%

EAD white-box 39.8% 35.6%
SparseFool white-box 43.6% 42.0%

VFGA white-box 58.8% 55.2%
FMN white-box 83.8% 77.6%

PDPGD white-box 89.6% 87.2%
ADMM black-box 32.6% 29.0%

CornerSearch∗ black-box 76.0% 62.0%
l0-RS black-box 92.8% 88.8%

l0-RS is query efficient as it achieves results close to the final ones already with a low number
of queries. For example, on VGG with k = 150, l0-RS achieves 100% of success rate using on
average only 171 queries, with a median of 25. Unlike other methods, l0-RS can achieve almost
100% success rate by perturbing 50 pixels which is only 0.1% of the total number of pixels. We
visualize the adversarial examples of l0-RS in Fig. 6.13.

6.2.4 Using l0-RS for accurate robustness evaluation

In this section, our focus is the accurate evaluation of robustness in the l0-threat model. For
this, we evaluate existing white-box methods and black-box methods together. Instead of the
success rate taken only over correctly classified examples, here we rather consider robust error
(similarly to Madry et al. [2018]), which is defined as the classification error on the adversarial
examples crafted by an attacker.

White-box attacks on ImageNet. We test the robustness of the ImageNet models intro-
duced in the previous section to l0-bounded perturbations. As competitors we consider multiple
white-box attacks which minimize the l0-norm in feature space: SAPF [Fan et al., 2020], Prox-
LogBarrier [Pooladian et al., 2020], EAD [Chen et al., 2018], SparseFool [Modas et al., 2019],
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Untargeted
l0-attacks

Hen  Eel→ Guenon  Porcupine→Pole → Traffic light

Targeted
l0-attacks

Grey fox  Wing→Backpack  Otterhound→Macaw  Frying pan→

Figure 6.13: Untargeted (k = 50 pixels) and targeted (k = 150 pixels) l0-adversarial examples generated
by our pixel-based l0-RS algorithm.

VFGA [Césaire et al., 2020], FMN [Pintor et al., 2021] and PDPGD [Matyasko and Chau, 2021].
For the l0-threat model in pixel space we use two white-box baselines: PGD0 and JSMA-CE
[Papernot et al., 2016b] (where we use the gradient of the cross-entropy loss to generate the
saliency map). Moreover, we show the results of the black-box attacks from the previous section
(all with a query limit of 10,000), and additionally use the black-box CornerSearch for which we
use a query limit of 600k and which is thus only partially comparable. Details of the attacks
are available in Sec. 6.2.10. Table 6.6 shows the robust error given by all competitors: l0-RS
achieves the best results for pixel and feature based l0-threat model on both VGG and ResNet,
outperforming black- and white-box attacks. We note that while the PGD attack has been ob-
served to give accurate robustness estimates for l∞- and l2-norms [Madry et al., 2018], this is
not the case for the l0 constraint set. This is due to the discrete structure of the l0-ball which is
not amenable for continuous optimization.

Table 6.7: CIFAR-10: Robust test error of untar-
geted l0-attacks in pixel and feature space on a l2-
resp. l1-AT model.

attack type l2-AT l1-AT

l0-bound in pixel space k = 24

PGD0 white-box 68.7% 72.7%
CornerSearch black-box 59.3% 64.9%

l0-RS black-box 85.7% 81.0%

l0-bound in feature space k = 24

VFGA white-box 40.5% 27.5%
FMN white-box 52.9% 28.2%

PDPGD white-box 46.4% 26.9%
CornerSearch black-box 43.2% 29.4%

l0-RS black-box 63.4% 38.3%

Table 6.8: MNIST: Robust test error on robust
models from Schott et al. [2019] on MNIST by dif-
ferent attacks on 100 test points.

attack type
k = 12 (pixels)

ABS Binary ABS

Pointwise Attack black-box 31% 23%
CornerSearch black-box 29% 28%

l0-RS black-box 55% 51%
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Comparison on CIFAR-10. In Table 6.7 we compare the strongest white- and black-box
attacks on l1- resp. l2-adversarially trained PreAct ResNet-18 on CIFAR-10 from Sec. 4.4 and
Rebuffi et al. [2021b]. We keep the same computational budget used on ImageNet. As before,
we consider perturbations with l0-norm k = 24 in pixel or feature space: in both cases l0-RS
achieves the highest robust test error outperforming even all white-box attacks. Note that, as
expected, the model robust wrt l1 is less vulnerable to l0-attacks especially in the feature space,
whose l1-norm is close to that used during training.

Robust generative models on MNIST. Schott et al. [2019] propose two robust generative
models on MNIST, ABS and Binary ABS, which showed high robustness against multiple types
of lp-bounded adversarial examples. These classifiers rely on optimization-based inference using
a variational auto-encoder (VAE) with 50 steps of gradient descent for each prediction (times
1,000 repetitions). It is too expensive to get gradients with respect to the input through the opti-
mization process, thus Schott et al. [2019] evaluate only black-box attacks, and test l0-robustness
with sparsity k = 12 using their proposed Pointwise Attack with 10 restarts. We evaluate on
both models CornerSearch with a budget of 50,000 queries and l0-RS with an equivalent budget
of 10,000 queries and 5 random restarts. Table 6.8 summarizes the robust test error (on 100
points) achieved by the attacks (the results of Pointwise Attack are taken from Schott et al.
[2019]). For both classifiers, l0-RS yields the strongest evaluation of robustness suggesting that
the ABS models are less robust than previously believed. This illustrates that despite we have
full access to the attacked VAE model, a strong black-box l0-attack can still be useful for an
accurate robustness evaluation.

6.2.5 Additional results

Targeted attacks. Here we test l0-bounded attacks in the targeted scenario using the sparsity
level k = 150 (maximum number of perturbed pixels or features) on ImageNet. For black-box
attacks including l0-RS, we set the query budget to 100, 000, and show the success rate on VGG
and ResNet in Table 6.9 computed on 500 points. We also give additional budget to white-box
attacks compared to the untargeted case (see details in Sec. 6.2.10). The target class for each
point is randomly sampled from the set of labels which excludes the true label. We report the
success rate in Table 6.9 instead of robust error since we are considering targeted attacks where
the overall goal is to cause a misclassification towards a particular class instead of an arbitrary
misclassification. We can see that targeted attacks are more challenging than untargeted attacks
for many methods, particularly for methods like CornerSearch that were designed primarily for
untargeted attacks. When considering the pixel space, l0-RS outperforms both black- and white-
box attacks, while in the feature space it is second only to PDPGD although achieving similar
results on the VGG model. Additionally, we report the query efficiency curves in Fig. 6.14 for
l0-RS, PGD0 and JSMA-CE with gradient estimation. We omit the ADMM attack since it
has shown the lowest success rate in the untargeted setting. We can see that l0-RS achieves a
high success rate (90%/80% for VGG/ResNet) even after 20,000 queries. At the same time, the
targeted setting is very challenging for other methods that have nearly 0% success rate even after
100,000 queries. Finally, we visualize targeted l0 adversarial examples generated by pixel-based
l0-RS in Fig. 6.13 (bottom row).

Additional statistics. In Table 6.10, we report the details of success rate and query efficiency
of the black-box attacks on ImageNet for sparsity levels k ∈ {50, 150} in the pixel space and
10,000/100,000 query limit for untargeted/targeted attacks respectively.

l0-RS on malware detection. In the following we apply l0-RS in a different domain, i.e.
malware detection, showing its versatility. We consider the Drebin dataset [Arp et al., 2014]
which consists of 129, 013 Android applications, among which 123, 453 are benign and 5, 560
malicious, with d = 545, 333 features divided into 8 families. Data points are represented by a
binary vector x ∈ {0, 1}d indicating whether each feature is present or not in x (unlike image
classification the input space is in this case discrete). As Grosse et al. [2016], we restrict the
attacks to only adding features from the first 4 families, that is modifications to the manifest of
the applications, to preserve the functionality of the samples (no feature present in the clean data
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Table 6.9: Success rate of targeted l0-attacks on ImageNet. The entry with ∗ is evaluated on 100 points
instead of 500 because of their high computational cost. All black-box attacks use 100k queries except
CornerSearch which uses 450k. l0-RS outperforms all black- and white-box attacks in the pixel space
scenario, and is competitive with white-box attacks in the feature space one.

attack type VGG ResNet

l0-bound in pixel space k = 150

JSMA-CE white-box 0.4% 1.4%
PGD0 white-box 62.8% 67.8%

JSMA-CE w/ GE black-box 0.0% 0.0%
PGD0 w/ GE black-box 0.4% 1.4%
CornerSearch∗ black-box 3.0% 2.0%

l0-RS black-box 98.2% 95.6%

attack type VGG ResNet

l0-bound in feature space k = 150

FMN white-box 73.0% 79.8%
PDPGD white-box 92.8% 94.2%
l0-RS black-box 90.8% 80.0%

VGG ResNet
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Figure 6.14: Success rate over queries for targeted black-box attacks in the pixel-based l0-threat model
with k = 150.

is removed), which leaves a maximum of 233,727 alterable dimensions. We trained the classifier,
which has 1 fully-connected hidden layer with 200 units and uses ReLU as activation function,
with 20 epochs of SGD minimizing the cross-entropy loss, with a learning rate of 0.1 reduced by
a factor of 10 after 10 and 15 epochs. We use batches of size 2000, consisting of 50% of benign
and 50% of malicious examples. For training, we merged the training and validation sets of one
of the splits provided by Arp et al. [2014]. It achieves a test accuracy of 98.85%, with a false
positive rate of 1.01%, and a false negative rate of 4.29%.

We apply l0-RS as described at the beginning of Sec. 6.2.2 for images as input by setting
h = d and w = c = 1 such that x ∈ {0, 1}d×1×1. Only adding features means that all values in
∆ equal 1, thus ∆′ ≡ ∆ at every iteration (step 7 in Alg. 11) and only the set M is updated.
For our attack we use αinit = 1.6 and the same schedule of α(i) of l0-RS on image classification
tasks (see Sec. 6.2.10). Grosse et al. [2016] successfully fooled similar models with a variant of
the white-box JSMA [Papernot et al., 2016b], and Podschwadt and Takabi [2019] confirm that
it is the most effective technique on Drebin, compared to the attacks of Stokes et al. [2017], Al-
Dujaili et al. [2018], Hu and Tan [2017] including adaptations of FGSM and PGD. We use JSMA
and PGD0 in a black-box version with gradient estimation (details below). Liu et al. [2019]
propose a black-box genetic algorithm with prior knowledge of the importance of the features for
misclassification (via a pretrained random forest) which is not comparable to our threat model.

We compare the attacks allowed to modify k ∈ {80, 160} features and with a maximum of
10000 queries. Fig. 6.15 shows the progression of success rate (computed on the initially correctly
classified apps) of the attacks over number of queries used. At both sparsity levels, our l0-RS
attack (in red) achieves very high success rate and outperforms JSMA (green) and PGD0 (blue)
in the low query regime, where the approximation of the gradient is likely not sufficiently precise
to identify the most relevant feature for the attacker to perturb.

6.2.6 Theoretical analysis of l0-RS

Given the empirical success of l0-RS, here we analyze it theoretically for a binary classifier. While
the analysis does not directly transfer to neural networks, most modern neural network archi-
tectures result in piecewise linear classifiers [Arora et al., 2018], so that the result approximately
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Table 6.10: We report the success rate and statistics about query consumption of black-box l0-bounded
attacks in the pixel space on ImageNet. We consider sparsity levels k ∈ {50, 150} and compute the
average and median number of queries needed to generate adversarial examples on all correctly classified
points.

VGG ResNet
pixels

modified
attack

success
rate

mean
queries

median
queries

success
rate

mean
queries

median
queries

untarg.

k = 50

ADMM 8.3% 9402 10000 8.8% 9232 10000
JSMA-CE w/ GE 33.5% 7157 10000 29.0% 7509 10000

PGD0 w/ GE 49.1% 5563 10000 38.0% 6458 10000
l0-RS 97.6% 737 88 94.6% 1176 150

k = 150

ADMM 16.9% 8480 10000 14.2% 8699 10000
JSMA-CE w/ GE 58.8% 4692 2460 49.4% 5617 10000

PGD0 w/ GE 68.1% 3447 42 59.4% 4263 240
l0-RS 100% 171 25 100% 359 49

targeted k = 150
JSMA-CE w/ GE 0.0% 100000 100000 0.0% 100000 100000

PGD0 w/ GE 0.4% 99890 100000 1.4% 99357 100000
l0-RS 98.2% 9895 4914 95.6% 14470 6960

0 2000 4000 6000 8000 10000

# queries
0

20

40

60

80

100

su
cc

es
s r

at
e 

(%
)

k=20

0 2000 4000 6000 8000 10000

# queries
0

20

40

60

80

100

su
cc

es
s r

at
e 

(%
)

k=40

0 2000 4000 6000 8000 10000

# queries
0

20

40

60

80

100

su
cc

es
s r

at
e 

(%
)

k=80

0 2000 4000 6000 8000 10000

# queries
0

20

40

60

80

100

su
cc

es
s r

at
e 

(%
)

k=160

0-RS
PGD0 w/ GE
JSMA-CE w/ GE

Figure 6.15: Success rate vs number of queries in fooling a malware detector for sparsity levels k ∈
{80, 160}. l0-RS outperforms the competitors, with a large gap in the low query regime.

holds in a sufficiently small neighborhood of the target point x.
As in the malware detection task in Sec. 6.2.5, we assume that the input x has binary features,

x ∈ {0, 1}d, and we denote the label by y ∈ {−1, 1} and the gradient of the linear model by
wx ∈ Rd. Then the Problem (6.8) of finding the optimal l0 adversarial example is equivalent to:

argmin
∥δ∥0≤k

xi+δi∈{0,1}

y ⟨wx, x+ δ⟩ = argmin
∥δ∥0≤k

δi∈{0,1−2xi}

⟨ywx, δ⟩ = argmin
∥δ∥0≤k
δi∈{0,1}

⟨ywx ⊙ (1− 2x)︸ ︷︷ ︸
ŵx

, δ⟩,

where ⊙ denotes the elementwise product. In the white-box case, i.e. when wx is known, the
solution is to simply set δi = 1 for the k smallest weights of ŵx. The black-box case, where wx is
unknown and we are only allowed to query the model predictions ⟨ŵx, z⟩ for any z ∈ Rd, is more
complicated since the naive weight estimation algorithm requires O(d) queries to first estimate
ŵx and then to perform the attack by selecting the k minimal weights. This naive approach is
prohibitively expensive for high-dimensional datasets (e.g., d = 150,528 on ImageNet assuming
224× 224× 3 images). However, the problem of generating adversarial examples does not have
to be always solved exactly, and often it is enough to find an approximate solution. Therefore we
can be satisfied with only identifying k among the m smallest weights. Indeed, the focus is not on
exactly identifying the solution but rather on having an algorithm that in expectation requires
a sublinear number of queries. With this goal, we show that l0-RS satisfies this requirement for
large enough m.

Proposition 6.2.1 The expected number tk of queries needed for l0-RS with α(i) = 1/k to find a
set of k weights out of the smallest m weights of a linear model is:

E [tk] = (d− k)k

k−1∑
i=0

1

(k − i)(m− i)
< (d− k)k

ln(k) + 2

m− k
.
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Proof. According to the l0-RS algorithm, we have d features grouped in a set U and the goal is
to find a set M ⊂ U containing k elements among the m smallest elements of U . Since α(i) = 1/k,
at every iteration we pick one element p ∈M to remove from M and one element q ∈ U \M to
add to M . This results in a binary vector znew ∈ {0, 1}d indicating which are the features in M .
Then we query the black-box linear model to determine whether the loss at a new point znew
improves compared to the point on the previous iteration zcurrent, i.e. L(znew) < L(zcurrent),
which gives us information whether q < p.

If the current set M contains i elements which belong to the smallest m, the probability of
increasing it to i+ 1 elements with the next pick is equal to

P[i→ i+ 1] =P[p /∈ smallest m, q ∈ smallest m] =
k − i

k
· m− i

d− k
.

Then the expected number of iterations for the step i→ i+ 1 is equal to

E[ti+1 − ti] =
(d− k)k

(k − i)(m− i)

since all the draws are independent. Assuming that we begin with none of the smallest m
elements in M , the expected number of iterations tk needed to find a set of k weights out of the
smallest m weights is given by

E[tk] =
k−1∑
i=0

E[ti+1 − ti] =

k−1∑
i=0

(d− k)k

(k − i)(m− i)
= (d− k)k

k−1∑
i=0

1

(k − i)(m− i)
. (6.10)

Now assuming that m > k, we can write the summation as:

k−1∑
i=0

1

(k − i)(m− i)
=

k∑
j=1

1

j(j +m− k)
=

1

m− k

k∑
j=1

(
1

j
− 1

j +m− k

)
=

1

m− k
(Hk −Hm +Hm−k) ,

(6.11)

where Hk is the k-th harmonic number. Using the fact that ln(k) < Hk ≤ ln(k) + 1, we have

Hk −Hm +Hm−k < ln(k)− ln(m) + ln(m− k) + 2

and
ln(k)− ln(m) + ln(m− k) + 2 < ln(k) + 2.

If we combine this result with Eq. (6.10) and Eq. (6.11), we obtain the desired upper bound on
E [tk]:

E [tk] < (d− k)k
ln(k) + 2

m− k
.

□

For non-linear models, l0-RS uses α(i) > 1/k for better exploration initially, but then progres-
sively reduces it. The main conclusion from Proposition 6.2.1 is that E [tk] becomes sublinear
for large enough gap m− k, as we illustrate in Fig. 6.16.

Remark 6.2.1 We further remark that for m = k we get that

E[tk] = (d− k)k

k∑
j=1

1

j2
<

π2

6
(d− k)k,

however we are interested in the setting when the gap m−k is large enough so that E [tk] becomes
sublinear.

The main conclusion from Proposition 6.2.1 is that E [tk] becomes sublinear for large enough
gap m− k which we further illustrate in Fig. 6.16 where we plot the expected number of queries
needed by l0-RS for d = 150, 528 and k = 150 which is equivalent to our ImageNet experiments
with 50 pixels perturbed.
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Figure 6.16: Comparison of the query efficiency of l0-RS to that of the naive weight estimation baseline
which requires O(d) queries to estimate the gradient.

Parrot → Torch Castle → Traffic light Speedboat → Amphibian

Untargeted
patches

Bee eater → Tiger cat Newfoundland → Bucket Geyser → Racer

Targeted
patches

Figure 6.17: Image-specific untargeted (20× 20 pixels) and targeted (40× 40 ) patches generated by our
Patch-RS algorithm.

6.2.7 Sparse-RS for adversarial patches

Another type of sparse attacks which recently received attention are adversarial patches intro-
duced by Brown et al. [2017]. There the perturbed pixels are localized, often square-shaped, and
limited to a small portion of the image but can be changed in an arbitrary way (see examples in
Fig. 6.17). While some works Brown et al. [2017], Karmon et al. [2018] aim at universal patches,
which fool the classifier regardless of the image and the position where they are applied, which
we consider in Sec. 6.2.9, we focus first on image-specific patches as in Yang et al. [2020a], Rao
et al. [2020] where one optimizes both the content and the location of the patch for each image
independently.

General algorithm for patches. Note that both location (step 6 in Alg. 11) and content
(step 7 in Alg. 11) have to be optimized in Sparse-RS, and on each iteration we check only
one of these updates. We test the effect of different frequencies of location/patch updates in an
ablation study in Sec. 6.2.11. Since the location of the patch is a discrete variable, random search
is particularly well suited for its optimization. For the location updates in step 6 in Alg. 11,
we randomly sample a new location in a 2D l∞-ball around the current patch position (using
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Table 6.11: Success rate and query statistics of image-specific patches. Black-box attacks are given
10k/50k queries for untargeted/targeted case. SH is a deterministic method. The query statistics are
computed on all images with 5 random seeds. ∗ TPA uses an early stopping mechanism to save queries,
thus might not use all queries. Patch-RS outperforms all other methods in success rate and query
efficiency.

attack
VGG ResNet

succ. rate mean qr. med. qr. succ. rate mean qr. med. qr.

untargeted, 20 × 20 pixels

b
la

ck
-b

ox

LOAP w/ GE 55.1%±0.6 5879±51 7230±377 40.6%±0.1 6870±10 10000±0

TPA 46.1%±1.1 6085*
±83 8080*

±1246 49.0%±1.2 5722*
±64 5280*

±593

Sparse-RS + SH 82.6% 2479 514 75.3% 3290 549
Sparse-RS + SA 85.6%±1.1 2367±83 533±40 78.5%±1.0 2877±64 458±43

Patch-RS 87.8%±0.7 2160±44 429±22 79.5%±1.4 2808±89 438±68

White-box LOAP 98.3% - - 82.2% - -

targeted, 40 × 40 pixels

b
la

ck
-b

ox

LOAP w/ GE 23.9%±0.9 44134±71 50000±0 18.4%±0.9 45370±88 50000±0

TPA 5.1%±1.2 29934*
±462 34000*

±0 6.0%±0.5 31690*
±494 34667*

±577

Sparse-RS + SH 63.6% 25634 19026 48.6% 31250 50000
Sparse-RS + SA 70.9%±1.2 23749±346 15569±568 53.7%±0.9 32290±239 40122±2038

Patch-RS 72.7%±0.9 22912±207 14407±866 55.6%±1.5 30290±317 34775±2660

White-box LOAP 99.4% - - 94.8% - -

clipping so that the patch is fully contained in the image). The radius of this l∞-ball shrinks with
increasing iterations in order to perform progressively more local optimization (see Sec. 6.2.10
for details). For the update of the patch itself in step 7 in Alg. 11, the only constraints are given
by the input domain [0, 1]d. Thus in principle any black-box method for an l∞-threat model can
be plugged in there. We use Square Attack (SA) (Sec. 4.2) and SignHunter (SH) [Al-Dujaili and
O’Reilly, 2020] as they represent the state-of-the-art in terms of success rate and query efficiency.
We integrate both in our framework and refer to them as Sparse-RS + SH and Sparse-RS + SA.
Next we propose a novel random search based attack motivated by SA which together with our
location update yields our novel Patch-RS attack.

Patch-RS algorithm. While SA and SH are state-of-the-art for l∞-attacks, they have been
optimized for rather small perturbations whereas for patches all pixels can be manipulated arbi-
trarily in [0, 1]. Here, we design an initialization scheme and a sampling distribution specific for
adversarial patches. As initialization (step 2 of Alg. 11), Patch-RS uses randomly placed squares
with colors in {0, 1}3, then it samples updates of the patch (step 7) with shape of squares, of
size decreasing according to a piecewise constant schedule, until a refinement phase in the last
iterations, when it performs single-channel updates (exact schedule in Sec. 6.2.10). This is in
contrast to SA where random vertical stripes are used as initialization and always updates for
all three channels of a pixel are sampled. The ablation study in Sec. 6.2.11 shows how both
modifications contribute to the improved performance of Patch-RS.

Experiments. In addition to Sparse-RS + SH, Sparse-RS + SA, and Patch-RS, we consider
two existing methods: i) TPA [Yang et al., 2020a] which is a black-box attack aiming to produce
image-specific adv. patches based on reinforcement learning. While Yang et al. [2020a] allows
multiple patches for an image, we use TPA in the standard setting of a single patch, ii) Location-
Optimized Adversarial Patches (LOAP) [Rao et al., 2020], a white-box attack that uses PGD for
the patch updates, which we combine with gradient estimation in order to use it in the black-box
scenario (see Sec. 6.2.10 for details). In Table 6.11 we report success rate, mean and median
number of queries used for untargeted attacks with patch size 20×20 and query limit of 10,000 and
for targeted attacks (random target class for each image) with patch size 40× 40 and maximally
50,000 queries. We attack 500 images of ImageNet with VGG and ResNet as target models.
The query statistics are computed on all 500 images, i.e. without restricting to only successful
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Table 6.12: Success rate and query statistics of image-specific frames computed for 5 seeds. Black-box
attacks are given 10k/50k queries for untargeted/targeted case. SH is a deterministic method. Frame-RS
achieves the best success rate and efficiency in all settings.

attack
VGG ResNet

succ. rate mean qr. med. qr. succ. rate mean qr. med. qr.

untargeted, 2 pixels wide

b
la

ck
-b

ox AF w/ GE 57.6%±0.4 5599±23 6747±127 70.6%±0.7 4568±13 3003±116

Sparse-RS + SH 79.9% 3169 882 88.7% 2810 964
Sparse-RS + SA 77.8%±2.0 3391±215 1292±220 80.7%±1.4 3073±111 1039±93

Frame-RS 90.2%±0.3 2366±26 763±32 94.0%±0.3 1992±34 588±10

White-box AF 100% - - 100% - -

targeted, 3 pixels wide

b
la

ck
-b

ox AF w/ GE 16.1%±1.5 45536±328 50000±0 40.6%±1.4 39753±459 50000±0

Sparse-RS + SH 52.0% 32223 41699 73.2% 25929 20998
Sparse-RS + SA 32.9%±1.9 38463±870 50000±0 47.5% ±2.8 33321±980 48439±3500

Frame-RS 65.7%±0.4 28182±99 27590±580 88.0%±0.9 19828±130 15325±370

White-box AF 100% - - 100% - -

adversarial examples, as this makes the query efficiency comparable for different success rates.
Our Sparse-RS + SH, Sparse-RS + SA and Patch-RS outperform existing methods by a large
margin, showing the effectiveness of our scheme to optimize both location and patch. Among
them, our specifically designed Patch-RS achieves the best results in all metrics. We visualize
its resulting adversarial examples in Fig. 6.17.

6.2.8 Sparse-RS for adversarial frames

Adversarial frames introduced in Zajac et al. [2019] are another sparse threat model where the
attacker is allowed to perturb only pixels along the borders of the image. In this way, the total
number of pixels available for the attack is small (3%-5% in our experiments), and in particular
the semantic content of the image is not altered by covering features of the correct class. Thus,
this threat model shows how even peripheral changes can influence the classification.

General algorithm for frames. Unlike patches (Sec. 6.2.7), for frames the set of pixels M
which can be perturbed (see Alg. 11) is fixed. However, similarly to patches, the pixels of the
frame can be changed arbitrarily in [0, 1]3 and thus we can use l∞-black-box attacks for step 7
in Alg. 11 which we denote as Sparse-RS + SH and Sparse-RS + SA. While SH is agnostic
to the shape of the perturbations defined by adversarial frames and can be successfully applied
for step 7 without further modifications, Sparse-RS + SA leads to suboptimal performance (see
Table 6.12). Indeed, in the frame setting, the sampling distribution of SA requires its square
updates to be entirely contained in the frame which due to its small width strongly limits the
potential updates. Thus, to achieve better performance, we propose a new sampling distribution
specific to frames which, combined with Sparse-RS framework, we call Frame-RS.

Frames-RS algorithm. Our new sampling distribution (used for step 7 of Alg. 11) returns
squares that only partially overlap with the frame. Effectively, we have more flexible updates,
often of non-squared shape. Moreover, similarly to Patch-RS, we introduce single-channel up-
dates in the final phase. We also use a different initialization in step 2: uniformly random
sampling instead of vertical stripes. As a result, Frame-RS shows significantly better results than
both Sparse-RS + SH and Sparse-RS + SA. We initialize the components of the frame with
random values in {0, 1}. Then, at each iteration i we sample uniformly a pixel of the frame
to be a random corner of a square of size s(i) × s(i): all the pixels in the intersection of such
square with the frame are set to the same randomly chosen color in {0, 1}c to create the candi-
date update. The length of the side of the square is regulated by a linearly decreasing schedule
(s(i) = 3⌈αinit · w2 · (0.5− i/N)⌉, with N the total number of queries available and w the width
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Lens cap → Chain Rugby ball → Bottle cap Blue heron → Pole

Untargeted
frames

Class:lens cap --> chain Queries:86   Class:rugby ball --> bottlecap Queries:95   Class:little blue heron --> pole

Collie → Canoe Lakeside → Tiger Bullterrier → Website

Targeted
frames

Class:collie --> canoe Class:lakeside --> tiger Class:Staffordshire bullterrier --> web site

Figure 6.18: Image-specific untargeted (2 pixels wide) and targeted (3 pixels) frames generated by our
Frame-RS algorithm.

of the frame) for the first 50% of queries, after which s(i) = 1. Finally, for the last 75% of
iterations, only single-channel updates are performed. Similarly to the other threat models, the
only hyperparameter is αinit.

Competitors. Similarly to the case of patches, we can design Sparse-RS + SH and Sparse-RS

+ SA for frames: SignHunter can be directly used to generate adversarial frames as this method
does not require a particular shape of the perturbation set. Square Attack is specifically designed
for rectangular images and we adapted it to this setting by constraining the sampled updates to
lay inside the frame, as they are contained in the image for the l∞- and l2- threat models. Since
the perturbation set has a different shape than in the other threat models a new schedule for
the size of squares specific for this case: at iteration i of N and with frames of width w, we have
s(i) = ⌈αinit · w · (0.5− i/N)⌉ until i < N/2, then s(i) = 1 (we set αinit = 2).

Moreover, Zajac et al. [2019] propose adversarial framing (AF), a method based on gradient
descent to craft universal adversarial frames. We here use standard PGD on the cross-entropy
loss to generate image-specific perturbations by updating only the components corresponding to
the pixels belonging to the frame. In details, we use 1000 iterations with step size 0.05 using
the sign of the gradient as direction and each element is projected on the interval [0, 1]. This
white-box attack achieves 100% of success in all settings we tested (consider that 1176 and 2652
pixels be perturbed for the untargeted and targeted scenarios respectively). For the black-box
version, we use the gradient estimation technique as for patches, that is Alg. 12 with the current
iterate as input x, m = 5, η = 10/

√
d and the gradient estimated at the previous iteration as

prior p, where d represents the number of features in the frame. Moreover, we use step size 0.1
for the untargeted case, 0.01 for the targeted one. Note that we found the mentioned values
via grid search to optimize the success rate. We iterate the procedure, which costs 10 queries
of the classifier, until reaching the maximum number of allowed queries or finding a successful
adversarial perturbation.

Experimental evaluation. For untargeted attacks we use frames of width 2 and a maximum
of 10,000 queries, and for targeted attacks we use frames of width 3 and maximally 50,000 queries.
In Table 6.12 we show that our Frame-RS achieves the best success rate (at least 10% higher than
the closest competitor) and much better query efficiency in all settings. In particular, Frame-RS
significantly outperforms Sparse-RS + SA, showing that our new sampling distribution is crucial
to obtain an effective attack. For the untargeted case the success rate of our black-box Frame-RS
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is close to that of the white-box AF method which achieves 100% success rate. Finally we
illustrate some examples of the resulting images in Fig. 6.18.

6.2.9 Targeted universal attacks: patches and frames

A challenging threat model is that of a black-box, targeted universal adversarial patch attack
where the classifier should be fooled into a chosen target class when the patch is applied inside
any image of some other class. Previous works rely on transfer attacks: in Brown et al. [2017]
the universal patch is created using a white-box attack on surrogate models, while the white-
box attack of Karmon et al. [2018] directly optimizes the patch for the target model on a set
of training images and then only tests generalization to unseen images. Our goal is a targeted
black-box attack which crafts universal patches that generalize to unseen images when applied
at random locations (see examples in Fig. 6.19). Similarly, one can consider black-box targeted
universal frames, which are however applied at a fixed position (the borders of the images), see
Fig. 6.20. To our knowledge, this is the first method for this threat model which does not rely
on a surrogate model.

Sparse-RS for targeted universal attacks. Targeted universal attacks have to generalize to
unseen images and, in the case of patches, random locations on the image. We propose to generate
them in a black-box scenario with the following scheme, with a budget of 100k iterations. We
select a small batch of training images {xi}ni=1 (n = 30) and apply the patch at random positions
on them (for frames the location is determined by its width). These positions are kept fixed for
10k iterations during which the patch is updated (step 7 of Alg. 11) with some black-box attack
(we use the same as for image-specific attacks in Sec. 6.2.7 and Sec. 6.2.8) to minimize the loss

Ltarg({xi}ni=1) =

n∑
i=1

LCE(f(xi), t), (6.12)

where t is the target class. Then, to foster generalization, we resample both the batch of training
images and the locations of the patch over them (step 6 in Alg. 11). In this way it is possible
obtain black-box attacks without relying on surrogate models. Note that 30 queries of the
classifiers are performed at every iteration of the algorithm.

In this scheme, as mentioned, we integrate either SignHunter or Square Attack to have
Sparse-RS + SH and Sparse-RS + SA, and our novel Patch-RS introduced for image-specific at-
tacks. In the case of patches, for Sparse-RS + SA we set p = 0.05 and for Patch-RS αinit = 0.05
(recall that both parameters control the schedule for sampling the updates in a similar way for
the two attacks, details in Sec. 6.2.10). For frames, for SA we use the schedule for image-specific
attacks (Sec. 6.2.8) with αinit = 0.7, while in Frame-RS we adapt the schedule for image-specific
attacks to the specific case, so that the size of the squares decrease to s(i) = 1 at i = 25, 000 and
annel updates are sampled from i = 62, 500.

Transfer-based attacks. We evaluate the performance of targeted universal patches and
frames generated by PGD [Madry et al., 2018] and MI-FGSM [Dong et al., 2018] on a sur-
rogate model and then transferred to attack the target model. In particular, at every iteration of
the attack we apply on the training images (200) the patch at random positions (independently
picked for every image), average the gradients of the cross-entropy loss at the patch for all images,
and take a step in the direction of the sign of the gradients (we use 1000 iterations, step size of
0.05 and momentum coefficient 1 for MI-FGSM). For patches, we report the success rate as the
average over 500 images, 10 random target classes, and 100 random positions of the patches for
each image. For frames, we average over 5000 images and the same 10 random target classes.
In Table 6.13 we show the success rate of the transfer based attacks on the surrogate model but
with images unseen when generating the perturbation and on the target model (we use VGG
and ResNet alternatively as the source and target models). We see that the attacks achieve a
very high success rate when applied to new images on the source model, but are not able to
generalize to another architecture. We note that Brown et al. [2017] also report a similarly low
success rate for the same size of the patch (50 × 50 which corresponds to approximately 5% of
the input image, see Fig. 3 in Brown et al. [2017]) on the target class they consider. Finally, we
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Table 6.13: Success rate of transfer-based targeted universal patches, with VGG (V) and ResNet (R)
used as either source or target model averaged over 10 classes. When source and target model are the
same network, the attack is only used on unseen images. These targeted universal attacks are very
effective when transferred to unseen images on the source model, but do not generalize to the other
architecture.

attack
succ. rate

V → V V → R R → R R → V

patches
PGD 99.6% 0.0% 94.9% 3.3%

MI-FGSM 99.1% 0.0% 92.6% 1.3%

frames
PGD 99.4% 0.0% 99.8% 0.0%

MI-FGSM 99.3% 0.0% 99.7% 0.0%

Table 6.14: Average success rate of targeted universal attacks over 10 target classes on VGG and ResNet.
We use patches of size 50 × 50 and frames of width 6 pixels and repeat the attacks based on random
search with 3 random seeds.

attack
patches frames

VGG ResNet VGG ResNet

Transfer PGD 3.3% 0.0% 0.0% 0.0%
Transfer MI-FGSM 1.3% 0.0% 0.0% 0.0%

PGD w/ GE 35.1% 15.5% 22.7% 52.4%
ZO-AdaMM 45.8% 6.0% 41.8% 53.5%

Sparse-RS + SH 63.9% 13.8% 48.8% 65.5%
Sparse-RS + SA 72.9% ± 3.6 29.6% ± 5.6 43.0% ± 1.2 63.6% ± 2.1

Patch-RS / Frame-RS 70.8% ± 1.3 30.4% ± 8.0 55.5% ± 0.3 65.3% ± 2.3

note that Dong et al. [2018] show that the perturbations obtained with MI-FGSM have better
transferability compared to PGD, while in our experiments they are slightly worse, but we high-
light that such observation was done for image-specific l∞- and l2-attacks, which are significantly
different threat models from what we consider here.

Targeted universal attacks via gradient estimation. Consistently with the other threat
models, we test a method based on PGD with gradient estimation. In particular, in the scheme
introduced above for Sparse-RS, we optimize the loss with the PGD attack and the gradient
estimation technique via finite differences as in Alg. 12, similarly to what is done for image-
specific perturbations in Sec. 6.2.7 and Sec. 6.2.8 (we also use the same hyperparameters, step
size 0.1 for PGD). Moreover, Chen et al. [2019] propose ZO-AdaMM, a black-box method for
universal attacks of minimal l2-norm able to fool a batch of images, without testing them on
unseen images. We adapt it to the case of patches and frames removing the penalization term in
the loss which minimizes the l2-norm of the perturbations since it is not necessary in our threat
models, and integrate it in our scheme (see above). We used the standard parameters and tuned
learning rate, setting 0.1 for patches, 0.5 for frames. In particular, 10 random perturbations,
each equivalent to one query, of the current universal perturbation are sampled to estimate the
gradient at each iterations, recalling that the total budget is 100,000 queries.

Results. To evaluate the success of a targeted universal patch, we apply to each of 500 images
the patch at 100 random locations and compute the percentage of the perturbed images which
are classified in the target class. For targeted universal frames, we compute the success rate
applying the perturbation to 5,000 images (unseen during training). The results in Table 6.14
are computed as mentioned above for 10 randomly chosen target classes and then averaged (the
same set of target classes is used for patches and frames). For the random search based attacks,
we repeat the attacks for 3 random seeds. We report the complete results for both threat models
in Table 6.14: one can see that our Sparse-RS + SH/SA, Patch-RS and Frame-RS outperform
other methods by large margin. Visualizations of the perturbations found by our scheme are
shown in Fig. 6.19 and Fig. 6.20.
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Targeted universal patches
Butterfly → Rottweiler Persian cat → Slug Starfish → Polecat

Echidna → Rottweiler Geyser → Slug Electric guitar → Polecat

Figure 6.19: We visualize two images in each column with the same targeted universal patch generated
by Patch-RS that changes the predictions to the desired target class.

Targeted universal frames
African elephant → Slug Projector → Colobus (monkey) Vine snake → Butcher shopClass:African elephant --> slug Class:projector --> colobus Class:vine snake --> butcher shop

Ballpoint → Slug Grey whale → Colobus (monkey) Beacon → Butcher shopClass:ballpoint --> slug Class:grey whale --> colobus Class:beacon --> butcher shop

Figure 6.20: Targeted universal frames generated by our Frame-RS. We show two images in each column
with the same universal frame that is able to change the decision of the classifier into the desired target
class.
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6.2.10 Experimental details

Details of l0-bounded attacks for image classification. We here provide details about
the implementation of both l0-RS algorithm and the competitors, many of which are used as
available in Adversarial Library [Rony and Ben Ayed, 2020].
l0-RS: As mentioned in Sec. 6.2.2, at iteration i the new set M ′ is formed modifying α(i) · k
(rounded to the closest positive integer) elements of M containing the currently modified dimen-
sions (see step 6 in Alg. 11). Inspired by the step-size reduction in gradient-based optimization
methods, we progressively reduce α(i). Assuming N = 10, 000, the schedule of α(i) is piecewise
constant where the constant segments start at iterations j ∈ {0, 50, 200, 500, 1000, 2000, 4000, 6000, 8000}
with values αinit/βj, βj ∈ {2, 4, 5, 6, 8, 10, 12, 15, 20}. For a different maximum number of queries
N , the schedule is linearly rescaled accordingly. In practice, we use αinit = 0.3 and αinit = 0.1
for the untargeted and targeted scenario respectively on ImageNet (for both pixel and feature
space), αinit = 0.3 and αinit = 0.1 when considering the pixel and feature space respectively on
CIFAR-10.

SparseFool: We use SparseFool [Modas et al., 2019] in the original implementation and optimize
the hyperparameter which controls the sparsity of the solutions (called λ, setting finally λ = 1)
to achieve the best results. we use 60 and 100 steps for ImageNet and CIFAR-10 (default value
is 20), after checking that higher values do not lead to improved performance but significantly
increase the computational cost. Note that SparseFool has been introduced for the l1-threat
model but can generate sparse perturbations which are comparable to l0-attacks.

PGD0: we use 2,000 iterations (5,000 for targeted attacks) and step size 0.05 · d (0.025 · d for
targeted attacks) for ImageNet (0.5·d for CIFAR-10) where d = 224×224×3 (resp. d = 32×32×3)
is the input dimension. PGD0 with gradient estimation uses the same gradient step of PGD0

but with step size 5 · d (1 · d for targeted attacks). To estimate the gradient we use finite
differences, similarly to Ilyas et al. [2018], as shown in Alg. 12, with the current iterate as
input x, η = 0.01/

√
d (in line with what suggested in Ilyas et al. [2019] for this algorithm),

m = 1 and a zero vector as p. In case of targeted attacks we instead use m = 50 (the budget
of queries is also 10 times larger) and the current estimated gradient as p. We optimized the
aforementioned parameters to achieve the best results and tested that sampling more points to
better approximate the gradient at each iteration leads to similar success rate with worse query
consumption.

CornerSearch: on ImageNet, we use the following hyperparameters: n max = 500, n iter =
200, n classes = 1, 000 (i.e. all classes, which is the default option) for untargeted attacks
and n max = 1, 500, n iter = 50, 000 for targeted attacks. We note that CornerSearch has
a limited scalability to ImageNet as it requires 8 · 224 · 224 = 401, 408 queries only for the
initial phase of the attack to obtain the orderings of pixels, and then for the second phase
n iter · n classes = 200, 000 queries for untargeted attacks and n iter = 50, 000 queries
for targeted attacks. On CIFAR-10 we set n max = 450, n iter = 1000, n classes = 10,
which amounts to more than 17, 000 queries of budget. Thus, CornerSearch requires significantly
more queries compared to l0-RS while achieving a lower success rate. Finally, we note that
CornerSearch was designed to minimize the number of modified pixels, while we use it here for
l0-bounded attacks.

SAPF: we use the hyperparameters suggested in Fan et al. [2020] and the second-largest logit as
the target class for untargeted attacks. With these settings, the algorithm is still very expensive
computationally, so we could evaluate it only on 100 points. Note that Fan et al. [2020] report
that SAPF achieves the average l0-norm of at least 30,000 which is orders of magnitudes more
than what we consider here. But we evaluate it for completeness as their goal is to obtain a
sparse adversarial attack measured in terms of l0.

ADMM: we perform a grid search over the parameters to optimize the success rate and set
ro=10, gama=4, binary search steps=500 and Query iterations=20 (other parameters are
used with the default values). Note that Zhao et al. [2019] report results for the l0-norm only on
MNIST. We apply it to both pixel and feature space scenarios by minimizing the corresponding
metric.

JSMA-CE: as mentioned in Sec. 6.2.3 we adapt the method introduce in Papernot et al. [2016b]
to scale it to attack models on ImageNet. We build the saliency map as the gradient of the cross-
entropy loss instead of using the gradient of the logits because ImageNet has 1000 classes and it
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Algorithm 12: GradEst: Gradient estimation via finite differences

input : loss function L, input point x, number of iterations m, step size η, prior
estimation p

output: estimated gradient g
1 g ← p
2 for i = 1, . . . ,m do
3 s← N (0, I)
4 l1 ← L(x+ η · s)
5 l2 ← L(x− η · s)
6 g ← g + (l1 − l2)/(2η) · s
7 end

Algorithm 13: JSMA-CE with gradient estimation (malware detection)

input : cross-entropy loss L, input point xorig, number of iterations N , pixel budget k,
number of iterations for gradient estimation m, gradient estimation step size η

output: z
1 g ← 0, q ← 2 ·m
2 while q ≤ N do
3 g ← GradEst(L, xorig,m, η, g)
4 z ← xorig

5 A← indices of k largest positive components of g (if there are)
6 zA ← 1
7 q ← q + 2 ·m
8 if z is adversarial then return;

9 end

would be very expensive to get gradients of each logit separately (particularly in the black-box
settings where one has to first estimate them). Moreover, at each iteration we perturb the pixel
which has the gradient with the largest l1-norm, setting each channel to either 0 or 1 according
to the sign of the gradient at it. We perform these iterations until the total sparsity budget is
reached. For the black-box version, we modify the algorithm as follows: the gradient is estimated
via finite difference approximation as in Alg. 12, the original image xorig as input throughout the
whole procedure (this means that the prior p is always the current estimation of the gradient).
We found that this gives stronger results compared to an estimation of the gradient at a new
iterate. We use the gradient estimation step size η = 0.01. Then every 10 queries we perturb the
k pixels with the largest gradient as described above for the white-box attack and check whether
this new image is misclassified (we do not count this extra query for the budget of 10k). This is
in line with the version of the attack we use for the malware detection task described in detail
in Sec. 6.2.5 and below.

EAD: we use EAD [Chen et al., 2018] from Foolbox [Rauber et al., 2017] with l1 decision rule,
regularization parameter β = 0.1 optimized to achieve highest success rate in the l0-threat model
and 1000 iterations (other parameters as default). Note that EAD is a strong white-box attack
for l1 and we include it as additional baseline since it can generate sparse attacks.

VFGA: we use it as implemented in Adversarial Library with the default parameters.

FMN: we use the implementation of Adversarial Library with 1, 000 iterations for the untargeted
case (as in the original paper), 10, 000 for the targeted one. We set the hyperparameter α0 to
10 which was optimized with a grid search. We also note that Pintor et al. [2021] do not report
results for the l0-version of their attack on ImageNet.

PDPGD: we run it with the implementation of Adversarial Library with 1, 000 and 10, 000
iterations for untargeted and targeted scenarios respectively, l2/3-proximal operator and other
parameters with default values. While Matyasko and Chau [2021] introduce also a version of
their attack for the pixel space, it is not available in Adversarial Library, then we only consider
the method for the comparison in the feature space.
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Details of attacks on malware detection. We provide additional details of the attacks used
for malware detection tasks.

JSMA-CE with gradient estimation: The idea of the white-box attack of Grosse et al.
[2016] is, given a sparsity level of k, to perturb iteratively the feature of the iterate x(i) which
corresponds to the largest value (if positive) of ∇xLCE(f(x

(i)), y), with f the classifier, y the
correct label and LCE the cross-entropy loss, until either the maximum number of modifications
are made or misclassification is achieved. With only approximate gradients this approach is
not particularly effective. However, since k ≪ d and only additions can be made, we aim at
estimating the gradient of the cross-entropy loss at xorig and then set to 1 the k elements (orig-
inally 0) of xorig with the largest component in the approximated gradient. With the goal of
query efficiency, every m iterations of gradient estimation through finite differences we check if
an adversarial example has been found (we do not count these queries in the total for the query
limit). Alg. 13 shows the procedure, and we set m = 5 and η = 1 (we tested other values which
achieved worse or similar performance).

PGD0 with gradient estimation: we use PGD0 with the gradient estimation technique pre-
sented in Alg. 12 with the original point as input x, m = 10, η = 100 and the current estimate of
the gradient as prior p (unlike on image classification tasks where the gradient is estimated at the
current iterate and no prior used). Moreover, we use step size 4 ·

√
d and modify the projection

step the binary input case and so that features are only added and not removed (see above).

Details of Patch-RS algorithm. As mentioned in Sec. 6.2.7, in this scenario we optimize via
random search the attacks for each image independently. In Patch-RS we alternate iterations
where a candidate update of the patch is sampled with others where a new location is sampled.

We have a location update everym iterations, withm = 5 (1 : 4 scheme Sec. 6.2.11, four patch
updates then one location update) for untargeted attacks and m = 10 for targeted ones: the
latter have more queries available (50k vs 10k) and wider patches (40× 40 vs 20× 20), therefore
it is natural to dedicate a larger fraction of iterations to optimizing the content rather than the
position (which has also a smaller feasible set). We present in Sec. 6.2.11 an ablation study
the effect of different frequencies of location updates in the untargeted scenario. The position
of the patch is updated with an uniformly sampled shift in [−h(i), h(i)] for each direction (plus
clipping to the image size if necessary), where h(i) is linearly decreased from h(0) = 0.75 · simage

to h(N) = 0 (simage indicates the side of the squared images). In this way, initially, the patch
can be easily moved on the image, while towards the final iterations it is kept (almost) fixed and
only its values are optimized.

The patch is initialized by superposing at random positions on a black image 1000 squares
of random size and color in {0, 1}3. Then, we update the patch following the scheme of Square
Attack, that is sampling random squares with color one of the corners of the color cube and
accept the candidate if it improves the target loss. The size of the squares is decided by a
piecewise constant schedule, which we inherit from Andriushchenko et al. [2020]. Specifically,
at iteration i the square-shaped updates of a patch with size s × s have side length s(i) =√
α(i) · s, where the value of α(i) starts with α(0) = αinit and then is halved at iteration j ∈
{10, 50, 200, 500, 1000, 2000, 4000, 6000, 8000} if the query limit is N = 10, 000, otherwise the
values of j are linearly rescaled according to the new N . Hence, αinit is the only tunable
parameters of Patch-RS, and we set αinit = 0.4 for untargeted attacks and αinit = 0.1 for
targeted ones. In contrast to Square Attack, in the second half of the iterations dedicated to
updates of size 1× 1, Patch-RS performs a refinement of the patch applying only single-channel
updates. We show in Sec. 6.2.11 that both the initialization tailored for the specific threat model
and the single-channel updates allow our algorithm to achieve the best success rate and query
efficiency.

Details of other patch attacks. We provide the implementation details of other attacks for
the patch threat model.

Sparse-RS + SH and Sparse-RS + SA: When integrating SignHunter [Al-Dujaili and O’Reilly,
2020] and Square Attack [Andriushchenko et al., 2020] in our framework for adversarial patches,
the updates of the locations are performed as described above, while the patches are modified
with the l∞ attacks with constraints given by the input domain [0, 1]d (in practice one can fix
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a sufficiently large l∞ threshold ϵ∞ = 1). SH does not have free parameters, while we tune the
only parameter p of SA (which has the same role as αinit of Patch-RS) and use p = 0.4 and
p = 0.2 for the untargeted and targeted case respectively.

LOAP: Location-Optimized Adversarial Patches (LOAP) [Rao et al., 2020] is a white-box PGD-
based attack which iteratively first updates the patch with a step in the direction of the sign
of the gradient to maximize the cross-entropy function at the current iterate, then it tests if
shifting of stride pixels the patch in one of the four possible directions improves the loss and, if
so, the location is updated otherwise kept (Rao et al. [2020] have also a version where only one
random shift is tested). We use LOAP with the original implementation6 with 1,000 iterations,
learning rate 0.05 and the full optimization of the location with stride=5. To adapt LOAP
to the black-box setup, we use the gradient estimation via finite differences shown in Alg. 12
restricted to the patch to optimize (this means that the noise sampled in step 3 is applied only
on the components of the image where the patch is). In particular we use the current iterate as
input x, m = 5 iterations, η = 10/(s ·

√
c) if the patch has dimension s× s× c and the gradient

estimation at the previous iteration as prior p. Moreover, we perform the update of the location
by sampling only 1 out of the 4 possible directions (as more queries are necessary for better
gradient estimation) with stride=5, and learning rate 0.02 for the gradient steps (the sign of
the gradient is used as a direction). Note that we optimized these hyperparameters to achieve
the best final success rate. Moreover, each iteration costs 11 queries (10 for Alg. 12 and 1 for
location updates) and we iterate the procedure until the budget of queries is exhausted.

TPA: The second method we compare to is TPA [Yang et al., 2020a], which is based on rein-
forcement learning and exploits a dictionary of patches. Note that in Yang et al. [2020a] TPA was
used primarily putting multiple patches on the same image to achieve misclassification, while our
threat model does not include this option. We obtained the optimal values for the hyperparame-
ters for untargeted attacks (rl batch=400 and steps=25) via personal communication with the
authors and set those for the targeted scenario (rl batch=1000 and steps=50) similarly to what
reported in the original code7 doubling the value of rl batch to match the budget of queries
we allow. TPA has a mechanism of early stopping, which means that it might happen that not
the whole budget of queries is exploited even for unsuccessful points. Finally, Yang et al. [2020a]
show that TPA significantly outperforms the methods of Fawzi and Frossard [2016], which also
generates image-specific patches, although optimizing the shape and the location but not the
values of the perturbation. Thus we do not compare directly to Fawzi and Frossard [2016] in our
experiments.

6.2.11 Ablation studies

We here present a series of ablation studies to better understand the robustness of our algorithms
to different random seeds, how its performance changes depending on αinit, and to justify the
algorithmic choice of the piecewise decaying schedule for α(i). We focus the ablation study only
on l0-RS and Patch-RS methods since for other threat models the setting is less challenging as
there is no need to optimize the location of the perturbation.

Different random seeds in l0-RS. First, we study how the performance of l0-RS in the
pixel space varies when using different random seeds, which influence the stochastic component
inherent in random search. In Table 6.15 we report mean and standard deviation over 10 runs
(with different seeds) of success rate, average and median queries of l0-RS on VGG and ResNet
with sparsity levels k ∈ {50, 100, 150} (the same setup of Sec. 6.2.3, with the additional k = 100).
One can observe that the success rate is very stable in all the cases and the statistics of query
consumption consistent across different runs.

Different values of αinit in l0-RS. Then we analyze the behaviour of our algorithm with
different values of αinit, since it is the only free hyperparameter of Sparse-RS. Let us recall that
it is used to regulate how muchM ′ and ∆′ differ fromM and ∆ respectively in steps 6-7 of Alg. 11
at each iteration. Fig. 6.21 shows the success rate and query usage (computed on the successful

6https://github.com/sukrutrao/Adversarial-Patch-Training
7https://github.com/Chenglin-Yang/PatchAttack
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Table 6.15: Mean and standard deviation of the success rate and query efficiency of untargeted l0-RS
repeated with 10 different random seeds. The success rate and query efficiency are very stable over
random seeds.

model k success rate (%)
successful points all points

avg. queries med. queries avg. queries med. queries

VGG
50 97.4 ± 0.42 497 ± 28 80 ± 4 745 ± 43 86 ± 5
100 99.8 ± 0.14 320 ± 20 42 ± 3 335 ± 17 43 ± 3
150 100.0 ± 0.00 193 ± 16 26 ± 2 193 ± 16 26 ± 2

ResNet
50 94.6 ± 0.70 686 ± 47 135 ± 6 1187 ± 48 166 ± 11
100 99.7 ± 0.15 544 ± 36 73 ± 5 571 ± 26 74 ± 5
150 100.0 ± 0.00 365 ± 19 49 ± 3 365 ± 19 49 ± 3

Table 6.16: Ablation study on the effect of initialization and single-channel updates for untargeted
image-specific adversarial patches (size 20 × 20 pixels) within our proposed framework. We highlight
in grey our modified schemes that lead to a higher success rate and query efficiency. Note that the
single-channel updates come later in the optimization process when 50% success rate is reached, and
thus they do not influence the median. We also report the results of Sparse-RS + SH for reference.

attack init.
single VGG ResNet
ch. succ. rate mean qr. med. qr. succ. rate mean qr. med. qr.

Sparse-RS + SH - - 82.6% 2479 514 75.3% 3290 549
Sparse-RS + SA stripes no 85.6%±1.1 2367±83 533±40 78.5%±1.0 2877±64 458±43

stripes yes 85.7%±1.4 2359±89 533±40 79.1%±1.1 2861±58 458±43

squares no 87.1%±0.9 2174±50 429±22 78.9%±1.3 2820±91 438±68

Patch-RS squares yes 87.8%±0.7 2160±44 429±22 79.5%±1.4 2808±89 438±68

samples) of our untargeted l0-bounded attack on VGG at the usual three sparsity levels k for
runs with αinit ∈ {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1} (for our experiments in Sec. 6.2.3 we use
αinit = 0.3). We observe that the success rate is similar (close to 100%) for all the values, with
a slight degradation for the largest ones. In order to minimize the queries of the classifier, the
runs with αinit between 0.1 and 0.4 are comparably good, with small differences in the tradeoff
between average and median number of queries.

Constant vs decaying α(i) in l0-RS. In order to demonstrate the role of decaying the differ-
ence between the candidate updates M ′ and ∆′ and the current iterates M and ∆ over iterations
(see steps 6-7 of Alg. 11) to achieve good performance, we run our attack with constant α(i) sched-
ule instead of the piecewise constant schedule with decreasing values. We fix α(i) = c ∈ [0, 1] for
every i so that for the whole algorithm M ′ and M differ in max{c · k, 1} elements. In Fig. 6.22
we report the results achieved by c ∈ {0, 0.05, 0.15, 0.3, 0.5, 1} on VGG at k ∈ {50, 100, 150},
together with the baseline (black dashed line) of the standard version of l0-RS. One can observe
that small constant values c for α(i) = c achieve a high success rate but suffer in query efficiency,
in particular computed regarding the median and for larger k, while the highest values of c lead
to significantly worse success rate (note that average and median queries are computed only on
the successful points) than the baseline. These results highlight how important it is to have an
initial exploration phase, with a larger step size, and at a later stage a more local optimization.

Initialization and single-channel updates in Patch-RS. The original Square Attack for
l∞- and l2-bounded perturbations applies as initialization vertical stripes on the target image,
and it does not consider updates of a single channel (these can be randomly sampled but are
not explicitly performed). Table 6.16 shows the success rate and query efficiency (computed on
all points) for untargeted adversarial attacks with patches of size 20× 20 on VGG and ResNet,
averaged over 5 random seeds for methods based on random search. Both the initialization
with squares and the single-channel updates already individually improve the performance of
Sparse-RS + SA and, when combined, allow Patch-RS to outperform the competitors (see also
Sec. 6.2.7).
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Figure 6.21: Ablation study on the influence of αinit, the hyperparameter which regulates the size of the
updates at each iteration. We show success rate (first column), average (second) and median queries
(third) achieved by l0-RS on VGG at sparsity levels k = {50, 100, 150}. Considering jointly the three
statistics values in [0.1, 0.4] are preferable for this threat model and schedule.

Ratio location to patch updates. We study here the effect of different ratios between the
number of location and patch updates in our framework for image-specific untargeted patches
(size 20× 20). In Table 6.17 we report the performance Sparse-RS + SH, Sparse-RS + SA and
our final method Patch-RS with various schemes: alternating an update of the location to one
of the patch (1:1), doing 4 or 9 location updates for one patch update (4:1, 9:1) and vice versa
(1:4, 1:9). Considering the results on both networks, the scheme with 1:4 ratio yields for every
attack the highest success rate or very close. In query consumption, the schemes 1:1 and 1:4
are similar, with some trade-off between average and median. Moreover, we observe that the
ranking of the three methods is preserved for all ratios of location and patch updates we tested,
with Patch-RS outperforming the others. Also, its effectiveness is less affected by suboptimal
ratios, showing the stability of our algorithm.
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Figure 6.22: Performance of untargeted l0-RS on VGG when using a constant schedule for α(i), that is the
size of |A| = |B| = c · k (see Sec. 6.2.2) at every iteration, or equivalently α(i) = c for every i = 1, . . . , N .
The dashed line is the reference of the results achieved with the piecewise constant schedule to decay
α(i). While constantly small updates lead to good success rate, the median number of queries used
increases notably, especially with larger sparsity levels k.

Table 6.17: Performance of different attacks for untargeted image-specific adversarial patches of size
20 × 20 varying the ratio between updates of the location and of the patch. We use 1:4 ratio in our
framework which is the best choice for Sparse-RS + SA and Patch-RS (for Sparse-RS + SH 1:1 would
work equally well). Note that our novel attack Patch-RS outperforms the competitors consistently in
terms of the success rate and query efficiency across all choices of the ratio of the location and patch
updates. For random search based methods, we repeat the attack with 5 random seeds.

ratio attack
VGG ResNet

succ. rate mean qr. med. qr. succ. rate mean qr. med. qr.

9:1
Sparse-RS + SH 74.9% 3897 1331 68.0% 4038 1121
Sparse-RS + SA 71.4%±0.9 3927±104 1361±224 68.7%±1.0 3931±76 789±65

Patch-RS 76.8%±0.8 3414±48 779±69 72.0%±0.8 3655±57 731±97

4:1
Sparse-RS + SH 77.1% 3332 781 72.9% 3639 701
Sparse-RS + SA 77.7%±1.2 3236±106 735±41 73.6%±0.6 3408±35 548±65

Patch-RS 82.4%±0.8 2816±28 485±74 75.3%±0.5 3248±51 443±41

1:1
Sparse-RS + SH 82.9% 2718 500 75.3% 3168 451
Sparse-RS + SA 84.6%±1.2 2485±92 504±20 78.2%±0.7 2943±142 389±46

Patch-RS 86.8%±0.8 2301±61 352±28 79.6%±1.1 2764±86 316±10

1:4
Sparse-RS + SH 82.6% 2479 514 75.3% 3290 549
Sparse-RS + SA 85.6%±1.1 2367±83 533±40 78.5%±1.0 2877±64 458±43

Patch-RS 87.8%±0.7 2160±44 429±22 79.5%±1.4 2808±89 438±68

1:9
Sparse-RS + SH 80.7% 2719 564 72.2% 3451 843
Sparse-RS + SA 85.9%±0.8 2419±60 542±34 77.6%±0.8 3000±92 617±41

Patch-RS 87.5%±1.6 2261±44 542±39 78.4%±0.6 2961±34 533±54
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Chapter 7

Adaptation of Robust Classifiers
via Fine-tuning

As mentioned in the previous sections, adversarial training [Madry et al., 2018] and its variants
are the standard method to obtain adversarially robust models. A main drawback of adversarial
training is the increased computational cost compared to standard training, especially when one
considers that larger networks yield significantly better results than smaller ones [Gowal et al.,
2020]. Moreover, when it comes to training for robustness in multiple threat models, the cost of
obtaining robust classifiers might further increase, since several lp-attacks need to be generated.
In the following we show that it possible to adapt models trained against lp-attacks to be robust
in either another lq-threat model or the union of multiple threat models by a short fine-tuning
with adversarial training. In this way one can exploit e.g. the large l∞-robust models which
are publicly available to obtain robust classifiers in new threat models with small computational
effort, even for large datasets like ImageNet.

7.1 Adversarial robustness against multiple and single lp-
threat models via quick fine-tuning of robust classifiers

Figure 7.1: We fine-tune for 3 epochs the WideResNet-70-16 on CIFAR-10 from Gowal et al. [2020] with
highest l∞-robustness to be either robust wrt l1 (left) or with our E-AT to be robust wrt the union
of the l∞-, l2-, and l1-threat models (right). We achieve state-of-the-art results in both threat models.
The plots show the robust accuracy in the individual threat models and in their union for the initial
l∞-robust classifier (middle) and the fine-tuned ones, with the target threat model highlighted.

In the following we show that, using the geometry of the lp-balls similarly to what done in
Sec. 3.3, the computationally expensive multiple norm training procedures of Tramèr and Boneh
[2019], Maini et al. [2020], which costs up to three times as much as normal adversarial training,
can be replaced by a very effective and simple form of adaptively alternating between the two
extreme norms, namely l1 and l∞. This scheme achieves similar robustness for the union of the
threat models to more costly previous approaches. Additionally, we show that on CIFAR-10
three epochs and on ImageNet even just a single epoch of fine-tuning with our extreme norms
adversarial training (E-AT) are sufficient to turn any lp-robust model for p ∈ {1, 2,∞} into a
model which is robust against all lp-threat models for p ∈ {1, 2,∞}, even if the original classifier
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was completely non-robust against one of them. Fine-tuning one of the currently most robust
networks in the l∞-threat model [Gowal et al., 2020] for CIFAR-10 we significantly improve
the current state-of-the-art performance for multiple norm robustness (i.e. robustness over the
union of l1, l2 and l∞-balls) without the need of training from scratch this large network with
existing expensive techniques. Also, our E-AT fine-tuning scheme yields in just one epoch the
first ImageNet model which is robust against multiple lp-bounded attacks. Finally, we show that
fine-tuning, again with only 3 epochs for CIFAR-10 and one epoch for ImageNet, is sufficient to
transfer robustness from one threat model to another one, which very quickly yields baselines
for all threat models. In this way, starting from l∞-robust classifiers we achieve SOTA l1-
robust classifiers on CIFAR-10 and ImageNet. These results are quite remarkable as the original
classifiers show no or very little l1-robustness. Fig. 7.1 summarizes the results of fine-tuning
of robust classifiers on CIFAR-10 (see Table 7.2 and Table 7.6 for details), and Table 7.3 for
ImageNet shows that our results hold also for fine-tuning of transformer architectures.

Note that since Sec. 5.1 showed that on models defended with adversarial training the two
versions of APGD (with budget as in AutoAttack) already give an accurate robustness evaluation,
and as we have to evaluate very large models always for three threat models, we use those as a
strong standard attack in our experiments.

7.1.1 Multiple-norm robustness via fast fine-tuning of existing robust
models

Adversarial training for the union of l1-, l2- and l∞-balls. Let us denote by fθ : Rd → RK

the classifier parameterized by θ ∈ Rn, with input x ∈ Rd and fθ(x) ∈ RK where K is the number
of classes of the task. Let further D = {(xi, yi)}i be the training set, with yi the correct label of
xi, and L : RK×RK → R a given loss function. The aim is to enforce adversarial robustness in all
multiple lp-balls simultaneously, i.e., defining Bp(ϵp) = {x ∈ Rd : ∥x∥p ≤ ϵp}, the threat model
is the union of the individual lp-balls, i.e. ∆ = B1(ϵ1)∪B2(ϵ)∪B∞(ϵ∞). ∆ is a non convex set,
since in practice the ϵp are chosen such that no lp-ball contains any of the others. In adversarial
training the worst case loss for input perturbations in the threat model, maxδ∈∆ L(fθ(xi+δ), yi),
is minimized. Efficiently maximizing the loss L in the union of threat models is non-trivial and
different approaches have been proposed.

MAX: Tramèr and Boneh [2019] suggest to run the three attacks for each Bp(ϵp) for p ∈
{1, 2,∞} independently and then use the one which realizes the highest loss, that is

max
p∈{1,2,∞}

max
δ∈Bp(ϵp)

L(fθ(xi + δ), yi).

This training optimizes directly the worst case in the union but comes at the price of being nearly
three times as expensive as normal adversarial training wrt a single lp-ball.

AVG: Additionally, Tramèr and Boneh [2019] suggest to run the three attacks independently
but replace the inner maximization problem with∑

p∈{1,2,∞}

max
δ∈Bp(ϵp)

L(fθ(xi + δ), yi),

and thus averaging the updates of all lp-balls with the motivation of not “wasting” the computed
attacks, in particular when the attained loss values are rather similar and thus the max is
ambiguous. This has similar cost to MAX.

MSD: Maini et al. [2020] argue that the correct way to maximize the loss in the union is to test
during the PGD attacks all the three steepest ascent updates corresponding to the three norms
(sign of the gradient for l∞, normalized gradient for l2 and a smoothed l1-step by using the
top-k components in magnitude of the gradient) and then take the step which yields the highest
loss. Maini et al. [2020] report that MSD outperforms both AVG and MAX, also in terms of a
more stable training. As all three updates (forward passes) are tested but only one backward
pass is needed (gradient is the same) this costs roughly two times as much as normal adversarial
training.

SAT: Madaan et al. [2021] introduce Stochastic Adversarial Training (SAT) which randomly
samples p ∈ {1, 2,∞} for each batch and performs PGD only for the corresponding lp-norm.

182



Table 7.1: CIFAR-10 - Other methods vs E-AT for fine-tuning: We fine-tune with different
methods for multiple norms for 3 epochs the RN-18 robust wrt l∞ (mean and standard deviation of the
clean and robust accuracy over 5 seeds is reported). We report clean performance, robust accuracy in
each lp-threat model, their average and the robust accuracy in their union (all values in percentage).

model clean l∞
(ϵ∞ = 8

255
)

l2
(ϵ2 = 0.5)

l1 (ϵ1 = 12) average union time /
epoch

RN-18 l∞-AT 83.7 48.1 59.8 7.7 38.5 7.7 151 s
+ SAT 83.5 ± 0.2 43.5 ± 0.2 68.0 ± 0.4 47.4 ± 0.5 53.0 ± 0.2 41.0 ± 0.3 161 s
+ AVG 84.2 ± 0.4 43.3 ± 0.4 68.4 ± 0.6 46.9 ± 0.6 52.9 ± 0.4 40.6 ± 0.4 479 s
+ MAX 82.2 ± 0.3 45.2 ± 0.4 67.0 ± 0.7 46.1 ± 0.4 52.8 ± 0.3 42.2 ± 0.6 466 s
+ MSD 82.2 ± 0.4 44.9 ± 0.3 67.1 ± 0.6 47.2 ± 0.6 53.0 ± 0.4 42.6 ± 0.2 306 s
+ E-AT 82.7 ± 0.4 44.3 ± 0.6 68.1 ± 0.5 48.7 ± 0.5 53.7 ± 0.3 42.2 ± 0.8 160 s

While SAT has the same cost as standard adversarial training, Madaan et al. [2021] report that
it does not perform very well.

Multiple-norm robustness via fast fine-tuning of robust models. Prior works [Tramèr
and Boneh, 2019, Kang et al., 2019a] observed that models adversarially trained wrt l∞ give
non trivial robustness to l2-attacks, although lower than what one gets directly training against
such attacks, and vice versa. This is confirmed by our evaluation in Sec. 7.1.6, where we also
notice that l1-AT provides good robust accuracy in l2. On the other hand, training for l∞
resp. l1 does not yield particular robustness to the dual norm, which is reasonable since the
perturbations generated in the two threat models are very different, while the l2-threat model is
an intermediate case which yields partial robustness against l∞ and l1. Therefore, we propose to
use models trained for robustness wrt a single norm as good initializations to achieve, within a
small computational budget, multiple norms robustness. We test this by fine-tuning for 3 epochs
an l∞-robust model on CIFAR-10 with the existing methods for multiple norms robustness
and our E-AT. Table 7.1 shows that a short fine-tuning (details in Sec. 7.1.3) of a PreAct
ResNet-18 [He et al., 2016b] trained with adversarial training wrt l∞ is effective in achieving
competitive robustness in the union, not far from those of full training from random initialization
(see Table 7.5). However, the most effective methods, MAX and MSD, are 2-3x slower than
standard adversarial training, while SAT is as fast as l∞-AT but performs slightly worse. E-AT
aims at achieving the same results as MAX and MSD in the union while having complexity on
par with SAT. Moreover, we report the average robustness in the 3 threat models, as done in
prior works, where E-AT achieves the best results. In Sec. 7.1.6 we show that similar observations
can be made when fine-tuning models initially l2- or l1-robust, and (Sec. 7.1.3) are not specific
to CIFAR-10 but generalize to ImageNet.

All previous methods assume that for achieving robustness to multiple norms each threat
models has to be used at training time. In the following we first present an argument, using results
from Sec. 3.3.1, suggesting that this need not be the case. Based on this analysis, we introduce
our extreme norms adversarial training (E-AT) which achieves multiple norm robustness at the
same price as training for a single lp. Finally, we fine-tune with E-AT large robust models on
CIFAR-10 and ImageNet.

7.1.2 Extreme norms adversarial training (E-AT)

Geometry of the union of lp-balls and their convex hull. The main insight we use for
E-AT is that a linear classifier which is robust in both an l1- and an l∞-ball is also robust wrt the
largest lp-ball for 1 ≤ p ≤ ∞ which fits into the convex hull of the union of the l1- and l∞-ball.
This ball is significantly larger than the largest lp-ball contained into the union of the l1- and
l∞-ball (see Fig. 3.4 and Fig. 7.2). Thus it is sufficient to be robust wrt the two “extreme”
norms l1 and l∞ to ensure robustness. While this is exact for affine classifiers, we conjecture that
for neural networks this will at least hold approximately true (note that typical ReLU-networks
yield piecewise affine classifiers [Arora et al., 2018]) and for the model it is the most efficient way
in terms of capacity to be l1- and l∞-robust.
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Figure 7.2: Visualization of the l2-ball contained in the union resp. the convex hull of the union of l1-
and l∞-balls in R2. First: co-centric l1-ball (blue) and l∞-ball (black). Second: in red the largest
l2-ball contained in the union of l1- and l∞-ball. Third: in green the convex hull of the union of the l1-
and l∞-ball. Fourth: the largest l2-ball (red) contained in the convex hull. The l2-ball contained in the
convex hull is significantly larger than that in the union of l1- and l∞-ball.

We work in the non-trivial setting, where the balls are not included in each other as otherwise
the problem of enforcing multiple norms (including l1 or l∞) robustness boils down again to
single norm robustness. For this, it has to hold ϵ1 ∈ (ϵ∞, dϵ∞): for CIFAR-10, ϵ∞ = 8

255 and
dimension d = 3072 yield an upper bound ϵ1 ≤ 96.38 which is far higher than ϵ1 = 12 commonly
used for l1-threat models. We denote by U1,∞(ϵ1, ϵ∞) = B1(ϵ1) ∪ B∞(ϵ∞) the union of the l1-
and l∞-balls, and Proposition 3.3.1 provides the lp-robustness, for 1 < p < ∞, of a classifier
robust in U1,∞(ϵ1, ϵ∞). For us the case p = 2 is most interesting, and, given that ϵ1 ≫ ϵ∞, the
l2-robustness can be tightly upper bounded as

ϵ2 := min
x∈Rd\U1,∞(ϵ1,ϵ∞)

∥x∥2 ≤

√
ϵ2∞ +

ϵ21
d− 1

. (7.1)

For CIFAR-10 one gets ϵ2 ≤ 0.2188. As the radius of the l2-threat model is usually chosen as
ϵ2 = 0.5, robustness in the union alone would not be sufficient to achieve the desired robustness
wrt lp for p ∈ {1, 2,∞}. However, if we consider affine classifiers then a guarantee for B1(ϵ1) and
B∞(ϵ∞) implies a guarantee with respect to the convex hull C of their union B1(ϵ1) ∪ B∞(ϵ∞)
as an affine classifier generates a half-space and thus only the extreme points of B1(ϵ1) resp.
B∞(ϵ∞) matter (see Fig. 3.4 and Fig. 7.2 for illustrations). As standard architectures using
ReLU activation function yield a piecewise affine classifier one can anticipate that this result
gives at least a rule of thumb on the expected lp-robustness when one is l1- and l∞-robust.
Following Theorem 3.3.1 with the choice of ϵ1, ϵ∞ from above, one gets for the radius of the
l2-ball that fits into the convex hull C of the union of B1(ϵ1) and B∞(ϵ∞)

ϵ2 := min
x∈Rd\C

∥x∥2 =
ϵ1√

ϵ1/ϵ∞ − α+ α2
≈ 0.6178. (7.2)

Thus for a desired l2-robustness with radius less than 0.6178 it is sufficient for an affine clas-
sifier, and at least plausible for a ReLU network, to enforce l1-robustness with ϵ1 = 12 and
l∞-robustness with ϵ∞ = 8

255 . This motivates our extreme norms adversarial training (E-AT)
and fine-tuning.

E-AT algorithm. In light of the geometrical argument presented in the previous section, we
propose to train only on adversarial perturbations for the l∞- and l1-threat models if the l2-
radius obtained from Theorem 3.3.1 is larger than the radius ϵ2 of the l2-threat model. In this
case it is sufficient to just train for the extremes l1 and l∞ in order to achieve robustness also to
the intermediate lp-attacks with p ∈ (1,∞). Since we seek a method as expensive as standard
adversarial training, for each batch we do either the l1- or the l∞-attack. For full training from
a random initialization simply alternating or sampling uniformly at random from the l1- and
l∞-attack works already well. However, for very quick fine-tuning, e.g. just one epoch in the
case of ImageNet, for multiple norm robustness from an existing classifier robust wrt a single
threat model, one has to take into account the existing robustness of the model. Thus we
use an adaptive sampling strategy based on the running averages, reset at every epoch, of the
robust training errors rerr1 and rerr∞ (note that these running averages are computed just from
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Table 7.2: CIFAR-10 - 3 epochs of E-AT fine-tuning on lp-robust models: We fine-tune with
E-AT models robust wrt a single lp-norm, and report the robust accuracy on 1000 test points for all
threat models and the difference to the initial classifier. (*) uses extra data.

model clean l∞ (ϵ∞ = 8
255

) l2 (ϵ2 = 0.5) l1 (ϵ1 = 12) union

Fine-tuning l∞-robust models

RN-50 - l∞ 88.7 50.9 59.4 5.0 5.0
[Engstrom et al., 2019a] + FT 86.2 -2.5 46.0 -4.9 70.1 10.7 49.2 44.2 43.4 38.4

WRN-34-20 - l∞ 87.2 56.6 63.7 8.5 8.5
[Gowal et al., 2020] + FT 88.3 1.1 49.3 -7.3 71.8 8.1 51.2 42.7 46.2 37.7

WRN-28-10 - l∞ (*) 90.3 59.1 65.7 8.0 8.0
[Carmon et al., 2019] + FT 90.3 0.0 52.6 -6.5 74.7 9.0 54.0 46.0 48.7 40.7

WRN-28-10 - l∞ (*) 89.9 62.9 67.2 10.8 10.8
[Gowal et al., 2020] + FT 91.2 1.3 53.9 -9.0 76.0 8.8 56.9 46.1 50.1 39.3

WRN-70-16 - l∞ (*) 90.7 65.6 66.9 8.1 8.1
[Gowal et al., 2020] + FT 91.6 0.9 54.3 -11.3 78.2 11.3 58.3 50.2 51.2 43.1

Fine-tuning l2-robust models

RN-50 - l2 91.5 29.7 70.3 27.0 23.0
[Engstrom et al., 2019a] + FT 87.8 -3.7 43.1 13.4 70.8 0.5 50.2 23.2 41.7 18.7

RN-50 - l2 (*) 91.1 37.7 73.4 31.2 28.8
[Augustin et al., 2020] + FT 87.0 -4.1 47.2 9.5 70.4 -3.0 54.1 22.9 46.0 17.2

WRN-70-16 - l2 (*) 94.1 43.1 81.7 34.6 32.4
[Gowal et al., 2020] + FT 91.2 -2.9 51.9 8.8 79.2 -2.5 58.8 24.2 49.7 17.3

Fine-tuning l1-robust models

RN-18 - l1 87.1 22.0 64.8 60.3 22.0
+ FT 83.5 -3.6 40.3 18.3 68.1 3.3 55.7 -4.6 40.1 18.1

averaging the robust error on the batches where the respective attack has been performed, thus
no extra attacks are necessary), such that the probability for sampling the lp-threat model is

rerrp
rerr1 + rerr∞

, for p ∈ {1,∞}. (7.3)

The motivation for this sampling scheme is that the robust error in the union ∆ is mainly
influenced by the worst threat model. We show in more details the effect of the biased sampling
in E-AT fine-tuning in Sec. 7.1.6.

7.1.3 Scaling up multiple-norm robust models

Fine-tuning robust classifiers. The fact that multiple-norm robustness can be achieved via
a short fine-tuning allows to use large architectures, which would be hard and expensive to train
from random initialization in this more difficult threat model. Moreover, fine-tuning with E-AT
has similar computational cost per epoch as standard adversarial training, and since we aim at
efficiency, we therefore use it as main tool on large models.

Experimental details: In the following we fine-tune with E-AT1 for 3 epochs on CIFAR-10
and 1 epoch on ImageNet-1k, starting with learning rate 0.05 or 0.01, depending on the model,
and decreasing by a factor of 10 every 1/3 of the total number of finetuning epochs. We do 10
steps of APGD in adversarial training for CIFAR-10, while 5 and 15 with l∞ and l1 respectively
on ImageNet as optimizing in the l1-ball requires more iterations in that case. When the model
was originally trained with extra data beyond the training set on CIFAR-10, we use the 500k
images introduced by Carmon et al. [2019] as additional data for fine-tuning (see also Sec. 7.1.5).

CIFAR-10: RobustBench (see Sec. 5.2) provides a collection of the currently most robust
classifiers. We took a subset of the most robust models, among those which do not use synthetic

1Code available at https://github.com/fra31/robust-finetuning.
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Table 7.3: ImageNet - Results of one epoch of E-AT fine-tuning of existing robust models:
We use existing models trained to be robust wrt a single lp-ball (either l∞ or l2) and fine-tune them for
a single epoch for multiple-norm robustness with our E-AT scheme.

model clean l∞ (ϵ∞ = 4
255

) l2 (ϵ2 = 2) l1 (ϵ1 = 255) union

Fine-tuning l∞-robust models

RN-50 - l∞ 62.9 29.8 17.7 0.0 0.0
[Engstrom et al., 2019a] + FT 58.0 -4.9 27.3 -2.5 41.1 23.4 24.0 24.0 21.7 21.7

RN-50 - l∞ 68.2 36.7 15.6 0.0 0.0
[Bai et al., 2021] + FT 60.1 -8.1 29.2 -7.5 42.1 26.5 24.5 24.5 22.6 22.6

DeiT-S - l∞ 66.4 35.6 40.1 3.1 3.1
[Bai et al., 2021] + FT 62.6 -3.8 32.2 -3.4 46.1 6.0 24.8 21.7 23.6 20.5

XCiT-S - l∞ 72.8 41.7 45.3 2.7 2.7
[Debenedetti, 2022] + FT 68.0 -4.8 36.4 -5.3 51.3 6.0 28.4 25.7 26.7 24.0

Fine-tuning l2-robust models

RN-50 - l2 58.7 25.0 40.5 14.0 13.5
[Engstrom et al., 2019a] + FT 56.7 -2.0 26.7 1.7 41.0 0.5 25.4 11.4 23.1 9.6

Table 7.4: ImageNet - 1 epoch of fine-tuning of existing robust models: We use existing models
trained to be robust wrt a single lp-ball (either l∞ or l2) and fine-tune them for a single epoch for
multiple-norm robustness with SAT and E-AT.

model clean l∞ l2 l1 union

RN-50 - l∞-AT 62.9 29.8 17.7 0.0 0.0
+ SAT 59.4 26.5 38.8 21.1 19.4

+ E-AT 58.0 27.3 41.1 24.0 21.7

RN-50 - l2-AT 58.7 25.0 40.5 14.0 13.5
+ SAT 57.7 25.9 41.6 23.2 21.1

+ E-AT 56.7 26.7 41.0 25.4 23.1

data, for l2- and l∞-norm and the l1-robust one introduced in Sec. 4.4.5 (all are trained with the
same radii ϵp as in our experiment). Note that we use the classifiers from Gowal et al. [2020]
(instead of those from Rebuffi et al. [2021b]) since those were the best available ones at the time
of the start of this project. We present in Table 7.2 the results. First of all the fine-tuning works
for all tested architectures and results in many cases in stronger robustness in the union than
for the specifically trained WideResNet-28-10 models (see Table 7.14). In particular, the most
robust l∞-model from Gowal et al. [2020] with 65.6% l∞-robustness and only 8.1% l1-robustness
can be fine-tuned to a multiple-norm robust model with 51.2% robustness which is up to our
knowledge the best reported multiple-norm robustness. While in general it is expected that
larger architectures and extra data improve robustness (see e.g. RobustBench leaderboards), we
could achieve such improvement without the high computational cost (and potential instabilities)
of training large networks on an extended dataset from scratch. Very interesting is that the l2-
robustness of 78.2% is quite close to the 81.7% l2-robustness of the specifically l2-trained model
from Gowal et al. [2020]. Moreover, the l1-robustness of 58.3% is close to the best reported one
of 60.3% in Sec. 4.4 (however we improve this a lot in the next section) and the model has even
higher clean accuracy. Clearly, this comes at the price of a significant loss in l∞ but this is to
be expected. Striking is that fine-tuning the l2-robust model from Gowal et al. [2020] results in
a very similar result. Finally, we observe that the l∞-threat model is the most challenging one,
and fine-tuning l∞-robust models yields the best robust accuracy in the union (when comparing
models with the same architecture). In a nutshell, E-AT fine-tuning of existing lp-robust models
yields very efficient and competitive baselines for future research in this area.

ImageNet: We start with the l2- resp. l∞-robust models from Engstrom et al. [2019a], Bai
et al. [2021] and Debenedetti [2022] including the vision transformers DeiT small [Touvron et al.,
2021] and XCiT small [El-Nouby et al., 2021] We use ϵ2 = 2 for the experiments as the robust
accuracy is still in a reasonable range of 40% and together with our choice of ϵ1 = 255 and the
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Table 7.5: CIFAR-10 - Training from random initialization: For full training of PreAct ResNet-18
with different methods for multiple norm robustness, we show robust accuracy in each lp-threat model,
their average, and the robustness in their union.

model clean l∞ l2 l1 avg. union

l∞-AT 84.0 48.1 59.7 6.3 38.0 6.3
l2-AT 88.9 27.3 68.7 25.3 40.5 20.9
l1-AT 85.9 22.1 64.9 59.5 48.8 22.1

SAT 83.9 40.7 68.0 54.0 54.2 40.4
AVG 84.6 40.8 68.4 52.1 53.8 40.1
MAX 80.4 45.7 66.0 48.6 53.4 44.0
MSD 81.1 44.9 65.9 49.5 53.4 43.9
E-AT 81.9 43.0 66.4 53.0 54.2 42.4

standard ϵ∞ = 4
255 the l2-radius from Theorem 3.3.1 is almost exactly 2. The initial l∞-models

are completely non-robust for l1 but achieve, after fine-tuning, over 24% l1-robust accuracy and
also the l2-robust accuracy improves, at the price of a relatively small loss in l∞-robust and clean
accuracy. Interestingly, the DeiT-S and XCiT-S models has already high robustness wrt l2, unlike
the RN-50s, which further improves thanks to E-AT, and the latter attains the best robustness
in the union. For the l2-robust model all robust accuracies improve as the original model was
trained for ϵ = 3. Up to our knowledge no multiple-norm robustness has been reported before
for ImageNet and thus these results are an important baseline. Finally, we show in Table 7.4
that both SAT and E-AT are effective for fine-tuning on ImageNet, and E-AT achieves the
best robustness in the union (we omit the other methods since they are computationally more
expensive). We also observe that in this case l1 is the most challenging threat model, and the
best robustness in the union is achieved when fine-tuning the classifier (among those using RN-50
as architecture) trained wrt l2 which already has non-trivial robustness wrt l1.

Additional experiments: Sec. 7.1.6 contains further studies and details about fine-tuning
with E-AT, e.g. we report runtime and show that fine-tuning a naturally trained model does not
provide competitive robustness and leads to low clean accuracy. Moreover, we show the stability
of the scheme over random seeds, that increasing the number of epochs progressively improves
the robustness in the union, and that even models trained to be robust wrt perceptual metrics
can be used for E-AT fine-tuning.

Full training for multiple norm robustness from random initialization. We evaluate
the performance of the different methods for multiple-norm robustness when applied for full
training from random initialization on CIFAR-10 (using the same ϵp as above). Table 7.5 re-
ports the results, averaged over 3 runs, in every threat model: MAX and MSD attain the best
robustness in the union, and E-AT is close to them and outperforms SAT. We recall that E-AT
is 2-3x less expensive than MSD and MAX (see Table 7.1). We also include the performance of
models trained to be robust for single norms, which do not show high robustness in the union of
the threat models. More details and further experiments with WideResNet-28-10 as architecture
can be found in Sec. 7.1.5 and Sec. 7.1.6.

7.1.4 Fine-tuning lp-robust models to become lq-robust for p ̸= q

Motivated by our results for the multiple-norm threat model we study to which extent we can
fine-tune an lp-robust model to a lq-robust model with p ̸= q. Again the emphasis is on an
extremely short fine-tuning time so that this is much faster than full adversarial training.

CIFAR-10: We fine-tune for 3 epochs the most l∞-robust model at ϵ∞ = 8
255 of Gowal et al.

[2020] with adversarial training wrt l2 and l1 with ϵ2 = 0.5 and ϵ1 = 12. Table 7.6 shows that fine-
tuning for l1-robustness yields 70.2% l1-robust accuracy which is 9.9% more than the previously
most robust model with a small computational cost (to be fair with a larger architecture and
using extra data). Also we get a strikingly high l2-robust accuracy for the l2-fine-tuned model of
80.0% not far away from the 81.7% which ones gets by training for l2 from scratch. Surprisingly,
fine-tuning the l2-robust model of Gowal et al. [2020] wrt l1 does not outperform the l1-robustness
achieved by fine-tuning their l∞-robust model. Interestingly, fine-tuning the l1-robust PreAct
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Table 7.6: Fine-tuning lp-robust models to another threat model: For each norm we fine-tune
the most robust models wrt the other ones for 3 epochs for CIFAR-10 and 1 epoch for ImageNet and
report clean and robust accuracy for all threat models. Even for the threat models where the robustness
of the original model is low, the fine-tuning is sufficient to yield robustness almost at the same level of
the specialized models with same architecture. For each threat model (column) we highlight in blue the
model trained for the specific norm, in orange those only fine-tuned in the target norm. The values of
the thresholds ϵ are the same used the multiple norms experiments.

CIFAR-10
clean l∞ l2 l1

WRN-70-16 [Gowal et al., 2020] - l∞ (*)

original 90.7 65.6 66.9 8.1
+ FT wrt l2 92.8 47.4 80.0 34.0
+ FT wrt l1 92.4 33.9 74.7 70.2

WRN-70-16 [Gowal et al., 2020] - l2 (*)

original 94.1 43.1 81.7 34.6
+ FT wrt l∞ 92.3 58.5 73.5 11.4
+ FT wrt l1 92.8 29.2 75.7 68.9

RN-18 - l1

original 87.1 22.0 64.8 60.3
+ FT wrt l∞ 82.7 44.2 66.6 25.4
+ FT wrt l2 88.0 31.0 69.8 39.7

ImageNet
clean l∞ l2 l1

DeiT-S [Bai et al., 2021] - l∞

original 66.4 35.6 40.1 3.1
+ FT wrt l2 66.5 31.2 46.1 9.6
+ FT wrt l1 61.0 23.9 42.9 30.1

XCiT-S [Debenedetti, 2022] - l∞

original 72.8 41.7 45.3 2.7
+ FT wrt l2 71.5 35.9 51.4 9.5
+ FT wrt l1 65.8 25.2 47.1 33.9

RN-50 [Engstrom et al., 2019a] - l2

original 58.7 25.0 40.5 14.0
+ FT wrt l∞ 59.1 31.5 40.1 7.5
+ FT wrt l1 56.8 18.0 37.1 28.7

ResNet-18 for l2 yields a better l2-robustness than l2-training from scratch, see Table 7.14. This
shows again that fine-tuning of existing models requires minimal effort and already provides
strong baselines for adversarial robustness obtained by adversarial training from scratch and in
some cases even outperforms them.

ImageNet: We fine-tune the l2- RN-50 and the l∞-robust transformers DeiT-S and XCiT-S
used in the previous section to the other threat model respectively and wrt l1. The results are in
Table 7.6 (those for a RN-50 robust wrt l∞ in Sec. 7.1.6). For all models it is possible to achieve
within one epoch of fine-tuning a non-trivial robustness in every threat model. In particular,
note that those originally trained for the l∞-threat model have very low robustness wrt l1, while
after fine-tuning XCiT-S achieves 33.9% robust accuracy, even higher than what is obtained from
the l2-robust RN-50 i.e. 28.7%. Note that compared to fine-tuning for multiple-norm robustness
(see Table 7.3), fine-tuning XCiT-S specifically for l2 yields almost the same robust accuracy but
3.5% better clean performance, while, when fine-tuning it for l1, the l1-robust accuracy is 5.5%
higher. Up to our knowledge our ImageNet models are the first ones for which l1-robustness is
reported.

7.1.5 Experimental details

For the comparison of training schemes we use for multiple-norm robustness we train PreAct
ResNet-18 with softplus activation function for 80 epochs with initial learning rate of 0.05 reduced
by a factor of 10 after 70 epochs. When training WideResNet-28-10 we use a cyclic schedule for
the learning rate with maximum value 0.1 for 30 epochs. We use SGD optimizer with momentum
of 0.9 and weight decay of 5 · 10−4, batch size of 128. We use random cropping and horizontal
flipping as augmentation techniques. For adversarial training of models robust wrt a single norm
and with SAT and our novel scheme E-AT we use APGD with default parameters, while for
the retrained AVG, MAX, and MSD we use PGD for l∞ (step size ϵ∞/4) and l2 (step size ϵ/3),
SLIDE [Tramèr and Boneh, 2019] for l1 (standard parameters). For all methods we use 10 steps
for the inner maximization problem in adversarial training (note that AVG and MAX repeat the
attack for all threat models, and MSD tests multiple steps, thus they are more expensive). For
all schemes we select the best performing checkpoint for the comparison (that is the one with
the highest robustness) when using the piecewise schedule, the final checkpoint with the cyclic
schedule. Moreover, we use the TRADES-XENT loss (TRADES loss [Zhang et al., 2019b] with
adversarial points maximizing the cross-entropy loss) since Gowal et al. [2020] show that this
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gives slightly better robustness on CIFAR-10 without additional data, while we use standard
adversarial training [Madry et al., 2018] for PreAct ResNet-18. We train the classifiers of MNG-
AC [Madaan et al., 2021] with the original code, where we set ϵ1 = 12 and rescale the step size
linearly. Finally, for the runtime comparison we run each method on a single Tesla V100 GPU.

For fine-tuning on CIFAR-10 we use 3 epochs and the same setup as for full training except
for the learning rate schedule, since in this case we use as initial value the best performing one
in {0.01, 0.05} (the larger value works best for the smaller networks) and reduce it by a factor
of 10 at the beginning of each epoch. When the model was originally trained with extra data
beyond the training set on CIFAR-10, we use the 500k images introduced by Carmon et al. [2019]
as additional data for fine-tuning, and each batch is split equally between standard and extra
images, and we count 1 epoch when the whole standard training set has been used: note that in
this way, using only 3 epochs not the whole pseudo-labelled dataset is exploited.

For fine-tuning on ImageNet we use 1 epoch, initial learning rate of 0.01 (0.0005 for XCiT-S),
reduced by a factor of 10 every 1/3 of training steps. We follow the setup of Engstrom et al.
[2019a] for data augmentation and setting batch size to 256 (except for the RN-50 from Bai et al.
[2021] and XCiT-S for which we use 192 to fit into the GPU memory) and weight decay to 10−4.
For adversarial training we use APGD with 5 steps for l∞ and l2, 15 steps for l1 since optimizing
in the l1-ball intersected with the box constraints is more challenging, see Sec. 4.4.

7.1.6 Addtional analysis and experiments

We here analyze in more details our E-AT scheme and expand the comparison to existing methods
presented above.
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Figure 7.3: l2-robustness curves of a model trained
with l2-adversarial training (AT) for ϵ2 = 0.5 and
methods for multiple norm robustness on CIFAR-
10. Our E-AT is expected to yield robustness
at ϵ2 = 0.62. Although l2-attacks are not
used for training, our extreme-adv. training
scheme E-AT yields l2-robustness similar to
the other methods and even to the one ob-
tained with specific l2-adversarial training.
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Figure 7.4: l2-robustness curves of models ob-
tained fine-tuning an l∞-robust RN-18 with E-AT
on CIFAR-10 with different combinations (ϵ∞, ϵ1)
of radii of the l∞- and l1-ball.

Robustness wrt l2 of E-AT. To show the effect of E-AT on l2-robustness we plot in Fig. 7.3
the robust accuracy wrt l2 computed with FAB (Sec. 4.1), which minimizes the size of the
perturbations, as a function of the threshold ϵ2 for a PreAct ResNet-18 trained with either l2-AT
at ϵ2 = 0.5 or methods for multiple norm robustness (see complete results for such models below).
Theorem 3.3.1 suggests that the extreme norms training provides robustness at ϵ2 ≈ 0.62, which
is confirmed by the plots. Although no l2-attack has been used during training by the E-AT
model, it has robustness wrt l2 similar to that both of the techniques for multiple norms which
use l2-perturbations at training time and of the classifier specifically trained for such threat
model.

Effect of varying the radii of the l∞- and l1-ball on the robustness wrt l2. We study
the effect of varying the radii of the l∞- and l1-balls in E-AT on the robustness wrt l2 of the
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resulting classifier. We fine-tune with E-AT the l∞-robust RN-18 (trained with ϵ∞ = 8/255 )
for 3 epochs with different pairs (ϵ∞, ϵ1) such that

√
ϵ∞ · ϵ1 is constant at ≈ 0.62, i.e. inducing,

ignoring α, the same ϵ2 according to Eq. (7.2) (convex hull of the union), but very different ϵ2
for Eq. (7.1) (union only), ranging from 0.13 (16/255, 6) to 0.44 (4/255, 24). Fig. 7.4 shows
the l2-robustness curves computed with FAB. For all combinations the l2-robustness curves are
similar, even for the smaller ϵ1 (the small drops are related to the lower clean accuracy). Thus
the statement of Theorem 3.3.1 (convex hull) formulated for linear classifiers holds empirically
also for deep networks.
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Figure 7.5: CIFAR-10, ResNet18. Left: For MAX-training we show for each epoch during training
the percentage of points attaining for the indicated lp-threat model (p ∈ {1, 2,∞}) the highest loss over
the the three threat models. Right: For MSD-training we show the percentage of steps taken wrt each
threat model over epochs (note that MSD does the steepest descent step for each lp-threat model and
then realizes the one yielding maximal loss).

Confirmation that adversarial training with the extreme norms is sufficient: Analysis
of MAX and MSD training. Both MAX and MSD schemes perform adversarial training
considering all the threat models simultaneously, and we analyze here their training procedure
in more detail. Fig. 7.5 shows for the MAX strategy how many times, in percentage, for each
epoch the points computed for each threat model realize the maximal loss over the three attacks
(l1, l2, l∞), and then are subsequently used for the update of the model. Similarly, for MSD, we
show the frequency with which a step wrt each lp-norm is taken when computing the adversarial
points (average over all iterations and training points). In both cases the l∞-threat model is the
most used one with the l1-threat model being used 3− 4 times less often. However, the l2-threat
model is almost never chosen. This empirically confirms the analysis from Theorem 3.3.1 which
shows that training only wrt l∞ and l1 is (at least for a linear classifier) sufficient to achieve
l2-robustness for the chosen ϵ2 and thus during training no extra updates wrt the l2-threat model
are necessary. This is in line with the results reported in Fig. 7.3 which show that for different
thresholds the l2-robustness achieved by E-AT-training is similar to that of standard l2-training.

Robustness against unseen non lp-bounded adversarial attacks. We investigate on
CIFAR-10 to which extent adversarial robustness achieved with multiple norms training gen-
eralizes to unseen and possibly very different threat models. We select three sparse attacks
(l0-bounded, patches and frames) and five adversarial corruptions (fog, snow, Gabor noise, elas-
tic, l∞-JPEG) from Kang et al. [2019b]. Additionally, we compute the accuracy of the classifiers
on the common corruptions, i.e. not adversarially optimized, of CIFAR-10-C [Hendrycks and
Dietterich, 2019]. Table 7.7 shows the results against such attacks of WRN-28-10 adversarially
trained either wrt single norms or for multiple norm robustness. Additionally, we include the
PAT model from Laidlaw et al. [2021], which uses a RN-50 as architecture, is obtained with
perceptual adversarial training, and has been shown to be robust to unseen attacks, and a nor-
mally trained model (NAT) as baseline. The models trained wrt multiple norms show much
higher robustness in both the union (worst case robustness over all threat models, excluding
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Table 7.7: CIFAR-10 - Robustness against non lp-bounded attacks: We test the robustness of
WRN-28-10 trained in different threat models against unseen types of attacks. Moreover, we add the
PAT model from Laidlaw et al. [2021], which uses RN-50 as architecture.

model clean comm.
corr.

l0 patches frames fog snow gabor elastic jpeg avg. union

NAT 94.4 71.6 0.1 8.1 2.6 47.3 3.9 35.0 0.2 0.0 12.2 0.0
l∞-AT 81.9 72.6 7.3 21.6 26.2 36.0 35.9 52.5 59.4 5.1 30.5 2.0
l2-AT 87.8 79.2 13.2 25.0 17.7 44.9 22.1 43.5 56.6 14.0 29.6 4.5
l1-AT 83.5 75.0 40.9 41.3 21.1 35.6 20.6 41.2 53.3 25.5 34.9 8.6
PAT 82.6 76.9 23.3 37.9 21.7 53.5 25.6 41.8 53.5 13.7 33.9 8.0

SAT 80.5 72.0 38.7 36.7 29.3 33.5 29.0 49.8 57.0 37.4 38.9 13.8
AVG 82.0 73.6 39.7 36.8 30.8 37.2 21.1 49.9 58.1 30.4 38.0 10.9
MAX 80.1 71.3 35.1 34.6 32.7 34.5 35.0 53.4 58.5 33.5 39.7 15.3
MSD 81.0 71.7 36.9 35.0 31.8 34.6 26.4 51.5 59.7 33.4 38.7 12.9
E-AT 79.1 71.3 39.5 37.7 30.5 34.8 33.4 50.2 58.6 38.7 40.4 15.9

common corruptions) and average robustness against these attacks: in particular, MAX and E-
AT achieve almost twice as high robustness in the union than the best of the models not trained
for multiple-norm robustness, with only little loss in clean accuracy compared to the other robust
classifiers. Moreover, for almost all threat models, these classifiers attain the highest robustness
or are close to it, while the best among the single lp-robust models varies. Therefore training
for multiple norm robustness allows to generalize to some extent beyond the threat model used
during training. Finally, E-AT outperforms even the PAT model which is trained wrt LPIPS
and aims at generalization to unseen attacks. More details in Sec. 7.1.6.

To test robustness against l0-attacks we use Sparse-RS (Sec. 6.2) with a budget of 18 pixels
and 10k queries. We adopt patches of size 5×5 pixels, optimized with the PGD-based attack from
Rao et al. [2020] (without constraints on the position of the patch on the images), and frames of
width 1 pixel [Zajac et al., 2019], again optimized with PGD: in both cases we use 10 random
restarts of 100 iterations. For the adversarial corruptions we use the original implementation
[Kang et al., 2019b] with 100 iterations and search for a budget ϵ for which the models show
different levels of robustness (in details, for fog ϵ = 128, snow ϵ = 0.5, Gabor noise ϵ = 60,
elastic ϵ = 0.125, l∞-JPEG ϵ = 0.25). Finally, we average the classification accuracy over the 5
severities of the common corruptions. All the statistics are on 1000 test points.

Multiple-norm robustness via fast fine-tuning. We here show that with short fine-tuning
of an lp-robust model it is possible to achieve competitive multiple-norm robustness for any
p ∈ {∞, 2, 1}. Table 7.8 shows that all methods for robustness in the union are able to improve in
3 epochs the robustness of lp-robust classifiers to multiple threat models on CIFAR-10. Moreover,
one can see that the l∞-threat model is the most challenging, and fine-tuning robust models wrt
it yields the best robust accuracy in the union. Moreover, E-AT outperforms SAT which has
roughly the same computational cost (the training time per epoch can be found in Table 7.14).

Fine-tuning natural models. We fine-tune with E-AT for 3 epochs PreAct ResNet-18 either
naturally trained or robust wrt a single lp-norm. Table 7.9 shows clean and robust accuracy
for each threat model for the initial classifier and after E-AT fine-tuning: while for all robust
models the fine-tuning yields values competitive with the full training for multiple norms (see
Table 7.14), starting from a standard model leads to significantly lower both clean performance
and robustness in the union of the three lp-balls.

Runtime with large models. We reported in Table 7.1 and Table 7.14 the runtime per epoch
of E-AT. For larger architectures the computational cost increases significantly, and adversarial
training with the WideResNet-70-16, the largest one we consider, on CIFAR-10 takes, in our
experiments, around 6100 s per epoch when using only the training set and over 10000 s if the
unlabelled data is used (since twice more training steps are effectively used). Moreover, fine-
tuning on ImageNet takes around 6 h per epoch for l∞ and l2 (5 steps of adversarial training),
20 h per epoch for l1 (15 steps), 13.5 h per epoch with E-AT (with the architectures we consider).
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Table 7.8: CIFAR-10 - Fine-tuning for multiple-norm robustness: We fine-tune with different
methods for multiple norms for 3 epochs the PreAct ResNet-18 robust wrt individual norms (mean and
standard deviation of the clean and robust accuracy over 5 seeds is reported).

model clean l∞
(ϵ∞ = 8

255
)

l2 (ϵ2 = 0.5) l1 (ϵ1 = 12) average union

RN-18 - l∞-AT 83.7 48.1 59.8 7.7 38.5 7.7
+ SAT 83.5 ± 0.2 43.5 ± 0.2 68.0 ± 0.4 47.4 ± 0.5 53.0 ± 0.2 41.0 ± 0.3
+ AVG 84.2 ± 0.4 43.3 ± 0.4 68.4 ± 0.6 46.9 ± 0.6 52.9 ± 0.4 40.6 ± 0.4
+ MAX 82.2 ± 0.3 45.2 ± 0.4 67.0 ± 0.7 46.1 ± 0.4 52.8 ± 0.3 42.2 ± 0.6
+ MSD 82.2 ± 0.4 44.9 ± 0.3 67.1 ± 0.6 47.2 ± 0.6 53.0 ± 0.4 42.6 ± 0.2

+ E-AT unif. 82.6 ± 0.6 44.4 ± 0.4 68.0 ± 0.3 48.5 ± 1.0 53.6 ± 0.4 42.2 ± 0.3
+ E-AT 82.7 ± 0.4 44.3 ± 0.6 68.1 ± 0.5 48.7 ± 0.5 53.7 ± 0.3 42.2 ± 0.8

RN-18 - l2-AT 88.2 29.8 68.6 27.5 42.0 23.1
+ SAT 86.8 ± 0.3 38.2 ± 0.4 69.6 ± 0.7 49.1 ± 0.6 52.3 ± 0.3 37.2 ± 0.4
+ AVG 86.9 ± 0.2 37.8 ± 0.4 70.2 ± 0.6 48.3 ± 0.5 52.1 ± 0.4 36.8 ± 0.4
+ MAX 85.1 ± 0.8 42.1 ± 0.3 69.4 ± 0.2 45.6 ± 0.5 52.4 ± 0.2 40.0 ± 0.3
+ MSD 85.3 ± 0.4 42.0 ± 0.7 69.2 ± 0.2 44.0 ± 0.4 51.8 ± 0.4 39.0 ± 0.5

+ E-AT unif. 85.9 ± 0.5 40.0 ± 0.6 69.4 ± 0.7 50.3 ± 0.4 53.2 ± 0.3 38.9 ± 0.8
+ E-AT 85.8 ± 0.7 40.7 ± 0.9 69.5 ± 0.5 49.5 ± 0.5 53.3 ± 0.6 39.4 ± 0.7

RN-18 - l1-AT 87.1 22.0 64.8 60.3 49.0 22.0
+ SAT 85.1 ± 0.3 38.4 ± 0.6 68.3 ± 0.4 55.0 ± 0.7 53.9 ± 0.2 38.2 ± 0.6
+ AVG 86.0 ± 0.2 38.7 ± 0.5 68.4 ± 0.3 55.6 ± 0.6 54.2 ± 0.2 38.5 ± 0.5
+ MAX 82.2 ± 0.3 42.7 ± 0.5 66.8 ± 0.5 48.1 ± 0.4 52.5 ± 0.3 41.5 ± 0.4
+ MSD 81.8 ± 0.7 42.7 ± 0.5 66.8 ± 0.4 47.9 ± 0.6 52.5 ± 0.2 41.5 ± 0.5

+ E-AT unif. 83.5 ± 0.7 39.8 ± 0.5 68.0 ± 0.2 55.8 ± 0.5 54.6 ± 0.2 39.6 ± 0.5
+ E-AT 83.6 ± 0.6 40.5 ± 0.4 68.1 ± 0.1 55.3 ± 0.4 54.6 ± 0.2 40.3 ± 0.3

This shows how transferring robustness with fine-tuning might allow to obtain classifiers robust
wrt different threat models fast and at much lower computational cost.

Effect of biased sampling scheme. We compare the biased sampling scheme of E-AT in-
troduced in Eq. (7.3) to a uniform one, where one chooses uniformly at random which lp, with
p ∈ {1,∞}, attack to use for adversarial training for each batch. This is referred to as E-AT
unif. in Table 7.8, where one case see that the biased sampling schemes yields slightly better
results when fine-tuning the l2- and in particular the l1-robust model: we hypothesize that, since
l∞ is the most challenging threat model, it is important to use it more often at training time
when the initial model is non robust wrt l∞. Moreover, we test E-AT unif. for full training (see
Table 7.14).

Results using different number of epochs. Table 7.10 shows the effect of our E-AT-fine-
tuning for different numbers of epochs on a RN-18 either robust wrt l∞ or naturally trained.
For the robust model, with longer training the clean accuracy progressively improves, as well as
the robustness in the union of the threat models. In particular, the models fine-tuned for 15
epochs has robust accuracy similar to that achieved by the MAX-training (43.2% compared to
43.3%, see Table 7.14), while still being significantly faster even considering the training time of
the initial model. When starting from a standard model, E-AT fine-tuning leads to a large drop
in clean accuracy while the robustness in the union remains lower than what can be achieved
with robust models, even when using 15 epochs. Similarly, we fine-tune for 3 epochs, instead of
1 as done above, the l2-robust model on ImageNet from Engstrom et al. [2019a] with our E-AT.
Table 7.11 shows that the longer fine-tuning improves all the performance metrics between 0.6%
and 1.3%. Moreover, since we use a single epoch of fine-tuning on ImageNet, we test its effect
on CIFAR-10. In Table 7.12 we fine-tune with E-AT models adversarially trained wrt a single
norm for 1 epoch: this is sufficient to significantly increase the robustness in the union of the
threat models, which gets close to that obtained with the standard 3 epochs (differences are in
the range 0.6% to 2.5%). In particular, the l∞-robust classifier is again the most suitable for the
fine-tuning, since it has been trained in the most challenging threat model.
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Table 7.9: CIFAR-10 - 3 epochs of fine-tuning with E-AT : We report the results of fine-tuning
PreAct ResNet-18 models to become robust wrt the union of the threat models. Fine-tuning any lp-
robust model leads to competitive clean and robust accuracy to full training, differently from using a
naturally trained model.

model clean l∞ (ϵ∞ = 8
255

) l2 (ϵ2 = 0.5) l1 (ϵ1 = 12) union

RN-18 - standard 94.4 0.0 0.0 0.0 0.0
+ FT 66.6 -27.8 29.9 29.9 50.1 50.1 38.5 38.5 29.8 29.8

RN-18 - l∞ 83.7 48.1 59.8 7.7 7.7
+ FT 82.3 -1.4 43.4 -4.7 68.0 8.2 48.0 40.3 41.2 33.5

RN-18 - l2 88.2 29.8 68.6 27.5 23.1
+ FT 85.4 -2.8 40.6 10.8 69.8 1.2 48.7 21.2 39.1 16.0

RN-18 - l1 87.1 22.0 64.8 60.3 22.0
+ FT 83.5 -3.6 40.3 18.3 68.1 3.3 55.7 -4.6 40.1 18.1

Table 7.10: CIFAR-10 - Fine-tuning for more epochs: We show the effect of fine-tuning for different
number of epochs (3 is the standard we use) the PreAct ResNet-18 (standard or robust wrt l∞).

model clean l∞ (ϵ∞ = 8
255

) l2 (ϵ2 = 0.5) l1 (ϵ1 = 12) union

RN-18 - l∞ 83.7 48.1 59.8 7.7 7.7
+ 3 epochs FT 82.3 -1.4 43.4 -4.7 68.0 8.2 48.0 40.3 41.2 33.5
+ 5 epochs FT 83.0 -0.7 45.2 -2.9 68.8 9.0 50.1 42.4 43.1 35.4
+ 7 epochs FT 83.1 -0.6 44.6 -3.5 68.7 8.9 50.4 42.7 42.6 34.9

+ 10 epochs FT 84.0 0.3 44.9 -3.2 69.2 9.4 51.0 43.3 42.8 35.1
+ 15 epochs FT 84.6 0.9 44.9 -3.2 69.5 9.7 52.1 44.4 43.2 35.5

RN-18 - standard 94.4 0.0 0.0 0.0 0.0
+ 3 epochs FT 66.6 -27.8 29.9 29.9 50.1 50.1 38.5 38.5 29.8 29.8
+ 5 epochs FT 70.6 -23.8 33.8 33.8 55.2 55.2 44.4 44.4 33.4 33.4
+ 7 epochs FT 72.1 -22.3 36.1 36.1 58.9 58.9 45.9 45.9 35.6 35.6

+ 10 epochs FT 75.4 -19.0 37.1 37.1 61.0 61.0 47.9 47.9 36.9 36.9
+ 15 epochs FT 76.0 -18.4 40.2 40.2 61.6 61.6 49.2 49.2 40.0 40.0

Fine-tuning perceptually robust models We test the effect of E-AT fine-tuning on a model
trained to be robust to perturbations which are aligned with human perception. In particular, we
use the classifier obtained with perceptual adversarial training (PAT), i.e. wrt the LPIPS metric,
from Laidlaw et al. [2021], and compare it to two models with the same architecture (ResNet-50)
adversarially trained wrt l∞ and l2. Table 7.13 shows the robustness in every threat model for
the original models and those obtained with 3 epochs of E-AT fine-tuning. The PAT classifier has
initially the highest robustness in the union, confirming the observation of Laidlaw et al. [2021]
that PAT provides some robustness to unseen attacks. After fine-tuning, all three models achieve
similar worst-case robustness, with the classifier originally l∞-robust being slightly better. This
shows that our E-AT fine-tuning is effective even when applied to models adversarially trained
not wrt an lp-norm.

Full training for multiple norm robustness. We report in Table 7.14 the detailed results
of training for multiple norms robustness from random initialization with PreAct ResNet-18 and
WideResNet-28-10. For both architectures MAX and MSD attain the best results in the union.
However, E-AT is only slightly worse while being 2-3 times less expensive. We include MNG-AC
from Madaan et al. [2021] for the larger architecture as that is used also in the original paper.
Moreover, since it has PreAct ResNet-18 as architecture, we additionally include the original
MSD model of Maini et al. [2020], marked with (*), which obtains 41.4% robustness in the
union, whereas with our reimplementation we get 43.9%, significantly improving their results.
Note that they reported in their paper 47.0% robustness in the union, while our APGD-based
evaluation reduces this to 41.4% which shows that our robustness evaluation is significantly
stronger. Finally, we add the results of E-AT without biased sampling scheme (E-AT unif.): this
achieves worse results than E-AT on the WRN-28-10, showing the effectiveness of the biased
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Table 7.11: ImageNet - Fine-tuning for more epochs: We fine-tune the l2-robust model from
Engstrom et al. [2019a] for either 1 or 3 epochs with our E-AT scheme.

model clean l∞ (ϵ∞ = 4
255

) l2 (ϵ2 = 2) l1 (ϵ1 = 255) union

RN-50 - l2 58.7 25.0 40.5 14.0 13.5
+ 1 epochs FT 56.7 -2.0 26.7 1.7 41.0 0.5 25.4 11.4 23.1 9.6
+ 3 epochs FT 57.4 -1.3 27.8 2.8 41.6 1.1 26.7 12.7 23.7 10.2

Table 7.12: CIFAR-10 - Fine-tuning for 1 epoch: We show the effect of fine-tuning for a single
(compared to the standard 3) models robust wrt a single norm. We use the classifiers robust wrt l∞ and
l2 from Engstrom et al. [2019a], and the l1-robust one from Sec. 4.4.

model clean l∞ (ϵ∞ = 8
255

) l2 (ϵ2 = 0.5) l1 (ϵ1 = 12) union

RN-50 - l∞ 88.7 50.9 59.4 5.0 5.0
+ 1 epochs FT 84.8 -3.9 46.6 -4.3 68.3 8.9 47.2 42.2 42.8 37.8
+ 3 epochs FT 86.2 -2.5 46.0 -4.9 70.1 10.7 49.2 44.2 43.4 38.4

RN-50 - l2 91.5 29.7 70.3 27.0 23.0
+ 1 epochs FT 85.9 -5.6 41.8 12.1 69.6 -0.7 47.6 20.6 39.7 16.7
+ 3 epochs FT 87.8 -3.7 43.1 13.4 70.8 0.5 50.2 23.2 41.7 18.7

RN-18 - l1 87.1 22.0 64.8 60.3 22.0
+ 1 epochs FT 78.9 -8.2 37.7 15.7 62.9 -1.9 51.3 -9.0 37.6 15.6
+ 3 epochs FT 83.5 -3.6 40.3 18.3 68.1 3.3 55.7 -4.6 40.1 18.1

sampling.

Experiments on MNIST. We further test the different techniques on the MNIST dataset.
We use the same CNN of Maini et al. [2020] as architecture and ϵ∞ = 0.3, ϵ2 = 2 and ϵ1 = 10
as thresholds at which evaluating robustness, as done by Maini et al. [2020]. We note that
while it is an easier dataset, MNIST is challenging when it comes to adversarial training since
it presents unexpected phenomena: e.g. Tramèr and Boneh [2019] noted that l∞-adversarial
training induces gradient obfuscation when using attack wrt l2 and l1, and both Tramèr and
Boneh [2019], Maini et al. [2020] had to use many PGD-steps (up to 100), and Tramèr and
Boneh [2019] even a ramp-up schedule for the ϵ during training. While other modifications to
the training setup might be beneficial for some or all the methods, we just increased the number
of APGD-steps to 50 for l1 (see more details below). In Table 7.15 we compare E-AT to SAT,
AVG, MAX and MSD (for the last three we use the models provided by Maini et al. [2020]).
First, E-AT outperforms the available classifiers trained with AVG, MAX and MSD, meaning
that even on MNIST it is a strong baseline. However, in this case, SAT, which trains on all
types of perturbations, achieves better results than E-AT on average: E-AT has higher variance
over runs but the best run (over multiple seeds) is close to the best one of SAT in terms of
robustness in the union (55.3% vs 54.4%). Interestingly, SAT has much higher robustness wrt
l2 compared to E-AT, but this is somehow expected since Eq. (3.14) would “predict” robustness
for E-AT at ϵ2 ≈ 1.7 while ϵ2 = 2 is used for testing, and this is precise only for linear models.
Thus the slightly worse performance of E-AT compared to SAT for the chosen radii of the threat
models is to be expected from our geometric analysis. Moreover, since we have shown that
fine-tuning an lp-robust model with E-AT yields high multiple norms robustness, and given that
E-AT from random initialization is weak mostly wrt l2, we fine-tune the l2-AT classifier with
E-AT. This, with just 3 or 5 epochs, significantly outperforms SAT (up to +2.3% robustness in
the union), while preserving l2-robustness. In total, we improve the previous SOTA for multiple-
norm robustness for MNIST from 48.7% (MSD) to 57.5% (E-AT fine-tuning of an l2-robust model
with 5 epochs) which is a significant improvement. Note that in this case we increase the radii
ϵ∞ and ϵ1 to 0.33 and 14 respectively to preserve the l2-robustness: in fact, with such values
Eq. (3.14) yields ϵ2 ≈ 2.16. However, training from random initialization, in the standard setup,
with the larger thresholds leads to worse robustness in the union. We hypothesize that this is
due to the increased difficulty of the task to learn: it is known that even single norm adversarial
training is problematic when increasing the value of ϵ [Ding et al., 2020].
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Table 7.13: CIFAR-10 - E-AT fine-tuning of perceptually robust models: We use E-AT to
fine-tune for 3 epochs the PAT model, robust wrt LPIPS, and compare to fine-tuning lp-robust models.

model clean l∞ (ϵ∞ = 8
255

) l2 (ϵ2 = 0.5) l1 (ϵ1 = 12) union

RN-50 - l∞ 88.7 50.9 59.4 5.0 5.0
[Engstrom et al., 2019a] + FT 86.2 -2.5 46.0 -4.9 70.1 10.7 49.2 44.2 43.4 38.4

RN-50 - l2 91.5 29.7 70.3 27.0 23.0
[Engstrom et al., 2019a] + FT 87.8 -3.7 43.1 13.4 70.8 0.5 50.2 23.2 41.7 18.7

RN-50 - PAT 82.6 31.1 62.4 33.6 27.7
[Laidlaw et al., 2021] + FT 83.7 1.1 43.7 12.6 68.5 6.1 50.7 17.1 42.3 14.6

For training we use 30 epochs with cyclic learning rate (maximum value 0.05, also used for
fine-tuning) and no data augmentation (other settings as for CIFAR-10). As mentioned, we use
in adversarial training for multiple norms (SAT, E-AT unif. and E-AT) 50 steps of APGD for
l1, and to reduce the training cost we decrease to 5 those for l∞. Moreover, for training, in
l1-APGD we increase the parameter to control the initial sparsity of the updates to 0.1 (default
is 0.05). For evaluation, we use the full AutoAttack, since on MNIST FAB and Square Attack
(see Sec. 5.1) are at times stronger than PGD-based attacks, as shown in the original papers.
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Table 7.14: CIFAR-10 - Comparison of different full training schemes: We compare methods
for multiple-norm robustness on training from random initialization.

method clean l∞
(ϵ∞ = 8

255
)

l2
(ϵ2 = 0.5)

l1 (ϵ1 = 12) average union time/ep.

WideResNet-28-10

l∞-AT 82.6 ± 0.5 52.0 ± 0.7 59.7 ± 0.2 9.1 ± 0.2 40.3 ± 0.4 9.1 ± 0.2 922 s
l2-AT 88.2 ± 0.4 35.9 ± 0.2 70.9 ± 0.4 36.1 ± 0.2 47.6 ± 0.2 31.3 ± 0.2 928 s
l1-AT 83.7 ± 0.2 30.7 ± 0.7 65.1 ± 0.5 61.6 ± 0.3 52.5 ± 0.5 30.7 ± 0.7 949 s

SAT 80.5 ± 0.6 45.9 ± 0.5 66.7 ± 0.3 55.9 ± 0.5 56.2 ± 0.4 45.7 ± 0.6 925 s
MNG-AC 81.3 ± 0.3 43.5 ± 0.7 66.9 ± 0.2 57.6 ± 0.8 56.0 ± 0.4 43.3 ± 0.7 1500 s
AVG 82.5 ± 0.4 45.4 ± 1.1 68.0 ± 0.9 55.0 ± 0.2 56.1 ± 0.7 45.1 ± 1.1 2771 s
MAX 79.9 ± 0.1 48.4 ± 0.7 65.3 ± 0.3 50.2 ± 0.6 54.6 ± 0.5 47.4 ± 0.8 2479 s
MSD 80.6 ± 0.3 48.0 ± 0.2 65.6 ± 0.3 51.7 ± 0.4 55.1 ± 0.2 46.9 ± 0.1 1554 s
E-AT unif. 79.7 ± 0.2 45.4 ± 0.5 66.0 ± 0.5 55.6 ± 0.5 55.7 ± 0.4 45.1 ± 0.7 939 s
E-AT 79.9 ± 0.7 46.6 ± 0.2 66.2 ± 0.6 56.0 ± 0.4 56.3 ± 0.3 46.4 ± 0.3 921 s

PreAct ResNet-18

l∞-AT 84.0 ± 0.3 48.1 ± 0.2 59.7 ± 0.4 6.3 ± 1.0 38.0 ± 0.3 6.3 ± 1.0 151 s
l2-AT 88.9 ± 0.6 27.3 ± 1.8 68.7 ± 0.1 25.3 ± 1.6 40.5 ± 1.1 20.9 ± 1.8 153 s
l1-AT 85.9 ± 1.1 22.1 ± 0.1 64.9 ± 0.5 59.5 ± 0.8 48.8 ± 0.4 22.1 ± 0.1 195 s

SAT 83.9 ± 0.8 40.7 ± 0.7 68.0 ± 0.4 54.0 ± 1.2 54.2 ± 0.8 40.4 ± 0.7 161 s
AVG 84.6 ± 0.3 40.8 ± 0.7 68.4 ± 0.7 52.1 ± 0.4 53.8 ± 0.1 40.1 ± 0.8 479 s
MAX 80.4 ± 0.5 45.7 ± 0.9 66.0 ± 0.4 48.6 ± 0.8 53.4 ± 0.5 44.0 ± 0.7 466 s
MSD (*) 82.1 43.1 64.5 46.5 51.4 41.4 -
MSD 81.1 ± 1.1 44.9 ± 0.6 65.9 ± 0.6 49.5 ± 1.2 53.4 ± 0.4 43.9 ± 0.8 306 s
E-AT unif. 82.2 ± 1.8 42.7 ± 0.7 67.5 ± 0.5 53.6 ± 0.1 54.6 ± 0.2 42.4 ± 0.6 163 s
E-AT 81.9 ± 1.4 43.0 ± 0.9 66.4 ± 0.6 53.0 ± 0.3 54.2 ± 0.4 42.4 ± 0.7 160 s

Table 7.15: MNIST - Comparison of full training schemes and fine-tuning with E-AT for
multiple norm robustness: We train classifier (architecture as in Maini et al. [2020]) on MNIST
with different training scheme. For SAT and E-AT we report, together with the statistics over multiple
random seeds, the results of the best run. Additionally, we show the results of fine-tuning the l2-AT
model with E-AT for different numbers of epochs, which achieves the best results. (*) AVG, MAX and
MSD classifiers are those provided by Maini et al. [2020].

model clean l∞ (ϵ∞ = 0.3) l2 (ϵ2 = 2) l1 (ϵ1 = 10) union

l∞-AT 98.9 ± 0.12 90.0 ± 0.45 8.4 ± 1.49 6.0 ± 0.65 4.2 ± 0.73
l2-AT 98.8 ± 0.17 0.0 ± 0.05 70.7 ± 0.26 59.1 ± 0.37 0.0 ± 0.05
l1-AT 98.8 ± 0.09 0.0 ± 0.00 45.8 ± 0.42 77.2 ± 0.14 0.0 ± 0.00

SAT 98.6 ± 0.17 62.0 ± 0.86 65.7 ± 1.69 61.3 ± 1.29 53.9 ± 1.25
AVG (*) 99.1 58.6 60.8 22.5 21.1
MAX (*) 98.6 39.4 59.9 25.6 20.3
MSD (*) 98.2 63.7 66.6 51.0 48.7
E-AT unif. 98.8 ± 0.12 67.1 ± 3.03 50.2 ± 4.93 62.0 ± 4.59 45.9 ± 4.43
E-AT 98.7 ± 0.12 69.0 ± 3.66 56.4 ± 3.94 61.1 ± 4.03 50.6 ± 3.89
l2-AT + E-AT (3 ep.) 96.9 ± 0.32 57.5 ± 0.92 67.8 ± 0.58 62.0 ± 1.16 54.6 ± 0.59
l2-AT + E-AT (5 ep.) 97.4 ± 0.21 60.6 ± 2.19 65.9 ± 0.56 63.8 ± 0.93 56.2 ± 1.16

best run

SAT 98.8 62.7 67.2 62.6 55.3
E-AT unif. 98.9 67.4 56.3 63.6 51.6
E-AT 98.8 71.0 58.4 62.0 54.4
l2-AT + E-AT (3 ep.) 97.3 58.0 67.9 62.9 55.7
l2-AT + E-AT (5 ep.) 97.5 61.6 66.2 64.0 57.5
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Chapter 8

Conclusion and Outlook

8.1 Conclusion

In this work we have analyzed different aspects of the adversarial robustness of image classifiers.
From the attackers perspective, in Sec. 4 and Sec. 6 we have proposed several algorithms to
generate perturbations which are able to fool the target model, using a variety of constraints
on the type of allowed modifications (lp-bounds, sparse attacks, perceptual bounds) and on the
level of access to the classifier. This shows that existing models are vulnerable to many different
attacks: a broadly robust classifier should be able to perform well in presence of any of them,
since an attacker is in general not limited to any specific type of threat as long as the ground
truth class is preserved.

While it is possible to train networks with provable robustness against multiple lp-threat
models (Sec. 3), such techniques are currently limited to small networks and datasets. Then,
we have developed a framework to benchmark the empirical robustness of adversarial defenses
(Sec. 5): this allows us to track the advancements achieved by newly proposed methods, and
analyze which are the relevant elements contributing to the most effective defenses. Also, in Sec. 7
we have suggested how to adapt the type of robustness of existing models at low computational
cost, which can yield baseline robust classifiers for new threat models.

Finally, while we have focused on image classification tasks (except for a brief analysis of
malware detection in Sec. 6.2), adversarial perturbations might affect virtually every domain
where NN-based models are employed. The techniques developed in this work could be then
extended to test adversarial robustness in such cases.

8.2 Outlook

While most of the existing methods consider lp-norms to limit the size, and then visibility, of
the attacks, an active research line consists in defining new spaces of adversarial perturbations
which are both aligned with human perception and allow for fast generation, e.g. Wasserstein or
LPIPS-bounded attacks. Developing such methods could enrich the set of perturbations which
an ideal classifier should be robust to and tested on.

Despite the significant progress of defensive techniques (see Sec. 5.2), especially via improve-
ments of adversarial training, obtaining classifiers which are simultaneously resistant against
several attacks is still a challenging and elusive goal, especially if one wants such robustness to
generalize to threats not seen at training time. An even more ambitious goal is having certified
robustness, which is typically more challenging than the empirical one, in these more complex
scenarios. Training on multiple lp-threat models can provide some robustness to other types
of adversarial perturbations e.g. fog or elastic attacks as shown in Sec. 7.1. However, we ex-
pect more refined techniques, and possibly different architectures, to be necessary for achieving
classifiers robust in a broader sense.

Moreover, it is in a open question whether adversarial robustness can naturally emerge, for
example from using larger (and better) datasets or more complex systems which rely on both
vision and text data, or is an inevitable phenomenon with the current deep learning paradigm.
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The vulnerability of neural networks to adversarial perturbations has often been associated
with security concerns: this still represents a major research direction in the field, especially with
the growing deployment of such systems in the real world. However, studying the adversarial
robustness of the existing models, and how to counter it, has also led to a better understanding of
the classifiers and their learning dynamics. The same techniques can be used to analyze the new
generation of (foundation) models, and the deriving insights might help to build more reliable
systems.
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Giacinto, and Fabio Roli. Evasion attacks against machine learning at test time. In ECML/PKKD,
2013.

Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal speed and accuracy
of object detection. arXiv preprint arXiv:2004.10934, 2020.

Valentyn Boreiko, Maximilian Augustin, Francesco Croce, Philipp Berens, and Matthias Hein. Sparse
visual counterfactual explanations in image space. In GCPR, 2022.

Nicholas Boucher, Ilia Shumailov, Ross Anderson, and Nicolas Papernot. Bad characters: Imperceptible
nlp attacks. In 2022 IEEE Symposium on Security and Privacy (SP), 2022.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin,
and Skye Wanderman-Milne. JAX: composable transformations of Python+NumPy programs, 2018.
URL http://github.com/google/jax.

Wieland Brendel, Jonas Rauber, Alexey Kurakin, Nicolas Papernot, Behar Veliqi, Marcel Salathé,
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Florian Tramèr, Pascal Dupré, Gili Rusak, Giancarlo Pellegrino, and Dan Boneh. Adversarial: Perceptual
ad blocking meets adversarial machine learning. In ACM SIGSAC CCS, 2019.

210
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