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Abstract

In this paper we implement a Self-Generating
Memetic Algorithm for the Maximum Contact
Map Overlap Problem (MAX-CMO). We demon-
strate how the optimization of solutions can be
done simultaneously with the discovering of use-
ful local search strategies. In turn, the evolved
local searchers act as suppliers of building blocks
for the evolutionary algorithm.

1 Introduction

A vast number of very successful applications of
Memetic algorithms (MAs) have been reported in the
literature in the last years for a wide range of prob-
lem domains.  The majority of the papers dealing
with MAs are the result of the combination of highly
specialized pre-existing local searchers and usually
purpose-specific genetic operators. Moreover, those al-
gorithms require a considerable effort devoted to the
tuning of the local search and evolutionary parts of the
algorithm.

In [10] and [11] we propose the so called “Self-
Generating Metaheuristics”. Self-Generating MAs are
able to create their own local searchers and to co-
evolve the behaviors it needs to successfully solve a
given problem. In Self-Generating Memetic Algo-
rithms two evolutionary processes occur. On one hand
evolution takes place at the chromosome level as in
any other Evolutionary Algorithm; chromosomes and
genes represent solutions and features of the problem
one is trying to solve. On the other hand, evolution
also happens at the memetic level, that is, the behav-
iors that individuals or agents will use to alter the sur-
vival value of their chromosomes. As the memes (i.e.
local search strategies) are propagated, mutated and
are selected in a Darwinian sense, the Self-Generating

MAs we propose are closer to R. Dawkins concept of
memes than previous works on memetic algorithms

(e-g. [5],[14],[15],[2]).

In [10],[11],][16] it was proposed and demonstrated that
the concept of Self-Generating Memetic algorithms
can be implemented and, at least for the domains con-
sidered in those papers, beneficial. In the context of
SGMAs, memes specify sets of rules, programs, heuris-
tics, strategies, behaviors, or move operators the indi-
viduals in the population can use in order to improve
their own fitnesses (under a given metric). Moreover
the interactions between genes and memes are indirect
and mediated by the common carrier of both: individ-
uals (sometimes also called agents).

L.M. Gabora in [6] mentions three phenomena that
are unique to cultural (i.e. memetic) evolution, those
are, Knowledge-based, imitation and mental simula-
tion. It is these three phenomena that our Self-
Generating Memetic Algorithm implements and by
virtue of which it can produce its own local searchers.
The representation of the low level operators (in this
paper the local searchers) includes features such as the
acceptance strategy (e.g. next ascent, steepest ascent,
random walk, etc), the maximum number of neighbor-
hood members to be sampled, the number of iterations
for which the heuristic should be run, a decision func-
tion that will tell the heuristic whether it is worth or
not to be applied on a particular solution or on a par-
ticular region of a solution and, more importantly, the
move operator itself in which the low level heuristic
will be based[10].

The role played by local search in both Memetic and
Multimeme algorithms has traditionally been associ-
ated to that of a “fine tuner”. The evolutionary aspect
of the algorithms is expected to provide for a global
exploration of space while the local searchers are as-
sumed to exploit current solutions and to fine tune the
search in the vicinity of those solutions (i.e. exploita-



tion)

The goal of this paper is to demonstrate that local
searchers can be evolved in the realm of a graph the-
ory combinatorial problems and, more importantly, to
suggest a new role for local search in evolutionary com-
putation in general and memetic algorithms in partic-
ular: the local searcher not as a fine-tuner but rather
as a supplier of building-blocks. For an overview of
selectorecombinative evolutionary algorithms from a
building-blocks perspective please refer to [7].

2 The Maximum Contact Map
Overlap Problem

In this paper we explore the local searcher as a supplier
of building block in the context of a problem drawn
from computational biology. A contact map is rep-
resented as an undirected graph that gives a concise
representation of a protein’s 3D fold. In this graph,
each residue! is a node and there exists an edge be-
tween two nodes if they are neighbors. Two residues
are deemed neighboors if their 3D location places them
closer than certain threshold. An alignment between
two contact maps is an assignment of residues in the
first contact map to residues on the second contact
map. Residues that are thus aligned are considered
equivalents. The value of an alignment between two
contact maps is the number of contacts in the first
map whose end-points are aligned with residues in the
second map that, in turn, are in contact (i.e. the num-
ber of size 4 undirected cycles that are made between
the two contact maps and the alignment edges). This
number is called the overlap of the contact maps and
the goal is to maximize this value. The complexity of
Max CMO problem was studied in [8] and later in
[10].

3 Self-Generating Memetic
Algorithms for MAX-CMO

In a genetic algorithm for Max CMO[13], a chromo-
some is represented by a vector ¢ € [0,...,m]™ where
m is the size of the longer protein and n the size of the
shorter. A position j in ¢, ¢[j], specifies that the ;"
residue in the longer protein is aligned to the c[j]*"
residue in the shorter. A value of -1 in that posi-
tion will signify that residue j is not aligned to any
of the residues in the other protein (i.e., a structural
alignment gap). Unfeasible configurations are not al-
lowed, that is, if ¢ < j and v[i] > v[j] or ¢ > j and
v[i] < v[j] (e.g., a crossing alignment)then the chro-

' A residue is a constitutent element of a protein.

mosome is discarded. It is simple to define genetic op-
erators that preserve feasibilities based on this repre-
sentation. Two-point crossover with boundary checks
was used in [13] to mate individuals and create one off-
spring. Although both parents are feasible valid align-
ments the newly created offspring can result in invalid
(crossed) alignments. After constructing the offspring,
feasibility is restored by deleting any alignment that
crosses other alignments.

The mutation move employed in the experiments is
called a sliding mutation. It selects a consecutive re-
gion of the chromosome vector and adds, slides right,
or subtracts, slides left, a small number. The pheno-
typic effect produced is the tilting of the alignments.
In [13] a few variations on the sliding mutation were
described and used.

In our previous work[3] we employed a multimeme al-
gorithm that, besides using the same mutation and
crossover as the mentioned GA, had a set of 6 Human-
designed local search operators. Four of the local
searchers implemented were parameterized variations
of the sliding operator. The direction of movement,
left or right sliding, and the tilting factor, i.e., the
number added or subtracted, were chosen at random
in each local search stage. The size of the window was
taken from the set {2,4,8,16}. Two new operators
were defined: a “wiper” move and a “split” move.

Details of the operators described here can be found
in [13],[10] and [3].

3.1 Description of Memes

As mentioned in previous sections, we seek to pro-
duce a metaheuristic that creates from scratch the ap-
propriate local searcher to use under different circum-
stances. The embodiment of local searcher is done as
memeplexes[1]. A memeplex is a co-adapted complex
of memes. A meme represents one particular way of
doing local search. Memes can adapt through changes
in their parameter set or through changes in the ac-
tions they perform. The local search involved can be
very complex and composed of several phases and pro-
cesses. In the most general case we want to be able
to explore the space of all possible memes. One can
achieve this by using a formal grammar that describes
memeplexes and by letting a genetic programming]9)
based system to evolve sentences in the language gen-
erated by that grammar[10]. The sentences in the
language generated by this grammar represent syn-
tactically valid complex local searchers and they are
the instructions used to implement specific search be-
haviors and strategies. For space limitations we do
not describe here the grammar used to represent valid



memes. For details on how to achieve that the reader
is referred to [10].

We concentrate instead only on the representation
used to evolve the move operator itself; we resort to a
few examples. In figure 1 we can see two contact maps
ready to be aligned by our algorithm.To simplify the
exposition, both contact maps are identical (i.e. we are
aligning a contact map with itself) and have a very spe-
cific pattern of contacts among their residues. In the
present example (with a given probability) a residue is
connected to either its nearest neighbor residue, to a
residue that is 4 residues away in the protein sequence,
or to both. In 1(a) the contact map is 10 residues long,
while in (b) it is 50 residues long (but with the same
connectivity patterns).
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Figure 1: Two contact maps snapshots. In (a) the two
randomly generated proteins have 10 residues, while in (b)
the patterns of contacts are maintained but the protein is
50 residues long.

This contact pattern can be represented by the string
1 — 4, meaning that the residue which occupies the
ith position in the protein sequence is in contact in
the native state with residues (i + 1)th and (i + 4)th.
That is, the pattern 1 —4 is a succint representation of

a possible building block which, if matched by the lo-
cal searcher, could be propagated later on by crossover
into other solutions. An appropriate move operator for
a local searcher acting in any of the contact maps on
figures 1(a) and (b) would be one that iterates through
every residue in one of the contact maps, checking
which residues on the lower contact map fulfills the
pattern of connectivity and making a list of them.
The same procedure would be applied to the top con-
tact map producing a second list of residues. The lo-
cal searcher then would pair residues of one list with
residues of the second list thus producing a new and
correct alignment which includes that building blocks.
The number of residues that verifies the pattern in
each list puts an upper bound on how expensive the lo-
cal search move operator can be. If the size of the first
list is L; and that of the second L, and without loss
of generality we assume that L; < Lo then there are
at most ZEILI % Clearly this number is too big
to be searched exhaustively, this is why the previous
grammar allows for the adaptation of the sample size.
Moreover, although it is well known that real proteins
present these contact patterns[4] it is impossible to
know a priori which of these patterns will provide the
best fitness improvement for a particular pair of pro-
tein structures. Hence, the Self-Generating MA needs
to discover this itself. If the graphs to be aligned were
different (in the previous cases a graph was aligned
with itself for the sake of clarity), then a move op-
erator able to account for that variation in patterns
must be evolved.  The move operator thus defined
induces a neighborhood for every feasible alignment.
If an alignment s is represented as explained above
and Li, Lo are the list of vertices that matches the
move operator, then every feasible solution that can
be obtained by adding to s one or more alignments
of vertices in Ly with vertices on Lo is a neighbor of
s. The other components of a meme will then decide
how to sample this neighborhood and which solutions
to accept as the next one. As this paper is an account
of the initial investigations we performed on the use
of SGMA, we fixed several aspects of the memes that
could otherwise be evolved. That is, in this paper all
memes employ first improvement ascent strategy and
they are applied after crossover. The sample size was
either 50 or 500 and the local search was iterated 2
times.

As described in the introduction, there were three
memetic processes, namely, imitation, innovation and
mental simulation. Upon reproduction, a newly cre-
ated offsprings inherited the meme of one of its par-
ents accordingly to the simple inheritance mechanism
described in [12]. In addition to this mechanism, and



with a certain probability (called “imitation probabil-
ity”), an agent could choose to override its parental
meme by copying the meme of some successful agent
in the population to which it was not (necessarily) ge-
netically related. In order to select from which agent
to imitate a search behavior, a tournament selection
of size 4 was used among individuals in the population
and the winner of the tournament was used as role
model and its meme copied. Innovation was a random
process of mutating a meme’s specification by either
extending, modifying or shortening the pattern in a
meme (either before or after the —). If during 10 con-
secutive generations no improvement was produced by
either the local search or the evolutionary algorithm a
stage of mental simulation was started. During mental
simulation, each individual (with certain probability)
will intensively mutate its current meme, try it in the
solution it currently holds, and if the mutant meme
produces an improvement, both the newly created so-
lution and the meme will be accepted as the next state
for that agent. That is, mental simulation can be con-
sidered as a guided hill-climbing on memetic space. If
ten mental simulation cycles finished without improve-
ments, then metal simulation was terminated and the
standard memetic cycle resumed.

4 Experimental Setting

We designed a random instance generator with the
purpose of parameterizing the complexity of the con-
tact map overlap problems to be solved. The input to
the random instance generator is a list of the form:

rdmn p; pry p2 pra ... Pp pr, where r is the number
of residues in the randomly generated contact map, d
is the density of random edges (i.e. noise) and n is the
number of patterns in the contact map. For each of the
n patterns two numbers are available, p; and pr;, where
p; specifies that a residue j is connected to residue
j -+ p; with probability pr; for all ¢ € [1,n]. That is,
every pattern occurs with certain probability in each
residue, thus an upper bound on the expected number
of contacts is given by r«d+r > _ pr; <1 (n+
d). In our experiments r € {10, 50, 100, 150, 200, 250},
d = 0.01 and n € {1,2,3,4}, that is, contact maps
as short as 10 residues and as long as 250 residues
were considered. For each contact map length, every
possible number of patterns was used, this gives rise
to 24 pairs of (r,n) values. For each pair, 5 random
instances were generated spanning from low density
contact maps to high density contact maps?. A total

2The program to generate random contact maps was
written in java 1.1.8 as is available by request from the
author.

of 120 instances were generated. From all the possible
parings of contact maps we randomly choose a total of
96 pairs to be aligned by means of 10 runs each.

We present next comparisons of the performance of
a Genetic Algorithm versus that of the SGMA. In
this experiment we would like to elucidate whether the
overhead of learning suitable local searchers is amor-
tized along the run and whether our proposed ap-
proach is ultimately useful. In order to run the exper-
iments we implemented a GA as described previously.
We were able to reproduce the results of [13] and [3]
hence we considered our implementations as equivalent
to the earlier ones. The difference between the GA and
the SGMA are described below. In graphs 2,3,4 and 5
we compare the overlap values® against the first hitting
times. First hitting time (FHT) is the time (in num-
ber of fitness evaluations) at which the best value of a
run was encountered. Each graphs presents the results
for 1,2,3 and 4 patterns respectively and for a range of
contact maps sizes. The particular parameters used in
the GA are 0.15, 0.75 for mutation and crossover prob-
abilities, and a (50, 75) replacement strategy. The Self-
Generating MA uses 0.15,0.75,1.0,1.0,1.0,1.0 for the
probabilities of mutation, crossover,local search, imi-
tation, mental simulation and innovation respectively.
The algorithms uses the same replacement strategy
and for both local search and mental simulation a cpu
budget of 50 samples is allocated.

The graphs in 2,3,4 and 5 are good representatives of
the results obtained with the two types of algorithms.
That is, under a variety of changes to the parameter
values mentioned above the results remain equivalent
to those shown here.

From figures 2,3,4 and 5 we can see that the Self-
Generating Memetic Algorithm produces a much bet-
ter amortized overlap value than the simple GA. That
is, if enough time is given to the SGMA, it will sooner
or later discover an appropriate local searcher move
that will supply new building blocks. In turn, this
will deliver an order of magnitude better overlaps than
the Genetic Algorithm. Also, it seems that the GA is
oblivious to the size (i.e. residues number) of the con-
tact maps as it seems to produce mediocre local op-
tima solutions even when given the maximum cpu time
allocation (in these experiments 2 % 10° fitness evalua-
tions) for the whole range of 10 to 250 residues. The
GA converges very soon into local optima, this is seen
in the graphs by bands parallel to the x — axts over
the range of energy evaluations for low overlap values.
On the contrary, as the SGMA continuously improves

3A higher overlap value means a better structural
alignment.
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Figure 2: Comparison of the first hitting times and the
quality of overlaps obtained for GA and SGMA on increas-
ingly difficult randomly generated instances. Complexity
increases as a function of residues number. Contact maps
present one pattern.
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Figure 3: Comparison of the first hitting times and the
quality of overlaps obtained for GA and SGMA on increas-
ingly difficult randomly generated instances. Complexity
increases as a function of residues number.Contact maps
present two patterns.

its solutions, it is not until very late in the execution
(i.e. to the right of the x — axis) that the best solu-
tions are found. In contrast to the GA, the SGMA (as
expected) is sensitive to the number of residues in the
contact maps involved, that is, longer contact maps
require larger cpu time to come up with the best value
of the run (which is seen in the graph in the clustering
patterns for the different residues number). Another
important aspect to note is that both the x — axis and
the y —axis are represented in logarithmic scales. Tak-
ing this into consideration it is evident that the quality
of the overlaps produced by the SGMA are much bet-
ter than those produce by the GA. As it is evident from
the graphs, for sufficiently small instances (e.g all the
10 residues long and some of the 50 residues long) it
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Figure 4: Comparison of the first hitting times and the
quality of overlaps obtained for GA and SGMA on increas-
ingly difficult randomly generated instances. Complexity
increases as a function of residues number.Contact maps
present three patterns.
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Figure 5: Comparison of the first hitting times and the
quality of overlaps obtained for GA and SGMA on increas-
ingly difficult randomly generated instances. Complexity
increases as a function of residues number.Contact maps
present four patterns.

is not worth using the SGMA as it requires more cpu
effort to produce same quality of overlaps as the GA.
On the other hand, as the number of residues increases
beyond 50, then instances are sufficiently complex to
allow for the emergence of suitable local searchers in
time to overtake and improve on the GA results. Also,
as the number of patterns that are present in the in-
stances increases both algorithms, as expected, require
larger amounts of CPU to come up with the best so-
lution of a run. However, it is still seen that the GA is
insensitive to the number of residues, while the SGMA
is clustered in the upper right corner (of figure 5). This
indicates that during all its execution the algorithm is
making progress toward better and better solutions,
the best of which is to be found near the end of the



run. Moreover, this behavior indicates that the SGMA
is not prematurely trapped in poor local optima as is
the GA.

GA vs SGMA
250 residues long, 4 patterns contact map alignment
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Figure 6: Representative example of GA and SGMA runs
for a 250 residues and 4 patterns instance.

The ability of the SGMA to overcome local optima
comes from the fact that the evolved local searchers
will introduce good building-blocks that match the
particular instance. This supply of building-blocks
is essential for a synergistic operation of both the lo-
cal searcher and the genetic operators. That is, using
Goldberg’s notation [7], we have that for the SGMA
the take over time t* is greater than the innovation
time t;, which allows the algorithms to continuously
improve. In figure 6 10 runs of the GA are compared
agaisnt 10 runs of the SGMA. It can be seen that the
GA runs get trapped very early (around the 20th gen-
eration) in poor local optima while the SGMA keeps
improving durin all the run. All the runs in figure 6
use the same total number of fitness evaluations.

5 Conclusions and Future Work

In this paper we introduced the concept of “Self-Generating
Metaheuristics” and we exemplified its use in a hard com-
binatorial graph problem. The particular implementation
of Self-Generating Metaheuristics used in this paper was
based on Memetic Algorithms. TUnlike commonly held
views on Memetic Algorithms and Hybrid GAs, we do not
resort here to human-designed local searchers but rather
we allowed the SGMA to discover and assemble on-the-fly
the local searcher that best suits the particular situation.
A similar strategy could be use in other metaheuristics (e.g.
Simulated Annealing, Tabu Search, Ant Colonies, GRASP,
etc) where more sophisticated GP implementations might
be needed to co-evolve the used operators. One of the
reasons for the success of the SGMA is that the evolved
local searchers act as a (low and medium order) building
block supplier. These continuous supply of building blocks
aids the evolutionary process to improve solutions contin-
uously by producing a more synergistic operation of the
local searchers and the genetic operators.
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