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Abstract 
The intention of this paper is to show that the statistical approach to risk 

is not enough to explain the behavior of investors. It furthermore 

proposes ideas and alternative approaches on how to deal with risk. 

Psychological findings are of particular interest as they might enhance 

our understanding of risk perception and assessment. 

The chapter “From the normal distribution to fat tails” starts with the 

rejection of the normal distribution as a simplifying basis for risk and 

return. This rejection is supported by several empirical observations like 

clustering of volatility and fat tails. This leads to a two-step approach for 

modeling risk and return based on the distinction of conditional and un-

conditional changes. Conditional time series models (ARMA, ARCH, 

GARCH) and alternative distributions are presented (Stable Paretian, 

Student’s T, EVT) as a way to improve the art of risk and return 

modeling beyond the normal distribution assumption. The chapter ends 

with the conclusion that each model is only a statistical approximation 

and never encompasses the unpredictability of black swans and the 

nature of human behavior in the financial markets. 

After having discussed the limitations of the purely statistical approach to 

risk and return this paper goes beyond the standard theory of finance for 

two purposes. Firstly, behavioral finance provides some arguments for 

the limitation of statistics in assessing risk. Secondly, an alternative 

approach to risk perception is presented. This alternative is called 

Prospect Theory, a rather psychology-based approach using preferences 

to explain investors’ actions by human behavior in decision making 

processes. Starting point is the utility function and the value function 

followed by a description of the two phases: framing and evaluation. The 

value function is then clearly distinguished from the utility function by 

elaborating certain effects like reference points, loss aversion or the 

weighting function. In this section the paper enters the arena of human 

risk perception which is far from being monetarily rational in the sense of 

the homo oeconomicus. With Cumulative Prospect Theory there exists an 

extension to multiple outcome scenarios where risk does not necessarily 
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have to be known. In such a situation, besides risk, there also exists 

immeasurable uncertainty. Current research confirms and rejects parts of 

(Cumulative) Prospect Theory which is not necessarily a bad sign as 

human behavior is rarely exactly replicable and the complexity does not 

really allow generalizations. Therefore, even if the theory is not 

completely correct it still enhances our understanding of risk perception 

and human decision making which can be a very valuable input for 

agent-based models. 

The next chapter analyses in more detail possible distortions from 

psychological biases in the assessment of risk. In this context the law of 

small numbers, overconfidence and feelings/experience are discussed. 

Knowing these biases complicates the idea of developing a risk model 

even further. However, this is again another step to better understand the 

underlying processes and motives of decision making in the context of 

financial markets.  

The last chapter is an attempt to link the different aspects to get a holistic 

view on risk behavior. Two possibilities are discussed: Hedonic 

psychology, with the distinction between blow up and bleeding strategy, 

and heuristic-based explanations for real observations like clustering of 

expectations and trust in experts.  

This leaves space for further research as we do not have a tool that is 

based on current findings and can actually help us in explaining and 

predicting behavior in financial markets. One possibility would be to link 

all these aspects in the approach of computational finance to develop 

agent-based models in which market observations, psychological 

findings and the situational context can be integrated. 
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1. Introduction 
The financial crisis of 2008 has demonstrated again that our current 

understanding of risk is not sufficient in order to measure risk properly, 

and hence prevent large losses in the financial market. 

Literature offers several perspectives on how to measure risk and on how 

individuals perceive risk. On the one hand there is an ongoing discussion 

about the distribution of returns and risk in financial markets. Academics 

try to model these distributions in order to gain a better understanding 

how returns and risks are distributed and can be measured. These efforts 

can be seen as an extension to the neoclassical linear capital market 

models, which did provide a measure of risk based on the normal 

distribution but which have been rejected by empirical observations. On 

the other hand, behavioral finance offers a range of explanatory aspects 

on how individuals perceive risk and act upon it. These two approaches 

have been coexisting for the past decades but there has been little effort 

to integrate them in order to offer a more holistic picture of risk 

perception and measurability. 

This paper starts with the chapter “from the normal distribution to fat 

tails”. In this chapter, we first present some empirical observations 

invalidating the normal distribution as a suitable assumption to model 

risk and returns. Next, we will introduce better measures of risk and 

returns from research developments in the field of risk and return 

modeling, namely the combination of time-series models and fat-tailed 

distributions. Chapter 2 concludes that the normal distribution is not 

suitable for risk and return measurement and that current research in this 

field is hitting some borders, where more complex and complicated 

extensions and models are hardly providing any new evidence or 

explanatory power to our current understanding of risk and returns. 

Therefore we present some emerging research fields, which might be 

valuable for future developments. One of these emerging research fields 

is the work with artificial agents to simulate market movements. If one 

wants to simulate individual behavior in a market setting by using agents, 

it must be ensured that these agents exhibit observable human behaviors.  
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Human behavior is at the core of behavioral psychology and behavioral 

finance. Behavioral psychology and finance are not only concerned with 

human behavior but also with the underlying human decision making. In 

order to better understand human decision making, chapter 3 first 

explores the roots of decision making theories by presenting past 

developments in the field of utility functions, as utility functions are in 

neoclassic theory the basis of any decision making processes. This 

subchapter ends with the presentation of Kahneman and Tversky’s 

Prospect Theory’s value-function. Afterwards, Prospect Theory will be 

introduced in some more details, whereas we present the value and the 

weighing function and related biases. Having explained Prospect Theory, 

we will continue with Cumulative Prospect Theory, focusing on the 

additional explanatory power by Cumulative Prospect Theory over 

original Prospect Theory. Subsequently, we provide a summary of some 

critiques to the (Cumulative) Prospect Theory and conclude the chapter 

with the idea that Cumulative Prospect Theory might still have some 

drawbacks, however that it is the most explanatory theory in decision 

making research so far, as it is general enough, still adheres to many 

empirical observations, has at least some predictive power and is yet not 

too complex. By making the theory more complex, some other empirical 

observations might be able to be included, however, we question if this 

extra complexity is worth the effort, especially because the theory might 

lose some of its predictive power. 

In Prospect Theory, Kahneman and Tversky distinguish between effects 

attributed to Prospect Theory and other cognitive biases. We follow their 

differentiation and present cognitive biases such as the law of small 

numbers, overconfidence as well as feelings in the perception of risks in 

our chapter 4 “probability distortions”. Cognitive biases have an 

important influence on the assessment of probabilities and therefore on 

the assessment of risk. If the ultimate goal is to model human decision 

making and risk perception, cognitive biases are a very important 

component to this. 
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In our last chapter 5 we will focus on linking and combining the 

aforementioned fields to provide a more holistic picture on risk 

perception and measurability. 
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2. From the normal distribution to fat tails 
In the past decades, there has been a growing number of alternatives to 

the former assumption that risk and returns follow a normal distribution 

(e.g. Mandelbrot, 1963a; Stoyanov et al., 2011). Nowadays, there seems 

to be universal agreement on risk and returns following fat-tailed 

distributions (Rachev et al., 2010). In the following, critiques to the 

normal distribution are presented in chapter 2.1 first. Second, chapter 2.2 

presents how risk and returns are recently modeled. The chapter ends 

with a discussion and an outlook based on recent developments in risk 

modeling in chapter 2.3. 

2.1 The Normality Assumption and Empirical Phenomena 
The idea that risk and returns follow a normal distribution originates 

from neoclassical theory1. The advantage of using the normal distribution 

is that it offers convenient mathematical properties, as risk is defined as 

variance of the expected returns. However, this convenience leads to a 

simplifying assumption, as the normal distribution does not reflect real 

returns (Ortobelli et al., 2010). 

Starting with the works of Mandelbrot (1963a, 1963b) and Fama (1963) 

it is well documented that returns are not only determined by their mean 

and variance (Ortobelli et al., 2010). Since then, empirical research 

suggested numerous phenomena which are not addressed by normal 

distribution models (Stoyanov et al., 2011): 

1) Clustering of volatility – “large changes tend to be followed by large 

changes, of either sign, and small changes tend to be followed by small 

changes" (Mandelbrot, 1963a) 

2) Autoregressive behavior - changes in price depend on changes in the 

past 

3) Skewness – the distribution of returns is asymmetric around the mean 

return (Stoyanov et al., 2011). 

                                                           
1 Based on assumptions like: Rational behavior, perfect information, no transaction costs, no tax, no dividends 
(Sloman, 2006) 
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4) Fat tails - when modeling cotton prices, Mandelbrot demonstrated that 

returns were not normally distributed but exhibited fat tails (Mandelbrot, 

1963a), meaning that there is a higher probability of large and extreme 

losses or profits than predicted by normal distribution. Later, this 

observation was supported by further empirical research. However, tail 

thickness varies depending on the observed asset (Stoyanov et al., 2011). 

5) Temporal behavior of tail thickness – tail thickness can vary over time. 

In regular markets, tail thickness is smaller than in turbulent markets 

(Stoyanov et al., 2011). 

6) Tail thickness varies across frequencies – “high-frequency data tends 

to be more fat-tailed than lower-frequency data” (Stoyanov et al., 2011). 

These phenomena have been empirically researched and suggest that 

models implying the normal distribution are not sufficient to address 

these empirical observations. The sole use of risk management tools like 

Value at Risk (VaR) is inadequate and should be complemented by 

additional tools like Extreme Value Theory (EVT) (Stoyanov et al., 

2011). This helps dealing with very rare events that are not covered by 

tools like VaR and thus balancing off weaknesses and combining 

strengths of different tools. 

2.2 Modeling Risk and Returns 
Risk and returns can either be modeled on the assumption of conditional 

or unconditional changes. 

Unconditional models assume that changes are statistically independent 

and occur only on the basis of some underlying distribution. E.g. random 

walk theory assumes that the normal distribution is the underlying 

distribution of risk and returns, leading to further theories such as 

Optimal Portfolio Theory (Markowitz, 1952a), Capital Asset Pricing 

Model (CAPM) (Sharpe, 1964) as well as option pricing theory (Black 

and Scholes, 1973; Merton, 1973). 
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However, as mentioned in the chapter before, there is empirical evidence 

that prices also exhibit conditional behavior, meaning that changes in the 

past might affect future changes. 

In order to model these two aspects, practitioners apply a two-step 

process. First, a conditional time series model is applied to explain 

conditional phenomena. The outcome is a residual, to which then an 

assumed unconditional underlying distribution is applied. 

In the following, conditional time series models will be explained. 

Afterwards, alternative distributions to the normal distribution will be 

presented.  

2.2.1 Conditional Time Series Models 
The first conditional models were based on ARMA (autoregressive 

moving average). These models allow some conditionality, however, 

they cannot model volatility clustering effects, which are observed in 

empirical data (Curto et al., 2009). 

In 1982, Engle introduced the first ARCH model (autoregressive 

conditional heteroskedasticity), which can also address volatility 

clustering effects. It was later generalized to the GARCH (generalized 

autoregressive conditional heteroskedasticity) by Bollerslev in 1986. 

In combination, ARMA-GARCH models (Curto et al., 2009) are applied 

to explain the effect of volatility clustering and auto-correlation. In 

reality these models can be applied to stock indices (Curto et al., 2009), 

currencies (Mittnik et al., 2000) and credit spreads (Manzoni, 2002). 

However, these models can in its pure form only be applied to data where 

the distribution (1) is known or (2) can be assumed. This is not always 

applicable to financial markets data (Jalal and Rockinger, 2008). In order 

to overcome this disadvantage, time series models are applied to a data 

set, which has not necessarily to be specifically distributed (McNeil, 

2000). The outcome is a residual to which then an unconditional 

distribution can be applied. Possible distributions include Stable Paretian 

distributions, Student’s t distributions and Extreme Value Theory 
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distributions. They are described in some more detail in the following 

subchapter. 

2.2.2 Methods to Incorporate Fat Tails 
In the following, we will present some alternatives to the normal 

distribution, which better address unconditional distribution phenomena 

like fat tails.  

There is a broad variety of possible distributions in use. Stable Paretian 

distribution, Student’s t distribution and Extreme Value Theory (EVT) 

are the most popular ones and will therefore be described in more detail. 

All of them have been studied for a long time outside the financial 

market context (Rachev et al., 2010). Stable Paretian distribution and 

Student’s t distribution include the normal distribution as a special case 

and can therefore be regarded as an extension to traditional normal 

distribution approaches (Rachev et al., 2010). 

2.2.2.1 Stable Paretian Distributions 

The idea of using Stable Paretian distributions to model returns originates 

from the works of Mandelbrot (1963a) and Fama (1963, 1965) who 

suggested them. When modeling cotton prices, Mandelbrot empirically 

found that the applied Stable Paretian distribution describes the observed 

returns better than the normal distribution does. However, further 

research indicates, that they do not describe all of the above mentioned 

phenomena, e.g. varying tail thickness across frequencies (Stoyanov et 

al., 2011). 

2.2.2.2 Student’s t Model 

Student’s t distribution was suggested by Blattberg and Gonedes (1974). 

Similar to the normal distribution, student’s t distributions are symmetric 

around the mean and have one single peak. However they are more 

peaked and have fatter tails than the normal distribution (Rachev et al., 

2010). From a practitioner’s perspective it is the most commonly used 

alternative to the normal distribution for modeling asset returns, as it is 

relatively easy to use and to implement (Rachev et al., 2010). However, 

Student’s t models, too, cannot describe all above mentioned phenomena 
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and have some limitations in the modeling of the tail. This is largely due 

to the assumption that the residual follows a Student’s t distribution and a 

fixed value for the degrees of freedom. As a consequence, the risk of 

almost normally distributed return data will be significantly 

overestimated (Rachev et al., 2010). 

2.2.2.3 Extreme Value Theory (EVT) 

The two above mentioned distributions classes are used for models 

describing the full distribution of returns. Extreme Value Theory (EVT) 

is an alternative to this, which originates from the modeling of extreme 

events in nature, such as floods, earthquakes, etc. providing a model 

describing only the tail of the distribution (Stoyanov et al., 2011). EVT 

faces two major challenges: 1. sample size has to be very large to ensure 

sufficient observations of the tail and 2. there is no standard approach to 

identify where the body of the distribution ends and the tail begins. 

Goldberg, Miller and Weinstein (2008) suggest indications for the 

sample size and a method to determine the tail’s size (so called Kuipers 

test). However, these challenges make EVT modeling more an art than a 

science (Rachev et al., 2010). Nevertheless, EVT is used in practice, e.g. 

Embrechts, Klüppelberg and Mikosch (1997) provide an application of 

EVT in finance. Based on experiences and real-life cases the authors try 

to build a bridge between statistical and probabilistic theories on the one 

side and their application in the financial and insurance sector on the 

other side. 

2.3 Conclusion and Outlook 
In practical application, modeling the described phenomena remains a 

two-step process: First, a time-series model is applied to explain the 

clustering of volatility and the auto-correlation (e.g. ARCH or GARCH 

see Bollerslev, 1986). Second, one of the described fat-tailed models is 

employed for the residual (Rachev et al., 2010). 

However, there is no all-explanatory theory suggesting a distributional 

model for financial returns. From a modeling point of view, this is 

largely a statistical problem. (Stoyanov et al., 2011). 
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Further research is required to gain a better understanding of the origin of 

temporally restricted observations like volatility clustering and excess 

curtosis. Up to now some explanatory theories relate observations to e.g. 

retail attention (Barber et al., 2009) and attention shocks (Engelberg, 

Sasseville and Williams, 2009). Behavioral aspects are applied to explain 

some observations; however, current research has not yet focused on 

relating temporally restricted observations specifically to Prospect 

Theory. We will have a closer look at Prospect Theory in the following 

chapter. 

Recently, the term of econophysics arose, which describes the application 

of mathematical models from physics to explain financial and economic 

behavior. It combines non-linear models, scaling laws, statistical 

mechanics and Cauchy and Levy distributions to offer more robust 

explanations than traditional linear models and normal distributions (Ray, 

2011). This leads to new opportunities for the application of power-law 

distributions, e.g. for financial market fluctuations such as fluctuations in 

stock prices, trading volumes and the number of trades (Gabaix et al., 

2003). Furthermore, econophysicists expanded their area of interest to 

other topics in economics like the distribution of income and wealth or 

the size of cities and firms (Gabaix, 2009). 

Agent-based modeling (or agency based Computational Economics) is 

another emerging field of research. It tries to gain insights into economic 

processes by studying the dynamics of many interacting agents. (Barr et 

al., 2011) Based on stochastic processes and some basic definitions for 

the behavior of agents computer simulations are run. The dynamic 

interactions create effects that sometimes look similar to observations in 

reality (Ausloos et al., 2004). 

Finally, Taleb (2009) argues, that some events (black swans) cannot be 

predicted, no matter what model is applied. He introduces a map 

consisting of four quadrants:  

 Simple payoffs / 
decisions 

Complex payoffs 
/ decisions 

Distribution 1  Extremely safe Safe 
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(“thin tailed”) 
Distribution 2  
(no or unknown 
characteristic scale) 

Safe Dangersa 

aThe dangers are limited to exposures in the negative domain (i.e., adverse payoffs). 
Some exposures, we will see, can only be “positive”. 

Thereby he distinguishes between thin- and fat-tailed distributions as 

well as single and complex payoffs. In the simple payoff quadrants, 

models can be applied and might have some predictive power. In an 

environment of complex payoffs, models can still be applied for thin 

tailed distributions, however, losing some of their predictive power over 

the first quadrant models. However, in the fourth quadrant with complex 

payoffs and no known or unknown distribution characteristics, predictive 

models cannot be applied or are bound to fail. This quadrant is the 

domain of black swans (Taleb, 2009). Taleb’s critique is primarily 

directed at practitioners who base their decision making solely and 

blindly on models in an environment of unknown distribution 

characteristics and complex payoffs, because this is dangerous and might 

cause enormous damage, as we could observe during the last crisis. 

There is much effort put in modeling financial risk and returns. However, 

every model is based on certain assumptions and has its limitations as 

mentioned above. At the moment, mathematical models become more 

and more complex and complicated. However, at this point they do not 

seem to further improve our current understanding of risk and returns and 

still leave many questions unanswered.  

In order to pursue the idea of creating artificial agents to simulate their 

behavior and interactions, it is necessary to equip these agents with 

“true”, observable human behavior and decision making skills. Human 

decision making in this sense is a core aspect of behavioral psychology 

and behavioral finance, which will be investigated in more detail in the 

following chapters. 

3. Prospect Theory 
In neoclassical theory, humans are homines oeconomici, behaving 

completely rational in order to maximize their expected utility. However, 
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this assumption does not adhere to many empirical observations. In the 

following chapter the concept of utility functions and their implications 

shall be presented to gain a better understanding of the theoretical 

developments in decision making research and of the origins of Prospect 

Theory. Subsequently, Prospect Theory and Cumulative Prospect Theory 

will be introduced, representing the latest and most popular theory in 

decision making research. Afterwards some critiques to (Cumulative) 

Prospect Theory will be presented and discussed.  

3.1 The Utilitiy Concept in Standard Neoclassical Theory 
According to the rationality assumption, there is a positive relationship 

between individual’s wealth and utility. In reality, a variety of 

observations can be made, offering explanations for different forms of 

utility functions. 

Expected utility theory by von Neumann and Morgenstern (1944) was 

the first theory introducing a utility function. According to von Neumann 

and Morgenstern (1944) the utility function is concave, which represents 

the individual’s decreasing marginal utility of wealth. The utility function 

implies risk aversion; hence individuals would not accept fair bets (Levy 

and Levy, 2002).  

Friedman and Savage (1948) claim that the utility function cannot be 

strictly concave, because investors buy insurances and lotteries as well as 

both simultaneously. The purchase of insurances means that the investor 

prefers certainty over uncertainty. Buying lotteries is the exact opposite, 

preferring uncertainty over certainty. A utility function with only one 

concave region cannot explain the behavior of investors buying 

insurances and lotteries at the same time. Friedman and Savage conclude 

that the utility function must have at least one concave and one convex 

region, potentially followed by another concave region.  

Later, Markowitz (1952b) introduced the idea that decisions are taken 

based on change from current wealth. The Markowitz utility function can 

therefore be interpreted as a value function as it focuses on changes from 

current status (Levy and Levy, 2002). Markowitz further suggests that 
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individuals are risk averse for losses and risk seeking for gains if the 

outcomes are not extreme. If outcomes become extreme he argues that 

individuals become risk averse for gains and risk seeking for losses. 

Therefore, the Markowitz’s utility function implies three inflection points 

and has a reversed S-shape (Markowitz, 1952b; Levy and Levy, 2002). 

 
Figure 1: Markowitz’s utility function with three inflection points (M. 
Levy and H. Levy, 2002) 

The development in neoclassical theory reveals that over time, new 

utility functions have been suggested, in order to explain more empirical 

observations. The latest step was to introduce relative value rather than 

absolute utility functions, implying that individuals perceive changes 

from current status, rather than absolute changes. Until now, the Prospect 

Theory’s S-shaped value function as suggested by Kahneman and 

Tversky (1979 and 1992) is the most well-known and most investigated 

value function (Levy and Levy, 2002).  
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Hypothetical value function as described by Kahneman and Tversky (1979). 

In chapter 3.2.1, it will be introduced in more detail. 

3.2 Introduction to Prospect Theory 
Kahneman and Tverky’s Prospect Theory (1979) claims that a value V of 

a prospect that pays $x with a probability p is given by 

V(x, p) = v(x) w(p) 

Thereby v represents the measure of the subjective value of the 

consequence x, and w measures the impact of probability p on the 

prospect’s attractiveness (Kahneman and Tversky, 1979; Trepel et al. 

2005). 

Prospect Theory distinguishes two phases: 1. framing and editing and 2. 

evaluation phase. 

1. In the framing and editing phase, an individual performs a preliminary 

analysis of the offered prospect, which often results in a simpler 

representation of this prospect (Kahneman and Tversky, 1979). 

According to Kahneman and Tversky (1979) several operations are 

potentially performed in the framing and editing phase, e.g. coding: 

individuals perceive outcomes as gains and losses rather than final states. 

Therefore, prospects are perceived relative to some neutral reference 

point; the combination of probabilities; segregation of riskless 
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components of prospect from risky components of the prospect; 

cancellation: discarding of components that are shared by both offered 

prospects; simplification by rounding probabilities and outcomes or 

discarding extremely unlikely outcomes; detection of dominance: 

scanning of offered prospects to detect dominated alternatives, which are 

rejected without further evaluation. 

2. In the evaluation phase the prospects from the framing phase are 

evaluated and the prospect with the highest value is chosen. Tversky and 

Kahneman (1986) suggest that “the theory distinguishes two ways of 

choosing between prospects: by detecting that one dominates another or 

by comparing their values.” 

According to Trepel et al. (2005), Prospect Theory differs from expected 

utility function in three main ways:  

1. Utility function over states of wealth is replaced by a value function 

over gains and losses, relative to a reference point, with v(0) = 0.  

2. The subjective value function is not weighted by outcome probabilities 

but by a normalized decision weight w, so that w(0) = 0 and w(1) = 1, 

representing the impact of the relevant probability on the valuation of the 

prospect.  

3. Prospect Theory takes into account principles like framing and editing, 

which is not the case in the former utility functions. 

Prospect Theory incorporates several empirical findings, rejecting 

expected utility theory as a model of decision making under risk. Hence, 

according to Prospect Theory, people do not always act in the purpose of 

rationally maximizing their expected utility as suggested by expected 

utility theory (Kahneman and Tversky, 1979).  

3.2.1 The Value Function 
Based on several experiments, Kahneman and Tversky (1979) suggest 

that in summary a value function is (1) defined on deviations from a 

reference point, (2) generally concave for gains and convex for losses, 

and (3) steeper for losses than for gains. Its steepest point is the reference 
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point, whereas the utility function suggested by Markowitz (1952b) is 

shallower in that point. 

However, due to the introduction of decision weights (see the following 

chapter weighting function), the scaling of the value function is 

complicated (Kahneman and Tversky, 1979). 

Based on these characteristics, several effects can be observed impacting 

the value function and therefore decision making under risk (known 

probabilities) and - as we will see in the next subchapter “Cumulative 

Prospect Theory” - on decision making under uncertainty (unknown 

probabilities). 

3.2.1.1 Reference Point Effect 

The existence of a reference point is central to Prospect Theory. It 

implies that people take decisions based on changes rather than on final 

states. Hence, the reference point can be described as the individual’s 

point of comparison, for comparing the status quo to alternative scenarios 

(Taleb, 2004). Due to this feature, one evaluates identical facts 

differently depending on if the prospect is formulated as negative or 

positive in relation to the reference point (Kahneman and Tversky, 1979; 

Rajeev Gowda, 1999). Also the saying “every day is a new trading day” 

can be attributed to the reference point effect. Traders evaluate losses and 

gains from their trading strategy and not from the absolute levels of 

wealth (Taleb, 2004).  

3.2.1.2 Loss Aversion 

As the value function is generally concave for gains and convex for 

losses, but at the same time steeper for losses than for gains, losses 

appear larger than gains for the same objective value. In other words: a 

loss would be felt stronger than a gain of the same amount (Kahneman 

and Tversky, 1979; Rajeev Gowda, 1999).  

Several observed effects can be explained by considering this 

characteristic. The effects are commonly summarized under the name 

loss aversion. Brooks and Zank (2005) give an overview of examples 

attributed for loss aversion, e.g. the endowment effect (Loewenstein and 
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Adler, 1995; Thaler, 1980), the status quo bias (Samuelson and 

Zeckhauser, 1988), the disparity between the willingness to pay and the 

willingness to accept (Bateman et al., 1997; Kahneman et al., 1990), and 

the disposition effect (Heath et al., 1999; Odean, 1998; Weber and 

Camerer, 1998). All of these examples support the S-shaped value 

function as suggested by Kahneman and Tversky (1992 and 1979). 

3.2.2 The Weighting Function 
As described by the initial Prospect Theory formulae V(x, p) = v(x) w(p), 

the outcome of the value function v(x) is multiplied with a decision 

weight w. Decision weights represent subjective probabilities; however,  

“[…] they do not obey the probability axioms and should not be 

interpreted as measure of degree of belief. [...] Decision weights 

measure the impact of events on the desirability of prospects, 

and not merely the perceived likelihood of these events. The two 

scales coincide if the expectation principle holds true, but not 

otherwise.” (Kahneman and Tversky, 1979). 

Tversky and Fox (1995) and Tversky and Wakker (1995) suggest that the 

weighting function exaggerates small probabilities but underestimates 

large ones. In this context Kahneman and Tversky (1979) differentiate 

between overweighting, which is a property of decision weights, and 

overestimation, which applies in the context of probability assessment of 

rare events (Kahneman and Tversky, 1979 and see chapter 4 “Probability 

Distortions” for over- and underestimation effects in the assessment of 

probabilities). 

There are several empirical observations linked to the weighting 

function, which demonstrate violations of the theorem of individuals 

rationally maximizing expected utility from a neoclassical perspective. 

The most important observations are risk seeking in the domain of losses 

and the certainty effect, which is also referred to as zero risk bias. 

Risk seeking in the domain of losses suggests that individuals with 

reference points (see chapter 3.2.1 for reference point) are risk averse in 
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the domain of gains. However, in negative or loss situations they become 

more likely to choose risky options in order to restore gains (Daniel 

Kahneman and Tversky, 1979; Quattrone and Tversky, 1988). However, 

this behavior is irrational as it will ultimately lead to failure if another 

loss strikes (see begging also for resurrection). 

Another observation first mentioned by Allais (1953) is the certainty or 

zero risk bias, which implies that people rather prefer small but certain 

benefits over larger uncertain benefits (see Baron, 1994 for a discussion). 

This goes along with people tending to value the reduction of a negative 

outcome from e.g. 5 percent to zero percent higher than the reduction of a 

more negative outcome e.g. 30 percent to 20 percent (Baron, 1994; 

Rajeev Gowda, 1999). This might induce people to pay large irrational 

premiums for “certainty”, e.g. when renting a car it is quite common to 

buy a damage waiver to minimize the risk of any additional payments to 

the rental firm (Shapira and Venezia, 2008). 

These effects attributed to the weighting function demonstrate that people 

do not always behave rational in the sense of maximizing neoclassical 

expected utility. However, people might still obtain some sort of utility, 

as they exhibit such behaviors. Risk seeking in the domain of losses for 

example gives people the assurance that they tried everything to prevent 

this failure. This behavior might cost additional losses but gains certainty 

which in total could be a maximization of subjective utility.  
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3.3 Cumulative Prospect Theory 
Initial Prospect Theory (Kahneman and Tversky, 1979) has some 

drawbacks, which were partially resolved by extending the theory. 

Quiggin (1982) and Schmeidler (1989) solved the problems with non-

additive probabilities and Gilboa and Schmeidler (1989) found a solution 

to the problem of unknown probabilities. This was a necessary step to 

come closer to reality where exact risks and probabilities are usually 

unknown. They also extended the theory to cover situations different 

from the original setting with two non-zero outcomes although any 

proposed extension to more than two nonzero outcomes has other 

drawbacks (Kothiyal et al., 2011). These improvements where 

incorporated in Cumulative Prospect Theory by Tversky and Kahneman 

(1992) offering a comprehensive theory adhering to empirical 

observations (Kothiyal et al., 2011). Further extensions where developed 

by Tversky and Fox (1995) by introducing the principle of bounded 

subadditivity, which suggests that an event turning impossibility into 

possibility or possibility into certainty has a greater impact than making a 

possibility more or less likely to happen (see also Tversky and Wakker 

1995). 

3.4 Limitations of (Cumulative) Prospect Theory  
(Cumulative) Prospect Theory received some scientific 

acknowledgement and underwent several empirical tests. Some of these 

supported, others rejected (Cumulative) Prospect Theory or aspects of it. 

Typically, researchers tried to identify the best fitting form for the value 

and weighting function. Other works investigate in more detail some 

aspects of prospect theory, e.g. Levy and Benita (2009) who state that 

according to Prospect Theory, equally likely outcomes should be 

perceived as equally likely. Levy and Benita (2009) argue that in their 

research individuals significantly overweighed moderate outcomes 

relative to extreme outcomes. Also they argue that in their findings the 

value function has a reversed S-shape, compared to the value function as 

suggested by Tversky and Kahneman (1979 and 1992).  
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Levy and Levy (2002) argue that  

“[…] the value function is mainly justified by experimental 

investigation of the certainty equivalents of prospects confined 

either to the negative or to the positive domain, but not of mixed 

prospects, which characterize most actual investments” 

They reject the S-shaped value function, because in their research at least 

62%-76% of the subjects could not be characterized by such preference 

(Levy and Levy, 2002). They suspect that former results supporting the 

S-shaped value function are due to the applied laboratory test design in 

which subjects had to choose between two investments by answering a 

questionnaire. However, the participants could only choose between 

either positive or negative outcomes and not mixed cases (as required if 

reference dependence shall be investigated). Hence, these test designs do 

not conform to real life situations e.g. as found in financial markets 

(Levy and Levy, 2002). Brooks and Zank, (2005) state that  

“theoretical analyses of loss aversion have focused on properties 

of the utility function in the spirit of Markowitz (1952) and 

Kahneman and Tversky (1979), and consequently view loss 

aversion as model specific (e.g., Fishburn, 1977; Holthausen, 

1981; Wakker and Tversky, 1993; Schmidt and Traub, 2002; 

Neilson, 2002; Köbberling and Wakker, 2005). In Tversky and 

Kahneman (1992) both probability distortions and utility were 

capturing sensitivity towards the sign of outcomes, a finding 

which has also been confirmed by other experimental studies 

(Edwards, 1955; Currim and Sarin, 1989; Abdellaoui, 2000; 

Abdellaoui, Bleichrodt and Paraschiv, 2004) and mentioned in 

Camerer and Ho (1994, note 18).[…]However, the parsimonious 

way of accommodating loss aversion through a single parameter 

is problematic. Loss averse behavior is more complex, and, as we 

argued, a model free approach to loss aversion gives more 

flexibility in uncovering its determinants and subsequently 

analyze its implications.” (Brooks and Zank, 2005) 
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Furthermore, Diecidue et al. (2007) summarize that many other authors 

found violations to Prospect Theory, e.g. Barron and Erev (2003), 

Birnbaum (2006), Goeree et al. (2002), Gonzalez-Vallejo et al. (2003), 

Harbaugh et al. (2002), Lopes and Oden (1999), Neilson and Stowe 

(2001).  

A more general discussion about Cumulative Prospect Theory is offered 

by Tversky and Kahneman (1992) themselves, who state, that 

Cumulative Prospect Theory is more general than its predecessor 

theories. However, they suspect that decision weights are influenced by 

more factors than implied by the theory, e.g. by the formulation of the 

prospect or the spacing of outcomes, e.g. Camerer (1992) suggests that 

the weighting function exhibits more curvature if outcomes are more 

widely spaced. Tversky and Kahneman (1992) argue that any adaption 

should be evaluated if the potentially gained insights are worth the 

increase in complexity and loss of predictive power of the theory.  

Kothiyal et al. (2011) argue that Tversky and Kahneman (1992) did not 

analyze their Cumulative Prospect Theory for continuous distributions 

(Kothiyal et al., 2011). Kothiyal et al. offer a generalization of the 

aforementioned theory for continuous distributions, based on the works 

of Gilboa and Schmeidler (1989), Quiggin (1982) and Wakker (1993). 

The extension to apply Cumulative Prospect Theory to continuous 

distributions allows its application in all sorts of lognormally distributed 

functions in finance, e.g. stock prices (Hull, 2006), continua of 

investment options and possible returns. 

There are many limitations of (Cumulative) Prospect Theory or aspects 

of it. However, most authors recognize the importance of the theory. 

Diecidue et al., (2007) state  

“[…] however, to date there is no more successful and tractable 

theory available for decision under risk or uncertainty. Many 

phenomena remain unpredictable in this domain, with only post-

hoc heuristic explanations conceivable”. 
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3.5 Conclusion and Outlook 
Empirical research used to reveal observations that were considered 

irrational from the neoclassical perspective (Kothiyal et al., 2011). 

Kahneman and Tversky (1979 and 1992) suggested a theory that 

explained most of these “irrationalities” and which was furthermore the 

first model for decision making under risk to allow theoretical analyses 

and predictive applications. Kothiyal et al.’s (2011) generalization to 

apply Cumulative Prospect Theory to continuous distributions might 

allow the integration into asset pricing functions as a next step. However, 

as Tversky and Kahneman stated, and we share their opinion, that  

“Theories of choice are at best approximate and incomplete. One 

reason for this pessimistic assessment is that choice is a 

constructive and contingent process. When faced with a complex 

problem, people employ a variety of heuristic procedures in order 

to simplify the representation and the evaluation of prospects. 

These procedures include computational shortcuts and editing 

operations, such as eliminating common components and 

discarding nonessential differences (Tversky, 1969). The 

heuristics of choice do not readily lend themselves to formal 

analysis because their application depends on the formulation of 

the problem, the method of elicitation, and the context of choice 

[…].[…] evidence indicates that human choices are orderly, 

although not always rational in the traditional sense of this 

word” (Tversky and Kahneman, 1992). 

Hence, theories of decision making help us to better understand people’s 

behavior, although complete and correct predictive explanations cannot 

be achieved because of the individuality of each person. “Many 

phenomena remain unpredictable in this domain, with only post-hoc 

heuristic explanations conceivable” (Diecidue et al., 2007).  

Nevertheless, advances in decision making research help us to gain a 

better understanding of the implied decision taking “processes”. 

Financial market behavior is based in some way on the behavior of 
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individuals and accordingly on their decision making. The distributions 

of chapter 2 are only descriptions of the results of these behaviors. In 

order to fully understand the underlying foundation of these distributions 

we need to understand how individuals behave and make decisions under 

various different circumstances. The insights gained from the 

investigation of human decision making might be transferable to agent-

based modeling as proposed in the conclusion of chapter 2 so that agents 

can be equipped more realistically. Simulations with these agents might 

enable us in turn to gain a better understanding of financial markets. Also 

some current observations in financial markets might be explainable by 

aforementioned effects, as will be discussed in chapter 5. 
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4. Heuristics and Biases in Assessing Risks  
In the previous chapter Prospect Theory and its impact on decision 

making was presented. In this chapter distortions in the perceived 

probability of events will be presented. In order to clearly differentiate 

between these two chapters, recall that the preceding chapter presented 

some effects related to the weighting function, whereas the weighting 

function or “[…] decision weights measure the impact of events on the 

desirability of prospects, and not merely the perceived likelihood of these 

event. The two scales coincide if the expectation principle holds true, but 

not otherwise.” (Kahneman and Tversky, 1979). In the following chapter 

we will demonstrate heuristics, which affect the perceived likelihood of 

events, such as the belief in the law of small numbers and 

overconfidence. Also, we will discuss how feelings might affect return 

perception. This is again one more step to understand the behavior of 

individuals which leads finally to realistic return distributions and a 

better understanding of the behavior of markets. 

4.1 The Law of Small Numbers 
According to the law of large numbers, large random samples closely 

represent the population from which they are drawn (Rabin, 2000). In 

contrast, the law of small numbers, first described by Tversky and 

Kahneman (1971), is the effect that people think that small random 

samples are highly representative for their underlying population 

(Tversky and Kahneman, 1971, 1974, 1992). Hence, subjects have a 

truncated, narrower distribution in their minds than actually given in the 

population (Taleb, 2004). Tversky and Kahneman (1974) suggest that 

“people tend to believe in the law of small numbers, but not in the law of 

large numbers”. This means that they overestimate the representative of 

small random samples, however underestimate the representativeness of 

large random samples (Rabin 2000; Tversky and Kahneman, 1971; 

Tversky and Kahneman, 1974). 

According to Tversky and Kahneman (1971) the law of small numbers 

can be explained by the representative heuristic, which is usually 
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employed when people evaluate the probability of an object or event A, 

belonging to a class or process B (Tversky and Kahneman, 1971; 

Tversky and Kahneman, 1974).  

The law of small numbers states that outliers are often underestimated 

(due to the narrower distribution in subjects’ minds) (Taleb, 2004). This 

might contradict the observation that the probability weighting function 

overestimates the odds of rare events (Tversky and Fox, 1995; Tversky 

and Wakker, 1995). If rare events are considered as outliers then the two 

ideas suggest opposite tendencies: underestimation (the law of small 

numbers) and overestimation (probability weighting function). The law 

of small numbers is thought of to be closely related to other biases, such 

as the gambler’s fallacy (widely researched), over-inference (hardly 

researched), regression errors and others (Rabin, 2000). 

The gambler’s fallacy describes the effect when people think that early 

draws from a random sample influence the probability of the next draws 

(Rabin, 2000). There exists a broad literature on the existence and impact 

of gambler’s fallacy, e.g. Tversky and Kahneman, 1971; Tversky and 

Kahneman, 1974; Rabin, 2000; Croson and Sundali, 2005. Rabin (2000) 

offers an application to financial markets, suggesting that “due to the 

gambler’s fallacy – investors underpredict repetition of short strings of 

performance while – due to over-inference, they over-predict repetition 

of longer strings.”  This might be a psychological explanation to the 

observation of short-term underreaction but medium-term overreaction to 

announcements by firms in financial markets. (Rabin, 2000). In practice 

this leads to a time-lag in the incorporation of information into prices 

(Barberis et al., 1998). In the long-run this creates overpriced assets as 

investors ”classify some stocks as growth stocks based on a history of 

consistent earnings growth, ignoring the likelihood that there are very 

few companies that just keep growing” (Barberis et al., 1998). This 

reasoning is transferable to the explanation of investors’ trust in 

successful fund managers. After one successful year a fund manager is 

assumed to have a less successful year, however, if the fund manager has 
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several successful years in a row investors consider this manager to have 

outstanding skills (Barberis et al., 1998). 

A similar effect to the gambler’s fallacy is the hot hand fallacy. This 

effect describes that “people expect to see more switching among signals 

than they actually will, they mistake true i.i.d. randomness for 

streakiness” (Rabin, 2000). 

4.2 Overconfidence 
Overconfidence is the empirical observation that subjects’ estimation of 

their accuracy (confidence) exceed the actual accuracy, e.g. when 

subjects are asked to express an answer to a question at a certain 

confidence level, they may be correct only at a lower confidence level 

(Kahneman and Tversky, 1996; Keren, 1991; Yates, 1990). However, 

overconfidence is not universal, as it is often eliminated or reversed for 

easy items or questions. This effect is referred to as difficulty effect 

(Kahneman and Tversky, 1996). 

Other studies of overconfidence examine the difference between the 

perception of unlike events and their actual occurrence as well as the 

inability to calibrate from past errors (Alpert and Raiffa, 1982; Hilton, 

2003; Kahneman and Lovallo, 1993; Taleb, 2004). Barron and Erev 

(2003) conducted experiments which led them to the conclusion that 

subjects underweight small probabilities in sequential experiments when 

they derive the probabilities themselves. Slovic, Fischhoff, Lichtenstein, 

Corrigan and Combs (1977) present the intuition to this effect in 

“preference for insuring against probable small losses” (Taleb, 2004). 

Glaser and Weber (2007) suggest that overconfidence appears in three 

forms. 1) Miscalibration describes the observation that people’s 

probability distributions are narrower than in reality. If asked to state a 

confidence interval for a set of questions or estimations people tend to 

overestimate their accuracy. 2) Too tight volatility estimates are closely 

linked to miscalibration. If asked to state the volatility of stock prices or 

risk premiums CFOs, professional stock traders and students 

underestimate the historic volatilities. 3) Better than average simply 
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means that people overestimate their abilities. Glaser and Weber (2007) 

state the example of Svenson (1981) that 82% of a group of students 

think that they belong to the best 30% of drivers with respect to driving 

safety. 

4.3 Feelings and Experience in Risk Perception 
There is evidence that people do not only judge probabilities of events or 

actions based on thinking, which is influenced by the aforementioned 

heuristics, but also based on feelings. Slovic and Peters (2006) argue that 

“people judge a risk not only by what they think about it but also by how 

they feel about it. If their feelings toward an activity are favorable, they 

tend to judge the risks as low and the benefits as high; if their feelings 

towards the activity are unfavorable, they tend to make the opposite 

judgment—high risk and low benefit”(Slovic and Peters, 2006). This 

effect is also referred to as the affect heuristic (Finucane et al., 2000). 

Another example for how feelings affect people’s perception of risk is 

the so called competence hypothesis by Heath and Tversky (1991). They 

show that people who were knowledgeable about one discipline preferred 

to bet on this discipline rather than on chance events from another 

discipline, even if the other event was judged by them as equally likely to 

happen. This observation is consistent with the idea that people prefer to 

bet on a fair and not a biased coin.  

More recent research by Cohen et al. (2008) suggests a model, in which 

risk perception depends on past experience. This allows them to gain 

explanations for changes in the insurance demand behavior after loss 

events in the form of catastrophes. 
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4.4 Conclusion and Outlook 
As we have seen, there is no comprehensive integrated theory on 

probability distortions. Many heuristics and biases are very well 

investigated; however, they are only loosely related to one another. 

Hence, there is no comprehensive predictive model of how people assess 

the likelihood of events.  

Slovic (2000) points out that some psychological studies highlight the 

fact that risk perception may also strongly depend on the context in 

which individuals took a decision. Possible contexts might correspond to:  

1) Past experience 

Insurance decisions are at least partially based on experience. 

People who never experienced a flood might underestimate the 

probability that they will suffer from flood damages (Browne and 

Hoyt, 2000; Kunreuther, 1996). 

2) Anticipatory feelings about future states 

The future is uncertain and if the decision making takes time 

anticipatory feelings change and as a consequence the preferences 

change. Hopefulness, anxiety, and suspense are examples for 

feelings that might influence the perception of risk (Caplin and 

Leahy, 2001). 

3) Presentation of decision outcomes 

The theory of choice is based on the principle of invariance: 

Preferences should not vary with the description or presentation 

of alternatives. Two characterizations should be seen as 

alternative descriptions for the same problem. However, this 

normative idea might not hold for some situations in reality. 

(Tversky and Kahneman, 1986). 

The differentiation between weighting function effects and effects 

attributed to the perception of the likelihood of events is subtle and 

sometimes hardly distinguishable, especially if the abovementioned 

statement of context dependent decision-making is taken into account.   
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5. Linking and Combining Theories and Heuristics 
The preceding chapters contribute to a more holistic picture and 

understanding of risk perception. However, the described heuristics and 

theories are only loosely connected. The challenge is to integrate and link 

them in order to offer a more comprehensive theory on risk perception. 

Some implications of risk perceptions are discussed in the literature. 

Taleb (2004), Rabin (2000) and others discuss the effects and 

implications of risk perception from different angles and to different 

applications. The discussed effects are usually brought forward in a 

narrative or explanatory way and do not include models or are derived 

from models (e.g. Rabin, 2000, derived his explanation from a model). 

Nevertheless, these examples help to gain an easier access to the 

problems and issues discussed and they provide the grounds for the 

application of theoretical models to real life situations and thereby 

investigate their explanatory power. 

In respect to practical application it is most important to identify if 

observed phenomena and their consequences are of temporary nature or 

sustainable. If they occur only temporarily, they fall into the domain of 

algo- and high frequency trading to be exploited. If they are sustainable, 

they would influence decision making on a longer run, e.g. in private 

wealth, asset or pension fund management. 

In the following, some examples will be presented, which go one step 

further and connect aspects of preceding chapters to their underlying 

reasons or applications in reality. 

5.1 Hedonic Psychology and the Preference for Asymmetric 
Payoffs 

“Hedonic psychology (...) is the study of what makes experiences 

and life pleasant or unpleasant.” (Kahneman et al., 1999) 

Based on this definition, hedonic psychology can also be seen as an 

intermediate step towards the study of what drives and motivates people 

and thus influences their behavior. 
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In his article “Bleed or Blow up?” Taleb (2004) suggests a relation 

between the non-normal distribution of returns, skewed payoffs of 

financial instruments, overconfidence and Prospect Theory. He suggests 

that due to immanent hedonic behavior, most people exhibit a preference 

for skewed payoffs. In consequence, most people follow a “blow up” 

investment strategy. This implies that they might realize steady and 

constant low wins over a certain time. However, once in a while they will 

“blow up” when events take place, which were not considered by them. 

People who prefer the “bleeding” investment strategy bet on these rare 

events. This implies that they might incur low but steady losses over a 

while. Only when a rare event takes place, they realize large gains. Taleb 

(2004) argues that the bleeding strategy might be more successful from a 

return on investment view; however, it is very hard for individuals to 

apply this strategy, due to their immanent hedonic behavior. People 

prefer to go to work and be happy. While incurring constant losses, 

people suffer from increased stress, while there are no successes 

motivating them. Consequently, they will be less happy overall. In 

contrast if people follow the “blow up” strategy, they incur constant 

“wins”, which motivates and stimulates them. These people will be 

happy most days, only when bad luck hits, they will be unhappy. 

Nevertheless, regarded over a longer period of time, they will be happy 

most of the time, leaving them more happy than the subjects following a 

“bleed” strategy (Taleb, 2004). 

In this article, Taleb demonstrates that a more holistic approach on 

risk/return functions as well as risk perception and behavior can be taken, 

by linking several of the abovementioned aspects. Especially, the relation 

to hedonic psychology might lead to new insights on why people behave 

in one way or another. Ideas like reference point effect, loss aversion, 

certainty effect, the law of small numbers and overconfidence give a 

reason for the deviation of people’s behavior from the rational utility 

maximization in neoclassical theory. However, they do not give a 

specific reason for the deviating behavior. Hedonic psychology goes one 
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step back to look at the motives of people’s behavior.  Potentially, this 

might create an additional layer of explanatory power. 

5.2 Further Explanations of Observations Due to Heuristics 
and Biases 
Levy and Benita (2009) suggest that the clustering of expectations 

towards a consensus might be tracked back to the overweighting of 

moderate probable outcomes compared to extreme outcomes, because 

individuals perceive a systematically lower variance in the data than 

actually given. They further argue that this might have a “dramatic effect 

on portfolio efficiency, asset pricing and the interpretation of 

econometric tests of asset pricing models”. 

On the basis of his model about the law of small numbers, Rabin (2000) 

puts forward an explanation, why people might pay for financial advice 

from experts who are actually not experts (see also Taleb, 2007, Chapter 

10 – The Scandal of Prediction). People might over- or underestimate the 

ability of financial analysts by considering their past performances and 

falling for the law of small numbers. Financial analysts with several 

“good” consecutive years will rather be judged as successful, analysts 

with several “bad” consecutive years will be perceived as unsuccessful. 

However, the observed years do not necessarily provide fundamental 

evidence of the ability of a financial analyst. Hence, people tending to 

fall for the law small numbers might pay for financial advice which is not 

worth it (Rabin, 2000). 

5.3 Agent-based Modeling – Computing Human Behavior  

One possible way of linking theories and combining aspects of decision 

making under risk and uncertainty is the already mentioned 

interdisciplinary approach of agent-based modeling. This approach 

becomes more and more applicable to economic investigations as 

“technological changes in analytic and computing methods are opening 

up new avenues of study” (Colander, 2005) The advantage of this 

approach is its flexibility, the agents can be equipped with any kind of 

characteristic (Chakraborti et al., 2011; Chen and Huang, 2008). This is 
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particularly interesting because it allows neoclassical characteristics and 

modern characteristics from behavioral finance to be combined in one 

model (Colander, 2005). This is supported by Chen and Huang (2008) 

who highlight the flexibility of agent-based modeling, especially with 

respect to heterogeneity of agents and population dynamics which are 

associated with such an application of various different sorts of agents.  

By linking different aspects and theories it offers the opportunity to 

create a more holistic approach to decision-making under risk: “This 

field aims at improving financial modeling based on the psychology and 

sociology of the investors.” (Chakraborti et al., 2011) Furthermore, 

characteristics or rather their role and weight in the decision making 

process can be adapted to the situation so that the model considers the 

context dependency described in section 4.4. Some models are already 

successful in replicating stylized facts discovered in real financial data 

and other economic applications like distributions of income or growth 

rates (Gatti et al., 2005). However, agent-based models are still regarded 

as “toy models” (Chakraborti et al., 2011). This is largely due their 

simplicity although even these simple models generate some interesting 

results and insights. At this state, there is a clear limitation to the insights 

gained through such a model and its complexity as Chakraborti et al. 

argue that one has to trade off realism against the calibration of the 

mechanisms and processes. Nevertheless, as computational power and 

technique will advance the opportunities in this field continue to grow 

including the possibility of moving from “toy models” to more realistic 

simulations of reality. Colander (2005) predicts that agent-based models 

will not only be used to test theories. He rather suggests that economists 

will create a “virtual economy” in which for example even alternative 

policies can be tested. However, Colander also admits that “such a 

movement to agent-based modeling is far in the future.”  
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6. Summary 
In this paper we aimed at providing a more holistic view on risk 

perception. Therefore, we started to explain in chapter 2 why the normal 

distribution was used to measure risk in the first place, on the basis of 

neoclassical theory. Then we described, some empirical observations, 

rejecting the normal distribution as prevalent distribution to measure risk. 

We continued by presenting current developments in risk and return 

modeling, differentiating between conditional and unconditional 

phenomena in asset returns, requiring a two-step process to be captured 

in models. First, a conditional time-series model is applied to generate a 

residual. This residual is then modeled in an unconditional distribution to 

capture fat tails. We presented Stable Paretian distribution, Student’s t 

distribution and Extreme Value Theory as methods to measure fat tails. 

The chapter ends with an outlook on research in the fields of 

econophysics, attention shock theories and agent-based modeling. Also, 

Taleb (2009) points out that the appliance of any mathematical model is 

prone to fail in an environment of complex payoffs and unknown 

distributions. Eventually, this causes enormous damage, especially, if 

managers blindly relied upon it. Hence, we come to the conclusion of 

chapter 2, that mathematical modeling helps us to understand the 

distribution of risk and returns; taking into account, however, that this 

purely mathematical and statistical approach has its limitations. 

Considering new developments in modeling risk and returns, agent-based 

and experimental economics, we suggested having a closer look at 

human decision making in order to equip artificial agents with human 

behavior that can be empirically observed and modeled.  

Chapter 3 begins by highlighting the importance of human decision 

making theory for all economic and financial theories. In order to 

understand recent findings in decision making research, we presented the 

development of utility functions in neoclassical theory, ending with 

Kahneman and Tversky’s value function suggested in Prospect Theory. 

In a first step we gave a short introduction to original Prospect Theory, 

considering both the value and the weighting function. Additionally, 
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major empirical observations related to both functions were presented, 

questioning neoclassical expected utility theory but supporting Prospect 

Theory, such as the reference point effect, loss aversion, risk seeking in 

the domain of losses and the certainty effect. In a second step we 

elaborated Prospect Theory to Cumulative Prospect Theory, explaining 

that the major drawbacks inherent in Prospect Theory resulted from the 

original test setting. However, these drawbacks could be eliminated with 

new test designs presented in Cumulative Prospect Theory, offering a 

more comprehensive solution, without contradicting major findings of 

original Prospect Theory. More complex models are developed in order 

to mitigate some limitations of (Cumulative) Prospect Theory and to 

incorporate other observed behaviors. However, the more mathematically 

complex the theory becomes, the more of its general predictive power is 

lost. Hence, even though there is a lot of critique about (Cumulative) 

Prospect Theory, most research suggests that it is still the most 

comprehensive theory of human decision making under uncertainty, 

offering at least some predictive power. We conclude that (Cumulative) 

Prospect Theory is a powerful theory, which might be of importance, 

when it comes to equipping agents with human decision making 

behaviors.  

Apart from effects that can be attributed to Prospect Theory, there are 

more specific cognitive biases, which affect human’s ability to assess the 

likelihood of events. Prospect Theory is referring to these biases; 

however states that effects attributed to Prospect Theory differ from 

cognitive biases. Therefore we took a closer look at some cognitive 

biases in chapter 4. First, we presented the law of small numbers and 

other heuristics also related to the representative heuristic, such as 

gambler’s fallacy and the hot hand. Second, we described overconfidence 

and named some applications in financial markets. Third, we presented 

some research suggesting that feelings, experiences and context might 

have an influence on assessing the likelihood of events or risk. Finally, 

we conclude that cognitive biases might also have strong effects on 

general risk perception. 



 
 
 
 

38 
 

In the last chapter 6, we offer some research on how to link all before 

mentioned topics in order to create a new, more holistic picture of risk 

perception. Taleb (2004) offers a very good example of how to link these 

topics by referring to hedonic psychology as a major motivator for 

individual’s preference for asymmetric payoffs and eventual blow-ups. 

Finally, it should be stated that there are many aspects to risk perception. 

The market perspective which applies mathematics to model financial 

risk and returns, the “choices under uncertainty perspective” with 

Prospect Theory, focusing on how individual take choices and decisions 

under risk and uncertainty, and a “cognitive perspective” considering 

other probability distortions, described by empirical research. Even 

though we mentioned that models of choice and decision making can 

only be approximations, we think that it is important to advance and 

improve them. The next step might be to integrate them into models of 

financial returns. Agent-based models already try to imitate human 

behavior. For these investigations, advances in Prospect Theory and 

probability distortion research might give valuable input and might help 

to further integrate these different approaches.  
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