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A. INTRODUCTION

Chirality at the molecular level has emerged as one of the major issues in

the development of chemical technology, especially in the area of drug

synthesis and advanced materials. The push to use only optically pure

intermediates in drugs and to conserve the integrity of chiral centers in

subsequent transformations has placed very high technical and economical

constraints on the development of new drug candidates.

The four common ways by which chirality is integrated into molecular

targets are, by performing transformations on a chiral core, integrating a

performed fragment or chiral synthone into the target, using a chiral catalyst

or using a chiral auxiliary. The chiral pool approach, where chiral

substructures are carved or derived from readily available, cheap, renewable

materials, such as carbohydrates, amino acids, organic acids and terpenes,

is especially important [1].

Carbohydrates are specially ideal as chirones for natural product synthesis.

The combination of natural chirality and topology of cyclic sugar derivatives

permit a high degree of regio- and stereo-controlled systematic

functionalization of the chosen reaction centre [2,3]. There are two main

strategies for the use of carbohydrates in asymmetric synthesis. The first is

to employ them as scaffolds, cores, or templates on which structural

transformations are performed transforming them into new entities that

share reasonably close structural similarity with the starting species. In the

second strategy carbohydrates are totally transformed to often-unrelated

compounds that are then used in different synthetic applications.
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Fig. 1. Representation of new targets, synthesized from a 2,3-anhydro-
pentose, used as “chiron“ in this thesis.

The work presented in the synthetic part of this thesis relates a variety of

examples for regio- and stereoselective transformations of 2,3-

anhydropentoses giving chiral heterocyclic systems. Such carbohydrate-

derived chiral templates can be further transformed into naturally occurring

compounds or to interesting biologically active drugs [1-3]. A series of tri-

substituted chiral thiazolidines with anti-tumour activity, trithiocarbonate

derivatives as versatile intermediates for the synthesis of dithiosugars and

dideoxysugars and a set of 3,4-disaccharides with the possible different

potential biological activities have been synthesized (Fig. 1).

6-substituted 5,6-dihydro-α-pyrones, so-called α,β-unsaturated δ-lactones

are widely distributed in plants as well as fungi and have been isolated from

thirteen families of plants and twenty fungal species. They possess a diverse

range of biological activities and have been reported as plant growth

inhibitors, insect antifeedants, antifungal and antitumour agents [4].
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The total synthesis of R-(-)-argentilactone, S-(+)-argentilactone R-(-)-

massoilactone, (+)-osmundalactone has been achieved in Prof. Voelter’s

group, recently[5].

As a continuation to the synthesis of α,β-unsaturated δ-lactones, this thesis

suggests an asymmetric synthesis of (-)-anamarine (Scheme 1).

Scheme 1. Reterosynthetic analysis of (-)-anamarine.
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Reterosynthetically it can be envisioned (Scheme 1) that the intermediate

alcohol B, can be a common precursor for the synthesis of α,β-unsaturated

δ-lactones. The lactones containing double bond between C7-C8 can be

constructed via a Wittig reaction between phosphonium salt A and aldehyde

of F. The alcohol B can be constructed via a ring opening reaction on the

benzylidene acetal D. The side chain can be synthesized by the acidic ring

opening of deoxygenated alcohol G, which itself can be constructed via

reduction of iodo-alcohol H (Scheme 1). As it become obvious from the

scheme 1, methyl-α-D-glucopyranoside (E) and 1,2:5,6-di-O-isopropylidene-

α-D-glucopyranoside (J) can be selected as the starting materials for the

total synthesis of (-)-anamarine.

The second part of this thesis describes the isolation and chracterization of

three new myrsinane type diterpene esters from Euphorbia decipiens (Fig. 2).

 R1 R2

Bu H

Bz H

Bu Ac

Fig. 2. Three new diterpene esters from Euphorbia decipiens.
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diterpenoids, e.g. of the tigliaine and ingenane type, are common in their

milky latex. Some of the plants belonging to the genus Euphorbia are used in

folk medicine in order to cure some skin diseases, gonorrhea, migraine,

intestinal parasites and warts. The dried roots of E. kansui are recorded in

Sheng Nung’s Herbal as low-grade drug and considered as a herbal remedy

for edema, ascites and cancer in China.  Some esters of myrsinol, a

tetracyclic diterpenoid isolated from E. myrsinites showed anti HIV-1 reverse

transcriptase (RT) inhibition [6-8].

The skin-irritant, tumor-promoting and anti-tumour and recently anti-HIV

activities of these plants prompted us to reinvestigate Euphorbia decipiens

Boiss for their chemical constituents.
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B. RESULTS AND DISCUSSION

B.I. 2,3-Anhydropentoses: Synthesis of Starting Materials

This part of the thesis demonstrates a variety of examples for regio- and

stereoselective transformations of 2,3-anhydropentoses delivering a series of

chiral targets (Fig. 1).

B.I.1. Synthesis of benzyl 2,3-anhydro-β-L-ribopyranoside (6) [9a]

Compound 6 was synthesized in 6 steps, starting from commercially

available L-arabinose. Benzylation of L-arabinose in the presence of

hydrogen chloride

Scheme 2. Synthesis of benzyl 2,3-anhydro-β-L-ribopyranoside (6) from L-
arabinose (1) via benzyl-β-L-arabinopyranoside (2), benzyl 3,4-O-isopropyl-
idene-β-L-arabinopyranoside (3), benzyl 3,4-O-isopropylidene-2-O-p-tosyl-
sulphonyl-β-L-arabinopyranoside (4) and benzyl 2-O-p-tosylsulphonyl-β-L-
arabinopyranoside (5).

leads to the anomerically protected benzyl β-L-arabinopyranoside (2) [10].

The two hydroxyl groups at C-3 and C-4 were protected via 2,2-

dimethoxypropane and p-toluenesulphonic acid in acetone which formed

benzyl 3,4-O-isopropylidene-β-L-arabinopyranoside (3). The left behind free

hydroxyl group at C-2 was tosylated with p-toluene sulphonyl chloride in
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pyridine, giving compound 4. The isopropylidene protecting group was

selectively removed from 4 with 90% acetic acid to yield 5 [11]. The target

compound 6 was finally obtained by the action of sodium methoxide in

methanol on compound 5, followed by neutralization with dilute

hydrochloric acid (Scheme 2).

B.I.2. Synthesis of benzyl 2,3-anhydro-α-D-ribopyranoside (15)[9a]

The synthesis of compound 15 was achieved from D-arabinose (7), whereby

it is known that the direct benzylation does not yield the α-anomer in high

quantity due to the anomeric effect. In order to overcome this problem, one

has to follow an alternative procedure (Scheme 3) [12] in which 7 was

converted into the tetrabenzoyl derivative 8 by the action of benzoyl chloride

Scheme 3. Synthesis of benzyl 2,3-anhydro-α-D-ribopyranoside (15) via D-
arabinose (7), tetrabenzoate of benzyl arabinopyranoside (8), 2,3,4-tri-O-
benzoyl-β-D-arabinopyranosyl bromide (9), benzyl 2,3,4-tri-O-benzoyl-α-D-
arabinopyranoside (10). benzyl α-D-arabinopyranoside (11), benzyl 3,4-O-
isopropylidene-α-D-arabinopyranoside (12), benzyl 3,4-O-isopropylidene-2-
O-p-tosylsulphonyl-α-D-arabinopyranoside (13) and benzyl 2-O-p-tosyl-
sulphonyl-α-D-arabinopyranoside (14).
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in pyridine. The anomeric mixture of compound 8 was treated with hydrogen

bromide in 30% acetic acid to furnish 9, which, via SN2 reaction with benzyl

alcohol, affords the α-D-benzyl glycoside. The benzoyl groups in 10 were

removed by sodium methoxide in methanol, to give benzyl α-D-

arabinopyranoside (11). The target compound 15 was obtained following

analogous reaction sequences as described for the syntheses of compound 6

(Scheme 3) [9a].

B.I.3. Synthesis of benzyl 2,3-anhydro-4-O-triflylribopyranosides [9a]

Triflation of the free hydroxyl group in 6 and 15 was successfully achieved

at low temperature (-20°C) via treatment with trifloromethansulphonic

anhydride in dichloromethane. The triflates 16 and 17 were obtained in high

yield upon basic work up at 0°C (Scheme 4).

Scheme 4. Synthesis of benzyl 2,3-anhydro-4-O-triflyl-β-L-ribopyranoside
(16) and benzyl 2,3-anhydro-4-O-triflyl-α-D-ribopyranoside (17) from benzyl
2,3-anhydro-β-L-ribopyranoside (6) and benzyl 2,3-anhydro-α-D-ribopyran-
oside (15), respectively.
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B.II. A Convenient Method for the Synthesis of Cyclic

Trithiocarbonates on Carbohydrate Scaffold

The preparation of monosaccharides, in which one or more oxygen atoms

have been replaced by a sulphur atom, has received considerable attention,

primarily due to the fact that these compounds provide a route to the

synthesis of deoxy sugars [13]. Trithiocarbonate derivatives of carbohydrates

are versatile intermediates for the synthesis of dithiosugars [14] and

dideoxysugars [15]. Many non-carbohydrate organic compounds containing

trithiocarbonates has been reported to posses interesting biological activities

[16-19]. However to the best of our knowledge, no sugar-embedded

Trithiocarbonate has been reported for its biological activity. Moreover, only

a few methods are available for the synthesis of such carbohydrate

derivatives, such as the reaction of potassium methylxanthate on epoxides

[20] and episulphides [21] or in some cases the use of toxic thiophosgene gas

[22].

The reaction of organic halides with sodium trithiocarbonate has been

widely used for the preparation of disubstituted trithiocarbonates [23].

Moreover, alkyl mono- and dihalides, upon treatment with sodium

trithiocarbonate, could easily be converted into the corresponding mono- or

dimercaptans [24]. Recent efforts towards the preparation of dialkyl

trithiocarbonates [25] prompted us to investigate the epoxy triflates 16 and

17 for possible candidates of sugar-based trithiocarbonates. In the past, the

triflates of the 2,3-anhydro-ribopyranosides 16 and 17 have been used by

Prof. W. Voelter’s research group as starting materials towards the synthesis

of either new useful chiral building blocks or biologically active natural
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products [26-28]. The strategy banks upon the difference in the reactivity

between the cis-oriented triflate at C-4 as a powerful leaving group and the

epoxide. This strategy enables us to control the regioselective nucleophilic

displacement of the triflate group forming trans-oriented systems that can

be further modified by chemical transformations. In this chapter, a simple

and efficient route for the synthesis of cyclic trithiocarbonates 21 and 22

from the anhydrotriflates 16 and 17 is described (scheme 5). The simple one

Scheme 5. Synthesis of sugar trithiocarbonates 21, 22, 23, 24 and 25 from
epoxy triflates 16, 17, 18, 19 and 20, respectively. Reagents and conditions:
a) H2O, aliquat 336, 40°C, 90 min [29].
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pot reaction involves the addition of red-coloured aqueous solution of

Na2CS3 to a stirred solution of benzyl 2,3-anhydro-4-O-triflyl-β-L-

ribopyranoside (16) (354 mg, 1 mmol) in ethanol (5 ml) at room temperature

over a period of 10 min. Na2CS3 can be produced by reacting Na2S (2.44 gm,

10 mmol) in water (5 ml) with CS2 (0.608 ml, 10 mmol) with or without a

phase transfer catalyst e.g. trioctylmethylammonium chloride (aliquat 336)

(22.5 µl) [29]. The nucleophilic displacement of the triflyl group at C-4 by

sulphur was followed by the simultaneous interamolecular ring opening of

the epoxide to afford benzyl 3,4-dideoxy-3,4-S-thiocarbonyl-α-D-

arabinopyranoside (21) in 90% yield. The reaction was then tested for the

triflate of the other anhydro sugars. Benzyl 3,4-anhydro-2-O-triflyl-β-L-

arabinopyranoside (18) was prepared from 6 in two steps [30]. After

treatment with the solution of Na2CS3, 18 is converted into the

trithiocarbonate sugar 23 in good yield. However, the anhydrofuranoside 19

and 20 [31] gave a sluggish reaction to yield the trithiocarbonates 24 and 25

21 22
1C4- Conformation 4C1- Conformation
J5,5´ = 13.4 Hz J5,5´ = 13.4 Hz
J4,5 = 3.05 Hz J4,5 = 1.8 Hz
J4,5´ = 3.05 Hz J4,5´ = 3.05 Hz
J1,2 = 6.41 Hz

Fig. 3. Preferred conformations of the pyranose ring in 21 and 22.
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in less than 50% yields containing other impurities (scheme 5).

The structures of all the products were established through MS, elemental

analysis, 1H and 13C NMR spectroscopy. The conformation adopted by the

pyranoside rings in the products 21 and 22 were determined by the vicinal

coupling constants and chemical shifts of their 1H NMR spectra. 5-H and 5´-

H were recognized from their large geminal coupling constant (~13 Hz) at δ =

4.30 and 3.87 ppm, respectively in 21, and at δ = 4.15 and 3.38 ppm,

respectively in 22. A symmetrical ddd pattern appeared for H-4 of 21 with,

J4,5´ = 3.05 and J4,5 = 3.05 and J3,4 = 4.27 Hz. This indicates a quasi

equatorial-quasi equatorial relation between 4-H and 5´-H and a quasi

equatorial-axial relationship between 4-H and 5-H; conformation of

Fig. 4. Molecular structure of 22. Selected bond length (Å) and angles (°):

C(2)-O(8) 1.421, C(3)-S(2) 1.817(3), S(2)-C(10) 1.734(3), C(10)-S(3) 1.640(3),

S(1)-C(10) 1.742(2), S(1)-C(4) 1.825(3); O(8)-C(2)-C(3) 111.3(2), C(2)-C(3)-S(2)

110.2(2), S(2)-C(10)-S(1) 114.8(2), S(1)-C(10)-S(3) 122.9(2), C10-S(1)-C(4)

96.8(12), S(1)-C(4)-C(5) 113.3(2).



13

pyranoside ring in 21 is, therefore, predominately 1C4. This is further

supported by large axial-axial coupling (J1,2 = 6.41 Hz) for H-1 and H-2.

On the other hand in 22 4-H appeared as a multiplet at δ = 4.81 ppm buried

in the signal of the benzylidene protons. Although the direct calculation of

the coupling constant is not possible in this case, the coupling interactions

of 4-H with 5-H and 5´-H were calculated from dd patterns observed for the

latter protons, revealing a 1.83 Hz value for J4,5 and a 3.06 Hz value for J4,5´.

From these assignments, a quasi equatorial position for 4-H is assumed.

Hence the pyranoside ring in 22 occurred predominately in the 4C1

conformation (Fig. 3). Fig 4 shows the ORTEP diagram of compound 22 with

selected bond lengths and bond angles.

In summary, our new template 21-25 will allow further elaboration to other

targets through chemical modification on the trithiocarbonate part of the

molecules.
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B.III. Approach for the Synthesis of Benzothiophene Fused to

the Carbohydrate Skeleton

Derivatives of benzothiophene are known to be biologically active [32,33].

Polycyclic aromatic hydrocarbons have been widely studied because of

adverse biological activity e.g. multigenic and/or carcinogenic. Analogous

sulphur heterocycles, in which one aromatic ring has been replaced by a

thiophene ring, also have shown carcinogenic and mutagenic activities

[33,34]. Sugar moieties are naturally present in many biologically active

molecules. Therefore fusing a sugar moiety to the benzothiophene system

attracted us to synthesize some of such derivatives from 2-bromothiophenol

and benzyl 2,3-anhydro-4-O-triflyl-β-L-ribopyranoside (16), or benzyl 2,3-

anhydro-4-O-triflyl-α-D-ribopyranoside (17). The 2-bromo benzosulfonyl

anion was generated with Na2CO3 in CH3CN and made to attack on the

triflate of epoxy sugar to get 26 (Scheme 6 & 7). Which was further treated

with BuLi at -40 °C to form 27. In 26 the 13C NMR signal at δ = 39.0

indicates the presence of sulphur at C-4. While the presence of two signals

at δ = 54.2 and 50.2 indicate the presence of an epoxy ring in the molecule.

The anomeric signal of 27 is located at δ = 4.81 (d, J = 2.1 Hz) indicating the

axial-equitorial relation in H-1and H-2 while the olefinic signal was found at

δ = 6.14 (d, J = 4.6 Hz). As H-2 in both the cases (27 and 32) gave a br.

singlet so the direct calculation of coupling constant was not possible. The

coupling constant of H-2 in 27 was calculated indirectly and found J1,2 = 2.1

and J2,3 = 4.6. The anomeric and olefinic protons of 32 were found at δ =

4.99 (d, J = 4.1 Hz) and 6.10 (d, J = 2.2 Hz) respectively.
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Scheme 6. Synthesis of benzothiophene derivatives 29 and 30 from benzyl
2,3-anhydro-4-O-triflyl-β-L-ribopyranoside (16) and 2-bromothiophenol.
Reagents and conditions: a) Na2CO3/CH3CN, 0°C, 8h, b) BuLi/THF, -40°C,
5h, c) pyridinium chorochromate, CH2Cl2, reflux, 5h, d) Pd(OAc)2(PPh3)2,
NaHCO3, CH3CN, reflux.

Scheme 7. Synthesis of benzothiophene derivatives 29 and 33 from benzyl
2,3-anhydro-4-O-triflyl-α-D-ribopyranoside (17) and 2-bromothiophenol.
Reagents and conditions: a) Na2CO3/CH3CN, 0°C, 8h, b) BuLi/THF, -40°C,
5h, c) pyridinium chlorochromate, CH2Cl2, reflux, 5h, d) Pd(OAc)2(PPh3)2,
NaHCO3, CH3CN, reflux.
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The coupling constant of H-2 in 32 was calculated indirectly and found J1,2 =

4.1 and J2,3 = 42.2 Hz. The alcohols 27 and 32 were oxidized to ketone in

quantitative yield [35]. Having 27, 28 or 32 in hand, we planned to do an

intramolecular Heck reaction [36-37] to get the required compounds 29, 30

or 33.
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B.IV. An Expeditious Synthesis of Highly Functionalized Tri-

substituted Chiral Thiazolidines

Substituted thiazolidine derivatives represent important key intemediates for

the synthesis of numerous pharmacologically active drugs [38-40]. A

number of thiazolidines has been claimed to be retroviral protease inhibitors

[41,42]. Substituted thiazolidine derivatives have been supposed as

substitutes for the carbohydrate moiety in the synthesis of new antiviral

nucleosides [43].

Many non-carbohydrate organic compounds containing thiazolidines have

been reported to possess interesting biological activities [37-43], but, to the

best of our knowledge, no sugar-embedded thiazolidine has been reported

for its biological activity. In the past, much attention has been given to the

synthesis of substituted thiazolidene-4-ones, as they have been recognized

as fundamental heterocyclic compounds, comprising, for example, an anti-

PAF (Platelet Activating Factor) drug, a key intermediate for β-lactams,

sulphur containing mimic of D-ribose, and oxygenase inhibitors [44].

Thiazolidine-4-ones show a large spectrum of biological activities and can be

used as a precursor in the synthesis of heterocyclic compounds [45-47].

Developing new strategies by using the novel chiral synthons benzyl 2,3-

anhydro-4-O-triflyl-β-L-ribopyranoside 16 and benzyl 2,3-anhydro-4-O-

triflyl-α-D-ribopyranoside 17 thereof leading to novel synthetic approaches

to chiral heterocyclic systems is an attractive approach. In this thesis, a one

pot procedure for the synthesis of chiral substituted thiazolidines is

described (Scheme 9). The unexplored chemistry and bioactivity of the



18

thiazolidines 34-40 led us to synthesize these compounds from

thiosemicarbazide/4-phenylthiosemeicarbazide and epoxy triflates (Scheme

9). Thiosemicarbazide and β-epoxy triflate 16 are used for the synthesis of

34-35 in 1,4-dioxane (Scheme 8).

Scheme 8. The two possible S-substituted thiosemicarbazide intermediate
in the thazolidine formation reaction.

Scheme 9. Synthesis of acetylated thiazolidine 36-40
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The intermediate is presumably an S-substituted thiosemicarbazide

derivative, which leads to an opening of the epoxy ring by the participation

of the nitrogen atom. However, the intermediates could not be isolated

despite numerous attempts (Scheme 8).

After the completion of the reaction (TLC controlled), the reaction mixture

was concentrated under reduced pressure and acetylation was carried out

without purification of the product so as to protect the free amino, imino

and alcoholic groups. The anomeric proton in 40 appeared as doublet at δ =

5.06 (d, J = 3.05 Hz) and the H-2 at 5.18 (dd, J = 3.05, 7.92 Hz). The

coupling constant between H-2/H-3 (7.92 Hz) indicated the axial-axial

relation between the two protons, therefore 4C1 is the predominant

conformation in 40, while the anomeric and H-2 protons in 36, 37 and 38

gave a singlet.

Fig. 5. Molecular structure of 36. Selected bond lengths (Å) and bond angles
(°); S(1)-C(6) 1.738(7); N(1)-C(5) 1.474(9); S(1)-C(1) 1.814(8); N(1)-C(6)
1.388(9); C(1)-C(5) 1.523(11); N(3)-C(11) 1.419(10); N(3)-C(9) 1.411(9); N(2)-
C(13) 1.399(9); O(2)-C(4) 1.437(8); C(6)-S(1)-C(1) 91.6(3); C(6)-N(1)-C(5)
114.8(5); N(3)-C(11)-C(12) 118.7(7); N(3)-C(9)-C(10) 116.1(7); C(3)-O(3)-C(15)
111.6(5); C(6)-N(1)-N(3) 115.9(5); C(5)-C(1)-C(2) 112.6(6).
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The x-ray diagram, however indicated the 1C4 conformation in 36, with

expected coupling constant of ~ 6.5 Hz. After column chromatography, the

thiazolidine 36 was crystallized from ethanol:water system and then

subjected for x-ray crystallography. Figure 5 shows the ORTEP diagram of

compound 36 with selected bond lengths and angles. C(1)-S(1) and N(1)-C(5)

are found to have bond length values of 1.388(9) and 1.474(9) Å,

respectively. A shorter bond length of the bond N(2)-C(6) is found with the

value 1.289(9) Å indicating C=N bond.

A mixture of thiazolidine 34 and 35 was submitted for the anti-tumour

activity against SK-N-LO cell line and found to be 88% active (Fig. 5).

B.IV.1. MTT Assay

B.IV.1.1. Principles of the MTT assay

MTT is used for the quantitative determination of cellular proliferation and

activation e.g. in response to growth factors and cytokines such as IL-2 or

IL-6. In cancer research, the MTT assay is used for quantification of in vitro

chemoselectivity of tumour cells and the screening of anti-cancer

compounds. The assay is based on the mitochondrial conversion of a water-

soluble tetrazolium salt, 3-[4,5-dimethylthiazol-2-y1]-2,5-diphenyltetra-

zolium bromide (MTT) into a water-insoluble formazan. The assay is based

on the cleavage of the yellow tetrazolium salt MTT to purple formazan

crystals by metabolic active cells. The MTT enters the cells and passes into

the mitochondria where it is reduced to an insoluble, coloured formazan

product. This cellular reduction involves the pyridine nucleotide cofactors

NADH and NADPH. An increase in the number of living cells results in an
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increase in the total metabolic activity in the sample and the level of activity

is a measure of the viability of the cell. This increases directly correlates to

the amount of the purple formazan crystals formed as monitored by the

absorbance. These salt crystals are insoluble in aqueous solution, but may

be solubilized by adding the solubilization solution and incubating the plates

overnight in humidified atmosphere (e.g. 37°c, 5% CO2). The solubilized

formazan product is spectrophotometrically quantified at 550 nm using an

ELISA plate reader.

B.IV.1.2. Preparation of the MTT solution

5mg of MTT are dissolved in 1 ml of PBS (Phosphate buffered saline). The

solution should be filtered through a 0.2 µm filter, wrapped in aluminum foil

(MTT is a light sensitive substance) and stored at 4°C.

Fig. 6. Cytotoxic effect of thiazolidines 34 and 35 on the human
neuroblatoma cell line SK-N-LO.
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B.IV.1.3.Preparation of Ispropanol-triton X-100 solution

In order to get this solution 0.10 M HCl in isoprpopanol +10% Triton X-100

should be mixed. This solution should be stored at room temperature.

B.IV.1.4. MTT assay with neuroblastoma cells

1. 200 µL of a cell suspension (2 x 105 cells/ml of cell culture medium) are

placed with a dispenser multipipette (Eppendorf) into each well of the 96

well microtiter plate, 3wells are filled with cell culture medium only and

are used as BLANK: the plate is incubated overnight in an incubator at

37°C, 5% CO2.

2. After 24 hours, the substance which effects have to be investigated are

added in 10µL volumes. In the control wells the same volumes of PBS

were added instead of substance. The 96 well microtiter plate is further

incubated for 48 hours at 37°C, 5% CO2.

3. After an incubation of 48 hours, the cell culture medium was removed

completely by a Pasteur pipette, which is installed on a vacuum pump. A

further 100µl of an MTT solution (MTT stock solution should be diluted

1:9 with RPMI-1640) is added into each well.

4. The microtiter plate was further incubated for 3 hours in the incubator.

During this time, MTT is transformed into formazan, wich microscopically

represents blue crystals between the cells at the bottom of the wells.

5. Then, 100µl of isopropanol solution were added to each well and the plate

was shaken horizontally for further 8-10 hours (usually over night) at

room temperature. During this time, formazan crystals are dissolved after
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this step, microscopically, no crystals should be observed in any well. In

all wells there should be homogenous colour observed.

6. Finally, the absorbance of the colour in each  well was measured by a

microplate reader (MR700) in a dualmode with a reference wavelength at

550 nm (filter number 5) and a rest wavelength at 630 nm (filter number

4).
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B.V. Approach to the Total Synthesis of R-(-)-Anamarine, the Non-

natural Enantiomer of Anamarine (42)

Anamarine was isolated in 1979 from the flowers and leaves of a Peruvian

hyptis was shown to have the structure 41 (Fig. 7). Anamarine has been

synthesised from D-glucose as starting material [48,49].

Fig.7. Structure of (+)-anamarine (41) and (-)-anamarine (42).

Here we report the synthesis of (-)-anamarine using methyl α-D-

glucopyranoside as carbohydrate template (schemes 1 and 10).

Scheme 10. Reterosynthesis of (-)-anamarine.
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now ready to undergo 2,3-dideoxygenation and we applied, firstly, the

conditions described by Garegg and Samualsson [50a]. The reaction was

not, however, clean and an impure product with a low yield was obtained. As

a second choice, we found that Iodoform/imidazole/triphenyl-phosphene in

toluene [50b] is an excellent reagent to produce 45 (87% yield) as nice

crystals (Scheme 11). Hydrolysis of 45 was carried out by AlCl3/t-BuOOH in

CH2Cl2 at  –40°C in 80% yield. Stereoselective protection of diol 46 at

primary position with benzoyl chloride at 0°C and mesylation of the

secondary alcohol was carried out to produce 48 in 90% yield over two steps

(Scheme 11). The mesyl group was displaced with superhydride (lithium

triethylborohydride, 1M solution in THF) to get 49 in 70% yield. The alcohol

49 can be converted to 50 over two steps according to references [48,49].

Scheme 11. Synthesis of A part of (-)-anamarine. Reagent and conditions: a)
α,α-dimethoxytolune, p-toluenesulphonic acid, DMF, reflux under reduced
pressure, 1h; b) PPh3, imidazole, CHI3, toluene, 2h; c) AlCl3, t-BuOOH,
CH2Cl2, -40°C, 30 min; d) benzoyl chloride, pyridine, 0°C, 8h, 90%; e) MsCl,
pyridine, 5°C, 4h; f) lithium triethylborohydride, THF, 12h.
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B.V.2. Synthesis of side chain (part F) of (-)-anamarine

Synthesis of side chain was carried out from D-glucose according to scheme

1. The free OH-groups of D-glucose were protected with the isopropylidene

group by using ZnCl2 and phosphoric acid as catalyst in dry acetone to get

1,2:5,6-di-O-isopropylidene-α-D-glucopyranoside (51)[51]. The two OH-

groups at C-5 and C-6 were selectively deprotected with 20% acetic acid at

25°C to get 1,2-O-isopropylidene-α-D –glucofuranoside (52) [52]. Then, the

primary OH-group at C-6 was tosylated in pyridine to get 1,2-O-

isopropylidene-6-O-tosyl-α-D-glucofuranoside (53) [48]. The structure of the

diol 53 was confirmed by melting point, mass spectroscopy, optical rotation

and NMR spectroscopy, as reported in reference (Scheme 12) [48].

B.V.3. Synthesis of epoxide 54

Powdered 50 was added to a suspension of LiAlH4 in anhydrous ethyl ether,

according to ref. [48]. The mixture was boiled under reflux for six hours. The

product was purified in 78% yield by column chromatography. The product

obtained in this way was an epoxide with the melting point of 133-134°C.

Ref. [48] Indicates the formation of methyl group at C-5 but we get an

epoxide under the reported conditions. We repeated the reaction three times,

so as to confirm the new product. The formation of epoxide 54 from 53

using LiAlH4 has not yet been reported (Scheme 12).

5,6-Anhydro-1,2-O-isopropylidene-α-D-glucofuranoside (54) was confirmed

by two carbon signals at 50.1 and 46.1 ppm for C-5 and C-6 respectively.

The physical and spectroscopic data of 54 were found to be similar with

those of reference [53].
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Scheme 12. Synthesis of 5,6-anhydro-1,2-O-isopropylidene-α-D-glucofura-
noside (54). Regents and conditions: a) 20% acetic acid, 25°C, 12h; b) TsCl,
pyridine, 0°C→rt, 12h; c) LiAlH4, diethyl ether, 0°C→r.t, 12h.

B.V.4. Modifying the route for side chain synthesis

As 53 did not give the desired product 55, the synthetic route was modified

and instead of tosylation at C-6 (Scheme 13), we planned to do iodination

with I2, imidazole and PPh3 [54a]. Reduction of the iodo product 58 was

carried out with NaBH4 in diglyme to get the required deoxygenated product

3-O-methoxymethyl-6-deoxy-1,2-isopropylidene-α-D-glucofuranosid (59)

(4b]. 59 was treated with a small amount of concentrated HCl in ethylthiol to

get dithioacetal (60) [48]. The free OH-groups in 60 were readily protected by

isopropylidene group in acidic media to form 60. The thioketal protective

group from 60 can be removed by HgCl2 [48]. Employing Wittig reaction on A

and F, according to the ref.[48,49], can give (-)-anamarine (Scheme 14).
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Scheme 13. Synthesis of dithioacetal (61) via 1,2:5,6-di-O-isopropylidene-α
-D-glucofuranoside (51). Reagents and conditions: a) NaH, MOM-Cl, 0°C, 6h;
b) 20% acetic acid, 25°C, 12h; c) PPh3, imidazole, I2, CH3CN, 40°C, 5h; d)
NaBH4, diglyme, reflux, 6h; e) conc. HCl, C2H5SH, r.t., 40 min; f) cat. HClO4,
acetone, 12h.

Scheme 14. Coupling A and F to get the (-)-anamarine.
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B.VI. Synthesis of 3,4-Disaccharides.

3-O-alkyl-1,2-O-isopropylidene-α-D-glucofuranoside has been shown to

exhibit several biological activities. For example, it can reduce intra-

membrane charge movement, required for signal tranduction between the

sarcolemma and the sarcoplasmic reticulum, thereby inhibiting the

excitation-calcium release mechanism, (muscle relaxant activity) [55].

Besides it has strong inhibitory effect on the enzyme β-galactosidase from

Escherichia coli [56]. The oxirane ring- containing carbohydrates are enzyme

inhibitors, i.e. 2,3-epoxypropyl-β-D-glucosides of 2-acetamido-2-deoxy-D-

glucose and its oligomers are inhibitors of hen’s egg-white lysozyme [57-59].

Scheme 15. Synthesis of 1,2:5,6-di-O-isopropylidene-3-deoxy-α-D-gluco-
furanoside-3-yl benzyl 2,3-anhydro-α-D-lyxopyranoside (62a) and 1,2:5,6-
di-O-isopropylidene-3-deoxy-α-D-glucofuranoside-3-yl benzyl 2,3-anhydro-
β-L-lyxopyranoside (63).
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2,3-Epoxypropyl-α-D-glucopyronside irreversibly inhibits yeast hexokinase

[60]. Similarly, derivatives of cellobiose and cellotriose show inhibiting

activity against enzyme cellulase [61].

Recently, a variety of sugar derivatives [62] have been examined as possible

inhibitors for a new thermostable neutral proteinase, isolated from

Saccharomonospora canesecns. Among all tested compounds, benzyl 2,3-

anhydro-β-L-ribopyranoside (6) and benzyl 2,3-anhydro-α-D-ribopyranoside

(15) exhibited the highest inhibiting activity. Therefore it was decided to

Scheme 16. Synthesis of 1,2:5,6-di-O-isopropylidene-3-deoxy-α-D-
allofuranoside-3-yl benzyl 2,3-anhydro-α-D-lyxopyranoside (65) and
1,2:5,6-di-O-isopropylidene-3-deoxy-α-D-allofuranoside-3-yl benzyl 2,3-
anhydro-β-L-lyxopyranoside (66).
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couple 1,2:5,6-di-O-isopropylidene-α-D-glucopyranoside (51) and epoxy-

triflate 16 or 17 to get new compounds with different potential biological

activities (Scheme 15 and 16).

Disaccharides 62 and 63 were synthesized by the nucleophilic attack of 51,

produced by using mild conditions, (Na2CO3/CH3CN) at C-4 of epoxytriflates

16 or 17 (Scheme 15).

For the other two disaccharides 65 and 66, triflate 67 [48] and tosylate 68

[63], were tried. The nucleophilic attack of the epoxy sugar anion on the

activated C-3 carbon of 67 or 68 was found to be impossible due to the

crowding around C-3 of 67 or 68. As it gave the triflate or tosylate of the

epoxy sugar 6 and 15, so it was decided to change the stereochemistry of

the C-3 OH- group from β → α [64] for the other two isomers (65 and 66) of

the 3,4-disaccharides (Scheme 16).
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B.VII. Testing Formaldehyde Acetals on Carbohydrates

Acetalation is one of the most applied reaction in the carbohydrate

chemistry. Acid-catalyzed acetylation and transe acetalation are common

[65] for the preparation of different acetals, but they give very poor yield in

case the of methylene derivatives [66]. Brimacombe et al.[67] used sodium

hydride CH2X2 in DMF. Hanessian et. al [68,69] And Munavu [70] used

DMSO/NBS or DMSO/Br2 for the preparation of methylene acetals utilising

the Pummerer rearrangement of an initially formed bromo sulphonium ion

to give an α-alkoxy sulphoxide intermediate. Phase transfer catalysis also

proved to be a very useful method for the methylation of catechol [71]

Andras Liptak et.al [72] used KOH/DMSO in CH2Br2 for the acetalation of

different carbohydrates in good yield.

We used NaOH/DMF in CH2X2 for methylene acetal formation of

carbohydrates, but inter-molecular as well as intra-molecular methylene

acetals can be formed depending upon the number of free hydroxyl groups

present in the sugar molecule. All the compounds were synthesized by

adding NaOH Pellet in CH2X2 and DMF followed by addition of alcohol. The

reaction mixture was heated to 30°C in case of CH2Br2 and 65°C for CH2Cl2

(Table 1).

The structure of 69 was confirmed by mass spectroscopy and 1H NMR: there

was equal integration for the anomeric proton and for the methylenic proton,

which indicated the formation of symmetric molecule i.e. the two anomeric

proton of the two sugar units are in the same chemical environment thus

resonating on the same chemical shift in 1H NMR (Scheme 17).
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Table 1. Substrates and reaction conditions employed in the methylene

acetal formation reaction.

Comp. Base Solvent Time Temp.(°C) Yield(%)

69 NaH CH2Cl2 24 r.t 91

69 NaOH CH2Cl2 30 65 76

69 NaOH CH2Br2 12 30 83

70 NaOH CH2Cl2 30 65 72

70 NaOH CH2Br2 16 30 84

73 NaOH CH2Cl2 30 65 69

73 NaOH CH2Br2 12 30 76

75 NaOH CH2Cl2 30 65 three products

75 NaOH CH2Br2 7 30 67

1,2-Isopropylidene-3-methoxymethyl-5,6-methylidene-α-D-glucopyranoside

(70) was made from 57 in excellent yield (Scheme 18) and was confirmed by

Scheme 17. Synthesis of 69. Reagents and conditions: a) NaH, CH2Cl2,
DMF, 30°C, 24h.
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the anomeric signal at δ 5.89 (d, J = 3.65 Hz, 1H), two methylene signals δ =

5.02  (s, 1H), 4.84 (s, 1H) and 4.73 (s, 2H). The two-methylene signals

appeared at 96.1 and 95.2 in the 13C NMR.

For the synthesis of 73, benzyl 3,4-O-isopropylidene-β-L-arabinopyranoside

(3) was treated with MOM-Cl in NaH/THF to protect the free OH-group.

Then, the isopropylidene group was removed selectively and the product

subjected for the methylene acetal formation reaction (Scheme 19).

Scheme 18. Synthesis of 1,2-acetanolide-3-methoxymethyl-5,6-methylid-
ene-α-D-glucofuranoside (70) from 3-O-methoxymethyl-1,2-O-isopropylid-
ene-α-D-glucofuranoside (57). Reagents and conditions: a) NaOH, CH2Br2,
DMF, 30°C, 16h.

The structure of 73 was proved by the mass as well as NMR spectroscopy.

The signal at δ = 4.77 (d, J = 2.9 Hz, 1H) represent the anomeric proton

Scheme 19. Synthesis of benzyl 2-O-methoxymethyl-3,4-O-methylidene-β-L-
arabinopyranoside (73) from benzyl 3,4-O-isopropylidene-β-L-arabinopyran-
oside (3). Reagents and conditions: a) NaH/MOM-Cl, THF, 0°C-r.t.; b) 20%
AcOH; c) NaOH, CH2Br2, DMF, 30°C, 12h.
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while the signal at δ = 5.20 (s, 1H), 4.79 (s, 1H) and 4.99 (s, 2H) indicated

the presence of two methylene groups. The 4-isobutyl-catechol (74) was also

tested against the methylene formation reaction. The number of products

formed in this reaction depends upon the dilution of the reaction mixture

and also on the solvent used. For example dichloromethane gave three

products 75a→c while the same reactant in the same dilution with

dibromomethane gave one major product (75a) (Scheme 20).

Scheme 20. Synthesis of 4-isobutyl-1,2-methylene catechol (75a), diactal
75b and polyacetal 75c. a) Reagents and conditions: NaOH, CH2Cl2, DMF,
65°C, 30h.

The structures were confirmed by FD-mass and NMR spectroscopy. 1,2-

methylene-4-isobutyl catechol (75a) was confirmed by 1H NMR signal at 5.88

(s, 2H) indicating the methylene protons. The three methyls resonate at 1.27
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methylene carbons resonating between 93.5-93.4 and also the FD mass

spectroscopy revealed that the product contain five catechol units.
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 C. EXPERIMENTAL

C.I. Synthesis of 2,3-anhydro-β-L-ribopyranosides

C.I.1. Benzyl 2,3-anhydro-β-L-arabinopyranoside (6)

C.I.1.1. Benzyl β-L-arabinopyranoside (2)

2 was prepared from 50 g (0.33 mol) of L-arabinose (1) and 250 ml benzyl

alcohol and 1L of abs. ether as described in ref. [9a]: Yield 71 g (88.5%); m.p.

172°C (ethanol/water), ref. [9a]: 168-171°C (ethanol); [α]D= +208° (c = 1,

water), ref. [9a]: +206° (c = 0.3, water)

C12H16O5  (240.23)

Calculated   C  59.99      H 6.7%,

Found        C  59.55      H  6.50%.

C.I.1.2. Benzyl 3,4-O-isopropylidene-β-L-arabinopyranoside (3)

3 was prepared from 70 g of benzyl-β-L-arabinopyranoside (0.29 mol), 500

ml 2,2-dimethoxypropane and 1.0 g. p-toluenesulphonic acid in 500 ml

acetone. The resultant product 3 was used as such for the next step. Yield:

49 g (82.2%).

C.I.1.3. Benzyl 3,4-O-isopropylidene-2-O-p-tolylsulphonyl-β-L-arabinopy-

ranoside (4)

4 was prepared from 100 g (0.36 mol) of 3, in 670 ml pyridine and 270 g p-

toluenesulphonyl chloride as described in ref. [9a]. Yield: 139 g (88%); m.p.

92°C (ethanol/water), ref. [9a]: 93-94°C (ethanol/water); [α]D = +185° (c = 1,

CHCL3), ref. [9a]: +183° (c = 1, CHCl3)

C22H26O7S (434.47)

Calculated   C  60.81      H 7.37%,
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Found        C  60.61      H  7.15%.

C.I.1.4. Benzyl 2-O-p-tolylsulphonyl-β-L-arabinopyranoside (5)

5 was prepared from 135 g (0.31 mol) of 4 and 100 ml 90% acetic acid as

described in ref. [9a]. Yield: 110.4 g (90%); [α]D = +125° (c = 1, CHCL3), ref.

[9a]: +134° (c = 1, CHCl3)

C19H22O7S  (394.41)

Calculated   C  51.81      H 8.12%,

Found        C  57.71      H  8.05%.

C.I.1. Benzyl 2,3-anhydro-β-L-arabinopyranoside (6)

6 was prepared from 110 g (0.28 mol) of 5, 1.2 L methanol and 8.9 g (0.37

mol) sodium. as described in ref. [9a]. Yield: 38.7 g (66%); m.p. 78°C (EE), ref

[1a]: 76-77°C (EE); [α]D = -15° (c = 1, EE), ref. [9a]: -13° (c = 1, EE)

C12H14O4  (222.22)

Calculated   C  64.86      H 6.34%,

Found        C  64.32      H  6.32%.

C.I.2. Benzyl 2,3-anhydro-α-D-ribopyranoside (15)

C.I.2.1. Tetrabenzoate of β-D-arabinopyranoside (8)

8 was prepared from 50 g (0.33 mol) D-arabinose (7) and 300 ml CH2Cl2,

100 ml pyridine and 250 ml benzoyl chloride as described in ref. [9a]. Yield

174 g (93%); m.p. 172°C (ethanol), ref. [9]: 175°C (ethanol); [α]D= -318° (c =

1, CHCl3), ref. [9a]: -321° [c = 0.3, CHCl3), C33H26O9 (566.56)

Calculated   C  69.96      H 4.63%,

Found        C  70.35      H  4.52%.
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C.I.2.2. 2,3,4-Tri-O-benzoyl-β-D-arabinopyranosyl bromide (9)

9 was prepared from 173 g (0.30 mol) 8, 200 ml CH2Cl2 and 325 ml

HBr/acetic acid as reported in ref. [9a]. Yield 125 g (78%); m.p. 143°C

(CH2CL2/EE), ref. [12a]: 146-148°C (EE); [α]D= -348° (c = 1, CHCl3), ref.

[12a]: -353° [c = 1.4, CHCl3), C26H21BrO9  (566.56)

Calculated   C  59.44     H   4.03    Br 15.21%,

Found        C  59.68     H   4.00    Br  15.09%.

C.I.2.3. Benzyl 2,3,4-tri-O-benzoyl-α-D-arabinopyranoside (10)

10 was prepared from 124 g (0.22 mol) of 8, 1 L benzyl alcohol, as described

in ref. [12a]. Yield 110 g (92%); m.p. 144°C (ethanol), ref. [12a]: 143-144°C

(ethanol); [α]D= -143° (c = 1, CHCl3), ref. [12a]: -146.7° [c = 2.11, CHCl3)

C33H28O8  (552.55)

Calculated   C  71.73      H 5.11%,

Found        C  72.26      H  5.07%.

C.I.2.4. Benzyl α-D-arabinopyranoside (11)

11 was prepared from 110 g (0.20 mol) of 10, 365 ml CH2Cl2 and 250 ml

MeOH as described in ref. [9].Yield 45 g (93%); m.p. 136°C (ethanol), ref.

[9a]: 140-141°C (ethanol); [α]D= +13° (c = 1, water), ref.[9a]: +12.3° (c = 1.4,

water). C12H16O5  (240.23)

Calculated   C  59.99      H 6.71%,

Found        C  59.80      H  6.50%.

C.I.2.5. Benzyl 3,4-O-isopropylidene-α-D-arabinopyranoside (12)



40

12 was prepared from 44 g (0.18 mol) of 11, 500 ml acetone, 300 ml 2,2-

dimethoxypropane and 1.0 g. p-toluenesulphonic acid as described in ref.

[1a]. Yield: 45 g (89%). The product was used directly for the next step.

C15H20O5 (280.31).

C.I.2.6. Benzyl 3,4-O-isopropylidene-2-O-tolylsulphonyl-α-D-arabinopy-

ranoside (13)

13 was prepared from 44 g (0.157 mol) of 12, 600 ml pyridine and 190 g p-

toluenesulphonyl chloride as described in ref. [9a].Yield 55 g (80%); m.p.

80°C (ethanol/water), ref. [9a]: 80-82°C (ethanol/water); [α]D= -8° (c = 1,

CHCl3), ref.[9a]: -7° [c = 1, CHCl3), C22H26O7S  (434.47)

Calculated   C  60.81      H 6.02     S  7.37%,

Found        C  61.02      H  6.00    S   7.20%.

C.I.2.7. Benzyl  2-O-tolylsulphonyl-α-D-arabinopyranoside (14)

14 was prepared from 54 g (0.124 mol) of 13, 110 ml 90% acetic acid as

described in ref. [9a]. Yield: 42 g (86%); m.p. 118°C (ethanol/water), ref. [9a]:

116-117°C (ethanol/water); [α]D= +22° (c = 1, CHCl3), ref. [9a]: +25° [c = 1,

CHCl3), C19H22O7S  (394.41)

Calculated   C  57.81      H 5.61     S  8.12%,

Found         C  57.64      H  5.60    S   8.02%.

C.I.2. Benzyl 2,3-anhydro-α-D-ribopyranoside (15)

15 was prepared from 40 g (0.102 mol) of 14, 910 ml methanol and 3.0 g

sodium as described in ref. [9a]. Yield: 15 g (63%); m.p. 97°C (EE/PE), ref.

[9a]: 97-98°C (PE); [α]D= +190° (c = 1, EE), ref. [9a]: +188° [c = 1, EE),

C12H14O4  (222.22)

Calculated   C  64.86      H 6.34%,
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Found         C  64.56      H  6.22%.

C.I.3. Benzyl 2,3-anhydro-4-O-triflyl-β-L-ribopyranoside (16) and Benzyl

2,3-anhydro-4-O-triflyl-α-D-ribopyranoside (17)

16 and 17 were prepared from 2.2 g (10 mmol) 6 and 15 respectively, 75 ml

CH2Cl2, 2 ml pyridine and 1.8 ml (10.97 mmol) trifloromethansulphonic

anhydride as described in ref. [9a].

C.I.3.1 Benzyl 2,3-anhydro-4-O-triflyl-β-L-ribopyranoside (16)

Yield: 3.2 g (91%); m.p. 81°C (ethanol), ref. [9a]: 82-83°C (ethanol); [α]D=

+15° (c = 1, CHCl3), ref. [9a : +16° [c = 1, CHCl3), C13H13F3O6S  (354.29)

Calculated   C  44.07      H 3.69     S  9.04%,

Found        C  43.85      H  3.60    S  9.25%.

C.I.1.2. Benzyl 2,3-anhydro-4-O-triflyl-α-D-ribopyranoside (17)

Yield: 3.3 g (94.3%); m.p. 65°C (ethanol), ref. [9a]: 66-68°C (ethanol); [α]D=

+129° (c = 1, CHCl3), ref. [9a]: +128° [c = 1, CHCl3), C13H13F3O6S  (354.29)

Calculated   C  44.07      H 3.69     S  9.04%,

Found        C  43.85      H  3.60    S   9.25%.

C.II. General Procedure for the Preparation of Trithiocarbonates

The thiocarbonate salt was prepared by mixing (4.97 mg, 2 mmol) sodium

sulphide in 10 mL of water and then 189 mg (2.5 mmol) carbon disulphide

was added into it. The reaction mixture was warmed to 40°C and allowed to

stir for 6h. The excess carbon disulfide was removed by evaporation at

reduced pressure. To the resulting red-coloured solution was dropped slowly

a solution of 354 mg (1 mmol) triflate 16 or 17, dissolved in small amounts
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of ethanol, respectively. Stirring at room temperature for 10 min produced

the yellow colored precipitates of trithiocarbonate sugars.

C.II.1. Benzyl 3,4-dideoxy-3,4-S-thiocarbonyl-α-D-arabinopyranoside

(21)

Yellow crystals, mp 131-133°C, 1H NMR (250 MHz, CDCl3): δ = 7.36-7.38 (m,

5H), 4.95 (d, J = 11.9 Hz, 1H), 4.76 (ddd, J = 3.05, 4.27, 6.18 Hz, 1H), 4.62

(d, J = 11.9 Hz, 1H), 4.46 (d, J = 6.41 Hz, 1H), 4.30 (dd, J = 3.05, 13.42 Hz,

1H), 4.07 (m, 2H), 3.87 (dd, J = 3.35, 13.42 Hz, 1H); 13C NMR (63MHz,

CDCl3): δ = 162.1 (C=S), 128.1, 128.3, 128.7 (Ph), 102.3 (C-1), 70.8

(CHHPh), 69.9 (C-2), 61.6 (C-5), 61.4 and 58.7 (C-3, C-4). FAB-MS: m/z =

314.1 (M+)

C13H14O3S3  (314.45)

Calculated   C  49.66      H 4.49     S  30.59%,

Found        C  49.58      H  4.45    S  30.56%.

C.II.2. Benzyl 3,4-dideoxy-3,4-S-thiocarbonyl-β-L-arabinopyranoside (22)

Yellow crystals, m.p. 162.3°C, 1H NMR (250 MHz, CDCl3): δ = 7.34-7.42 (m,

5H), 5.07 (br s, 1H), 4.82 (d, J = 11.59 Hz, 1H), 4.81 (m, 1H), 4.61 (d, J =

11.59, 1H), 3.88 (dd, J = 1.83, 13.42 Hz, 1H), 4.17 (m, 3H); 13C NMR

(63MHz, CDCl3): δ = 128.8, 128.35, 128.1 (Ph), 97.1 (C-1), 70.4 (CHHPh),

68.3 (C-2), 60.9, 60.38 (C-3, C-4), 56.8 (C-5).  FAB-MS: m/z = 314.1 (M+)

C13H14O3S3  (314.45)

Calculated   C  49.66      H 4.49     S  30.59%,

Found         C  49.58      H  4.45    S  30.56%.
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C.II.3. Methyl 3,5-dideoxy-3,5-S-thiocarbonyl-α-D-xylofuranoside (24)

Yellow oil; 1H NMR (250 MHz, CDCl3): δ = 5.23 (s, 1H), 4.29 (t, J = 7.3 Hz,

1H), 3.66 (m, 2H), 3.52 (m, 2H), 3.35 (s, 3H); 13C NMR (63MHz, CDCl3): δ =

102.7 (C-1), 75.7 (C-2), 56.1 (OCH3), 55.7 (C-3), 38.6 (C-5). FAB-MS: m/z =

207.1 (M+-OCH3), C7H10O3S3  (238.1)

Calculated   C  35.27      H 4.23     S  40.36%,

Found        C  35.15      H  4.16    S  40.34%.

C.III. General Method of Synthesis of Benzothiophene Derivatives

2-Bromothiophenol (1.1 mmol) was added to an efficiently stirred

suspension of Na2CO3 (1.1 mmol) in 20 mL CH3CN at 0°C. The reaction

mixture was stirred at this temperature for 15 min and then 1 mmol of β-

epoxytriflate 16 or 17, dissolved in 5 mL of CH3CN, was added into it

dropwise. The reaction mixture was stirred at the same temperature for two

hours and then overnight at room temperature. Completion of the reaction

was confirmed by TLC [dichloromethane:pet. ether (4:6)] indicating the

formation of a new spot just below the epoxy triflate spot (Rf = 0.6). The

reaction was quenched with NH4Cl solution and extracted with water. The

organic phase was separated and dried over Na2SO4 and concentrated to a

syrup which was further purified by column chromatography giving 80-88%

pure product.

C.III.1. Benzyl 2,3-anhydro-4-(2-bromo phenyl sulphonyl)-β-L-ribopyra-

noside (26)
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Colourless oil; 1H NMR (250 MHz, CDCl3 ): δ = 7.50-7.47 (dd, J = 1.2, 7.9

Hz,  1H aromatic), 7.39-7.35 (dd, J = 1.2, 6.5 Hz, 1H aromatic), 7.02-9.96

(ddd, J = 1.5, 7.6, 9.1 Hz, 1H), 4.97 (s, 1H), 4.72 (d, J = 11.6 Hz, 1H), 4.44

(d, J = 11.6 Hz, 1H ), 3.79-3.61 (m, 3H ), 3.37 (d, J = 3.6 Hz, 1H), 3.04 (d, J

= 3.6 Hz, 1H), 13C NMR (63 MHz, CDCl3) δ: 137.0-125.4 (12xC, Aromatic),

93.8 (C-1), 70.0 (CHHPh), 57.6 (C-5), 54.2, 50.2 (C-2, C-3), 39.0 (C-4).

C18H17BrO3S, (392.9), [α]D = +336.5° (c = 1, CH2Cl2).

Calculated   C  56.03      H  4.71%,

Found          C  56.46      H  4.50%.

C.III.2. 4-(2-Bromo phenyl sulphonyl)-2-benzyloxy-3,6-dihydro-2-H-

pyran-3-ol (27)

50 mg (0.127 mmol) of benzyl 2,3-anhydro-4-(2-bromo phenyl sulphonyl)-β-

L-ribopyranoside (20) was added in 5 ml THF under nitrogen atmosphere

and cooled to -78°C. Then 40 µL of n-BuLi (1.6 M in hexane) was added in

the reaction mixture and stirred for 6h. TLC (8% ethyl

acetate:dichloromethane) indicated the completion of reaction. The reaction

mixture was neutralized with NH4Cl, extracted with dichloromethane:water

and concentrated to a syrup. The product was purified by column

chromatography in 74% yield.

C.III.3. 4-(2-Bromo phenyl sulphonyl)-2-benzyloxy-3,6-dihydro-2H-

pyran-3-ol (31)

Colourless oil; 1H NMR (250 MHz, CDCl3) δ: 7.47-6.92 (m, 9H aromatic),

6.10 (br. s, 1H), 4.99 (d, J = 4.1 Hz, 1H), 4.79 (d, J = 11.4 Hz, 1H), 4.53 (d, J

= 11.4 Hz, 1H), 4.28 (br. s, 1H), 4.13-3.90 (m, 2H). 13C NMR (62.8 MHz,
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CDCl3) δ: 136.8-127.7 (12xC, Aromatic + C-3, C-4); 95.2 (C-1), 70.4 (CH2Ph),

65.5 (C-2), 62.0 (C-5)

C18H17BrO3S  (392.9), [α]D = +62.3 (c = 1, CH2Cl2).

C.III.4. α,β-Unsaturated ketone 32

Colourless oil; 1H NMR (250 MHz, CDCl3) δ: 7.68-7.18 (m, 9H aromatic),

5.45 (d, J = 1.86 Hz, 1H), 4.82 (s, 1H), 4.76 (d, J = 11.6 Hz, 1H, CHHPh),

4.67-4.59 (m, 2H), 4.18 (d, J = 11.6 Hz, 1H, CHHPh). 13C NMR (62.8 MHz,

CDCl3) δ: 137.6-128.1 (13xC; Aromatic + C-3 and C-4); 96.6 (C-1), 70.9 (-

CH2Ph), 60.9 (C-5)

C18H15BrO3S  (391.29).

C.IV. General Method of Preparation of Thiazolidines

The thiosemicarbazide or 4-phenylthiosemicarbazide (0.55 mmol) was added

in 10 mL of 1,2-dioxane. After stirring 15 min., 177 mg (0.5 mmol) of β-

epoxytriflate 16 or 17 in 5 mL THF, was added dropwise. The reaction

mixture was stirred at room temperature overnight and then concentrated to

a syrup. Column chromatography with 10% methanol:dichloromethane as

eluent gave a mixture of two products, very near to one another.

Thiazolidines 36 and 37 were purified, after acetylation with pyridine-acetic

anhydride, on a small column using dichloromethane as eluent.

C.IV.1. Thiazolidine 36

Colourless crystals, m.p. 187°C, yield: 74%. 1H NMR (250 MHz, CDCl3) δ:

7.33-7.20 (m, 5H), 5.22 (s, 1H), 4.81(br. s, 1H), 4.78 (br. s, 1H), 4.62 (d, J =

11.1 Hz, 1H, CHHPh), 4.39 (d, J = 11.1 Hz, 1H, CHHPh), 4.06 (m, 1H), 4.37-

3.61 (m, 2H), 2.50 (s, 3H), 2.08 (s, 3H), 2.00 (s, 6H). 13C NMR (62.8 MHz,
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CDCl3) δ: 95.5 (C-1), 70.2 (C-CH2Ph), 65.5 (C-2), 58.3 (C-4), 58.1 (C-5), 35.2

(C-3), 27.7, 26.5, 23.1 and 20.8 (4xCH3). (Five quaternary signals at δ 183.0,

174.5, 169.5, 169.2 and 135.5 ppm)

C21H25N3O7S  (464.4), [α]D = +167.3° (c = 1, CH2Cl2)

Calculated   C  53.95      H  6.25       N  8.9             S  5.86%

Found          C  53.49      H  6.137     N  8.259        S  5.352%.

C.IV.2. Thiazolidine 37

Purified after acetylation with pyridene-acetic anhydride on a small column,

using 2% ethyl acetate:dicholoromethane, in 16% yield.

Colourless oil; 1H NMR (250 MHz, CDCl3) δ: 7.30-7.18 (m, 5H), 5.22 (s, 1H),

4.99(br. s, 1H), 4.76 (br. s, 1H), 4.56 (d, J = 11.1Hz, 1H), 4.36 (d, J = 11.1Hz,

1H), 4.00 (m, 1H), 3.72-3.29 (m, 2H), 2.06 (s, 6H), 1.97 (s, 3H), 1.37 (s, 3H).

13C NMR (62.8 MHz, CDCl3) δ: 95.8 (C-1), 70.6 (CH2Ph), 66.2 (C-2), 61.7 (C-4),

59.2 (C-5), 35.2 (C-3), 27.6, 24.9, 21.8 and 20.9 (4xCH3). (Five quaternary

signals at δ 183.0, 177.5, 169.4, 164.5 and 136.4 ppm)

C21H25N3O7S  (464.4), [α]D = +15.3° (c = 1, CH2Cl2)

Calculated   C  53.95      H  6.25       N  8.9             S  5.86%

Found          C  53.49      H  6.137     N  8.259        S  5.352%.

C.IV.3. Thiazolidine 38

Colourless oil; 1H NMR (250 MHz, CDCl3) δ: 7.45-6.78 (m, 10H), 4.87 (s, 1H),

4.81 (s, 1H), 4.66 (d, J = 11.6 Hz, 1H), 4.47 (d, J = 11.6 Hz, 1H), 4.30 (br. s, J =

5.47 Hz, 1H), 3.92-3.56 (m, 3H). 13C NMR (62.8 MHz, CDCl3) δ: 95.7 (C-1),

70.1 (C-2), 66.5 (CH2Ph), 59.1 (C-3), 59.0 (C-5), 35.1 (C-3), 26.9, 23.4 and 20.8

(3xCH3); C25H29N3O6S  (499.4).
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C.IV.4. Thiazolidine 39

Immidiatly acetylated with pyridene-acetic anhydride and then purified on TLC

cards using 10% ethyl acetate:dicholoromethane, giving 66% yield of the 39

1H NMR (250 MHz, CDCl3) δ: 7.33-7.20 (m, 5H), 5.22 (s, 1H), 4.99 (br. s, 1H),

4.76 (br. s, 1H), 4.56 (d, J = 11.1Hz, 1H, CHHPh), 4.36 (d, J = 11.1Hz, 1H,

CHHPh), 4.00 (m, 1H), 3.72-3.29 (m, 2H), 2.06 (s, 6H, 2xCH3), 1.97 (s, 3H, -

CH3), 1.37 (s, 3H, -CH3). 13C NMR (62.8 MHz, CDCl3) δ: 94.1 (C-1), 70.1

(CH2Ph), 70.0 (C-2), 58.9 (C-4), 58.8 (C-5), 41.5 (C-3), 27.3, 25.4, 23.9 and

20.7 (4xCH3), C21H25N3O7S  (464.4), [α]D = +67.0° (c = 1, CH2Cl2)

Calculated   C  53.95      H  6.25       N  8.9             S  5.86%

Found          C  53.49      H  6.137     N  8.259        S  5.352%.

C.V. Synthesis of Anamarine

C.V.1.Synthesis of “A” part of anamarine

C.V.1.1. Methyl-4,6-O-benzylidene-α-D-glucopyranoside (44)

To a stirred suspension of methyl α-D-glucopyranoside (43) (60 g, 0.31 mol) in

dry DMF (247 ml) was added α,α-dimethoxytoluene (47 ml, 0.31 mol) and p-

toluenesulfonic acid (6.18 g, 0.03 mol). The mixture was then refluxed on a

steam bath under vacuum, produced by water aspirator, for 1h. the solvent

was evaporated at reduced pressure and the solid material was suspended in

hot aqueous NaHCO3. After cooling to room temperature, crystals of almost

pure compound were obtained which were recrystallized in hot ethanol and

dried in a desicator under vacuum at 70°C overnightto afford 44 as colourless

crystalls. Yield 78.4 g (90%), m.p. 162-164°C (ethanol); 1H NMR (250 MHz,

CDCl3): δ = 7.33-7.87 (m, 5H), 5.5 (s, 1H), 4.76 (d, J = 3.9 Hz, 1H), 4.26 (dd, J
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= 10.3, 9.7 Hz, 1H), 3.88 (dd, J = 9.5, 9.3 Hz, 1H), 3.72 (m, 2H), 3.61 (dd, J =

3.9, 9.5 Hz, 1H), 3.47 (dd, J = 9.3, 9.1 Hz, 1H), 3.02 (s, 1H, OH), 2.48 (s, 1H,

OH); 13C NMR (63 MHz,CDCl3): δ = 126.2-129.7 (PhH), 101.8 (PhCH), 99.7(C-

1), 80.9 (C-4), 72.8 (C-2), 71.6 (C-3), 68.8 (C-6), 63.3 (C-5), 55.4 (OCH3)

C14H18O6  (282.1), [α]D20 +110° (c = 0.5, CH2Cl2).

C.V.1.2. Methyl 4,6-O-benzylidene-2,3-dideoxy-α-D-erythrohex-2-enopyra-

noside (45)

To a stirred solution of benzylidene acetal 44 (30 g, 0.11 mol) in toluene (300

ml) was added triphenylphosphine (115g, 0.44 mol), iodoform (86.6 g, 0.22

mol), and imidazole (15.0 g, 0.22 mol). The mixture was refluxed for 1h with

vigorous stirring. The solution was cooled and washed with saturated aqueous

sodium bicarbonate. The organic layer was separated, dried over MgSO4 and

evaporated to dryness to yield a brown residue, which was extracted with hot

hexane. The solid material was filtered and the filtrate evaporated. Purification

on a column of silica gel and eluting with dichloromethane:pet. ether (80:20)

gave 45 as a white solid. Yield 23.6 g (87%), m.p. 122°C (ethanol); 1H NMR

(250 MHz, CDCl3): δ = 7.35-7.52 (m, 5H, PhH), 6.14(d, J = 10.37 Hz, 1H) 5.73

(dt, J = 10.37, 2.45 Hz 1H) 5.58 ( s, 1H) 4.90 (brs, 1H) 4.31 ( m, 1H), 4.12-4.17

( m, 1H), 3.74-3.88 (m, 2H), 3.46 ( s, 3H); 13C NMR (63 MHz, CDCl3): δ = 130.9,

129.2, 128.4, 126.7, 126.3, 102.3, 96.2, 75.3, 69.5, 64.0 and 56.0

C14H16O4  (248.2), [α]D25 +115.2° (c = 0.7, CH2Cl2).

C.V.1.3. Methyl 2,3-didehydro-2,3-dideoxy-α-D-erythrohexoside (46)

To a stirred solution of 45 (20 g, 0.08 mol) in absolute CH2Cl2 (100ml) was

added anhydrous t-BuOOH (14.5 ml, 5.5 M sol. in decane) under nitrogen.

After 10 min, AlCl3 (10.7 g, 0.08 mol) was added and stirring was continued
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at the same temperature till TLC analysis showed no starting material. The

reaction was quenched with slow addition of water and extracted with CH2Cl2

(2 x 100 ml). The combined organic layers were dried over anhydrous sodium

sulfate and evaporated under low pressure to yield almost pure 46 as a

colourless oil. Yield 10.3 g (75%), 1H NMR (250 MHz, CDCl3): δ = 5.96 (d, J =

10.2 Hz, 1H), 5.74 (dt, J = 2.46, 10.2 Hz, 1H), 4.87 brs, 1H), 4.18 (m, 1H), 3.86

(brs, 2H), 3.64-3.72 (m, 1H), 3.44 (s, 3H), 3.00 (brs, 1H); 13C NMR (63

MHz,CDCl3): δ = 133.7, 126.0 (C-2, C-3), 95.4 (C-1), 71.5, 62.7 (C-4, C-5), 64.2

(C-6), 55.9 (OCH3). FAB-MS: m/z = 159.0 (M+-1), C14H18O6   (160.2), [α]D24

+104.3° (c = 1, methanol).

C.V.1.4. Methyl 6-O-benzoyl-2,3-dideoxy-α-D-erythro-hex-2-enopyranoside

(47)

To a stirred solution of 46 (10.3 g, 0.06 mol) in absolute pyridine (25 ml) was

added a solution of benzoylchloride (12.4 g, 0.09 mol) in CH2Cl2 (15 ml). In

such a rate that temperature did not rise above -5°C. The reaction was stirred

at the same temperature for 5h. The normal workup and purification of the

crude material on the silica gel column with pure dichloromethane yielded 47

as a colourless oil. Yeild 15.1 g (90%). 1H NMR (250 MHz, CDCl3): δ = 7.35-

8.03 (m, 5H), 5.92 (br d, J = 10.37, 1H), 5.70 (dt, J = 2.44, 10.37 Hz, 1H), 4.85

(brs, 1H), 4.73 (dd, J = 4.88, 12.21 Hz, 1H), 4.45 (dd, J  = 2.14, 12.21 Hz, 1H),

4.07 (d J = 8.85 Hz, 1H), 3.83-3.88 (m, 1H), 3.39 (s, 3H); 13C NMR (63 MHz,

CDCl3): δ = 133.3, 133.1, 129.8, 128.4, 126.4, 95.6, 70.6, 64.3, 64.0, 55.9.

FAB-MS: m/z =133.1(M+-OMe)

C14H16O6   (134.1), [α]D24 +104.3° (c = 1, methanol)
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Fig. 18. 1H and 13C NMR spectra of Methyl-4,6-O-benzylidene-α-D-gluco-
pyranoside (44).
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C.V.1.5. 2(S)-Methoxy-6(S)-hydroxymethyl-5,6-dihydro-2H-pyran (49)

To a stirred solution of 48 (15 g, 0.057 mol) in absolute pyridine (25 ml) at 0°C

was added a solution of mesyl chloride (5 ml). Stirring was continued at the

same temperature for 4h. On completion of the reactions (TLC control), the

mixture was poured into a beaker containing crushed ice. The aqueous

solution was extracted with ether (2 x 50 ml) and the combined organic layers

were washed successively with a cooled 2N HCl and saturated aqueous

NaHCO3 solution, and finally with water. After drying over anhydrous Na2SO4,

the solvent was removed at low pressure. The crude material was dissolved in

dry THF, under nitrogen atmosphere and gentle stirring, superhydride (5 ml,

1M solution in THF) was added at 0°C. The temperature was slowly raised to

40°C after 3h the TLC showed no starting material. Excess hydride was

destroyed with slow addition of water, then 3N NaOH solution (10 ml) was

added, followed by the addition of 30% aqueous H2O2 solution (10 ml). The

mixture was then brought into a separatory funnel and the THF layer was

collected. The aqueous layer was further extracted with ether, the combined

organic layers were dried over anhydrous Na2SO4 and the solvent was

removed. After flash chromatography on a silica gel column by eluting with 5%

ethylacetate in CH2Cl2. 49 was obtained as a colourless oil. Yield 5.76 g (70%).

1H NMR (250 MHz, CDCl3): δ = 6.09-5.98 (m, 1H), 5.81-5.70 (m, 1H), 4.90 (d, J

= 2.00 Hz, 1H), 4.01 (m, 1H), 3.82-3.54 (m, 2H), 3.44 (s, 3H), 2.29 (brs, 1H),

2.25-2.04 (m, 1H), 1.99-1.81 ( m, 1H); 13C NMR (63 MHz,CDCl3): δ = 128.6,

125.3, 95.7, 67.0, 76.2, 55.3, 26.0. EI-MS: m/z =113 (M+-OMe)

C7H12O3   (144), [α]D25 –75.3° (c = 0.74, C6H6).
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Fig. 19. 1H and 13C NMR spectra of Methyl 4,6-O-benzylidene-2,3-dideoxy-
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Fig. 20. 1H and 13C NMR spectra of Methyl 2,3-didehydro-2,3-dideoxy-α-D-
erythrohexoside (46).
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C.V.2. Synthesis of side chain (F)

C.V.2.1. 1,2:5,6-Di-O-isopropylidene-α-D-glucofuranoside (51)

To an efficiently stirred suspension of anhydrous D-glucose (150 g) in

anhydrous acetone (1 liter) was added powdered anhydrous zinc chloride (120

g) followed by 7.2 g of 85% phosphoric acid. This mixture was stirred for 30

hours at room temperature, the undissolved D-glucose was filtered and

washed with acetone. The filtrate was made slightly alkaline with NaOH

solution at 0°C. The insoluble material was removed and the filtrate was

concentrated to a syrup, which was extracted with dichloromethane:water. The

organic phase was dried and concentrated to white crystalline residue of

1,2:5,6-di-O-isopropylidene-α-D-glucofuranoside, which was further crystalli-

zed from petrol ether:dichloromethane.

1H NMR (250 MHz, CDCl3): δ = 5.95 (d, J 3.62 Hz, 1H), 1.50 (s, CH3), 1.47 (s,

CH3), 1.32 (s, CH3), 1.24 (s, CH3); 13C NMR (63 MHz, CDCl3): δ = 105.3 (C-1),

73.5,75.2, 81.2, 85.1 (C-2 to C-5), δ 67.7 (C-6), 25.2, 26.2, 26.8, 26.9 (4 x

CH3).  plus two signals of two quaternary acetonide carbons at δ 110 and δ

112 ppm.

C12H20O6   (260.3), m.p.110-111°C. Lit. 109°C [27].

C.V.2.2. 1,2-O-Isopropylidene-α-D-glucofuranoside (52)

52 was synthesized by treating 51 with 20% acetic acid solution and stirring

the reaction mixture at 25°C for overnight. Completion of the reaction was

confirmed by TLC at 10% methanol:DCM indicating the complete

conversion.
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Fig. 21. 1H and 13C NMR spectra of Methyl 6-O-benzoyl-2,3-dideoxy-α-D-
erythro-hex-2-eno-pyranoside (47).
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Product was further purified by column chromatography using diethyl ether as

eluent, in 91% yield.

1H NMR (250 MHz, Acetone-d6): δ = 5.77 (d, J = 3.65 Hz, 1H), 4.38 (d, J = 3.65

Hz, 1H), 4.10 (d, J = 2.75 Hz, 1H), 3.89 (dd, J = 2.45, 8.25 Hz, 1H), 3.79 (m,

1H), 3.65 (dd, J = 3.05, 11.6 Hz, 1H), 3.45 (dd, J = 5.8, 11.6 Hz, 1H), 3.19 (m,

1H), 1.30 (s, CH3), 1.19 (s, CH3); 13C NMR (63 MHz, Acetone d6): δ = 106.3 (C-

1), 85.4, 81.2, 75.4, 70.3 (C-2 to C-5), 65.2 (C-6), 26.9, 25.3 (2xCH3). Plus a

signal of quaternary acetonide carbons at δ 112.6 ppm.

C9H16O6 (220.2), m.p. 158°C.

C.V.2.3. 1,2-O-Isopropylidene-6-O-tosyl-α-D-glucofuranoside (53)

5 g of 52 was dissolved in pyridine (30 ml) and cooled to 0°C, then 4.7 g of p-

toluensulphonic acid chloride was added portion wise. The reaction

temperature was maintained at 0°C for further two hours and then stirred at

room temperature overnight. The completion of the reaction was confirmed by

TLC (10% ethyl acetate:dichloromethane). The reaction was poured on cold

aqueous solution of NaHCO3 and extracted with CH2Cl2, dried with anhydrous

Na2SO4 and concentrated to a syrup, which solidified immediately. Purification

was carried out by column chromatography (4% ethyl acetate:dichlorometh-

ane).

1H NMR (250 MHz, CDCl3): δ = 7.81 (d, J = 8.3 Hz, 1H), 7.36 (d, J = 8.3 Hz,

1H), 5.89 (d, J = 3.65 Hz, 1H), 5.30 (s, 1H), 4.50 (d, J = 3.65Hz, 1H), 4.34 (d, J

= 2.63 Hz, 1H), 4.31-4.0 (m, 5H), 2.44 (s, CH3-Aromatic), 1.50, 1.25 (s, 2xCH3).

13C NMR (62.8 MHz, CDCl3): δ = 142.2, 132.2, 130.0, 128.0 (aromatic signals
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Fig. 22. 1H and 13C NMR spectra of 5,6-Anhydro-1,2-O-isopropylidene-α-D-
glucofuranoside (54).



68

of Ts.), 105.0 (C-1), 85.0, 79.2, 74.9 and 67.8 (C-2 to C-5), 72.2 (C-6), 28.8 and

26.2 (2xCH3). Plus one signal of quaternary acetonide carbon at δ 111.9 ppm.

C15H20O8S (360.4), m.p. 99.6°C, [α]D = -7° (c = 1, CH2Cl2).

C.V.3. 5,6-Anhydro-1,2-O-isopropylidene-α-D-glucofuranoside (54)

Powdered 53 (1.8 g, 5.26 mmol) was added to a suspension of LiAlH4 (519 mg)

in anhydrous ethyl ether, according to the ref. [30]. The mixture was boiled

under reflux for six hours, cooled again and the excess of LiAlH4 was destroyed

by the addition of water and 15% NaOH. Solids were filtered off and the filtrate

was dried over anhydrous Na2SO4 and evaporated to yield 78% of the product

after column chromatography. m.p.134°C. C9H14O5 (202.2); 1H NMR (250 MHz,

CDCl3): δ = 5.99 (d, J = 3.6 Hz, 1H), 4.51 (d, J = 3.05 Hz, 1H), 4.26 (t, J = 3.05,

6.23 Hz, 1H), 4.27 (m, 1H), 4.02 (m, 1H), 3.42 (m, 1H), 3.21 (d, J = 3.48 Hz,

1H), 3.01-2.87 (m, 2H), 1.37, 1.31 (s, 2xCH3). 13C NMR (62.8 MHz, CDCl3) δ:

105.0 (C-1), 85.1, 79.5, 75.1 (C-2 to C-4), 50.1 (C-5), 46.1 (C-6), 28.7 and 26.2

(2xCH3). Plus a signal of quaternary acetonide carbon at δ 111.9 ppm.

C.V.4. Modifying the route for side chain synthesis

C.V.4.1. 1,2:5,6-Di-O-isopropylidene-3-O-metoxymethyl-α-D-glucofurano-

side (56)

1040 mg of 51 (4 mmol) was added to 50 mg of NaH (6 mmol) suspension in

THF (50 ml) at 0°C followed by dropwise addition of MOM-Cl (0.5 ml). The

reaction mixture was stirred overnight, excess of NaH was destroyed by

addition of NH4Cl solution and extracted with dichloromethane:water. Organic

phase was dried with anhydrous Na2SO4, concentrated to a syrup and purified

by column chromatography in 79% yield. C14H24O7 (304.3)
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1H NMR (250 MHz, CDCl3): δ = 5.89 (d, J = 3.64 Hz, 1H), 3.37 (s,-OCH3, 3H),

1.50 (s, CH3), 1.42 (s, CH3), 1.32-1.37 (s, 2xCH3). 13C NMR (63 MHz, CDCl3): δ

= 105.3 (C-1), 96.2 (O-CH2-O), 72.4,76.5, 81.1, 83.3 (C-2 to C-5), 67.5 (C-6),

56.3 (C-OCH3), 26.9, 26.2, 25.4, 25.4 (4 x CH3). Plus two signals of quaternary

acetonide carbons at δ 110 and δ 112 ppm.

C.V.4.2. 3-O-Methoxymethyl-1,2-O-isopropylidene-α-D-glucofuranoside

(57)

A solution of 56 in 20% acetic acid was stirred at 25°C for overnight and then

reaction mixture was concentrated under reduced pressure to give 1,2-O-

isopropylidene-3-methoxy methyl-α-D-glucopyranoside as a syrup in 90%

yield. [α]D= +21°, C11H20O7 (264.3)

C.V.4.3. 3-O-Methoxymethyl-6-deoxy-6-iodo-1,2-isopropylidene-α-D-gluco-

furanoside (58)

The alcohol 57 was treated with 1.5 equiv. PPh3, 1.5 equiv. of imidazole, 3

equiv. of iodine and heated up to 60°C for two hours. Then cooled to room

temperature, diluted with ether, washed successively with water, aq. 10%

Na2S2O3 and saturated aq. NaCl solution. The solvent was evaporated under

reduced pressure. The product, 58, was obtained in 84% yield after

chromatography. C11H19IO6 (374.1) 1H NMR (250 MHz, CDCl3): δ = 5.87 (d = J

3.67 Hz, 1H), 3.40 (s, OCH3, 3H), 2.0 (br. s, 2H), 1.29 (s, CH3), 1.26 (s, CH3).

13C NMR (63 MHz, CDCl3): δ = 105.2 (C-1), 97.2 (O-CH2-O), 83.6, 82.3, 81.1,

67.6 (C-2 to C-5), 56.1 (-OCH3), 26.9, 26.4 (2xCH3), 14.2 (C-6). Plus a

quaternary signal of acetonide carbon at δ 112.3 ppm.
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Fig. 23. 1H and 13C NMR spectra of 3-O-methoxymethyl-6-deoxy-6-iodo-1,2-
isopropylidene-α-D-glucofuranoside (58).
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Fig. 24. 1H and 13C NMR spectra 3-O-methoxy methyl-6-deoxy-1,2-
isopropylidene-α-D-glucofuranosid (59).
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C.V.4.4. 3-O-Methoxymethyl-6-deoxy-1,2-O-isopropylidene-α-D-glucofura-

nosid (59)

To a suspension of 1.5 equiv. of NaBH4 in diglyme, 1.0 equiv. of 56 was added

and heated upto 80°C for 6h and then cooled gradually to room temperature.

The excess of NaBH4 was destroyed with NH4Cl solution extracted in

dichloromethane:water, dried with anhydrous Na2SO4 and concentrated to a

syrup. The product, 3-O-methoxymethyl-6-deoxy-1,2-isopropylidene-α-D-

glucofuranoside, obtained in 81% yield after column chromatography.

1H NMR (250 MHz, CDCl3): δ = 5.87 (d, J = 3.73Hz, 1H), 3.35 (s, -OCH3, 3H),

1.42 (s, CH3), 1.18-1.16 (s, 2xCH3). 13C NMR (63 MHz, CDCl3): δ = 105.0 (C-1),

97.0 (O-CH2-O), 84.0, 83.5, 81.4, 64.8 (C-2 to C-5), 56.1 (C-OCH3), 26.7, 26.2,

20.6 (3 x CH3). Plus a quaternary signal of acetonide carbon at δ 111.7 ppm.

C11H20O6 (248.3)

C.V.4.5. Dithioacetal (60) and di-O-isopropylidene dithioacetal (61)

The 6-deoxy product 59 (100 mg, 1.08 mmol) was added to a cooled flask

containing ethylthiol (185 µL). Concentrated HCl (220 µL) was added to this

and kept at 0-5°C for 10 minutes and then at room temperature for 40

minutes. Neutralisation with NH4Cl and extraction with dichloromethane gave

crude product, which was concentrated to a syrup. The crude compound was

dissolved in anhydrous cold acetone and catalytic amount of HClO4 was added

into it. The solution was maintained at 0-5°C for one hour and then at room

temperature for 20 hours. Reaction was quenched with few drops of pyridine

and then product was purified on a small column giving 48% overall yield of

the two steps.
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Fig. 25. 1H and 13C NMR spectra of Di-O-isopropylidene dithioacetal (61).
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m.p. 53.6°C. [α]D = -93° (c = 1, CH2Cl2). C16H30O4S2 (350.5), 13C NMR (62.8

MHz, CDCl3): δ = 79.8, 78.0, 76.2, 72.9 (C-2 to C-5), 52.6 (C-1), 15.2 (C-6).

Plus two signals due to two S-CH2 at 25.4, 25.3, two signals of S-CH2CH3 at

14.4, 14.3 and four signals of C-Me at 27.19, , 27.19, 27.19, 25.6 ppm.

C.VI. General Method for the Synthesis of 3,4-Disaccharides

1 mmol of 51 was added in 1.2 mmol of Na2CO3 suspension in dry CH3CN at 0

°C. The mixture was stirred for 30 minutes and then 1.0 mmol of epoxy triflate

(16 or 17) dissolved in 5 ml of CH3CN was added dropwise into the reaction

mixture at 0°C. The reaction mixture was stirred at this temperature for 30

minutes and then stirred at room temperature for 6h. After the completion of

reaction, as indicated by TLC, the reaction mixture was neutralized with

saturated solution of NH4Cl and extracted with ethyl acetate. Dried over

anhydrous Na2SO4 and concentrated to a syrup, and finally purified by column

chromatography giving 82-48% yield.

C.VI.1. 1,2:5,6-di-O-isopropylidene-3-deoxy-α-D-glucofuranoside-3-yl

benzyl 2,3-anhydro-α-D-lyxopyranoside (62a)

Purified by column chromatography in 82% yield using 10% ethyl

acetate:dichloromethane. Colourless oil; 1H NMR (250 MHz, CDCl3): δ = 7.35-

7.20 (5H-aromatic), 5.82 (d, J = 3.6 Hz, 1H), 4.92 (s, 1H), 4.73 (d, J = 11.6 Hz,

1H, -CHHPh), 4.51 (1H, d = J 3.35 Hz, 1H), 4.48 (d, J = 11.6 Hz 1H, -CHHPh),

4.16-3.21 (m, 10H), 3.25 (d, J = 3.65 Hz, 1H), 3.07 (d, J = 3.67 Hz, 1H). 13C

NMR (62.8 MHz, CDCl3) δ: 105.3 (C-1´), 93.8 (C-1), 83.9, 82.2, 81.3,
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Fig. 26. 1H and 13C NMR spectra of disaccharide 62.
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Fig. 27. 1H and 13C NMR spectra of disaccharide 63.
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72.2 (C-2´ to C-5´), 69.9 (C-4), 69.8 (C-CH2Ph), 67.7 (C-6), δ 57.4 (C-5), 54.01

(C-3), 49.9 (C-2), 26.8, 26.8, 26.2, 25.3 (4xCH3). FAB-MS: e/z 465.3 (M+),

C24H32O9, [α]D = +36.3° (c = 1, CH2Cl2).

Calculated   C  62.06      H  5.94%

Found          C  62.49      H  6.02%.

C.VI.2. 1,2:5,6-Di-O-isopropylidene-3-deoxy-α-D-glucofuranoside-3-yl

benzyl 2,3-anhydro-β-L-lyxopyranoside (63)

Purified by column chromatography in 71% yield using 5% ethyl

acetate:dichloromethane.

Colourless oil; 1H NMR (250 MHz, CDCl3) δ: 7.40-7.26 (5H-aromatic), 5.90 (d, J

= 3.6 Hz, 1H, H-1´), 5.06 (d, J = 3.05, 1H, H-1), 4.80 (d, J = 12.2 Hz, 1H,

CHHPh.), 4.62 (d, J = 12.2 Hz, 1H, CHHPh), 4.65 (d, J = 3.67 Hz, 1H), 4.62-

4.34 (m, 1H), 4.15-3.86 (m, 6H), 3.35 (br. d, J = 12.2 Hz, 1H), 3.40 (m, 1H),

1.49 (s, CH3), 1.41 (s, CH3), 1.33 (s, CH3), 1.31 (s, CH3). 13C NMR (62.8 MHz,

CDCl3) δ: 127.8-128.4 (5xC-Aromatic), 105.5 (C-1´), 92.8 (C-1), 84.0,82.2,

81.3, 72.5 (C-2´ to C-5´), 72.4 (C-4), 69.3 (C-6´), 67.8 (CH2Ph), 59.1 (C-5), 51.6

(C-3), 50.1 (C-2), 26.9, 26.8, 26.3, 25.4 (4xCH3). FAB-MS: e/z 465.3 (M+)

C24H32O9,

Calculated   C  62.06      H  5.94%

Found          C  62.49      H  6.02%.

C.VI.3. 1,2:5,6-Di-O-isopropylidene-3-deoxy-α-D-allofuranoside-3-yl benzyl

2,3-anhydro-α-D-lyxopyranoside (65)
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Fig. 28.. 1H and 13C NMR spectra of disaccharide 65.
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Purified by column chromatography in 54% yield using 10%

ethylacetate:dichloromethane.

1H NMR (250 MHz, CDCl3) δ: 7.35-7.20 (5H-aromatic), 5.73 (d, J = 3.67 Hz,

1H, H-1´), 5.22 (br. s, 1H, H-1), 4.92 (br. s, 1H), 4.77 (br. d, J = 11.9 Hz, 1H),

4.56-4.47 (m, 2H), 4.33-4.26 (m, 1H), 4.05-3.92 (m, 4H), 3.76-3.70 (d, J = 6.10

and 9.7 Hz 1H), 3.62-3.50 (m, 2H), 3.37 (d, J = 3.65 Hz 1H), 3.05 (d, J = 3.35

Hz, 1H), 1.47 (s, CH3), 1.40 (s, CH3), 1.29 (s, CH3), 1.28 (s, CH3).  13C NMR

(62.8 MHz, CDCl3) δ: 104.1 (C-1´), 93.9 (C-1), 78.5, 78.1, 78.0, 74.7 (C-2´ to C-

5´), 69.2 (C-4), 69.8 (C-CH2Ph), 65.3 (C-6´), 57.9 (C-5), 53.8 (C-3), 49.9 (C-2),

26.8, 26.7, 26.3, 24.7 (4xCH3). , FAB-MS: e/z 465.3 (M+) C24H32O9, [α]D =

+91.2° (c = 1, CH2Cl2),

Calculated   C  62.06      H  5.94%

Found          C  62.49      H  6.02%.

C.VI.4. 1,2:5,6-Di-O-isopropylidene-3-deoxy-α-D-allofuranoside-3-yl benzyl

2,3-anhydro-β-L-lyxopyranoside (66)

Purified by column chromatography in 49% yield using 10% ethyl

acetate:dichloromethane.

Colourless oil; 1H NMR (250 MHz, CDCl3) δ: 7.32-7.19 (5H-aromatic), 5.77 (d, J

= 3.6 Hz, 1H, H-1´), 4.99 (d, J = 3.05, 1H, H-1), 4.77 (d, J = 12.2 Hz, 1H,

CHHPh), 4.58 (d, J = 12.2 Hz, 1H, CHHPh), 4.01-3.96 (m, 3H), 3.85 (br. s, 2H),

3.52 (s, 3H), 3.29 (m, 1H), 1.49 (s, CH3), 1.39 (s, CH3), 1.31 (s, CH3), 1.29 (s,

CH3). FAB-MS: e/z 465.3 (M+), C24H32O9, [α]D = +86.1° (c = 1, CH2Cl2).

Calculated   C  62.06      H  5.94%

Found          C  62.49      H  6.02%.
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C.VI.5. 1,2:5,6-Di-O-isopropylidene-3-O-trifloromethylsulphonyl-α-D-glu-

cofuranose (67)

The free -OH group in 1,2:5,6-di-O-isopropylidene-α-D-glucofuranoside was

activated by triflation using general procedure as described earlier, yielding the

product in 88% yield after recrystallization.

1H NMR (250 MHz, CDCl3) δ: 5.99 (d, J = 3.69 Hz, 1H), 5.26 (br. s, 1H), 4.74 (t,

J = 3.9, 7.6 Hz, 1H), 4.33-7.33 (m, 4H), 1.52, 1.42, 1.34 and 1.33 (4xCH3) 13C

NMR (62.8 MHz, CDCl3) δ: 105.0 (C-1), 88.1, 83.2, 79.9 and 71.7 (C-2 to C-5),

67.6 (C-6); 26.7, 26.5, 26.2 and 24.8 (4 x CH3)

C.VI.6. 1,2:5,6-Di-O-isopropylidene-3-O-tosyl-α-D-glucofuranose (68)

1 g of 51 was dissolved in pyridine (7 ml) and cooled to 0°C, then 940 mg of p-

toluensulphonic acid chloride was added portion-wise. The reaction

temperature was maintained at 0°C for further two hours and then stirred over

night at room temperature. Completion of the reaction was confirmed by TLC

(4% ethyl acetate:chloroform). The reaction was poured on cold aqueous

solution of NaHCO3 and extracted with CH2Cl2, dried with anhydrous Na2SO4

and concentrated to a syrup. Purification was carried out by column

chromatography (chloroform).

The product was confirmed by mass spectroscopy.

450.0 (M+1), 399.0 (M-CH3), 357 (M-CH3COCH3), 298.9 (M-2CH3COCH3), 243

(M-OTs).

C.VI.7. 1,2:5,6-Di-O-isopropylidene-α-D-allofuranoside (64)[40]

A mixture of 40 mL of DMSO and 30 mL of acetic anhydride was treated with

6.55 g of 51 and stirred at room tempertature for 36 hours. Evaporation of the



81

O
O

OOH

O

O
64

Fig. 29. 1H and 13C NMR spectra of 1,2:5,6-di-O-isopropylidene-α-D-
allofuranoside. (64).
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solvents under high vacuum gave a syrup, which was added dropwise to the

stirred suspension of 1.4 g of LiAlH4 in ether. After stirring overnight the

excess of LiAlH4 was destroyed first with ethylacetate then with ice. Extracted

with dichloromethane:water, dried over Na2SO4 and purified in 38% yield by

column chromatography using ethyl ether as eluent.

White solid, m.p. 77°C. 1H NMR (250 MHz, CDCl3) δ: 5.82 (d, J = 3.97 Hz, 1H),

4.62 (dd, J = 3.95, 5.17 Hz, 1H), 4.32 (m, 1H), 4.09 (m, 3H), 3.95 (dd, J = 4.5,

8.5 Hz, 1H), 1.71 (s, CH3), 1.52 (s, CH3), 1.38 (s, CH3), 1.37 (s, CH3). 13C NMR

(62.8 MHz, CDCl3) δ: 103.9 (C-1), 79.8,79.0, 75.6, 72.5 (C-2 to C-5), 65.9 (C-6),

26.6, 26.5, 26.3, 25.3 (4xCH3), (plus two signals of two quaternary acetonide

carbons at δ 112.8 and δ 109.8 ppm.

C.VII. General Method of Preparation of Formaldehyde Acetals on Carbo-

hydrates

240 mg (6 mmol) of NaOH pellet was added in 10 mL of CH2X2 and 3 mL of

DMF followed by 1 mmol of alcohol. The reaction mixture was heated to 30°C

for 12 hours in case of CH2Br2. Progress of reaction was analyzed by TLC.

Solvents were removed at low pressure to give a tarry material, which was

purified by column chromatography.

C.VII.1. Acetal of 1,2:5,6-di-O-isopropylidene-α-D-glucofuranoside (69)

Purified by column chromatography in 91% yield using 10% ethyl

acetate:dichloromethane as chromatographic system.

1H NMR (250 MHz, CDCl3) δ: 5.83 (d, J = 3.65 Hz, 1H, H-1), 4.78 (s, 2H, O-

CH2-O), 4.49 (d, J = 3.65 Hz, 1H, H-2.), 4.29-4.21 (m, 2H, H-4, H-5), 4.09 (dd,
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J = 3.67, 7.3 Hz 1H, H-3), 4.02-3.90 (m, 2H, H-6), 1.43,1.35, 1.27, 1.24 (s,

4xCH3). 13C NMR (62.8 MHz, CDCl3) δ: 105.2 (C-1), 92.8 (O-CH2-O), 83.0 (C-2),

81.0 (C-3), 78.7 (C-4), 72.5 (C-5), 67.1 (C-6), 26.8, 26.7, 26.2, 25.3 (4xCH3).

Plus two quaternary signals of acetonide carbons at δ 111.8 and δ 109.0 ppm.

FAB-MS: e/z 447 (M-CH3COCH3), C24H38O11, [α]D = -36.2° (c = 1, CH2Cl2).

C.VII.2. 1,2-O-Isopropylidene-3-methoxymethyl-5,6-methylidene-α-D-glu-

cofuranoside (70)

Purified by column chromatography in 84% yield using 8% ethyl

acetate:dichloromethane as chromatographic system.

Colourless oil; 1H NMR (250 MHz, CDCl3) δ: 5.89 (d, J = 3.65 Hz, 1H, H-1),

5.02 (s, 1H, O-CH2-O), 4.84 (s, 1H, O-CH2-O), 4.73 (s, 2H, CH2-MOM), 4.57 (d,

J = 3.65 Hz, 1H, H-2.), 4.29-4.21 (m, 2H, H-4, H-5), 4.13 (m, H-3), 4.02-3.96

(m, 2H, H-6); 1.49,1.31 (s, 2xCH3). 13C NMR (62.8 MHz, CDCl3) δ: 105.2 (C-1),

96.1 (CH2-MOM), 95.2 (O-CH2-O), 83.0 (C-2), 80.4 (C-3), 79.2 (C-4), 71.9 (C-5),

67.8 (C-6), 55.8 (O-CH3), 26.8, 26.2, (2xCH3). Plus a quaternary signal of

acetonide carbons at δ 111.9 ppm. FAM-MS: e/z 277.3 (M+), C12H20O7, [α]D = -

41.4° (c = 1, CH2Cl2),

Calculated   C  52.17      H  7.30%

Found          C  51.92      H  6.993%.

 C.VII.3. Benzyl-2-methoxymethyl-3,4-O-methylidene-β-L-arabinopyrano-

side (73)

Purified by column chromatography in 76% yield using 4% ethyl

acetate:dichloromethane as chromatographic system.
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Fig.30. 1H and 13C NMR spectra of actal of 1,2:5,6-di-O-isopropylidene-α-D-
allofuranoside. (69).
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Colourless oil, 1H NMR (250 MHz, CHCl3): δ = 7.41-7.26 (m, 5H, Aromatic),

5.20 (s, 1H, OCH2O), 4.99 (s, 2H, O-CH2-O, MOM), 4.79 (s, 1H, OCH2O), 4.77

(d, J = 2.9 Hz, 1H, H-1), 4.53 (d, J = 12.1, CH2Ph), 4.38 (dd, J = 5.2, 7.9 Hz 1H,

H-2), 4.07-3.98 (m, 3H, H-4, H-5), 3.63 (dd, J = 3.39, 7.97 Hz, H-3), 3.30 (s,

3H, OCH3). FD-MS: e/z 296.1 C15H20O6, [α]D = +14.9° (c = 1, CH2Cl2).

Calculated   C  60.80      H  6.80%

Found          C  59.84      H  7.02%.

C.VII.4.1. 1,2-Methylene-4-isobutyl catechol (75a)

53a→c were purified by column chromatography using gradient of ethyl

acetate:pet. Ether,  Colourless oil; 1H NMR (250 MHz, CDCl3) δ: 6.90 (d, J = 1.8

Hz, 1H), 6.70 (d, J = 7.9 Hz. 1H), 6.81 (dd, J = 1.8, 7.9 Hz, 1H), 5.88 (s, 2H,

OCH2O), 1.27 (s, 9H, 3 x CH3). 13C NMR (62.8 MHz, CDCl3) δ: 145.7, 154.3,

143.4 (3xC, Aromatic), 106.3, 107.6, 117.8 (3xC, aromatic), 100.6 (OCH2O),

31.6 (3 x CH3). FD-MS e/z 122.1, C7H6O2.

C.VII.4.2. Acetal of 1,2-methylene-4-isobutyl catechol (75b)

1H NMR (250 MHz, CDCl3): δ = 7.25-7.08 (m, 6H aromatic), 5.67 (s, 4H, -

OCHHO-), 1.32 (s, 18 x H, 6 x CH3). 13C NMR (62.8 MHz, CDCl3) δ: 149.0 (6 x

C, Aromatic), 126.5, 122.7, 120.6 (2 x 3C, aromatic), 98.5, 98.5 (2 x C,

OCH2O), 31.4 (6 x CH3).FD-MS: e/z 341.4, C21H25O4.

C.VII.4.3. Polyactal (75c)

Colourless oil; 1H NMR (250 MHz, CHCl3): δ = 7.15-6.89 (m, 15 x H aromatic),

5.61-5.14 (m, 10 x H, OCH2O), 1.20 (s, 45H, 15 x CH3). 13C NMR (62.8 MHz,
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Fig.31. 1H and 13C NMR spectra of benzyl-2-methoxymethyl-3,4-O-methy-
lidene-β-L-arabinopyranoside (73).
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Fig. 32. 1H and 13C NMR spectra of 1,2-methylene-4-isobutyl catechol (75a).
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CHCl3): δ = 146.9 (15xC, Aromatic), 126.5-116 (15xC, aromatic), 93.5-93.4

(5xC, OCH2O), 31.4, (15xCH3)., FD-MS: e/z 844, C54H67O8 (844.1).
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D. ISOLATION PART

D.I. Phytochemical Investigation of Euphorbia Decipiens

D.I.1. Introduction

Our group has investigated Euphorbia decipiens Boiss. & Buhse previously

and eight new diterpene esters were isolated from it [73–75]. In order to obtain

the minor compounds, the plant was again collected and extracted with

acetone [8]. The chloroform soluble fraction of the concentrated extract was

subjected to different chromatographic procedures to purify compounds 76-80

(Fig. 38). Besides the previously isolated compounds, three new diterpene

esters (76-80) were isolated and their structures were elucidated. The fine

crystals of compounds 76 and 77 prompted us to subject both of the

compounds to single crystal X-ray analysis, which resulted in the revised

structures for decipinone B and C [75].

D.I.2. Results and discussion

Decipinone B (76) and C (77) were purified as already described [75]. They

were crystallized from methanol. The crystals were then subjected to X-ray

analysis and 1D and 2D-NMR in CDCl3 and CD3OD for (76). The MS, IR, UV,

and 1H-NMR data of 76 were the same as described [75]. The molecular

formula C30H42O11 was assigned for 77 on the basis of EIMS, m/z 578[M]+. The

ions at m/z 560 [M-H2O]+, 518 [M-HOAc]+, 490 [M-C3H7CO2H]+, 458 [M-

2xHOAc]+, and 71 [C3H7CO]+ indicated the presence of -OH, acetate and

butanoate moieties in the molecule. In reference [75] the structures of

decipinones B and C (76 and 77)were suggested on the basis of NMR studies,

and it is assumed that the peak due to ketonic group (C-14) in the IR



90

spectrum was masked by the strong absorption of the ester groups and this

group was also not detected in the 13C-NMR spectrum due to low

concentration. However the structure of these two compounds are now being

revised to 76 and 77, respectively on the basis of the results of X-ray

diffraction analyses (Fig. 36 and 37).

Three singlets at δ 77.8 (C-13), 100.1 (C-14), 98.0 (C-15) (in CD3OD, for 76),

and 77.6 (C-13), 98.6 (C-14), 96.8 (C-15) (in CDCl3, for 76 and 77), clearly

confirmed the presence of an oxygen bearing non-carbonyl carbon at C-14.

The cross peaks between H-12/C-13, H-17'/C-14 and Me-20/C-14 confirmed

the hemiacetal functionality in the HMBC spectrum of 76 (in CD3OD).

13-Deacetylisodecipidone (78) showed a protonated molecular ion in the CIMS

at m/z 579 representing molecular formula C30H42O11. The base peak at m/z

519 indicated the loss of an acetate function from molecular ion. The 1H and

13C-NMR spectral data were very similar to those recorded for decipidone [73].

The upfield shift for C-13 and down field shift for C-15 at δ 81.6 (s) and 89.1

(s), respectively, were the main difference to the 13C-NMR data of decipidone

[73]. The above data confirm the position of the -OH and -OAc at C-13 and C-

15, respectively.

13-Deacetylisodecipinone (79), the benzoyl analog of 78, is elucidated with

comparison of its 1H and 13C-NMR spectra (Tables 2 & 3) with the spectral

data of decipinone [78] and 78. The main difference was the signals of the

benzoyloxy instead of those of a butanoyloxy group at C-5.

Isodecipidone (80), like isodecipinone [73], was obtained as a minor

compound, in which, the acetate was transesterified from position C-17 in
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decipidone [78] to position C-15. The CI-MS spectrum of 80 shows molecular

ion at m/z 621 [M+1]+ indicating the molecular formula C32H42O12. In the

1H-NMR spectrum of 80, there are some differences with respect to those

observed for decipidone. The upfield shift of H-12 at δ 3.63 (d, J = 9.7 Hz) and

conversion of H-17, H-17´doublets signals to AB pattern at δ 3.91 (d, J = 12.0

Hz), and 4.07 (d, J = 12.0 Hz), confirms that the position of the acetate group

changed from C-17 in decipidone to C-15 in 80.

D.I.3. Experimental of isolation part

D.I.3.1. General column chromatography (CC)

silica gel, 70-230 mesh. Flash chromatography (FC): silica gel 230-400 mesh.

TLC: pre-coated silica gel G-25-UV254 plates: detection at 254 nm, and by ceric

sulphate reagent. Optical rotations: Jasco-DIP-360 digital polarimeter. UV and

IR Spectra: Hitachi-UV-3200 and Jasco-320-A spectrophotometer, respectively.

1H- and 13C-NMR, COSY, HMQC and HMBC Spectra: Bruker spectrometers

operating at 500 and 400 MHz; chemical shifts δ in ppm and coupling

constants in Hz. Enraf-Nonius CAD-4 X-ray diffractometer with CuKα

radiation. EI-, CI MS: JMS-HX-110 with a data system.

D.I.3.2. Plant material

The plants of Euphorbia decipiens Boiss. & Bushe. (Euphorbiaceae) was

collected from the mountain Kandovan, north of Karaj, Iran, in the year of

1998. It was identified by Mr. Bahram Zehzad (Plant Taxonomist) at the

Department of Biological Sciences, Shahid Beheshti University, Eveen, Tehran,

Iran. A voucher specimen (no. 98112) has been deposited at the herbarium of

the Biology Department of Shahid Beheshti University, Eveen, Tehran, Iran.
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D.I.3.3. Extraction and isolation

The air-dried ground plant (4 kg) was exhaustively extracted with acetone at

r.t. The extract was evaporated to yield the residue (62 g). The defatted extract

(51 g) was extracted with chloroform. The chloroform extract (44 g) was

subjected to CC over a silica gel column (880 g) using hexane with gradient of

CHCl3 upto 100% and followed by methanol. Twenty fractions were collected.

Fraction 10 was loaded on AgNO3 impregnated silica gel (flash silica 230-400

mesh) and eluted with pure CHCl3. The fraction no. 20 thus obtained was

again loaded on preparative plates using system of Hex.: EtOAc (70:30) to

purify compounds 78 and 79. Fraction 21 of the same column contained

compounds 80, was purified by PTLC using CHCl3:Me2CO (99:1) (Fig. 35).

Euphorbia decipiens
(Dry plant, 4 kg)

Soaked in
Acetone

 24 h

Crude Extract
(62 g)

Exracted with water:hexane

Filtrate after removal of
solvent (44 g)

Precipitate (long chain
hydrocarbons and fatty acids)

Chromatography over silica gel
(70-230 mesh, 400 g) using
hexane → chloroform → methanol

Hexane fractions
(mostly fatty acids,

pigments)

Hexane-chloroform
fractions (triterpenes)

Chloroform rich
fractions (diterpenoids)

Methanol rich fractions
(resinous compounds)

Fig.35. Scheme for the fractionation of plant material.
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rel-(2R,3R,3aS,4S,4aS,5S,8R,8aS,9R,10R,10aS)-2,3,3a,4,-5,8,8a,9,10,10a-

Decahydro-2,9-dimethyl-8-(methyl-ethenyl)-1H-10,4a-(epoxymethano)benz[f]-

azul-ene-3,4,5,9,10,10a-hexol-3,5,10a-triacetate 4-Benzoate [76] (Decipinone

97): 10.1 mg (yield 0.0006%). Colourless plate like crystals (MeOH).

C33H40O11.M.p. 190-192 0 [75].

Crystal data of 76: C33H40O11, Orthorombic, space group P212121, a = 8.893

(4) Å, b = 17.509 (2) Å and c = 20.276 (4) Å, V = 3157(1) Å3, CuKα λ = 1.54178

Å, Z = 4, Dcalc. = 1.29 g/cm3, F (000) = 1304.00, µ(CuKα) =8.05 mm-1. Crystal

size 0.50 × 0.48 × 0.22 mm3. X-Ray diffraction data were collected at 293 (2) K°

in the range = 5.0° to 68.0° (0 ≤ h ≤ 10, 0 ≤ k ≤21, 0 ≤ l ≤ 24) on Enraf-Nonius

CAD-4 diffractometer. The structure was solved by direct method and refined

by Full-matrix least-squares on F2 with the program SHELXTL 97. Anistropic

thermal parameters were refined for all the non-hydrogen atoms. All the

hydrogen atoms were located in the difference Fourier maps. Riding models

were used to place the H-atoms in their idealized positions. The structure

converged with R1 = 0.064, wR2 = 0.118 and GOF = 1.03 for the 1266

reflections with [I > 2.0σ (I)] and 406 parameters. In the final difference Fourier

synthesis, the electron density fluctuated in the range of 0.15 to –0.14 e/Å3.

An absolute structure could not be established in this analysis [Flack

parameter 0.6 (7)].

Butanoic Acid rel-(2R,3R,3aS,4aS,5S,8R,8aS,9R,10R,10aS)-3,5,10a-tris(acety-

loxy)-2,3,3a,4,5,8,8a,9,10,10a,-decahydro-9,10-dihydroxy-2,9-dimethyl-8-(1-

methylethenyl)-1H-10,4a-(epoxymethano)benz[f]azulene-4yl ester [75,76]

(decipinone 77): 16.4 mg (yield .0004%). Colourless prismatic crystals (MeOH).

M.p. 232-2340. [α]24D +12.4 (c = 0.1, CHCl3). UV (MeOH): 203.0 nm. IR (CHCl3):
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3450, 2900, 2840, 1736, 1728, 1712, 1640, 1450, 1370, 1280, 1150, 1100,

1020, 990, 970, 900, 600 cm-1. EIMS m/z (rel. int.): 578 [M] + (C30H43O11)+ (0.4),

560 [M-H2O] + (1), 518 [M-HOAc] + (1), 490 [M-C3H7CO2H] + (1), 458 [M-2 x

HOAc]+ (2), 714 [C3H7CO]+ (100). 1H-13C NMR: see table 2 and 3.

Fig. 36. Crystal structure of decipinol ester 76.

Crystal data of 77: C30H42O11, Orthorombic, space group P212121, a = 8.877

(2) Å, b = 15.820 (2) Å and c = 21.696 (7) Å, V = 3046.9 (13) Å3 (CuKα λ =

1.5417 Å), Z = 4, Dcalc. = 1.261 Mg/m3, F (000) = 1240, µ (Cu-Kα) = 0.797 mm-

1. Crystal size 0.35 × 0.30 × 0.25 mm3. X-Ray diffraction data were collected at

293 (2) K° in the range = 5.0° to 68.0° 0 ≤ h ≤ 10; 0 ≤ k ≤18; -26 ≤ l ≤ 26) on

Enraf-Nonius CAD-4 diffractometer. Structure was solved by direct method

and refined by Full-matrix least-squares on F2 with the program SHELXTL 97.

Anistropic thermal parameters were refined for all the non-hydrogen atoms. All
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the hydrogen atoms were located in the difference Fourier maps. Riding models

were used to place the H-atoms in their idealized positions. The structure

converged with R1 = 0.052, wR2 = 0.116 and GOF = 1.08 for the 3726

reflections with [I > 2.0σ (I)] and 388 parameters. In the final difference Fourier

synthesis, the electron density fluctuated in the range of 0.19 to –0.17 e/Å3.

An absolute structure was established for this compound [Flack parameter 0.0

(3)] using the Friedel pairs of reflections, which were not merged (Fig. 37).

Butanoic acid rel-(2R,3R,3aS,4S,4aS,5S,8R,8aS,9R,10aS)-3,5,10a-tris(acetyl-

oxy)-1,2,3,3a,4,4a,5,8,8a,9,10,10a,-dodeca-hydro-9-hydroxy-4a-(hydroxydi-

methyl)-2,9-dimethy-8-(1-meth-ylethenyl)-10-oxobenz[f]azulene-4-yl ester [75]

(13-deacetylisodecipidone 78): 12.1 mg (yield 0.0003%). [α]23D -15.61 (c =

0.448, CHCl3). IR (CHCl3): 3450, 1730, 1640 cm-1. CIMS (CH4) m/z: 579

[M+1]+, (C30H43O11)+, 519 [M+1-HOAc]+, 1H-13C NMR: see table 2 and 3.

rel-(2R,3R,3aS,4S,4aS,5S,8R,8aS,9R,10aS)-,3,5,10a-tris(acetyloxy-4-(benzyl-

oxy)-2,3,3a,4,4a,5,8,8a,9,10a-decahydro-9-hydroxy-4a-(hydroxymethyl)-2,9-

dimethyl-8-(1-methylethenyl) benz[f]azulene-10(1H)-one [75,76] (13-deacetyl-

isodecipinone 79): 4.5 mg (yield 0.00011%). [α]23D +15.35 (c = 0.717, CHCl3).

UV (MeOH): 272.3, 228.3. 198.1 nm. IR (CHCl3): 3500, 2950, 1740, 1720,

1630, 1600 cm-1. EIMS m/z (rel. int.): 612 [M] + (C33H41O11)+ (12), 491[M-121]+

(23), 121[C6H5CO2]+ (10), 105[C6H5CO]+ (100). CIMS (CH4) m/z: 613 [M+1]+, 1H-

13C NMR: see table 2 and 3.

Butanoic acid rel-(2R,3R,3aS,4S,4aS,5S,8R,8aS,9R,10aS)-3,5,9,10a-tetrakis

(acetyloxy)-1,2,3,3a,4,4a,5,8,8a,9,10,10a,-dodecahydro-4a-(hydroxymethyl)-

2,9-dimethyl-8-(1-methylethenyl)-10-oxobenz[f]azulene-4-yl ester [75,76] (Iso-

decipidone 80): 2.8 mg (yield 0.00007%). M.p. 187-189 0C. [α]23D –22.8 (c =
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0.48, CHCl3). UV (MeOH): 264.5, 220.3. 200.1 nm. IR (CHCl3): 3650, 3500,

1760, 1725, 1710, 1695 cm-1. CIMS (CH4) m/z: 621 [M+1]+ (C32H45O12)+, 561,

533, 519, 501, 473, 459, 441, 413, 371,353, 293, 311, 89, 61. 1H NMR: see

table 2.

Fig. 37. Crystal Structure of decipinol ester 77.
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Table-2: 1H NMR data of compounds 78-80 in CDCl3. J in Hz.

C. No 78 79 80

Hα-C(1) 3.30 (dd, J = 10.4, 14.8) 3.30 (dd, J = 10.4, 14.6) 3.34 (dd, J = 8.8, 14.9)
Hβ-C(1) 1.56 (dd, J = 6.8, 14.8) 1.58 (dd, j = 9.6, 15.0) 1.70 (dd, j = 6.9,14.9)
H-C(2) 2.10 (m) 2.10 (m) 2.10 (m)
H-C(3) 5.23 (t, 3.4) 5.23 (t, 3.4) 5.25 (t, 3.6)
H-C(4) 2.40 (dd, J = 3.2, 11.7) 2.45 (dd, J = 3.1, 11.6) 2.53 (dd, J = 3.2, 11.6)
H-C(5) 5.91 (d, J = 11.7) 6.18 (d, J = 11.6) 6.14 (d, J = 11.6)

- - -
H-C(7) 4.77 (d, J = 6.4) 4.80 (d, J = 6.4) 4.59 (d, J = 6.4)
H-C(8) 6.03 (ddd, J = 1.6, 6.4,

9.6)
5.99 (ddd, J = 1.7, 6.4,
9.5)

5.99 (m)

H-C(9) 5.85 (dd, J = 4.2, 9.4) 5.83 dd, J = 4.8, 9.5) 5.76 (br.d, J = 9.6)
H-C(11) 3.46 (m) 3.50 (br.t, J = 5.5) 3.47 (m)
H-C(12) 3.46 (m) 3.55 (d, J = 7.0) 3.63 (d. J = 9.7)
H-C(16) 0.77 (d, J = 6.9) 0.94 (d, J = 6.9) 0.90 (d, J = 6.8)
H-C(17) 3.80 (d, J = 12.1) 4.03 (d, J = 12.1) 3.91 (d, J = 12.0)
H´-C(17)′ 4.16 (d, J = 12.1) 4.13 (d, J = 12.1) 4.07 (d, J = 12.0)
H-C(18) 4.93 (br.s) 4.90 (br.s) 4.96 (br.s)
H´-C(18)′ 4.90 (m) 4.94 (br.s) 4.86 (br.s)
H-C(19) 1.80 (s) 1.80 (s) 1.78 (s)
H-C(20) 1.40 (s) 1.40 (s) 1.56 (s)
Acetyl: - -
AcO 2.14 (s) 2.19 (s) 2.16(s)
AcO 2.00 (s) 2.03 (s) 2.08 (s)
AcO-C(3) 1.98 (s) 2.02 (s) 2.04 (s)
AcO 1.98 (s)
Benzoyl:
H-C(2´) - 7.89 (dd J = 1.3, 8.4) -
H-C(6´) - 7.40 (br.t, J = 8.2) -
H-C(4´) - 7.50 (dt, J = 1.4, 7.6) -
Butanoyl
CH2(2´) 2.20 (m) - 2.22 (m)
CH2(3´) 1.50 (m) - 1.56 (m)
Me(4´) 0.91 (t, J = 7.4) - 0.93 (d, J = 7.2)
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Table 3: 13C NMR data of compounds 77-79 in CDCl3.

C. No 77 78 79

C(1) 38.3 45.8 45.8
C(2) 33.2 37.6 27.6
C(3) 72.9 80.1 80.1
C(4) 54.5 85.3 55.5
C(5) 72.3 70.2 71.0
C(6) 45.9 47.9 48.2
C(7) 66.2 67.4 67.7
C(8) 127.3 122.7 122.7
C(9) 137.6 137.2 137.2
C(10) 147.6 147.8 147.9
C(11) 40.7 45.4 45.6
C(12) 40.9 44.9 45.5
C(13) 77.6 81.6 81.5
C(14) 98.6 203.0 203.1
C(15) 96.8 89.1 89.2
C(16) 16.1 14.8 14.8
C(17) 66.2 62.0 62.5
C(18) 110.6 112.8 112.8
C(19) 22.2 18.1 18.3
C(20) 22.5 21.1 20.8
Acetyl:
MeCOO 22.1 20.9 20.3
MeCOO 20.8 20.8 21.2
MeCOO-C(3) 20.8 20.2 21.1
MeCOO 21.0
Benzoyl:
C(1´) 128.4
C(2´),C(6´) 129.2
C(3´),C(5´) 128.4
C(4´) 131.1
C=O 165.0
MeCOO 174.2 170.2 170.2
MeCOO 171.0 170.0 169.7
MeCOO 170.2 169.6 169.2
MeCOO 169.0
Butanoyl
C(1´) 171.3
C(2´) 36.1
C(3´) 18.3
C(4´) 13.7
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E. ABSTRACT

This thesis describes the application of carbohydrates as chiral synthons for

the stereoselective syntheses of, both, natural products and new synthetic

classes of compounds.

Chapter II represents examples for the syntheses of chiral cyclic

trithiocarbonates from the triflates of 2,3- and 3,4-anhydropentopyrano-

sides. Sodium trithiocarbonate undergoes a nucleophilic displacement of the

triflyl group, followed by a simultaneous ring opening reaction of the epoxide

to produce 5- or 6-membered cyclic trithiocarbonates in good yield.

In chapter III, synthesis of benzothiophene derivatives was proposed from 2-

bromo thiophenol and triflates of 2,3-anhydropyranosides. Bromo-

thiophenol anion attacks the triflate to form an adduct. The C-4 hydrogen

from this was removed with strong base, in good yield, to get the

unsaturated alcohol. The secondary alcohol was further oxidized to a α,β-

unsaturated ketone in quatitative yield. Intramolecular Heck reaction on this

α,β-unsaturated ketone should give the required product.

 Chapter IV, describes the synthesis of highly functionalized substituted

thiazolidines. Thiosemicarbazide and 4-phenylthiosemicarbazide were used

for their synthesis in 1,4-dioxane. The nucleophilic sulphur displaces the

triflate of 2,3-anhydropyranoside to form a S-substituted thiosemicarbazide

derivative, which simultaneously attacks the epoxide to form a substituted

thiazolidine ring in acceptable to good yield. Thiazolidines, thus produced,

were tested against human neuroblastoma SK-N-LO cells (MTT assay) and

found to be active.
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In chapter V, a total synthesis for non-natural R-(-)-anamarine is proposed,

starting from methyl α-D-glucopyranoside. 2,3-Dideoxygenation of the

benzylidene acetal was followed by the deprotection of benzylidene group

and selective protection of the resulting diol at primary position. The

secondary alcohol was mesylated and reductively displaced with

superhydride®. The primary alcohol should then be deprotected and

converted to a Wittig’s ylide. The side chain of the anamarine was

synthesized from D-glucose. The free hydroxyl groups in glucose were

protected with isopropylidene. The selective deprotection of 5,6-hydroxyl

group was performed with aq. acetic acid. Selective tosylation of primary

alcoholic group followed by reduction gave, unexpectedly, the oxirane ring at

5,6-position. So the route was modified and, instead of tosylation, selective

iodination followed by reduction at C-6 was carried out to get the required

methyl at C-6. The acid hydrolysis of 6-deoxy product in ethanethiol followed

by the protection of the free hydroxyl groups with isopropylidene was carried

out in cat. HClO4. The thioketal protective group should be removed and

coupled with Wittig’s ylide to get the (-)-anamarine.

As described in chapter VI, new 3,4-disaccharides were synthesized by the

nucleophilic attack of the 1,2:5,6-di-O-isopropylidene-α-D-glucofuranoside

anion at C-4 of epoxytriflates under mild conditions (Na2CO3/CH3CN). These

disaccharides show no inhibitory activity against SK-N-LO cell line.

Chapter VII demonstrates the utility of formaldehyde acetals in carbohydrate

chemistry. We used NaOH, DMF in CH2X2 and found the reagent is quite

effective in the formaldehyde acetal formation reaction. This reagent can be
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used for inter- as well as for intra-molecular acetal formation reaction

depending upon the number of free hydroxyl groups present in the molecule.

Finally, the isolation part demonstrates the purification and characterisation

of three new diterpene esters from Euphorbia decipiens. The chloroform

soluble fraction of the concentrated extract was subjected to different

chromatographic procedures to purify three new diterpene esters and their

structures were elucidated by using highly sophisticated spectroscopic

techniques such as X-ray, 1,2D-NMR, IR, UV and mass spectrometry.
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F. ZUSAMMENFASSUNG

In der Dissertation werden einfache, natürliche Kohlenhydrate als chirale

Synthone zur stereoselektiven Synthese von Naturstoffen und neuen

Verbindungsklassen eingesetzt.

In Kapitel 2 wird eine Synthesenmethode für chirale zyklische

Trithiocarbonate aus Triflaten von 2,3- und 3,4-Anhydropentopyranosiden

beschrieben. Natriumtrithiocarbonat reagiert mit der Trflatgruppe in einer

SN2-Reaktion unter gleichzeitiger Ringöffnung der Epoxyde, wobei die

zyklischen Trithiocarbonate mit hoher Ausbeute entstehen.

In Kapitel III wird eine Synthese von Benzothiophenderivaten aus 2-

Bromthiophenol und Triflaten von 2,3-Anydropyranosiden vorgeschlagen.

Das Bromthiophenolanion reagiert mit dem Triflat unter Bildung eines

Addukts. Anschließend wird ein ungesättigter Alkohol hergestellt, aus

welchem ein α, β-ungesättigtes Keton in quantitativen Ausbeuten gewonnen

wird. Durch intramolekulare Heck-Reaktion sollten die erstrebten

Benzothiophenderivate hergestellt werden.

In Kapitel 4 wird eine Methode beschrieben, welche zu stark

funktionalisierten Thiazolidinen führt. Bei der Reaktion von

Thiosemicarbazid bzw. 4-Phenylthiosemicarbazid mit Trifalten von 2,3-

Anhydropyranosiden werden Thiosemicarbazidderivate gebildet, welche

simultan mit dem Epoxydring substituierte Thiazolidine in guten Ausbeuten

bilden. Diese Thiazolidine haben antitmorale Eigenschaften, wie die

Ergebnisse im MTT-Test zeigen.
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In Kapitel 5 wird eine Totalsynthese für R-(-)-Anamarin vorgeschlagen, wobei

vom Methyl-α-D-Glycopyranosid ausgegangen wird. Nach Eliminierung der

OH-Gruppen an C-2,3 der entsprechenden Benzylidenverbindung,

Entfernung der Benzylidenschutzgruppe und selektivem Schutz des

resultierenden Diols, wurde der sekundäre Alkohol mesyliert und mit

Superhydrid reduziert. Aus dem primären Alkohol sollte anschließend ein

Wittig-Reagenz hergestellt werden. Die Seitenkette von Anamarin wurde

ebenfalls aus D-Glucose hergestellt. Die freien Hydroxylgruppen 1,2 und 5,6

wurden durch Isopropylidenreste geschützt, die selektive Entfernung der

Schutzgruppe an 5,6 des Glucoserestes gelang mit wässriger Essigsäure.

Dann wurde die primäre alkoholische Gruppe selektiv iodiert und reduziert.

Anschließend erfolgte eine Umsetzung mit Ethylmercaptan, dann wurden

die freien Hydroxylgrupppen durch Isopropylidenschutzgruppen geschützt.

Nach Entfernung der Thioacetalgruppen mit HgCl2 sollte eine Kupplung mit

dem oben erwähnten Wittigs-Reagenz zum (-)-Anamarin führen.

In einem weiteren Kapitel wird die Synthese von neuen Disacchariden

beschrieben, wobei 1,2-5,6-Di-O-isopropyliden-α-D-glucofuranose mit

Epoxydtriflatzuckern umgesetzt wird.

In Kapitel 7 wird ein neues Reagenz zur Darstellung von

Formaldehydacetalen entwickelt, welches in der Kohlenhydratchemie sehr

gute Ausbeuten liefert.

Die Dissertation wird abgeschlossen durch die Isolierung von 3 neuen

Diterpenestern aus der Pflanze Euphorbia decipiens. Die Reindarstellung

dieser neuen Diterpenestern gelang durch verschiedene chromatographische

Trennmethoden und die Strukturen wurden eindeutig durch Kernresonanz-,
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IR-, UV- und Massenspektren aufgeklärt und schließlich durch

Röntgenstukturanalyse bestätigt.
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