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Abstract

Tecton is an algebraic specification language. This report contains a considerable body of Tec-
ton concepts which evolved over a long time. The concepts serve as a test bed for a Tecton
translator and are a formal base for declarations occurring in algorithms from all areas of program-
ming but in particular from computer algebra.
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Chapter 1

Introduction

We have defined well over 100 algebraic concepts in the concept description language Tecton [5],
[4]. The main goal of these definitions is to provide a torture test of Tecton; but at the same time
we are interested to have a conceptual framework for algorithm specification for a generic library
for computer algebra. If the Tecton translator and the generic library evolve in the future the
concepts of this report should always remain a fixed base for regression testing.
A second goal of this report are combined definitions of concepts important both for computer
science and mathematics with all rigour and details which are needed for formal reasoning and
software construction with provable properties.We claim, for example, that our definition of the
reals inspired by Tarski [6], is the first single concept definition of the reals on a machine without
any loss of mathematical contents and precision. Of course the complete concept of the reals is at
the basis of many algorithms over the reals, as for example in quantifier elimination algorithms for
real closed fields; but the concept is not explicitly represented on the machine in any formal sense.
Also the real numbers have been constucted using theorem provers like for example Mizar [9] or
HOL [8];but the emphasize of these constructions is ”only” to prove properties of the reals and
not to serve in addition as the basis for a data structure over which algorithms are to be executed.

The concepts are organized in a single acyclic tree of concept families with the set-family as
its root. The family algebra1 provides concepts for a single, the family algebra2 for two con-
nectives. They are first independent of any relation and order concepts, but then merged with
these families into the family of ordered algebra (ordalgebra). Another offspring of the algebra
families is the family of morphisms.
Ordered algebra is the base family for arithmetical concepts (with the samll exception of the natu-
rals, which are needed already in the root family in order to define sequences and similar concepts).
The arithmetical family comprises integers, rationals, reals, complex and quaternions. This ar-
tihmetical hierachy was inspired from a similar effort in OBJ3, but stays within the framework
provided by mathematics. Polynomials are finally inherited from arithmetical concepts such that
a firm conceptual base for this important computer algebra domain with its algorithms can be
established. Ample set, the last family in this report, play an important role in gcd-algorithms
and any algorithm working on canonical forms of its input.

The reader is invited to report errors to loos@informatik.uni-tuebingen.de.
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Figure 1.1: Structure of the library



Chapter 2

Sets, Maps and Sequences

2.1 Boolean, Domain, Set, Finite-set, Range

"src/set.tec" 4a ≡

Library: std

Boolean, Domain, Set, Finite-set, Range, Map, Finite-map, Natural, Segment,

Natural-set, Sequence, Finite-sequence, Cartesian-product-of-set.

Definition: Boolean

introduces bool,

true -> bool,

false -> bool;

generates bool freely using true, false.

Precedence: nonassociative{=, !=}.

Precedence: {implies} < {or, xor} < {and}

< prefix{not} < nonassociative{=} < {:}.

Precedence: confix{(, ,, )}.

Extension: Boolean

introduces

not : bool -> bool,

and : bool x bool -> bool,

or : bool x bool -> bool,

xor : bool x bool -> bool,

implies : bool x bool -> bool;

requires (for x, y: bool)

(not true) = false,

(not false) = true,

(true and x) = x,

(false and x) = false,

(x or y) = (not (not x and not y)),

(x xor y) = (not x = y),

(x implies y) = (not x or y).
�
File defined by parts 4ab, 5ab, 6ab, 7abc.

2.2 Domain, Range and Set

"src/set.tec" 4b ≡

Definition: Domain

uses Boolean;

4
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introduces domain.

Precedence: nonassociative{=} < nonassociative{in}.

Definition: Range

uses Domain[with range as domain].

Definition: Set

uses Domain;

introduces sets,

empty : -> sets,

member: domain x sets -> bool;

requires

(for a: domain) member(a, empty) = false.

�
File defined by parts 4ab, 5ab, 6ab, 7abc.

"src/set.tec" 5a ≡

Precedence: nonassociative{in, into}.

Precedence: nonassociative{=} = {union} < {intersection} < {subset}.

Extension: Set

introduces

nonempty-sets < sets,

subset : sets x sets -> bool,

is_empty : sets -> bool,

complement : sets -> sets,

singleton : domain -> sets,

into : domain x sets -> sets,

union : sets x sets -> sets,

intersection : sets xsets -> sets;

requires (for d, e: domain; s, s1, s2: sets)

(s1 subset s2) = (member(d, s1) implies member(d,s2)),

is_empty(s) = (s = empty),

member(d, (e into s1)) = ((d = e) or member(d, s1)),

member(d, complement(s)) = not member(d, s),

singleton(d) = (d into empty),

(s1 union empty) = s1,

(s1 union (d into s2)) =

if member(d, s1) then s1 union s2

else d into (s1 union s2),

(s1 intersection empty) = empty,

(s1 intersection (d into s2)) =

if member(d, s1) then d into (s1 intersection s2)

else s1 intersection s2,

s in nonempty-sets = (s != empty).

�
File defined by parts 4ab, 5ab, 6ab, 7abc.

"src/set.tec" 5b ≡

Lemma: Set

obeys (for d, e: domain; s, s1, s2: sets)

is_empty(empty),

(s subset empty) implies (s = empty),

member(d, singleton(e)) = (d = e),

member(d, s1 union s2) = (member(d, s1) or member(d, s2)),

member(d, s1 intersection s2) = (member(d, s1) and member(d, s2)).
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Definition: Finite-set

refines Set,

introduces

finite-sets < sets,

nonempty-finite-sets < nonempty-sets,

into : domain x finite-sets -> nonempty-finite-sets;

generates finite-sets using empty, into;

requires (for s: sets; s1: nonempty-sets)

s in finite-sets

= (s = empty or s != empty

and (for some d: domain; s’: finite-sets) s = d into s’),

s1 in nonempty-finite-sets = (s1 != empty).

�
File defined by parts 4ab, 5ab, 6ab, 7abc.

2.3 Map, Finite-map, Natural,
Segment, Natural-set

"src/set.tec" 6a ≡

Definition: Map

refines Set[with maps as sets, nonempty-maps as nonempty-sets];

uses Range;

introduces

apply : maps x domain -> range.

Definition: Finite-map

refines Map;

introduces

finite-maps < maps,

nonempty-finite-maps < nonempty-maps,

into : domain x finite-maps -> nonempty-finite-maps;

generates finite-maps using empty, into;

requires (for s: maps; s1: nonempty-maps)

s in finite-maps

= (s = empty or s != empty

and (for some d: domain; s’: finite-maps) s = d into s’),

s1 in nonempty-finite-maps = (s1 != empty).
�
File defined by parts 4ab, 5ab, 6ab, 7abc.

"src/set.tec" 6b ≡

Precedence:

nonassociative{<, <=, >=, >, =} < {+, -} < {*}.

Definition: Natural

refines Domain [with naturals as domain];

introduces

0 -> naturals,

1 -> naturals,

succ : naturals -> naturals,

+ : naturals x naturals -> naturals,

* : naturals x naturals -> naturals;

generates naturals freely using 0, succ;

requires (for n, m: naturals)

n + 0 = n,

n + succ(m) = succ(n + m),
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1 = succ(0),

n * 0 = 0,

n * succ(m) = n * m + n.
�
File defined by parts 4ab, 5ab, 6ab, 7abc.

"src/set.tec" 7a ≡

Extension: Natural

introduces

nonzero-naturals < naturals,

naturals < naturals?,

2 : -> naturals,

natural-underflow -> naturals?,

- : naturals x naturals -> naturals?,

<= : naturals x naturals -> bool,

< (x: naturals, y: naturals) = (x <= y and not(x = y)),

>= (x: naturals, y: naturals) = not(x < y),

> (x: naturals, y: naturals) = not(x <= y);

requires (for n, m: naturals; k: naturals?)

2 = 1 + 1,

n - 0 = n,

0 - n = if n=0 then 0 else natural-underflow,

succ(n) - succ(m) = n - m,

0 <= n,

not(succ(n) <= 0),

(succ(m) <= succ(n)) = (m <= n),

n in nonzero-naturals = (n != 0),

k in naturals = (k != natural-underflow).
�
File defined by parts 4ab, 5ab, 6ab, 7abc.

"src/set.tec" 7b ≡

Definition: Segment

uses Natural;

introduces

segments < naturals,

max: -> naturals;

requires (for n: naturals)

n in segments = (n < max).

Abbreviation: Natural-set is

Set [with Natural as Domain,

naturals as domain,

natural-sets as sets].

�
File defined by parts 4ab, 5ab, 6ab, 7abc.

2.4 Sequence, Finite-sequence, Cartesian-product-of-set

"src/set.tec" 7c ≡

Definition: Sequence

refines Map [with Natural as Domain,

naturals as domain,

n_th as apply,

sequences as maps,

nonempty-sequences as nonempty-maps].
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Definition: Finite-sequence

refines Sequence;

introduces

finite-sequences < sequences,

nonempty-finite-sequences < nonempty-sequences,

into : domain x finite-sequences -> nonempty-finite-sequences;

generates finite-sequences freely using empty, into;

requires (for s: sequences; s1: nonempty-sequences)

s in finite-sequences

= (s = empty or s != empty

and (for some d: domain; s’: finite-sequences) s = d into s’),

s1 in nonempty-finite-sequences = (s1 != empty).

Definition: Cartesian-product-of-set

refines Finite-sequence [with Set as Range, sets as range].
�
File defined by parts 4ab, 5ab, 6ab, 7abc.
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Relations

3.1 Unary-relation, General-binary-relation,
Function, Binary-relation

"src/relation.tec" 9a ≡

Pragma: include="set.xgf".

Pragma: concepts.

Library: std

Unary-relation, General-binary-relation, Function, Binary-relation, Surjection,

Injection, Transitive, Symmetric, Reflexive, Irreflexive, Antisymmetric,

Bijection, Finite, Equivalence-relation, Equivalence-class,

Set-of-representatives.

Precedence: nonassociative{=, R} < prefix{P}.

Definition: Unary-relation

refines Domain;

introduces P : domain -> bool.
�
File defined by parts 9abc, 10abcdef, 11abc.

"src/relation.tec" 9b ≡

Precedence: nonassociative{R, <=}.

Definition: General-binary-relation

uses Domain, Range;

introduces R : domain x range -> bool.
�
File defined by parts 9abc, 10abcdef, 11abc.

"src/relation.tec" 9c ≡

Definition: Function

refines General-binary-relation;

introduces f: domain -> range;

requires (for x: domain; y, y’: range)

(f(x) = y) = (x R y),

f(x) = y and f(x) = y’ implies y = y’.
�
File defined by parts 9abc, 10abcdef, 11abc.

9
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"src/relation.tec" 10a ≡

Definition: Binary-relation

refines Domain;

introduces R : domain x domain -> bool.

Lemma: Binary-relation is General-binary-relation.

�
File defined by parts 9abc, 10abcdef, 11abc.

3.2 Surjection, Injection

"src/relation.tec" 10b ≡

Definition: Surjection

refines Function;

requires (for y: range) (for at least 1 x: domain)

f(x) = y.
�
File defined by parts 9abc, 10abcdef, 11abc.

"src/relation.tec" 10c ≡

Definition: Injection

refines Function;

requires (for y: range) (for at most 1 x: domain)

f(x) = y.

�
File defined by parts 9abc, 10abcdef, 11abc.

3.3 Transitive, Symmetric, Reflexive,
Irreflexive, Antisymmetric

"src/relation.tec" 10d ≡

Definition: Transitive

refines Binary-relation;

requires

(for x, y, z: domain) x R y and y R z implies x R z.
�
File defined by parts 9abc, 10abcdef, 11abc.

"src/relation.tec" 10e ≡

Definition: Symmetric

refines Binary-relation;

requires

(for x, y: domain) x R y implies y R x.
�
File defined by parts 9abc, 10abcdef, 11abc.

"src/relation.tec" 10f ≡
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Definition: Reflexive

refines Binary-relation;

requires

(for x: domain) x R x.

Definition: Irreflexive

refines Binary-relation;

requires

(for x: domain) not x R x.

Definition: Antisymmetric

refines Binary-relation;

requires

(for x, y: domain) x R y and y R x implies x = y.
�
File defined by parts 9abc, 10abcdef, 11abc.

3.4 Bijection, Finite

"src/relation.tec" 11a ≡

Definition: Bijection

refines Surjection, Injection.

Definition: Finite

refines

Domain,

Bijection [with segments as domain, domain as range];

uses Segment.

�
File defined by parts 9abc, 10abcdef, 11abc.

3.5 Equivalence-relation, Equivalence-class,
Set-of-representatives

"src/relation.tec" 11b ≡

Definition: Equivalence-relation

refines Reflexive, Symmetric, Transitive.

Precedence: nonassociative{=, equiv}.

Definition: Equivalence-class

uses Domain, Equivalence-relation [with equiv as R];

introduces equivalence-classes,

member : domain x equivalence-classes -> bool,

equivalence-class : domain -> equivalence-classes;

requires (for x, y: domain; e: equivalence-classes)

(equivalence-class(x) = equivalence-class(y)) = (x equiv y),

member(x, e) = (equivalence-class(x) = e).
�
File defined by parts 9abc, 10abcdef, 11abc.

"src/relation.tec" 11c ≡
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Definition: Set-of-representatives

uses Equivalence-class;

introduces

set-of-representatives < domain,

representative : equivalence-classes -> domain,

representative : domain -> domain;

requires (for x: domain; e: equivalence-classes)

x in set-of-representatives = (representative(x) = x),

equivalence-class(representative(e)) = e,

representative(x) = representative(equivalence-class(x)).
�
File defined by parts 9abc, 10abcdef, 11abc.
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Order Concepts

4.1 Strict-partial-order, Partial-order,
Total-order, Trichotomy

"src/order.tec" 13a ≡

Pragma: include="relation.xgf", include="algebra1.xgf".

Precedence: nonassociative{R, <}.

Library: std

Strict-partial-order, Partial-order, Total-order, Trichotomy, Nondense-order,

Dense-order, Archimedean-order, Continuous-order.

Definition: Strict-partial-order

refines Irreflexive [with < as R],

Transitive [with < as R].

Precedence: nonassociative{R, <=, =}.

Definition: Partial-order

refines Reflexive [with <= as R],

Antisymmetric [with <= as R],

Transitive [with <= as R].

Precedence: nonassociative{<, <=, >=, >, =}.

Extension: Partial-order

introduces

< : domain x domain -> bool,

> : domain x domain -> bool,

>= : domain x domain -> bool;

requires (for x, y: domain)

(x < y) = (x <= y and x != y),

(x > y) = (not x <= y),

(x >= y) = (x > y or x = y).

Lemma: Partial-order implies Strict-partial-order.
�
File defined by parts 13ab, 14ab.

"src/order.tec" 13b ≡

13
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Definition: Total-order

refines Partial-order;

requires (for x, y: domain)

x <= y or y <= x.

Definition: Trichotomy

refines Strict-partial-order;

requires (for x, y : domain)

x < y or x = y or y < x.

Lemma: Trichotomy is Total-order .

�
File defined by parts 13ab, 14ab.

4.2 Nondense-order, Dense-order,
Archimedean-order, Continuous-order

"src/order.tec" 14a ≡

Definition: Nondense-order

refines Total-order;

requires

not ((for x, y: domain)

x < y implies (for some z: domain) x < z and z < y).

Definition: Dense-order

refines Total-order;

requires (for x, y: domain)

x < y implies (for some z: domain) x < z and z < y.

Definition: Archimedean-order

refines Total-order, Abelian-group;

requires (for x, y, z: domain)

x <= y implies x + z <= y + z.
�
File defined by parts 13ab, 14ab.

"src/order.tec" 14b ≡

Definition: Continuous-order

refines Total-order;

uses Set;

introduces

precedes : sets x sets -> bool,

separates : sets x domain x sets -> bool;

requires (for K, L: sets; z: domain)

precedes(K, L) =

(for x, y: domain) member(x, K) and member(y, L) implies x < y,

separates(K, z, L) =

(for x, y: domain)

member(x, K) and member(y, L) and x != z and y != z

implies x < z and z < y,

// Dedekind’s axiom

precedes(K, L) implies (for at least 1 z: domain) separates(K, z, L).

Lemma: Continuous-order implies Dense-order.

�
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File defined by parts 13ab, 14ab.
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Algebras with 1 Connective

5.1 Binary-op, Right-regular, Right-identity,
Left-regular, Left-identity

"src/algebra1.tec" 16a ≡

Pragma: include="set.xgf".

Precedence: nonassociative{=} < {*}.

Library: std

Binary-op, Right-regular, Right-identity, Left-regular, Left-identity,

Commutative, Associative, Right-inverses, Regular, Left-inverses, Identity,

Semigroup, Inverses, Regular-semigroup, Monoid, Commutative-semigroup, Group,

Abelian-monoid, Trivial-group, Group-of-order-2, Commutative-group,

Abelian-group, Additive-trivial-group.

Definition: Binary-op

uses Domain;

introduces * : domain x domain -> domain.

Precedence: nonassociative{=} < {|} < {+, -}.

Definition: Right-regular

refines Binary-op;

introduces | : domain x domain -> bool;

requires (for x, y: domain)

x | y = (for some d: domain) x * d = y.

Definition: Right-identity

refines Binary-op;

introduces 1 -> domain;

requires (for x: domain)

x * 1 = x.

Definition: Left-regular

refines Binary-op;

introduces | : domain x domain -> bool;

requires (for x, y: domain)

x | y = (for some d: domain) d * x = y.
�
File defined by parts 16ab, 17ab, 18abcde, 19ab.

"src/algebra1.tec" 16b ≡

16
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Definition: Left-identity

refines Binary-op;

introduces 1 -> domain;

requires (for x: domain)

1 * x = x.

�
File defined by parts 16ab, 17ab, 18abcde, 19ab.

5.2 Commutative, Associative, Right-inverses,
Regular, Left-inverses, Identity

"src/algebra1.tec" 17a ≡

Definition: Commutative

refines Binary-op;

requires (for x, y: domain)

x * y = y * x.

Definition: Associative

refines Binary-op;

requires (for x, y, z: domain)

x * (y * z) = (x * y) * z.

Precedence: prefix{-} < {*} < postfix{^(-1)}.

Definition: Right-inverses

refines Right-identity, Right-regular;

introduces ^(-1) : domain -> domain;

requires (for x: domain)

x * x^(-1) = 1.
�
File defined by parts 16ab, 17ab, 18abcde, 19ab.

"src/algebra1.tec" 17b ≡

Lemma: Right-inverses implies Right-regular.

Definition: Regular

refines Left-regular, Right-regular.

Precedence: prefix{-} < {*} < postfix{^(-1)}.

Definition: Left-inverses

refines Left-identity, Left-regular;

introduces ^(-1) : domain -> domain;

requires (for x: domain)

x^(-1) * x = 1.

Lemma: Left-inverses implies Left-regular.

Definition: Identity

refines Left-identity, Right-identity.

�
File defined by parts 16ab, 17ab, 18abcde, 19ab.
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5.3 Semigroup, Inverses, Regular-semigroup,
Monoid, Commutative-semigroup

"src/algebra1.tec" 18a ≡

Abbreviation: Semigroup is Associative.
�
File defined by parts 16ab, 17ab, 18abcde, 19ab.

"src/algebra1.tec" 18b ≡

Definition: Inverses

refines Left-inverses, Right-inverses.

Lemma: Inverses implies Regular.

Precedence: {/, *}.

Extension: Inverses

introduces / : domain x domain -> domain;

requires (for x, y:domain)

x/y = x * y^(-1).

Definition: Regular-semigroup

refines Regular, Semigroup.

Definition: Monoid

refines Semigroup, Identity.
�
File defined by parts 16ab, 17ab, 18abcde, 19ab.

"src/algebra1.tec" 18c ≡

Precedence: nonassociative{=} < {+, -}.

Definition: Commutative-semigroup

refines Regular-semigroup[with + as *],

Commutative[with + as *].

�
File defined by parts 16ab, 17ab, 18abcde, 19ab.

5.4 Group, Abelian-monoid, Trivial-group, Group-of-order-
2

"src/algebra1.tec" 18d ≡

Definition: Group

refines Monoid, Inverses.

Definition: Abelian-monoid

refines Monoid, Commutative.
�
File defined by parts 16ab, 17ab, 18abcde, 19ab.

"src/algebra1.tec" 18e ≡
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Definition: Trivial-group

refines Group;

requires (for x: domain) x = 1.

Definition: Group-of-order-2

refines Group;

requires (for x: domain) x * x = 1.

Lemma: Group-of-order-2 is Commutative.

�
File defined by parts 16ab, 17ab, 18abcde, 19ab.

5.5 Commutative-group, Abelian-group, Additive-trivial-
group

"src/algebra1.tec" 19a ≡

Definition: Commutative-group

refines Commutative, Group.
�
File defined by parts 16ab, 17ab, 18abcde, 19ab.

"src/algebra1.tec" 19b ≡

Precedence: nonassociative{in} < {+, -} < prefix{-, +}

< {*} < postfix{^(-1)}.

Definition: Abelian-group

refines Commutative-group[with + as *, - as ^(-1), 0 as 1, - as /];

introduces nonzeros < domain,

- : domain x domain -> domain,

+ : domain -> domain;

requires (for x, y: domain)

x in nonzeros = (x != 0),

x - y = x + (-y),

+ x = x.

Definition: Additive-trivial-group

refines Abelian-group[with Trivial-group as Commutative-group].

�
File defined by parts 16ab, 17ab, 18abcde, 19ab.



Chapter 6

Algebras with 2 Connectives

6.1 Right-distributive, Left-distributive,
Distributive, Semiring, Ring

"src/algebra2.tec" 20a ≡

Pragma: include="relation.xgf", include="algebra1.xgf".

Precedence: nonassociative{=} < {+, -} < prefix{-, +} < {*}.

Library: std

Right-distributive, Left-distributive, Distributive, Semiring, Ring,

Commutative-ring, Ring-with-identity, Commutative-ring-with-identity, Unit,

Right-module, No-zero-divisors, Left-module, Division-ring, Module, Skewfield,

Right-ideal, Left-ideal, Integral-domain, Gcd-domain, Euclidean-domain,

Coefficient-ring, Unique-right-ideal, Unique-left-ideal, Ideal, Unique-ideal,

Set-of-pairwise-spanning-ideals, Trivial-ideal, Proper-ideal, Ideal-equivalence,

Ideal-equivalence-class, Field, Quotient-ring.

Definition: Right-distributive

refines Binary-op, Binary-op [with + as *];

requires (for x, y, z: domain)

(x + y) * z = x * z + y * z.

Definition: Left-distributive

refines Binary-op, Binary-op [with + as *];

requires (for x, y, z: domain)

x * (y + z) = x * y + x * z.

Definition: Distributive

refines Left-distributive, Right-distributive.

Definition: Semiring

refines Commutative-semigroup, Semigroup, Distributive.

Definition: Ring

refines Abelian-group, Semigroup, Distributive.
�
File defined by parts 20ab, 21, 22abc, 23ab, 24abcd, 25.

6.2 Commutative-ring, Ring-with-identity,
Commutative-ring-with-identity, Unit

"src/algebra2.tec" 20b ≡

20
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Definition: Commutative-ring

refines Ring, Commutative.

Definition: Ring-with-identity

refines Ring, Identity.

Definition: Commutative-ring-with-identity

refines Commutative-ring, Identity.

Definition: Unit

refines Ring-with-identity;

uses Regular;

introduces units < domain, nonunits < domain;

requires

(for u: domain)

u in units = u | 1,

u in nonunits = (not u | 1).

Lemma: Unit implies Group.
�
File defined by parts 20ab, 21, 22abc, 23ab, 24abcd, 25.

6.3 Right-module, No-zero-divisors, Left-module,
Division-ring, Module, Skewfield

"src/algebra2.tec" 21 ≡

Precedence: {+, -} < prefix{-} < {*}.

Definition: Right-module

refines Abelian-group[with right-module-elements as domain];

uses Ring, Right-identity;

introduces

* : right-module-elements x domain -> right-module-elements;

requires (for a, b: domain; x, y: right-module-elements)

x * (a * b) = (x * a) * b,

x * (a + b) = x * a + x * b,

(x + y) * a = x * a + y * a,

x * 1 = x.

Definition: No-zero-divisors

refines Ring;

introduces

* : nonzeros x nonzeros -> nonzeros,

1 : -> nonzeros;

requires (for x, y: domain)

x * y = 0 implies x = 0 or y = 0.

Precedence: {+, -} < prefix{-} < {*}.

Definition: Left-module

refines Abelian-group[with left-module-elements as domain];

uses Ring, Left-identity;

introduces

* : domain x left-module-elements -> left-module-elements;

requires (for a, b: domain; x, y: left-module-elements)

(a * b) * x = a * (b * x),
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(a + b) * x = a * x + b * x,

a * (x + y) = a * x + a * y,

1 * x = x.
�
File defined by parts 20ab, 21, 22abc, 23ab, 24abcd, 25.

"src/algebra2.tec" 22a ≡

Precedence: prefix{-} < {*} < postfix{^(-1)}.

Definition: Division-ring

refines Ring, Inverses;

introduces ^(-1) : nonzeros -> nonzeros;

requires

0 != 1,

(for y: nonzeros) y * y^(-1) = 1.
�
File defined by parts 20ab, 21, 22abc, 23ab, 24abcd, 25.

"src/algebra2.tec" 22b ≡

Definition: Module

refines

Left-module [with module-elements as left-module-elements],

Right-module [with module-elements as right-module-elements].

Lemma: Module[with Additive-trivial-group as Abelian-group] implies

Module.

Lemma: Ring implies Module[with domain as module-elements].

Abbreviation: Skewfield is Division-ring.

Extension: Commutative-ring-with-identity

uses Unit;

introduces prime-elements < nonzeros;

requires (for d: nonzeros)

d in prime-elements = not((for some q, r: nonunits) d = q * r).

Lemma: Map[with nonempty-sets as domain, Module as Range] implies

Module.

�
File defined by parts 20ab, 21, 22abc, 23ab, 24abcd, 25.

6.4 Right-ideal, Left-ideal, Integral-domain,
Gcd-domain, Euclidean-domain

"src/algebra2.tec" 22c ≡

Definition: Right-ideal

refines Set [with ideals as sets];

uses Ring;

requires (for I: ideals; a, b: domain)

member(0, I),

member(a, I) and member(b, I) implies member(a + b, I),
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member(a, I) implies member(a * b, I).

Definition: Left-ideal

refines Set [with ideals as sets];

uses Ring;

requires (for I: ideals; a, b: domain)

member(0, I),

member(a, I) and member(b, I) implies member(a + b, I),

member(a, I) implies member(b * a, I).
�
File defined by parts 20ab, 21, 22abc, 23ab, 24abcd, 25.

"src/algebra2.tec" 23a ≡

Definition: Integral-domain

refines Commutative-ring-with-identity, No-zero-divisors.

Definition: Gcd-domain

refines Integral-domain;

uses Set-of-representatives;

introduces gcd : domain x domain -> set-of-representatives;

requires (for x, y: domain)

gcd(x, y) | x and gcd(x, y) | y and

((for z: domain) (z | x and z | y) implies z | gcd(x, y)),

(for some z: domain) gcd(x, y) = z.

Definition: Euclidean-domain

refines Gcd-domain;

uses Natural;

introduces

Euclidean_function : nonzeros -> naturals,

div : domain x nonzeros -> domain,

rem : domain x nonzeros -> domain;

requires (for a: domain; b, c: nonzeros)

Euclidean_function(b * c) >= Euclidean_function(b),

(for some q, r: domain)

a = q * b + r

where

q = div(a, b),

r = rem(a, b),

r=0 or Euclidean_function(r:nonzeros) < Euclidean_function(b).
�
File defined by parts 20ab, 21, 22abc, 23ab, 24abcd, 25.

6.5 Coefficient-ring, Unique-right-ideal, Unique-left-ideal,
Ideal, Unique-ideal

"src/algebra2.tec" 23b ≡

Abbreviation: Coefficient-ring is

Commutative-ring-with-identity [with coefficient-domain as domain].

Definition: Unique-right-ideal

refines Right-ideal;

requires (for I1, I2: ideals) I1 = I2.

Definition: Unique-left-ideal
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refines Left-ideal;

requires (for I1, I2: ideals) I1 = I2.

Definition: Ideal

refines Left-ideal, Right-ideal.

Definition: Unique-ideal

refines Ideal;

requires (for I1, I2: ideals) I1 = I2.

�
File defined by parts 20ab, 21, 22abc, 23ab, 24abcd, 25.

6.6 Set-of-pairwise-spanning-ideals, Trivial-ideal,
Proper-ideal, Ideal-equivalence

"src/algebra2.tec" 24a ≡

Definition: Set-of-pairwise-spanning-ideals

refines Ideal;

requires (for I1, I2: ideals)

I1 != I2 implies (for a: domain) member(a, I1) or member(a, I2).
�
File defined by parts 20ab, 21, 22abc, 23ab, 24abcd, 25.

"src/algebra2.tec" 24b ≡

Definition: Trivial-ideal

refines Unique-ideal;

requires (for I: ideals; a: domain)

member(a, I) implies a = 0.

Definition: Proper-ideal

refines Unique-ideal;

requires (for I: ideals)

(for some a: domain) not member(a, I).

�
File defined by parts 20ab, 21, 22abc, 23ab, 24abcd, 25.

6.7 Ideal-equivalence-class, Field, Quotient-ring

"src/algebra2.tec" 24c ≡

Definition: Ideal-equivalence

refines Equivalence-class;

uses Unique-ideal;

requires (for I: ideals; x, y: domain)

(x equiv y) = member(x - y, I).
�
File defined by parts 20ab, 21, 22abc, 23ab, 24abcd, 25.

"src/algebra2.tec" 24d ≡

Lemma: Euclidean-domain implies Gcd-domain.

Definition: Ideal-equivalence-class

refines Equivalence-class [with Ideal-equivalence as Equivalence-relation].
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Definition: Field

refines Commutative, Division-ring.

Lemma: Field implies Euclidean-domain.
�
File defined by parts 20ab, 21, 22abc, 23ab, 24abcd, 25.

"src/algebra2.tec" 25 ≡

Definition: Quotient-ring

refines

Commutative-ring-with-identity [with equivalence-classes as domain];

uses

Commutative-ring-with-identity [with base-domain as domain],

Ideal-equivalence-class[with base-domain as domain];

requires (for e1, e2: equivalence-classes;

x, x1, x2: base-domain)

member(x, e1 + e2) = (for some x1, x2: base-domain)

member(x1, e1) and member(x2, e2) and x1 + x2 equiv x,

member(x, (e1 * e2)) = (for some x1, x2: base-domain)

member(x1, e1) and member(x2, e2) and x1 * x2 equiv x,

0 = equivalence-class(0),

1 = equivalence-class(1).

Extension: Euclidean-domain

introduces gcdc: domain x domain ->

set-of-representatives x domain x domain;

requires (for x, y, u, v: domain;

z: set-of-representatives)

(gcdc(x,y) = (z, u, v)) =

(z = gcd(x, y) and u * x + v * y = z).
�
File defined by parts 20ab, 21, 22abc, 23ab, 24abcd, 25.



Chapter 7

Ordered Algebras

7.1 Ordered-ring, Ordered-field

"src/ordalgebra.tec" 26a ≡

Pragma: include="order.xgf", include="algebra2.xgf".

Library: std

Ordered-ring, Ordered-field.

Definition: Ordered-ring

refines Ring-with-identity[with Archimedean-order as Abelian-group];

requires (for x, y, z: domain)

x <= y and 0 <= z implies x*z <= y*z.
�
File defined by parts 26abc.

"src/ordalgebra.tec" 26b ≡

Precedence: confix{|, |}.

Extension: Ordered-ring

introduces

sign: domain -> domain,

| | : domain -> domain,

positive : domain -> bool,

negative : domain -> bool,

non_positive : domain -> bool,

non_negative : domain -> bool;

requires

(for x: domain)

sign(x) = if x>0 then +1 else if x<0 then -1 else 0,

|x| = if x<0 then -x else x,

positive(x) = (x>0),

non_positive(x) = (not x>0),

negative(x) = (x<0),

non_negative(x) = (not x<0).
�
File defined by parts 26abc.

"src/ordalgebra.tec" 26c ≡

Definition: Ordered-field

refines Field [with Ordered-ring as Ring].
�
File defined by parts 26abc.

26



Chapter 8

Arithmetic Hierarchy

8.1 Exponentiation, Integer, Rational

"src/arithmetic.tec" 27a ≡

Pragma: include="ordalgebra.xgf".

Precedence: {*}<{^}.

Library: std

Exponentiation, Integer, Rational, Formal-real-field, Real, Complex, Quaternion,

Integer-congruence-mod-p, Integers-mod-p, Integer-ample-set-mod-p.

Definition: Exponentiation

uses Monoid, Natural;

introduces ^ : domain x naturals -> domain;

requires (for x: domain; n: naturals)

x ^ 0 = 1,

x ^ (n + 1) = (x ^ n) * x.

�
File defined by parts 27ab, 28ab, 29ab, 30.

"src/arithmetic.tec" 27b ≡

Definition: Integer

refines

Nondense-order [with integers as domain],

Euclidean-domain [with Ordered-ring as Ring,

integers as domain,

nonzero-integers as nonzeros];

uses Natural;

introduces

naturals < integers,

nonzero-integers < integers,

succ : integers -> integers,

pred : integers -> integers,

d : naturals x naturals -> integers (private);

generates integers using d;

requires

(for m, n, p, q: naturals; z: domain)

(d(m, n) = d(p, q)) = (m + q = p + n),

0 = d(0, 0),

1 = d(succ(0), 0),

27
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succ(d(m, n)) = d(succ(m), n),

pred(d(m, n)) = d(m, succ(n)),

d(m, n) + d(p, q) = d(m + p, n + q),

-(d(m, n)) = d(n, m),

d(m, n) * d(p, q) = d(m * p + n * q, n * p + m * q),

(d(m, n) <= d(p, q)) = (m + q <= p + n),

((for x : integers) x in naturals = (x >= 0)),

((for x : integers) x in nonzero-integers = (x != 0)).
�
File defined by parts 27ab, 28ab, 29ab, 30.

"src/arithmetic.tec" 28a ≡

Definition: Rational

refines

Ordered-field [with rationals as domain,

nonzero-rationals as nonzeros];

uses Integer;

introduces

integers < rationals,

fraction : integers x nonzero-integers -> rationals,

numerator : rationals -> integers,

denominator : rationals -> nonzero-integers;

generates rationals using fraction;

requires (for i, j: integers; k, l: nonzero-integers)

(fraction(i, k) = fraction(j, l)) = (i * l = j * k),

(fraction(i, k) <= fraction(j, l)) = (i * l <= j * k),

0 = fraction(0, 1),

1 = fraction(1, 1),

fraction(i, k) + fraction(j, l) = fraction(i * l + j * k, k * l),

fraction(i, k) * fraction(j, l) = fraction(i * j, k * l),

numerator(fraction(i, k)) = i, denominator(fraction(i, k)) = k,

((for r: rationals) r in integers = (denominator(r)=1)),

((for r: rationals) r in nonzero-rationals = (r!=0)).

Extension: Rational

introduces

numerator : nonzero-rationals -> nonzero-integers;

requires (for r,s: rationals)

(r <= s) =

(numerator(r)*denominator(s) <= numerator(s)*denominator(r)),

-r = fraction(-numerator(r), denominator(r)),

(for s: nonzero-rationals)

s^(-1) = fraction(denominator(s), numerator(s)).
�
File defined by parts 27ab, 28ab, 29ab, 30.

8.2 Formal-real-field, Real, Complex, Quaternion

"src/arithmetic.tec" 28b ≡

Definition: Formal-real-field

refines Ordered-field;

uses Continuous-order;

requires

not ((for some x, y: domain) x*x + y*y = -1).

Definition: Real
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refines

Continuous-order [with reals as domain],

Ordered-field [with reals as domain, nonzero-reals as nonzeros];

uses Rational;

introduces rationals < reals;

requires (for x: reals)

x in rationals =

((for some i: integers; k: nonzero-integers) x = fraction(i, k)).
�
File defined by parts 27ab, 28ab, 29ab, 30.

"src/arithmetic.tec" 29a ≡

Precedence: confix{d, e}.
Precedence: confix{b, c}.
Precedence: confix{[, ]}.

// Pragma: requires.

Extension: Real

introduces

de : reals -> integers,

bc : reals -> integers,

[] : reals -> integers;

requires (for r: reals; n: integers)

dre = n where n - 1 < r and r <= n,

brc = n where n <= r and r < n + 1,

[r] = if r>=0 then brc else dre.
�
File defined by parts 27ab, 28ab, 29ab, 30.

"src/arithmetic.tec" 29b ≡

Definition: Complex

refines Field [with complexes as domain, nonzero-complexes as nonzeros];

uses Real;

introduces reals < complexes,

cp: reals x reals -> complexes, // a + i*b = z

i: -> complexes;

generates complexes freely using cp;

requires (for m, n, p, q: reals)

0 = cp(0, 0),

1 = cp(1, 0),

i = cp(0, 1),

cp(m, n) + cp(p, q) = cp(m + p, n + q),

-(cp(m, n)) = cp(-n, -m),

cp(m, n) * cp(p, q) = cp(m * p - n * q, m * q + n * p),

((for x : complexes) x in reals = ((for some r: reals) x = cp(r,0))),

((for x : complexes) x in nonzero-complexes = (x != 0)).

Extension: Complex

introduces

real-part: complexes -> reals,

imag-part: complexes -> reals,

conjugate: complexes -> complexes,

sqrt: complexes -> complexes,

norm: complexes -> reals;

requires (for c: complexes; a, b: reals)

real-part(cp(a, b)) = a,
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imag-part(cp(a, b)) = b,

conjugate(cp(a, b)) = cp(a, -b),

(sqrt(c) = a) = (a * a = c),

norm(cp(a, b)) = sqrt(a * a + b * b).

Definition: Quaternion

refines Skewfield [with quaternions as domain,

nonzero-quaternions as nonzeros];

uses Real;

introduces reals < quaternions, complexes < quaternions,

qn: reals x reals x reals x reals -> quaternions,

i: -> quaternions,

j: -> quaternions,

k: -> quaternions;

generates quaternions freely using qn;

requires (for a, b, c, d, a’, b’, c’, d’: reals)

0 = qn(0, 0, 0, 0),

1 = qn(1, 0, 0, 0),

i = qn(0, 1, 0, 0),

j = qn(0, 0, 1, 0),

k = qn(0, 0, 0, 1),

qn(a, b, c, d) + qn(a’, b’, c’, d’) =

qn(a + a’, b + b’, c + c’, d + d’),

qn(a, b, c, d) * qn(a’, b’, c’, d’) =

qn(a * a’ - b * b’ - c * c’ - d * d’,

a * b’ + b * a’ + c * d’ + d * c’,

a * c’ + c * a’ + d * b’ - b * d’,

a * d’ + d * a’ + b * c’ - c * b’),

((for x : quaternions) x in reals

= ((for some r: reals) x = qn(r,0,0,0))),

((for x : quaternions) x in complexes

= ((for some z: complexes) x = qn(real-part(z),imag-part(z),0,0))),

((for x : quaternions) x in nonzero-quaternions = (x != 0)).

Extension: Quaternion

introduces conjugate: quaternions -> quaternions,

norm: quaternions -> reals;

requires (for q: quaternions; a, b, c, d: reals)

conjugate(qn(a, b, c, d)) = qn(a, -b, -c, -d),

norm(qn(a, b, c, d)) = a * a + b * b + c * c + d * d.
�
File defined by parts 27ab, 28ab, 29ab, 30.

8.3 Integer-congruence-mod-p, Integers-mod-p,
Integer-ample-set-mod-p

"src/arithmetic.tec" 30 ≡

Pragma: operator.

Definition: Integer-congruence-mod-p

refines Equivalence-relation [with equiv as R, integers as domain];

uses Integer;

introduces p: -> prime-elements;

requires (for x, y: integers; d: domain)

(x equiv y) = p | x - y.

Lemma:

Integer-congruence-mod-p implies Equivalence-relation.
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Lemma: Integer-congruence-mod-p

obeys (for x, x’, y, y’: integers)

((x equiv y) and (x’ equiv y’)) implies

(((x + y) equiv (x’ + y’)) and ((x * y) equiv (x’ * y’))).

Definition: Integers-mod-p

refines Field [with equivalence-classes as domain];

uses Set-of-representatives

[with integers as domain,

Integer-congruence-mod-p as Equivalence-relation];

requires (for x, y: equivalence-classes;

a, b : domain)

x + y = equivalence-class(representative(x) + representative(y)),

x * y = equivalence-class(representative(x) * representative(y)),

0 = equivalence-class(0),

1 = equivalence-class(1).

Abbreviation: Integer-ample-set-mod-p

is Set-of-representatives

[with integers as domain,

Integer-congruence-mod-p as Equivalence-relation].

�
File defined by parts 27ab, 28ab, 29ab, 30.
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Polynomials

9.1 Polynomials

"src/polynomial.tec" 32a ≡

Pragma: include="arithmetic.xgf".

Library: std

Polynomial, Poly, Polynomial-over-integers, Bivariate-polynomial-over-integers.

Definition: Polynomial

refines Map [with polynomials as maps,

naturals as domain,

Coefficient-ring as Range,

coefficient-domain as range,

c as apply],

Commutative-ring-with-identity [with polynomials as domain];

uses Natural;

introduces nonzero-polynomials < polynomials,

nonzero : polynomials -> bool,

ldcf : nonzero-polynomials -> coefficient-domain,

degree : nonzero-polynomials -> naturals,

convolution : polynomials x polynomials x naturals x naturals

-> coefficient-domain;

requires

(for p, q: polynomials; r: nonzero-polynomials; m, n: naturals)

p in nonzero-polynomials = nonzero(p),

nonzero(p) = ((for some n: naturals) c(p, n) != 0),

(for some n: naturals) (for all m: naturals)

m > n implies c(p, m) = 0,

degree(r) = n where (c(r, n) != 0 and

((for all m: naturals) m > n implies c(p, m) = 0)),

ldcf(r) = c(r, degree(r)),

convolution(p, q, m, 0) = c(p, m) * c(q, 0),

convolution(p, q, m, n + 1) =

c(p, m) * c(q, n + 1) + convolution(p, q, m + 1, n),

c(-(p), n) = -(c(p, n)),

c(p + q, n) = c(p, n) + c(q, n),

c(p * q, n) = convolution(p, q, 0, n),

(p = q) = ((for all n: naturals) c(p, n) = c(q, n)).
�
File defined by parts 32ab, 33ab, 34abc.

"src/polynomial.tec" 32b ≡

32
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Lemma: Polynomial

obeys (for p, q: polynomials) // for example

c(p * q, 1) = c(p, 0) * c(q, 1) + c(p, 1) * c(q, 0),

c(p * q, 2) =

c(p, 0) * c(q, 2) + c(p, 1) * c(q, 1) + c(p, 2) * c(q, 0).

Lemma: Polynomial

obeys (for p, q: polynomials; n: naturals)

c(p - q, n) = c(p, n) - c(q, n).

Precedence: {-|, *}.

�
File defined by parts 32ab, 33ab, 34abc.

9.2 Polynomial Extensions

"src/polynomial.tec" 33a ≡

Extension: Polynomial

introduces

-| : coefficient-domain x polynomials -> polynomials,

+ : coefficient-domain x polynomials -> polynomials,

* : coefficient-domain x polynomials -> polynomials;

requires (for p: polynomials; a: coefficient-domain; n: naturals)

c(a -| p, n) = if n = 0 then a else c(p, n - 1),

c(a + p, n) = if n = 0 then a + c(p, 0) else c(p, n),

c(a * p, n) = a * c(p, n).

Extension: Polynomial

introduces

monic-monomial : naturals -> polynomials,

red : nonzero-polynomials -> polynomials;

requires (for r: nonzero-polynomials; m, n: naturals)

c(monic-monomial(m), n) = if m = n then 1 else 0,

c(red(r), n) = if n = degree(r) then 0 else c(r, n).
�
File defined by parts 32ab, 33ab, 34abc.

"src/polynomial.tec" 33b ≡

Lemma: Polynomial

obeys (for r: nonzero-polynomials)

red(r) = r - ldcf(r) * monic-monomial(degree(r)).

Lemma: Polynomial

obeys (for r: nonzero-polynomials; n: naturals)

c(red(r), n) =

c(r - ldcf(r) * monic-monomial(degree(r)), n),

c(red(r), n) =

c(r, n) - c(ldcf(r) * monic-monomial(degree(r)), n),

c(red(r), n) =

c(r, n) - ldcf(r) * c(monic-monomial(degree(r)), n),

c(red(r), n) =

c(r, n) - ldcf(r) * (if degree(r) = n then 1 else 0),

c(red(r), n) =

if degree(r) = n then c(r, n) - ldcf(r) * 1

else c(r, n) - ldcf(r) * 0,

c(red(r), n) =
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if degree(r) = n then c(r, n) - ldcf(r) else c(r, n),

c(red(r), n) =

if degree(r) = n then c(r, n) - c(r, degree(r))

else c(r, n),

c(red(r), n) = if degree(r) = n then 0 else c(r, n).
�
File defined by parts 32ab, 33ab, 34abc.

"src/polynomial.tec" 34a ≡

Extension: Polynomial

introduces monic-polynomials < nonzero-polynomials;

requires (for p: nonzero-polynomials)

p in monic-polynomials = (ldcf(p) = 1).

Extension: Polynomial

introduces unit-polynomials < polynomials,

nonunit-polynomials < polynomials;

requires (for p: polynomials)

p in unit-polynomials = p | 1,

p in nonunit-polynomials = (not p | 1).

Extension: Polynomial

introduces prime-polynomials < polynomials;

requires (for p: polynomials)

p in prime-polynomials =

not((for some q, r: nonunit-polynomials) p = q * r).
�
File defined by parts 32ab, 33ab, 34abc.

"src/polynomial.tec" 34b ≡

Abbreviation: Poly is Polynomial.

Extension: Polynomial

uses Exponentiation [with Poly as Monoid].

�
File defined by parts 32ab, 33ab, 34abc.

9.3 Polynomial-over-integers,
Bivariate-polynomial-over-integers

"src/polynomial.tec" 34c ≡

Abbreviation: Polynomial-over-integers is

Polynomial [with Integer as Coefficient-ring,

integers as coefficient-domain,

univariate-polynomials as polynomials].

Abbreviation: Bivariate-polynomial-over-integers is

Polynomial [with Polynomial-over-integers as Coefficient-ring,

univariate-polynomials as coefficient-domain,

bivariate-polynomials as polynomials].

�
File defined by parts 32ab, 33ab, 34abc.
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Ample Sets

10.1 Unit-equivalence, Ample-set,
Normal-ample-set, Multiplicative-ample-set

"src/ampleset.tec" 35a ≡

Pragma: include="polynomial.xgf".

Precedence: nonassociative{in, into}.

Library: std

Unit-equivalence, Ample-set, Normal-ample-set, Multiplicative-ample-set,

Integer-ample-set, Ample-coefficient, Multiplicative-gcd-domain,

Rational-ample-set, Absolut-value-integer-ample-set, Ample-polynomial,

Integer-ample-polynomial, Standard-integer-ample-set-mod-p,

Symmetric-integer-ample-set-mod-p, Normal-integer-ample-set-mod-p.

Definition: Unit-equivalence

refines Equivalence-class;

uses Commutative-ring-with-identity, Unit;

requires (for x, y: domain)

(x equiv y) = ((for some z: units) x = z * y).

Lemma: Unit-equivalence implies Equivalence-relation.

Abbreviation: Ample-set is

Set-of-representatives

[with Unit-equivalence as Equivalence-relation].

Lemma: Ample-set obeys representative(0) = 0.

�
File defined by parts 35ab, 36abc, 37abcd, 38.

"src/ampleset.tec" 35b ≡

Definition: Normal-ample-set

refines Ample-set;

requires representative(1) = 1.

Definition: Multiplicative-ample-set

refines Normal-ample-set;

requires (for x, y: set-of-representatives)

(for exactly 1 z: set-of-representatives) x*y = z.
�

35
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File defined by parts 35ab, 36abc, 37abcd, 38.

10.2 Integer-ample-set, Ample-coefficient,
Multiplicative-gcd-domain

"src/ampleset.tec" 36a ≡

Definition: Integer-ample-set

refines

Multiplicative-ample-set[with integers as domain];

uses Integer.

Definition: Ample-coefficient

refines

Multiplicative-ample-set

[with coefficient-domain as domain,

ample-coefficient-domain as set-of-representatives].

Definition: Multiplicative-gcd-domain

refines Gcd-domain, Multiplicative-ample-set.

�
File defined by parts 35ab, 36abc, 37abcd, 38.

10.3 Rational-ample-set,
Absolut-value-integer-ample-set, Ample-polynomial

"src/ampleset.tec" 36b ≡

Definition: Rational-ample-set

refines Multiplicative-ample-set [with rationals as domain];

uses Rational, Integer-ample-set;

requires (for i, j: integers; k, l: nonzero-integers)

(fraction(i, k) = representative(fraction(j, l))) =

(fraction(i, k) = fraction(j, l) and

gcd(i, k) = 1 and representative(k) = k).
�
File defined by parts 35ab, 36abc, 37abcd, 38.

"src/ampleset.tec" 36c ≡

Definition: Absolut-value-integer-ample-set

refines Integer-ample-set, Ordered-ring[with integers as domain];

requires (for i: integers)

representative(i) = |i|.

Definition: Ample-polynomial

refines Polynomial, Ample-coefficient;

requires (for p: polynomials)

ldcf(p) : ample-coefficient-domain.

�
File defined by parts 35ab, 36abc, 37abcd, 38.
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10.4 Integer-ample-polynomial,
Standard-integer-ample-set-mod-p

"src/ampleset.tec" 37a ≡

Definition: Integer-ample-polynomial

refines Ample-polynomial

[with Polynomial-over-integers as Polynomial,

integers as coefficient-domain,

univariate-polynomials as polynomials,

Integer-ample-set as Ample-coefficient].
�
File defined by parts 35ab, 36abc, 37abcd, 38.

"src/ampleset.tec" 37b ≡

Extension: Integer-ample-set-mod-p

introduces

+: set-of-representatives x set-of-representatives

-> set-of-representatives,

*: set-of-representatives x set-of-representatives

-> set-of-representatives;

requires (for a, b: set-of-representatives)

a + b = representative(a + b),

a * b = representative(a * b).

Remark: Lemma: Integer-ample-set-mod-p implies

Field [with integers as domain,

representative(0) as 0,

representative(1) as 1].

Realization: Integers-mod-p by Integer-ample-set-mod-p

introduces rep: set-of-representatives -> equivalence-classes (private);

requires (for x: set-of-representatives; e: equivalence-classes)

(rep(x) = e) = (equivalence-class(representative(x)) = e).
�
File defined by parts 35ab, 36abc, 37abcd, 38.

"src/ampleset.tec" 37c ≡

Definition: Standard-integer-ample-set-mod-p

refines Integer-ample-set-mod-p;

requires (for x: integers)

representative(x) = rem(x,p).

�
File defined by parts 35ab, 36abc, 37abcd, 38.

10.5 Symmetric-integer-ample-set-mod-p,
Normal-integer-ample-set-mod-p

"src/ampleset.tec" 37d ≡

Definition: Symmetric-integer-ample-set-mod-p

refines Integer-ample-set-mod-p;

uses Real;

requires (for x: integers)
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representative(x) =

if (rem(x,p) = 0)

then 0

else if ((x | 2) = true)

then - brem(x, p)/2c
else b(rem(x, p))/2c + 1.

Definition: Normal-integer-ample-set-mod-p

refines Integer-ample-set-mod-p,

Normal-ample-set.
�
File defined by parts 35ab, 36abc, 37abcd, 38.

"src/ampleset.tec" 38 ≡

Lemma: Standard-integer-ample-set-mod-p implies

Normal-integer-ample-set-mod-p.

Lemma: Symmetric-integer-ample-set-mod-p implies

Normal-integer-ample-set-mod-p.
�
File defined by parts 35ab, 36abc, 37abcd, 38.
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Morphisms

11.1 Morphisms for Semi-groups

"src/morphism.tec" 39 ≡

Pragma: include="algebra2.xgf".

Library: std

Semigroup-homomorphism, Semigroup-monomorphism, Semigroup-epimorphism,

Semigroup-embedding, Semigroup-isomorphism, Semigroup-endomorphism,

Semigroup-automorphism, Ring-homomorphism, Ring-monomorphism, Ring-epimorphism,

Kernel, Ring-isomorphism.

Definition: Semigroup-homomorphism

refines Semigroup, Semigroup [with image as domain];

introduces

h : domain -> image;

requires (for x, y: domain)

h(x*y) = h(x)*h(y).

Definition: Semigroup-monomorphism

refines

Semigroup-homomorphism,

Injection [with h as f, image as range].

Definition: Semigroup-epimorphism

refines

Semigroup-homomorphism,

Surjection [with h as f, image as range].

Abbreviation: Semigroup-embedding is

Semigroup-monomorphism.

Definition: Semigroup-isomorphism

refines Semigroup-epimorphism, Semigroup-monomorphism.

Definition: Semigroup-endomorphism

refines

Semigroup-epimorphism,

Semigroup-monomorphism.

Definition: Semigroup-automorphism

refines

Semigroup-endomorphism,

Semigroup-isomorphism.
�

39
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File defined by parts 39, 40.

11.2 Morphisms for Rings

"src/morphism.tec" 40 ≡

Definition: Ring-homomorphism

refines

Ring-with-identity,

Ring-with-identity [with image as domain];

introduces h: domain -> image;

requires (for x, y: domain)

h(x+y) = h(x) + h(y),

h(x*y) = h(x) * h(y),

h(1) = 1.

Definition: Ring-monomorphism

refines Ring-homomorphism,

Injection [with h as f, image as range].

Definition: Ring-epimorphism

refines Ring-homomorphism,

Surjection [with h as f, image as range].

Definition: Kernel

uses Ring-homomorphism;

introduces ker < domain;

requires (for x: domain)

x in ker = (h(x) = 0).

Definition: Ring-isomorphism

refines Ring-epimorphism, Ring-monomorphism.

�
File defined by parts 39, 40.



Appendix A

Indices and References

"src/algebra1.tec" Defined by parts 16ab, 17ab, 18abcde, 19ab.

"src/algebra2.tec" Defined by parts 20ab, 21, 22abc, 23ab, 24abcd, 25.

"src/ampleset.tec" Defined by parts 35ab, 36abc, 37abcd, 38.

"src/arithmetic.tec" Defined by parts 27ab, 28ab, 29ab, 30.

"src/morphism.tec" Defined by parts 39, 40.

"src/ordalgebra.tec" Defined by parts 26abc.

"src/order.tec" Defined by parts 13ab, 14ab.

"src/polynomial.tec" Defined by parts 32ab, 33ab, 34abc.

"src/relation.tec" Defined by parts 9abc, 10abcdef, 11abc.

"src/set.tec" Defined by parts 4ab, 5ab, 6ab, 7abc.
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[3] Sibylle Schupp, Generic Programming—SuchThat One Can Build an Algebraic Library,
PHD-Thesis, Fakultät für Informatik, Universität Tübingen,1996.
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