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Abstract. It is well-known that the Σk- and Πk-levels of the dot-depth
hierarchy and the polynomial hierarchy correspond via leaf languages. In
this paper this correspondence will be extended to the ∆k-levels of these
hierarchies: LeafP(∆L

k ) = ∆
p

k.

1 Introduction

It is well-known that the Σk- and Πk-levels of the dot-depth hierarchy and the
polynomial hierarchy correspond via leaf languages, i.e. for all k ≥ 1 it holds:

LeafP(ΣL
k ) = Σ

p
k ,

LeafP(ΠL
k ) = Π

p
k .

This was shown by Burtschick & Vollmer [BV98]. As an immediate consequence
the class of all starfree regular languages SF and the polynomial hierarchy corre-
spond via leaf languages (a fact already stated in an earlier paper by Hertrampf
et al. [HL*93]):

LeafP(SF) = PH.

Furthermore, the k-th full level DDk of the dot-depth hierarchy (the Boolean
closure of ΣL

k ) and the Boolean closure of Σ
p
k (for k = 1 called the Boolean

hierarchy over NP) correspond via leaf languages, i.e.

LeafP(DDk) = BC(Σp
k).

Schmitz, Wagner and Selivanov [SW98,Sel01] further obtained correspondences
between the classes of the Boolean hierarchies defined over the respective Σk

classes.

The aim of this paper is to extend the correspondence of the dot-depth hierarchy
and the polynomial hierarchy to the ∆k-levels of the two hierarchies which, for
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Fig. 1. The dot-depth and the polynomial hierarchy

the dot-depth hierarchy, are defined as the intersections of the corresponding Σk-
and Πk-levels and for the polynomial hierarchy are defined as the polynomial-
time Turing reducibility closure of the Σk−1-class (see Figure 1). For level 2 this
correspondence was already shown in the unpublished manuscript [BSS99]:

LeafP(∆L
2 ) = ∆

p
2.

The proof of this result used for the direction from left to right the Schützenberger
characterization of ∆2

L as unambiguous products [Sch76], and for the direction
from right to left a method from Wagner [Wa90] showing that the ODD MAX SAT
problem is polynomial-time many-one complete for ∆

p
2. The main result of this

paper is that for all k ≥ 2:

LeafP(∆L
k ) = ∆

p
k.

This result will be a consequence of the following correspondence of the com-
bined operator UPol ◦ BPol on certain ∗-varieties of regular languages V , and
the combination of polynomial-time Turing reducibility closure (denoted in dot
operator notation T · throughout this paper) applied to the projection operation
∃ · on complexity classes:

LeafP(UPol(BPol(V)) = T · ∃ · LeafP(V).
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Crucial ingredients of the proof of this operator correspondence are for the di-
rection from left to right a characterization of the UPol operator via certain
unambiguous products by Pin, Straubing & Thérien [PST88], and for the other
direction a generalization of the method of Wagner [Wa90] mentioned above.

Little is known about the ∆ levels of the dot-depth hierarchy, with the notable
exception of ∆2

L: the survey [TT02] showed that this class is of computational
relevance and has many nice properties and characterizations. On the polynomial
hierarchy side it is fair to say that the class ∆

p
2 is a “nobody” compared with the

“celebrity” NP. But ∆
p
2 should deserve more attention since problems in ∆

p
2 can

be considered as the problems of polynomial-time complexity less or equal to
that of NP-complete problems because the polynomial-time Turing reducibility
is a very natural way to compare polynomial-time complexities of computational
problems (“given an algorithm for one problem for free, can you do the other
problem in polynomial-time?”).

The paper is organized as follows. In Section 2 we recall the definition of the
dot-depth hierarchy, and of the related operators Pol and UPol. In Section 3 the
concept of leaf languages and the polynomial hierarchy is presented. In Section 4
the correspondence of the Pol operator on the dot-depth hierarchy and the ∃·
operator on the polynomial hierarchy is proven. In Section 5 basic properties of
the ∆k classes are presented, and the main result about the correspondence of
the ∆k levels is proven.

2 The Dot-Depth Hierachy

A class of languages C is a mapping which assigns to each alphabet Σ a set
of languages Σ∗C over Σ. Sometimes we write L ∈ C as an abbreviation for
L ∈ Σ∗C for some alphabet Σ.

Let a class of languages C be given. The polynomial closure Pol(C) is the class
of languages consisting, for every alphabet Σ, of the finite unions of marked
products of languages from Σ∗C, i.e. languages L = L0a1L1 · · · anLn such that
the Li are languages from Σ∗C and the ai are letters from Σ. We further say that
the product L = L0a1L1 · · · anLn is unambiguous if for every word w in L there is
a unique factorization w = w0a1w1 · · · anwn with wi ∈ Li. We denote as UPol(C)
the class of finite disjoint unions of unambiguous marked products of languages
of C. The classes of languages Co-C and BC are defined, for every alphabet Σ,
as the set of complements of languages from Σ∗C and as the Boolean closure
of Σ∗C, respectively. Co-Pol and BPol are defined as the combined operators
Co- ◦ Pol and B ◦ Pol, respectively.

Let I be set the class of languages which consists for every alphabet Σ only of
the two languages ∅ and Σ∗. The classes of the dot-depth hierarchy are defined
as follows:
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Definition 1 (dot-depth hierarchy).

(a) ΣL
0 := ΠL

0 := ∆L
0 := DD0 := I

(b) ΣL
k+1 := Pol(DDk)

(c) ΠL
k+1 := Co-Pol(DDk)

(d) DDk+1 := BPol(DDk)
(e) ∆L

k+1 := ΣL
k+1 ∩ ΠL

k+1

(f) SF :=
⋃

i≥0 ΣL
i

It should be noted that the dot-depth hierarchy presented here is sometimes
known as the Straubing-Thérien hierarchy. Other papers use the term refering
to the closely related Brzozowski hierarchy which is defined analogously: level
0 of the Brzozowski hierarchy further includes the so-called generalized definite
languages. Although the hierarchies thus defined do not coincide, our results can
also be obtained for the levels of the Brzozowski hierarchy as we will note in our
conclusion.

Results of Pin and Weil [PW97] show that ΣL
k+1 ∩ ΠL

k+1 = UPol(DDk) for all
k ≥ 0 (see also Table 1). Therefore the line (e) in the above definition could be
equivalently given in terms of the UPol operator. It is known that the dot-depth
hierarchy is infinite, i.e. all classes ΣL

k , ΠL
k ,DDk, ∆L

k for k ≥ 1 are all different
[St94] (see also Figure 1). The union of all these classes is the class of starfree
languages SF .

Table 1 shows the action of the operators Pol, Co-, B, and UPol on the dot-
depth hierarchy. All its entries either follow from definition or are consequences
of [PW97].

class/operator Pol Co- B UPol

ΣL
k ΣL

k ΠL
k DDk ΣL

k

ΠL
k ΣL

k+1 ΣL
k DDk ∆L

k+1

DDk ΣL
k+1 DDk DDk ∆L

k+1

∆L
k+1 ΣL

k+1 ∆L
k+1 ∆L

k+1 ∆L
k+1

Table 1. The behaviour of the operators on the dot-depth hierarchy

A ∗-variety of languages V is a class of regular languages closed under:

Boolean operations: For every alphabet Σ the set Σ∗V is closed under union,
intersection, and complement,

left and right quotients: For every alphabet Σ and any word u in Σ∗, if L is
in Σ∗V then the languages u−1L = {w | uw ∈ L} and Lu−1 = {w | wu ∈ L}
are also in Σ∗V ,

inverse homomorphic images: If Γ, Σ are alphabets and h is a homomor-
phism from Γ ∗ to Σ∗ and L is a language from Σ∗V then h−1(L) = {x ∈
Γ ∗ | h(x) ∈ L} is in Σ∗

0V .
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A positive ∗-variety of languages is defined the same way but the closure under
complementation is not necessary.

Examples of ∗-varieties of languages include DDk and ∆L
k for k ≥ 0, and SF

while ΣL
k and ΠL

k are positive ∗-varieties of languages but are not ∗-varieties.
The class I defined above is called the trivial variety and is contained in every
positive ∗-variety of languages.

We will say that the positive ∗-variety V contains the sub-alphabets if for each
alphabet Σ and each Σ0 ⊆ Σ, we have Σ∗

0 ∈ Σ∗V . This is equivalent to having a
non-trivial intersection with ΠL

1 . For ∗-varieties of languages (as a special case of
positive ∗-varieties of languages) this restriction is equivalent to the requirement
that the variety contain at least one language whose syntactic monoid is not
a group. In particular, for starfree ∗-varieties of languages, the restriction is
equivalent to being non-trivial.

3 Leaf Languages and the Polynomial Hierachy

Let some language L over some alphabet Σ be given. The leaf language approach
[BCS92,HL*93,BKS99] assigns to the language L a class LeafP(L) of languages
on the alphabet {0, 1} the following way. Let some nondeterministic polynomial-
time Turing machine N be given. Assume that it not only accepts or rejects
on every computation path (that would correspond to a 2-letter alphabet like
{0, 1}) but outputs a letter from the alphabet Σ on each computation path
when it terminates. N produces for every input x ∈ {0, 1}∗ a computation tree
(not necessary balanced) whose paths are ordered in the natural way and whose
leaves are labeled by letters from Σ. Therefore the letters on the leaves form
a word over the alphabet Σ which we call the leafstring(N, x) or the yield of
the computation tree. Let for each N the language LeafN (L) ∈ {0, 1}∗ be the
set of inputs x such that leafstring(N, x) is in L, and let LeafP(L) be the set
of languages LeafN (L) for some N . As an example note that for the language
S1 := {0, 1}∗1{0, 1}∗ over alphabet {0, 1} it holds LeafP(S1) = NP. For a class
C of languages let LeafP(C) be the union of the classes LeafP(L) for L ∈ C.
Note that all classes LeafP(L) and LeafP(C) are by definition subsets of the
set of languages over the alphabet {0, 1}. We will call such classes complexity
classes. We use calligraphic letters from the beginning of the alphabet (like C)
as variables for complexity classes and from the end of the alphabet (like V) for
classes of languages.

Let P (NP) be the set of languages computable by a Turing machine in deter-
ministic (nondeterministic) polynomial time. For a complexity class C let T ·C be
the set of languages computable in deterministic polynomial time via an oracle
Turing machine which uses a language from C as an oracle1. Let ∃ · C be the set
of all languages L such that

L = {x | there exists y with |y| ≤ q(|x|) such that 〈x, y〉 ∈ A}

1 This class is often denoted P(C), PC or ≤p

T (C).
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for some language A ∈ C and some polynomial q. Let co · C be the set of comple-
ments of C and BC · C be the Boolean closure of C, i.e. all languages obtainable
by a finite number of applications of the Boolean operations union, intersec-
tion and complementation, starting with languages from C. Using this operator
notation one can write for example P = T · ∅, NP = ∃ · P, co-NP = co · NP,
BC(NP) = BC · NP, and ∆

p
2 = T · NP. The classes of the polynomial hierarchy

are defined as follows [MS72,Pa94], (see Figure 1):

Definition 2 (polynomial hierarchy). Let k ≥ 1.

(a) Σ
p
0 := Π

p
0 := ∆

p
0 := P

(b) Σ
p
k+1 := ∃ · Πp

k

(c) Π
p
k+1 := co · Σp

k+1

(d) ∆
p
k+1 := T · Σp

k

(e) PH :=
⋃

i≥0 Σ
p
k+1

Note that NP = Σ
p
1 and co-NP = Π

p
1 . The following table shows the behaviour

of the operators ∃ ·, co ·, BC ·, and T · on the classes of the polynomial hierarchy,
see. Note the similarity with Table 1: the ∃ · and T · operators on the polyno-
mial hierarchy behave exactly like the Pol operator and the combined UPol ◦ B
operator on the dot-depth hierarchy, respectively.

class/operator ∃ · co · BC · T ·

Σ
p

k Σ
p

k Π
p

k BC(Σp

k) ∆
p

k+1

Π
p

k Σ
p

k+1
Σ

p

k BC(Σp

k) ∆
p

k+1

BC(Σp

k) Σ
p

k+1
BC(Σp

k) BC(Σp

k) ∆
p

k+1

∆
p

k+1
Σ

p

k+1
∆

p

k+1
∆

p

k+1
∆

p

k+1

Table 2. The behaviour of the operators on the polynomial hierarchy

It is not known whether the polynomial hierarchy is in fact infinite. Nevertheless,
there exists a relativized world in which all classes Σ

p
k , Π

p
k and ∆k for k ≥ 1

are different from one another [Yao85]. Moreover, in this world, ∆
p
k is different

from BC(Σp
k−1) for any k ≥ 2 because ∆

p
k still has, for every relativization, a

≤p
m-complete language while by the (relativizable) results of Kadin [Ka88] the

class BC(Σp
k−1) does not. For k = 1 and k = 2 oracles separating ∆

p
k from its

superset Σ
p
k ∩Π

p
k were constructed in [BGS75] and [He84], respectively, but for

larger k the authors could not find a construction in the litterature. On the other
hand, any PSPACE-complete oracle A collapses all these classes to P. Figure 1
gives a synoptical view of the dot-depth hierarchy and the polynomial hierarchy.
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4 The Sigma and Pi Levels of the Hierarchies

We will show that the Pol operator on positive varieties of regular languages
corresponds, under certain conditions, via leaf languages to the dot operator ∃ ·
on the polynomial-time complexity classes. This was already mentioned but not
proven explicitly in the paper of Hertrampf et al. [HL*93]. Let some language
L over an alphabet Σ0 be given. Let EL be the language Σ∗bLbΣ∗ over the
alphabet Σ = Σ0 ∪ {b} where b is some letter (called marker) not in Σ0. Note
that if L is in a positive variety V which contains the sub-alphabets then EL is
in Pol(V).

Lemma 3 ([HL*93]). Let V be a positive ∗-variety of languages which contains
the sub-alphabets.

(a) LeafP(Pol(V)) = ∃ · LeafP(V).

(b) If Leaf(L) = Leaf(V) for a single language L ∈ V then Leaf(EL) equals the
two classes from (a).

Proof. Direction (a) ⊆: Let L be a leaf language L = L0a1L1 · · · anLn from
Σ∗Pol(V), i.e. each Li is a language from Σ∗V and all markers ai are from
Σ, too. Let Σ0 := Σ ∪ {0} for a new letter 0 not in A. Note that since V is
closed under inverse homomorphic images each language Li tt 0∗ (the language
Li shuffled with 0’s) is also in V . We define the language J over the (n + 1)-fold
product Σ0 × . . . × Σ0

J =





























a10

a11

...
a1n





















a20

a21

...
a2n











. . .











as0

as1

...
asn











∣

∣

∣

∣

∣

∣

∣

∣

∣

for each i, a1i . . . asi ∈ Li tt 0∗



















.

By further using closure under finite intersections, we get that J also belongs to
V . Let some nondeterministic polynomial-time Turing machine M working with
leaf language L be given. An NDTM working with the leaf language J can be seen
as writing its leafstring on n+1 different, independent tracks corresponding to the
n+1 copies of the alphabet Σ0. Let M ′ be such an NDTM which, on input 〈x, y〉
checks whether y encodes n paths p1 < . . . < pn of the computation produced by
M on input x and first checks if the letters written at these positions by M are
a1, . . . , an. If this is not the case M ′ rejects, i.e. writes a computation tree whose
leafstring is not in J (this word exists because V is not trivial since it contains
the sub-alphabets). Otherwise, let p0 = 0 and pn+1 = max+1 where max is the
length of the leafstring produced by M : M ′ simulates the computation of M on
input x and produces as output for the leaf at position p with pi < p < pi+1 the
tuple-letter (0, . . . 0, b, 0 . . . 0)T where b is in the i-th track of the tuple and is the
letter which was written by M on path p. On the guessed paths p1 < . . . < pn it
produces an all-0 tuple. The i-th track of the resulting leafstring is then a word
of the form 0niwi0

mi (for some numbers ni, mi) where wi is the subword of the
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leafstring originally produced by M on the paths between pi and pi+1. All wi

belong to Li if and only if all words 0niwi0
mi belong to Li tt 0∗ if and only if

the whole leafstring belongs to J if and only if M ′ accepts on input 〈x, y〉. Thus,
M accepts x if and only if there exists y for which M ′ accepts on input 〈x, y〉.
Note that in general L could be a finite union of such marked products in which
case M ′ would further need to guess which marked product to work with.

Direction (a) ⊇: Let L from Σ∗V , q a polynomial and K a language of ∃ ·
LeafP(V):

K = {x | there exists y with |y| ≤ q(|x|) such that 〈x, y〉 ∈ LeafM (L)}

We will construct a NDTM M ′ using EL as a leaf language to accept the language
K. On input x the NDTM M ′ produces (say in lexicographic order) for each
word y such that |y| ≤ q(|x|) a separate path for the coded pair 〈x, y〉. On
each of these paths it branches into two paths: on the left path it writes the
marker b, and the right path it produces a computation tree via a simulation
of the computation of M on the coded pair 〈x, y〉. Finally it produces for the
whole computation tree a rightmost path with letter b. Obviously, M ′ produces
a leafstring from EL if and only if there is a y such that M produces a leafstring
from L on input 〈x, y〉.

(b) follows by construction in (a). q.e.d.

We will later need the above lemma to prove Lemma 10. As a byproduct, we
can also reprove a theorem due partly to Burtschick and Vollmer [BV98] and
partly to Hetrampf et al. [HL*93]. We define for k ≥ 1 canonical languages Sk

and Pk for the classes ΣL
k and ΠL

k as follows. Let P1 be the language 0∗ over the
alphabet {0, 1}. Let Sk be the complement of Pk for all k ≥ 1. Let Pk be ESk−1

with marker k. The canonical ΠL
2 language P2 is for example the set of words

over alphabet {0, 1, 2} such that between every two different 2’s there exists a
1. It is easy to see that Sk is an element of ΣL

k and Pk is an element of ΠL
k .

Theorem 4 ([BV98,HL*93]). Let k ≥ 1.

(a) LeafP(Sk) = LeafP(ΣL
k ) = Σ

p
k ,

(b) LeafP(Pk) = LeafP(ΠL
k ) = Π

p
k .

(c) LeafP(DDk) = BC(Σp
k).

(d) LeafP(SF) = PH

Proof. We use a simultaneous induction to prove parts (a), (b) and (c). The
induction base k = 1 was proven in [BKS99]. For k ≥ 2, we have

LeafP(ΣL
k ) = LeafP(Pol(DDk−1)) (Definition 1(b))

= LeafP(Pol(ΠL
k−1)) (see Table 1)

= ∃ · LeafP(ΠL
k−1) (by Lemma 3)

= ∃ · (Πp
k−1) (by induction hypothesis)

= Σ
p
k
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The equalities LeafP(ΠL
k ) = Π

p
k and LeafP(DDk) = BC(Σp

k) readily follow. The
existence of single leaf languages Sk, Pk characterizing the Σ

p
k and Π

p
k levels,

respectively, follows by induction via part (b) of Lemma 3.

Note that LeafP(SF) = PH is not expected to have a single leaf language, i.e. a
language L ∈ SF such that PH = LeafP(L) since, as observed in [BS97], every
complexity class LeafP(L) has a ≤p

m-complete language. Similarly, BC(Σp
k) for

k ≥ 1 is not expected to have a single leaf language.

5 The Delta Levels of the Hierarchies

In this section we are going to prove the correspondence of the Delta lev-
els of the dot-depth and the polynomial hierarchy. This will be a corollary of
Lemma 10 which states that, under certain technical conditions, the unambigu-
ous polynomial closure operator UPol on ∗-varieties of regular languages and the
polynomial-time Turing closure operator on complexity classes correspond via
the leaf-language mechanism. We first mention useful properties of the operators
T· and BC·:

Proposition 5. Let C be a complexity class and V be a (positive) variety of
languages.

(a) T · T · C = T · C.
(b) If C ⊆ T · LeafP(V) then BC · C ⊆ T · LeafP(V),

(c) BC · LeafP(V) ⊆ T · LeafP(V),

(d) T · BC · LeafP(V) = T · LeafP(V).

Proof. Part (a) is trivial while (c) and (d) follow from (b). Finally, (b) is proven
by induction on the structure of the Boolean expression. If the top Boolean
operation is negation, it suffices to flip the oracle answer. It remains to show
that if L1 ∈ T ·LeafP(K1) and L2 ∈ T ·LeafP(K2) with K1, K2 ∈ V then we can
find some K ∈ V such that L1∩L2 ∈ T ·LeafP(K). For instance, we can take K =
K1 ttK2 where K1 and K2 are assumed (w.l.o.g.) to be over disjoint alphabets.
It can then be shown easily that K ∈ V and that LeafP(Ki) ⊆ LeafP(K). q.e.d.

We will use the following characterization of the UPol operator. Let a ∗-variety
of languages V be given: `1 ∗ V (V ∗r `1) is the Boolean closure of languages2 of
unambiguous products LaΣ∗ (Σ∗aL) where L ∈ Σ∗V and a ∈ Σ. By [PST88],
`1 ∗V and V ∗r `1 are themselves ∗-varieties of languages. Moreover, UPol(V) can
be characterized by these two operators:

2 The symbols ∗, ∗r and `1 actually have a meaning as wreath product, reversed
wreath product and the set of locally trivial categories, respectively, see for example
[PST88].
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Theorem 6 ([PST88]). Let V be a ∗-variety of languages. UPol(V) equals the
class of languages obtainable from V by finitely many applications of the operators
`1∗ and ∗r`1.

We first show that one application of these two operators can basically be sim-
ulated by a polynomial-time Turing reduction.

Lemma 7. Let V be a ∗-variety of languages.

(a) LeafP(`1 ∗ V) ⊆ T · LeafP(V),

(b) LeafP(V ∗r `1) ⊆ T · LeafP(V).

Proof. By symmetry, we need only prove (a). Assume we have an unambiguous
concatenation of the form L0 = LaΣ∗ with L ∈ V . We have to show that
LeafP(L0) ⊆ T · LeafP(V). For this we use the following property of L0. Let w

be a word of Σ∗ and x be the longest prefix of w which is also prefix of some
word in L. If x 6= w, i.e. w = xby with a letter b ∈ Σ and word y ∈ Σ∗ then:

(x ∈ L and b = a) ⇔ w ∈ L0.

The direction ⇒ of course holds because in that case w = xby matches the
pattern L0 = LaΣ∗. For the other direction, assume that x 6∈ L or b 6= a, i.e. the
word w does not match the pattern LaΣ∗ via an a at the position right of x.
In order to let w = xby match the pattern LaΣ∗ the position of the a in this
pattern has to be either within x or within y. It cannot be within y since this
would mean that xb is the prefix of a word in L, contradicting the maximality
assumption for x. But it can not be within x either for if x = vaz with v ∈ L,
then let e be such that xe ∈ L (this e exists since x is a prefix of a word in L): the
word xea = vazea has two factorizations vazea and vazea showing membership
in the marked product L0 = LaΣ∗, contradicting the unambiguity of L0. For
the case x = w the same argument shows that w cannot be from L0.

The following algorithm will use the above property: First it searches for the
longest prefix x in the leafstring of the computation tree which is also a pre-
fix of a word in L and then it checks whether (i) this prefix is in L and (ii)
the path right next to it exists and has letter a. More precisely, let L0 be the
unabmiguous concatenation LaΣ∗. Because V is a ∗-variety of languages, the
set Lp of prefixes of words in L is in V . Indeed, Lp is by definition the infinite
union of the languages Lw−1 over all w ∈ Σ∗. But if v ≡L w for the congruence
relation ≡L on Σ∗ (see for example [St94]) it holds Lv−1 = Lw−1. Because L is
regular there exist only a finite number of equivalence classes w.r.t. the ≡L con-
gruence relation. Therefore Lp is the union of the finitely many right quotients
Lu−1

1 , . . . Lu−1
j where u1, . . . uj are representatives of the equivalence classes of

the ≡L congruence relation on Σ∗. By the closure under right quotients and
under finite unions, Lp is in V .

Our algorithm will have to ask questions to oracle LeafP(L) and to oracle
LeafP(Lp), therefore we have to combine them into one oracle. This is possi-
ble since V is a variety: let Σ0 be an alphabet with the same cardinality as Σ
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but disjoint from Σ, and let π be a bijection from Σ0 to Σ. Let J be the shuffle
language Lttπ(Lp) on alphabet Σ ∪ Σ0. By the closure under inverse homo-
morphic images J belongs to V . Let U be the the “double universal” NTDM
for LeafP(J), i.e. let U be the NDTM which on input 0〈x, M, 0k〉 simulates M

on input x for k steps printing on a leaf the letter a in case M prints letter a,
and which on input 1〈x, M, 0k〉 simulates M on input x for k steps printing on
a leaf the letter π(a) in case M prints letter a. Given a NDTM M working with
leaf language L0 a polynomial-time oracle Turing machine D and a NDTM U

working with leaf language J will be constructed such that LeafM (L0) equals
the language accepted by D with oracle LeafU (J). The oracle DTM D will work
the following way: On an input x, D will find the longest prefix of the leafstring
of the computation of M on input x belonging to L. This will be done via binary
search and the help of the oracle LeafU (J) (actually only using the Lp part of
J): First D will ask the oracle whether the leftmost part of the leafstring is in
Lp, i.e. it will ask the query 1〈x, M1, 0

q(|x|)〉 where q is the run time bound of
M and M1 is the machine which works like M but just evaluates the leftmost
subtree of the computation tree. If the answer is ‘yes’ then the leafstring of the
leftmost subtree of the computation tree of M on input x is a prefix of L, and
D will continue the binary search in the rightmost subtree. If the answer is ‘no’
then D continue the binary search for the longest prefix in the leftmost subtree.
Thus D will find after a polynomially many questions the path i such that the
prefix w0 . . . wi of the leafstring of the computation tree of M working on input
x is the longest prefix of the leafstring which belongs to Lp. Now D will ask
the oracle (only using the L part of J) whether w0 . . . wi is in L by giving it
0〈x, M ′, 0q(|x|)〉 where M ′ is the NDTM which works like M but only evaluates
the paths up to path i. If the answer is no, D rejects. If it is ‘yes’ then it checks
in deterministic polynomial-time whether the path i+1 exist in the computation
tree (i may be its rightmost path) and has letter a written on the leaf of path
i+1. If this is the case D accepts, otherwise it rejects. This behaviour is correct
by our first argument, i.e. D accepts an input iff the leafstring produced by M

is in LaΣ∗.

We have shown LeafP(U) ⊆ T ·LeafP(V) for the set U of unambiguous concate-
nations of the form L0 = LaΣ∗ with L ∈ V . Therefore:

LeafP(`1 ∗ V) = LeafP(BU) ⊆ BC · LeafP(U) ⊆ T · LeafP(V)

by Proposition 5 (b). q.e.d.

Corollary 8. Let V be a ∗-variety of languages.

LeafP(UPol(V)) ⊆ T · LeafP(V).

Proof. According to Theorem 6 UPol(V) is generated by finitely many applica-
tions of the two operators `1∗ and ∗r`1, starting with V . For the languages from
V the statement is of course true, and for any finite number of applications of the
two operators the statement holds by Lemma 7 together with the idempotency
of the Turing closure operator T· stated in Proposition 5(a). q.e.d.
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The authors do not know whether the reverse inclusion in the above Corollary 8
holds in general, i.e. whether the UPol operator on varieties corresponds to
the Turing reducibility closure on the polynomial-time degrees. Nevertheless,
Lemma 10 below will show that, under certain conditions, a correspondence
holds at least for the combined operator UPol ◦ BPol on language classes and
the combined operator T · ∃· on complexity classes.

For a language L over alphabet Σ0 the language, let WL be the language over the
alphabet Σ = Σ0 ∪ {a, b} (where a, b are two new “marker” symbols) consisting
of words words w1m1w2m2 · · ·wnmnwn+1 such that the mi are markers, the wi

are words in Σ∗
0 , and

- there exists i ≤ n such that wi ∈ L.
- if imin is the smallest i with wi ∈ L, then mimin

= a.

This definition generalizes an original idea of Wagner [Wa90].

Lemma 9. Let L be a language from a ∗-variety of languages V which contains
the sub-alphabets. Then WL is a language from UPol(BPol(V)).

Proof. Let L ∈ V over alphabet Σ0 be given, and let L0 be L considered as
a language over the larger alphabet Σ = Σ0 ∪ {a, b}. Because V contains the
sub-alphabets the language L0 is also in V (this is the only place where we need
this property of V). Let K be the language defined as

K = Σ∗{a, b}L0{a, b}Σ∗ ∪ Σ∗{a, b}L0 ∪ L0.

It is in Pol(V), therefore its complement K is from BPol(V). Now we can write

WL = K{a, b}L0aΣ∗ ∪ L0aΣ∗

This is the disjoint union of two unambiguous marked products: In the first
expression the two positions of the a (or b) and a around the L0 are – if they
exist – uniquely determined because in the language K{a, b} a subword from
{a, b}L0a is forbidden, and in the second expression the position of the a is, as the
first marker occurring, uniquely determined. This concatenation representation
of WL shows WL ∈ UPol(BPol(V)). q.e.d.

We say that a language A polynomial-time conjunctively reducible to a language
B if there is a polynomial-time oracle Turing machine for A which on input x

asks membership questions to B and accepts if and only if all questions are an-
swered positively. Note that the questions can be assumed to be non-adaptive,
i.e. the oracle Turing machine produces a (polynomially long) list of questions
which are asked all at once. Call a class C of languages closed under polynomial-
time conjunctive reductions if every language which is polynomial-time conjunc-
tively reducible to a language in C is also in C. Of course every complexity class
closed under polynomial-time Turing reductions is also closed under polynomial-
time conjunctive reductions. Therefore, the ∆

p
k classes have this property. Other

classes have this property and in particular Σ
p
k and Π

p
k (via two different tech-

niques).
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Lemma 10. Let V be a ∗-variety of languages which contains the sub-alphabets,
and let LeafP(V) be closed under polynomial-time conjunctive reductions.

(a) LeafP(UPol(BPol(V))) = T · ∃ · LeafP(V),

(b) If L ∈ V is a single language such that LeafP(L) = LeafP(V) then LeafP(WL)
equals the classes from (a).

Proof. The direction ⊆ follows immediately from previous lemmata and does
not in fact require the extra technical assumptions:

LeafP(UPol(BPol(V))) ⊆ T · LeafP(BPol(V)) (Lemma 8)

⊆ T · BC · LeafP(Pol(V))

= T · BC · ∃ · LeafP(V) (Lemma 3)

= T · ∃ · LeafP(V) (Proposition 5(d)).

The proof of the other direction generalizes an idea of Wagner [Wa90] whose
result can be interpreted as showing that ∆

p
2 ∈ LeafP(0∗a{0, a, b}∗). Since this

fact will later be needed in the proof of Theorem 11, we sketch its proof. Note
also that the language 0∗a{0, a, b}∗ is WL for L = 0∗. We need to show that
there exists a LeafP(0∗a{0, a, b}∗) N that can simulate any deterministic poly-
nomial time machine D querying, say, a SAT oracle. N begins by simulating
the deterministic behaviour of D until D asks a first query Q. At this point
N simulates the query by non-deterministically branching in two computations
(see Figure 2):

– On the left branch N attempts to verify that the oracle answers positively to
the question Q: it produces a path for each possible witness of membership of
Q in SAT. On every such path, if first checks whether the candidate-witness
is correct. If it is not, N terminates on this computation path, writing a 0 on
this leaf, otherwise, N resumes the deterministic simulation of D assuming
a positive answer to the query Q.

– On the right branch N continues the deterministic simulation of D assuming
a negative answer to the query Q.

We proceed in the same fashion for each query of D. When the simulation of
D is complete, N terminates and writes an a on the leaf if D accepts, and a b

otherwise. The key observation is that the leftmost path of N with a non-0 on
its leaf corresponds to a correct simulation of D because if a query Q is answered
negatively, all candidate witnesses are rejected and the left subtree thus created
has all its leaves labeled with 0.

Therefore the first non-0 in the leafstring is an a if and only if D accepts its
input x. In other words, leafstring(N, x) ∈ 0∗a{0, a, b}∗ iff x is accepted by D.

This shows ∆
p
2 = PSAT ⊆ LeafP(0∗a{0, a, b}∗).

More generally, we now want to show that a deterministic polynomial-time D

querying an oracle of ∃ ·K where K is from LeafP(L0) with L0 ∈ V can be simu-
lated by a LeafP(H) machine N with H ∈ Upol(Bpol(V)). Because LeafP(V) is
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noyes

noyes

acc.

acc.

rej.

 

 

0 0 0

 on every i

 on every i’

000000 0

a

b

f’ in SAT?

f in SAT?

0

Fig. 2. Building a computation tree for the leaf language 0∗a{0, a, b}∗

closed under polynomial-time conjunctive reductions there exists a leaf language
L in V and a NDTM M such that on an input 〈x1, . . . , xn〉 M produces a leaf-
string from L if and only if M0 produces on every input xi a leafstring from L0.
We will show T · ∃ · LeafP(L0) ⊆ LeafP(WL) for the language WL with markers
a, b.

We proceed as before: whenever D queries the oracle ∃ · K with question t, N

branches into two computations:

– On the left branch, N produces a path for each possible witness wi of mem-
bership of t. However, instead of immediately verifying that the pair 〈t, wi〉
lies in K, our simulation simply assumes this hypothesis, postpones its check
and resumes the simulation of D assuming a positive answer to the query.

– On the right branch, N continues the simulation of D assuming a negative
answer to the query.

Once a branch of N ’s simulation of D terminates, we need to check that all
input/witness pairs along that branch do lie in K. For this, N again branches
into two paths:
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acc.
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questions all 

questions all

exists y

a

b

a

 (no questions)

a leaf word in L

−− leaf word for L −−

−− leaf word for L −−

in K  ?

in K ?

in K ? 

in K ?

<x’,y’>

<x,y>

exists y’

Fig. 3. Building a computation tree for the leaf language WL

– On the left path it produces a computation tree whose leafstring lies in L if
and only if all input/witness pairs on that branch lie in K. This can be done
because we assumed the closure under conjunctive reductions of LeafP(V).

– On the right branch it writes a marker a if D has accepted on this path of
assumed oracle answers, and a marker b in the other case.

Once again, if we consider the leafstring of N , we observe that the first subword
wi sitting between two markers and lying in L indicates the valid computation
of D. Accordingly, the marker which lies at the right of wi is a if and only
if D accepts its input and this is precisely what the constructed language WL

guarantees.

This shows T · ∃ · LeafP(L0) ⊆ LeafP(WL) and so, by Lemma 9 we conlude
T · ∃ · LeafP(L0) ⊆ LeafP(UPol(BPol(V))).

(b) follows from the construction in part ⊇ above. q.e.d.

We define a sequence Di of languages for i ≥ 2 as follows. First D2 = 0∗a{0, a, b}∗,
the language we used in the previous lemma. For k ≥ 3, we inductively define
Dk+1 = WDk

. Note that D2 lies in ∆L
2 and so we have Dk ∈ ∆k using Lemma 9.
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Theorem 11 (Main). For every k ≥ 2:

LeafP(Dk) = LeafP(∆L
k ) = ∆

p
k.

Proof. We establish LeafP(Dk) = LeafP(∆L
k ) = ∆

p
k by induction on k. For k = 2,

we have already shown in the previous proof that ∆
p
2 ⊆ LeafP(D2) ⊆ Leaf(∆L

2 ).
Furthermore, by Corollary 8 we get

LeafP(∆L
2 ) ⊆ T · LeafP(DD1) ⊆ T · BC · Σp

1 = ∆
p
2.

For the induction step, we get:

LeafP(∆L
k+1) = LeafP(Upol(BPol(∆L

k ))) (See Figure 1)

= T · ∃ · LeafP(∆L
k ) (Lemma 10)

= T · ∃ · ∆p
k = ∆

p
k+1 (from the induction hypothesis)

Note that we can indeed apply Lemma 10: by induction we have LeafP(∆L
k ) = ∆

p
k

which is closed under conjunctive reductions. We also get from Lemma 10 that
LeafP(∆L

k+1) = LeafP(WDk
) = LeafP(Dk+1). q.e.d.

We should note that Meyer and Stockmeyer made the somewhat uncanonical
choice of defining ∆

p
k+1 as T · Σp

k rather than Π
p
k+1 ∩ Σ

p
k+1, probably because

this makes ∆
p
k+1 a “syntactic” class [Pa94]. This has the advantage of allowing

a nice completion of the correspondence between the dot-depth and polynomial
hierarchies, in the line of Theorem 4.

In Lemma 10, the technical condition that V contains the sub-alphabets is in fact
superfluous: if V is a variety of languages whose syntactic monoids are groups
and such that LeafP(V) is closed under conjunctive reductions then we indeed
have LeafP(UPol(BPol(V)))) = T · ∃ · LeafP(V). Handling of that case requires
only a slightly different construction both for WL and for the simulation of the
T · ∃ · LeafP(L)-machine as well as extra algebraic considerations. In [ST03],
it was shown that the class of regular languages which can be defined by two-
variable sentences using ordinary and modular quantifiers is exactly the class
DA ∗ Gsol = UPol(BPol(Gsol)) where Gsol denotes the class of languages whose
syntactic monoid is a solvable group. Our results combined with [HL*93] show

LeafP(DA ∗ Gsol) = T · ∃ · LeafP(Gsol) = T · ∃ · MOD∗P

where MOD∗P denotes the closure of P under the Modq operators. Similarly,
for any prime q, let Gq be the class of languages whose syntactic monoids are
q-groups: we can show

LeafP(UPol(BPol(Gq)))) = T · ∃ · LeafP(Gq) = T · ∃ · MODqP.

All these results relativize and this allows us to shed new light on the problem of
finding a leaf-language upper bound for BPP: the classical result of Lautemann
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and Sipser (see [Pa94]) shows that BPP is contained in Σ
p
2 ∩Π

p
2 and it is natural

to ask whether there is a language L in ΣL
2 ∩ ΠL

2 with BPP ⊆ LeafP(L). This
we now know cannot be the case with respect to all oracles since we will have
LeafP(L) ⊆ ∆

p
2 whereas relativized worlds exist in which ∆

p
2 is strictly contained

in BPP (see e.g. [BT00]). Straubing and Thérien have conjectured that BPP sits
in LeafP(UPol(BPol(Gsol))) but there exist relativized worlds in which T · ∃ ·⊕P
does not contain BPP [BT00] and it is perhaps possible to further show that in
this world even T · ∃ · MOD∗P does not contain BPP. Such a result would rule
out any relativizable proof of the aforementioned conjecture.

6 Conclusion

We have shown that the Delta classes of the dot-depth hierarchy and of the
polynomial hierarchy correspond via leaf-languages. This result also holds if we
consider the Brzozowski definition of the dot-depth hierarchy. This extension of
our result can be obtained using the “bridging” method outlined e.g. in [Pi98]
which relates the two hierarchies in a straightforward way.

We know by Theorem 11 that there are languages in ∆L
2 , for example D2, that

capture the class ∆
p
2 . Using algebraic methods, one can prove that if L is in

∆L
2 then either LeafP(L) ⊆ BC(NP) or LeafP(L) = ∆

p
2 but we do not know if

a similar phenomenon occurs for k ≥ 3. A related question is whether the Dk

languages which we defined are complete for the ∆L
k -classes with respect to the

reductions defined in [SW03].

For all varieties considered in this paper, we do have that LeafP(V) is closed un-
der polynomial-time conjunctive reductions and this can perhaps be concluded
simply using the closure properties of the varieties. This would make Lemma 10
“cleaner” because it would shift the technical requirements to the class of lan-
guages V , with no requirements left for the complexity class LeafP(V).

We already mentioned that we could not find an example of a ∗-variety of lan-
guages V such that the opposite direction of Corollary 8 does not hold via oracles,
i.e. such that T ·LeafP(V) is a proper subset of LeafP(UPol(V)). Could it be the
case that UPol and T· generally correspond on ∗-varieties of languages via leaf
languages, without any conditions on the ∗-varieties of languages?

Finally, when does a complexity class LeafP(V) for a positive ∗-variety of lan-
guages V contain a language L such that LeafP(V) = LeafP(L)? The classes
LeafP(ΣL

k ), LeafP(ΠL
k ), and LeafP(∆L

k ) do have one, the classes LeafP(DDk)

and LeafP(SF) seem not to. Is there, for example, an algebraic property which
corresponds to this distinction?
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