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Abstract. Most current sonar systems for mobile robots only yield time of flight distance informa-
tion produced by measuring the time of a single sonar pulse. However, sonar systems of animals like
sonar bats are much more sophisticated, allowing to recognize not only the shape, but also the type
of landmark trees that they use during their nocturnal flights. In this paper we compare two methods
for natural landmark classification by a biomimetic sonar consisting of one sender (mouth) and two
receivers (ears). Our research aims to improve the navigation capabilities of mobile robots in natural
and man-made environments, where economical and robust feature extrcation of potential landmarks
such as trees is a key problem. We try to classify different species of trees from random orientations.
Two methods utilized are intricate structure feature based and general structure feature based natural
landmark classification. After a comparation of those two method’s advantages and disadvantages, we
forwarded a two-step Biosonar classification strategy for outdoor navigation of mobile robots. Exper-
imental results indicate that a mobile robot with such a Biosonar system can achieve the ability to
classify natural landmarks like trees only based on sonar.

1 Introduction

The problem of recognizing landmarks in natural environments is important for the nav-
igation of mobile outdoor robots. Besides camera, laser scanner, radar and IR sensors,
in-air sonar can also yield useful information for landmark classification. Leonard and
Durrant-whyte used the feature of Region of Constant Depth for navigation[?]. Kimoto
and Yuta detected hedge with standard deviation of range readings[?]. Mckerrow extacted
features both for indoor and outdoor landmark classification[?][9]. L.Kleeman achieved
accurate measurment and classification of three target types(plane, corner and edge)[?].
Roman Kuc tried to recognize penny coin using binaural information of a bioninetic sonar
system[?]. Rolf Mueller made classification of 4 trees with the feature of Distant Inter-
spike Intervals[10]" .

In this paper we try to extend previous research into the practical application by com-
paring two natural landmark classification methods, which are respectively based on in-
tricate structure features and general structure features.

To be a suitable landmark, the target should meet several requirements [3]: frequent
occurrence, slow changes and easy classification. Plants can meet those requirements only
if the third requirement is met. We study this problem with artificial trees, because they
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are typical multi-facet plants that have rich overall and detailed construction differences,
such as

— scale, form, density and degree of symmetry;
— leaves’ direction, flatness and size;
— for sparse trees, the exposed trunks also play a significant role in reflected signals.

The task of natural landmark classification has two sides. It needs both enough feature
difference between different targets and sufficient feature similarity among samples of
similar targets from different orientations and ranges. This demands the extraction of
robust features from the Biosonar signals, which look rather similar to white noise to the
naked eye.

The organization of this paper is the following: section 2 describes our echo model,
section 3 introduces the Biosonar system used here. Section 4 presents a classification
method with intricate structure features, section 5 a classification with general structure
features. A comparison of those two methods is given in section 6, while experimental
results are listed in section 7.

2 Echo model

How much information can we extract from Biosonar? Let us take a look at our echo
model. In figure 1 there are signals of two types of leaves. One is a piece of a 6 x 11cm
schefflera leaf, the other is a cluster of five 1.2 x 6.5¢m bamboo leaves.

Their respective signals after band pass filtering (f. = 50k H z) show: The large leaf
is not flat, its different parts of surfaces can reflect in the way of several leaves of various
sizes in different distances. A cluster of leaves in certain distribution can reflect together
like a big leaf. We define A;, the changing reflection from one leaf, as the result of fol-
lowing factors:

Ai(t) = fildi, 0;, 035, s, 5:(1)) (1
where f; is the reflection function of a leaf with certain form and size, d; the two-way
distance from leaf to Biosonar (D1 in figure 2), 6; the leaf’s horizontal orientation angle
to the Biosonar, ¢; the leaf’s vertical orientation angle to Biosonar, p; the space posture of
the leaf itself (3D angles), s;(t) the chirp signal sent for probing. It is much more complex
than the following reflection model, valid for plane waves and infinite planar surfaces [7].
And other models, that deal with single geometrical features such as edge, corner, plane
[6] and radius of curvature [1], can not represent echo from the irregular curving foliage
surface.

a(w) =1 — |R(jw)|? (2)
R(jw) — % 3)

where «(w) is the absorption coefficient, R(jw) the reflection coefficient and Z(jw) the
normalized impedance.
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Fig. 1. Leaves scanned by sonar from 2 directions

The information in each resulting echo A(t) of a tree looks like a white noise signal
except for TOF information. One may think, when the chirp is a very short pulse, A(t)
denotes the reflection magnitude from a series of elliptical target surfaces in 3D space,
where D; = d;; + d;z = v(t;1 + t;2). In fact the amplitude of chirp always suffers from se-
rious lateral and axial superimposition, which is unpredictably constructive or destructive
due to the lacking of precise geometrical model of all leaves and their spatial orientation
and position. So, each A(t) is only a unpredictable superimposition of reflections from
some reflecting units of some ’visible’ leaves, it’s information about a tree is incomplete
and distorted.

A(t) = F(O1A,(1), OaA5(t), ..0; A(t), ..) 4)

where F is the superposition function, i € 1,2, ...N is the leaf number, ©; € [0, 1] denotes
the degree of exposure of individual leaf :.
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Fig. 2. Superposition from individual leaf reflections to echo of the tree

When we further consider factors of Biosonar system noise and environment variance
generated by wind, temperature and humidity, there are in fact no identical A(¢) at all.
Experimental results from the same test arrangement in (0.05s intervals in the laboratory
verified this. As a result, the problem of multi-facet target classification is mainly a task
to find feature likelihood between samples and templates.

From the understanding of echo and this model A(¢), we can see that differences in
trees can not always lead to very different Biosonar observation. The echoes from trees are
profoundly stochastic [11], they are individually incomplete and unpredictably distorted.
The kernel problem is how we can utilize those observations wisely although they can
never match images of light. Two methods introduced in this paper extract features that
represent intricate structure and general structure differences respectively. A k-nearest
neighbour classification algorithm is used to make the classification decision.

3 Biosonar System

We used a Biosonar head which consists of 3 Polaroid sensors in a triangular layout ,
which simulates the layout of a bat’s mouth and ears[12]: two Polaroid 600 sensors spaced
12.5cm apart as ears, a Polaroid 7000 sensor as mouth in the middle between the two ears
but 2.5cm lower (figure 3). With two turning ears, which have two degrees of freedom
each, we can not only obtain a measurement of the target’s distance and bearing to the
robot by calculating time of flight (TOF), but also enhance the signal to noise rate (SNR),
or even get pairs of crossed echoes that record more information of targets like a cubic
view.

The hardware of our Biosonar system consists of an Intel Pentium 4 computer, a
National Instruments NI6110 analog I/O card, a Mini SSC]] serial servo controller, a
BNC2110 connector, a NiMH charger box and this Biosonar head (figure 4). The sam-
pling speed of the NI6110 card is SMhz, we utilize 1Mhz in our research. The NiIMH
charger box provides the sensors with a 150V power supply.
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Fig. 3. Biosonar head

The software consists of four layers in RedHat Linux7.3, an additional free driver
software is crucial for the card to achieve 1Mhz analog input sampling speed (figure 5).

4 Intricate structure features

When bats hover above their prey, they emit calls during all stages [13]. The harmonic
pattern of the calls differs greatly between aimless searching and target detecting stages.
They emit long chirps (4ms) with more energy, which are suitable for travelling long
distances when they search targets, but use short and higher frequency chirps to probe a
near target that may be a potential prey. They also lower chirp’s intensity as they approach
a large target, in order to maintain the echo intensity within a suitable range for auditory
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Fig. 4. Biosonar system
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Fig. 5. Software structure

processing [4]. Inspired by those phenomena and based on our A(t) echo model (section
1), we utilized the chirp as short as the signal to noise rate (SNR) allowed and adjusted
the range of analog I/O card dynamically to achieve suitable amplitude resolution. With
the hope for enhanced axial resolution, we tried 0.256ms, 0.512ms and 1.024ms chirps,
which were linearly frequency modulated (figure 6).

The classification results with 2 intricate structure features verified this idea. Two
features, distant interspike interval [10] and low frequency variance, come respectively
from the temporal and spectral domain. They reflect intricate structure differences of trees.

4.1 Distant interspike interval

This approach was formerly introduced by our former cooperation partner [10]. There,
the classification was carried out with 3ms chirps from 3D space in a limited orientation
range with 84, 800 echoes for the classification between 4 plants. The method proposed
here attempts the classification with chirps from the full 27 range 2D plane with shorter
and fewer chirps (figure 6), aiming at practical usage by mobile robot navigation. It needs
720 echoes’ feature template for each plant and 20 to 80 echoes’ probing by classification.
Furthermore, the kernel algorithm of the sequential probability ratio test (SPRT) [2] is
different.

The key idea of the distant interspike interval feature is to study the tiny reflection
decreases in the acoustic density profile of echo. The acoustic density profile models
the structure of plant foliage [9]. According to our model A(t), the decreases, which
are longer than the carrier wave’s length A, shall statistically represent a tree’s intricate
structure distributed in successive elliptical surfaces e; (figure 2 left).

The extraction of those long duration echoes is described in figure (8). First a gamma-
tone band pass filter is used to get an array of filtered waves whose surface simulates the
motion of the basilar membrane as a function of time. It provides a reasonable trade-off
between accuracy in simulating basilar membrane motion and computational load. The
impulse response of the gammatone is [15]:

g.(t) = at™ texp(—2rbERB(f.)t) cos(2n f.t + ¢) (5)
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Fig. 6. 256 points linearly frequency modulated chirp (256us duration, S0kHz central frequency)

where time ¢ > 0, a is the amplitude, n and b are parameters defining the enve-
lope of the gamma distribution, and f. is the centre frequency. ¢ is the initial phase.
ERB(f.) is the equivalent rectangular bandwidth of the filter(ERB), and at moderate lev-
els ERB(f.) = 24.7 4+ 0.108f. in Hz [5]. The symmetrical output array is half wave
rectified and low pass filtered to get the acoustic density profile of echo. The moving
average filter used here is a 50 point filter:

L
vl =55 >_ali+j = 23] (©)
7=0
Then the increasing slope of the resulting signal(see figure 2), which is between the edge
of the first noise threshold crossing and the maximum amplitude position, is horizontally
and evenly divided by 129 amplitude stages. The horizontal width of every small part of
slope is D;;. From series of echoes, a metric (D;;) is achieved.

D1y Dz ... Dy,
Dy ... ...

(Di‘j) - 21 ------ e (7)
D, D,

where m denotes the total echo number in a sample group, n is the total number amplitude
range by every echo. j € n denotes the amplitude by every D;;. In this way, the ampli-
tude normalization is also achieved. With 1Mhz digital sampling rate and 50kHz centre
frequency band pass filter, the long decreases are extracted with threshold D;; > 0.03ms,
which is 50% longer than the 0.02ms wave length of 50K hz (figure 7). Those decreases



are named as distant interspike intervals (DIIS).
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Fig. 7. Extaction of distant interspike intervals

Four parameters of DII are recorded from each echo:(4;, @;, 7;, N;) where A, is the
mean duration time of a DII in echo 7, @; is the mean amplitude of a DII in echo ¢, p; is the
DII horizontal position to the first position that signal goes above noise threshold(edge(1)),
N; is the total number of DII in echo .

From repeating echoes generated by natural landmarks we calculate the probability
density distribution (PDF) function of those parameters and perform a sequential pro-
cedure for multihypothesis test. Let f; be the PDF result of the upper parameters from
templates, target’s PDF be f and I be the hypothesis that f ~ f; forj = 0,1,..., M —1,
where M is the total number of hypotheses. The 7; denotes the prior probability of /;
for N tests. There are m echoes for each H;. The posterior probability p?, is:

pjm = P{f ~ fj‘flaf% afm} = M—1 i:1m
> me(I1 (%))

k=0 =1

€))



The original algorithm of M-ary sequential probability ratio test(MSPRT) [2] is: N is the
first m > 1 such that p/, > (1/(1 + Ay)) for at least one k

H=H, (10)
n = arg max ply (11)
j

When testing many samples with similar likelihood, p?, > (1/(1 + Ay)) is often
reached by more than one j hypothesis at same time. When we use maximum p?, for
supporting decision, there are also many equal p/, by maximum number of tests. So we
add three calculation in this algorithm. Those calculations add the choices for selecting
the highest pJ, > (1/(1+ Ay)) or p/, in one round of test, assigning divided possibility to
all potential choices with the same p? > (1/(1+ Ay)) or p/, , avoiding 0 priority problem
in no hypothesis test round.

In figure(8), the k-nearest neighbour classification algorithm uses 8 rows multivariate
hypothesis metric to vote for classification. Seven rows are calculated from the PDF and
joint PDF likelihood of (A;, @;, N;). Here we temporarily do not use p;, while its efficiency
needs further test. The 8¢/ row is from the following feature of low frequency variance.
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Fig. 8. The process of the first method

The sampling strategy is also decisive for the classification performance. The brittle-
ness of the signal A(t) leads to salient DIIs, which in turn demand a large number of data
for statistical analysis. But the time and computing power of a moving mobile robot is
limited. This conflict is solved through biological sampling strategies. On one hand, bats
do not need to recognize anything they meet; on the other hand, bats obtain just enough



information to be characteristic of the targets of their interest. We use a two step classi-
fication strategy (section 6) and store DII feature values from 20 to 80 echoes according
local asymmetry in every 10 degree range.

The advantages of DII features are that they reflect intricate structure information of
a target, and are relatively independent of the target’s size, if the ensonified area always
covers the main sonar wave lobe. Two disadvantages are (1) Classification rate depends
heavily on the numbers of echoes; (2)DIIS from 3D echoes have richer target information
than DIIs from 2D. They make this algorithm still not very practical by 2D mobile robot
navigation, where quick decision is of of significant worth.

4.2 Low frequency variance

Another feature to study intricate structure information of plants is to analyse average
low frequency variance in echoes. We can discriminate the an object from spectrum of
the echoes ([14]). From the analysis of A(t) (section 1), we know that each echo from
a multi-facet target is the superimposed result of many A; from individual leaves. Those
A; correspond directly to the leaves’ size and positions in a small bearing range, which
is characteristic of a tree and leads to the low frequency periodicity variance after leaves’
superposition (figure 2). It is just another method to study FM Sonar Image [8] of target.
The process of extracting low frequency variance is described in figure 8. A normalization
is performed before band pass filtering or after low pass filtering. Then we use Fast Fourier
Transform(FFT) to reveal periodicities in the echo as well as the relative strengths of any
low frequency components. We find that the schefflera tree has larger spectral response
around 1K H z, which perhaps correspond to its 17cm long leaves or 3 sparsely distributed
branches. The ficus tree has lowest spectral response, which may correspond to its 3—4cm
and evenly distributed leaves. The result is reversed around 20k H z, where the Schefflera
tree has lowest response and the ficus has the largest. The bamboos, which have few
narrow leaves(0.8cm) and consist mainly of 1.2c¢m diameter long trunks, has always the
medium response after normalization. But without normalization bamboos have always
the lowest spectral response. We extracted the mean spectral response values of different
plants in various low frequency ranges, and calculate their distance for the 8¢/ row value
in the above k-nearest neighbour classification.

The advantage of this feature is to classify targets with similar form, size and unbiased
space distribution. But it is statistical result and depends on distance obviously. The far
big leaves’ low frequency variance is similar to small leaves’ in the near when the com-
pensation problem mentioned above is not resolved. So we don’t use it alone at present.

The k-nearest neighbour algorithm based on 8 parameters from the above 2 feature
groups was tested with 3 artificial plants. With 36 template knowledge each, the 360° bear-
ing range classification probabilities of ficus, bamboos and schefflera with one glimpse of
20 echoes’ sampling are respectively 84%, 72% and 51%. The relative lower classification
rate of schefflera tree is obviously due to its relative serious asymmetry, which reflect the
first disadvantage of this algorithm.



| Num | Name | formula | Denotation

edage2
1 [Sum-area Si= > A effective refelction area
k=edagel
j n
2 |max amplitude | Xyfa = max(A;(5)/ > Ai(j))|the largest reflecting ability
i j=1
3 |mean amplitude Xiean = 3 Ai(G)/n average reflection ability
j=1
4 |crest factor Xi = Xtnax [ Xoms impulsiveness of echo
n J— J—
5 |wave form di; = (As;(k)—Aj(k)) |envelope matching degree
k=1
distance A=Y A(D)/m
=1
6 |Depth D; = (edge(2) — edge(1)) |scale of target

5 General structure features

Another method we utilized is to make classification with 9 time domain features, which
represent overall structure information in the echo.

At first we utilize following 6 features extracted from groups of echoes.

Those features’ performance varies under different circumstances. In order to reduce
their dependence to distance and keep the relative amplitude difference, we perform nor-
malization before calculating them (figure 9).

For every feature f; a 2D array f;(0,d) is sampled and stored as template. 6 is the
horizontal orientation, d the distance between Biosonar head and target and ¢ the feature
number. Then we use a Kolmogorov-Smirnov test to calculate the similarities respectively
before the voting of K-nearest learning.

k - N2
P Z (EXP,— OBS;)

EXP,

(12)

i=1
A training algorithm to adaptively give different weights to those features under different
circumstances is needed here. In experiments with identical weights of the 6 features, the
classification rate of this method for the 3 trees investigated is 87%.

Then we utilize 3 features extracted from sequential echo groups, while we believe
also that the sequences of echoes will provide more information to the flying bat [16].
And this sequence is decided by the relative sampling movement between Biosonar and
target, here we have used simple turning movement to simulate the hovering of bat. The
3 features are directly from the filtered amplitude envelope:

— local maximum(peaks) position in sequence;
— signature of upper 6 features in sequence;
— image of amplitude envelope in sequence.

In simple echo those features are fast useless for classification due to the character of air-
borne reflection (section 2. But after adding the new dimension of movement sequence
and using 2D matching algorithm, the classification rate rises dramatically(over 95%).
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Fig. 9. Extraction of 6 general structure features

6 Comparison of the two methods

The method in section 3 utilizes 2 features that reflect intricate structure information of
multi-facet targets in the time and spectral domain. They look into the tiny fluctuation
in target reflection. But as holds for many combined probability density functions, their
calculation time is much longer than the one of the second method, and the first method
also needs rich echoes for precise classification [10], especially by asymmetrical targets,
which makes this method not so ideal to perform classification in real time navigation.

The second method in section 4 can quickly make classifications. When used alone,
some simple features’ positive evaluation of a target may be doubtful, but the negative
classification result is trustworthy. When used in combination, especially in sequential
probing, they can also achieve high classification rate. We therefore conceive a two step
classification strategy for mobile robots. In natural environments, most of the targets hit
by a mobile robot’s Biosonar are not so important that they must be precisely classified.
So during most of the navigation time the mobile robot uses only few simple features
from the second method to remove objects from attention. Only when potential landmark
objects appear, the first method or the sequential probing of the second method are carried
out to make classification certain. This strategy can reduce calculation effort.

7 Experimental results

All tests in this section were performed with 3 artificial trees with similar height of 1.7m
(figure 10). A 256 points linearly frequency modulated chirp under 1Mhz sampling rate
was used in the following tests. Every glimpse’s sampling includes 20 to 80 echoes that
collect data in 10 degree bearing range of the target, and every stored feature template is
extracted from one glimpse.

7.1 Test 1: Intricate structure features

After we have first verified the classification ability [10] of DIIs with 1024 echoes from
limited orientation range(10 degree) in 2D plane, where classification can easily reach



Fig. 10. Three plants: ficus,bamboos and Schefflera

above 95% with a few orientation ranges. We try to make it applicable by mobile robot
navigation: classification from all possible orientations and with fewer sampling echoes.
We define that a glimpse here means 20 echoes from every 10 degree orientation. The
classification rate of one glimpse varies with the acquired knowledge of the target(number
of stored glimpses for each target). In the first test, one glimpse’s classification rate is
tested with 1,3,6 12,24,36 stored template glimpses, which is evenly sampled from 360°
bearing range. The results from more than a thousand tests are listed in figure (11). We

find that:
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Fig. 11. Classification rate from comparing one glimpse with different number of stored glimpses by first method

— The classification rate increases slowly with the increasing numbers of templates,
which are evenly distributed in 360° bearing range. The temporary decreases in in-
creasing tendencies are the result of likelihood competition of other classes. Since the
number of templates for each plant is always the same, the probability of other classes’
template with similar feature increases together with increasing template’s number.



— In theory this method can precisely make statistic classification of multi-facet targets
when there are enough many echoes from different orientations. But a asymmetrical
target like schefflera here demands more echoes from the same bearing range.

— The DII features obtained from local views of the trees are mostly leaf based. They are
very salient, because one leaf, which is hit by the main sonar lobe and whose normal
axis is close to the Biosonar sound axis, can easily change the D;; data from an echo.
When DIIs come from clusters or branches instead of individual leafs and the whole
plant is covered by the sonar cone, they can be more stable.

— With one glimpse, plants of different size can be classified with 15% error probability
, but lower by similar scale .

— The P parameter from the DII feature has more stable performance when we collect no
less than 80 echoes per template for classification. The error probability is 81% with
80 echoes’ template vs. 43% with 20 echoes’ template. This is the most promising
parameter of these DII features.

7.2 Test 2: General structure features

In this test, we first ignored the probing sequence and used 6 features to classify with
different numbers of intricate general feature templates (figure 12):
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Fig. 12. Classification rate from comparing one glimpse with different number of stored glimpses by second method

From result of this test we find:

— One feature alone can not precisely describe a multi-facet target like a tree. A classifi-
cation of certain targets needs the use of different features.

— The 6 features used in this method are extracted after normalization. We shall use
A(t)/ > A(t) instead of A(t)/max(A(t)) in order to make the maximum amplitude
comparable between targets.

— This method’s classification rate may decrease when there is a large potential choice
of targets, but it is powerful to take most of calculation burden for classification.



— Among the 6 features the wave form distance worked best and can even to some degree
determine the relative bearing angle of Biosonar to target.

Then we used the other 3 features(local maximum position, combined signature of
upper 6 features and envelope image in sequence) filtered from observation by turning
movement. The sampling density is 20echoes/10degree(figure 13). The classification
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Fig. 13. ficus,bamboos and Schefflera amplitude image one round turning
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Fig. 14. Classification rate of sequential echoes from different orientation ranges of observation

rate by using different numbers of echoes is list in (figure 14), where horizontal axis(1 to
18) denotes probing range(10 to 180 degrees). From result of this test we find:

— The sequences of echoes’ variation providing useful information for target classifica-
tion.

— The way of movement strategy can influence the observation efficiency.

— The 3D free movement(hovering) may improve the chance to find classification cues
from individually incomplete and distorted echoes.



8 Conclusions

This paper has presented two methods for natural landmark classification with Biosonar.
After comparison of those two methods, a two step classification strategy for mobile
robot’s navigation in natural environment was discussed. Those methods can be easily
be transformed to recognize other multi-facet targets with Biosonar. The research tried
to take some advantage of perceived properties of bats’ prey identification and landmark
identification mechanisms and strategies, without the claim to be a precise model of bats
echolocation. Further work will include quantitatively studying the distance compensation
problem in different features, trying different movement strategy, recognizing not only the
target’s relative bearing to the Biosonar head but also the Biosonar head’s relative orien-
tation to the target, and utilizing more advanced computation algorithms to enhance the
classification performance.
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