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Abstract

Activity diagrams experience an increasing importance in the de-
sign and description of software systems. Unfortunately, previ-
ous approaches for automatic layout support fail or are just insuf-
ficient to capture the complexity of the related requirements. We
propose a new approach tailored to the needs of activity diagrams
which combines the advantages of two fundamental layout con-
cepts called “Sugiyama’s approach” [Sugiyama et al. 1981] and
“topology-shape-metrics approach” [Tamassia et al. 1988], origi-
nally developed for layered layouts of directed graphs and for or-
thogonal layout of undirected graphs respectively.

Keywords: Activity Diagrams, Software Visualization, Graph
Drawing

1 Introduction and Motivation

Activities and the corresponding activity diagrams belong to the
basic concepts of the Unified Modeling Language (UML) which
has become the standard modeling language for specifying, visu-
alizing and documenting software systems. Activity diagrams are
used for modeling behavioral logic like business processes or work-
flow. In the modern UML 2, they experienced an increasing impor-
tance. While they were considered as a special case of state dia-
grams in UML 1.x, they are now enriched with additional constructs
that widens the range of their applicability. This make them more
suitable for areas like economics or bio-informatics [Shegogue and
Zheng 2005].
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Figure 1: An UML activity diagram taken from the UML 2.0 Su-
perstructure specification (http://www.uml.org).

While automatic layout for class diagrams received considerable at-
tention by developers of corresponding software tools and designers
of fundamental concepts of diagramming, activity diagrams were
considered either to be just a special case for tools supporting state
diagrams or to be too complex to handle them by a direct applica-
tion of basic layout algorithms.

Activity diagrams require properties different from those for class
diagrams such that the concepts developed there cannot be trans-
ferred, although the experiences gained help with the design. Here
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the emphasis lies on partitions and flow, some properties that are
influenced by the semantics of activity diagrams. Those properties
have to be supported by an automatic layout algorithm because it
is hard, or sometimes even impossible to place all elements appro-
priately by hand. Furthermore, an automatic layout algorithm with
customizable layout options allows to include different user prefer-
ences.

The contribution of this paper is a summary of the needed require-
ments and aesthetics for drawing activity diagrams, and the elabora-
tion of sophisticated graph drawing algorithms for a new layout ap-
proach which satisfies them. We do not introduce a completely new
concept, but we show for the first time how to combine the two lay-
out concepts “Sugiyama approach” and “topological-shape-metrics
approach”, which were originally developed for layered layouts of
directed graphs and for orthogonal layouts of undirected graphs re-
spectively. We demonstrate how to extract the advantages from both
methods and apply them successfully to the challenging problem of
layout UML activity diagrams.

The rest of our paper is organized as follows: In Section 2 we dis-
cuss the requirements and aesthetic criteria of activity diagrams.
Section 3 reviews the state-of-the-art of drawing activity diagrams
and Section 4 describes the basic definitions and algorithms which
provide the basis for our new visualization approach. In Section 5
we introduce our new concepts followed by a short discussion.

2 Requirements for the Layout

In this section we examine requirements for the automatic layout
of activity diagrams. We therefore shortly introduce the notation
elements. This is necessary to derive a graph theoretic concept to
layout those diagrams. We also analyze aesthetics and standards for
creating activity diagrams. The identified aesthetics and require-
ments are the basis for the design of our new layout algorithm.

2.1 Notation of UML 2 Activity Diagrams

In the following we give an overview of the visual notation of activ-
ity diagrams and identify the resulting requirements for the layout
algorithm. We do not focus on semantics if not necessary. For
further details have a look at the UML superstructure specification
[OMG 2004].

An activityspecifies the coordination of executions of actions using
a control and data flow model. Eachactivity diagramshows exactly
one activity. An activity is modeled as a labeled graph ofactivity
nodeswhich are connected by edges denoting data or control flow.
It can optionally be represented by a border rectangle containing all
its elements and a name shown in the upper left corner. There are
three different node types appearing in an activity - action, object
and control nodes.

Action nodes(see Fig. 2(a)) are the basic elements of an activity.
An action node may have outgoing and incoming edges denoting
control or data flow to or from other nodes. There are two special
kind of action nodes to handle signal events, theaccept eventand



send signalaction.Object nodesindicate an instance of a particular
classifier (see Fig. 2(c)).

A control node(see Fig. 2(b)) coordinates the flow between other
nodes. If an activity is invoked, a flow starts at eachinitial node. If
a flow reaches anactivity final nodethe activity terminates. In con-
trast, aflow final nodeterminates only its incoming flow. Adecision
nodehas one incoming flow and multiple outgoing edges. The flow
is forwarded to only one outgoing edge. This edge is commonly de-
termined byguardswhich are edge labels representing conditions.
A merge nodehas one outgoing edge and multiple incoming edges.
Each flow arriving at an incoming edge is forwarded to the outgo-
ing edge. Afork nodeis similar to a decision node, but it splits the
incoming flow into multiple concurrent flows. Ajoin nodeis sim-
ilar to a merge node, but synchronizes multiple flows. Edges are
always connected to the long side of the fork/join node. The nodes
can be placed vertically or horizontally.

send signalaccept eventaction

(a) action nodes

merge/decision node join/fork nodeflow final activity finalinitial node

(b) control nodes
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Figure 2: Activity diagram notation elements.

Node elements can be connected by two different edge types, one
denoting control flow and one denoting data flow. Both edge types
are represented by an arrowed line.

There are also notation elements for defining sets of nodes and
edges in an activity.Partitions (swim-lanes)use vertical or hori-
zontal boundaries to partition a diagram into logical areas, e.g. or-
ganizational units in a business model. Nodes and edges are placed
inside the related partition. UML 2 diagrams can also be parti-
tioned as depicted in Fig. 2(e). Such a partition is a combination of
horizontal and vertical swim-lanes. Hence, the partition structure
corresponds to a grid. Another grouping element is anexpansion
region. It is a strictly nested region of an activity with explicit input
and output nodes calledexpansion nodes(see Fig. 2(f)). Each input
is a collection of values. Expansion regions can have keywords in
the upper left corner. Aninterruptible activity regionhas the same
notation as an expansion region but without expansion nodes.

A notation element available to all UML diagrams is anote. Notes
comment on some diagram elements. They are attached to the cor-
responding elements by a dashed line (see Fig. 2(d)). In activity
diagrams notes are often used to show post- and preconditions of
actions.

The visual notation leads to the following requirements:

• Nodes have different sizes (NODE_SIZE).
• We have to consider partitions (PARTITION).
• Regions could be nested and edges can start/end at a region

(expansion input/output nodes). This corresponds to the con-
cept of compound graphs (see Section 4.1) (CLUSTER).

• Handle notes that are attached to edges (NOTES).
• Join/fork nodes are two sided nodes

(TWO_SIDED_NODES).
• Handle labels of activities, regions, nodes, edges (LABEL).

Since activities are based on a graph theoretic concept we are able to
employ graph drawing techniques to draw activity diagrams. There
is a wide variety of drawing algorithms taking different aesthetics
and requirements into account [Di Battista et al. 1999b; Kaufmann
and Wagner 2001]. There are also approaches for handling labels
and clusters. Note, that in graph theory the nodes are usually called
vertices. However, in this work we use the term nodes to be consis-
tent with the UML specification.

2.2 Aesthetics

An aesthetics measures a graphical property of a drawing that
should be optimized to increase readability. Unfortunately, up to
now there are neither work nor empirical studies for aesthetics of
activity diagrams. However, since the underlying structure of ac-
tivity diagrams are graphs, we will discuss aesthetics that apply to
abstract graphs (graphs without special semantics) and thus to ac-
tivity diagrams, too.

An overview of aesthetic criteria applied to drawings of abstract
graphs is given in [Di Battista et al. 1999b; Coleman and Parker
1996]. The most common are:

• Minimize the number of edge crossings (CROSSING).
• Minimize the area of the drawing (AREA).
• Minimize the maximum length of an edge

(EDGE_LENGTH).
• Minimize the number of bends (BEND).
• Maximize the smallest angle between two edges incident on

the same node (ANGLE).
• Minimize the deviation of an1 : 1 aspect-ratio (AS-

PECT_RATIO).
• Minimize the number of overlapping nodes and edges

(OVERLAP).
• Maximize the number of orthogonal edges (edges that are

drawn as a sequence of horizontal and vertical line segments)
(ORTHOGONAL).

• Maximize the number of edges respecting flow (edges that are
drawn monotonically in a prescribed direction) (FLOW).

• Maximize symmetry (SYMMETRY).

Note, that there are some contradicting aesthetics, e.g. FLOW and
ASPECT_RATIO. The drawing of a graph with a given set of aes-
thetic criteria can be seen as a multi-objective optimization prob-
lem. The set of applied criteria depends on the semantics of the
graph as well as on individual user preferences.

The affect of aesthetics BEND, CROSSING, ANGLE, ORTHOG-
ONAL and SYMMETRY on the readability of drawings were ana-
lyzed empirically in [Purchase et al. 1997; Purchase 1997]. There,
CROSSING was found out to be the most important, followed by
the less important aesthetics BEND and SYMMETRY. ORTHOG-
ONAL and ANGLE had no significant effects.

Since activity diagrams show control and data flows it seems to be
natural to include aesthetics FLOW. In activity diagrams the edge
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flow is usually from top to down or from left to right. OVER-
LAP is also important; especially overlaps between nodes should
be avoided. SYMMETRY seems to be useless to activity diagrams
because they do not have a symmetric structure.

2.3 Standards for Creating Activity Diagrams

Although the UML specification does not explicitly prescribe how
to layout diagrams, there are a lot of standards, conventions and
guidelines how to do this. A comprehensive collection of those
principles that have been proven in practice is given in [Ambler
2005]. Their usage increases the usability and clarity of diagrams.
Here we give an overview.

The principles for general UML diagrams are:

• Minimize the number of crossings (CROSSING).
• Draw edges orthogonal (ORTHOGONAL).
• Use only horizontal labels (HORIZONTAL_LABELS).
• Reorganize larger diagrams into several smaller ones. This

principle is based on the fact that it is often easier to have sev-
eral diagrams on various levels of detail than a single complex
one. Hence, complex actions are often decomposed into sub-
activities. In practice there are almost no activity diagrams
containing more than 50 nodes and 80 edges, which allows us
to use more complex algorithms than for larger graphs.

The following principles were specific to activity diagrams:

• Incoming and outgoing edges enter a join (fork) node on dif-
ferent sides (BIMODALITY).

• Swim-lanes (partitions) should be ordered in a logical manner,
the primary swim-lane is placed leftmost. Thus, we assume
that the ordering of the partitions is given as input.

In this section we have identified requirements and aesthet-
ics for drawing activity diagrams. Notation dependent re-
quirements are CLUSTER, PARTITION, NODE_SIZE, NOTES,
TWO_SIDED_NODES and LABEL. Furthermore, we have
structure-dependent aesthetics like CROSSING, BEND, OR-
THOGONAL, FLOW, AREA, EDGE_LENGTH and OVERLAP.
BIMODALITY and HORIZONTAL_LABELS are additional re-
quirements based on standards and conventions for creating activity
diagrams. It is important to have a flexible layout approach that al-
lows the user to customize requirements.

3 State-of-the-Art

In this section, we review the state-of-the-art of drawing activity
diagrams. First we give an overview on related work in research
followed by a brief evaluation of some popular commercial soft-
ware products.

3.1 Related Conceptual Work

Most of the recent work on layout approaches for UML diagrams
was dedicated to class diagrams. Representatives of two different
approaches are UMLKandinsky/GoVisual [Eiglsperger et al. 2004]
and SugiBib [Eichelberger 2002b]. The first one is based on refine-
ments of the fundamental topology-shape-metrics (TSM-) approach
which has been developed for orthogonal layouts. The second one
uses the well known concept of Sugiyama for layered layouts. Both
approaches will be described in Section 4. They support aesthetic
criteria like FLOW, ORTHOGONAL, OVERLAP, CROSSING in

various ways. SugiBib is also able to consider advanced proper-
ties like CLUSTER but on the other hand it is rather weak for ba-
sic properties like NODE_SIZE or ORTHOGONAL. None of the
above approaches is able to handle PARTITION.

A layout approach for statecharts is given in [Castello et al. 2002a;
Castello et al. 2002b]. Statecharts are extended finite state machines
and support the repeated decomposition of states into substates.
The approach is based on a combination of Sugiyama’s approach
with a recursive floorplanning algorithm and an integrated label-
ing method. It supports aesthetics AREA, CROSSING, OVERLAP,
BEND, ASPECT_RATIO and CLUSTER. However, the clustering
is specific to state decompositions and thus not applicable to activ-
ity diagrams.

There is also some work about the visualization of process dia-
grams. Process Diagrams are related to flowcharts and visualize the
flow through a process or system. The layout approaches described
in [Wittenburg and Weitzman 1997] and [Six and Tollis 2002] sup-
port FLOW and PARTITION. The second one is also able to sup-
port ORTHOGONAL, CROSSING, BEND and OVERLAP. How-
ever, both approaches are restricted to one-dimensional partitions
(horizontal swim-lanes) and do not include CLUSTER.

As we have seen there is no conceptual approach covering all re-
quirements for activity diagrams. On the other side there exist quite
a few commercial products that claim to support activity diagrams.
In the following subsection we review some of them.

3.2 UML Tools

An evaluation of layout capabilities for different UML tools regard-
ing class diagrams was given in [Eichelberger 2002a]. For most
tools the contained layout algorithms did not produce satisfying re-
sults. Meanwhile some of the tools provide improved layout ca-
pabilities. In the following we review some popular UML tools
with respect to their auto layout capabilities for activity diagrams.
We are particularly interested in their ability to handle requirements
FLOW, CLUSTER and PARTITION.

• EclipseUML Studio for Java 2.1.0 beta (Omondo)
(http://www.omondo.com)
Up to know EclipseUML does only support UML 1.x
notation for activity diagrams without partitions. It does not
provide an auto layouter for those diagrams.

• MagicDraw UML 11 Enterprise Edition (NoMagic)
(http://www.magicdraw.com)
MagicDraw fully supports UML 2 notation. It provides
several standard auto layout approaches and edge routers
(an edge router does not change node positions). The
hierarchic layouter is able to consider FLOW, PARTITION
and CLUSTER. However, when using partitions aesthetics
FLOW is not always fulfilled satisfactorily (see Fig. 3(b)) and
the resulting drawings are sometimes defective. Notes are
always placed outside the corresponding partition cell/region,
far away from the related element.

• Poseidon for UML 4.1 Professional (Gentleware)
(http://gentleware.com)
Poseidon fully supports UML 2 notation for activity diagrams.
However, it does not provide an auto layouter for them.
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(a) New Approach (b) MagicDraw UML 11

(c) Visual Paradigm for UML 5.3

Figure 3: Comparison of different layout tools (using the example of Figure 1). Only our new approach produces an adequate drawing.
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• Rational Software Architect V 6.0 (IBM)
(http://www.ibm.com/software/rational)
Rational supports UML 2 notation for activity diagrams but it
only allows one-dimensional partitions (vertical swim-lanes).
The provided auto layouter does not consider FLOW but
it is able to consider CLUSTER. However, it does not
layout elements inside a region. When using swim-lanes the
layouter only includes elements of the leftmost swim-lane.
The layout quality is very poor.

• Together Architect 2006 for Eclipse (Borland)
(http://www.borland.com/de/products/together)
Together does only support a subset of UML 2 notation.
Partitions and regions are not available. Together provides
several standard layout approaches. However, the layout
results are poor. The layouter does not support aesthetics
FLOW and often violates aesthetics OVERLAP and CROSS-
ING.

• Visual Paradigm for UML 5.3 Enterprise Edition (Visual
Paradigm)
(http://www.visual-paradigm.com)
Visual Paradigm fully supports UML 2 notation for activity
diagrams. It provides a hierarchic layout approach as well as
an orthogonal edge router. The hierarchic layouter is able to
consider FLOW, CLUSTER and PARTITION but when us-
ing partitions with horizontal swim-lanes the elements are not
placed correctly and the layout results are poor (see Fig. 3(c)).
Furthermore, it sometimes produces unnecessary overlaps.

The layout capability and quality of the above UML tools heavily
differs. None of them was able to produce satisfying results. Only
MagicDraw and Visual Paradigm incorporate partitions. However,
as Figure 3 shows, both produce poor results when using partitions
even for small diagrams.

4 Basic De�nitions and Algorithms

In this section we describe the basic definitions as well as the ba-
sic algorithms which provide the basis for our visualization. Our
approach combines the layered approach of Sugiyama with a TSM-
approach for orthogonal layouts.

4.1 De�nitions

A graphG = (V,E) consists of a node setV and an edge setE ⊆
V ×V. If all pairs in E are ordered, we callG directed graph, if
all pairs are unordered we call itundirected graph. A self-loopis
an edge that starts and ends at the same node. If there are multiple
edges between a pair of vertices, those edges are calledmultiedges.
A (simple) path between nodev and w is a node sequence(v =
u1,u2, . . . ,uk = w), such thatu1, ..,uk ∈ V, (ui ,ui+1) ∈ E, 1≤ i ≤
k−1 andui 6= u j , 1≤ i 6= j ≤ k. It is denoted byv→∗

G w. A cycle
is a non-empty path withu1 = uk. If a graph contains no cycles it is
calledacyclic. An undirected graph is calledconnectedif there is a
path between every pair of nodes. A directed graph is connected if
its undirected version is connected. Atree is an undirected, acyclic
and connected graph (⇒|E|= |V|−1). ThedegreeδG(v) of a node
v∈V is the number of edges incident tov. If G is directed,δG(v)
can be divided into theout-degreeδ+

G (v) = |{w|(v,w)∈E}| and the
in-degreeδ−G (v) = |{w|(w,v) ∈ E}|.

A drawing of a graphG = (V,E) is a mapping of the node setV
to distinct points in the plane and the edge setE to open Jordan
curves. G is calledplanar, if it has a drawing in the plane with-
out edge crossings, that is no two Jordan curves have a common
point. Such a drawing divides the plane into regions, calledfaces
(see Fig. 4(a)). There is exactly one unbounded region which is
called theouter face. An embeddingof a graph is given by a clock-
wise cyclic ordering of the adjacent edges around each node. An
embedding is called planar if there is a planar drawing of the graph
which preserves this ordering.

Thedual graphDG of a planar embedding ofG has a nodevf for
each facef of G and an edge(vf ,vg) for each edge ofG separating
two (not necessarily distinct) facesf andg (see Fig. 4(b)). The dual
graph has always linear size and is planar, too.

f0
f2

f1
f3

(a) planar drawing (b) dual graph

Figure 4: Figure (a) shows a planar drawing of a graph and the
corresponding faces (f0 denotes the outer face). Figure (b) shows
the related dual graph. Its nodes are denoted by circles and the
edges by solid curves.

An upward drawingof a directed graphG = (V,ED) is a drawing
of G such that all edges are represented by monotonically increas-
ing curves in the vertical direction. Note, that such a drawing exists
if and only if G is acyclic. G is calledupward planarif it has an
upward and a planar drawing at the same time. Note, that there are
graphs which have an upward and a planar drawing but are not up-
ward planar (see Fig. 5(a)). Anupward embeddingof a graph is
given by a clockwise cyclic ordering of the adjacent edges around
each node in which the incoming and outgoing edges form an in-
terval. Such an ordering is calledbimodal. An upward embedding
is planar if there is an upward planar drawing of the graph which
preserves the corresponding ordering.

(a) (b) (c)

Figure 5: Example graphs. Dashed rectangles represent clusters.

A mixed graphis a tupleG = (V,ED,EU ) ⊆ (V,V ×V,V ×V),
whereV is the set of nodes,ED the set of directed edges andEU
the set of undirected edges. Amixed upward drawingof G is a
drawing such that the edges ofED are represented by monotoni-
cally increasing curves in the vertical direction.G is calledmixed
upward planarif it has a mixed upward and a planar drawing at
the same time. Amixed upward embeddingis planar if there is
a mixed upward planar drawing of the graph which preserves the
corresponding ordering.
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A compound graphGC =(G,T) consists of a graphG=(B∪C,EG)
(calledunderlying graph) and a directed rooted treeT = (B∪C,ET)
(calledinclusion tree). The node setB contains thebase nodesand
the setC thecompound nodes. Compound nodes (=clusters) con-
tain base nodes or other compound nodes.T defines the contain-
ment relation. The tree edgese∈ ET are directed from the root to
the leafs. A directed pathv→∗

T w indicates that nodew belongs
to nodev. Thus, each base node is a leaf ofT and the compound
nodes are the inner nodes. The root ofT is a special compound
node which represents the whole drawing area and thus includes
each element. An example is given in Figure6.

In acluster drawingof a compound graphGC, each compound node
c∈C is drawn as a simple closed region (usually as rectangle). The
region ofc contains a base nodev∈ B if and only if there is a path
c→∗

T v. Analogously, it contains the region of a compound node
c′ if and only if there is a pathc→∗

T c′. Furthermore, each edge
crosses the boundary of a region at most once. A compound graph
is calledc-planar if it has a planar and a cluster drawing at the same
time. There are graphs which have a cluster drawing as well as a
planar drawing but are not c-planar (see Fig. 5(b)).
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(c)

Figure 6: Example for a compound graph, where compound nodes
are drawn as rounded rectangles with dashed border. Figure (a)
shows the underlying graph, Figure (b) the corresponding inclusion
tree and Figure (c) the resulting cluster drawing.

A grid partition Pm,n subdivides the drawing area intom columns
andn rows which are separated bym+1 vertical andn+1 horizonal
lines, respectively (see Fig. 7(a)). Note, that in our approach the
size of the rows (columns) is non-uniform. A cell of the grid is
calledpartition cell. pi, j denotes the partition cell located in thei-
th column andj-th row of the grid (p1,1 is located in the upper left
corner). Thei-th grid column contains all partition cellspi, j with
1≤ j ≤ n and thej-th grid row contains all partition cellspi, j with
1≤ i ≤m. For a grid partitionPm,n the correspondinggrid partition
graphPG

m,n is constructed by placing nodes on intersection points of
horizontal and vertical grid lines (see Fig. 7(b)).

2,1
p

1,1
p

3,1

p
1,2

p
2,2

p
3,2

p

(a) (b)

Figure 7: Example of a grid partitionP3,2 (a) and the corresponding
grid partition graphPG

3,2 (b).

Let G = (V,E) denote a graph,Pm,n a grid partition andp: V →
N×N a function assigning each nodev∈V to a partition cell.

Definition 1 In a partitioned drawingof G each nodev ∈ V is
drawn insidep(v). G is called p-planarif it has a planar and a
partitioned drawing at the same time.

Theorem 1 A graphG = (V,E) is p-planar if and only if it is pla-
nar.

Proof: A p-planar graph is planar by definition. Let us assume that
each nodev∈V is assigned to an arbitrarily distinct location inside
its partition cellp(v). In [Pach and Wenger 1998] Pach and Wenger
show that every planar graph admits a planar embedding in which
each vertex is mapped to an arbitrarily prescribed distinct location.
This implies that each planar graph is p-planar, too. ¤
Definition 2 A mixed compound graphGC has apartitioned mixed
upward cluster drawingif it has a cluster, a mixed upward and a
partitioned drawing at the same time. Furthermore,GC is called
mixed upward pc-planar, if it has a planar and a partitioned mixed
upward cluster drawing at the same time.

There are graphs which are upward planar and c-planar but not up-
ward c-planar (see Fig. 5(c)). In our approach cluster regions are
not allowed to cross partition cells. Thus each compound node can
be assigned uniquely to a partition cell. Under this assumption each
graph has a partitioned cluster drawing. A graph has a partitioned
upward drawing if it is acyclic and for eache = (v,w) ∈ ED with
p(v) = pi, j andp(w) = pk,l holds j ≥ l .

4.2 Sugiyama's Approach

The most common approach for producing layered drawings for
directed graphs is the abstract framework developed bySugiyama
et al [Sugiyama et al. 1981]. It indicates a common direction of
the edges by producing layered layouts. Sugiyama’s framework
consists of four phases:

1. Cycle Removal: In the cycle removal phase, the directed in-
put graphG= (V,E) is made acyclic by reversing appropriate
edges (see Fig. 8(b)).

2. Layer Assignment: During the layer assignment phase, the
nodes are assigned to horizontal layersL1,..,Lh such that for
each edgee= (v,w) ∈ E with v∈ Li andw∈ L j holdsi < j.
After this assignment, edges between nodes of non-adjacent
layers (“long edges”) are replaced by chains of dummy nodes
and edges between the corresponding adjacent layers. This
process is callednormalizationand the result is the normal-
ized graphNG = (VN,EN) (see Fig. 8(c)).

3. Crossing Reduction: In the crossing reduction phase, an or-
dering of the nodes within a layer is computed such that the
number of edge crossings is reduced (see Fig. 8(d)). The re-
sult is a directed acyclic compaction graphCG = (VN,{(a,b) :
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(f) horizontal coordinate assignment

Figure 8: The different phases of Sugiyama’s framework. Dummy nodes are drawn by white circles.

a,b consecutive inLi , 1≤ i ≤ h}). It gives the left-to-right
order of the nodes in a layer and hence defines a total ordering
for those nodes (see Fig. 8(e)). Note, that crossing minimiza-
tion is NP-hard [Garey and Johnson 1983].

4. Horizontal Coordinate Assignment: Finally, the horizon-
tal coordinate assignment phase, uses the compaction graph
to calculate an x-coordinate for each node. Long edges are
represented by polygonal lines with the dummy nodes as in-
termediate points. Thus, in order to reduce the number of
edge bends, all dummy nodes belonging to the same long edge
should preferably be aligned vertically. After the final layout
the reversed edges are restored to their original direction and
the dummy nodes are removed (see Fig. 8(f)).

Crossing reduction is usually done by a layer-by-layer sweep where
each step minimizes the number of edge crossings for a pair of ad-
jacent layers. It is performed as follows: We start with an arbitrary
node order of the first layerL1. Then, while the node ordering of
layerLi−1 is kept fixed, we put the nodes ofLi in an order that min-
imizes crossings. This step is calledone-sided two-layer crossing
minimizationand is repeated fori = 2, ..,h. After we have processed
the bottommost layer, we reverse the sweep direction and go from
bottom to top. These steps are repeated until no further crossings
can be eliminated for a certain number of iterations.

The two-layer crossing minimization is NP-hard [Eades and
Wormald 1994]. An established heuristic strategy to tackle this
problem is the following: The position of a nodev in layerLi de-
pends on the position of its adjacent nodes in layerLi−1. First, a

measure is calculated for each nodev in Li . The measure of a node
v is e.g. the barycenter (average) [Sugiyama et al. 1981] or me-
dian [Eades and Wormald 1994] of the positions of its neighbors in
the above layer. We get the positions of the nodes inLi by sorting
them according to their measure.

The complexity of algorithms implementing Sugiyama’s frame-
work heavily depends on the number of dummy nodes inserted. Al-
though this number can be minimized efficiently, it may still be in
the order ofΘ(|V||E|) [Frick 1997]. The overall time complexity is
thereforeO(|V||E| log|E|).

4.3 Topology-Shape-Metrics Approach

The most effective concept for orthogonal layouts of undirected
graph structures is the topology-shape-metrics (TSM-) approach.
This concept has been introduced by Tamassia [Tamassia 1987;
Tamassia et al. 1988] and later-on refined and extended by several
groups of authors [Fößmeier and Kaufmann 1996; Klau and Mutzel
1998; Didimo and Liotta 1998; Bertolazzi et al. 2000].

The topology-shape-metrics approach consists of three phases:

1. Planarization: The planarization phase determines the topol-
ogy of a drawing which is described by a planar embedding.
Non-planar graphs are made planar by introducing dummy
nodes that represent edge crossings (see Fig. 9(b)). Common
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Figure 9: The three phases of the TSM-approach. The white dummy node represents a crossing.

approaches try to minimize the number of edge crossings dur-
ing this phase.

2. Orthogonalization: The orthogonalization phase fixes the
shapes of the edges in a drawing. It therefore determines
edge bends and angles between adjacent edges. In orthogo-
nal drawings each edge is drawn as a sequence of horizontal
and vertical line segments. Thus, each angle is a multiple of
90◦ (see Fig. 9(c)). Orthogonalization algorithms usually try
to minimize the number of edge bends.

3. Compaction: The compaction phase determines the final co-
ordinates of graph elements such that nodes and bends are
placed on grid points. Finally, the inserted dummy nodes are
removed (see Fig. 9(d)). During this phase most approaches
try to minimize the area or the total edge length of the draw-
ing.

In [Tamassia 1987] Tamassia introduced a network flow based ap-
proach which computes a bend-minimal orthogonal point drawing
for plane 4-graphs. We use the Kandinsky model [Fößmeier and
Kaufmann 1996] for the orthogonalization which is an extension
of Tamassia’s algorithm and copes with general planar graphs and
nodes of prescribed size [Di Battista et al. 1999a]. Even though the
complexity for finding a bend-minimal solution in the Kandinsky
model is not known, there is an effective network flow formula-
tion which has at most twice the number of bends of the optimal
solution [Eiglsperger 2003]. Furthermore there is a heuristic net-
work solver that produces satisfying results in practice [Eiglsperger
2003; Wiese et al. 2002] in timeO(n2 logn). There are several ex-
tensions of the Kandinsky model that are applicable to our purpose,
e.g. the usage of prescribed angles and bends [Brandes et al. 2002]
as well as the usage of prescribed edge shapes [Eiglsperger et al.
2004; Eiglsperger 2003].

4.4 Discussion

Both, the layered approach and the TSM-approach, have their ad-
vantages. The layered approach is especially suited to satisfy the
FLOW criteria. It is highly adaptable and there are sophisticated
approaches to handle requirement CLUSTER. The TSM-approach
is particularly suited to satisfy aesthetics ORTHOGONAL. Since
edges are paths of horizontal/vertical segments it also optimizes
aesthetics ANGLE. Furthermore, NODE_SIZE can be realized in
a more natural way than for layered approaches. There are sophis-
ticated methods to produce mixed upward drawings which yield
less crossings than Sugiyama-based approaches [Eiglsperger 2003].
Both are able to avoid overlaps and thus optimize aesthetics OVER-
LAP. Our idea is to combine both concepts to take advantage of
synergies. More precisely, we take Sugiyama’s approach to create
a planarization and then continue with the TSM-approach.

5 New Approach

In this section we present our new approach for the auto-
matic layout of activity diagrams. Besides the common aes-
thetics ORTHOGONAL, OVERLAP, CROSSING, BEND, AREA,
FLOW it is also able to consider requirements like CLUS-
TER, PARTITION, BIMODALITY, NODE_SIZE, LABELING
and TWO_SIDED_NODES. To our knowledge there is no exist-
ing algorithm that is able to handle such a complex combination of
requirements.

5.1 Input and Interface

First we introduce the interface to our visualization approach. The
input of the layout algorithm is:

• a mixed compound graphGC = (G,T), G = (V,EG), T =
(V,ET), V = B∪C, EG = ED∪EU

• a set of labelsL,
• a functions : B∪ L → N×N denoting the size of the nodes

and labels in the drawing,
• a functionpy : V → N assigning each nodev∈V the row in-

dex of the corresponding partition cell,
• a functionpx : V → N assigning each nodev∈V the column

index of the corresponding partition cell.

To each base node one of the following node types is assigned:
initial node, final node, expansion node, object node, activity node,
fork/join node, decision/merge node or note.

In a transformation step the activity diagram graph is transformed
into a suitable input for the layout algorithm. Due to semantic rea-
sons, the input graph does never contain self-loops or multiedges.

The algorithm can be customized to fit individual user preferences
and different views on a diagram. The user can, for example, decide
if PARTITION should be applied, if CLUSTER is more important
than aesthetics FLOW or if FLOW should not be considered at all.

Note, that in activity diagrams the edges ofED are drawn down-
ward instead of upward. All edges ofEG are directed except edges
incident to notes. However, only directed edges that are added to
ED are drawn downward. We propose to add all edges toED that
are not connected to a node of type initial node, final node or note.
It is not always possible to fully satisfy aesthetics FLOW, but our
algorithm guarantees BIMODALITY for each base node.
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5.2 Overview

We continue with an overview of the single steps of our algorithm:

1. Preprocessing
(a) Recall, that notes are attached to edges by dashed lines.

We use a dummy node as attachment point (see Fig-
ure 14(c)) (NOTES). Notes attached to node elements
are handled like usual nodes.

(b) We replace each compound nodec ∈ C by two nodes
ct and cb representing the top and bottom border of
the corresponding cluster region. All incoming edges
(v,c) ∈ EG, v∈V are connected toct and all outgoing
edges(c,v) ∈ EG, v∈V to cb.

(c) If the subgraph induced by the nodes ofB is not con-
nected, we add additional edges between its connected
components. We therefore choose an action node of
each component and then connect those nodes by a
spanning tree. Due to semantical reasons each compo-
nent has at least one action node.

(d) For each edgee = (u,v) ∈ ED we check if py(u) ≤
py(v). If not, e cannot be drawn downward and thus
is removed fromED and inserted intoEU .

2. Planarization
will be described in Section 5.3.

3. Orthogonalization
will be described in Section 5.4.

4. Compaction
(a) First, labels are inserted into the orthogonalized graph

as described in Section 5.5.
(b) The compaction phase uses the fast constructive com-

paction algorithm described in [Eiglsperger and Kauf-
mann 2002] that is able to handle nodes of prescribed
size (NODE_SIZE). An experimental study comparing
different orthogonal compaction algorithms [Klau et al.
2001] shows that the results of different constructive
compaction heuristics are almost the same when us-
ing a flow-based post-processing step. Thus, we use
the flow-based visibility post-processing strategy de-
scribed in [Eiglsperger 2003] to further optimize aes-
thetics AREA and EDGE_LENGTH. During the com-
paction all dummy nodes, except those representing la-
bels, get unit size.

5. Postprocessing
(a) All dummy nodes and edges inserted during the previ-

ous steps are removed.
(b) Rectangles denoting cluster regions as well as the grid

partition are inserted into the drawing. Finally, the rect-
angle denoting the border of the activity is drawn and
the activity’s label is placed (optionally).

5.3 Planarization

Our planarization strategy combines the layered approach of
Sugiyama with a rerouting strategy known from the TSM-approach.
This section is partly based on our previous work, see [Siebenhaller
and Kaufmann 2006; Blochinger et al. 2006]. We start with describ-
ing the specific modifications of the different phases of Sugiyama’s
approach with respect to the identified requirements and aesthetics.

5.3.1 Layer Assignment and Cycle Removal

Common layer assignment approaches are designed to realize aes-
thetics FLOW. In our application the layering has to deal with re-
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Figure 10: Nesting graph for the compound graph of Figure 6.

quirements CLUSTER and PARTITION, too.

Let L(v) denote the index of the layer of a nodev (L(v) = i⇔ v∈ Li ,
1≤ i ≤ h). For a compound nodec ∈C the layering has to meet
the following condition: For each base nodew ∈ B with c→∗

T w
is L(ct) < L(w) < L(cb) and for each compound noded ∈C with
c→∗

T d is L(ct) < L(dt) < L(db) < L(cb).

Sander [Sander 1996] guarantees this by introducing the concept of
a nesting graphGn which has the node setB∪{ct ,cb : c∈C} and
the following edges:

• an edge(ct ,v) and(v,cb) for each(c,v) ∈ ET , c∈C, v∈ B
• an edge(ct ,dt) and(db,cb) for each edge(c,d)∈ET , c,d∈C

Note, thatGn is acyclic by construction (see Fig. 10). Each layer
assignment onGn guarantees the above condition.

Let pmax
y (pmax

x ) denote the number of grid rows (columns). We ob-
tain a layering that preserves the grid partition by insertingpmax

y +1
additional nodespy

j into Gn. A nodepy
j denotes the horizontal grid

line separating grid rowj −1 and j. The layering has to meet the
following condition: For each base nodev ∈ B with py(v) = j is
L(py

j ) < L(v) < L(py
j+1) and for each compound nodec∈C with

py(c) = j is L(py
j ) < L(ct) < L(cb) < L(py

j+1). We realize this by

simply inserting two edges(py
j ,u) and (u, py

j+1) for each nodeu

of Gn with j = py(u). Furthermore, we insert edges(py
j , py

j+1),
1≤ j ≤ pmax

y to guarantee thatL(py
i ) < L(py

j ) if i < j. Note, that
the resulting graph is still acyclic. We call it thepartitioned nesting
graphGpn = (Vpn,Epn).

We also have to consider expansion nodes of expansion regions (see
Section 2.1). The input nodes have to appear at the top border of the
enclosing rectangle of the expansion region and the output nodes at
the bottom border. Thus, during the layering all input nodes of an
expansion regionc∈C are represented byct and all output nodes
by cb. The edges adjacent to those nodes are redirected correspond-
ingly.

Now, we insert the edges ofED. We have not yet checked if the
set contains cycles. Even ifED is acyclic, the insertion of an edge
e∈ ED into Gpn may cause a cycle, because for eachc ∈C there
is an implicit directed edge between the nodesct andcb. Most di-
rected cycles arise from modeling loops via decision nodes. Thus,
outgoing edges of decision nodes do often participate in cycles. If
we have to break a cycle, it is natural to take those edges. Hence,
we assign a weight of1 to each outgoing edge of a decision node,
weight5|EG|+1 to each edgee∈ Epn and weight5 otherwise. We
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solve a weighted feedback arc (=edge) set problem, which consists
of finding a minimum weight edge setA⊆ {Epn∪ED}, such that
(V,{Epn∪ED} \A) is acyclic. This problem is NP-hard [Garey
and Johnson 1979] but several heuristics were proposed in prac-
tice [Flood 1990]. We use the heuristics of [Demetrescu and Finoc-
chi 2003] that runs in timeO(|V||EG|). Note, that the edge weights
guarantee thatA⊆ ED and thusA∩Epn = /0 which is necessary for
a proper layering. All edges ofED \A are inserted intoGpn. The
edges ofA are moved fromED to EU , because they cannot be drawn
downward.

The edges ofEU are not yet inserted intoGpn. Since those edges
need not to be directed downward the only restriction on the layer-
ing is thatL(u) 6= L(v) for each edgee= (u,v)∈EU . Therefore, we
calculate a topological orderπ of the nodes ofGpn and temporarily
orient all edgese∈ EU from the lower to the higher node index in
π. This guarantees thatGpn remains acyclic after inserting those
edges. The layer assignment can be done with a common layer-
ing approach, e.g. a longest path layering or the network-simplex
layering [Gansner et al. 1993].

After the layer assignment, all edgese /∈ EG are removed. We
normalize the graph by replacing long edges by chains of dummy
nodes and edges (see Section 4.2). Letpx

j , 1≤ j ≤ pmax
x + 1 de-

note the vertical grid line which separates grid columnj−1 and j.

For eachpx
j we additionally insert a dummy nodeu

px
j

i on each layer
Li , 1≤ i ≤ h. Furthermore, for each compound nodec∈C we in-
sert two dummy nodesucl

i anducr

i on each layerL(ct) ≤ i ≤ L(cb)
representing the left/right border of the cluster region. The num-
ber of dummy nodes and edges inserted during normalization is
O(|V||EG|).

5.3.2 Crossing Reduction

Unlike traditional crossing reduction, we also have to consider re-
quirements CLUSTER and PARTITION here.

Our crossing reduction is based on the method described in [Forster
2002]. First alayer hierarchy treeTLi is computed for each layer
Li , 1≤ i ≤ h. TLi is the subgraph ofT that is induced by all nodes
relevant for layerLi , that are all base nodesv∈ B with L(v) = i and
all compound nodesc∈C with L(ct)≤ i ≤ L(cb).

Regarding clusters, there are two new restrictions during a one-
sided two-layer crossing minimization step of layerLi−1 andLi :

• All (compound and base) nodes of layerLi belonging to the
same compound node have to be consecutive.

• Let c,d ∈C denote two compound nodes withL(ct),L(dt)≤
i−1 andi ≤ L(cb),L(db). Then the relative position ofc and
d must be the same on both layers.

In [Forster 2002] the following theorem has been shown:

Theorem 2 An order of the base nodes has a minimal number of
crossings if and only if the corresponding layer hierarchy tree has
a minimal number of crossings at each node.

Thus, during a one-sided two-layer crossing minimization step the
number of crossings can be minimized by independently computing
an order of the children for each compound node without loosing
quality. The corresponding algorithm is based on a conventional
algorithm for weighted one-sided two-layer crossing minimization.

The preservation of the relative position of two clusters is guar-
anteed by using a constraint crossing minimization [Forster 2005]

where the order of some node pairs is already given. Thus, the rela-
tive ordering of two compound nodes can be preserved by inserting
a constraint between them.

When the layer hierarchy trees have bounded degree the crossing
reduction of a compound graphGC runs in timeO(|V||EG|) [Forster
2002]. SinceGC can includeO(|V||EG|) dummy nodes and edges,
the overall running time of the crossing reduction isO(|V|2|EG|2).
We use the following strategy to include partitions: During a one-
sided two-layer crossing minimization step, we first sort all nodes
of the non-fixed layer according to theirpx(v) values in ascending
order. Now, we simply apply the above algorithm to all nodes with
the samepx value (nodes in the same grid column) independently.
Recall, that cluster regions do not intersect partition cells. Regard-
ing the quality of the separate handling of grid columns we can state
the following theorem:

Theorem 3 The order of the base and compound nodes can be cal-
culated independently for each column of the grid partition without
loosing quality.

Proof: Regarding grid columns as clusters with fixed positions, we
can simply apply Theorem 2. ¤

Since compound nodes as well as columns of the grid partition are
considered independently, the placement of the border nodes in-
serted during normalization is simple. When we process a com-
pound nodec∈C in layerLi , we simply restrictucl

i to be the left-
most node anducr

i to be the rightmost node. When we process the
j-th grid column in layerLi , the resulting node sequence is placed

betweenu
px

j

i andu
px

j+1

i .

Note, that our crossing reduction algorithm does not depend on the
one-sided two-layer crossing minimization strategy. An optimal
strategy would imply that our modified two-layer crossing mini-
mization is optimal, too. However, this does not imply global op-
timality because the layer-by-layer sweep may introduce unneces-
sary bends. The overall running time of our crossing reduction is
O(|V|2|EG|2).

5.3.3 Horizontal Coordinate Assignment

LetCG denote the (Sugiyama based) compaction graph constructed
as described in Section 4.2. Each cluster should be represented
by an enclosing rectangle. Therefore we have to vertically align
the left (right) border nodesucl

i (ucr

i ), L(ct) ≤ i ≤ L(cb) for each

compound nodec∈C as well as the nodesu
px

j

i , 1≤ i ≤ h for each
px

j , 1≤ j ≤ pmax
x +1. The alignment is realized by simply mapping

all nodes that should be aligned to the same node ofCG. Due to the
modified crossing minimization this never introduces cycles inCG.

We useCG to perform the horizontal coordinate assignment with
the algorithm proposed by Brandes and Köpf [Brandes and Köpf
2002]. It produces pleasing results and runs in linear time. The edge
straightening reduces the input size of the following planarization
step which is based on a sweep-line algorithm. Finally, all dummy
nodes inserted during normalization are removed.

If the subgraphGD induced by the edges ofED is not yet connected,
we connect it by adding additional edges ofEU to ED. This is nec-
essary for a common orientation of those edges. Therefore, we cal-
culate a minimum weight spanning tree in which edges ofED have
lower weight. The edges of the spanning tree are calledskeleton
edges. The additional edges of added toED never introduce cycles
in GD (otherwise, the spanning tree can not be minimum).
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Note, that after the horizontal coordinate assignment we have a
drawing that already satisfies important aesthetics and requirements
like FLOW, CLUSTER and PARTITION. However, when we con-
tinue and take the resulting drawing as input for the TSM-approach,
we can also include NODE_SIZE, LABEL, ORTHOGONAL, BI-
MODALITY and ANGLE in a natural way. In the TSM-approach
nodes are not placed on fixed layers which additionally improves
aesthetics AREA and EDGE_LENGTH. Aesthetics CROSSING
can be further minimized by using a rerouting step for edgese∈EU
(see Section 5.3.5). Furthermore, if CLUSTER is more important
than FLOW, the rerouting guarantees a cluster drawing.

5.3.4 Creating the Planar Embedding

In this step we create a planar embedding of the drawing produced
in the above steps. We “materialize” compound nodes and the grid
partition in the following way: For each compound nodec∈C, we
know the coordinatesct , cb, ucl

i , ucr

i of the top, bottom, left and
right border. The cluster region ofc is represented by placing a
boundary rectangle on this coordinates. The boundary rectangle
consists of four nodes with coordinates(ucl

i ,ct),(ucl

i ,cb), (ucr

i ,ct)
and(ucr

i ,cb) respectively connected by two horizontal and two ver-
tical edges. Note, that input and output nodes of expansion regions
split the corresponding horizontal edges. Similar, we insert the grid

partition graph into the drawing using the coordinatesu
px

j

i (py
i ) for

the vertical (horizontal) grid lines. In both cases, all vertical edges
point downward and all horizontal edges to the right. The vertical
edges are added toED.

To create a planar embedding, we have to replace crossings by
nodes and give the cyclic order of the edges around each node. We
realize this in the following way: First we detect crossings with a
sweep-line algorithm. This can be done in timeO(|S| log|S|+ x)
whereSdenotes the set of segments andx the number of crossings.
The number of segments|S| is O(|V||EG|). For each crossing, we
store its coordinates and the two participating edges. A crossing is
realized by splitting the corresponding edges with a dummy node.
For an edgee= (u,v) let xe

1, ..,x
e
k denote the ordered sequence of

crossings as they appear when walking along the edge fromu to v.
If we split e in this order, we always know the next segment to split
(the i-th crossing of(u,v) splits segment(xe

i−1,v)). If the crossings
are processed arbitrarily, the determination of the segment to split
demands a more complex data structure.

Note, that in the drawing of the graph, all edges are strictly mono-
tone except the horizontal edges denoting the top/bottom border
of cluster regions or the horizontal grid lines. Thus, we sort the
crossings according to theiry-coordinate. Crossings with the same
y-value are additionally sorted according to theirx-value. Hence,
horizontal edges are processed in the ordered crossing sequence,
too.

A problem arising during this step are multi-crossings which are
points where more than two edges cross. They are allowed
in Sugiyama’s approach but not in the TSM-approach. Multi-
crossings are detected by the sweep-line algorithm and then re-
placed as shown in Fig. 11(a).

After inserting the dummy nodes which represent crossings, the
cyclic order of the edges around a node can easily be determined
by means of the positions of its adjacent nodes (see Fig. 11(b)).

L i

L i+1

1             2              3

L i

L i+1

(a) multi-crossings

L i

L i-1

L i+1

1              2             3

1              2             3

v

(b) cyclic order

Figure 11: Planarization problems.

5.3.5 Rerouting

The result of the above step is a mixed upward p-planar embedding
of GC. Next, we perform a rerouting step based on shortest paths
computations in the dual graph [Di Battista et al. 1999b]. Note,
that we always reroute a complete edge and not just segments. The
edges ofEU need not be drawn downward but they are also directed
(except edges adjacent to notes) and thus have to be considered to
satisfy BIMODALITY. Let ER = {e|e= (u,v) ∈ EG,L(u) > L(v)}
denote the set of edges reversed during the layering. Since the pla-
narization is based on a layered drawing, the subgraph induced by
edges ofE \ER is upward planar (after inserting crossing nodes)
and thus the edge ordering around the nodes is bimodal. To guaran-
tee BIMODALITY for all base nodes, we have to reroute all edges
of ER. LetEx denote the set of edges that crosses a region boundary
twice. To get a cluster drawing we have to reroute those edges, too.
Since the following rerouting approach cannot guarantee that edges
are inserted upward planar, we only reroute edgese∈ Ex∩ED if re-
quirement CLUSTER is more important than FLOW. We can also
improve aesthetics CROSSING by rerouting all edges ofEU and
check if there is a route with fewer crossings. If we have to reroute
a skeleton edge, we create a clone of it and reroute the clone. This is
necessary because the skeleton edges have to be inserted downward
and thus are not allowed to be rerouted. The copy representing the
skeleton edge is removed after orthogonalization.

Summarizing, the special requirements for the rerouting are the fol-
lowing: An edge route have to guarantee that

• the edge crosses a region boundary at most once (CLUSTER),
• the edge is inserted bimodal (BIMODALITY),
• the edge does not leave the outer border of the grid partition.

A modification of the dual graph that guarantees the first point is
described in [Di Battista et al. 2002]. First a common dual graph
DG of GC is computed. Each node ofDG is enclosed by a cer-
tain set of boundary rectangles of clusters (see Fig. 12). Letc de-
note the innermost cluster that encloses a nodeuf of DG. Then
each node on the pathr →∗

T c enclosesuf , too (r is the root ofT).
When we route an edge(v,w) we first calculate the undirected path
v→∗

T w = v,c1, ..,ck,w. Each edge(uf ,ug) of DG is handled as
follows: Letci denote the innermost cluster that enclosesuf andc j
the innermost cluster that enclosesug. If ci or c j is not contained
in {c1, ..,ck}, (uf ,ug) is removed temporarily. Otherwise, ifi < j
we orient(uf ,ug) from uf to ug (edge can only be passed fromuf
to ug) and if i > j we orient it fromug to uf . If i = j, then(uf ,ug)
is bidirectional. Now, we compute a directed shortest path between
the set of face nodes incident tov and the set of face nodes inci-
dent tow. Edge(v,w) is inserted by following the shortest path
and replacing crossings with dummy nodes. The old route of the
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edge is discarded. After each step, the dual graph has to be updated
and the temporarily removed and oriented edges are restored. The
running time of this step isO(|EG| ·x+ |EG|2 · (|C|+ |P|)), wherex
denotes the number of crossings and|P| = pmax

y · pmax
x the number

of partition cells.

k

e

Figure 12: The modified dual graph for the example shown in Fig. 6
when routing edge (k,e). Edges without arrows are bidirectional.
The embedding of the underlying graph is shown in the background
(gray nodes and dashed edges).

To realize BIMODALITY we restrict the shortest path to start (end)
only at face nodes incident tov (w) that allow a bimodal edge inser-
tion.

The third point has only to be considered, if we use partitions. If so,
all nodes and edges lie inside the grid partition. The outer border
of the grid partition is a closed region. Thus, we simply remove the
node representing the outer face from the dual graph.

If FLOW is more important than CLUSTER, the result of the
rerouting is a mixed upward p-planar embedding. Otherwise, the
result is a mixed upward pc-planar embedding. In both cases the
base nodes are bimodal.

5.4 Orthogonalization

The orthogonalization phase calculates the edge bends and the an-
gles between adjacent edges. Besides aesthetics BEND, ORTHOG-
ONAL and ANGLE, it has to observe FLOW, CLUSTER, BI-
MODALITY, PARTITION and TWO_SIDED_NODES. Its input
is the mixed upward p(c)-planar embedding calculated in the above
step where all dummy nodes representing crossings are marked ac-
cordingly. The whole phase is divided into three steps:

1. Let GD denote the subgraph induced by the downward edges
e∈ ED. In the first step, we assign a fixed downward shape to
each edge ofGD. Therefore, we calculate a tail- and a head-
shape for each edge segment. The tail-shape (head-shape) de-
pends on the type of the corresponding source (target) node.
The algorithm iteratively chooses a node ofGD and assigns
the head-shape to the incoming edges and the tail-shape to the
outgoing edges. The different shapes are shown in Fig. 13.
Note, that if one of the edge segments adjacent to a cross-
ing node (see Fig. 13(c)) represents a vertical segment of a
boundary rectangle or the grid partition graph it is chosen to
be the straight segment. The final shape of an edge segment

is constructed by concatenating the corresponding tail- and
head-shape. In [Eiglsperger et al. 2004] we successfully ap-
plied a similar strategy and showed that there is always a valid
drawing in which the edge shapes correspond to the calculated
shape.

2. In the second step we consider all edges. To satisfy BI-
MODALITY and TWO_SIDED_NODES we put restrictions
on the angles between specific edges. Angles between pairs
of consecutive incoming and outgoing edges around nodes
are restricted to be at least90◦ (see Fig. 14(a)) (BIMODAL-
ITY). For fork and join nodes those angles are fixed to180◦
as shown in Fig. 14(b) (TWO_SIDED_NODES). The orienta-
tion of fork/join nodes is determined after orthogonalization.
If edges are connected horizontally (vertically) the fork/join
is drawn vertically (horizontally). Note, that if there is at least
one edgee∈ ED adjacent to a fork/join node it can always be
drawn horizontally. The angles around a dummy node caused
by an edge note (see Section 5.2, step 1a) are fixed to the val-
ues shown in Fig. 14(c) and the angles of input/output nodes
of expansion regions to the values shown in Fig. 14(d). Fur-
thermore, Fig. 14(e) shows the angles around nodes of the grid
partition graph. The angles around nodes of a boundary rect-
angle correspond to that of a grid partition graphPG

1,1. Note,
that the angle assignment is consistent with the fixed shapes
calculated in the first step. This is necessary because there
could be both edge types on a node.

3. In the third step, we calculate a shape for each edge ofEU .
The fixed shapes and angles assigned in the previous steps
are not allowed to change. Furthermore, all edge segments
of a boundary rectangle or the grid partition graph are not al-
lowed to bend. Therefore, we assign high bend costs to them.
We transform fixed shapes into fixed angles and bends. The
shape calculation of the edges ofEU is done with the net-
work flow approach described in [Fößmeier and Kaufmann
1996] applying the modifications of [Brandes et al. 2002;
Eiglsperger 2003] that guarantees the conservation of pre-
scribed angles and bends. The algorithm has running time
O((|V|+ x)2 log(|V|+ x)), wherex denotes the number of
crossings.

(a) decision nodes (b) merge nodes

(c) crossing nodes (d) other nodes

Figure 13: The different shapes of downward edges.
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Figure 14: The different angles.

5.5 Placement of Labels

Labels can be placed at nodes, edges, clusters, (grid) partitions and
activities (LABEL). Node labels are placed inside a node and thus
do not need a special handling. Activity labels are handled during
a postprocessing step.

Edge labels are placed as follows: After orthogonalization, edges
are paths of horizontal and vertical segments. For each labeled edge
e we choose one of its middle segments and split it into two parts
by inserting a dummy node. The dummy node represents the label
le of e and thus has sizes(le). We always place labels horizontally
as shown in Fig.15 (HORIZONTAL_LABELS). After compaction
the dummy nodes are removed and replaced by the corresponding
label. If there are edge labels with preferred placement at the source
or target node, they are placed after the final layout by an efficient
map labeling algorithm [Wagner and Wolff 1998].

Analogously, for labels of clusters and columns of the grid partition
we split the edge representing the top side of the enclosing rectan-
gle (see Fig. 15(a)). For labels of the grid rows we split the edge
representing the left border (see Fig. 15(b)).

6 Discussion and Conclusion

First we discuss the time complexity of our new approach. The
planarization step is dominated by the running time of the cross-

label

label

(a)

label label

(b)

Figure 15: Placement of labels on a horizontal/vertical edge seg-
ment.

ing reduction withO(|V|2|EG|2) and the rerouting of edges with
O(|EG| · x+ |EG|2 · (|C|+ |P|)). The orthogonalization step takes
time O((|V|+ x)2 log(|V|+ x)) and the compaction step including
the flow-based post-processing has quadratic running time. Graphs
representing activity diagrams are always sparse, thus we can as-
sume that|EG| andx are linear in|V|. Furthermore, the number of
clusters|C| and partition cells|P| is O(|V|). Under this assumption
the overall running time isO(|V|4).
In our complexity analysis we assume that the number of dummy
nodes and edges inserted during normalization isO(|V||EG|). We
can further improve the time complexity by using the efficient im-
plementation of Sugiyama’s algorithm described in [Eiglsperger
et al. 2005]. It avoids introducing dummy vertices for each layer
that an edge spans and reduces the number of dummy nodes and
edges toO(|V|+ |EG|) without loosing quality. Thus, the time com-
plexity of the crossing minimization is reduced toO(|EG|2) which
results in a new overall running time ofO(|V|3). We used a com-
mon Sugiyama algorithm in this work because it allows an easier
description of the crossing minimization and horizontal coordinate
assignment phase. However, the implementation of our approach
uses the fast variant.

For the implementation we used Java 1.5 and the yFiles library
[Wiese et al. 2002]. Some results can be seen in the appendix.
For diagrams with about 50 node and 80 edge elements we typi-
cally need a runtime of less than 3 seconds on a 3 GHz Pentium IV
System with 1 GB RAM.

In this work we identified requirements and aesthetics for the lay-
out of activity diagrams. We presented a new automatic layout ap-
proach for activity diagrams which combines Sugiyama’s algorithm
with the topology-shape-metrics approach to take advantage of syn-
ergies. Our approach satisfies a complex set of different aesthetics
and requirements like PARTITION, CLUSTER, FLOW, CROSS-
ING, ORTHOGONAL, BIMODALITY, TWO_SIDED_NODES,
OVERLAP and AREA which makes it also applicable to other
kinds of diagrams, e.g. class or process diagrams (see Fig. 18).

Future work might comprise an interactive version of this approach
where the user can continuously change the diagram by adding or
removing elements. When we use our current approach to calculate
a new drawing of an updated diagram, this drawing can be signif-
icantly different from the previous one even for small updates of
the diagram structure. The main goal of an interactive approach is
the preservation of the user’s mental map [Eades et al. 1991] of the
diagram. Here, the concepts of sketch-driven layout developed in
[Brandes et al. 2002] fit into this framework. However, the concepts
have to be extended to satisfy the complex requirements of activity
diagrams.
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A Examples

Figure 16: UML activity diagram drawn with our new layout approach. It shows another view of the example of Figure 1.
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Figure 17: Another UML activity diagram taken from the Schematic tool page (http://www.hypergraphics.co.uk).

16



Figure 18: Our layout approach applied to a process diagram. The diagram was taken from the CABIE project page (http://cabie.tigris.org).
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