
Deterministically and
Sudoku-Deterministically Recognizable

Picture Languages

Bernd Borchert
Klaus Reinhardt

WSI-2006-09

Universität Tübingen
Wilhelm-Schickard-Institut für Informatik

Arbeitsbereich Theoretische Informatik/Formale Sprachen
Sand 13

D-72076 Tübingen

borchert/reinhardt@informatik.uni-tuebingen.de

c© WSI 2006
ISSN 0946-3852

Deterministically and Sudoku-Deterministically
Recognizable Picture Languages

Bernd Borchert and Klaus Reinhardt

Universität Tübingen, Sand 13, 72076 Tübingen, Germany

{borchert,reinhard}@informatik.uni-tuebingen.de

Abstract. The recognizable 2-dimensional languages are a robust class
with many characterizations, comparable to the regular languages in
the 1-dimensional case. One characterization is by tiling systems. The
corresponding word problem is NP-complete. Therefore, notions of de-
terminism for tiling systems were suggested. For the notion which was
called ”deterministically recognizable” it was open since 1998 whether it
implies recognizability. By showing that acyclicity of grid graphs is rec-
ognizable we answer this question positively. In contrast to that, we show
that non-recognizable languages can be accepted by a generalization of
this tiling system determinism which we call Sudoku-determinism. Its
word problem, however, is still in linear time. We show that Sudoku-
determinism even contains the set of 2-dimensional languages which can
be recognized by 4-way alternating automata.

1 Introduction

We regard pictures as two-dimensional rectangular arrays of symbols of a given
alphabet. It turns out that various formalisms which characterize the regular lan-
guages in the one-dimensional case lead to different classes of two-dimensional
languages. For example, it was shown already in 1967 [BH67] that nondetermin-
istic 4-way finite automata (4NFA) are strictly more powerful than deterministic
ones (4DFA).
In [GR92], a set of pictures L over an alphabet Σ is defined as recognizable if it is
recognized by a finite tiling system (Σ, Γ,∆, π) with π : Γ 7→ Σ and L = π(L′)
for the local language L′ over the alphabet Γ determined by the 2x2 tiles from
∆. Here ”local” means that L′ consists of all pictures which ”locally look like
∆”, see the formal definition later. The recognizable picture languages REC are
characterized in [GRST94] as the ones expressible in existential monadic second
order logic over two-dimensional structures. This emphasizes the nondetermin-
istic character of this class: recognizing a given picture p can be viewed as a
process of finding a pre-image p′ in the local language L′ with π(p′) = p. This
word problem is indeed NP-complete for certain tiling systems.
A closer link to computational complexity is established in [Bor03] where NP is
characterized with the notion of recognizability by padding 1-dimensional words
with blanks to form an n-dimensional cube. With a similar idea, the set of

context-sensitive languages is characterized in [LS97a] as the set of ”frontiers”
of picture languages.

The natural subclass UREC of REC, for which it is required that each picture
p ∈ L has exactly one unique pre-image p′ ∈ L′, is different from REC, as
recently shown by Anselmo et al. [AGMR06].

For practical applications, however, we would like to have an appropriate de-
terministic process starting with a given picture p over Σ and ending with a
pre-image p′ over Γ . The deterministic 4-way finite automata 4DFA and the de-
terministic online tessellation automata DOTA are well-known examples of such
deterministic processes, see [GR97]. In [AGMR06a] a subclass of UREC was de-
fined with the restriction that the pre-image-symbols on a column respectively
row are uniquely determined by the symbols there and pre-image-symbols on the
neighbor column respectively row. A more restricted subclass allows to uniquely
determine a pre-image-symbol on a postion by the symbols there and the pre-
image-symbols on the left and upper (respectively upper and right) neighbor.
Both classes allow a deterministic process to find the pre-image proceeding in a
certain direction. A bit more general already is the deterministic tiling system in
[Chl84], which allows to work either left-determined or right-determined within
a row but still only works in one vertical direction.

In this paper we consider a more general deterministic process which was defined
in [Rei98]. We call the corresponding class DREC. The intermediate configura-
tions are pictures over Σ ∪Γ . One step is a replacement of an s ∈ Σ by a g ∈ Γ
with s = π(g) which can be performed only if it is locally the only possible
choice. This allows the deterministic process to change its direction within the
picture and in this way for example connectivity can be recognized determinis-
tically [Rei98]. On the other hand a new problem arises from situations where
the deterministic process is not able to proceed because there are more than one
possibilities for each position in Σ but there exists a pre-image which locally
looks like having been found deterministically. For that reason it was an open
problem whether DREC ⊆ REC.

Directed grid graphs can in an obvious way be seen as pictures over an alpha-
bet containing four arrows. Let Ldag be the picture language consisting of the
directed grid graphs which do not contain a cycle. It was conjectured in [KM01]
that Ldag is in REC. As a main result of this paper we prove this conjecture.
Moreover, this result will be the key lemma for proving DREC ⊆ REC: the pic-
ture language Ldag is used to check if the assumed directions of the deterministic
steps contain no cycle – which is needed in the simulation for DREC ⊆ REC.

We furthermore consider a stronger version of determinism which we call Sudoku-
determinism. We call the class SDREC. The idea is that instead of determining
the pre-image symbol on a position in one shot, we keep a set of possible pre-
image symbols for each position and reduce a set in one step of the process by
excluding impossible pre-images – a method similar to the method of solving a
Sudoku puzzle.

2

We show that SDREC contains both DREC and 4AFA, the set of languages
recognized by alternating 4-way finite automata. There are non-recognizable
languages in 4AFA, as shown by Kari & Moore [KM01].
A diagram below is showing the known inclusions among the classes mentioned
above. Note that in the 1-dimensional case each shown class is equal to the set
of regular languages REG.

DOTA

UREC DREC

REC

4DFA

4NFA

4AFA

SDREC

co-REC

�
�
�
�
�
�
�
�

�
��

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

�
�

A
A

A
A

A
A

AA

HHH
HHH

HHH

@
@

@
@

@@

�
�

�
�

�
�

�
�

�
�

�
�

�
��@

@
@

@
@

@
@

@
@

@

The thick line separates the classes which consist only of picture languages in
PTIME from the classes REC, UREC, and co-REC which may contain non-
feasible picture languages.

2 Definitions and examples

The following definitions are from [GR92]. A picture over an alphabet Σ is a
two-dimensional array of elements of Σ. The set of pictures of size (m,n) is
denoted by Σm,n. A picture language is a subset of Σ∗,∗ :=

⋃
m,n≥0 Σm,n. Let

Tm,n(p) be the set of all sub-pictures of p with size (m,n). For a p ∈ Σm,n, we
define p̂ ∈ Σm+2,n+2, adding a frame of symbols # 6∈ Σ.

p̂ := p

#

#

#
#
#
#

#
#
#
#

3

Let Θ be some set of pictures of size (2,2) over the alphabet Γ ∪{#}, such a set is
called a set of tiles. A picture language L(Θ) := {p ∈ Γ ∗,∗|T2,2(p̂) ⊆ Θ} ⊆ Γ ∗,∗

is called local. A picture language L(Σ, Γ,Θ, π) = π(L(Θ)) ⊆ Σ∗,∗ is called
recognizable, in this definition π is a mapping Γ → Σ and is called a projection.
The quadruple τ = (Σ, Γ,Θ, π) is called a tiling system.
Let ∆ be some set of pictures of size (1,2) or (2,1) over the alphabet Γ ∪ {#},
such a set is called a set of domino tiles. A picture language Lhv(∆) := {p ∈
Γ ∗,∗|T1,2(p̂) ∪ T2,1(p̂) ⊆ ∆} is called hv-local. A quadruple τ = (Σ, Γ,∆, π) is
called a domino tiling system, and the language recognized by τ is defined as
L(π) = L(Σ, Γ,∆, π) = π(L(∆)). According to [LS97b], for every tiling system
τ there is a domino tiling system τ ′ such that L(τ) = L(τ ′), and vice versa. This
means we can

use domino tiles instead of tiles:
The domino tiles make is easier and more natural to describe a deterministic
process since we have to consider only 4 neighbors.

2.1 The Recognition of a Picture as a Deterministic Process

Let τ = (Σ, Γ,∆, π) be a domino tiling system. Given a picture p over the
alphabet Σ we define a picture sp of the same size in which we initialize every
position (i, j) by the set sp(i, j) := π−1(p(i, j)) ∈ 2Γ of possible pre-image
symbols. We first describe one step for a Sudoku-deterministic process: For s, s′ ∈
(2Γ)∗,∗ (of the same size) we allow a step ŝ ==>

sd(τ)
ŝ′ if for all positions (i, j) in s

we have that the set ŝ′(i, j) consists of the elements in the set ŝ(i, j) which have
in each of the four neighboring sets a respective element such that the respective
domino tile is in ∆, formally

s′(i, j) = {x ∈ s(i, j) | ∃y1, y2, y3, y4 ∈ Γ ∪ {#} such that
y1 ∈ ŝ(i + 1, j), y2 ∈ ŝ(i− 1, j), y3 ∈ ŝ(i, j + 1), y4 ∈ ŝ(i, j − 1)

and x y1 , y2 x ,

x
y3 ,

y4

x ∈ ∆}.
(Assume in this definition by abuse of notation that # = {#}.) Note that only
elements from s′(i, j) are dropped which will never be the symbol of a valid pre-
image at this position. In other words: one step excludes one or more possibilities
for which one can be sure about that it will not be a solution, and after this step
new opportunities for excluding more possibilities may show up – this is how
usually a Sudoku puzzle is solved.
The definition in [Rei98] can be formulated as a special case: let ŝ ==>

d(τ)
ŝ′ if

ŝ ==>
sd(τ)

ŝ′ and for all positions (i, j) the set ŝ′(i, j) is either unchanged, i.e.

ŝ′(i, j) = ŝ(i, j), or consists of a single element, i.e. |ŝ′(i, j)| = 1, or both.

4

For a given domino tiling system τ = (Σ, Γ,∆, π) let the accepted language
Lsd(τ) be defined as the set of pictures p for which there exists a way to transform
the initialized picture ŝp in finitely many steps into a picture in which every
position consists of exactly one element, and which can not be transformed
further, formally

Lsd(τ) := {p ∈ Σ∗,∗|∃p′ ∈ L(τ) s.t. ŝp

∗
==>
sd(τ)

{p̂′}}.

In the above formula {p̂′} stands for the picture which is of the same size as
p̂′ and has instead of an letter p′(i, j) the singleton set {p′(i, j)} as a letter at
position (i, j). The language Ld(τ) is defined the same way using

∗
==>
d(τ)

instead of

∗
==>
sd(τ)

.

The classes of the Sudoku-deterministically recognizable and the deterministically
recognizable picture languages SDREC and DREC are defined as the languages
L for which there is a domino tiling system τ recognizing L in that way, i.e.

SDREC := {L ⊆ Σ∗,∗ | there is a τ = (Σ,Γ,∆, π) such that L = Lsd(τ)},

DREC := {L ⊆ Σ∗,∗ | there is a τ = (Σ, Γ,∆, π) such that L = Ld(τ)}.

Clearly it holds for every domino tiling system τ = (Σ, Γ,∆, π):

Ld(τ) ⊆ Lsd(τ) ⊆ L(τ).

Example. Let τ = (Σ, Γ,∆, π) be defined as follows. Γ = {a, b, c, d} and ∆ =

{

a

c
,

b

c
,

a

d
,

b

d
,

a c
,

b c
,

a d
,

b d }. Then
it holds

a, b, c, d a, b, c, d

b, d a, b, c, d

==>
sd(∆,π)

a, b, c, d a, c, d

b, d b, d

a, b, c, d c, d

a, b, d a, b, c, d

==>
sd(∆,π)

a, b, c, d c, d

a, b, d c, d

5

a, b, c, d c, d

b, d a, b, c, d

==>
d(∆,π)

a, b, c, d c, d

b, d d

Note that the first two examples show that two streams of information can cross
during a Sudoku-deterministic process while for a deterministic process this is
not possible: once a ”line” is colored it cannot be ”traversed” later.

The definition of ==>
d(∆,π)

and ==>
sd(∆,π)

forces the sets at every position to be reduced

as much as possible. It is easy to see that in a ”less deterministic” formulation
for the two relations where not all informations on neighbors has to be used at
once, every derivation will lead in the end to the same s′ with |s′(i, j)| = 1 for
all i, j (if it exists), this means the ”less deterministic” versions of ==>

d(∆,π)
and

==>
sd(∆,π)

are confluent in successfull cases.

Let a L be one of the languages in DREC and SDREC. Then L is computable in
PTIME. The algorithm just initializes an 2-dimensional array of the size of the
input p with the the values of sp and then iterates the stepwise transformation
until no changes occur anymore. Finally it checks whether there is exactly one
element left in every set of the array. This shows that picture languages in DREC
and SDREC, seen as algorithmic problems, are in PTIME. Using the confluence
property one can even write an linear time algorithm for this word problem, see
[Rei98][Cor. 2].

3 The power of Sudoku-determinism

In this section we characterize the power of Sudoku-determinism. In order to
demonstrate this power we use a language not in REC as an example for a
language which can be Sudoku-deterministically recognized. The language is
basically the language LP from [KM01] (with just some formal changes): it
consists of the squares of odd side length over the alphabet {0, 1, 2, 3} such that
the middle vertical column is filled with 2’s, the middle vertical line is filled with
3’s, the lower left quarter is a permutation matrix and symmetric to the lower
right quarter. The upper right quarter contains only a diagonal of 1’s and the

6

upper left quarter a diagonal of 1’s shifted by one to the right.

1 2 1
1 2 1
1 2 1
3 3 3 2 3 3 3
1 2 1
1 2 1
1 2 1
#

#

The tiling ∆ is constructed in a way such that information can only be trans-
ported along the following direction (which bends a positions with a 1):

#
#
#
#
#
#
#

#

#

? -

6
�

? -

6
�

? -

6
�

Any deviation from the symmetry would lead to a cycle for which the determin-
istic process can not determine the pre-image symbol.

1 2 1
1 2 1
1 2 1
3 3 3 2 3 3 3
1 2 1
1 2 1
1 2 1
#

#

#
#
#
#
#
#
#

#

#

6
�

? -

6
�

? -

Crossing directions at several positions positions corresponds to a crossproduct
of the information which means that a Sudoku-deterministic step can reduce the
set to two of four possible symbols going in one direction and doing the other
reduction at some other time, see the examples of the previous section.

7

Remark. A deterministic process using 2×2-tiles would allow processing infor-
mation over one diagonal and to cross later over the other diagonal. In this way
a non-recognizable picture language similar to the one where two permutation
matrices are compared (see above) could be recognized deterministically. This
means the result of Theorem 3 strongly depends on the planarity (and finite
degree) of the graph describing the direction of the deterministic conclusions.
This is in contrast to SDREC which is (like REC) robust against changing the
form of the tiles.
The preceding example shows that SDREC contains non-recognizable problems.
This also follows from the result below that SDREC contains 4AFA.

Theorem 1. 4AFA ⊆ SDREC

Proof. Let M be a 4-way finite automaton for a picture language L over the
alphabet Σ. Assume w.l.o.g. that M moves in every step from an existential
state i.e. in the next step M is always on one of the neighboring positions but
M stays on the same position in a transition from an universal state. Moreover,
assume w.l.o.g. that M has besides its unique initial state q0, which can be
assumed to be universal, a unique final state qe and that M may start and end
in an arbitrary position of the picture. Let S be the set of states of M and let
f be some element standing for ”flooding” – what is explained later. The set
Γ for the domino tiling system τ = (Σ, Γ,∆, π) used by the Sudoku process
is defined as the subset of Σ × (2S\{q0} ∪ {f}) such that for a set (a,A) with
A ⊂ S \ {q0} a universal state q is in A iff for all transitions of M from state q –
seeing letter a – the next state q′ is in A as well. The projection π is defined as
π(a, ...) = a. It remains to define the set ∆ of domino tiles. A horizontal domino

tile
(a,A) (b, B)

with a, b ∈ Σ and A,B ⊆ S \ {q0} is in ∆ if both A and B
contain qe and it is perfectly consistent with the moves of M , i.e. the following
holds:

1. each existential state e is in A if there is a transition of M from state e –
seeing letter a – to the right and the next state s of M is in B.

2. each existential state e is in B if there is a transition of M from state e –
seeing letter b – to the left and the next state s of M is in A.

Moreover, for all a, b ∈ Σ the tile ((a, f), (b, f)) for the flooding state f is in Γ
(these are the only tiles the flooding state f is in). The vertical domino tiles of
∆ are defined analogously (turned by 90 degree).
As an example, let e2, e3, qe be following states of the universal state u1, and
let e5 be following state of the existential state e3 – seeing letter a – moving to
the right (in state e2 – seeing letter a – the machine M moves in some other

8

direction, say upwards). Then in the following horizontal tile these conditions

are fulfilled (besides others):

(a, {u1, e2, e3, qe}) (b, {u4, e5, qe})

Now that we have defined τ = (Σ, Γ,∆, π) we claim that Lsd(τ) = L(M). The
Sudoku process will simulate the computation of M starting at the leaves of
the computation of M . Note the following inductive argument: If there is an
accepting computation subtree of M starting in a state q at some position then
all subsets A not containing q will be eliminated at that position at some stage
in the Sudoku-process. This means if there is an accepting computation tree of
M starting in a state q0 then all subsets A will be eliminated at that position.
Subsequently the elimination continues on all other positions by a flooding pro-
cess which only leaves the symbol f on every position. On the other hand, if
there is no accepting computation tree of M starting in a state q0, then every
position will maintain at least the subset A of states which have an accepting
computation tree of M (which might be {qe} ...); these can not be eliminated
because they are consistent with their neighbors.

The reader may be disappointed that in the end the Sudoku process shows only
the flooding state in every position and does not show a trace of the tree of the
alternating computation of M . Note that this is no surprise: the latter can’t be
expected because 4AFA contains non-recognizable languages [KM01]. ut

Theorem 2. DREC ⊆ SDREC

Proof. Let τ = (Σ, Γ,∆, π) be a domino tiling system. It suffices to construct a
domino tiling system τ ′ = (Σ, Γ ′,∆′, π′) such that

Lsd(τ ′) = Ld(τ).

Let the minus symbol ”−” be an element neither in Γ nor Σ, and define Γ ′ to be
the set of 5-tuples of the pairs from Σ × (Γ ∪ {−}). Imagine the five pairs from
an element of Γ to be arranged as a ”star”: the first pair is in the center of the
star, the second is on the top of the center, the third is right to the center, etc.
For example, the 5-tuple ((a,−), (c,−), (d, t), (e,−), (b, s)) should be imagined
this way:

9

(b, s) (a,−) (d, t)

(e,−)

(c,−)

Define π′ to map a star to the letter of the central position, i.e.

π′(((a,), (,), (,), (,), (,))) = a.

It remains to define the set of domino tiles ∆′. The two conditions (A) and (B)
for a domino tile for being in ∆′ are the following:
(A) The two stars on the tile are consistent. This means for example for a
horizontal tile: the central pair of the left star is equal to the left pair of the
right star, and the right pair of the left star is equal to the central pair of the
right star, for example the following horizontal tile fulfills this condition.

(b, s) (a,−) (d, t)

(e,−)

(c,−)

(a,−) (d, t) (f,−)

(g,−)

(h,−)

For vertical domino tiles the analogous condition has to be fulfilled in the vertical
direction.
(B) The two stars on a tile are both from the following subset Γr of Γ . Γr is the
set of stars such that if the color in the central position is uniquely determined via
the domino tiling system (Σ, Γ,∆, π) by the four surrounding pairs and the left
coordinate (= letter) of the pair in the central position (like in a step of a DREC
process), then the second coordinate (= color) of the pair in the central position
has to be that uniquely determined color, otherwise it has to be −. Examples:
The left star in the example domino tile above is in Γr if the color at the central
position is not yet determined via the domino tiling system (Σ, Γ,∆, π) by the

10

surrounding pairs, i.e. even the already determined colors s to the left and t to
the right do not yet determine the color in the center because it shows a −. The
second coordinate of the central position of the right star, on the other hand, is
already be determined without having any determined neighbor. Note that such
positions are necessary for a DREC process to start.
Starting on a given picture, the Sudoku process using the domino tiling system
τ ′ will first of all eliminate all colors (= stars) which are are not consistent with
the letters at the four surrounding positions – this is done via the condition (A)
for the tiles. Now assume that a picture is in Ld(Σ, Γ,∆, π). Then the DREC
process of finding deterministically the coloring of the picture is simulated 1-1 by
the Sudoku deterministic process using the domino tiling system (Σ, Γ ′,∆′, π′).
On the other hand, if there is a Sudoku deterministic process using tiling system
(Σ, Γ ′,∆′, π′) ending in a unique coloring of every position then this process
shows a DREC process using the tiling system (Σ, Γ,∆, π) which finds the same
coloring. ut

4 Directed acyclic graphs

In this section we will define the picture language Ldag consisting of the acyclic
grid graphs, and will show that Ldag is recognizable. This will be the key result
for showing DREC ⊆ REC.
First we prepare the definition of graphs on the grid: Let Γ = Z4 where each
component represents one of the four directions (left, right, up, down) γ =
(l(γ), r(γ), u(γ), d(γ) ∈ Γ and let Lcon, L′

con ⊆ Γ ∗,∗ be the local picture lan-
guages defined by the set of tiles ∆con :=

{

γ γ′

δ δ′ ∈ ({#} ∪ Γ)2,2 | (γ = (l, r, u, d) ∧ γ′ = (l′, r′, u′, d′)) → r = −l′,

(δ = (l, r, u, d) ∧ δ′ = (l′, r′, u′, d′)) → r = −l′,

(γ = (l, r, u, d) ∧ δ = (l′, r′, u′, d′)) → d = −u′,

(γ′ = (l, r, u, d) ∧ δ′ = (l′, r′, u′, d′)) → d = −u′}

checking that outgoing directed arcs correspond to an ingoing arc at the corre-
sponding neighbor (which means consistency of directions).
Let Γ = {−1, 1}4 and we identify for example (−1, 1, 1, 1) = --6?. Now we
define an local picture language Llocdag ⊆ Lcon ∩ Γ ∗,∗ where we do not allow

local 4-cycles like i. e.

--6
6

-�6?
��6

6
��?

6 and we do not allow sources (1, 1, 1, 1) or sinks
(−1,−1,−1,−1).
This is done by set of tiles ∆locdag :=

11

{

γ γ′

δ δ′ ∈ ∆con ∩ ({#} ∪ Γ)2,2 | (γ = (l, x1, u,−x4) ∧ γ′ = (−x1, r, u
′, x2)∧

δ = (l′,−x3, x4, d
′) ∧ δ′ = (x3, r

′,−x2, d)) →

∃i, j xi 6= xj}

In other words:

∆locdag := {

γ

γ′ ,

γ #
γ′ # | γ = (l, r, u, x), γ = (l′, r′,−x, d)}

∪ {

#
γ γ′ ,

γ γ′

| γ = (l, x, u, d), γ′ = (−x, r, u′, d′)}

∪ {

γ γ′

δ δ′ | γ = (l, x1, u,−x4), γ′ = (−x1, r, u
′, x2), δ = (l′,−x3, x4, d

′),

δ′ = (x3, r
′,−x2, d),∃i, j xi 6= xj}

Lemma 1. A picture in Llocdag describes a directed acyclic graph.

Proof. Assume by contradiction that the picture contains a cycle. Then there
must be a cycle with a minimal enclosed part of the plane. Since the cycle can
not be a local 4-cycle, there must be an edge of the grid connecting a point on
the cycle towards the inside. Let w.l.o.g the direction of this edge lead inside.
Then nondeterministically follow directed edges until you reach a point on the
cycle or a point where you have been before. This leads to a cycle enclosing a
smaller part of the plane in contradiction to the assumption. ut

Let Ldag ⊂ {−1, 0, 1}4∗ be the language of pictures describing a directed acyclic
graph, L′

dag := Ldag ∩ {−1, 1}4∗, L−
dag := Ldag ∩ {−1, 1}4 \ {(1, 1, 1, 1)}∗ and

L+
dag := Ldag ∩ {−1, 1}4 \ {(−1,−1,−1,−1)}∗. Since sources or sinks can be

contained inside a cycle, we can not detect a cycle locally anymore:
-
6
--

6
-

?
�6
6

�-6?
-?

?
�6��?�?

We will now prove the following chain of implications: Lemma 1 ⇒ L−
dag ∈REC

(Theorem 6) ⇒ L′
dag ∈ REC (Theorem 5) ⇒ Ldag ∈ REC (Theorem 4) ⇒

DREC ⊆ REC

Theorem 3. DREC ⊆ REC

Proof. For a given picture p ∈ Σ∗,∗ guess a p′ ∈ (Σ × {−1, 0, 1}4)∗,∗ such that
p = π(p′) is the projection to the first component and the second component

12

is in Ldag using Theorem 4. Then check if for each position in the picture the
symbols on these neighbors from which an edge leads to this position are together
sufficient to determine the symbol on the position deterministically. This can
w.l.o.g. be done locally with 3× 3-tiles. ut

The following solves an open problem in [KM01]:

Theorem 4. Ldag ∈ REC

Proof. For a given picture p ∈ {−1, 0, 1}4∗,∗ guess for every occurring 0 either
−1 or 1 and check if the resulting p′ is in L′

dag using Theorem 5. If p had a cycle,
p′ must have the same cycle. If p had no cycle, then the existence of a p′ without
a cycle follows by a stepwise construction replacing a 0 by either −1 or 1 as long
as this does not lead to a cycle. If both possibilities would lead to a cycle, there
must have been a cycle before. ut

Theorem 5. L′
dag ∈ REC

Proof. The idea to prove that a picture p contains no cycle is to guess and locally
verify a set S of edges where we turn around the direction of arrows obtaining a
picture in L−

dag without destroying a cycle. This set S forms a graph containing
all sources in p and in all other vertices with outgoing edges in S, all ingoing
edges in p are also in S. This makes sure that a cycle in p lies either completely
outside or completely inside S (thus turning it around in the later case preserves
it).
We have a pre-image alphabet Γ ⊆ {−1, 1}4×{−1, 1}4 and a projection π : Γ 7→
{−1, 1}4 with (l, r, u, d) = π((l′, r′, u′, d′), (lS , rS , uS , dS)), lS · l′ = l, rS · r′ = r,
uS ·u′ = u and dS ·d′ = d. Furthermore, if there is a x ∈ {l, r, u, d} with xS = −1
(that means the edge is in S) and x = 1 then for all y ∈ {l, r, u, d} with y = −1
it holds yS = −1. Let ∆ be the set of tiles in Γ 2,2 for which the projection to
the first component is in ∆−

dag and the projections to the second component is
in ∆′

con :=

{

γ γ′

δ δ′ ∈ ({#} ∪ Γ)2,2 | (γ = (l, r, u, d) ∧ γ′ = (l′, r′, u′, d′)) → r = l′,

(δ = (l, r, u, d) ∧ δ′ = (l′, r′, u′, d′)) → r = l′,

(γ = (l, r, u, d) ∧ δ = (l′, r′, u′, d′)) → d = u′,

(γ′ = (l, r, u, d) ∧ δ′ = (l′, r′, u′, d′)) → d = u′}.

Thus, if p = π(p′′) has a cycle and p′′ has the projections p′ ∈ L−
dag and pS ∈ L′

con

then either p′ would have the same cycle which is not possible in L−
dag according

to Theorem 6 or w.l.o.g. x = −xS = 1 = −x′ for some x on the cycle thus for
the ingoing y ∈ {l, r, u, d} it holds y = yS = −1 = −y′ and since p′ pS ∈ L′

con,
y = yS = 1 = −y′ for the corresponding neighbor and following the cycle in
this way means that p′ would have the same cycle in opposite direction which

13

is not possible in L−
dag according to Theorem 6. This means the tiling system

({−1, 1}4, Γ, ∆, π) generates only pictures in L′
dag.

On the other hand, for every p ∈ L′
dag we can find a p′′ having the projections

p′ ∈ L−
dag and pS ∈ L′

con by constructing S as follows: Initialize S := ∅ (that
means p′ := p) and iterate the procedure

Initialize S′ := ∅ then inductively look for vertices (i.e. sources) having
all ingoing edges in S′ and put all their outgoing edges in S′ as well. Let
B be the set of vertices having an ingoing edge in S′ and another ingoing
edge not in S′. Let v be a vertex in B such that v can not be reached
by a path from any other vertex in B. (The existence of v follows from
p′ not having a cycle.) Add inductively all edges in S′ going to v or to
the origin of an edge in S to S.

until p′ contains no sources anymore. Since v can not be reached from any source
in p′ (only from the border of the picture), no cycle is created. ut

Example: Consider the grid graph 6

6

6

6

6

6
- - - - - -

� � � � � �

?

?

6
�

?

?

?

?

?

? ? ? ? ?

�

�

�

�

�
6 6 6 6 6

-

-

-

-

- - - -

- - -

- -

- -

�

�

�

�

?

?

?

? ? ?

? ?

6 6 6

? ?6
-

6 6 ?

?

�

- - - -

The first exe-
cution of the procedure puts all inner edges into S′ (turning them all around
would cause the sink to be a new source), all surrounding vertices are in B, the
middle vertex at the right side is the only possible v and 10 edges are added to
S and actually turned around:

6

6

6

6

6

6
- - - - - -

� � � � � �

?

?

6
�

?

?

?

?

?

? ? ? ? ?

�

�

�

�

�
6 6 6 6 6

-

-

-

-

- - - -

- - -

- -

- -

�

�

�

�

?

?

?

? ? ?

? ?

6 6 6

? ? �
6

? ? 6

6
-

� � � �

This would only turn around one of the two sources; the second iteration of the
procedure has four possible choices of v and will add one more edge to S:

14

6

6

6

6

6

6
- - - - - -

� � � � � �

?

?

6
�

?

?

?

?

?

? ? ? ? ?

�

�

�

�

�
6 6 6 6 6

-

-

-

-

- - - -

- - -

- -

- -

�

�

�

�

?

?

?

? ? ?

? ?

6 6 6

? ? �

? ? 6

6
-

� � � �

?

Note that there are cases (for example a spiral-like graph from a source) where
we cannot avoid that all four edges of a source belong to S and thus this source
becomes a sink. For that reason we cannot apply the same proof directly to
reduce L+

dag to Llocdag. Observe, however, that if we continue to apply the same
method another time in the opposite direction removing the generated sinks,
that S′ is now smaller; more precisely: one layer got peeled off. We will use
this in the proof of the folllowing theorem: its proof idea is an encoding of the
iteration of the idea for the previous proof in layers.

Theorem 6. L−
dag, L

+
dag ∈ REC

Proof. We prove L+
dag ∈ REC in a similar way as in Theorem 5 by guessing and

locally verifying six sets S1, ..., S6 of edges where we turn around the direction
of the arrows in the odd cases obtaining a picture in Llocdag without destroying
a cycle.
This means we use a pre-image alphabet Γ ⊆ {−1, 1}4 × {0, ..., 6}4 and a
projection π : Γ 7→ {−1, 1}4 with (l, r, u, d) = π((l′, r′, u′, d′), (lS , rS , uS , dS)),
(−1)lS · l′ = l, (−1)rS ·r′ = r, (−1)uS ·u′ = u and (−1)dS ·d′ = d. Furthermore, if
there is a x ∈ {l, r, u, d} with xS > 0 (i.e. xS ∈ {1, 2, 5} resp. xS ∈ {3, 4, 6})and
x = 1 then for all y ∈ {l, r, u, d} with y = −1 it holds yS => 0 (i.e. yS ∈ {5, 3, 4}
resp. xS ∈ {6, 1, 2}). Let ∆ be the set of tiles in Γ 2,2 for which the projection to
the first component is in ∆locdag and the projections to the second component
is in ∆′

con and, furthermore, we only allow tiles having either none or two of the
four internal edges in S1 ∪ S2 and in the later case both of them either coming
from the same vertex or going to the same vertex or going parallel. Analogously
we have the same condition with S3 ∪ S4. Since an edge in S1 ∪ S2 also occurs
in the overlapping neighbor tile, these edges form a cycle on the faces (or a line
from boarder to boarder). This means they divide the picture in two parts; and
paths can only lead from one side to the other but no cycle can use an edge in
S1 ∪ S2.
Thus, if p = π(p′′) has a cycle and p′′ has the projections p′ ∈ Llocdag and
pS ∈ L′

con then either p′ would have the same cycle which is not possible in
Llocdag according to Lemma 1 or w.l.o.g. x = 1 = −x′ and xS = 5 (resp. xS = 6)
for some x on the cycle thus for the ingoing y ∈ {l, r, u, d} it holds y = −1 = −y′

and since p′ pS ∈ L′
con, y = 1 = −y′ for the corresponding neighbor and yS = 5

(resp. yS = 6) and following the cycle in this way means that p′ would have
the same cycle (in opposite direction in case of xS = 5), which is not possible

15

in Llocdag according to Lemma 1. This means the tiling system (∆, π) generates
only pictures in L+

dag.
On the other hand, for every p ∈ L+

dag we can find a p′′ having the projections
p′ ∈ Llocdag and pS ∈ L′

con by constructing S1, ..., S6 as follows: Initialize S1 =
... = S6 := ∅ (that means p′ := p) and iterate the procedure

Determine S′, B and v as in the previous proof. Set S6 := S6\S′. Add all
edges in S′ going to v to S1, all edges in S′ going to any other vertex in
B to S2 and the remaining edges in S′ to S5. Now determine S′, B and
v for the inverse of p′ (all edges in opposite direction). Set S5 := S5 \S′.
Add all edges in S′ going to v to S4, all edges in S′ going to any other
vertex in B to S3 and the remaining edges in S′ to S6.

until p′ contains no sources anymore. The choice of v in each step prevents
creating a cycle. ut

We list some corollaries of the preceding theorems. By the results of [GRST94]
Th. 4 can be formulated equivalently as follows:

Corollary 1. Acyclicity of grid graphs is expressible in existential monadic sec-
ond order logic.

Corollary 2. DREC ⊆ co-REC.

Proof. We show co-DREC ⊆ REC: For a given picture p ∈ Σ∗,∗ we guess the
result of a deterministic process like in the proof of Theorem 3 but instead of
checking its success, we check whether it either leads to a contradiction or stays
incomplete at some point. ut

The connectivity problem CONN on pictures consists of the pictures on alphabet
{a, b} such that all occurring b’s are connected. An obvious algorithm [Rei98]
shows that CONN is in DREC. By Th. 3, we have:

Corollary 3. CONN ∈ REC.

A direct proof of this result was given in [Rei98] via a ”tentacle” construction. In
a way the proofs of this section can be seen as a generalization of the ”tentacle”
construction.

5 Summary, Open Problems, and Acknowledgments

This paper studies the deterministically recognizable picture languages DREC
and the Sudoku deterministically recognizable picture languages SDREC. It is
shown that all DREC languages are recognizable. The proof uses as a main
lemma that the picture language consisting of the grid graphs which are acyclic
is recognizable. It is shown that SDREC contains 4AFA and therefore is incom-
parable with the recognizable picture languages.
The open problems suggested by the class diagram shown at the end of the
Introduction are the following:

16

– is DREC incomparable with UREC, and with 4NFA?
– is DREC or even SDREC in 4AFA?

Moreover, it is an interesting question whether there is some ”computational
model” on pictures which captures exactly REC ∩ co-REC. No such model is
known to the authors, it would have to include DREC and 4NFA at the same
time.
The concept of Sudoku determinism was inspired by discussions about determin-
ism concepts for picture languages with Marcella Anselmo, Dora Giammarresi,
Maria Madonia, Ina Mäurer, and Jarkko Kari at the ESF Meeting 2006 about
picture languages in Salerno.

References

[AGMR06] M. Anselmo, D. Giammarresi, M. Madonia, and A. Restivo. Unambigu-
ous recognizable two-dimensional languages. RAIRO – Inf. Theor. Appl. 40,
pp. 277–293, 2006.

[AGMR06a] M. Anselmo, D. Giammarresi, M. Madonia, and A. Restivo. Presentation
at ESF Science Meeting, Salerno, 2006.

[BH67] M. Blum, C. Hewitt. Automata on a 2-dimensional tape. FOCS 1967, pages
155-160, 1967

[Bor03] B. Borchert. Formal Language characterizations of P, NP, and PSPACE, sub-
mitted, 2003

[Chl84] B. Chlebus. From domino tilings to a new model of computation. In Skowkron,
editor, Computation Theory, LNCS 208, 1984

[GR92] D. Giammarresi and A. Restivo. Recognizable picture languages. Int. Journal
Pattern Recognition and Artificial Intelligence, 6:241–256, 1992.

[GR97] D. Giammarresi and A. Restivo. Two-dimensional languages. In Handbook of
Formal Languages G. Rosenberg and A. Salomaa Eds. Vol. III, pag. 215–268.
Springer Verlag, 1997

[GRST94] D. Giammarresi, A. Restivo, S. Seibert, and W. Thomas. Monadic second-
order logic over pictures and recognizability by tiling systems. In P. Enjalbert,
E.W. Mayr, and K.W. Wagner, editors, Proceedings of the 11th STACS 94,
LNCS 775, pages 365–375, 1994. Springer-Verlag.

[KM01] J. Kari, C. Moore. New results on alternating and non-deterministic two-
dimensional finite-state automata. In Afonso Ferreira and Horst Reichel, ed-
itors, STACS, LNCS 2010, pages 396–406. Springer, 2001.

[LS97a] M. Latteux and D. Simplot. Context-sensitive string languages and recog-
nizable picture languages. Information and Computation, 138(2):160–169,
1 November 1997.

[LS97b] M. Latteux and D. Simplot. Recognizable picture languages and domino
tiling. Theoretical Computer Science, 178(1-2):275–283, 1997.

[Rei98] K. Reinhardt. On some recognizable picture-languages. In L. Brim, editor,
Proceedings of the 23th Conference on Mathematical Foundations of Computer
Science, LNCS 1450, pages 760–770. Springer-Verlag, August 1998.

17

