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Zusammenfassung

Yang-Mills-Theorien sind die Grundlage des heutigen Standardmodells der Elementarteil-
chenphysik. Neben Methoden, die auf eine Diskretisierung der Raum-Zeit basieren (Git-
tereichtheorie), sind auch analytische Zugänge möglich, sowohl im Lagrange- als auch im
Hamilton-Formalismus. Diese Dissertation behandelt die Hamilton’sche Formulierung von
Yang-Mills-Theorien in Coulomb-Eichung.

Die Dissertation ist in kumulativer Form verfasst. Nach einer Einführung in die allgemei-
ne Formulierung von Yang-Mills-Theorien wird der Hamiltonoperator in Coulomb-Eichung
hergeleitet.

In Kap. 1 wird die Faddeev-Popov-Determinante mittels einer Heat-Kernel-Entwicklung
untersucht.

In Kap. 2 und 3 wird das Hochenergie-Verhalten der Theorie untersucht. Dafür werden
störungstheoretische Methoden verwendet und die Ergebnisse werden mit Resultaten aus
funktionalen Methoden in Coulomb- und Landau-Eichung verglichen.

Kap. 4 ist dem Variationszugang gewidmet. Es werden Dyson-Schwinger-Techniken ver-
wendet, um über die bisher betrachteten Gauß’schen Ansätze für das Vakuumfunktional
hinaus zu gehen. Gleichungen für Variationsparameter höherer Ordnung werden hergeleitet
und die Effekte der neu auftretenden Terme abgeschätzt.

Kap. 5 beinhaltet eine Anwendung der früher hergeleiteten nichtstörungstheoretischen
Propagatoren, nämlich die Berechnung der topologischen Suszeptibilität, welche mit der
Masse des η′-Mesons verknüpft ist.

Schließlich wird eine kurze Einführung in die störungstheoretische Behandlung von dy-
namischen Fermion-Feldern gegeben.

Abstract

Yang–Mills theories are the building blocks of today’s Standard Model of elementary
particle physics. Besides methods based on a discretization of space-time (lattice gauge
theory), also analytic methods are feasible, either in the Lagrangian or in the Hamiltonian
formulation of the theory. This thesis focuses on the Hamiltonian approach to Yang–Mills
theories in Coulomb gauge.

The thesis is presented in cumulative form. After an introduction into the general
formulation of Yang–Mills theories, the Hamilton operator in Coulomb gauge is derived.

Chap. 1 deals with the heat-kernel expansion of the Faddeev–Popov determinant.
In Chapters 2 and 3, the high-energy behaviour of the theory is investigated. To this

purpose, perturbative methods are applied, and the results are compared with the ones
stemming from functional methods in Coulomb and Landau gauge.

Chap. 4 is devoted to the variational approach. Variational ansatzes going beyond the
Gaussian form for the vacuum wave functional are considered and treated using Dyson–
Schwinger techniques. Equations for the higher-order variational kernels are derived and
their effects are estimated.

Chap. 5 presents an application of the previously obtained propagators, namely the
evaluation of the topological susceptibility, which is related to the mass of the η′ meson.

Finally, a short overview of the perturbative treatment of dynamical fermion fields is
presented.
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more, I gratefully acknowledge (not only physics-related) discussions with Dr. Giuseppe
Burgio and Priv.-Doz. Dr. Markus Quandt.
I should also mention the help I got from Ingrid Estiry in most bureaucracy-related

issues, and thank her for explaining me over and over how to compose a letter in German.
Praise be to my office colleague Markus Leder, for coping with me in the same room

for almost five years, for being my patient guinea-pig whenever I needed to try out some
new TEXniques, and for all our discussions about physics, music, mathematics, and Ger-
man/English/Italian/Latin grammar. Thanks also to the guy next-door, also known as
Markus Pak, for not fleeing whenever I knocked at his door, looking for someone (else
than my room-mate) to vent my own anger and/or frustration on.
Thanks to Tanja Branz and Carina Popovici for their comments on the unpublished

parts of the thesis.
I am grateful to the Cusanuswerk for both the financial support and the numerous

formative offers.
Worthy of special mention is the rectorate, which demonstrated that bureaucracy is more

powerful than grammar. May the Eberhard-Karls-Universität’s hyphens rest in peace.
Thanks to Emmanuel, for discussing indiscriminately Harry Potter and spontaneous

symmetry breaking in non-abelian gauge theories in the middle of a parish festival. Thanks
to the other ‘Trentini’: Cecilia, Daniela, Francesco, Maddalena, and Marco, for the time
spent together. Thanks also to the non-physicists (Markus, Daniel, Philipp, Dominik) for
reminding me that a human being could need, every once in a while, something different
from physics.
I am indebted to all personnel of Stargate Command, of the Atlantis expedition, of the

4077th Mobile Army Surgical Hospital, and to the crew of Serenity for their support in
difficult times.
Finally, I thank my parents, not only for providing me with the basic genetic material

(not to mention the necessary money) to study at the university, but above all for their
unconditional love and commitment.



Contents

I Hamiltonian approach to Yang–Mills theories in Coulomb gauge 1

I.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
I.2 Classical formulation of Yang–Mills theory . . . . . . . . . . . . . . . . . . . 2

I.2.1 From gauge invariance to the classical Hamiltonian . . . . . . . . . . 2
I.2.2 On the simultaneous choice of Coulomb and Weyl gauge . . . . . . . 7

I.3 Canonical quantization and the θ-vacuum . . . . . . . . . . . . . . . . . . . 9
I.3.1 Hamilton operator in the temporal gauge and Schrödinger picture . 9
I.3.2 Gauss’s law and gauge invariance . . . . . . . . . . . . . . . . . . . . 10
I.3.3 Topological structure of the QCD vacuum . . . . . . . . . . . . . . . 12

I.4 The Yang–Mills Hamiltonian in Coulomb gauge . . . . . . . . . . . . . . . . 14
I.4.1 Gauge fixing and the Gribov problem . . . . . . . . . . . . . . . . . 14
I.4.2 Implementation of the Coulomb gauge . . . . . . . . . . . . . . . . . 16
I.4.3 Variational approach in the Schrödinger picture . . . . . . . . . . . . 21

I.5 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1 Heat-kernel expansion of the Faddeev–Popov determinant 25

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.2 Heat-kernel expansion of functional determinants . . . . . . . . . . . . . . . 26
1.3 Heat kernel evaluation of the Faddeev–Popov determinant . . . . . . . . . . 27
1.4 Calculation of the heat coefficients . . . . . . . . . . . . . . . . . . . . . . . 29
1.5 The counterterms for Coulomb and Landau gauge . . . . . . . . . . . . . . 31
1.6 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 Perturbation theory in Coulomb gauge 35

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2 Perturbative expansion of the Yang–Mills Hamiltonian . . . . . . . . . . . . 36

2.2.1 The Yang–Mills Hamiltonian in Coulomb gauge . . . . . . . . . . . . 36
2.2.2 Expansion of the Hamiltonian . . . . . . . . . . . . . . . . . . . . . . 37
2.2.3 The unperturbed basis . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.4 Expansion of the vacuum wave functional . . . . . . . . . . . . . . . 40

2.3 Ghost propagator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4 Gluon propagator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4.1 Gluon propagator in the Hamiltonian approach . . . . . . . . . . . . 43
2.4.2 Static gluon propagator from the Lagrangian approach . . . . . . . . 45

2.5 The ghost-gluon vertex and the β function . . . . . . . . . . . . . . . . . . . 47
2.6 The potential for static sources . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.7 Relation with the variational approach . . . . . . . . . . . . . . . . . . . . . 51



iv Contents

2.8 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 Equal-time correlation functions in Coulomb gauge Yang–Mills theory 53

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Perturbative vacuum functional . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3 Equal-time two-point correlation functions . . . . . . . . . . . . . . . . . . . 61
3.4 Lagrangian approach and renormalization . . . . . . . . . . . . . . . . . . . 68
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
A3 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 Non-Gaussian wave functionals in Coulomb gauge Yang–Mills theory 83

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2 Hamiltonian Dyson–Schwinger Equations . . . . . . . . . . . . . . . . . . . 85

4.2.1 Hamiltonian Dyson–Schwinger formalism . . . . . . . . . . . . . . . 85
4.2.2 Derivation of the DSEs . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3 Static correlators and proper vertex functions . . . . . . . . . . . . . . . . . 89
4.4 The vacuum wave functional and corresponding DSEs . . . . . . . . . . . . 93

4.4.1 DSEs of gluonic vertex functions . . . . . . . . . . . . . . . . . . . . 94
4.4.2 The DSEs for the ghost propagator and the ghost-gluon vertex . . . 96

4.5 Energy density of the Yang–Mills vacuum . . . . . . . . . . . . . . . . . . . 97
4.5.1 Technicalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.5.2 Kinetic energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.5.3 Magnetic energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.5.4 Coulomb energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.6 Determination of the variational kernels . . . . . . . . . . . . . . . . . . . . 105
4.6.1 Three- and four-gluon kernel . . . . . . . . . . . . . . . . . . . . . . 105
4.6.2 Gap equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.6.3 The Coulomb form factor . . . . . . . . . . . . . . . . . . . . . . . . 109

4.7 The three- and four-gluon vertex . . . . . . . . . . . . . . . . . . . . . . . . 111
4.7.1 Solution of the truncated three-gluon vertex DSE . . . . . . . . . . . 111
4.7.2 Estimate of the four-gluon vertex . . . . . . . . . . . . . . . . . . . . 114

4.8 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5 Topological susceptibility in SU(2) Yang–Mills theory 117

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.2 The θ-vacuum in the canonical quantization approach . . . . . . . . . . . . 119
5.3 Matrix elements for the topological susceptibility . . . . . . . . . . . . . . . 124
5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.5 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
A5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6 Inclusion of dynamical quarks 133

6.1 Perturbative QCD vacuum state . . . . . . . . . . . . . . . . . . . . . . . . 133
6.2 Gluon propagator and β function . . . . . . . . . . . . . . . . . . . . . . . . 137
6.3 Quark propagator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Conclusions 141



List of Figures

2.1 One-loop perturbative gluon form factor. . . . . . . . . . . . . . . . . . . . . 44
2.2 Loop corrections to the ghost-gluon vertex. . . . . . . . . . . . . . . . . . . 47
2.3 Diagrams contributing to the static potential. . . . . . . . . . . . . . . . . . 49

3.1 Quartic term in the wave functional. . . . . . . . . . . . . . . . . . . . . . . 59
3.2 Two-gluon kernel f2 at one-loop order. . . . . . . . . . . . . . . . . . . . . . 60
3.3 Gluonic equal-time two-point function. . . . . . . . . . . . . . . . . . . . . . 62
3.4 Diagrammatic representation of the one-loop ghost propagator. . . . . . . . 64
3.5 Vacuum wave functional with external charges. . . . . . . . . . . . . . . . . 67
3.6 A diagrammatic interpretation of the static potential to order g2. . . . . . . 68
3.7 The proper ghost-gluon vertex to one-loop order. . . . . . . . . . . . . . . . 72

4.1 Definition of the three-gluon vertex. . . . . . . . . . . . . . . . . . . . . . . 91
4.2 Definition of the four-gluon vertex. . . . . . . . . . . . . . . . . . . . . . . . 91
4.3 Definition of the five-gluon vertex. . . . . . . . . . . . . . . . . . . . . . . . 91
4.4 Definition of the two-ghost-two-gluon scattering kernel. . . . . . . . . . . . . 92
4.5 Definition of the four-ghost scattering kernel. . . . . . . . . . . . . . . . . . 92
4.6 Tadpole DSE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.7 Diagrammatic representation of the variational kernels. . . . . . . . . . . . 94
4.8 Gluon propagator DSE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.9 Three-gluon vertex DSE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.10 Four-gluon vertex DSE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.11 Ghost propagator DSE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.12 First form of the ghost-gluon vertex DSE. . . . . . . . . . . . . . . . . . . . 97
4.13 Alternative form of the ghost-gluon vertex DSE. . . . . . . . . . . . . . . . 97
4.14 Higher loop contributions to the vacuum energy. . . . . . . . . . . . . . . . 100
4.15 Diagrammatic representation of the magnetic energy. . . . . . . . . . . . . . 102
4.16 Gluon energy Ω(p) from Gaussian wave functional. . . . . . . . . . . . . . . 109
4.17 Gluon propagator with and without gluon loop. . . . . . . . . . . . . . . . . 109
4.18 Ghost form factor with Gaussian wave functional. . . . . . . . . . . . . . . . 112
4.19 Form factor of the three-gluon vertex. . . . . . . . . . . . . . . . . . . . . . 113
4.20 Comparison of the three-gluon vertex with lattice results. . . . . . . . . . . 113
4.21 Form factor of the four-gluon vertex. . . . . . . . . . . . . . . . . . . . . . . 114

5.1 Propagators and numerical fits used in the evaluation of χ. . . . . . . . . . 127
5.2 Running coupling from the ghost-gluon vertex. . . . . . . . . . . . . . . . . 128
5.3 Result for the topological susceptibility depending on the ratio σc/σ. . . . . 129



Ταράσσει τοὺς ἀνθρώπους οὐ τὰ πράγματα, ἀλλὰ τὰ περὶ τῶν πραγμάτων δόγματα.

Epictetus

(‘Not things, but opinions about things, trouble folk.’)



Incidis in Scyllam

cupiens vitare Charybdin.

(Gautier de Châtillon)

Hamiltonian approach

to Yang–Mills theories in Coulomb gauge

I.1 Introduction

The Standard Model (SM) of particle physics is the current framework to describe the
fundamental interactions between elementary particles with the exception of gravity. The
underlying tool is Quantum Field Theory (QFT), which applies to fields the quantization
methods originally developed for particles.

In its present form, the SM describes the strong, weak, and electromagnetic interactions
via gauge theories. The principle of gauge invariance was originally introduced by Weyl [1]
in an attempt to find a unified formulation of classical electrodynamics and general relativ-
ity. Later on, it was reintroduced in 1954 by Yang and Mills [2] with the less ambitious
purpose of describing the interaction among nucleons, making out of the global isospin
symmetry a local one. Despite failing this original goal, for it predicted the existence of
unobserved massless particles, the theory was not entirely forgotten. Descriptions of weak
and strong interactions based on gauge theories originated in the 1960s and early 1970s
[3,4]. Issues about renormalization and symmetry breaking were (partially) solved later
on [5].

Yang–Mills theories are still far from being well understood. They are a remarkable
piece of theoretical complexity, for they display a wide spectrum of properties typical
for quantum field theories, ranging from quantum anomalies to symmetry breaking. A
renormalization proof in every gauge is yet to be achieved, and the long-range behaviour
is still being investigated, along with symmetry breaking patterns.

Quantum Chromodynamics (QCD) is the Yang–Mills theory based on the gauge group
SU(3). It describes the interaction between particles, quarks and gluons, which carry a
so-called ‘colour’ charge. Although deep inelastic scattering experiments validated QCD
as the correct theory at high energies (where the smallness of the coupling allows perturb-
ative methods to be applied), its low-energy or infrared (IR) behaviour is still not well
understood. Comprehending the IR sector of QCD is one of the most challenging problems
of today’s theoretical particle physics. The fact that the coupling constant becomes large
in the IR region prevents one from applying perturbative methods.

The foremost distinctive feature of QCD is the so-called colour confinement : although
the quark fields carry a colour charge, the observed physical hadrons do not. This is a
genuinely non-perturbative aspect of the theory, which requires adequate tools to deal with.
The only ab-initio approach to QCD is lattice gauge theory [6], based on the discretization
of space-time. Lattice calculations call for high computational costs, in particular when
dealing with dynamical fermions. Furthermore, a complete understanding of the theory
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cannot come from a single approach, and continuum methods must be considered too.
In the last few years there has been a considerable effort in the continuum formulation of

Yang–Mills theories, which in turn has led to some progress, mostly within the framework
of Dyson–Schwinger equations in the Landau gauge [7]. More recently, Coulomb gauge
functional studies have been performed at the perturbative level [8] and in the heavy-quark
sector [9]. Furthermore, the approach based on the Hamiltonian formulation of the theory
in Coulomb gauge has opened up new lines of research [10–12].
This chapter is an introduction to the Hamiltonian formulation of Yang–Mills theory.

Starting with considerations on the gauge invariance of the free fermion theory, the Yang–
Mills Lagrangian will be derived, together with the corresponding Hamiltonian. The issue
of gauge invariance in the classical theory will be discussed, and the theory will be then
canonically quantized. After a discussion about residual gauge invariance and topological
aspects of the theory, the Yang–Mills Hamilton operator in Coulomb gauge will be given,
which is the starting point for the investigations comprised in this thesis.

I.2 Classical formulation of Yang–Mills theory

I.2.1 From gauge invariance to the classical Hamiltonian

It is well known that in electrodynamics the scalar and the vector potentials A0 and A

can be introduced to describe the electric and magnetic fields, namely1

E = −∇A0 −
∂A

∂t
, B = ∇×A, (I.1)

which automatically satisfy two of Maxwell’s equations

∇ ·B = 0, ∇× E+
∂B

∂t
= 0. (I.2)

The remaining two Maxwell equations (Gauss’s and Ampère’s law) can then be written
as equations for the potentials. However, it is also known that these potentials are not
uniquely defined: since the magnetic field B is defined as the curl of the vector potential,
adding to A the gradient of an arbitrary space-time dependent scalar function Λ(x, t) does
not change the magnetic field,

∇× (A(x, t) +∇Λ(x, t)) = ∇×A(x, t). (I.3)

The electric field E remains unchanged, as long as the time derivative of the same gauge
function is subtracted from the scalar potential,

A0(x, t) → A0(x, t)−
∂Λ(x, t)

∂t
. (I.4)

Upon formulating quantum mechanics, it was soon realized that wave functions have
to transform too, in order to maintain gauge independence of the physical quantities.
This is most easily seen in the covariant form of the Lagrangian density of Quantum
Electrodynamics (QED)

Lqed = −1

4
FµνF

µν + ψ̄
(
i/∂ − e /A−m)ψ, (I.5)

1 Natural units ~ = c = 1 and the Heaviside-Lorentz system are used.



I.2 Classical formulation of Yang–Mills theory 3

where ψ is the fermion field, and e the electron charge. In Eq. (I.5), the slashed notation
stands for the contraction with the Dirac matrices /∂ = γµ∂µ, and Fµν is the abelian field
strength tensor

Fµν = ∂µAν − ∂νAµ . (I.6)

Under the gauge transformation

Aµ(x) → Aµ(x) + ∂µΛ(x) (I.7)

the field strength tensor Eq. (I.6), and hence the first term of the QED Lagrangian Eq.
(I.5), remains unchanged. However, the fermion-photon mixing term ψ̄ /Aψ stemming from
the minimal coupling prescription yields an additional term. In order to preserve the
invariance of the Lagrangian Eq. (I.5), it must be assumed that the fermion field transforms
according to

ψ(x) → e−
i
e
Λ(x)ψ(x). (I.8)

The transformations of the type described in Eq. (I.8) (unimodular complex numbers)
form the unitary group U(1).

In order to generalize these ideas to other groups, it is common to start from the free
Dirac Lagrangian

Ld = ψ̄(i/∂ −m)ψ. (I.9)

It is then assumed that the fermion field ψ carries some kind of internal quantum number,
and transforms in a representation R of a group

ψm(x) → Umn ψn(x), (I.10)

where the indices m, n run from 1 to the dimension dim(R) of the representation R.
For a unitary (or orthogonal) group, the Lagrangian Eq. (I.9) remains invariant for any
constant U . On the other hand, whilst the mass term in Eq. (I.9) is invariant under a
local transformation of the type

ψm(x) → Umn(x)ψn(x), (I.11)

the derivative acting on the transformed field brings in an additional term. To preserve
the invariance of the Dirac Lagrangian Eq. (I.9), the standard derivative ∂µ appearing in
Eq. (I.9) must be replaced by a covariant derivative Dµ, which should transform as

Dµ
U−→ U(x)DµU

†(x). (I.12)

Inspired by the QED case, a form dictated by a minimal coupling prescription is usually
chosen for the covariant derivative,

Dµ = ∂µ + i gAµ(x), (I.13)

where Aµ is a (matrix valued) gauge field, and g is the coupling constant. Parametrizing
the transformation U(x) as2

U(x) = exp
[
i t(R)

a ϕa(x)
]
, (I.14)

2In the following, the focus is on the special unitary group SU(Nc). The t(R)
a ’s are Hermitian matrices

building an irreducible representation R of the underlying su(Nc) algebra, and satisfying the commut-
ation rules [

t
(R)
a , t

(R)

b

]
= i fabc

t
(R)
c ,

where the fabc are the totally antisymmetric structure constants.
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Eq. (I.11) reads in infinitesimal form

ψm(x) → ψm(x) + iϕa(x) (t(R)
a )mn ψ

n(x), (I.15)

which implies that the gauge field itself must be an element of the algebra, i.e.

Aµ(x) = Aa
µ(x) t

(R)
a . (I.16)

From the transformation property Eq. (I.12) written explicitly for Eq. (I.13)

∂µ + i gAU
µ = U

(
∂µ + i gAµ

)
U † (I.17)

the transformation property for the gauge field can be derived

AU
µ = UAµU

† − i

g
U
(
∂µU

†) = − i

g
U(DµU

†). (I.18)

In order to write down a kinetic term for the new field, a field strength tensor Fµν can be
defined in analogy to the QED case

Fµν := − i

g

[
Dµ,Dν

]
= ∂µAν − ∂νAµ + i g

[
Aµ, Aν

]
. (I.19)

Being defined as the commutator of two covariant derivatives, the field strength tensor
Fµν transforms covariantly like Dµ,

Fµν
U−→ UFµν U

†. (I.20)

The kinetic term is defined in analogy with to QED, and the gauge invariant Lagrangian
can be eventually written down as

Lym+d = − 1

4TR
tr[FµνF

µν ] + ψ̄(i /D −m)ψ, (I.21)

where TR is the trace invariant of the representation R, defined by

tr
(
t(R)
a t(R)

b

)
= TR δ

ab. (I.22)

(TF = 1
2 for the fundamental representation of the su(Nc) algebra.)

Besides the “historical” derivation of the Yang–Mills Lagrangian presented here, a more
formal approach exploits the close connection to gravity, on which modern gauge-gravity
unifying speculations rely. The underlying idea is that, since fields at different space-time
points transform differently, the normal derivative cannot be a sensitive measure of the
change rate of a field. Comparing Eq. (I.13) rewritten with explicit indices

Dµψ
m(x) = ∂µψ

m(x) + i gAa
µ(x)

(
t(R)
a

)m
n ψ

n(x) (I.23)

with the covariant derivative of a vector field V ν on a Riemannian manifold

DµV
ν = ∂µV

ν + Γν
µρV

ρ, (I.24)

the components of the gauge field can be interpreted as the coefficients of an affine con-
nection

Γm
µn = i gAa

µ(x)
(
t(R)
a

)m
n . (I.25)
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It should be clear that Eq. (I.25) has to be interpreted with care, since all indices of the
connection coefficients in Eq. (I.24) run over the number of space-time dimensions, while
in Eq. (I.25) there are one space-time and two internal symmetry indices.

Both in the original approach (i.e. guaranteeing gauge invariance of the Dirac Lag-
rangian) as well as in the geometrical one (comparing Dirac fields at different points),
matter fields are the basis for the introduction of gauge fields. Furthermore, in the case
of the U(1) group (QED) the theory without matter fields would be quite unimpressive,
although certain subtleties related to gauge invariance do arise also in this case. However,
it is for non-abelian groups that the theory becomes highly non-trivial. Due to the self-
coupling of the Yang–Mills fields, stemming from the commutator term in Eq. (I.19), the
gauge sector itself becomes compelling. From this time onwards, pure Yang–Mills fields
without dynamical matter will be considered, i.e. the Lagrangian is restricted to

Lym = −1

4
F a
µν F

a,µν − g ja,µAa
µ . (I.26)

When dealing with the Yang–Mills Lagrangian with external currents jaµ, gauge invari-
ance seems to be lost. If gauge invariance in the presence of external currents has to be
preserved, the Lagrangian Eq. (I.26) should be modified. This subtlety will henceforth be
ignored, and the pure Yang–Mills Lagrangian with external currents as given in Eq. (I.26)
should be understood as a condensed notation for the full interacting theory defined by
Eq. (I.21).

To make the connection to electrodynamics apparent, and since both the Hamiltonian
approach and the Coulomb gauge (which will be used later on) explicitly break Lorentz
invariance, the relativistic notation will be abandoned. The chromoelectric field is intro-
duced as

Ea
i = −∂0Aa

i − D̂ab
i A

b
0, (I.27)

where the spatial part of the covariant derivative in the adjoint representation of the colour
group is

D̂ab
i ≡ δab∂i + gÂab

i , Âab
i ≡ facbAc

i . (I.28)

Here and in the following, Lorentz subscripts refer to vector indices, so that Eqs. (I.27)
and (I.28) read

Ea = −∂0Aa −DabAb
0, (I.27′)

Dab = δab∇+ gAab. (I.28′)

The Yang–Mills Lagrangian Eq. (I.26) takes the form

Lym =
1

2
Ea

i E
a
i − 1

4
F a
ijF

a
ij − gρaextA

a
0 + jai A

a
i , (I.29)

where

F a
ij = ∂iA

a
j − ∂jA

a
i + g fabcAb

i A
c
j (I.30)

is the spatial part of the field strength tensor. In three spatial dimensions the chromo-
magnetic field can be introduced by

Ba
i =

1

2
εijkF

a
jk , Ba = ∇×Aa +

g

2
fabcAb

×Ac, (I.31a)
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which can be inverted to give the field strength tensor in terms of the chromomagnetic
field

F a
ij = εijkB

a
k . (I.31b)

With Eq. (I.31b), the second term in the Yang–Mills Lagrangian Eq. (I.29) can be written
as

1

4
F a
ijF

a
ij =

1

2
Ba

i B
a
i (d = 3). (I.32)

In the following, the number d of spatial dimensions will be left unfixed: nevertheless, the
second term of Eq. (I.29) will be referred to as the ‘magnetic term’.
Varying the action

Sym =

∫
dd+1x Lym (I.33)

the Euler–Lagrange equations can be derived in the usual way. The equation following
the variation with respect to the scalar potential Aa

0 is Gauss’s law

D̂ab
i E

b
i = gρaext , (I.34)

while the variation with respect to the vector potential Aa
i gives the generalization of

Ampère’s law
D̂ab

j F
b
ij = g ja + D̂ab

0 E
b
i , (I.35)

where the temporal component of the covariant derivative in the adjoint representation
reads

D̂ab
0 ≡ δab∂0 − gÂab

0 . (I.36)

[Notice the sign difference with Eq. (I.28).] In three spatial dimensions, Eq. (I.35) can be
written in vector form as

Dab
×Bb = g ja + D̂ab

0 Eb. (I.35′)

The conjugated momenta can be derived from the Lagrangian density Eq. (I.29) in the
usual way. Time derivatives occur only in the electric field, and a simple calculation shows

Πa
0 =

δSym

δ(∂0Aa
0)

= 0, (I.37a)

Πa
i =

δSym

δ(∂0Aa
i )

= Eb
j

∂Eb
j

δ(∂0Aa
i )

= −Ea
i . (I.37b)

The classical Hamiltonian (density) is obtained by Legendre transformation

H =
1

2
Πa

i Π
a
i +

1

4
F a
ij F

a
ij +Aa

0

(
gρaext + D̂ab

i Πb
i

)
, (I.38)

after having performed an integration by parts and discarded the surface terms. The
Hamilton equations of motion follow from Eq. (I.38) in the standard way. The equations
for Ȧa

i and Π̇a
i result, as expected, in Eqs. (I.27) and (I.35), with the electric field Ea

i

replaced by −Πa
i , in compliance with Eq. (I.37b). Furthermore, the equation for the

(vanishing) momentum Πa
0

0 = −Π̇a
0 =

∂H
∂Aa

0

= gρaext + D̂ab
i Πb

i (I.39)
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is nothing but Gauss’s law. Notably, since there is no momentum conjugated to the scalar
potential, the equation for the time derivative of the latter reads

Ȧa
0 =

∂H
∂Πa

0

= 0, (I.40)

which implies that the scalar potential is not a dynamical variable. Indeed, due to the
antisymmetry of the field strength tensor Eq. (I.19), no time derivative of the scalar
potential Aa

0 enters the Lagrangian (or the Hamiltonian). The Aa
0 field plays the role of a

Lagrange multiplier, and Gauss’s law can be seen as a constraint rather than a dynamical
equation of motion.

I.2.2 On the simultaneous choice of Coulomb and Weyl gauge

The issue of gauge freedom in the classical theory, in particular the simultaneous choice
of the temporal (or Weyl) and the Coulomb gauge, will now be briefly discussed. For
the sake of simplicity, the discussion will be restricted to the Maxwell theory with static
external sources. The Lagrangian density as a function of the scalar potential A0 and the
vector potential A with given external charges ρ reads

L =
1

2
(∇A0 + Ȧ)2 − 1

2
(∇×A)2 − ρA0. (I.41)

The action defined by the Lagrangian Eq. (I.41) is invariant under the following local
gauge transformations

A0(x, t) → A0(x, t)− Λ̇(x, t), A(x, t) → A(x, t) +∇Λ(x, t), (I.42)

provided that the external sources satisfy ρ̇ = 0. The Euler–Lagrange equations derived
from the given Lagrangian are

{
−∇2A0 −∇ · Ȧ = ρ

∂2A+∇(Ȧ0 +∇ ·A) = 0.
(I.43)

These equations are form invariant under the gauge transformations Eq. (I.42).

To fix the Coulomb gauge, the gauge function

Λ(x, t) =
1

−∇2
∇ ·A(x, t), (I.44)

can be used, and the transformed vector potential A⊥ is purely transverse, ∇ · A⊥ = 0.
The Lagrangian reads in terms of the transformed fields

LCoul =
1

2
(∇A0 + Ȧ⊥)2 − 1

2
(∇×A⊥)2 − ρA0, (I.45)

and the resulting equations of motion are

{
−∇2A0(x, t) = ρ(x)

∂2A⊥(x, t) +∇φ̇(x, t) = 0.
(I.46)
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The Coulomb gauge Lagrangian Eq. (I.45) has still a residual gauge freedom: since the
gauge transformation of the vector potential consists always in adding a longitudinal term
[see Eq. (I.42)], if the vector potential has to remain transverse, the “allowed” transform-
ations cannot be space dependent.3 With a gauge function λ(t) of time only, the scalar
potential transforms as

A0(x, t) → A0(x, t)−
dλ(t)

dt
, (I.47)

while the vector potential A remains unaltered. It is possible to get a vanishing scalar
potential at a single point in space, but the global condition A0(x, t) = 0 cannot be
enforced. Indeed, the scalar potential is constrained by Gauss’s law

A0(x, t) =
1

−∇2
ρ, (I.48)

which completely specifies the scalar potential in terms of the charge distribution. Then
“inserting” Gauss’s law in the Lagrangian Eq. (I.45), it is possible to obtain an effective
Lagrangian which takes care of the constraint Eq. (I.48)

LCoul+Gauss =
1

2

(
Ȧ⊥ +∇

1

−∇2
ρ
)2 − 1

2
(∇×A⊥)2 − ρ

1

−∇2
ρ

=
1

2
(Ȧ⊥)2 − 1

2
(∇×A⊥)2 − 1

2
ρ

1

−∇2
ρ.

(I.49)

(It is always implicitly assumed that this density is integrated over and surface terms can
be discarded.)

Alternatively, the temporal gauge can be fixed by means of the gauge function

Λ(x, t) =

∫ t

0
dt′ A0(x, t

′). (I.50)

In the temporal gauge, the Lagrangian reads

LWeyl =
1

2
Ȧ

2 − 1

2
(∇×A)2, (I.51)

and only one equation of motion is recovered

∂2A+∇(∇ ·A) = 0, (I.52)

while Gauss’s law formally disappears. Time-independent gauge transformations can still
be performed,

A(x, t) → A(x, t) +∇λ(x), (I.53)

which leave the gauge condition A0 = 0 unaltered. It could then be possible to perform a
gauge transformation which brings the vector potential in the Coulomb gauge; however,
this can be done only at a fixed time. The gauge function implementing the Coulomb gauge
is different at any time slice: again, the Weyl and Coulomb gauges cannot be enforced

3One could exploit harmonic functions, but imposing suitable regularity and boundary conditions, these
can be ignored.
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simultaneously at all times. However, being bold and imposing the would-be Gauss law
by setting A0 = 0 in Eq. (I.43) gives

−∇ · Ȧ = ρ ⇒ Ȧ = Ȧ⊥ +∇
1

−∇2
ρ. (I.54)

Inserting this into the Weyl Lagrangian (I.51), the constrained Weyl Lagrangian

LWeyl+Gauss =
1

2

(
Ȧ⊥ +∇

1

−∇2
ρ
)2 − 1

2
(∇×A⊥)2

=
1

2
(Ȧ⊥)2 +

1

2
ρ

1

−∇2
ρ− 1

2
(∇×A⊥)2,

(I.55)

is obtained, where the surface terms arising from the integration by parts have been
discarded. It is then apparent that LCoul+Gauss = LWeyl+Gauss. The implementation of
the Coulomb gauge with subsequent inclusion of Gauss’s law constraint yields the same
effective Lagrangian as the Weyl gauge fixing procedure followed by implementation of the
would-be Gauss law.

In both cases, the result is an effective Lagrangian which depends only on the trans-
verse degrees of freedom A⊥ and the external sources, but no two consecutive gauge
transformations have been performed. Only one gauge has been fixed by means of a suit-
able transformation, and then the constraint of Gauss’s law has been used to eliminate
the residual superfluous degrees of freedom.

Both approaches are completely equivalent at the classical level. At the quantum level,
however, only the second one is feasible because of the well-known problem of the vanishing
momentum conjugate to the scalar potential in the canonical formalism.

I.3 Canonical quantization and the θ-vacuum

I.3.1 Hamilton operator in the temporal gauge and Schrödinger picture

The starting point for the canonical quantization of Yang–Mills theories is the classical
Hamiltonian Eq. (I.38), which should be promoted to an operator by imposing canonical
commutation relations on the conjugate variables Aa

i and Πa
i = −Ea

i . It has been remarked
in the previous section that the canonical momentum conjugate to Aa

0 vanishes. This is
not a real problem for the classical theory (Sec. I.2.2), but troubles arise when canonical
commutation relations are imposed. This difficulty can be circumvented by making use
of the gauge freedom of the Lagrangian to eliminate the scalar potential, i.e. choosing the
Weyl gauge Aa

0 = 0.4 The canonical, equal-time commutation relations are then imposed

[
Aa

i (x), A
b
j(y)

]
= 0 =

[
Πa

i (x),Π
b
j(y)

]
, (I.56a)

[
Aa

i (x),Π
b
j(y)

]
= i δab δij δ(x − y), (I.56b)

4The generalization of the gauge transformation Eq. (I.50) which realizes the transition to the Weyl gauge
in the non-abelian case is the solution of the equation D0U

† = 0, which is easily solved to find

U(x, t) = T exp

{
−ig

∫ t

0

dτ A0(x, τ )

}
,

with T being the time ordering symbol.
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and the familiar Hamilton operator for the gauge field is recovered,

H =

∫
ddx

[
1

2
Πa

i (x)Π
a
i (x) +

1

4
F a
ij(x)F

a
ij(x)

]
. (I.57)

As in quantum mechanics, in the Schrödinger picture [13] one works with a representa-
tion of the more abstract state vectors. In this work, the “coordinate” representation will
be used, i.e. wave functionals which are related to the state vectors | 〉 by

ψ[A] = 〈A| 〉, (I.58)

where |A〉 denotes the eigenstate of the field operator Â

Âa
i (x) |A〉 = Aa

i (x) |A〉. (I.59)

The commutation relations (I.56) are then satisfied by realizing the field operator multi-
plicatively

〈A|Âa
i (x) | 〉 = Aa

i (x)ψ[A], (I.60a)

and the momentum operator as a functional derivative

〈A|Π̂a
i (x) | 〉 = −i

δ

δAa
i (x)

ψ[A]. (I.60b)

In the following, for the sake of simplicity the hat denoting the operator will be dropped,
as long as no misunderstanding can arise. The Hamilton operator Eq. (I.57) in the
Schrödinger picture described in Eqs. (I.60) leads to the functional Schrödinger equation

∫
ddx

[
−1

2

δ

δAa
i (x)

δ

δAa
i (x)

+
1

4
F a
ij(x)F

a
ij(x)

]
ψ[A] = E ψ[A]. (I.61)

The Heisenberg picture of quantum mechanics is, in general, more elegant than the
Schrödinger picture: for example, adding a constant term to the Hamiltonian does not
influence the equations of motion in the Heisenberg picture, while it appears as a phase
factor in the Schrödinger formulation. It may then look as if the Schrödinger formulation
had unnecessary complications; however, the equations of motion are easier to solve in the
Schrödinger than in the Heisenberg picture.

I.3.2 Gauss’s law and gauge invariance

As already pointed out, the choice of the temporal gauge makes Gauss’s law disappear from
the set of the equations of motion. The theory based only on the Schrödinger equation
with the Hamilton operator Eq. (I.57) is in some sense larger than it would be expected.
To have a consistent classical limit, however, Gauss’s law shall be imposed as a constraint:
this choice will turn out to be motivated by considerations on gauge invariance.
Consider the operator which, in the quantized theory, expresses Gauss’s law

Ga(x) = D̂ab
i (x)Πb

i (x) + gρaext(x). (I.62)

A straightforward calculation shows, with Eq. (I.56), that these operators satisfy the same
commutation algebra as the underlying group generators

[
Ga(x),Gb(y)

]
= i fabc Gc(x) δ(x − y). (I.63)
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Moreover, the Gauss operators Eq. (I.62) commute with the Hamiltonian Eq. (I.57),

[
H,Ga(x)

]
= 0. (I.64)

This implies that both operators can be simultaneously diagonalized, and if a physical
state fulfills Gauss’s law at one time, this will not change in the time evolution generated
by the Hamiltonian Eq. (I.57). Gauss’s law is then imposed on physical states by requiring

Ga(x) |phys〉 = 0, (I.65)

i.e. physical states are annihilated by the Gauss operators.5

This request is closely connected to gauge invariance. As pointed out after Eq. (I.26),
the pure gauge theory with external sources breaks gauge invariance, and one should either
consider the whole theory, comprising dynamical fermions, or confine oneself to the pure
gauge sector without external charges. To keep the following observations simple, only
the case ρaext = 0 will be treated in the present section.

In the temporal gauge, there is still the freedom to perform space-dependent gauge
transformations of the form

Ai(x) →
i

g
U(x)

(
DiU

†(x)
)
, U(x) = exp

[
itaϕa(x)

]
, (I.66)

which in infinitesimal form reads

Aa
i (x) → Aa

i (x) +
1

g
D̂ab

i ϕ
b(x) + · · · (I.67)

A unitary operator U which implements this transformation must satisfy

U Ai(x)U† !
=

i

g
U(x)

(
DiU(x)†

)
. (I.68)

Expanding U around the identity operator and comparing Eq. (I.68) with the infinitesimal
transformation given in Eq. (I.67), it is simple to see that

U0 = exp

{
i

g

∫
ddx

[
D̂ab

i ϕ
b(x)

]
Πa

i (x)

}
(I.69)

is a possible realization. The meaning of the subscript ‘0’ attached to the operator will be
explained in the next section. Integrating by parts, and further assuming that the arising
surface term can be discarded, Eq. (I.69) can be rewritten as

U0 = exp

{
− i

g

∫
ddx ϕa(x)

[
D̂ab

i Πb
i (x)

]}
= exp

{
− i

g

∫
ddx ϕa(x) Ga

0 (x)

}
, (I.70)

where Ga
0 (x) is the Gauss operator as given in Eq. (I.62) with the external charges set

to zero. The request Eq. (I.65) that the physical states are annihilated by the Gauss
operators is equivalent, by Eq. (I.70), to demanding

U0 |phys〉 = |phys〉, (I.71)

5Since the different colour components do not commute with each other, see Eq. (I.63), this is the only
possible eigenvalue equation.
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i.e. that the physical states are gauge invariant.
There are, of course, other ways to reach the same conclusion. Starting from the in-

variance of the Hamiltonian Eq. (I.57) under time-independent gauge transformations Eq.
(I.66), the correlated Noether current can be derived: the operator Ga

0 is the corresponding
charge. Another possible viewpoint starts from a Taylor expansion of the state functional

ψ[AU ] = ψ[A+ 1
g D̂ϕ+ · · · ] = ψ[A] +

∫
ddx

1

g
D̂ab

i ϕ
b(x)

δψ[A]

δAa
i (x)

+ · · ·

= ψ[A]− i

g

∫
ddx ϕa(x) D̂ab

i Πa
i (x) ψ[A] + · · ·

= ψ[A]− i

g

∫
ddx ϕa(x)Ga

0 (x) ψ[A] + · · · (I.72)

(again under the assumption that the surface term arising in the integration by parts can
be discarded), so that demanding gauge invariance of the state functional leads to the
Gauss law constraint Eq. (I.65).

I.3.3 Topological structure of the QCD vacuum

To keep the discussion simple, in this section only the physical case d = 3 and the SU(2)
group will be considered.
In the previous section, the issue of residual gauge invariance in the canonically quant-

ized theory has been discussed. No assumption about the form of the gauge fields or of the
transformation functions has been made. Here, all physically relevant field configurations
are presumed to fall off faster than 1/|x| at spatial infinity

A(|x| → ∞) ∼ 1

|x|1+ε
, ε > 0, (I.73)

which corresponds to the restriction to fields with a finite classical action. Furthermore,
allowed gauge transformations are supposed to approach a unique value at spatial infinity,

U(|x| → ∞) → U∞ . (I.74)

There are merely plausibility reasons (but no proofs) for this choice [14]; for example,
the total colour charge would be ill defined for more general, direction-dependent gauge
transformations.
The boundary condition Eq. (I.74) implies a compactification of the three-dimensional

configuration space R3 into the 3-sphere S3. The gauge transformations U which satisfy
these conditions fall into different homotopy classes, which can be labelled by an integer
n[U ], the winding number

n[U ] =
i

24π2

∫
d3x εijk tr

[
U(∂iU

†)U(∂jU
†)U(∂kU

†)
]
. (I.75)

Field configurations with different winding numbers are not homotopically equivalent,
i.e. they cannot be deformed continuously into each other without violating the boundary
condition Eq. (I.74).6 From this, another argument supporting the assumption Eq. (I.74)

6Two gauge transformations U1(x) and U2(x) are homotopically equivalent if there exists a continuous
mapping U(x, a) such that U(x, 0) = U1(x) and U(x, 1) = U2(x), and such that the boundary conditions
are satisfied for every a.
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about the possible transformations follows: without the boundary condition Eq. (I.74),
the integral Eq. (I.75) may diverge. A representative for the SU(2) transformations with
unity winding number is

Un=1(x) = eiπf(|x|)σ·x̂, with f(0) = 0, f(∞) = 1, (I.76)

(σ stands for the Pauli matrices) while a representative of the N -th class is

Un=N (x) =
[
Un=1(x)

]N
. (I.77)

Gauge transformations which can be homotopically deformed to unity belong to the ho-
motopy class with vanishing winding number, and are referred to as ‘small’ gauge trans-
formations. These are the only transformations which can be obtained by iterating an
infinitesimal one, and the generator of these transformations is the Gauss operator Eq.
(I.62), as seen in the previous section. This explains the subscript ‘0’ which has been
attached to the operator U0 [Eq. (I.69)].

Nevertheless, the Hamilton operator Eq. (I.57) is invariant under all gauge transform-
ations, small or large, and physical states can change by a phase factor at most. For
transformations with unity winding number, a state functional will then become

Uψ[A] = e−iθ ψ[A] , for n[U ] = 1, (I.78)

where θ is an undetermined parameter. Furthermore, from Eqs. (I.76) and (I.77) it can
be inferred that the correct generalization of Eq. (I.71) reads

Uψ[A] = e−iθn[U ] ψ[A]. (I.79)

It can be shown that there is no way to avoid the introduction of this new parameter
in the theory. Also assuming that physical states are indeed invariant under all gauge
transformations, a θ dependence can follow from the ambiguity of the Lagrangian, to
which a term of the form

θ
g2

64π2
εµνρσ F a

µν F
a
ρσ = −θ g2

16π2
εijk E

a
i F

a
jk = −θ g2

8π2
Ea

i B
a
i (I.80)

can be added (the numerical factor is a matter of convenience). This term can be written
as a total divergence

εµνρσF a
µν F

a
ρσ = 4 ∂µK

µ, (I.81)

where the topological current

Kµ = εµνρσ
(
Aa

ν∂ρA
a
σ − g

3 f
abcAa

νA
b
ρA

c
σ

)
, (I.82)

has been introduced. Thus, the classical Hamilton function Eq. (I.38) retains its form;
what does change is the relation Eq. (I.37b) between the canonical momentum and the
electric field, which turns into

Πa
i = −Ea

i + θ
g2

16π2
εijkF

a
jk = −Ea

i + θ
g2

8π2
Ba

i , (I.83)

and the functional Schrödinger equation (I.61) becomes

∫
d3x

[
1

2

(
δ

iδAa
i (x)

− θ
g2

16π2
Ba

i (x)

)2

+
1

2
Ba

i (x)B
a
i (x)

]
Ψ [A] = E Ψ [A], (I.84)
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where the states Ψ [A] are gauge invariant under all gauge transformations. Writing the
gauge invariant functional Ψ [A] as

Ψ [A] = eiθW [A] ψ[A] (I.85)

with some functional W [A] satisfying

δW [A]

δAa
i (x)

=
g2

8π2
Ba

i (x), (I.86)

the additional θ-dependent terms can be eliminated and obtains again Eq. (I.61). Equation
(I.86) is easily integrated, and the result

W [A] =
g2

16π2

∫
d3x εijk

[
Aa

i ∂jA
a
k +

g
3 f

abcAa
iA

b
jA

c
k

]
=

g2

16π2

∫
d3x K0(x) (I.87)

is called the Chern–Simons action. Under a gauge transformation fulfilling the boundary
condition Eq. (I.74), the Chern–Simons action behaves like

W [AU ] =W [A] + n[U ], (I.88)

which confirms the transformation property Eq. (I.79) of the functional ψ[A] in Eq. (I.85).
Furthermore, acting with the operator U0 as given in Eq. (I.69) [or Eq. (I.70)] on the
Chern–Simons action Eq. (I.87), gives

U0W [A] =W [A], (I.89)

which shows again how the explicit realization Eq. (I.69) [(I.70)] can describe only small
transformations.
No a-priori computation for the vacuum angle θ is available; physical effects involve a

non-vanishing neutron electric dipole moment [15], and the measurements indicate that
θ should be smaller than 10−10. It is also worth mentioning that there is no unanimous
agreement about the fact that the parameter θ appearing in the transformation property
Eq. (I.79) is the same θ occurring in the additional term in the Lagrangian, Eq. (I.80).
Giving up the assumptions Eqs. (I.73) and (I.74), the first one can be proven to be indeed
zero, while nothing can be said about the second one.
However, the fact that both parameters lead to the same Hamiltonian, and consequently

to the same physical effects, seems to legitimate the use of Occam’s razor: since the same
physics is obtained in both cases, no matter how this arbitrary parameter is introduced,
it seems appropriate to speak about only one θ angle.
Physical effects of the θ-vacuum are dealt with in Article 5.

I.4 The Yang–Mills Hamiltonian in Coulomb gauge

I.4.1 Gauge fixing and the Gribov problem

As previously discussed, the Weyl gauge does not fix the fields completely, since there exists
always a freedom to perform time-independent gauge transformations U(x). Moreover, as
already noticed in the previous section, if the choice of the temporal gauge gets rid of
the troubles related to the vanishing momentum conjugated to A0, it makes nevertheless
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Gauss’s law disappear from the set of equations of motion. As a consequence, Gauss’s law
has to be imposed as an external constraint on the physical states, with the meaning that
physical states must be gauge invariant, at least under small gauge transformations.

Working with gauge invariant states can be awkward, mostly when using a variational
approach, which is one of the subjects of this work. It is then convenient to fix the gauge
by explicitly resolving Gauss’s law, and the Coulomb gauge ∂iA

a
i = 0 is well suited to this

purpose. The Coulomb gauge is of course not Lorentz invariant, but explicit invariance
has been lost by using the Hamiltonian formulation of the theory and by choosing the
temporal gauge anyway.

Physical quantities are invariant under a gauge transformation of the fields, i.e. all fields
lying on the gauge orbit

OA =
{
AU : AU = UAU † +

i

g
U∇U †

}
(I.90)

are, in fact, equivalent. A gauge fixing is (or rather should be) a choice which completely
defines the field. A standard method to implement a gauge is the procedure developed by
Faddeev and Popov [16] to handle path integrals in gauge theories. A particular gauge can
be enforced in the scalar product of the Hilbert space by inserting the functional identity

1 =

∫
DU δ

(
χ[AU ]

)
Det

(
δχ[AU ]

δϕ

)
, (I.91)

where χ[A] is the gauge condition and the integral is performed over the gauge group.
Equation (I.91) can be interpreted as the functional generalization of

1 =

∫
dx |f ′(x)| δ

(
f(x)

)
. (I.92)

The operator in the functional determinant of Eq. (I.91) is for the Coulomb gauge (χ[A] =
∂iA

a
i )

δ

δϕb(x)
∂i
(
AU

i (y)
)a

=
1

g
∂iD̂

ab
i (x) δ(x − y), (I.93)

and Eq. (I.91) can be rewritten as

1 =

∫
DU δ

(
∂iA

U
i

)
JAU , JAU ≡ Det

(
−∂iD̂ab

i [AU ]
)
, (I.94)

where we introduced the Faddeev–Popov determinant JA.
Before the implementation of the gauge is carried out, the issues related to the Gribov

ambiguity for non-abelian gauge fields should be briefly reviewed. Equation (I.92) is known
to be valid only if the function f(x) has a single root. Correspondingly, for the functional
identity Eq. (I.94) to be correct, the transversality condition ∂iA

a
i = 0 should have a

unique solution. As seen in Sec. I.2.2, this can be guaranteed in the abelian theory by
imposing suitable boundary conditions. However, as pointed out by Gribov [17], this is
not the case for non-abelian gauge theories: there exists always so-called gauge copies,
i.e. transverse field configurations which are connected by a gauge transformation. Even
the choice of boundary conditions does not eliminate the gauge copies.

In order to pick out only one representative from each gauge orbit, the functional in-
tegration should be restricted to the set of gauge inequivalent configurations. A possible
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way to choose this set for the Coulomb gauge is to consider the following function on the
gauge orbit7

FA[U ] =

∫
ddx (AU (x))ai (A

U (x))ai , (I.95)

and expand it around the identity transformation [see Eq. (I.67)]

FA[U ] =

∫
ddx Aa

i (x)A
a
i (x)−

2

g

∫
ddx ϕa(x) ∂iA

a
i (x)+

+
1

g2

∫
ddx ϕa(x)

(
−∂iD̂ab

i ϕ
b(x)

)
+O(ϕ3).

(I.96)

The minima of this function are transverse field configurations ∂iA
a
i = 0 with a positive

definite Faddeev–Popov operator, −∂iD̂i ≥ 0. The set of all local minima

Ω :=
{
A : ∂iAi = 0 , −∂iD̂i[A] ≥ 0

}
(I.97)

defines the first Gribov region. This is bounded in every direction and convex, and the
Faddeev–Popov operator acquires the eigenvalue zero on its boundary ∂Ω. This implies
that the Faddeev–Popov determinant JA vanishes on ∂Ω.
Unfortunately, the Gribov region Ω is still not free of gauge copies [19]. The configura-

tion space should be restricted to the set of the absolute minima

Λ :=
{
A : FA[1] ≤ FA[U ] ∀U

}
(I.98)

which is called fundamental modular region (FMR) Λ. It can be shown that the FMR
is a proper subset of the first Gribov region, Λ ⊂ Ω, that it has a non-trivial topological
structure, that both Λ and Ω are bounded in every direction and convex, and that they
have some points in common. The FMR is then almost free of Gribov copies, since some
absolute minima can be degenerate.
Unfortunately, no feasible way to introduce the explicit restriction to the FMR is avail-

able yet in the continuum.8 It has been argued [20] that the functional integration over
these two regions should yield the same result. In the following, this conjecture will be
relied on, and the connected subtleties will be ignored. The functional identity Eq. (I.94),
when restricted to the Gribov region, still retains its validity, and will be used in the next
section to fix the Coulomb gauge.

I.4.2 Implementation of the Coulomb gauge

As already pointed out, the physical problem consists in solving the functional Schrödinger
equation (I.61) supplemented by the constraint of Gauss’s law Eq. (I.65). There are
various methods for the implementation of the Coulomb gauge: among others, constrained
quantization by means of Dirac’s brackets (see e.g. Ref. [21] and references therein), and
an explicit elimination of the redundant degrees of freedom [22]. Here, the Coulomb gauge
will be implemented in the scalar product by means of the Faddeev–Popov method as
described in the previous section. This derivation is much more simple to understand, at
least ignoring all kind of mathematical troubles one runs into.

7This presentation does not follow Gribov’s original line of thought, but it has been put forward here for
pedagogical reasons; an introductory discussion can be found in Ref. [18].

8With the exception of the theory in 1 + 1 dimensions.
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It should be stressed again that the quantization has been already performed in the
temporal gauge, and merely a way to implement an additional constraint on the physical
states will be discussed.

In the Coulomb gauge the dynamical variables are the transverse field configurations
A⊥. The commutation relations (I.56) become in the transverse subspace

[
A⊥a

i (x),Π⊥b
j (y)

]
= i δab tij(x) δ(x− y), (I.99)

where tij is the transverse projector

tij(x) =

∫
ddp

(2π)d
eip·x

(
δij −

pi pj
p2

)
. (I.100)

In order to proceed, Gauss’s law (with external charges reintroduced)

D̂ab
i Πb

i ψ[A] = −gρaext ψ[A], (I.101)

shall be explicitly resolved. To this purpose, the momentum operator is splitted in a
longitudinal and transverse part Πa

i = Π⊥a
i + ∂iξ

a, and with the transversality condition
∂iΠ

⊥
i = 0 Eq. (I.101) becomes

−gρaext ψ[A] =
(
D̂ab

i Π⊥b
i + D̂ab

i ∂iξ
b
)
ψ[A] =

(
gÂab

i Π⊥b
i + D̂ab

i ∂iξ
b
)
ψ[A], (I.102)

which can be solved for the longitudinal component of the momentum operator as

−D̂ab
i ∂i ξ

b ψ[A] = gρa ψ[A]. (I.103)

In Eq. (I.103) the total colour charge density

ρa(x) = ρaext(x) + Â⊥ab
i (x)Π⊥b

i (x) (I.104)

has been defined. Notice that only the transverse part of the gauge field enters the total
charge density. Introducing now the Green function GA of the Faddeev–Popov operator

(
−δab∂2 − Âab

i (x)∂i
)
Gbc

A (x,y) = δac δ(x− y), (I.105)

the action of the momentum operator on the state functional can finally be written as

Πa
i (x)ψ[A] =

(
Π⊥a

i (x) + ∂iξ
a(x)

)
ψ[A], ξa(x) = g

∫
ddy Gab

A (x,y) ρb(y). (I.106)

The eigenstates of the Hamiltonian Eq. (I.57), i.e. the solutions of the functional Schrö-
dinger equation (I.61), span a Hilbert space H which is larger that the physical one. The
scalar product in H is defined by

〈φ|O[A,Π] |ψ〉 =
∫

DA φ∗[A] O[A,−i δ
δA ] ψ[A] . (I.107)

When restricted to physical states, the integration in Eq. (I.107) is ill defined, since the
integral extends over all gauge equivalent configurations. This simply means that physical
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states are not normalizable in H . In order to restrict Eq. (I.107) to the physical states,
the following expression should be considered

〈φ|O[A,Π] |ψ〉 =
[∫

DU
]−1 ∫

DA φ∗[A] O[A,−i δ
δA ] ψ[A] , (I.108)

where the normalization constant is the integral over the gauge group (see e.g. Ref. [23]
for a discussion). Equation (I.108) is a ∞/∞ form, and has to be defined by means of
the Faddeev–Popov method. In the case of the Hamilton operator, it is convenient to first
perform an integration by parts in the electric term before inserting the identity Eq. (I.94)
into Eq. (I.108). One can then write (N = (

∫
DU)−1)

〈φ|H |ψ〉 =

= N
∫

DA φ∗[A]
{
1
2 Π

2 + 1
4(Fij)

2
}
ψ[A]

= N
∫

DA
{
1
2 (Πφ[A])

∗(Πψ[A]) + 1
4(Fij)

2φ∗[A]ψ[A]
}

= N
∫

DA
∫

DU δ
(
∂iA

U
i

)
JAU

{
1
2 (Πφ[A])

∗(Πψ[A]) + 1
4(Fij)

2φ∗[A]ψ[A]
}

= N
∫

DA
∫

DU δ
(
∂iA

U
i

)
JAU

{
1
2 (Π

Uφ[AU ])∗(ΠUψ[AU ]) + 1
4(F

U
ij )

2φ∗[AU ]ψ[AU ]
}
.

(I.109)

In the last passage, the gauge invariance of the states and the Hamilton operator in
temporal gauge have been used. Assuming the invariance of the functional measure,
DAU = DA,9 the integration variable can be shifted, AU → A, and the integral over the
gauge group

∫
DU can be factorized out of the integral and canceled with the normaliza-

tion. This results in

〈φ|H |ψ〉 =
∫

DA δ
(
∂iAi

)
JA

{
1
2 (Πφ[A])

∗(Πψ[A]) + 1
4(Fij)

2φ∗[A]ψ[A]
}
. (I.110)

The reason for the integration by parts in the electric term of the Hamiltonian is that
Gauss’s law tells how to express the functional derivative of state functionals in terms
of transverse quantities only, see Eq. (I.106). The first term in Eq. (I.110) can thus be
written as
∫

DA δ
(
∂iAi

)
JA

∫
ddx (Πa

i (x)φ[A])
∗(Πa

i (x)ψ[A]) =

=

∫
DA

∫
ddx δ(∂iAi) JA

×
[(
Π⊥a

i (x) + ∂iξ
a(x)

)
φ[A]

]∗ [(
Π⊥a

i (x) + ∂iξ
a(x)

)
ψ[A]

]
=

=

∫
DA

∫
ddx δ(∂iAi) JA

×
[(
Π⊥a

i (x) φ[A]
)∗(

Π⊥a
i (x) ψ[A]

)
+
(
∂iξ

a(x)φ[A]
)∗(

∂iξ
a(x)ψ[A]

)]
. (I.111)

9This kind of manipulations is somewhat formal in the continuum theory, but can be well defined in the
lattice formulation.
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In the last line it has been used the fact that the mixed terms (longitudinal times trans-
verse components of the momentum operator) vanish, as it is easily seen performing an
integration by parts, e.g.

∫
ddx

(
Π⊥a

i (x) φ∗[A]
) (
∂iξ

a(x) ψ[A]
)
= −

∫
ddx

(
∂i Π

⊥a
i (x)︸ ︷︷ ︸
=0

φ∗[A]
) (
ξa(x) ψ[A]

)
. (I.112)

By using Π⊥∗ = −Π⊥, performing a functional integration by parts, and under the
assumption that the surface term vanishes,10 the first term in the brackets in Eq. (I.111)
can be written as

∫
DA

∫
ddx δ(∂iAi) JA

(
Π⊥a

i (x) φ[A]
)∗(

Π⊥a
i (x) ψ[A]

)
=

=

∫
DA⊥

∫
ddx JA⊥

(
Π⊥a

i (x) φ[A⊥]
)∗(

Π⊥a
i (x) ψ[A⊥]

)
=

=

∫
DA⊥

∫
ddx JA⊥

(
−Π⊥a

i (x) φ∗[A⊥]
)(
Π⊥a

i (x) ψ[A⊥]
)
=

=

∫
DA⊥

∫
ddx φ∗[A⊥] Π⊥a

i (x)JA⊥ Π⊥a
i (x) ψ[A⊥]. (I.113)

In order to obtain matrix elements in the physical space in the form

〈φ|O[A,Π] |ψ〉 =
∫

DA⊥ JA⊥ φ∗[A⊥]O[A⊥,Π⊥]ψ[A⊥] , (I.114)

the operator coming from the transverse part of the momentum Π is identified as

Hk =
1

2

∫
ddx J −1

A⊥ Π⊥a
i (x)JA⊥ Π⊥a

i (x) . (I.115)

In analogy to classical mechanics, Eq. (I.115) is often referred to as ‘kinetic’ operator.

The second term in Eq. (I.111) is slightly more complicated: inserting the result Eq.
(I.106) for the longitudinal component of the momentum operator yields

∫
DA

∫
ddx δ(∂iAi) JA

(
∂iξ

a(x)φ[A]
)∗(

∂iξ
a(x)ψ[A]

)
=

=

∫
DA

∫
ddx δ(∂iAi) JA

(
ξa(x)φ[A]

)∗(
(−∂2)ξa(x)ψ[A]

)
=

= g2
∫

DA⊥

∫
ddx ddy ddz JA⊥ Gab

A⊥(x,y)
(
ρb

∗
(y) φ∗[A⊥]

)

× (−∂2x)Gac
A⊥(x, z) ρ

c(z) ψ[A⊥]. (I.116)

The external colour charge density is real, while complex conjugation of the gauge field
charge density leads to a sign change,

(ρb)∗ = ρbext − Â⊥bd
i Π⊥d

i . (I.117)

10This is the case when the integration is restricted to the first Gribov region, on whose border the
Faddeev–Popov determinant JA⊥ vanishes.
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Performing, as in Eq. (I.113), a functional integration by parts yields a further minus
sign, and since the transverse momentum operator commutes with the field in the adjoint
representation (due to the presence of the totally antisymmetric structure constants), Eq.
(I.116) can be rewritten as

∫
DA

∫
ddx δ(∂iAi) JA

(
∂iξ

a(x)φ[A]
)∗(

∂iξ
a(x)ψ[A]

)
=

= g2
∫

DA⊥

∫
ddxddy ddz φ∗[A⊥] ρb(y) JA⊥Gab

A⊥(x,y)(−∂2x)Gac
A⊥(x, z) ρ

c(z) ψ[A⊥].

(I.118)

Introducing now the Coulomb interaction kernel

F ab
A⊥(x,y) :=

∫
ddz Gca

A⊥(z,x)
(
−∂2z

)
Gcb

A⊥(z,y), (I.119)

the contribution of the longitudinal momentum to the Hamilton operator can be written
as

Hc =
g2

2

∫
ddxddy J−1

A⊥ ρ
a(x) JA⊥ F ab

A⊥(x,y) ρ
b(y), (I.120)

which is called the ‘Coulomb term’, since it reduces to the usual, instantaneous Coulomb
interaction between static charges in the abelian case.
Since the magnetic term [last term in Eq. (I.110)] does not contain derivative operators,

the gauge fixing gives immediately

∫
DA δ

(
∂iAi

)
JA

∫
ddx F a

ij(x)F
a
ij(x) φ

∗[A]ψ[A] =

=

∫
DA⊥ JA⊥

∫
ddx F⊥a

ij (x)F⊥a
ij (x) φ∗[A⊥]ψ[A⊥], (I.121)

where the spatial part of the field strength tensor has to be evaluated with transverse
fields only.
Collecting Eqs. (I.115), (I.120) and (I.121), and dropping the transversality symbol, the

complete Hamiltonian in Coulomb gauge can be written as

Hym =
1

2

∫
ddx J −1

A Πa
i (x)JA Πa

i (x) +
1

4

∫
ddx F a

ij(x)F
a
ij(x)+

+
g2

2

∫
ddxddy J−1

A ρa(x)JA F
ab
A (x,y) ρb(y)

(I.122)

The abelian case, i.e. electrodynamics, can be treated in order to make the meaning of
this expression more clear. The transition is made by setting the structure constants to
zero, fabc = 0, which also implies that the colour charge density of the gauge field [the
second term in Eq. (I.104)] vanishes—the electromagnetic field carries no charge. The
covariant derivative in the adjoint representation reduces to the normal one D̂ → ∂, which
also implies the Coulomb kernel to become

F ab
A (x,y) →

[
(−∂2)−1 (−∂2) (−∂2)−1

]ab
x,y

= δab
[
(−∂2)−1

]
x,y

d=3
=

δab

4π

1

|x− y| , (I.123)
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and the Faddeev–Popov determinant to reduce to the field-independent quantity

JA

∣∣
fabc=0

= Det(−∂2). (I.124)

The magnetic term also reduces to the usual squared curl of the vector potential; by
substituting Eqs. (I.123) and (I.124) into Eq. (I.122), the Coulomb gauge Hamiltonian for
the U(1) gauge group becomes

H =
1

2

∫
d3x

[
Π(x)2 +

(
∇×A(x)

)2]
+
g2

2

∫
d3xd3y

ρext(x) ρext(y)

4π |x− y| , (I.125)

which represents the total energy of an electromagnetic field with static external charges.

Since the Hamiltonian Eq. (I.122) does not change if the Faddeev–Popov determinant
JA [Eq. (I.94)] is multiplied by a constant, JA can be rescaled

JA = Det(−D̂∂) −→ Det(−D̂∂)
Det(−∂2) (I.126)

so that JA = 1 for g = 0.
The θ-dependent terms, discussed in Sec. I.3.3, have not been considered here. The

implementation of the gauge in these terms is straightforward, and a short presentation is
given in Article 5.

I.4.3 Variational approach in the Schrödinger picture

The Coulomb gauge Hamilton operator Eq. (I.122) has been subject of intensive studies
over the last few years [10–12]. In a variational approach, an ansatz depending on some
parameters is chosen for the vacuum wave functional ψ[A]. These parameters are then
determined through a variational principle by minimizing the energy functional,

E[ψ] =

∫
DA JA ψ

∗[A]Hym

[
A,−i δ

δA

]
ψ[A] −→ min. (I.127)

In particular, a Gaussian-type wave functional, depending on a variational kernel ω, has
been investigated [11,12]

ψω[A] = J−1/2
A exp

{
−1

2

∫
ddp

(2π)d
Aa

i (−p)ω(p)Aa
i (p)

}
. (I.128)

Within this ansatz, the variational kernel ω(p) turns out to represent the inverse gluon
propagator,

〈
Aa

i (p)A
b
j(q)

〉
=

∫
DA JA |ψω[A]|2 Aa

i (p)A
b
j(q) = δab

tij(p)

2ω(p)
δ̄(p+ q). (I.129)

The minimization of the energy density as given in Eq. (I.127) leads to a set of integral
equations for the kernel ω(p) (the ‘gap’ equation), and for the ghost and the Coulomb
form factors (discussed in Article 4). An infrared analysis of the equations [24] has shown
the existence of two possible power law solutions for the gluon propagator, and both of
them have been found numerically [11,12].
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The numerical results obtained so far seem to grasp the essential features of the infrared
physics. The obtained gluon energy (see Fig. 4.16, p. 109) approaches its perturbative form
in the high-momentum regime, and diverges in the infrared. One of the two possible solu-
tions [12] yields furthermore a linearly rising static quark potential, an infrared enhanced
running coupling constant with no Landau pole [24], a topological susceptibility in accord
with lattice data (see Article 5), a perimeter law for the ’t Hooft loop [25], and, within an
approximate Dyson equation, an area law for the spatial Wilson loop [26].

I.5 Overview of the thesis

This thesis is presented in cumulative form. Rather than grouping the papers in public-
ation order, it seemed more appropriate to arrange them in a logical pattern. The main
consequence of this choice is that the oldest article (which presents an application of the
general methods described in the previous ones) is the last in the sequence.

Article 1 deals with an heat-kernel expansion of the Faddeev–Popov determinant. While
in perturbative approaches it is common to introduce ghost fields and exploit BRST invari-
ance to renormalize the theory, in the Hamiltonian approach the Faddeev–Popov determ-
inant is treated non-perturbatively. The heat kernel allows one to identify the divergences,
which can be removed by introducing appropriate counterterms.

Article 2 contains a perturbative analysis of propagators in pure Yang–Mills theory.
By means of standard Rayleigh–Schrödinger perturbation theory, the corrections to the
vacuum wave functional of the free theory are evaluated and used to compute two-point
functions. From the non-renormalization of the ghost-gluon vertex, the first coefficient of
the β function can be extracted.

Article 3 shows an alternative approach to the Yang–Mills Schrödinger equation, based
on a Volterra series for the exponent of the vacuum wave functional. The perturbative
results of Article 2 are re-derived by a perturbative solution of the Schrödinger equation,
and a diagrammatic technique to handle the occurring terms is developed. The one-
loop perturbative results of Article 2 are further analysed, and the one-loop anomalous
dimensions are evaluated through renormalization group improvement.

Article 4 eventually focuses on a non-perturbative treatment of the vacuum wave func-
tional beyond the Gaussian ansatz Eq. (I.128). After choosing a suitable ansatz, Dyson–
Schwinger techniques are used to evaluate the vacuum expectation value of the Hamilton
operator. The variation of the so-evaluated energy density with respect to the kernels
of the ansatz allows to fix them. A new gap equation for the gluon propagator, which
embodies a gluon-loop term, is derived.

Article 5 presents the derivation of the Hamilton operator including the terms involving
the vacuum angle θ. The wave functional obtained previously in the θ = 0 sector is
exploited to evaluate the topological susceptibility, which is closely related to the mass of
the η′ meson.
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As a first step into the inclusion of dynamical fermions, the last chapter presents the
perturbative treatment of quarks. The calculations are performed along the same lines of
Article 2. The quark-loop contribution to the gluon propagator and its effect on the β
function are evaluated. Also the quark propagator and its one-loop renormalization are
briefly discussed.
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Published in Eur. Phys. J. C68, 299–303 (2010); preprint arXiv:1001.5414.
c© Springer-Verlag / Società Italiana di Fisica 2010

Abstract The Faddeev–Popov determinant of Landau gauge in d dimensions and Cou-
lomb gauge in d + 1 dimensions is calculated in the heat-kernel expansion up to next-
to-leading order. The UV-divergent parts in d = 3, 4 are isolated and the counterterms
required for a non-perturbative treatment of the Faddeev–Popov determinant are determ-
ined.

1.1 Introduction

In recent years there has been a strong interest in non-perturbative approaches to con-
tinuum Yang–Mills theory and much research has been carried out in this field. Most of
these approaches rely on gauge fixing by the Faddeev–Popov method. This concerns, in
particular, the Dyson–Schwinger equation approach in Landau gauge (for recent reviews
see Refs. [1,2]) and in Coulomb gauge [3,4], and the Hamiltonian approach in Coulomb
gauge [5,6]. Furthermore, in Coulomb and Landau gauge the Faddeev–Popov determinant
is assumed to dominate the infrared sector of the theory, see e.g. Ref. [7]. For this reason,
the spectrum of the Faddeev–Popov operator in Coulomb and Landau gauge has been
subject to various lattice studies [8–11].

The standard way to renormalize the theory is to represent the Faddeev–Popov de-
terminant by ghost fields and use the BRST invariance of the resulting local field theory.
In some cases it is, however, advantageous not to introduce ghost fields but to keep the
Faddeev–Popov determinant explicit and treat it non-perturbatively. This is, in particu-
lar, the case in the Hamiltonian approach in Coulomb gauge [6]. The renormalization of
this theory requires then to identify the ultraviolet singular pieces of the Faddeev–Popov
determinant and to remove them by appropriate counterterms. In Ref. [12] the UV coun-
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terterms of the Faddeev–Popov determinant in d = 3 + 1 Coulomb gauge were identified
using an approximate expression for the Faddeev-Popov determinant [13]

lnDet(−D∂) = −
∫

d3xd3y A(x)χ(x, y)A(y), (1.1)

where χ is the so-called curvature, which represents the ghost loop contribution to the
gluon self-energy. The representation (1.1) can be shown to be correct to 2-loop order for
the energy. Not surprisingly the required counterterm to lnDet(−D∂) was found from
this representation to be given by a mass-like term

C

∫
d3x A2(x) (1.2)

with the coefficient C being linear in the UV cut-off. In the present paper we will calculate
the counterterm to the Faddeev–Popov determinant exactly without resorting to the rep-
resentation (1.1) and also determine the precise numerical coefficient of the counterterm.
For this purpose we carry out a heat-kernel expansion of the Faddeev–Popov determinant
in d = 3, 4 Landau gauge. The d = 3 Landau gauge corresponds to the d = 3+1 Coulomb
gauge, the case of most interest to us.
The organization of the paper is as follows: in Sec. 1.2 we briefly summarize the heat-

kernel expansion of functional determinants. In Sec. 1.3 we carry out the heat-kernel
expansion for the Fadeev–Popov operator in Landau gauge. The corresponding heat coef-
ficients are evaluated in Sec. 1.4, and the UV-divergent terms are isolated in Sec. 1.5.
Finally in Sec. 1.6 we present our conclusions.

1.2 Heat-kernel expansion of functional determinants

We essentially follow Ref. [14] here. The determinant of a positive definite operator M
can be represented by the following proper-time integral

Tr lnM = −
∫ ∞

1/Λ2

dτ τ−1 TrK(τ), (1.3)

where Λ is an ultraviolet momentum cut-off and

K(τ) = e−Mτ (1.4)

is the heat kernel. Furthermore, Tr includes both the trace over the discrete indices tr and
the integration over space time

∫
ddx. The heat kernel (1.4) satisfies the heat equation

∂τK(τ) +MK(τ) = 0 (1.5)

and the boundary condition
K(τ = 0) = 1. (1.6)

In the usual situation the operator under interest M contains a “free” partM0, which can
be treated exactly. In this case it is convenient to express the full heat kernel as

〈x|K(τ) |y〉 = 〈x|K0(τ) |y〉 〈x|H(τ) |y〉, (1.7)
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where
K0(τ) = e−τM0 (1.8)

is the free heat kernel satisfying

(
∂τ +M0

)
K0(τ) = 0, K0(τ = 0) = 1, (1.9)

and H(τ) embodies all the “interactions”. From the boundary conditions to the heat
kernels follows the boundary condition for the interaction part

H(τ = 0) = 1. (1.10)

The interaction part H(τ) is then expanded in powers of the proper time τ

〈x|H(τ) |y〉 =
∞∑

n=0

hn(x, y) τ
n, (1.11)

where the hn(x, y) are referred to as heat coefficients. Equation (1.10) implies

h0(x, x) = 1. (1.12)

With Eqs. (1.7) and (1.11) we find for the functional determinant Eq. (1.3)

Tr lnM = −
∞∑

n=0

∫ ∞

1/Λ2

dτ τn−1 Tr
(
K0(τ)hn

)
. (1.13)

The advantage of the heat-kernel expansion Eq. (1.13) is that with increasing order n the
terms become less and less ultraviolet singular and only the first few terms are ultraviolet
singular while, starting at a certain n (which depends on the number of space-time di-
mensions), the terms are ultraviolet finite. In the following we shall apply this heat-kernel
expansion to the Faddeev–Popov determinant in Landau gauge in d = 3, 4 Euclidean
dimensions.

1.3 Heat kernel evaluation of the Faddeev–Popov determinant

in Landau gauge

The Faddev–Popov kernel in Landau gauge

∂A = 0 (1.14)

is given by
M = −D∂, (1.15)

where
D = ∂ +A, A = AaT a, (T a)bc = f bac (1.16)

denotes the covariant derivative in the adjoint representation of the gauge field. Here and
in the following all matrix valued quantities will be defined in the adjoint representation
of the gauge group. Furthermore, we have absorbed the coupling constant in the gauge
field. Note that the Faddeev–Popov operator (1.15) is positive definite in the first Gribov
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region, to which the gauge fields should be restricted, and hence its determinant can
be expressed by the proper-time integral Eq. (1.3). One should mention, however, that
the Faddeev–Popov operator has constant zero modes corresponding to the global gauge
invariance, which is not fixed by the Landau gauge condition (1.14). However, these zero
modes occur also for the “unperturbed” operator M0 = −∂2 and should hence cancel in
the ratio DetM/DetM0, which we will consider here.
To illustrate the troubles of the Gribov region in the continuum theory, consider constant

gauge fields in SU(2). For constant gauge fields the eigenvalues of the Faddeev–Popov
operator are given by (see Ref. [15])

λk,σ = k2 − σ b |k|, σ = 0,±1 (1.17)

where

b =
√

(Aa
i k̂i)(A

a
j k̂j) k̂ = k/|k|. (1.18)

It is seen that even for very small Aa
i = const there exists always momenta |k| < b so

that the eigenvalue of Eq. (1.17) with σ = 1 becomes negative and the constant field
configuration is outside the first Gribov region. This shows that in the continuum theory
even arbitrary small (e.g. constant) gauge fields are outside the first Gribov region. On
the lattice, constant gauge fields are inside the first Gribov region as long as b [Eq. (1.18)]
is smaller than the smallest non-zero momentum (the k = 0 eigenvalue cancels against
the k = 0 eigenvalue of M0 = −∂2). To guarantee that the sufficiently small gauge fields
are inside the first Gribov region we will introduce an IR cut-off µ into the proper time
integral by inserting the factor exp(−µ2τ) into Eq. (1.13).
Choosing the unperturbed part of the Faddeev–Popov operator as

M0 = −∂2, (1.19)

the free heat kernel (1.8) in d-Euclidean dimensions is given by

〈x|K0(τ) |y〉 = (4πτ)−d/2 e−
(x−y)2

4τ . (1.20)

Once the unperturbed part M0 is specified, a recursion relation for the heat coefficients
is derived from the heat equations (1.5), (1.9). With the above choice of M (1.15) and
M0 (1.19), inserting the ansatz Eq. (1.7) into the heat equation (1.5) and exploiting the
unperturbed heat equation (1.9), one obtains the following differential equation for the
interaction part

[
∂τ − ∂2 +

1

τ
(x− y)∂ +

1

2τ
(x− y)A−A∂

]
〈x|H(τ) |y〉 = 0. (1.21)

Using the Landau gauge condition (1.14), this equation can be expressed as
[
∂τ +

1

τ
(x− y)D − 1

2τ
(x− y)A−D∂

]
〈x|H(τ) |y〉 = 0. (1.22)

Inserting here the expansion of the interaction kernel in terms of the proper time [Eq.
(1.11)] one derives the following recursion relation for the heat coefficients hn(x, y)

[
(k + 1) + (x− y)

(
D − 1

2
A
)]
hk+1(x, y) = D∂hk(x, y), (1.23)
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with the initial condition

(x− y)
(
D − 1

2
A
)
h0(x, y) = 0. (1.24)

Note that the equations (1.23) and (1.24) are independent of the number of dimensions
so that the heat coefficients hk are the same in all dimensions. The dependence on the
number of dimensions is entirely contained in the free heat kernel [Eq. (1.20)].

Due to the boundary condition (1.12) the term with n = 0 yields the determinant
of the unperturbed kernel (1.19). We therefore find with the explicit expression for the
unperturbed kernel (1.20) from (1.13)

ln
Det(−D∂)
Det(−∂2) = −(4π)−d/2

∞∑

n=1

∫ ∞

1/Λ2

dτ e−µ2τ τn−1−d/2 Trhn , (1.25)

where

Trhn ≡
∫

ddx trhn(x, x). (1.26)

From the representation (1.25) it is seen that the terms with

n− d

2
≤ 0 (1.27)

are ultraviolet divergent, i.e. for n < d
2 we obtain power divergences Λd−2n, while for n = d

2

we obtain a logarithmic UV-divergence. Furthermore for µ = 0 the terms with n− d
2 ≥ 0

are infrared divergent, which is a manifestation of the presence of gauge fields escaping
the first Gribov region as discussed above. Keeping µ finite yields

ln
Det(−D∂)
Det(−∂2) = −(4π)−d/2

∞∑

n=1

µd−2n Γ
(
n− d

2
,
µ2

Λ2

)
Trhn , (1.28)

where

Γ(a, z) =

∫ ∞

z
dτ τa−1 e−τ (1.29)

is the incomplete Gamma function. In the UV-finite terms n > d
2 we can let Λ → ∞.

Then the µ-dependence of these terms is given by

µd−2n, (1.30)

i.e. these terms are diverging for µ → 0. We are interested here only in the UV-divergent
part of the Faddeev–Popov determinant in d = 3, 4, which can be easily extracted. For
this purpose it is sufficient to calculate the heat coefficients up to including h2(x, x), which
we will do next.

1.4 Calculation of the heat coefficients

The heat-kernels of generalized Laplacian operators were studied by a number of authors,
see e.g. Ref. [16]. Below we explicitly calculate the leading and next-to-leading order heat
coefficients of the Faddeev–Popov operator (1.15). To this purpose, it is useful to introduce

D̄ = ∂ +
1

2
A = D − 1

2
A, (1.31)
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which is essentially a covariant derivative with a rescaled field. The Faddeev–Popov op-
erator can then be rewritten as

−D∂ = −(D̄ + 1
2A)(D̄ − 1

2A) = −D̄2 + 1
4A

2, (1.32)

where we have used the Landau gauge condition ∂A = [D̄,A] = 0, and the recursion
relation for the heat coefficients Eq. (1.23) and the initial condition Eq. (1.24) become

(x− y)D̄h0(x, y) = 0, (1.33a)
[
(k + 1) + (x− y)D̄

]
hk+1(x, y) =

[
D̄2 − 1

4A
2
]
hk(x, y). (1.33b)

Putting k = 0 in the recursion relation (1.33b) and taking the coincidence limit y → x
yields

h1(x, x) =
[
D̄2h0(x, y)

]
x=y

− 1

4
A2. (1.34)

Acting with D̄µD̄ν on the initial condition Eq. (1.33a) yields

0 = (D̄µD̄ν + D̄νD̄µ)h0(x, y) +O(x− y)

=
{
2D̄µD̄ν +

[
D̄ν , D̄µ

]}
h0(x, y) +O(x− y) (1.35)

In the coincidence limit this yields

[
D̄µD̄νh0(x, y)

]
x=y

=
1

2
F̄µν , (1.36)

where F̄µν is the field stregth tensor constructed with the covariant derivative D̄ (i.e. with
the rescaled gauge field A/2). This implies that the first term in Eq. (1.34) vanishes, and
the first heat coefficient reads

h1(x, x) = −1

4
A2. (1.37)

With the generators T a in the adjoint representation satisfying tr T aT b = −Ncδ
ab we

eventually obtain

Trh1 =
Nc

4

∫
ddxAa

µ(x)A
a
µ(x). (1.38)

To find the second heat coefficient h2 we put k = 1 in the recusion relation (1.33b),
yielding in the coincidence limit

2h2(x, x) =

[
D̄2 − 1

4
A2

]
h1(x, y)

∣∣
x=y

=
(
D̄2h1(x, y)

)
x=y

+
1

16
(A2)2. (1.39)

where we have used Eq. (1.37). To calculate the right-hand side of Eq. (1.39) we act with
the operator D̄2 on the recursion relation (1.33b) with k = 0

D̄2
[
1 + (x− y)D̄

]
h1(x, y) =

[
3D̄2 +O(x− y)

]
h1(x, y) = D̄2

[
D̄2 − 1

4A
2
]
h0(x, y) (1.40)

which yields from Eq. (1.39)

h2(x, x) =
1

6

(
D̄2D̄2 − 1

4
D̄2A2

)
h0(x, y)

∣∣
x=y

+
1

32
(A2)2. (1.41)
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The second term in Eq. (1.41) can be rewritten as

D̄2A2 =
[
D̄µ,

[
D̄µ, A

2
]]

+ 2
[
D̄µ, A

2
]
D̄µ +A2D̄2. (1.42)

The last two terms give a vanishing contribution when acting on h0 in the coincidence
limit (see above), while the first one, being a total commutator, gives no contribution
when the trace in color space is taken. Thus the whole term can be discarded. Applying
the operator D̄2D̄2 on the initial condition (1.33a) one gets

0 = D̄2D̄2
[
(x− y)D̄h0(x, y)

]
= 2(D̄2D̄2 + D̄µD̄

2D̄µ)h0(x, y) +O(x− y). (1.43)

Using the identity

D̄2D̄2 − D̄µD̄
2D̄µ = F̄µν F̄µν +

[
D̄µ, F̄µν

]
D̄ν (1.44)

applied to h0 and adding this to Eq. (1.43) we get finally

2D̄2D̄2h0(x, y) =
(
F̄ 2
µν +

[
D̄µ, F̄µν

]
D̄ν

)
h0(x, y). (1.45)

The commutator term in Eq. (1.45) gives no contribution in the coincidence limit, since
D̄µh0(x, y) = O(x− y) by the initial condition (1.33a). The second heat coefficient reads
then

trh2(x, x) =
1

12
tr F̄µν F̄µν +

1

32
tr(A2)2. (1.46)

The first term in Eq. (1.46) can of course be expressed in terms of the actual field strength
tensor Fµν , which is related to F̄µν by

F̄µν =
1

2
Fµν −

1

4

[
Aµ, Aν

]
. (1.47)

The heat coefficient (1.46) then becomes

Trh2 =
1

48

∫
ddx tr

[(
Fµν −

1

2

[
Aµ, Aν

])2

+
3

2
(A2)2

]
. (1.48)

1.5 The counterterms for d = 3 + 1 Coulomb gauge and d = 4
Landau gauge

We are interested here in the divergent part of the Faddeev–Popov determinant in d = 3
and d = 4 dimensions. We start with the d = 3 dimensional case, which corresponds to
Coulomb gauge in d = 3+1 and is of most interest to us. In this case the only UV-divergent
term in (1.25) is n = 1. Since

Γ
(
−1

2 , x
)
= 2

[
e−x

√
x
− Γ

(
1
2 , x
)]
, (1.49)

this term is IR-finite so that we can take the limit µ = 0 yielding

ln
Det(−D∂)
Det(−∂2)

∣∣∣∣
div

= − 1

(4π)3/2
2Λ Trh1 . (1.50)
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Inserting the explicit expression for the heat-coefficient h1 (1.38), we obtain for the diver-
gent part of the Faddeev–Popov determinant

ln
Det(−D∂)
Det(−∂2)

∣∣∣∣
div

= −Nc

2
(4π)−3/2Λ

∫
d3x
(
Aa

i (x)
)2
. (1.51)

This result is consistent with Ref. [12], where it was found that (to the order considered)
the renormalization of the Faddeev-Popov determinant requires a counterterm of the type
(1.2). Here we have proven that, in general, in d = 3 there is only one UV-divergent
counterterm required and that the coefficient of this term is linearly divergent.
In d = 4 the terms in Eq. (1.28) with n = 1, 2 are UV-divergent yielding

ln
Det(−D∂)
Det(−∂2)

∣∣∣∣
div

= − 1

(4π)2

[
Λ2 Trh1 + ln

Λ2

µ2
Trh2

]
. (1.52)

The heat coefficients hn are the same as in d = 3 and are given by Eqs. (1.37) and (1.48).
A comment is here in order: it is well known that gauge invariance forbids the occurrence

of quadratically divergent mass terms. In fact, these terms disappear due to a cancellation
between contributions from ghost and gluon loops. Since we are dealing here only with
the Faddeev–Popov determinant, i.e. with the ghost loop, such terms will occur.

1.6 Summary and conclusions

We have performed a heat-kernel expansion of the Faddeev–Popov determinant in Lan-
dau/Coulomb gauge. We have shown that in d = 3 Landau (d = 3 + 1 Coulomb) gauge
there is a single, unique UV-divergent counterterm required, which is given by Eq. (1.51).
It represents a mass term whose coefficient is linearly UV-divergent. In d = 4 Landau
gauge there are two UV counterterms required, which are respectively quadratically and
logarithmically UV-divergent. The latter term and all the UV-finite terms are IR-singular,
reflecting the absence of a mass scale in the original theory. However, as is well known
the scale anomaly gives rise to dimensional transmutation which manifests itself in gluon
condensation and the generation of a dynamical mass scale. To access the UV-finite
terms in the heat-kernel expansion, this dynamical mass scale has to be included in the
unperturbed heat-kernel. In principle, the heat-kernel expansion is a type of gradient
expansion, which should be applicable in the infrared, provided the unperturbed kernel is
adequately choosen. This expansion is, however, bound to fail near the Gribov horizon,
where the Faddeev–Popov operator develops a zero eigenvalue.
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Abstract We study the Hamiltonian approach to Yang–Mills theory in Coulomb gauge
in Rayleigh–Schrödinger perturbation theory. The static gluon and ghost propagator
as well as the potential between static colour sources are calculated to one-loop order.
Furthermore, the one-loop β function is calculated from both the ghost-gluon vertex and
the static potential and found to agree with the result of covariant perturbation theory.

2.1 Introduction

In recent years, there has been a renewed interest in Yang–Mills theory in Coulomb gauge
both in the continuum [1–8] and on the lattice [9–12]. This gauge has several advantages
over the frequently used Landau gauge. Among these are: the use of the physical degrees
of freedom (at least in QED) and the explicit emergence of a static colour charge poten-
tial. Furthermore, in this gauge the form factor of the ghost propagator represents the
dielectric function of the Yang–Mills vacuum [13]. The disadvantage of this gauge is, of
course, that it is non-covariant, which is considered a drawback for perturbation theory,
and renormalisability is yet to be proven. Recently, there has been much activity in the
Hamiltonian approach to Yang–Mills theory in Coulomb gauge [1,2,5,6,13–16]. By means
of a physically motivated ansatz for the vacuum wave functional, a variational solution
of the Yang–Mills Schrödinger equation has been accomplished [2,3,5]. The so-called gap
equation resulting from the minimization of the vacuum energy density was converted
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into a set of Dyson–Schwinger equations for the static gluon, ghost and Coulomb propag-
ators. Due to the particular ansatz for the vacuum wave functional used, which grasps
the essential infrared physics, the resulting gluon propagator does not yield the proper
ultraviolet (UV) asymptotics known from perturbation theory. The reason is that the
three-gluon vertex does not contribute to the vacuum energy density for the ansatz of the
wave functional considered.
In the present paper, we carry out a thorough perturbative calculation in the Hamilto-

nian approach to Yang–Mills theory. We will use the standard Rayleigh–Schrödinger
perturbation theory and carry out the calculations up to and including one-loop order. In
particular, we will produce the correct one-loop expression for the perturbative β function
which has been found in the functional integral approach [7,8] before. Because of asymp-
totic freedom, we thus have a correct description of the UV regime (to one-loop precision).
With the correct perturbative results at hand, we show how the variational approach has
to be modified to yield the correct UV asymptotics. Furthermore, the perturbative calcu-
lations performed in the present paper can be extended to calculate systematic corrections
to the non-perturbative variational vacuum solution and to construct a complete basis for
the Hilbert space of Yang–Mills theory, which is required for the calculation of the par-
tition function or free energy. In a forthcoming paper, the latter will be minimized to
achieve a description of the deconfinement phase transition at finite temperatures in the
Hamiltonian approach.

2.2 Perturbative expansion of the Yang–Mills Hamiltonian

2.2.1 The Yang–Mills Hamiltonian in Coulomb gauge

In the absence of matter fields, the Yang–Mills Hamiltonian in Coulomb gauge reads [17]

Hym =

∫
ddx

[
1

2
J −1
A Πa

i (x)JAΠa
i (x) +

1

4
F a
ij(x)F

a
ij(x)

]
+

+
g2

2

∫
ddxddy Âac

i (x)J −1
A Πc

i (x)JA F
ab
A (x,y)Âbd

j (y)Πd
j (y), (2.1)

where x is a vector in d space dimensions, Aa
i is the transverse gauge field operator, Πa

i is
the transverse momentum operator satisfying the canonical commutation relations

[
Aa

i (x),Π
b
j(y)

]
= i δab tij(x) δ(x − y), tij(x) = δij − ∂i∂j/∂

2, (2.2)

and
F a
ij = ∂iA

a
j − ∂jA

a
i + g fabcAb

iA
c
j (2.3)

is the field strength tensor (g is the coupling constant, fabc are the structure constants
of the su(Nc) algebra, and Â

ac = fabcAb is the gauge field operator in the adjoint colour
representation). Furthermore,

JA = Det(−D̂ · ∂)/Det(−∂2), D̂ab
i = δab ∂i + gÂab

i (2.4)

is the Faddeev–Popov determinant of Coulomb gauge, and

F ab
A (x,y) =

[
(−D̂ · ∂)−1 (−∂2) (−D̂ · ∂)−1

]ab
x,y

(2.5)
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the so-called Coulomb kernel.

The Coulomb gauge ∂iA
a
i = 0 is implemented in the scalar product of the Hilbert space

of Yang–Mills wave functionals by the Faddeev–Popov method, yielding for the matrix
elements of observables O[A,Π]

〈ψ1|O |ψ2〉 =
∫

DA JA ψ
∗
1 [A]O[A,Π]ψ2[A], (2.6)

where the integration is over the transverse gauge fields only.

It is convenient to remove the Jacobian JA from the integration measure by defining

ψ[A] = J −1/2
A ψ̃[A], Õ = J 1/2

A OJ−1/2
A . (2.7)

The transformed Hamiltonian H̃ is then obtained from Eq. (2.1) by replacing the mo-
mentum operator Π by the transformed one

Π̃a
i (x) = J 1/2

A Πa
i (x)J −1/2

A = Πa
i (x) +

i

2

δ lnJA

δAa
i (x)

. (2.8)

This yields

H̃ym =

∫
ddx

[
1

2
Π̃a†

i (x) Π̃a
i (x) +

1

4
F a
ij(x)F

a
ij(x)

]
+

+
g2

2

∫
ddxddy Âac

i (x)Π̃c†
i (x)F ab

A (x,y)Âbd
j (y)Π̃d

j (y).

(2.9)

In the following, Dirac’s bra-ket notation will refer to the transformed space where no
Faddeev–Popov determinant occurs in the functional integration measure.

For perturbation theory, it will be convenient to expand the gauge field in Fourier modes.
We use the following conventions

Aa
i (x) =

∫
ddp

(2π)d
eip·xAa

i (p), Πa
i (x) =

∫
ddp

(2π)d
eip·xΠa

i (p), (2.10)

where the transformed fields satisfy the canonical commutations relations

[
Aa

i (k),Π
b
j(p)

]
= i δabtij(k) (2π)

d δ(k + p), (2.11)

and where tij(k) = δij − kikj/k
2 is the transverse projector in momentum space. To

simplify the notation, we introduce the following shortcuts

d̄p ≡ ddp

(2π)d
, δ̄(p) ≡ (2π)dδ(p). (2.12)

2.2.2 Expansion of the Hamiltonian

Expanding the Hamiltonian H̃ym [Eq. (2.9)] in powers of the coupling constant g, thereby
using JA = 1 +O(g2) and

Π̃†Π̃ = Π2 − J−1/2
A

[
Π,
[
Π,J 1/2

A

]]
, (2.13)
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we obtain
H̃ = H0 + gH̃1 + g2H̃2 +O(g3), (2.14)

where the unperturbed Hamiltonian

H0 =
1

2

∫
ddx

[(
Πa

i (x)
)2 −Aa

i (x) ∂
2Aa

i (x)
]

(2.15)

is the Hamiltonian of QED except for the extra colour index of the gauge field. The first
order term gH̃1 arises from the expansion of the magnetic energy

∫
ddxF 2

ij and is given by
the three-gluon vertex

H̃1 =
i

3!
fa1a2a3

∫
d̄k1 d̄k2 d̄k3 δ̄(k1 + k2 + k3) T (1, 2, 3)A(1)A(2)A(3). (2.16)

Here we have introduced the shorthand notation A(1) ≡ Aa1
i1
(k1) and T (1, 2, 3) carries the

(totally antisymmetric) Lorentz structure of the three-gluon vertex,

T (1, 2, 3) := ti1j(k1) ti2l(k2) ti3m(k3)
[
δjl(k2−k1)m+δlm(k3−k2)j+δjm(k1−k3)l

]
. (2.17)

Finally, the second-order term

H̃2 = C +
1

2
faa1a2faa3a4

∫
d̄k1 . . . d̄k4 δ̄(k1 + k2 + k3 + k4)

×
[
δi1i3 δi2i4

2
A(1)A(2)A(3)A(4) +

δi1i2 δi3i4
(k1 + k2)2

A(1)Π(2)A(3)Π(4)

]
. (2.18)

contains besides the usual four-gluon vertex (first term in the bracket) also a contribution
from the Coulomb term (second term in the bracket) arising from the expansion of the
Coulomb kernel (2.5). Note that the Coulomb term is already O(g2), see Eq. (2.9), so
that to the order considered we can replace the Coulomb kernel Eq. (2.5) simply by its
bare form (−∂2)−1. The first term in Eq. (2.18) is an irrelevant constant arising from the
expansion of the second term in Eq. (2.13). Since such a constant does not influence the
wave functional, we will skip it in the following.
Since we will use dimensional regularization, in order to preserve the dimension of the

dressing functions we will replace

g → gµ(3−d)/2, (2.19)

with µ being an arbitrary mass scale.

2.2.3 The unperturbed basis

The perturbative vacuum state ψ0[A] = 〈A|0〉 is given by

〈A|0〉 = N exp

{
−1

2

∫
d̄k Aa

i (k) tij(k) |k|Aa
j (−k)

}
. (2.20)

Up to the colour index of the gauge field, this is precisely the exact vacuum wave functional
for QED without fermions. This state is the lowest energy eigenstate of H0 [Eq. (2.15)]
with energy

E0 = (N2
c − 1)

d − 1

2
δ̄(0)

∫
d̄k |k|, (2.21)
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where δ̄(0) =
∫
ddx is the spatial volume. To restrict the Coulomb gauge field to its trans-

verse degrees of freedom, it is convenient to introduce the eigenvectors of the transverse
projector tij(k) in d spatial dimensions with eigenvalue 1

tij(k) c
σ
j (k) = cσi (k), (2.22)

where σ labels the d − 1 different eigenvectors. From kitij(k) = 0 it follows immediately
that these eigenvectors are orthogonal to k

kic
σ
i (k) = 0. (2.23)

Assuming the normalization
cσi

∗(k) cτi (k) = δστ , (2.24)

these vectors satisfy the “completeness” relation in the transverse subspace

cσi (k) c
σ∗

j (k) = tij(k). (2.25)

Since the transverse projector tij(k) is a real symmetric matrix, it can be diagonalized by
an orthogonal transformation and hence the eigenvectors cσi (k) can be chosen real, which
we will assume below. Let us mention, however, that in d = 3 the cσi (k) are usually chosen
as the circular polarization vectors, which are complex.

The transverse components of the gauge field and their momenta are then given by

Aa
σ(k) := cσi (k)A

a
i (k), Πa

σ(k) := cσi (k)Π
a
i (k). (2.26)

In view of Eq. (2.11) they satisfy the commutation relation

[
Aa

σ(k),Π
b
τ (p)

]
= i δστ δ

abδ̄(k + p). (2.27)

In the transverse components of the gauge field, the perturbative vacuum state (2.20)
reads

〈A|0〉 = N exp

{
−1

2

∫
d̄k Aa

σ(k) |k|Aa
σ(−k)

}
. (2.28)

This state is annihilated by the operator

aaσ(k) =

√
|k|
2

[
Aa

σ(k) +
i

|k| Π
a
σ(k)

]
, aaσ(k) |0〉 = 0, (2.29)

which together with its Hermitian conjugate

aa†σ (k) =

√
|k|
2

[
Aa

σ(−k)− i

|k| Π
a
σ(−k)

]
(2.30)

fulfills the usual Bose commutation relation

[
aaσ(k), a

b†
τ (p)

]
= δabδστ δ̄(k− p). (2.31)

The unperturbed Hamiltonian Eq. (2.15) is diagonalized by the transformations (2.29),
(2.30)

H0 = E0 +

∫
d̄k |k| aa†σ (k) aaσ(k), (2.32)
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and accordingly the eigenfunctions of H0 are the multiple gluon states defined by

|g1g2 . . . gN 〉 = aa1†σ1
(k1) a

a2†
σ2

(k2) . . . a
aN †
σN

(kN ) |0〉 (2.33)

with energies

E0 +

N∑

i=1

|ki|. (2.34)

There are two ways to proceed now: given the unperturbed basis (2.33), one can express
the gauge field A and its momentum operator Π in the perturbations, Eqs. (2.16) and

(2.18), in terms of the creation and annihilation operators a†σ, aσ. Alternatively, since the
perturbation H̃1,2 is expressed in terms of the gauge field and its momentum, one may
wish to express the unperturbed basis states through A and Π using Eq. (2.30). This
yields

|g〉 =
√

2|k| Aa
σ(−k) |0〉. (2.35)

for a one-particle state, and

|g1, g2〉 =
[
2
√

|k1| |k2| Aa1
σ1
(−k1)A

a2
σ2
(−k2)− δa1a2 δσ1σ2 δ̄(k1 + k2)

]
|0〉, (2.36)

for a two-particle state, where the second term on the right-hand side of the last equation
arises from the canonical commutation relations. States with more gluons have similar
additional contraction terms. These contact terms ensure that the free n-gluon states are
orthogonal to each other and to the unperturbed vacuum. It turns out that the contact
terms simply eliminate from the matrix elements of observables the contractions of gauge
field operators stemming exclusively from the wave functionals. We can therefore use the
simplified representation

|g1, . . . , gn〉 =
[

n∏

i=1

√
2|ki| Aai

σi
(−ki)

]
|0〉, (2.37)

with the additional calculational rule that in the evaluation of matrix elements of the form
〈0|O[A,Π] |g1, . . . , gn〉, the A fields in the states Eq. (2.37) must not be contracted with
each other but only with A, Π occurring in the observable O[A,Π] .

2.2.4 Expansion of the vacuum wave functional

In Rayleigh–Schrödinger perturbation theory, the leading order (in the coupling constant)
corrections to the vacuum wave functional are given by

|0〉(1) = −
∑

n

1

n!

〈g1 . . . gn|H̃1 |0〉
|k1|+ · · · + |kn|

|g1 . . . gn〉, (2.38a)

|0〉(2) = −
∑

n

1

n!

1

|k1|+ · · · + |kn|
[
〈g1 . . . gn|H̃2 |0〉+ 〈g1 . . . gn|H̃1 |0〉(1)

]
|g1 . . . gn〉,

(2.38b)

where H̃1 and H̃2 are defined in Eqs. (2.16), (2.18), and the factors 1/n! avoid multiple
counting due to identical gluons (summation over colour and polarization indices and
integration over the momenta is implicit).
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It is now straightforward to calculate the perturbative corrections to the vacuum wave
functional. Since H̃1 contains three field operators and is antisymmetric in both colour and
Lorentz indices, in view of Eq. (2.37) it is clear that only three-gluon states will contribute
to |0〉(1) [Eq. (2.38a)], yielding

|0〉(1) = i

3!
fa1a2a3

∫
d̄k1 d̄k2 d̄k3

δ̄(k1 + k2 + k3)

|k1|+ |k2|+ |k3|
T (1, 2, 3)A(−1)A(−2)A(−3) |0〉. (2.39)

As a consequence, the second term in |0〉(2) [Eq. (2.38b)] receives contributions from up to

six-gluon states. Furthermore, since H̃2 contains terms with up to four field operators, the
first term in |0〉(2) will receive contributions from two- and four-gluon states. However, it
turns out that up to order g2 only two-gluon states contribute to the static propagators,
so that

|0〉(2) = −Nc
δa1a2

8

∫
d̄k1 d̄k2

δ̄(k1 + k2)

|k1|
[FB(1, 2) + FC(1, 2) + F1(1, 2)]A(−1)A(−2) |0〉,

(2.40)
where we have introduced the abbreviations

FB(1, 2) =
1

2

∫
d̄q

(d− 1)ti1i2(k1)− ti1i2(q)

|q| , (2.41a)

FC(1, 2) =

∫
d̄q

ti1i2(q)

(k1 − q)2

[
|q| − k2

1

|q|

]
, (2.41b)

F1(1, 2) = −1

2

∫
d̄k3 d̄k4

T (−1, 3, 4)T (2, 3, 4)

|k1|+ |k3|+ |k4|
δ̄(k2 + k3 + k4)

|k3| |k4|
. (2.41c)

Here, FB(1, 2) arises from the four-gluon vertex, FC(1, 2) from the Coulomb term, and
F1(1, 2) from the second-order contribution of the three-gluon vertex, see the last term in
Eq. (2.38b). We have also used the shorthand notation A(−1) = Aa1

i1
(−k1), etc. In the

Rayleigh–Schrödinger perturbation theory used in Eqs. (2.38), the correction to a wave
function of a given order is chosen to be orthogonal to the unperturbed wave function,

〈0|0〉(i) = 0, i ≥ 1. (2.42)

As a consequence, the wave functions obtained in a given order of perturbation theory are
not properly normalized. We are interested in the vacuum wave functional up to second
order

|Ω〉 = NΩ

[
|0〉+ g |0〉(1) + g2 |0〉(2) +O(g3)

]
. (2.43)

Calculating the normalization constant NΩ up to order g2 making use of Eq. (2.42), we
find for the properly normalized vacuum wave functional up to this order

|Ω〉 =
[
1− g2

2
(1)〈0|0〉(1)

]
|0〉+ g |0〉(1) + g2 |0〉(2) +O(g3). (2.44)

In the following sections we will use this perturbative expansion of the vacuum wave
functional to calculate various static propagators.
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2.3 Ghost propagator

The Green function (or inverse) GA of the Faddeev–Popov operator is defined by

−D̂ab
i ∂

x
i G

bc
A (x,y) = δac δ(x− y). (2.45)

Expanding GA in a power series in the coupling constant

Gab
A (x,y) =

∑

n=0

gnGab
n [A](x,y) (2.46)

we get from (2.45) the recursion relation

−∂2xGab
n+1[A](x,y) = Âac

i (x)∂xi G
cb
n [A](x,y), n ≥ 0 (2.47a)

together with the initial condition

−∂2xGab
0 [A](x,y) = δab δ(x − y), (2.47b)

which defines the unperturbed static ghost propagator Gab
0 [A](x,y) as the Green function

of the Laplacian, which in momentum space reads

Gab
0 [A](k) = δabG0(k) =

δab

k2 . (2.48)

It is diagonal in colour space and independent of the gauge field. With this property,
it follows from Eq. (2.47a) that each term Gn[A] contains a product of n gauge field
operators.
The ghost propagator is defined as the expectation value of the inverse Faddeev–Popov

operator in the vacuum state |Ω〉,

Gab(x,y) = 〈Ω|Gab
A (x,y) |Ω〉. (2.49)

Since GA does not depend on the momentum operator Π, it does not change under the
transformation to the “radial” Hilbert space, i.e. G̃A = GA [see Eq. (2.7)]. Furthermore,
contrary to the Faddeev–Popov operator, the vacuum expectation value of its inverse, the
static ghost propagator, is translationally invariant.
Inserting the expansions Eq. (2.46) for GA and Eq. (2.44) for |Ω〉 into Eq. (2.49) it is

possible to show that many terms vanish or cancel, so that the ghost propagator reduces
to

Gab(x,y) = Gab
0 (x,y) + g2〈0|Gab

2 [A](x,y) |0〉+O(g3). (2.50)

The second-order term in Eq. (2.50) can be evaluated by means of the recursion relation
Eq. (2.47a), yielding

Gab
2 [A](x,y) =

[
G0 (Â · ∂)G0 (Â · ∂)G0

]ab
x,y

, G0 = (−∂2)−1. (2.51)

The vacuum expectation value of Eq. (2.51) can be expressed through the bare static
gluon propagator, which in view of Eq. (2.20) reads

D0(1, 2) = 〈0|A(1)A(2) |0〉 = δa1a2 δ̄(k1 + k2)
ti1i2(k1)

2|k1|
. (2.52)
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Then for the ghost form factor Dc(k) defined by

G(x,y) =:

∫
d̄k eik·(x−y) Dc(k)

k2 , (2.53)

we get the following expression at one-loop order

Dc(k) = 1 + g2 µ3−d Nc

2k2

∫
d̄q

ki kj tij(q)

(k− q)2 |q| +O(g3). (2.54)

The integral (2.54) is standard and can be evaluated in dimensional regularization with
d = 3− 2ε in the usual way, yielding

Dc(k) = 1 + g2
Nc

(4π)2−ε

[
4

3

(
1

ε
− ln

k2

µ2
− γe

)
− 8

3
ln 2 +

28

9
+O(ε)

]
. (2.55)

2.4 Gluon propagator

2.4.1 Gluon propagator in the Hamiltonian approach

The full static gluon propagator is defined in momentum space by

δ̄(k+ p)Dab
ij (k) = 〈Ω|Aa

i (k)A
b
j(p) |Ω〉. (2.56)

With the expansion (2.44) for the vacuum functional, the nonvanishing terms up to order
O(g2) are

δ̄(k1 + k2)D
a1a2
i1i2

(k1) = D0(1, 2)
[
1− g2

(1)〈0|0〉(1)
]
+

+ g2
[
(1)〈0|A(1)A(2) |0〉(1) + 〈0|A(1)A(2) |0〉(2) + (2)〈0|A(1)A(2) |0〉

]
, (2.57)

where D0 is the tree-level propagator given in Eq. (2.52). As for the static ghost propag-
ator, there are no terms of O(g), since the connected pieces of 〈0|AA |0〉(1) are given by the
expectation value of five gauge field operators, which vanishes.

The normalization factor [second term in the first line of Eq. (2.57)] cancels the discon-
nected piece of the first term in the second line. From Eq. (2.57) it is also clear that the
contributions to |0〉(2) with more than two-gluon states do not contribute to D(k) to the
order considered.

The matrix elements in Eq. (2.57) can be straightforwardly evaluated using the results
of Sec. 2.2. Moreover, the last term in the second line of Eq. (2.57) can be expressed in
terms of the preceding one since

(2)〈0|A(1)A(2) |0〉 = (2)〈0|A†(−1)A†(−2) |0〉 =
(
〈0|A(−1)A(−2) |0〉(2)

)∗
.

For the gluon form factor DA(k) defined by

Dab
ij (k) =: δab tij(k)

DA(k)

2|k| (2.58)
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Figure 2.1: Diagrammatic representation of Eq. (2.59). The curly and the full lines rep-
resent, respectively, the static gluon and Coulomb propagators.

we get at one-loop level

DA(k) = 1− g2µ3−d Nc

8(d− 1)k2

∫
d̄q

d2 − 3d+ 3− (k̂ · q̂)2
|q| +

+ g2µ3−d Nc

4(d− 1)

∫
d̄q

tij(k) tij(q)

(k− q)2

[
1

|q| −
|q|
k2

]
+

+ g2µ3−d Nc

8(d− 1)k2

∫
d̄q d̄p

T (p,k,q)(2π)dδ(p + k+ q)

(|p|+ |k|+ |q|) |p| |q|

×
[
1 +

|k|
|p|+ |k|+ |q|

]
,

(2.59)

with k̂ = k/|k| and
T (k1,k2,k3) = tr|T (1, 2, 3)|2 , (2.60)

where T (1, 2, 3) is defined in Eq. (2.17) and the trace is taken in Lorentz space, yielding

T (k,q,p) = 2(p2 + q2 + k2)
[
d− 2− (p̂ · q̂)(q̂ · k̂)(p̂ · k̂)

]
+

+ 2(d− 1)
[
(p̂ · q)(p̂ · k) + (q̂ · p)(q̂ · k) + (k̂ · q)(k̂ · p)

]
+

− 2(d− 1)
[
p · q+ q · k+ p · k

]
+

− (d− 3)
[
(p̂ · q̂)2(p2 + q2) + (q̂ · k̂)2(q2 + k2) + (p̂ · k̂)2(p2 + k2)

]
.

(2.61)

The diagrammatic representation of Eq. (2.59) is shown in Fig. 2.1.1

The first integral in Eq. (2.59) is a tadpole term, which vanishes identically in dimen-
sional regularization. Moreover, in the last line of Eq. (2.59) we can carry out one of the
momentum integrals due to the δ function, yielding

DA(k) = 1 + g2 µ3−d Nc

4(d − 1)k2

∫
d̄q

d− 2 + (k̂ · q̂)2
(k− q)2

k2 − q2

|q| +

+ g2 µ3−d Nc

2(d − 1)k2

∫
d̄q

Σ(k,q)

|q| |k− q|
2|k|+ |q|+ |k− q|
(|k|+ |q|+ |k− q|)2

=: 1 + Ic(k) + Ig(k), (2.62)

with

Σ(k,q) = til(k) tjm(q) tkn(k− q)
[
δijkk − δjkqi − δikkj

][
δlmkn − δmnql − δnlkm

]

=
[
1− (k̂ · q̂)2

] [
(d− 1)(k2 + q2) +

(d− 2)k2 q2 + (k · q)2
(k− q)2

]
.

(2.63)

1Notice that these graphs are not standard Feynman diagrams.
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The first integral in Eq. (2.62), i.e. the contribution Ic(k) from the Coulomb kernel, can
be evaluated in d = 3− 2ε dimensions by means of standard techniques, yielding

Ic(k) =
g2Nc

(4π)2−ε

[
4

15

(
1

ε
− ln

k2

µ2
− γe

)
− 8

15
ln 2 +

188

225
+O(ε)

]
. (2.64)

Unfortunately, the gluon loop Ig(k) [second integral of Eq. (2.62)] is highly non-trivial. It
would probably be possible to evaluate Ig(k) using partial differential equations techniques
similar to the ones used in Refs. [7,8]. Instead of using these techniques, we will show that
the integrals in Eq. (2.62) are the same as the ones treated in Refs. [7,8], and we will use
the result of those papers.

2.4.2 Static gluon propagator from the Lagrangian approach

In the Lagrangian-based functional integral approach to Yang–Mills theory in Coulomb
gauge considered in Refs. [7,8], the full (energy-dependent) propagator has the form

〈Aa
i (p)A

b
j(k)〉 = (2π)d+1 δ(p + k) δab tij(k)W (k4,k), (2.65)

where W (k4,k) can be expressed (in Euclidean space) as

W (k4,k) =
DAA(k4,k)

k24 + k2 . (2.66)

Here we have introduced the dressing function DAA(k4,k), which measures the deviation
of the propagator from the tree-level form. We are interested here in the static or equal-
time propagator, the quantity considered in the Hamiltonian approach, which is obtained
from W (k4,k) by integrating out the temporal component of the 4-momentum

W (k) =

∫
dk4
2π

W (k4,k). (2.67)

At tree-level (where DAA = 1) this yields

W0(k) =
1

2|k| , (2.68)

which is precisely the static tree-level gluon propagator of the Hamiltonian approach, see
Eq. (2.52). For sake of comparison with the Hamiltonian approach [Eqs. (2.58) and (2.62)],
we also express the full equal-time gluon propagator (2.67) by a dressing function D̄AA(k)

W (k) =: D̄AA(k)W0(k)
(2.68)
=

D̄AA(k)

2|k| . (2.69)

The two dressing functions (form factors) in (2.66) and (2.69) are related by

D̄AA(k) = 2|k|
∫

dk4
2π

DAA(k4,k)

k24 + k2 . (2.70)

With the dressing function of the energy-dependent propagator DAA(k4,k) given in Refs.
[7,8], we can calculate the dressing function D̄AA(k) of the equal-time propagator. We will



46 Article 2. Perturbation theory in Coulomb gauge

now show that the so obtained equal-time dressing function of the gluon propagator Eq.
(2.70) coincides, at one-loop level, with the gluon form factor of the Hamiltonian approach,
defined in Eq. (2.58).
In Refs. [7,8] the dressing function DAA(k4,k) is evaluated at one-loop level, with the

result2

DAA(k4,k) = 1 + g2 µ3−d 2Nc

(d− 1)

∫
ddq dq4
(2π)d+1

Σ(k,q)

k2 q2 (k − q)2
+

+ g2 µ3−d Nc

(d− 1)

∫
ddq dq4
(2π)d+1

tij(k)tij(q)

k2 q2 (k− q)2
(k24 − q2).

(2.71)

Here Σ is the kernel obtained by contracting the three-gluon vertex, defined in Eq. (2.63).
Inserting Eq. (2.71) in Eq. (2.70) and also performing the loop integration over q4 one
obtains for the equal-time dressing function D̄AA(k) [Eq. (2.70)] precisely the form factor
DA(k) of the static gluon propagator of the Hamiltonian approach [Eq. (2.62)]. We have
thus shown that the Lagrangian-based functional integral approach yields the same equal-
time gluon propagator as the time-independent Hamiltonian approach, at least to the
order considered. We have checked that this equivalence does also hold for the 〈ΠΠ〉
correlator, but it does not hold for the 〈AΠ〉 correlator. The reason is that in the time-
dependent Lagrangian approach the 〈AΠ〉 correlator is odd under time reversal and thus
the corresponding equal-time correlator vanishes, while in the Hamiltonian approach the
static 〈AΠ〉 correlator is constrained by the canonical commutation relation not to vanish.
In Refs. [7,8], the loop corrections to the gluon dressing function [Eq. (2.71)] were

calculated in dimensional regularization. With d = 3− 2ε the result reads

DAA(k4,k) = 1 +
g2Nc

(4π)2−ε

{[
1

ε
− γe − ln

k2

µ2

]
− ln(1 + z)− 64

9
+ 3z+

+
1

4
f(z)

[
1

z
− 1− 11z − 3z2

]
+ g(z)

[
− 1

2z
+

14

3
− 3

2
z

]
+O(ε)

}
,

(2.72)

where z = k24/k
2 and the functions f(z), g(z) are defined by

f(z) = 4 ln 2
arctan

√
z√

z
−
∫ 1

0
dt

ln(1 + z t)√
t (1 + z t)

, (2.73a)

g(z) = 2 ln 2− ln(1 + z). (2.73b)

Using this result, after integrating Eq. (2.72) over k4 with the appropriate tree-level
factor, see Eq. (2.70), we find for the static gluon form factor (2.58)

DA(k) = 1 + g2
Nc

(4π)2−ε

[(
1

ε
− ln

k2

µ2

)
+ · · ·

]
(2.74)

where the ellipsis contains the finite constant terms.
Finally, we remark that the ghost propagator in the Lagrangian-based functional integral

approach [7,8] defined there as the correlator 〈cc̄〉 for explicitly introduced ghost and
antighost fields, is given by a function Wc(k4,k) in analogy with Eq. (2.65) for the gluon
propagator, which is independent of the temporal component k4, Wc(k4,k) = Wc(k). It
is easily seen, by integrating over the temporal component of the loop momentum, that
Wc(k) coincides with our result [Eq. (2.54)] for G(k) = Dc(k)/k

2.

2The results of [7] and [8], being evaluated in the, respectively, first and second order formalism, are at
first sight not identical. However, it is not difficult to show that they indeed agree.
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Figure 2.2: Diagrammatic representation of the one-loop correction to the ghost-gluon
vertex. The left and right picture correspond to, respectively, the first and second integral
in Eq. (2.77). The arrow shows the flow of the loop momentum ℓ.

2.5 The ghost-gluon vertex and the β function

In the Hamiltonian approach the ghost-gluon vertex is given by [18]

〈Ω|Aa
i (x)G

bc
A (y1,y2) |Ω〉 =:

∫
ddz1 d

dz2 d
dz3Dij(x, z1)G(y1, z2)G(y2, z3) Γ

abc
i (z1; z2, z3), (2.75)

where D is the full gluon propagator of Sec. 2.4.1 and G the static ghost propagator as
defined in Sec. 2.3. Equation (2.75) tells us to calculate the vacuum expectation value
〈AGA〉 and then “cut off” the external legs, in order to extract the irreducible component.
In Eq. (2.75) we already used the fact that ghost and gluon propagators are colour diagonal
to every order in perturbation theory.

The lowest-order contribution to Eq. (2.75) is the bare vertex Γ(0), given in momentum
space by

Γ(0)abc
i (k;p,q) = −i g fabcpi , (2.76)

(all momenta defined as incoming). With arguments similar to the ones we used in the
evaluation of the ghost and gluon propagators, it is not difficult to show that the terms
contributing to the next non-vanishing order are

〈0|AG2[A] |0〉(1) + (1)〈0|AG2[A] |0〉 + 〈0|AG3[A] |0〉1PI ,
where the subscript ‘1PI’ means that only the irreducible terms have to be considered.
The evaluation of these matrix elements is straightforward and yields

Γ(2)abc
i (k;p,q) = −i g3 fabc

Nc

4

{∫
d̄ℓ

(ℓ− p)i pj qm tjm(ℓ)

|ℓ|(p− ℓ)2(q+ ℓ)2
+

+

∫
d̄ℓ

pj qm

ℓ
2|p− ℓ| |q+ ℓ|

Tijm(k,p− ℓ,q+ ℓ)

|k|+ |p− ℓ|+ |q+ ℓ|

}
, (2.77)

where T is the Lorentz structure of the three-gluon vertex Eq. (2.17). The diagrammatic
representation of Eq. (2.77) is given in Fig. 2.2. The integrals in Eq. (2.77) are UV finite
in d = 3 spatial dimensions, hence they are independent of the scale when evaluated at a
symmetry point (after factorizing the momentum that carries the Lorentz index i). Then
g2DAD

2
c is a renormalization group invariant, at least to the present order. From Eqs.

(2.55) and (2.74) we obtain in Coulomb gauge

DA(k)D
2
c (k) =

[
1 + g2

Nc

(4π)2−ε

1

ε
+ . . .

] [
1 + g2

Nc

(4π)2−ε

4

3

1

ε
+ . . .

]2
=

= 1 + g2
Nc

(4π)2−ε

11

3

1

ε
+ . . .
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Consequently, g2 must have a 1/ε pole with coefficient (−11/3)Nc, and since, at the one-
loop level, the coefficient of the 1/ε pole of g2 is the (gauge invariant) first coefficient β0
of the β function,

β(g) =
∂g

∂ lnµ
=

1

(4π)2
β0 g

3 +O(g5), (2.78)

we find

β0 = −11

3
Nc , (2.79)

which is the correct value.

2.6 The potential for static sources

Until now, we have considered pure Yang–Mills theory without external colour charges. If
static external sources are included, the Hamilton operator becomes

H̃ = H̃ym +
g2

2

∫
ddxddy ρam(x)F ab

A (x,y)ρbm(y)+

+
g2

2

∫
ddxddy

[
ρam(x)F ab

A (x,y)Âbc
i (y)Π̃c

i (y) + Âac
i (x)Π̃c†

i (x)F ab
A (x,y)ρbm(y)

]
,

(2.80)

where H̃ym is the Hamiltonian [Eq. (2.9)] of the Yang–Mills sector considered in the pre-
vious sections, and ρam(x) is the external charge density. Since

Π̃a
i (x) = Πa

i (x) +
i

2

δ lnJA

δAa
i (x)

, Π̃a†
i (x) = Πa

i (x)−
i

2

δ lnJA

δAa
i (x)

,

the δ lnJA/δA contributions cancel in the terms linear in the external charge density and
we can omit the tildes there, obtaining

H̃ = H̃ym +
g2

2

∫
ddxddy ρam(x)F ab

A (x,y)ρbm(y)+

+
g2

2

∫
ddxddy

{
ρam(x)F ab

A (x,y), Âbc
i (y)Πc

i (y)
}
.

(2.81)

({, } denotes the anticommutator.) We are interested here in a perturbative calculation
of the static potential, i.e. the potential between static charges. For this purpose, we will
follow the approach of Refs. [19–21], treating the external sources as perturbations to the
pure Yang–Mills sector. Suppose we know the exact spectrum of H̃ym, i.e. its eigenstates
|ΦN 〉 and the corresponding eigenvalues EΦN

. Second-order perturbation theory in the
external sources then yields for the potential

V ab(x,y) = 〈Φ0|F ab
A (x,y) |Φ0〉 −

g2

2

∑

N 6=0

〈Φ0|Ka(x) |ΦN 〉〈ΦN |Kb(y) |Φ0〉
EΦN

− EΦ0

, (2.82)

where we have introduced the quantity

Ka(x) :=

∫
ddz

{
F ab
A (x, z), Âbc

i (z)Π
c
i (z)

}
. (2.83)
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Figure 2.3: Diagrams contributing to the static potential in second-order perturbation the-
ory. (a) and (b) represent, repectively, the second term of Eq. (2.86), and Eq. (2.84).

Since we are interested in the potential to order O(g2), we can replace all quantities in
the second term in Eq. (2.82) by their unperturbed expressions. This yields

−g
2

2

∑

N 6=0

〈Φ0|Ka(x) |ΦN 〉〈ΦN |Kb(y) |Φ0〉
EΦN

− EΦ0

= −g2
∑

1,2

|〈0|F0ÂΠ |g1, g2〉|2
|k1|+ |k2|

+O(g4), (2.84)

where the unperturbed part of F ab
A (x,y) [Eq. (2.5)] in d = 3 spatial dimensions

F ab
0 (x,y) = δab

[
(−∂2)−1

]
x,y

=
δab

4π|x− y| (2.85)

is the familiar Coulomb interaction.

In the first term of Eq. (2.82) (the so-called colour Coulomb potential) we use the
perturbative expansion of the vacuum wave functional |Ω〉 [Eq. (2.44)], and also expand
the Coulomb kernel F ab

A (x,y) [Eq. (2.5)] in powers of g. Thereby many terms can be
shown to vanish or cancel using similar arguments as in the evaluation of the static ghost
propagator. In the end one obtains for the Coulomb potential

〈Ω|F ab
A (x,y) |Ω〉 = F ab

0 (x,y) + g2 〈0|F ab
2 [A](x,y) |0〉 +O(g4), (2.86)

where F ab
2 [A](x,y) = 3Gab

2 [A](x,y) is the O(g2) part of the Coulomb kernel FA [Eq. (2.5)].

For the potential dressing function v(k) defined by

V ab(x,y) =

∫
d̄k eik·(x−y) δ

ab v(k)

k2 (2.87)

we obtain the following expression

v(k) = 1 + g2µ3−d 3Nc

2k2

∫
d̄q

kikjtij(q)

(k− q)2|q|+

− g2µ3−d Nc

2k2

∫
d̄q

tij(q) tij(k− q)

|q|
|k− q| − |q|
|k− q|+ |q| .

(2.88)

The diagrammatic representation of this equation is given in Fig. 2.3. The first integral of
Eq. (2.88) comes from the expectation value of F2 [second term in Eq. (2.86)], while the
second integral arises from the second-order term [Eq. (2.84)].

While the first integral in Eq. (2.88) is standard, the second one is of the same type
we encountered in the calculation of the static gluon propagator. Again, we will use the
results of the Lagrangian-based functional integral approach. As argued by Zwanziger [22],



50 Article 2. Perturbation theory in Coulomb gauge

the potential between static colour charges should be related to the correlation function
of the A0 field. For the corresponding dressing function Dσ defined by

〈Aa
0(p)A

b
0(k)〉 = (2π)d+1 δ(p + k) δab

Dσ(k4,k)

k2 , (2.89)

the result at one-loop order reads [7]

Dσ(k4,k) = 1 + g2µ3−d 3Nc

2k2

∫
ddq

(2π)d
kikjtij(q)

q2(k− q)2
+

+ g2µ3−d Nc

2k2

∫
ddq

(2π)d
(k2 − 2k · q) tij(q) tij(k− q)

|k− q|
[
k24 + (|k− q|+ |q|)2

] ,
(2.90)

where we have already performed the integration over the temporal component q4 of the
loop momentum. Noticing that

k2 − 2k · q = (k− q)2 − q2 =
(
|k− q|+ |q|

)(
|k− q| − |q|

)
, (2.91)

we see that at one-loop level

v(k) = Dσ(k4 = 0,k). (2.92)

Taking then the result for Dσ obtained in [7]

Dσ(k4,k) = 1 +
g2Nc

(4π)2−ε

{
11

3

[
1

ε
− γe − ln

k2

µ2
− ln(1 + z)

]
+

31

9
− 6z+

+ (3z − 1)g(z) +
1

2
(1 + z)(1 + 3z)f(z) +O(ε)

}
,

(2.93)

where z = k24/k
2 and the functions f(z), g(z) are defined in Eqs. (2.73), we get for the

dressing function of the static potential

v(k) = 1 + g2
Nc

(4π)2−ε

{
11

3

[
1

ε
− γe − ln

k2

µ2

]
+

31

9
+O(ε)

}
. (2.94)

A few remarks are in order here. The equivalence between the static potential evaluated
in the Hamiltonian approach and the propagator of the A0 field in the Lagrangian-based
formalism is far from trivial, since in the Hamiltonian approach the Weyl gauge Aa

0 = 0 is
also imposed. Furthermore, note that the Hamiltonian static potential is not obtained as
the equal-time component, but rather as the integral over the relative time of the 〈A0A0〉
correlator. Such an integral captures the instantaneous interaction through the first cor-
rection term in Eq. (2.90) as much as the retarded interaction via vacuum polarization
given by the second correction term there.

Given the fact that the physical potential is g2V ab, with V ab given by Eq. (2.87), v(k) in
Eq. (2.88) represents the form factor of the running coupling. From Eq. (2.94) we then find
β0 = −11Nc/3, which is again the correct coefficient. Since this agrees with DA(p)D

2
c (p),

we find the same running coupling from the ghost-gluon vertex and the Coulomb potential,
at least to the order considered.
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2.7 Relation with the variational approach

In the variational approach considered in Refs. [2,5], a generalization of Eq. (2.20) was
taken for the vacuum functional,

〈A|ω〉 = N exp

{
−1

2

∫
d3k

(2π)3
Aa

i (k) tij(k)ω(k)A
a
j (−k)

}
, (2.95)

and the kernel ω(k) was determined by minimization of the vacuum energy density. In this
non-perturbative case a complete basis can also be defined by Eqs. (2.30) and (2.33) with
|k| replaced by ω(k). Considering the three-gluon vertex as a perturbation on top of the
non-perturbative vacuum Eq. (2.95), the energy functional gets an additional contribution

∆E[ω] = −g
2

3!

∑

1,2,3

|〈ω|H̃1 |g1, g2, g3〉|2
ω(k1) + ω(k2) + ω(k3)

. (2.96)

Functional differentiation of this expression with respect to ω(k) yields an additional term
to the gap equation

ω2(k) = k2 + χ2(k) + I0ω + Iω(k)+

− g2
Nc

8

∫
d3q

(2π)3
d3p

(2π)3
T (k,q,p) (2π)3δ(p+ q+ k)

[ω(k) + ω(q) + ω(p)]ω(p)ω(q)

× 2ω(k) + ω(q) + ω(p)

ω(k) + ω(q) + ω(p)
, (2.97)

where T (k,q,p) is given in Eq. (2.60) and the integral terms χ(k), I0ω, and Iω(k) are
defined in Ref. [6]. For k → ∞ this additional term reduces to the integral Ig(k), Eq.
(2.62), found in perturbation theory, showing that Eq. (2.97) does indeed provide the
right contribution to the variational form of the gap equation to produce the correct
UV asymptotic behaviour, at the same time leaving the ghost dominated infrared sector
untouched. The numerical solution of this modified gap equation is in progress.

2.8 Summary and Conclusions

In this paper we have studied the Hamiltonian approach to Yang–Mills theory in Coulomb
gauge in Rayleigh–Schrödinger perturbation theory. The static gluon and ghost propagat-
ors as well as the potential between static colour sources have been calculated to one-loop
order using dimensional regularization. The one-loop β function was calculated from the
ghost-gluon vertex as well as from the static potential. In both cases the result known from
covariant perturbation theory was reproduced. The unperturbed basis constructed from
the eigenstates of the unperturbed Hamiltonian, which up to the colour index of the gauge
field coincides with the Hamiltonian for QED (without fermions), was generalized to mul-
tiple quasi-gluon states on top of the non-perturbative vacuum wave functional used in the
variational approach [2,5]. Treating the three-gluon vertex, which is not captured by the
variational wave functional used so far, as a perturbation on top of the non-perturbative
vacuum, a modified gap equation was derived, which yields the correct (perturbative) ul-
traviolet asymptotics for the static propagators known from perturbation theory while,
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at the same time, leaving the (non-perturbative) infrared behaviour of the propagator
unchanged. The multiple quasi-gluon basis constructed on top of the non-perturbative
vacuum wave functional will also serve as a basis for calculating the partition function of
Yang–Mills theory in the Hamiltonian approach in Coulomb gauge and investigating the
deconfinement phase transition at finite temperatures.
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Abstract We apply a functional perturbative approach to the calculation of the equal-
time two-point correlation functions and the potential between static colour charges to
one-loop order in Coulomb gauge Yang–Mills theory. The functional approach proceeds
through a solution of the Schrödinger equation for the vacuum wave functional to order g2

and derives the equal-time correlation functions from a functional integral representation
via new diagrammatic rules. We show that the results coincide with those obtained from
the usual Lagrangian functional integral approach, extract the beta function, and determ-
ine the anomalous dimensions of the equal-time gluon and ghost two-point functions and
the static potential under the assumption of multiplicative renormalizability to all orders.

3.1 Introduction

Finding an accurate (semi-)analytical description of the infrared sector of QCD is still one
of the most important challenges of present-day quantum field theory. In this work we
concentrate on Yang–Mills theory, QCD without dynamical quarks, since it is in this sector
where the peculiar properties of QCD, in particular the confining interaction between
quarks, arise. Recently, much of the activity in this area has focused on the formulation
and (approximate) solution of Yang–Mills theory in the Coulomb gauge [1–11], the primary
reason being that the Coulomb gauge Hamiltonian explicitly contains the colour-Coulomb
potential which furnishes the dominant non-perturbative contribution to the static or
heavy quark potential.

Semi-analytical functional approaches to the calculation of gluon and ghost propagators
in the infrared, mostly using Dyson–Schwinger equations, have been successful in Landau
gauge Yang–Mills theory [12–14]. In the so-called ghost dominance approximation, even
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very simple analytical solutions exist in the far infrared [7,15–17]. Although the consist-
ency of these solutions is still under discussion, it is natural to inquire whether a similar
approach could be useful in the Coulomb gauge. The breaking of Lorentz covariance
through the Coulomb gauge condition makes the usual Lagrangian functional integral ap-
proach quite cumbersome in this gauge, see e.g. Ref. [18]. For this reason, semi-analytical
approaches in Coulomb gauge have mostly used a Hamiltonian formulation. A set of equa-
tions similar to Dyson–Schwinger equations is obtained from a variational principle using
a Gaussian type of ansatzes for the vacuum wave functional in the Schrödinger repres-
entation [1,3–6]. In the ghost dominance approximation, furthermore, simple analytical
solutions are available for the far infrared [2,7].
Nevertheless, the status of the semi-analytical and analytical solutions in the Coulomb

gauge is not yet entirely clear, for two reasons: first, two different solutions with an infrared
scaling behavior (differing in the infrared exponents) have been found in both the analytical
and the semi-analytical approaches [2–7], and there is as yet no theoretical guidance to
what the physical solution should be; second, the inclusion of the Coulomb form factor (the
form factor for the colour-Coulomb potential, which measures the deviation of the Coulomb
potential from a factorization in terms of ghost propagators) in the set of equations of
Dyson–Schwinger type results problematic. In Refs. [3–6], the equation for the Coulomb
form factor has been considered subleading compared to the equations for the gluon and
ghost propagators and therefore treated in the tree-level approximation, while in Ref.
[19] all equations have been considered to be of the same order and therefore treated on
an equal footing, with the result that solutions with infrared scaling behavior cease to
exist. It should be emphasized that only solutions with scaling behavior can give rise to
a linearly rising Coulomb potential, and that the latest lattice calculations also show a
scaling behavior for the equal-time correlation functions in the deep infrared [8,9]. It is
not clear at present how to improve the approximation used in the variational approach
in order to arrive at a unique and consistent solution.
An interesting relation between Landau and Coulomb gauge Yang–Mills theory has been

pointed out in the ghost dominance approximation in Refs. [2,7]: the equal-time correlation
functions of the Hamiltonian approach in Coulomb gauge are the formal counterparts in
three dimensions of the covariant correlation functions in Landau gauge in four dimensions.
Building on this analogy, a possible strategy would be to replace the variational principle
by a calculation of equal-time correlation functions in the Coulomb gauge and intend
to formulate Dyson–Schwinger equations for the latter. In the present work, we take a
first step in this direction: we set up a functional integral representation of the equal-time
correlation functions (without taking a detour to the space-time correlation functions) that
is the precise three-dimensional analogue of the usual functional integral representation
of the covariant correlation functions in the Lagrangian approach to Landau gauge Yang–
Mills theory. We also develop a diagrammatic representation and a set of Feynman rules
for the equal-time correlation functions. We use this formulation to calculate the equal-
time gluon and ghost two-point correlation functions and the potential for static colour
charges in Coulomb gauge perturbatively to one-loop order. We extract the one-loop beta
function and determine the asymptotic ultraviolet behavior of the equal-time two-point
functions and the static potential. We also show that our results coincide with those
obtained in a Lagrangian functional integral approach [20,21] and use the latter for the
renormalization of the equal-time correlation functions and the static potential.
The organization of the paper is as follows: in the next section, we determine the
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vacuum wave functional perturbatively to order g2 from the solution of the Schrödinger
equation. With the vacuum functional determined to the corresponding order, we turn to
the calculation of the equal-time gluon and ghost two-point correlation functions in Section
3.3. We also calculate the one-loop corrections to the static or heavy quark potential
(and thus to the Coulomb form factor) in the same section. Although for the latter
calculation we need to go beyond the terms that we have calculated for the vacuum
functional in Section 3.2, the relevant additional contributions are quite simply determined.
In Section 3.4, we provide another representation of the equal-time two-point functions by
choosing equal times (zero) in the space-time correlation functions determined before in
the Lagrangian functional integral representation [20,21] of the theory. The static potential
can also be obtained from a two-point function that arises in the Lagrangian approach.
We use the alternative representations of the two-point functions and the static potential
to perform the renormalization of our results. We show the non-renormalization of the
ghost-gluon vertex in the same section and use it to determine the beta function and the
asymptotic ultraviolet behavior of the two-point functions. We also show that the same
beta function is found from considering the static potential. Finally, in Section 3.5, we
summarize our findings and comment on several possible applications. In the Appendix,
we give some details on an important difference that arises between the Lagrangian and
the Hamiltonian approach when it comes to the implementation of the Coulomb gauge.

3.2 Perturbative vacuum functional

It is very simple to write down a functional integral representation of the equal-time
correlation functions, given that they are nothing but the vacuum expectation values of
products of the field operators. In the Schrödinger representation of Yang–Mills theory
in Coulomb gauge, the equal-time n-point correlation functions in (3-)momentum space
have the following representation:

〈Aa
i (p1, t = 0)Ab

j(p2, t = 0) · · ·Af
r (pn, t = 0)〉

=

∫
D[A] δ(∇ ·A)FP(A)Aa

i (p1)A
b
j(p2) · · ·Af

r (pn) |ψ(A)|2. (3.1)

Here, ψ(A) is the true vacuum wave functional of the theory. The (absolute) square
|ψ(A)|2 then plays the role of the exponential of the negative Euclidean classical action
in the corresponding representation of the covariant correlation functions (in Euclidean
space). FP(A) ≡ Det[−∇ ·D(A)], with the covariant derivative in the adjoint represent-
ation defined as

Dab(A) = δab ∇+ gfabcAc, (3.2)

is the Faddeev–Popov determinant (in 3 dimensions) which forms a part of the integration
measure for the scalar product of states in the Schrödinger representation (see Ref. [22]).
Note that the fields Aa

i (p) on the left-hand side of Eq. (3.1) are spatially transverse,
p · Aa(p) = 0. We will assume the transversality of the fields Aa in all of the following
formulae, which we could make manifest by introducing a transverse basis in momentum
space. However, there is usually no need to do so explicitly.

In order to write down the functional integral for the equal-time correlation functions
explicitly, the vacuum wave functional needs to be specified. The analogy with the cov-
ariant theory suggests to use an exponential ansatz for this wave functional, in the spirit
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of the eS expansion in many-body physics [23]. We consider a full Volterra expansion of
the exponent:

ψ(A) = exp

(
−

∞∑

k=2

1

k!

∫
d3p1
(2π)3

· · · d
3pk

(2π)3

∑

i1,i2,...,ik

∑

a1,a2,...,ak

fa1a2...akk;i1i2...ik
(−p1, . . . ,−pk)

×Aa1
i1
(p1) · · ·Aak

ik
(pk)(2π)

3δ(p1 + . . .+ pk)

)
. (3.3)

Any normalization factor can be conveniently absorbed in the functional integration meas-
ure in Eq. (3.1). Terms linear in A in the exponent (k = 1) are excluded by the symmetry
of the wave functional under global gauge transformations (in the absence of external
colour charges). Regarding notation, given that our Hamiltonian formalism is not mani-
festly covariant, we will denote the contravariant spatial components of 4-vectors by (latin)
subindices.

We insert this ansatz for the vacuum wave functional into the Schrödinger equation

Hψ(A) = E0ψ(A), (3.4)

where H is the Christ–Lee Hamiltonian for Coulomb gauge Yang–Mills theory [22],

H =
1

2

∫
d3x

(
− 1

FP(A)

δ

δAa
i (x)

FP(A)
δ

δAa
i (x)

+Ba
i (x)B

a
i (x)

)

+
g2

2

∫
d3xd3y

1

FP(A)
ρa(x)FP(A) 〈x, a|(−∇ ·D)−1(−∇2)(−∇ ·D)−1 |y, b〉 ρb(y).

(3.5)

Here,

Ba
i = −1

2
εijkF

a
jk =

(
∇×Aa − g

2
fabcAb

×Ac
)

i
(3.6)

is the chromo-magnetic field, and

ρa(x) = ρaq(x) + fabcAb
j(x)

1

i

δ

δAc
j(x)

(3.7)

the colour charge density, including external static charges ρq for later use. Note that
we have extracted a factor g from the colour charges in order to simplify the counting of
orders of g in the rest of the paper. The notation 〈x, a|C |y, b〉 refers to the kernel of the
operator C in an integral representation.

In most of the following perturbative calculation, we will need the Hamiltonian only up
to order g2, where

H =
1

2

∫
d3p

(2π)3

(
−(2π)3

δ

δAa
i (p)

(2π)3
δ

δAa
i (−p)

+Aa
i (−p)p2Aa

i (p)

)
(3.8)
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+
1

2

∫
d3p

(2π)3
Aa

i (−p)

(
Ncg

2

2

∫
d3q

(2π)3
1− (p̂ · q̂)2
(p− q)2

)
(2π)3

δ

δAa
i (−p)

(3.9)

+
g

3!

∫
d3p1
(2π)3

d3p2
(2π)3

d3p3
(2π)3

ifabc [δjk(p1,l − p2,l) + δkl(p2,j − p3,j) + δlj(p3,k − p1,k)]

×Aa
j (p1)A

b
k(p2)A

c
l (p3)(2π)

3δ(p1 + p2 + p3) (3.10)

+
g2

4!

∫
d3p1
(2π)3

· · · d3p4
(2π)3

[
fabef cde(δikδjl − δilδjk) + facef bde(δijδkl − δilδjk)

+ fadef bce(δijδkl − δikδjl)
]
Aa

i (p1)A
b
j(p2)A

c
k(p3)A

d
l (p4)(2π)

3δ(p1 + p2 + p3 + p4)

(3.11)

+
g2

2

∫
d3p

(2π)3
ρa(−p)

1

p2
ρa(p) +O(g3). (3.12)

The term (3.9) stems from the application of the functional derivative to the Faddeev–
Popov determinant. In this term, Nc stands for the number of colours, facdf bcd = Ncδ

ab,
and p̂ ≡ p/|p| denotes a unit vector. In the absence of external charges, we get for the
term (3.12)

g2

2

∫
d3p

(2π)3
ρa(−p)

1

p2
ρa(p)

=
1

2

∫
d3p

(2π)3
Aa

i (−p)

(
Ncg

2

∫
d3q

(2π)3
tij(q)

(p− q)2

)
(2π)3

δ

δAa
j (−p)

(3.13)

− g2

4

∫
d3p1
(2π)3

· · · d3p4
(2π)3

(
facef bde

δikδjl
(p1 + p3)

2
+ fadef bce

δilδjk
(p1 + p4)

2

)

× (2π)3δ(p1 + p2 + p3 + p4)A
a
i (p1)A

b
j(p2)(2π)

3 δ

δAc
k(−p3)

(2π)3
δ

δAd
l (−p4)

.

(3.14)

In the term (3.13) on the right-hand side, tij(q) denotes the spatially transverse projector
or transverse Kronecker delta

tij(q) ≡ δij − q̂iq̂j . (3.15)

We shall now show, explicitly up to order g2, that there is a unique perturbative solution
of the Schrödinger equation (3.4) for the wave functional ψ(A) in Eq. (3.3), if we only
suppose that the dominant contribution to the coefficient function fk is at least of order
gk−2 for k ≥ 2. A similar method for the determination of the vacuum wave functional
has been applied before in Refs. [24–26] to a scalar theory and to Yang–Mills theory in
Weyl gauge.

We will consider the case without external charges to begin with, and include charges
ρq later on in the context of the static potential. To order g0, the Schrödinger equation
reads

(N2
c − 1)

(∫
d3p

(2π)3
f2(p)

)
(2π)3δ(0) +

1

2

∫
d3p

(2π)3
Aa

i (−p)
[
p2 −

(
f2(p)

)2]
Aa

i (p) = E0,

(3.16)
where we have used that

fab2;ij(p,−p) = f2(p)δijδ
ab = f2(−p)δijδ

ab (3.17)
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(to be contracted with spatially transverse fields) as a consequence of the symmetry under
the exchange of the arguments, of spatially rotational and global gauge symmetry, and of
the fact that fab2;ij(p1,p2) is only defined for p1 +p2 = 0. Equation (3.16) implies that, to
the current order,

f2(p) = |p|, (3.18)

E0 = (N2
c − 1)

(∫
d3p

(2π)3
|p|
)
(2π)3δ(0). (3.19)

Generally, the energy E0 cancels any field-independent terms multiplying the vacuum
functional in the Schrödinger equation to any order in g. Eqs. (3.18) and (3.19) represent
nothing but the well-known solution of the free (g = 0) theory. The choice of the sign in
Eq. (3.18) is dictated by the normalizability of the wave functional (3.3) to order g0. As
usual, (2π)3δ(0) is to be understood as the total volume of space.

To the next (first) order of g, the Schrödinger equation is not much more complicated:
it reads

1

3!

∫
d3p1
(2π)3

d3p2
(2π)3

d3p3
(2π)3

{
igfabc [δjk(p1,l − p2,l) + δkl(p2,j − p3,j) + δlj(p3,k − p1,k)]

− 3|p1|fabc3;jkl(−p1,−p2,−p3)
}
Aa

j (p1)A
b
k(p2)A

c
l (p3)(2π)

3δ(p1 + p2 + p3) = 0, (3.20)

where we have already taken into account the results (3.18), (3.19) and the fact that

fabc3;ijk(p1,p2,p3) = fabcf3;ijk(p1,p2,p3), (3.21)

which is a consequence of global gauge symmetry and the invariance of the vacuum wave
functional under charge conjugation. The unique solution of Eq. (3.20) with the full
symmetry under the exchange of the arguments is

fabc3;ijk(p1,p2,p3) =
−igfabc

|p1|+ |p2|+ |p3|
[δij(p1,k − p2,k) + δjk(p2,i − p3,i) + δki(p3,j − p1,j)] .

(3.22)
This equality, and all the following equalities with explicit spatial (Lorentz) indices, are
proper equalities only after contracting with the corresponding number of transverse vector
fields A, or, equivalently, after contracting every external spatial index with a transverse
projector, for example in Eq. (3.22) the index i with til(p1).

We will now consider the Schrödinger equation to order g2. On the left-hand side,
terms with four and two powers of A appear, which have to cancel separately, and an
A-independent term which must equal E0 to this order. We begin with the term with
four powers of A. The quartic coupling (3.11) in the Hamiltonian has to be cancelled by
terms stemming from the second functional derivative in Eq. (3.8) acting on the vacuum
wave functional, and a contribution from Eq. (3.14). To order g2, the coefficient functions
f2 of Eq. (3.18) and f3 of Eq. (3.22) contribute, as well as the function f4 which we will
determine. As a result, the coefficient function f4 in the vacuum wave functional takes
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2f4 = − b −

(

b b + 2 perms.

)

−

(

b b + 2 perms.

)

Figure 3.1: A diagrammatic representation of Eqs. (3.23)–(3.25). Every diagram corres-
ponds to precisely one of the Eqs. (3.23)–(3.25), in the same order. The ‘2 perms.’ refer
to permutations of the external legs.

the following (fully symmetric) form to order g2:

(
|p1|+ . . .+ |p4|

)
fabcd4;ijkl(p1, . . . ,p4) =

= g2
[
fabef cde(δikδjl − δilδjk)

+ facef bde(δijδkl − δilδjk)

+ fadef bce(δijδkl − δikδjl)
]

(3.23)

−
[
fabe3;ijm(p1,p2,−p1 − p2)tmn(p1 + p2)f

cde
3;kln(p3,p4,p1 + p2)

+ face3;ikm(p1,p3,−p1 − p3)tmn(p1 + p3)f
bde
3;jln(p2,p4,p1 + p3)

+ fade3;ilm(p1,p4,−p1 − p4)tmn(p1 + p4)f
bce
3;jkn(p2,p3,p1 + p4)

]
(3.24)

−g2
{
fabef cde δijδkl

(|p1| − |p2|)(|p3| − |p4|)
(p1 + p2)

2

+ facef bde δikδjl
(|p1| − |p3|)(|p2| − |p4|)

(p1 + p3)
2

+ fadef bce δilδjk
(|p1| − |p4|)(|p2| − |p3|)

(p1 + p4)
2

}
. (3.25)

This result for f4 is represented diagrammatically in Fig. 3.1. Equation (3.23), divided by
(|p1|+ . . .+ |p4|), is interpreted as the elementary or “bare” four-gluon vertex. The role of
the factor 2 and the signs in Fig. 3.1 will become clear in the next section. Equation (3.24)
and the second diagram in Fig. 3.1 represent the contraction of two elementary three-gluon
vertices, the latter being given mathematically by Eq. (3.22). The contraction refers to
spatial and colour indices and the momenta, with opposite signs. Note that there is no
“propagator” factor associated with the contraction (except for a transverse Kronecker
delta), and there is a factor 1/(|p1|+ . . .+ |p4|) for the external momenta which is unusual
from a diagrammatic point of view. Finally, Eq. (3.25) and the last diagram in Fig. 3.1
describe an “elementary” Coulomb interaction between the external gluon lines.

With this result in hand, we can go on to consider the terms quadratic in A in the
Schrödinger equation to order g2. The relevant contributions originate from Eqs. (3.8),
(3.9), (3.13), and (3.14), and involve the functions f2 and f4. We obtain the following
equation for the coefficient function f2 to order g2:

(
f2(p)

)2
δabδij =

(
p2 − Ncg

2

2
|p|
∫

d3q

(2π)3
1− (p̂ · q̂)2
(p− q)2

)
δabδij

+
1

2

∫
d3q

(2π)3
fabcc4;ijkl(−p,p,−q,q) tkl(q)−Ncg

2δab
∫

d3q

(2π)3
|p| − |q|
(p− q)2

tij(q). (3.26)
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2f2 =
(

bc

)
−1

− b b −
b

− b b − b b − b b

rs+

Figure 3.2: The diagrams corresponding to Eqs. (3.27)–(3.30). The bare propagator, the
inverse 2|p| of which appears in Eq. (3.27), is marked with an open circle for later use.
The first two one-loop diagrams correspond to the integrals in Eq. (3.27), in the same
order. The following diagrams represent Eqs. (3.28)–(3.30), respectively. See the text for
a motivation of the “crossed” gluon propagator notation in the last loop diagram.

The explicit expression for f2 to order g2 is

f2(p) = |p| − Ncg
2

4

∫
d3q

(2π)3
1− (p̂ · q̂)2
(p− q)2

+
Ncg

2

2|p|
4

3

∫
d3q

(2π)3
1

2|p|+ 2|q| (3.27)

− Ncg
2

2|p| 2

∫
d3q

(2π)3

(
δikpl + δklqi − δlipk

)
tkm(p− q) tln(q)

2|p|+ 2|q|

×
(
δjmpn + δmnqj − δnjpm

)
tij(p)

(|p|+ |q|+ |p− q|)2 (3.28)

− Ncg
2

2|p|
1

2

∫
d3q

(2π)3
1 + (p̂ · q̂)2
2|p|+ 2|q|

(|p| − |q|)2
(p− q)2

(3.29)

− Ncg
2

2|p|
1

2

∫
d3q

(2π)3
(
1 + (p̂ · q̂)2

) |p| − |q|
(p− q)2

, (3.30)

where we have used the contraction of an arbitrary tensor Tij(p)

1

2
Tij(p)tij(p) = T t(p) (3.31)

in order to extract the transverse part. We have presented the diagrams corresponding
to Eqs. (3.27)–(3.30) in Fig. 3.2. The first loop integral in Eqs. (3.26) and (3.27) results
from Eq. (3.9) and is represented in Fig. 3.2 as a ghost loop because it stems from the
Faddeev–Popov determinant. The following three loop diagrams in Fig. 3.2 are obtained
by contracting two external legs in the diagrams of Fig. 3.1, see Eq. (3.26). The last
loop integral in Eq. (3.26), or the integral (3.30), on the other hand, originates from the
terms (3.13) and (3.14) in the Hamiltonian. Lacking a better notation, we distinguish
this contribution from the contraction of Eq. (3.25), the previous diagram, by marking
the gluon propagator with a cross (because there is no term |q| in the denominator that
would indicate the presence of an internal gluon propagator—in fact, the diagram may be
interpreted to contain a ΠΠ-correlator, where Π is the momentum conjugate to A).
We have thus completed the determination of the (exponent of the) perturbative vacuum

wave functional to order g2. The result is given in Eqs. (3.22), (3.23)–(3.25), and (3.27)–
(3.30), to be substituted in Eq. (3.3). We can also extract the perturbative vacuum energy
to the same order from the A-independent terms in the Schrödinger equation with the
result

E0 = (N2
c − 1)

(∫
d3p

(2π)3
f2(p)

)
(2π)3δ(0) (3.32)

[cf. Eq. (3.16)], where Eqs. (3.27)–(3.30) have to be substituted for f2(p). The explicit
expression is not relevant for our purposes. We shall come back to the vacuum energy
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later in the context of the static potential in the presence of external charges. It should
also be clear by now how to take the determination of the perturbative vacuum functional
and the vacuum energy systematically to higher orders.

3.3 Equal-time two-point correlation functions

For the calculation of the equal-time correlation functions, we need to include the Faddeev–
Popov determinant in the measure of the functional integral, see Eq. (3.1). For our dia-
grammatic procedure, it is very convenient to introduce ghost fields and write

FP(A) =

∫
D[c, c̄] exp

(
−
∫

d3x c̄a(x)[−∇ ·Dab(A)]cb(x)

)
. (3.33)

In our conventions, we have explicitly

∫
d3x c̄a(x)[−∇ ·Dab(A)]cb(x) =

∫
d3p

(2π)3
c̄a(−p)p2ca(p) (3.34)

+ g

∫
d3p1
(2π)3

d3p2
(2π)3

d3p3
(2π)3

ifabc p1,j c̄
a(p1)c

b(p2)A
c
j(p3)(2π)

3δ(p1 + p2 + p3). (3.35)

Note that p1,j under the integral in Eq. (3.35) can be replaced by −p2,j due to the trans-
versality of A.

We now have a representation of the equal-time correlation functions as a functional
integral over the transverse components of A, the ghost and the antighost fields, see Eq.
(3.1). The integration measure, which would be the exponential of the negative of the
Euclidean action in the usual four-dimensional formulation (in Euclidean space), is now
given by the exponential in Eq. (3.33) and the square of Eq. (3.3). Note that the vacuum
functional is real (at least to order g2) because the coefficient functions fulfil the reality
condition (

fa1...akk;i1...ik
(−p1, . . . ,−pk)

)∗
= fa1...akk;i1...ik

(p1, . . . ,pk). (3.36)

We shall use the analogy of this representation with the familiar functional integral
representation of the covariant correlation functions in the usual four-dimensional formu-
lation for the perturbative determination of the equal-time correlation functions (3.1). The
corresponding Feynman rules are easily identified: the (static) gluon propagator is the in-
verse of 2|p|, cf. Eq. (3.18) (the factor of two is due to the square of the wave functional in
the measure), the other contributions −2

(
f2(p)− |p|

)
and the other coefficient functions

−2f3(p1,p2,p3) and −2f4(p1, . . . ,p4) determine the two-, three-, and four-gluon vertices.
Furthermore, from Eq. (3.34) we identify the free ghost propagator 1/p2 and from Eq.
(3.35) the ghost-gluon vertex. For the case of φ4 theory in (1+1) dimensions, the calcula-
tion of equal-time correlation functions from a representation analogous to Eq. (3.1) has
been discussed in Ref. [27].

We consider the gluon equal-time two-point function 〈Aa
i (p1)A

b
j(p2)〉 (with t = 0 in the

arguments of the gluon fields to be understood) first. One of the contributions to be taken
into account is the ghost loop, constructed from two ghost-gluon vertices (3.35) and two
ghost propagators [see Eq. (3.34)], and furthermore two static gluon propagators from Eq.
(3.18) for the external lines. As it turns out, this contribution is exactly cancelled by the
other contribution with the same graph “topology” which arises from contracting one of



62 Article 3. Equal-time correlation functions in Coulomb gauge Yang–Mills theory
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Figure 3.3: Diagrammatic representation of the various contributions to the gluonic equal-
time two-point function, see Eqs. (3.37)–(3.41). The propagators marked with open circles
are taken from Eqs. (3.18) and (3.34), respectively, while the “direct” contractions without
open circles refer to the contractions that appear in the course of the determination of
the vacuum wave functional, see Figs. 3.1 and 3.2, so that the corresponding parts of
the diagrams translate into (minus two times) the mathematical expressions (3.24)–(3.25)
[divided by (|p1| + . . . + |p4|)] and (3.27)–(3.30). The notation ‘E(·)’ for the sum of all
diagrams with the same topology is explained in the text, following Eq. (3.44).

the two-gluon vertices, (minus twice) the first integral in Eq. (3.27), with two external
gluon propagators. Both contributions are represented diagrammatically in the first line
of Fig. 3.3. The cancellation of the ghost loop contribution from the perturbative gluon
two-point function (to one-loop order) is interesting given that this contribution plays a
major role in the non-perturbative approaches to the infrared behavior of the equal-time
gluon two-point function [2–7]. The cancellation of ghost loops was found to be a general
feature in the Lagrangian functional integral approach [18,20]. An alternative way to see
the cancellation in our present approach is to write the Faddeev–Popov determinant as

FP(A) = exp
[
Tr ln

(
−∇ ·D(A)

)]
. (3.37)

The coefficient of the term quadratic in A in Tr ln
(
−∇ ·D(A)

)
precisely equals twice the

first integral in Eq. (3.27) and hence cancels out in the exponent.
Next we turn to the tadpole contribution which is obtained from the elementary four-

gluon vertex extracted from Eq. (3.23) appropriately contracted with three static gluon
propagators. Again, there is a second contribution with the same “topology” given by
the two-gluon vertex from the last integral in Eq. (3.27) contracted with two external
propagators, cf. the second line in Fig. 3.3. The sum of these two contributions to the
gluon equal-time two-point function is (with p ≡ p1)

− 2Ncg
2

(2|p|)2
4

3

∫
d3q

(2π)3
1

2|p|+ 2|q|
1

2|q| −
2Ncg

2

(2|p|)3
4

3

∫
d3q

(2π)3
1

2|p|+ 2|q|

= − 2Ncg
2

(2|p|)3
4

3

∫
d3q

(2π)3
1

2|q| , (3.38)

to be multiplied with δabtij(p).
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The most complicated contribution to the two-point function comes from diagrams with
the gluon loop topology (with two three-gluon vertices). There are three different diagrams
of this type, represented in the third line of Fig. 3.3, the first from contracting two three-
gluon vertices extracted from Eq. (3.22) with four static gluon propagators (two internal
and two external), the second from contracting the part of the four-gluon vertex given
by Eq. (3.24) with one internal and two external gluon propagators, and the third by
contracting the two-gluon vertex from Eq. (3.28) with two static gluon propagators. The
sum of these contributions is

2Ncg
2

(2|p|)3 2
∫

d3q

(2π)3
2|p|+ 2|p− q|

(|p|+ |q|+ |p− q|)2 2|q| 2|p − q|
×
(
δkmpn + δmnqk − δnkpm

)
tmr(p− q) tns(q)

(
δlrps + δrsql − δslpr

)
tkl(p) (3.39)

(again, to be multiplied with δabtij(p), and p ≡ p1). The tensor structure in this ex-
pression is invariant under the transformation q → p − q, a fact we can use to replace
2|p|+ 2|p− q| in the numerator with 2|p|+ |q|+ |p− q|. The tensor structure itself can
be simplified by performing the contractions explicitly. A straightforward, but somewhat
tedious calculation gives

(
δkmpn + δmnqk − δnkpm

)
tmr(p− q) tns(q)

(
δlrps + δrsql − δslpr

)
tkl(p) =

=
(
1− (p̂ · q̂)2

)(
2p2 + 2q2 +

p2 q2 + (p · q)2
(p− q)2

)
. (3.40)

Finally, we turn to the contributions that involve the (non-abelian) Coulomb potential.
There are, again, three such terms, represented in the last line of Fig. 3.3, the first from the
four-gluon vertex derived from Eq. (3.25) contracted with three static gluon propagators,
and the other two using the two-gluon vertices corresponding to the two integrals (3.29)
and (3.30) contracted with two gluon propagators each. The sum of these terms is

2Ncg
2

(2|p|)3
1

2

∫
d3q

(2π)3
1 + (p̂ · q̂)2

2|q|
(|p| − |q|)2
(p− q)2

+

+
2Ncg

2

(2|p|)3
1

2

∫
d3q

(2π)3
(
1 + (p̂ · q̂)2

) |p| − |q|
(p− q)2

=

=
2Ncg

2

(2|p|)3
1

2

∫
d3q

(2π)3
1 + (p̂ · q̂)2

2|q|
|p|2 − |q|2
(p− q)2

, (3.41)

to be multiplied with δabtij(p) as before, and p ≡ p1. On the left-hand side of Eq. (3.41),
we have added up the contributions from the contraction of the four-gluon vertex and the
two-gluon vertex in Eq. (3.29) to give the first loop integral. The left-hand side of Eq.
(3.41) is represented diagrammatically as the right-hand side of the last line in Fig. 3.3.

Putting it all together, the result for the equal-time gluon two-point function is, to order
g2,

〈Aa
i (p1)A

b
j(p2)〉 =

[
1

2|p1|
− 2Ncg

2

(2|p1|)3
4

3

∫
d3q

(2π)3
1

2|q| (3.42)

+
2Ncg

2

(2|p1|)3
2

∫
d3q

(2π)3

(
1− (p̂1 · q̂)2

)
(2|p1|+ |q|+ |p1 − q|)

(|p1|+ |q|+ |p1 − q|)2 2|q| 2|p1 − q|
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〈cc̄〉 = bc + b bbc bc

bc

bc

Figure 3.4: Diagrammatic representation of Eq. (3.45).

×
(
2p2

1 + 2q2 +
p2
1 q

2 + (p1 · q)2
(p1 − q)2

)
(3.43)

+
2Ncg

2

(2|p1|)3
1

2

∫
d3q

(2π)3
1 + (p̂1 · q̂)2

2|q|
p2
1 − q2

(p1 − q)2

]
δab tij(p1)(2π)

3δ(p1 + p2).

(3.44)

Looking at the diagrams on the left-hand sides of the first three lines in Fig. 3.3, it
is clear that there is precisely one diagram among those of the same topology that is
contructed exclusively from the elementary vertices (3.22), (3.23), and (3.35) and the
“bare” propagators taken from Eqs. (3.18) and (3.34). We will call this kind of diagram
an ‘F-diagram’. Interestingly, the sum of all diagrams with the same topology which we
will refer to as an ‘E-diagram’, can be constructed from the corresponding F-diagram by
a formal operation that we call the ‘E-operator’. It is denoted as ‘E(·)’ in Fig. 3.3 and
will be illustrated considering the example of the third line in Fig. 3.3: starting from the
mathematical expression for the corresponding F-diagram, one multiplies the integrand (of
the integral over loop momentum) with the sum of all k where k runs over the momenta
of all propagators in the diagram, and divides by the corresponding sum restricted to the
momenta of the external propagators. Indeed, the result of this operation is given by Eq.
(3.39) in the (q → p− q)-symmetric form, see the remark after Eq. (3.39).
The same rule applies to the second line in Fig. 3.3, or Eq. (3.38), only that the propag-

ator that starts and ends at the same vertex has to be counted twice in the sum over
(internal and external) |k|. Similarly, the E-operator can be used to sum the first two
diagrams on the left-hand side of the last line in Fig. 3.3. We have to consider the Cou-
lomb interaction as an elementary vertex given by Eq. (3.25) to this end, and count the
gluon propagator that starts and ends at this vertex twice in the sum over |k| just as in
the case of the other elementary four-gluon vertex. The same rule for the generation of
the E-diagrams (given the elementary vertices and propagators) has been shown to hold
up to two-loop order for the equal-time two-point function and to one-loop order for the
four-point function in the context of a scalar φ4 theory [28] (a detailed account will be
given elsewhere). Note that two contributions, the second diagram in the first line of Fig.
3.3 and the third diagram in the last line in the same figure corresponding to the first loop
integral in Eq. (3.27) and to Eq. (3.30), respectively, do not fit into this general scheme.
The calculation of the equal-time ghost two-point function from the graphical rules is

much simpler. One obtains directly

〈ca(p1)c̄
b(p2)〉 =

(
1

p2
1

+
Ncg

2

p2
1

∫
d3q

(2π)3
1− (p̂1 · q̂)2
(p1 − q)2 2|q|

)
δab (2π)3δ(p1 + p2), (3.45)

corresponding to the diagrams in Fig. 3.4. Note that one of the factors 1/p2
1 for the

external ghost propagators cancels against the momentum dependence of the ghost-gluon
vertices.
We shall close this section with a calculation of the static (heavy quark) potential, the

energy for a configuration of static external colour charges ρq(x). To this end, we introduce
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charges ρq(x) into the Hamiltonian, see Eqs. (3.7) and (3.12). Compared to the Coulomb
term (3.13)–(3.14) which was calculated in the absence of external charges, there are two
new terms of order g2:

g2

2

∫
d3p

(2π)3
ρaq(−p)

1

p2
ρaq(p), (3.46)

which is A-independent and hence only contributes to the vacuum energy but leaves the
vacuum wave functional unchanged, and

g2
∫

d3p1
(2π)3

d3p2
(2π)3

d3p3
(2π)3

fabc

p2
1

(2π)3δ(p1 + p2 + p3) ρ
a
q(p1)A

b
j(p2)

1

i
(2π)3

δ

δAc
j(−p3)

. (3.47)

The latter term, when applied to the vacuum wave functional, generates the following
(properly symmetrized) expression to order g2,

−g
2

2

∫
d3p1
(2π)3

d3p2
(2π)3

d3p3
(2π)3

ifabc
|p2| − |p3|

p2
1

ρaq(p1)A
b
j(p2)A

c
j(p3)(2π)

3δ(p1+p2+p3), (3.48)

which implies that the vacuum wave functional to order g2 has to be modified in order to
fulfil the Schrödinger equation with this new term.

A term cancelling the expression (3.48) in the Schrödinger equation can only result from
the second derivative term in the Hamiltonian [Eq. (3.8)]. It is then simple to see that we
have to add the expression

−g
2

2

∫
d3p1
(2π)3

d3p2
(2π)3

d3p3
(2π)3

ifabc

p2
1

|p2| − |p3|
|p2|+ |p3|

ρaq(p1)A
b
j(p2)A

c
j(p3)(2π)

3δ(p1 + p2 + p3)

(3.49)
to the negative of the exponent of the vacuum wave functional in order to satisfy the
Schrödinger equation to order g2. This term describes the back-reaction of the vacuum
to the presence of the external charges to order g2. Observe that due to the presence of
the external charges ρq(p), the coefficient function of Aa

i (p1)A
b
j(p2) in the vacuum wave

functional ceases to be of the form f2(p2)δ
ab δij(2π)

3δ(p1 + p2). Furthermore, contrary
to the terms found before, the contribution (3.49) is imaginary. The rest of the vacuum
wave functional determined in the previous section remains without change.

We now have to calculate the vacuum energy in the presence of the external charges.
To order g2, the result is the former one, Eq. (3.32), without any contribution from the
new term (3.49), plus Eq. (3.46) which is the part of the energy that depends on the
external charges and hence defines the potential to this order. Of course, this is just the
well-known Coulomb potential of electrodynamics. What we are really interested in are
the first quantum corrections to this “bare” potential, which are of order g4.

In general, the vacuum energy is given by

E0 =
g2

2

∫
d3p

(2π)3
ρaq(−p)

1

p2
ρaq(p)

− 1

2

∫
d3p

(2π)3
(2π)3

δ

δAa
i (p)

(2π)3
δ

δAa
i (−p)

ψ(A)

∣∣∣∣
A=0

, (3.50)

which reduces to Eq. (3.32) in the absence of external charges. A contribution of order g4

can hence only originate from the terms in the vacuum wave functional that are quadratic
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in A. As long as we are only interested in the potential between static sources, we can
concentrate on terms that contain precisely two powers of ρq. We then start by identifying
all the contributions to the Schrödinger equation of order g4 that contain two powers of
A and two powers of ρq. One of these contributions results from expanding the Coulomb
kernel

〈x, a|(−∇ ·D)−1(−∇2)(−∇ ·D)−1 |y, b〉 (3.51)

in Eq. (3.5) to second order in A for ρ = ρq. The result is the term

− 3

4
g4
∫

d3p1
(2π)3

· · · d3p4
(2π)3

(
facef bde

p1,ip2,j
p2
1 p

2
2 (p1 + p3)

2
+ fadef bce

p1,jp2,i
p2
1 p

2
2 (p1 + p4)

2

)

× ρaq(p1)ρ
b
q(p2)A

c
i (p3)A

d
j (p4)(2π)

3δ(p1 + . . .+ p4) (3.52)

on the left-hand side of the Schrödinger equation.

Another contribution of the same type arises from the second functional derivative in
Eq. (3.8) acting (twice) on the term (3.49), which gives the contribution

g4

4

∫
d3p1
(2π)3

· · · d3p4
(2π)3

1

p2
1 p

2
2

[
facef bde tij(p1 + p3)

|p1 + p3| − |p3|
|p1 + p3|+ |p3|

|p1 + p3| − |p4|
|p1 + p3|+ |p4|

+ fadef bce tij(p1 + p4)
|p1 + p4| − |p3|
|p1 + p4|+ |p3|

|p1 + p4| − |p4|
|p1 + p4|+ |p4|

]

× ρaq(p1)ρ
b
q(p2)A

c
i (p3)A

d
j (p4)(2π)

3δ(p1 + . . .+ p4) (3.53)

to the Schrödinger equation. The last contribution of the same type comes from the
“mixed” term where the operator (3.47) acts upon the expression (3.49) in the wave
functional. The result is

−g
4

4

∫
d3p1
(2π)3

· · · d3p4
(2π)3

1

p2
1 p

2
2

×
[
facef bde tij(p1 + p3)

( |p1 + p3| − |p3|
|p1 + p3|+ |p3|

+
|p1 + p3| − |p4|
|p1 + p3|+ |p4|

)

+ fadef bce tij(p1 + p4)

( |p1 + p4| − |p3|
|p1 + p4|+ |p3|

+
|p1 + p4| − |p4|
|p1 + p4|+ |p4|

)]

× ρaq(p1)ρ
b
q(p2)A

c
i (p3)A

d
j (p4)(2π)

3δ(p1 + . . .+ p4), (3.54)

to be included in the Schrödinger equation. It can be shown that no other contributions
quadratic in A and in ρq exist to order g4.

In analogy to the determination of the expression (3.49) from Eq. (3.48), the three
contributions (3.52)–(3.54) to the Schrödinger equation are taken care of by including the
following expression in the negative exponent of the vacuum wave functional [in addition
to (3.22), (3.23)–(3.25), (3.27)–(3.30), and (3.49)]

− g4

4

∫
d3p1
(2π)3

· · · d3p4
(2π)3

1

p2
1 p

2
2 (|p3|+ |p4|)
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Figure 3.5: Diagrammatic representation of the contributions (3.55) (multiplied by 2) to
the vacuum wave functional.

{
facef bde
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2
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+ fadef bce
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3p1,jp2,i
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2
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)]}
ρaq(p1)ρ

b
q(p2)A

c
i (p3)A

d
j (p4)(2π)

3δ(p1 + . . . + p4). (3.55)

This result (multiplied by 2) is represented diagrammatically in Fig. 3.5, where we have
denoted the ‘Coulomb propagator’ 1/p2 as a double line. The first diagram (and its
permutation) corresponds to the expression (3.52), while the second diagram (plus its
permutation) corresponds to the sum of the expressions (3.53) and (3.54). From Eq.
(3.50), we find the contribution to the vacuum energy

g2

2

∫
d3p

(2π)3
ρaq(−p)

1

(p2)2

{
Ncg

2

2

∫
d3q

(2π)3
1

2|q|

[
3
p2 − (p · q̂)2
(p− q)2

+ tij(q)tij(p− q)

(( |p− q| − |q|
|p− q|+ |q|

)2

− 2
|p− q| − |q|
|p− q|+ |q|

)
+ 3

p2 − (p · q̂)2
(p+ q)2

+ tij(q)tij(p+ q)

(( |p+ q| − |q|
|p+ q|+ |q|

)2

− 2
|p+ q| − |q|
|p+ q|+ |q|

)]}
ρaq(p). (3.56)

This latter expression can be simplified by shifting q → q − p in the last two terms (in
the round bracket). Together with Eq. (3.46), we find for the part of the vacuum energy
that is quadratic in the external static charge ρq,

E
(ρq ,2)
0 =

g2

2

∫
d3p

(2π)3
ρaq(−p)V (p)ρaq(p), (3.57)

the following result for the static potential to order g2

V (p) =
1

p2
+
Ncg

2

p2
3

∫
d3q

(2π)3
1− (p̂ · q̂)2
2|q| (p − q)2

(3.58)

− Ncg
2

(p2)2

∫
d3q

(2π)3

(
1 +

(
(p− q) · q

)2

(p− q)2 q2

)
(|p− q| − |q|)2

2|p− q| 2|q| (|p− q|+ |q|) . (3.59)

Note that to the proper colour Coulomb potential (see e.g. Ref. [31]), only the antiscreening
term, the integral in Eq. (3.58), contributes, while the full static potential also contains
the screening contribution (3.59). The semi-analytical variational approaches [3–6,19] have
only considered the proper colour Coulomb potential so far.
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Figure 3.6: A diagrammatic interpretation of the static potential to order g2.

We can associate diagrams with the different contributions in Eqs. (3.58)–(3.59) in
a natural way. The vertex that joins two Coulomb (double) lines and one gluon line
corresponds to the same mathematical expression as the ghost-gluon vertex since both
objects originate from the Faddeev–Popov operator (−∇·D) (or its inverse). On the other
hand, the vertex with two gluon lines and one Coulomb line translates to the expression

igfabc
|p2| − |p3|
|p2|+ |p3|

δjk , (3.60)

where the gluon lines carry the momenta p2 and p3, (spatial) Lorentz indices j and k, and
colour indices b and c [cf. Eq. (3.49)]. Note that the “elementary” Coulomb interaction
(3.25) is different from the contraction of two such vertices with a Coulomb propagator.
With these conventions, we can represent the static potential as in Fig. 3.6. The E-
operator in Fig. 3.6 exclusively refers to the internal gluon propagators and thus amounts
to multiplying the integrand with |p− q|+ |q|.
We hence have succeeded in calculating the equal-time gluon and ghost two-point func-

tions and the static potential to one-loop order in our functional perturbative approach,
with the results (3.42)–(3.45) and (3.58)–(3.59). The same results can be obtained from a
straightforward application of Rayleigh–Schrödinger perturbation theory [29]. Compared
to these latter calculations, we have here developed a functional integral and diagrammat-
ical approach that is potentially advantageous in higher-order perturbative calculations.
We have also described a set of simplified diagrammatic rules (the ‘E-operator’) for the
determination of equal-time correlation functions that is expected to carry over to higher
perturbative orders and is hoped to eventually lead to non-perturbative equations for the
equal-time correlation functions analogous to Dyson–Schwinger equations.

3.4 Lagrangian approach and renormalization

Naive power counting shows that the results of the preceding section, Eqs. (3.42)–(3.45)
and (3.58)–(3.59), are ultraviolet (UV) divergent and need to be renormalized. However,
some of the denominators occuring in the loop integrals are of a different type from those
that usually appear in covariant perturbation theory, and efficient techniques for the hand-
ling of these terms have yet to be developed. These remarks apply in particular to Eqs.
(3.43) and (3.59).
The equal-time correlation functions we have been calculating are a special or limit-

ing case of the usual space-time correlation functions, whence we naturally obtain the
representation

〈Aa
i (p1, t = 0)Ab

j(p2, t = 0)〉 =
∫ ∞

−∞

dp1,4
2π

dp2,4
2π

〈Aa
i (p1, p1,4)A

b
j(p2, p2,4)〉 (3.61)

(with the space-time correlation functions written in Euclidean space-time). Since the
regularization and renormalization program has been developed for the space-time cor-
relation functions, this representation is quite useful for our purposes. In the case of
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Coulomb gauge Yang–Mills theory, however, covariance is explicitly broken through the
gauge condition, and the calculation of the space-time correlation functions in the usual
Lagrangian functional integral approach represents a difficulty by itself. Techniques have
been developed to overcome these difficulties and applied in Ref. [20] to the calculation of
the two-point correlation functions to one-loop order.

Before properly considering the renormalization of our results, we will verify that these
coincide on a formal level with the expressions obtained via Eq. (3.61), taking for the
space-time correlation functions the formulas derived in the Lagrangian functional integral
approach in Ref. [20]. In our notation,

〈Aa
i (p1)A

b
j(p2)〉 =

(
1

p21
− Ncg

2

(
p21
)2

4

3

∫
d4q

(2π)4
1

q2
(3.62)

+
Ncg

2

(
p21
)2
∫

d4q

(2π)4

(
δkmp1,n + δmnqk − δnkp1,m

)
tmr(p1 − q) tns(q)

q2

×
(
δlrp1,s + δrsql − δslp1,r

)
tkl(p1)

(p1 − q)2
(3.63)

+
Ncg

2

(
p21
)2

1

2

∫
d4q

(2π)4
tkl(p1)tkl(q) (p

2
1,4 − q2)

q2 (p1 − q)2

)
δab tij(p1)(2π)

4δ(p1 + p2),

(3.64)

with p21 ≡ p2
1 + p21,4 in Euclidean space-time. Formal integration of p1,4 and p2,4 as in

Eq. (3.61) and of the component q4 of the loop momentum, most easily using the residue
theorem, leads to our equal-time correlation function (3.42)–(3.44). In Eq. (3.62), we
have included the tadpole diagram in order that the correspondence with the equal-time
gluon two-point function (3.42)–(3.44) be term by term. The tadpole diagram was not
considered explicitly in Refs. [20,21] because it vanishes in dimensional regularization.

The case of the ghost two-point function is even simpler, because it is instantaneous
already in the Lagrangian approach: from Ref. [20],

〈ca(p1)c̄b(p2)〉 =
(

1

p2
1

+
Ncg

2

(
p2
1

)2
∫

d4q

(2π)4
p1,ip1,j tij(q)

q2 (p1 − q)2

)
δab (2π)4δ(p1 + p2), (3.65)

and the fact that the dependence on p1,4 and p2,4 is exclusively through the delta function
for energy conservation implies that 〈ca(p1, t1)c̄

b(p2, t2)〉 contains the factor δ(t1 − t2).
Integrating over p1,4 and p2,4 or putting t1 and t2 to zero then results in a factor δ(0).
In this case, in order to reproduce Eq. (3.45), we integrate either over p1,4 or over p2,4,
which just eliminates the delta function for energy conservation [more symmetrically, one
may integrate over (p1,4+p2,4) instead]. Performing the integral over q4 then converts Eq.
(3.65) to Eq. (3.45).

Although it is certainly not surprising that the Lagrangian functional integral approach
of Refs. [18,20,21] gives the same results for the equal-time correlation functions as our
Hamiltonian approach, it is also not trivial. Concerning the gauge fixing procedure, there
is the following important difference between the two approaches: in the Lagrangian for-
mulation, the Weyl gauge A0 ≡ 0 cannot be implemented in addition to the Coulomb gauge
condition ∇ ·A ≡ 0 [30]. Indeed, in the first-order Lagrangian formalism, integrating out
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the A0-field rather than setting A0 to zero yields an expression in the exponent of the
measure for the functional integral that resembles the Christ–Lee Hamiltonian [18]. The
derivation of the Hamilton operator (3.5) by Christ and Lee [22], on the other hand, relies
on the existence of a gauge transformation that makes any gauge field Aµ satisfy both the
Coulomb and Weyl gauge conditions. We discuss the possibility of simultaneously imple-
menting the Weyl and Coulomb gauges in the Hamiltonian and the Lagrangian approaches
in the Appendix.
Although not defined as an equal-time correlation function in our approach, it turns

out that the static potential (3.58)–(3.59) is related to the space-time two-point function
〈Aa

0(p1)A
b
0(p2)〉 in the Lagrangian functional integral approach, as was first pointed out

by Zwanziger [31]. The formal expression for the space-time correlation function is [20]

〈Aa
0(p1)A

b
0(p2)〉 =

(
1

p2
1

+
Ncg

2

(
p2
1

)2 3
∫

d4q

(2π)4
p1,ip1,j tij(q)

q2 (p1 − q)2
(3.66)

+
Ncg

2

(
p2
1

)2
∫

d4q

(2π)4
q4
p1,4

p1 · (p1 − 2q)

q2 (p1 − q)2
tij(p1 − q)tij(q)

)
δab (2π)4δ(p1 + p2).

(3.67)

Integrating over either p1,4 or p2,4 and over the energy component q4 of the loop mo-
mentum, we obtain the antiscreening contribution (3.58) to the static potential from Eq.
(3.66) because the latter is already instantaneous. In order to find Eq. (3.59) starting from
Eq. (3.67), we have to put the respective other energy component, p2,4 or p1,4, to zero in
addition [this is not necessary in the cases of Eqs. (3.65) and (3.66), because there the
result of integrating over one of the energy components is independent of the other]. For
〈Aa

0(p1, t1)A
b
0(p2, t2)〉, this procedure amounts to integrating over the relative time t1− t2,

which is, in fact, intuitively quite appealing for a non-instantaneous contribution to the
potential between static sources.
We shall now use the representation (3.61) of the equal-time gluon two-point function

and the corresponding representations of the ghost two-point function and the static po-
tential for the renormalization of these equal-time correlation functions. To this end, we
make use of the explicit expressions obtained for Eqs. (3.62)–(3.67) in Ref. [20] in dimen-
sional regularization. Thus, by integrating the result for (3.62)–(3.64) according to Eq.
(3.61), we obtain for the equal-time correlation function

〈Aa
i (p1)A

b
j(p2)〉 =

[
1

2|p1|
+
Ncg

2

(4π)2
1

2|p1|

(
1

ε
− ln

p2
1

µ2
+ CA

)]
δab tij(p1)(2π)

3δ(p1 + p2)

(3.68)
in the limit ε → 0, where d = 3 − 2ε is the dimension of space and µ an arbitrary mass
scale. The value of the constant CA is not relevant to our purposes, but being an integral
over an explicitly known function of p21,4/p

2
1, we have carefully checked that it is finite.

From the explicit expressions for Eqs. (3.65)–(3.67) in dimensional regularization [20],
we find directly

〈ca(p1)c̄
b(p2)〉 =

[
1

p2
1

+
Ncg

2

(4π)2
1

p2
1

4

3

(
1

ε
− ln

p2
1

µ2
+ Cc

)]
δab (2π)3δ(p1 + p2), (3.69)

V (p1) =
1

p2
1

+
Ncg

2

(4π)2
1

p2
1

11

3

(
1

ε
− ln

p2
1

µ2
+CV

)
. (3.70)
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This procedure to regularize the equal-time correlation functions finds further support
in the cases where the equal-time functions in the form (3.42)–(3.45) and (3.58)–(3.59) can
be evaluated directly in dimensional regularization (in d = 3 − 2ε dimensions). For Eqs.
(3.44) and (3.45), identical results are obtained in both ways [29] [also trivially for Eq.
(3.42) and the loop integral in Eq. (3.58) which is just three times the one of Eq. (3.45)].

The results (3.68) and (3.69) for the equal-time two-point correlation functions can be
renormalized in analogy to the procedures developed for covariant theories: we introduce
renormalized correlation functions (or correlation functions of the renormalized fields)

〈Aa
R,i(p1)A

b
R,j(p2)〉 =

1

ZA
〈Aa

i (p1)A
b
j(p2)〉,

〈caR(p1)c̄
b
R(p2)〉 =

1

Zc
〈ca(p1)c̄

b(p2)〉. (3.71)

The simplest choice of the normalization conditions is

〈Aa
R,i(p1)A

b
R,j(p2)〉

∣∣∣
p2
1=κ2

=
1

2|p1|
δab tij(p1)(2π)

3δ(p1 + p2),

〈caR(p1)c̄
b
R(p2)〉

∣∣∣
p2
1=κ2

=
1

p2
1

δab (2π)3δ(p1 + p2), (3.72)

at the renormalization scale κ. With these normalization conditions and the results (3.68),
(3.69), we obtain

ZA(κ) = 1 +
Ncg

2

(4π)2

(
1

ε
− ln

κ2

µ2
+CA

)
:,

Zc(κ) = 1 +
Ncg

2

(4π)2
4

3

(
1

ε
− ln

κ2

µ2
+ Cc

)
, (3.73)

to order g2.
The expression (3.70) for the static potential needs to be renormalized, too. This is most

naturally achieved by a renormalization of the coupling constant as was first suggested in
Refs. [32,33], through

g2V (p)
∣∣
p2=κ2 =

ḡ2R(κ)

p2
, (3.74)

see Eq. (3.57). Hence, from Eq. (3.70),

ḡ2R(κ) = g2
[
1 +

Ncg
2

(4π)2
11

3

(
1

ε
− ln

κ2

µ2
+ CV

)]
, (3.75)

which implies for the corresponding beta function to one-loop order,

κ2
∂

∂κ2
ḡ2R(κ) =

β̄0
(4π)2

ḡ4R(κ), (3.76)

that

β̄0 = −11

3
Nc . (3.77)

This is the well-known result from covariant perturbation theory (for Yang–Mills theory
in covariant gauges), and has also been found in Ref. [20].
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Figure 3.7: The proper ghost-gluon vertex to one-loop order.

For the rest of this section, we will pursue a more conventional way of renormalizing the
coupling constant (which, however, leads to the same result). To this end, we consider the
equal-time ghost-gluon three-point correlation function 〈ca(p1)c̄

b(p2)A
c
i (p3)〉 to order g3

(one loop). The calculation of this correlation function is performed in analogy with the
determination of the equal-time two-point correlation functions in Section 3.3, using the
result for the vacuum wave functional obtained in Section 3.2. In this particularly simple
case (and to the order considered), the external “propagators” (equal-time two-point func-
tions) can be factorized to define the equal-time proper three-point vertex Γabc

i (p1,p2,p3)
as

〈ca(p1)c̄
b(p2)A

c
i (p3)〉 = −

∫
d3p4
(2π)3

d3p5
(2π)3

d3p6
(2π)3

〈ca(p1)c̄
d(−p4)〉

× Γdef
j (p4,p5,p6) 〈ce(−p5)c̄

b(p2)〉 〈Af
j (−p6)A

c
i (p3)〉. (3.78)

The explicit perturbative result is

Γabc
j (p1,p2,p3) = −igfabctjk(p3)(2π)

3δ(p1 + p2 + p3)

(
p1,k

− Ncg
2

2

∫
d3q

(2π)3

[
p1 · p2 − (p1 · q̂)(p2 · q̂)

]
(p1,k − qk)

2|q| (p1 − q)2 (p2 + q)2
(3.79)

+
2Ncg

2

2

∫
d3q

(2π)3
p1,lp2,n tlm(p1 − q) tnr(p2 + q)

q2 2|p1 − q| 2|p2 + q|

× δkm(p1,r − p3,r − qr)− δmr(p1,k − p2,k − 2qk)− δrk(p2,m − p3,m + qm)

|q|+ |p1 − q|+ |p2 + q|

)

(3.80)

It is represented diagrammatically in Fig. 3.7. Note that due to the transversality of the
gauge, two powers of the external momenta can be factorized from the loop integrals [cf.
Eq. (3.45)] and, as a result, the integrals are UV finite. This phenomenon is well-known
in another transverse gauge, the Landau gauge [34,35]. For future use, we note that by
very lengthy algebra the tensor structure in Eq. (3.80) can be simplified as follows:

p1,l p2,n tlm(p1 − q)tnr(p2 + q)
[
δkm(p1,r − p3,r − qr)

− δmr(p1,k − p2,k − 2qk)− δrk(p2,m − p3,m + qm)
]
tjk(p3)(2π)

3δ(p1 + p2 + p3) =

= 2

(
q2p1,k + (p1 · p2)qk −

(p1 − q) · (p2 + q)

(p1 − q)2 (p2 + q)2

{
[q · (p1 − q)][q · (p2 + q)]p1,k

+ [p1 · (p1 − q)][p2 · (p2 + q)]qk

})
tjk(p3)(2π)

3δ(p1 + p2 + p3). (3.81)
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We define the renormalized coupling constant in analogy with the covariant case as

Γabc
R,j(p1,p2,p3)

∣∣∣
p2
1=p2

2=p2
3=κ2

≡ Zc(κ)Z
1/2
A (κ) Γabc

j (p1,p2,p3)
∣∣∣
p2
1=p2

2=p2
3=κ2

= −igR(κ)f
abc p1,k tjk(p3)(2π)

3δ(p1 + p2 + p3) (3.82)

at the symmetric point. As a consequence, using Eq. (3.73) and the UV finiteness of the
loop integrals (3.79)–(3.80),

gR(κ) = g

[
1 +

Ncg
2

(4π)2
11

6

(
1

ε
− ln

κ2

µ2
+ C

)]
, (3.83)

with a finite constant C given by (11/6)C = (4/3)Cc+(1/2)CA+Cv, where Cv is obtained
from the finite loop integrals in Eqs. (3.79)–(3.80).

For the beta function defined in analogy with Eq. (3.76) we obtain from Eq. (3.83)

β0 = −11

3
Nc , (3.84)

which coincides with the one obtained in Eq. (3.77) before with the renormalized coupling
constant defined through the static potential. We should mention that we could have
extracted the beta function directly from the cut-off dependence of the vacuum wave
functional, as it has actually been done in Ref. [26] for Yang–Mills theory in Weyl gauge.
Here, however, our intention was to closely follow the procedure applied in the Lagrangian
covariant formulation.

The integration of the renormalization group equation (3.76) gives the well-known (one-
loop) result

g2R(κ) =
(4π)2

11

3
Nc ln

(
κ2

Λ2
qcd

) (3.85)

[and the same for ḡ2R(κ) (3.75)]. It must be noted that for renormalization group im-
provements like Eq. (3.85) to be sensible we have to suppose that the three-dimensional
formulation presented here is multiplicatively renormalizable to all orders in the same
way as the usual formulation of a renormalizable covariant quantum field theory, which
is not known at present (even the renormalizability of the Lagrangian functional integral
approach to Coulomb gauge Yang–Mills theory has not yet been shown). Equation (3.85)
and the developments to follow are therefore to some degree speculative, but it seemed of
some interest to us to explore the consequences of the natural assumption of multiplicative
renormalizability.

With these qualifications, we go on to use a standard renormalization group argument
to extract the asymptotic UV behavior of the equal-time two-point correlation functions.
To this end, we differentiate Eq. (3.71) with respect to κ2 using the κ-independence of the
“bare” two-point functions. It is then seen that the κ-dependence of the renormalized two-
point functions is determined by the anomalous dimensions (κ2 ∂ lnZA,c/∂κ

2). Evaluating
the latter from Eq. (3.73) and replacing g2 in the results with g2R(κ), we obtain the desired
renormalization group equations for the equal-time two-point functions, explicitly

κ2
∂

∂κ2
〈Aa

R,i(p1)A
b
R,j(p2)〉 =

Ncg
2
R(κ)

(4π)2
〈Aa

R,i(p1)A
b
R,j(p2)〉,

κ2
∂

∂κ2
〈caR(p1)c̄

b
R(p2)〉 =

4

3

Ncg
2
R(κ)

(4π)2
〈caR(p1)c̄

b
R(p2)〉. (3.86)
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In these equations, we substitute from Eq. (3.85) for g2R(κ) and integrate. Using the
normalization conditions (3.72) for the determination of the integration constants, one
obtains the momentum dependence of the equal-time two-point functions:

〈Aa
R,i(p1)A

b
R,j(p2)〉 =

1

2|p1|




ln

(
κ2

Λ2
qcd

)

ln

(
p2
1

Λ2
qcd

)




3/11

δab tij(p1)(2π)
3δ(p1 + p2),

〈caR(p1)c̄
b
R(p2)〉 =

1

p2
1




ln

(
κ2

Λ2
qcd

)

ln

(
p2
1

Λ2
qcd

)




4/11

δab (2π)3δ(p1 + p2).

(3.87)

The momentum dependence of the “bare” two-point functions, obtained from Eq. (3.87)
simply by multiplying with the corresponding wave function renormalization constants
ZA,c, is obviously the same. By solving the renormalization group equations for ZA and
Zc that involve the anomalous dimensions, it may be shown explicitly that the bare two-
point functions are κ-independent, as they must be.

For the static potential, on the other hand, we immediately obtain from Eqs. (3.74) and
(3.85) [for ḡ2R(κ)] the renormalization group improved result

g2V (p) =
(4π)2

11

3
Nc p

2 ln

(
p2

Λ2
qcd

) . (3.88)

Note that this one-loop formula constitutes a very direct expression of asymptotic freedom.

The result (3.87) for the momentum dependence of the equal-time two-point functions
has also been obtained in Ref. [36] from a Dyson–Schwinger equation for the equal-time
ghost correlator, where the gauge-invariant one-loop running (3.85) of the renormalized
coupling constant is used as an input. We briefly discuss that derivation here, adapted to
the conventions of the present paper.

The renormalized equal-time two-point functions are parameterized as

〈Aa
R,i(p1)A

b
R,j(p2)〉 =

1

2ω(p2
1)
δab tij(p1)(2π)

3δ(p1 + p2) (3.89)

and

〈caR(p1)c̄
b
R(p2)〉 =

d(p2
1)

p2
1

δab (2π)3δ(p1 + p2), (3.90)

and normalized according to the conditions (3.72). The renormalized coupling constant
is defined as before in Eq. (3.82). Then the Dyson–Schwinger equation for the equal-time
ghost two-point function reads [3–6]

d−1(p2) = Zc −Nc g
2
R(κ)

∫
d3q

(2π)3
1− (p̂ · q̂)2
2ω(q2)

d
(
(p− q)2

)

(p− q)2
. (3.91)
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Here we have approximated the full ghost-gluon vertex appearing in the exact equation
by the tree-level vertex, as it is appropriate in order to obtain the (renormalization-group
improved) one-loop expressions.

In order to solve Eq. (3.91), we make the following, properly normalized, ansatzes for
the two-point functions in the ultraviolet limit p2 ≫ Λ2

qcd,

|p|
ω(p2)

=




ln

(
κ2

Λ2
qcd

)

ln

(
p2

Λ2
qcd

)




γ

, d(p2) =




ln

(
κ2

Λ2
qcd

)

ln

(
p2

Λ2
qcd

)




δ

, (3.92)

with the exponents γ and δ to be determined. The integral in Eq. (3.91) can then be
calculated in the limit p2 ≫ Λ2

qcd and the Dyson–Schwinger equation yields the relation
[36]

ln−δ

(
κ2

Λ2
qcd

)
lnδ
(

p2

Λ2
qcd

)
= Nc g

2
R(κ)

1

(4π)2
4

3δ
lnγ+δ

(
κ2

Λ2
qcd

)
ln1−γ−δ

(
p2

Λ2
qcd

)
, (3.93)

from which we infer the sum rule
γ + 2δ = 1 (3.94)

for the exponents as well as the identity

g2R(κ)
1

(4π)2
4

3δ
Nc ln

(
κ2

Λ2
qcd

)
= 1 (3.95)

for the coefficients. Consistency of the latter relation with the well-known perturbative
result (3.85) yields the exponents

γ =
3

11
, δ =

4

11
, (3.96)

where we have used the sum rule (3.94) again. We have thus regained the result of Eq.
(3.87).

3.5 Conclusions

In this work, we have accomplished a systematic perturbative solution of the Yang–Mills
Schrödinger equation in Coulomb gauge for the vacuum wave functional following the eS

method in many-body physics. This resulted in a functional integral representation for the
calculation of equal-time correlation functions. We have derived a diagrammatical repres-
entation of these functions, order by order in perturbation theory, where the vertices in
the diagrams are determined from the perturbative calculation of the vacuum wave func-
tional. The number of the vertices, which by themselves have a perturbative expansion,
grows with the perturbative order. We have determined the equal-time gluon and ghost
two-point correlation functions and the potential between static colour charges to one-loop
order in this way.

The results coincide with those of a straightforward calculation in Rayleigh–Schrödinger
perturbation theory [29], and also with the values for equal times of the two-point space-
time correlation functions from a Lagrangian functional integral representation [20]. We
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have emphasized that the latter coincidence is not trivial since the gauge fixing proced-
ures in the Hamiltonian and the Lagrangian approach are profoundly different. We have
also used the results of the Lagrangian approach to renormalize the equal-time two-point
correlation functions and the static potential.
With the help of the non-renormalization of the ghost-gluon vertex which we also show,

or, alternatively, from the static potential, we have extracted the running of the corres-
pondingly defined renormalized coupling constant. The result for the beta function is the
one also found in covariant and other gauges, β0 = −(11/3)Nc to one-loop order. We
have used standard renormalization group arguments to determine the asymptotic ultra-
violet behavior of the equal-time two-point functions and the static potential under the
assumption of multiplicative renormalizability to all orders, with the result that

〈Aa
i (p1)A

b
j(p2)〉 ∝

(
ln(p2

1/Λ
2
qcd)

)−3/11

2|p1|
δab tij(p1)(2π)

3δ(p1 + p2),

〈ca(p1)c̄
b(p2)〉 ∝

(
ln(p2

1/Λ
2
qcd)

)−4/11

p2
1

δab (2π)3δ(p1 + p2),

g2V (p1) ∝
(
ln(p2

1/Λ
2
qcd)

)−1

p2
1

(3.97)

to one-loop order in the perturbative (asymptotically free) regime.
It is clear from the presence of an infinite number of vertices in the functional integral

representation of the equal-time correlation functions (to infinite perturbative order) that
the corresponding Dyson–Schwinger equations contain an infinite number of terms, a very
serious problem for the determination of an appropriate approximation scheme for non-
perturbative solutions. The existence of simplified diagrammatic rules for the calculation
of equal-time correlation functions via the E-operator, to be appropriately extended to
all perturbative orders, seems to point toward the possibility of formulating similar non-
perturbative equations with a finite number of terms. It would indeed be very interesting
to repeat the type of infrared analysis applied before to Yang–Mills theory in the Landau
gauge [7,12–17] and to a variational ansatz in the Coulomb gauge [1–7] for such a set of
equations.
The perturbative expression for the vacuum wave functional determined in this paper,

in particular the coefficient functions f3 and f4 in Eqs. (3.22)–(3.25), can be used to
motivate improved ansatzes for the vacuum functional going beyond the Gaussian form
in a variational approach as employed in Refs. [1,3–6]. An appropriate extension of a
Gaussian ansatz would make it possible, e.g. to reproduce the correct beta function and
the anomalous dimensions of the equal-time two-point functions at least to one-loop order
in this approach. This idea is currently being pursued. We note in this context that the
relation (3.26) between the coefficient functions f2 and f4 following from the Schrödinger
equation can easily be promoted to an exact gap equation, i.e. valid to any perturbative
order, by replacing |p| and |q| on the right-hand side with f2(p) and f2(q), respectively:

(
f2(p)

)2
δabδij =

(
p2 − f2(p)

Ncg
2

2

∫
d3q

(2π)3
1− (p̂ · q̂)2
(p− q)2

)
δabδij

+
1

2

∫
d3q

(2π)3
fabcc4;ijkl(−p,p,−q,q)tkl(q)−Ncg

2δab
∫

d3q

(2π)3
f2(p)− f2(q)

(p− q)2
tij(q).

(3.98)
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Similarly, the explicit perturbative expression for the vacuum wave functional in the
presence of static external colour charges, see Eqs. (3.49) and (3.55), is expected to provide
valuable information in the quest for a detailed understanding of the (quenched) interaction
between quarks. Different ansatzes for such a wave functional in the non-perturbative
regime have been considered in Refs. [36,37], while relevant results from lattice calculations
can be found in Refs. [38,39].

Finally, the results (3.97) for the ultraviolet behavior of the two-point functions are
relevant to the corresponding results of a numerical evaluation on space-time lattices. A
recent numerical calculation of the equal-time ghost two-point function [9] gives a value of
0.33(1) for the anomalous dimension, quite close to our one-loop result 4/11 ≈ 0.36. As for
the static potential, numerical results are only available for the instantaneous antiscreening
part, given to one-loop order by Eq. (3.58). The asymptotic behavior of this so-called
colour Coulomb potential has been determined in Ref. [40] to be

g2VC(p1) ∝
(
ln(p2

1/Λ
2
qcd)

)−1

p2
1

(3.99)

to one-loop order, the same as for the full static potential (except for an overall factor
12/11). This ultraviolet behavior was confirmed by earlier lattice calculations [41–43].
However, the most recent numerical evaluation [44] contradicts these earlier findings.

The situation is even more controversial for the equal-time (transverse spatial) gluon
two-point function. Some years ago, scaling violations had been reported by several groups
[43,45,46]. Different proposals to understand or deal with the scaling violations have lead
to different results in the most recent lattice simulations, from zero anomalous dimension
[8,47] to an anomalous power behavior [9]

〈Aa
i (p1)A

b
j(p2)〉 ∝

|p1|−η

2|p1|
δab tij(p1)(2π)

3δ(p1 + p2) (3.100)

with η = 0.40(2) (similar to results reported earlier [42]; see, however, the corresponding
remarks in Ref. [46]). Clearly, a better understanding of the numerical data is needed.
An interesting possibility in this context is the use of anisotropic lattices where a drastic
reduction of the scaling violations was reported [48] in the approach to the Hamiltonian
limit as/at → ∞ (with the spatial and temporal lattice spacings as and at).

Given that the question of multiplicative renormalizability of the gluonic two-point
correlation function (at equal and at different times) plays an important role in the con-
troversy about the scaling violations [8,9], it would certainly be interesting to confirm
multiplicative renormalizability in our approach to the two-loop level. The extension
of the calculations presented here to two loops appears relatively straightforward, albeit
lengthy. Let us mention, in this context, that the static potential has never been worked
out explicitly in Coulomb gauge at the two-loop level. In our approach, the main problem
with the two-loop calculations is expected to be the correct renormalization of the expres-
sions. Corresponding results for the space-time correlation functions from a Lagrangian
functional integral approach are not known to this level, so one cannot proceed in analogy
with Section 3.4. The calculations with the Lagrangian functional integral method are
complicated, at the two-loop level, by the appearance of Christ–Lee–Schwinger terms [22]
(see also Refs. [49,50]) which are required in order to produce results corresponding to
the Hamiltonian (3.5) with its specific operator ordering (in particular, the insertion of
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powers of the Faddeev–Popov determinant). As an alternative to the procedure of Section
3.4, one may consider the use of a simple three-dimensional ultraviolet momentum cut-off.
Care has to be taken, however, since such a cut-off can break the covariance of the theory
(see Ref. [51] for an example in Yukawa theory), in which case appropriate non-covariant
counterterms have to be included.
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Appendix: Gauge transformations in Lagrangian and

Hamiltonian formalisms

While the Lagrangian approach to Yang–Mills theory offers some convenient features
(such as manifestation of Lorentz invariance), the more cumbersome Hamiltonian ap-
proach yields equations of motion invariant under a larger set of gauge transformations.
In what follows, we discuss gauge invariance starting from the classical Lagrangian and
Hamiltonian functions, respectively, prior to quantization. We will employ standard co-
variant notation in this appendix; in particular, spatial subindices refer to the covariant
components of the corresponding 4-vector or tensor.
The Lagrangian function of the gauge sector,

L = −1

4

∫
d3x F a

µν(x)F
µν
a (x), (3.101)

is invariant under gauge transformations of the gauge field Aµ(x) ≡ Aa
µ(x)T

a,

Aµ(x) → U(x)Aµ(x)U
†(x) +

1

g
U(x)∂µU

†(x), (3.102)

where U ∈ SU(N) and [T a, T b] = fabcT c.
The Weyl gauge, Aa

0(x) = 0, can be found by choosing the time-ordered exponential

U †(x) = T exp

(
−g
∫ t

dt′A0(x, t
′)

)
. (3.103)

To remain in the Weyl gauge, the transformation (3.103) may be followed by time-
independent transformations U(x) only. We can therefore fix the Coulomb gauge, ∂iA

i
a(x)

= 0, at one instant of time but it is impossible to fix both gauges simultaneously for all
times.
In the Hamiltonian formalism, on the other hand, gauge transformations are gener-

ated by (first-class) constraints in configuration space [52]. To see that, supplement the
Hamiltonian function

H =
1

2

∫
d3x

(
Π2

a(x) +B2
a(x)

)
−
∫

d3xAa
0(x)D̂

ab
i (x)Πi

b(x) (3.104)
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by the constraints

φa1(x) = Πa
0(x) ≈ 0, φa2(x) = D̂ab

i (x)Πi
b(x) ≈ 0 (3.105)

with some arbitrary Lagrange multiplier fields {λak(x)},

HE = H +
∑

k=1,2

∫
d3x λak(x)φ

a
k(x). (3.106)

We defined Πa
µ(x) = F a

µ0(x) and D̂
ab
i (x) = δab∂i − gfabcAc

i(x). The extended Hamiltonian
HE in Eq. (3.106) is equivalent to the original Hamiltonian H since the constraints {φak(x)}
vanish weakly (in the Dirac sense [52]). The infinitesimal time evolution of the gauge field
Aa

µ(x, t) from t0 to t = t0 + δt, generated by HE through the Poisson brackets,

Aa
µ(x, t) = Aa

µ(x, t0) + δt {Aa
µ(x, t0),H}+ δt

∑

k=1,2

∫
d3y λbk(y) {Aa

µ(x, t0), φ
b
k(y)}, (3.107)

gives for two different sets of Lagrange multiplier functions {λ′bk (x)} and {λ′′bk (x)} two
different results A′a

µ and A′′a
µ , respectively. These differ to O(δt) by

A′′a
µ (x, t)−A′a

µ (x, t) = δt
∑

k=1,2

∫
d3y

(
λ′′bk (y)− λ′bk (y)

)
{Aa

µ(x, t), φ
b
k(y)} (3.108)

and are physically equivalent. Thus, the function

G =
∑

k=1,2

∫
d3y τak (y)φ

a
k(y) (3.109)

generates infinitesimal gauge transformations in the (extended) Hamiltonian formalism
with arbitrary functions τa1 (x) and τ

a
2 (x). Computing the Poisson brackets in Eq. (3.108)

yields

Aa
0(x) → Aa

0(x) + τa1 (x), (3.110)

Aa
i (x) → Aa

i (x)− D̂ab
i (x)τ b2(x). (3.111)

The difference to the gauge transformations (3.102) in the Lagrangian formalism is that
the time component and the spatial components of the gauge field transform independ-
ently. The two functions τa1 (x) and τa2 (x) allow for a larger set of gauge transformations
than the single function U(x) in the Lagrangian formalism. The simultaneous fixing of
Weyl and Coulomb gauges, which is impossible in the Lagrangian formalism, can be ac-
complished in the Hamiltonian formalism by appropriately choosing τa1 (x) and τ

a
2 (x) (see

Ref. [53] for the abelian case). Subsequently, the non-abelian gauge-fixed theory can be
canonically quantized with projection on the physical Hilbert space [22], or with Dirac
brackets [36] enforcing all constraints strongly. Both quantization prescriptions produce
the Hamiltonian operator given by Eq. (3.5).
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Abstract A general method to treat non-Gaussian vacuum wave functionals in the
Hamiltonian formulation of a quantum field theory is presented. By means of Dyson–
Schwinger techniques, the static Green functions are expressed in terms of the kernels
arising in the Taylor expansion of the exponent of the vacuum wave functional. These
kernels are then determined by minimizing the vacuum expectation value of the Hamilto-
nian. The method is applied to Yang–Mills theory in Coulomb gauge, using a vacuum
wave functional whose exponent contains up to quartic terms in the gauge field. An es-
timate of the cubic and quartic interaction kernels is given using as input the gluon and
ghost propagators found with a Gaussian wave functional.

4.1 Introduction

According to our present understanding of nature, Quantum Chromodynamics (QCD) is
the theory of the strong interaction. This theory has been tested in the high-momentum or
ultraviolet (UV) regime, where perturbation theory is applicable due to asymptotic free-
dom. Our knowledge on the low energy, strongly interacting regime of QCD stems mainly
from lattice calculations, which have at least qualitatively reproduced many physical ob-
servables, in particular, the linearly rising confining potential for heavy quarks. Further-
more, lattice calculations have revealed the relevance of topological field configurations
such as magnetic monopoles and center vortices for infrared phenomena like confinement
and spontaneous chiral symmetry breaking. These calculations support the dual Meissner
effect and the vortex condensation picture of confinement [1]. Despite these substantial
physical insights provided by the lattice calculations, a thorough understanding of these
infrared phenomena will not come from lattice calculations alone but will require also
studies of the continuum theory.
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In recent years there have been substantial efforts devoted to a non-perturbative treat-
ment of continuum Yang–Mills theory. Among these are a variational solution of the
Yang–Mills Schrödinger equation in Coulomb gauge [2–5]. In this approach, using Gaus-
sian type wave functionals, minimization of the energy density results in the so-called gap
equation for the gluon energy (or static gluon propagator). This equation has been solved
analytically in the infrared [6] and in the ultraviolet [7] and numerically in the full mo-
mentum regime [4,8]. One finds a gluon energy, which in the UV behaves like the photon
energy but diverges in the infrared (IR), signalling confinement. The obtained gluon en-
ergy also compares favourably with the lattice data [9]. In particular, the infrared regime
is correctly reproduced, as far as we can tell from available lattice data. There are, how-
ever, deviations in the mid-momentum regime (and minor ones in the UV) which can be
attributed to the missing gluon loop, which escapes the Gaussian wave functionals. These
deviations are presumably irrelevant for the confinement properties, which are dominated
by the ghost loop (which is fully included under the Gaussian ansatz), but are believed to
be important for a correct description of spontaneous breaking of chiral symmetry [10].
The numerical wave functional obtained from the variational solution of Ref. [8] seems

to embody the correct infrared physics as is revealed in the various applications considered
to date: one finds a linearly rising static quark potential [8], an infrared enhanced run-
ning coupling constant with no Landau pole [6], a topological susceptibility in accord with
lattice data [11], a perimeter law for the ’t Hooft loop [12], and, within an approximate
Dyson–Schwinger equation, an area law for the spatial Wilson loop [13]. Furthermore, in
Ref. [14] it was shown that the inverse ghost form factor of Coulomb gauge Yang–Mills
theory represents the dielectric function of the Yang–Mills vacuum and the so-called hori-
zon condition [15] (of an infrared diverging ghost form factor) implies that the Yang–Mills
vacuum is a perfect color dielectricum, i.e. a dual superconductor, which establishes the
connection between the Gribov–Zwanziger confinement scenario [15,16] and the monopole
condensation picture [17,18]. Finally, in Ref. [19] the functional renormalization group flow
equation of the Hamiltonian approach to Coulomb gauge Yang–Mills theory was studied,
yielding results for the gluon and ghost propagator similar to that of the variational ap-
proach [4].
In the present paper, we generalize the variational approach to the Hamiltonian formu-

lation of Yang–Mills theory to non-Gaussian wave functionals. We will present a general
method to treat non-Gaussian wave functionals in quantum field theory. The method
is based on the observation that expectation values in the Hamiltonian formulation of
d = 3 + 1 dimensional quantum field theory can be formally obtained from a generating
functional of d = 3 dimensional Euclidean quantum field theory with an action defined by
the logarithm of the vacuum wave functional. Expanding this action functional in powers
of the underlying field results in “bare” n-point kernels γn as expansion “coefficients”. We
then exploit Dyson–Schwinger equation (DSE) techniques [20–22] to express the expecta-
tion value of the Hamiltonian 〈H〉 in terms of these kernels γn, which are then determined
by the variational principle, i.e. by minimizing 〈H〉. This approach is then applied to the
Hamiltonian formulation of Yang–Mills theory in Coulomb gauge to include three- and
four-gluon interaction kernels in the exponent of the Yang–Mills vacuum wave functional.
By using such a non-Gaussian wave functional, the gluon loop is retained in the expecta-

tion value of the Hamiltonian. Although the gluon loop is irrelevant for the IR properties,
it certainly influences the mid-momentum and UV regime of the gluon propagator and
thus of the running coupling, and also contributes to the anomalous dimensions. As a first
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estimate of the effects of the non-Gaussian terms in the wave functional, we will calculate
the gluon-loop contribution to the gluon propagator as well as the three- and four-gluon
proper vertices using the ghost and gluon propagators obtained from the Gaussian wave
functional [8] as input. A full self-consistent inclusion of the three- and four-gluon vertices
will be the subject of future research.

It is clear from the very beginning that eventually we have to truncate the tower of
DSEs for the proper n-point vertex functions Γn as well as the equations of motion for the
variational kernels γn following from the variational principle. For a systematic counting
of the various diagrams we will assume a skeleton expansion.

Previous variational calculations (using Gaussian wave functionals) were restricted to
two (overlapping) loops in the energy 〈H〉, resulting in a one-loop gap equation for the
gluon propagator. Restriction to two overlapping loops in the energy results in a bare
(zero-loop) three-gluon kernel γ3 and in a vanishing four-gluon kernel, γ4 = 0. To get
a γ4 6= 0, one has to include up to three loops in the energy. To keep the calculation
sufficiently simple, we will keep only those three (overlapping) loop terms in the energy
containing three- or four-gluon kernels. This will result in a bare (zero-loop) four-gluon
and a one-loop three-gluon vertex.

The organization of the paper is as follows: in Sec. 4.2 we present the DSEs of the
Hamiltonian approach first for a general field theory and afterwards for Yang–Mills theory
in Coulomb gauge. The full static (equal-time) propagators of the Hamiltonian approach
are expressed in terms of proper vertex functions in Sec. 4.3. In Sec. 4.4 we specify our
Yang–Mills vacuum wave functional and derive the corresponding DSEs for the gluon and
ghost proper n-point functions. By means of these DSEs, the vacuum expectation value of
the Hamiltonian is expressed in Sec. 4.5 in terms of the variational kernels of the vacuum
wave functional. In Sec. 4.6 these kernels are determined by minimizing the energy density.
Finally, in Sec. 4.7 we calculate the three- and four-gluon proper vertices using as input
the ghost and gluon propagators from the variational calculations with a Gaussian wave
functional. A short summary and our conclusions are given in Sec. 4.8.

4.2 Dyson–Schwinger equations of the Hamiltonian approach to

Yang–Mills theory in Coulomb gauge

4.2.1 General DSE formalism of the Hamiltonian approach to quantum field

theory

Consider a quantum field theory comprised of a collection of fields φ = (φ1, φ2, . . . ) and
let |ψ〉 be the exact vacuum state. All static (time-independent) Green’s functions, i.e.
vacuum expectation values 〈φφ . . . 〉, can be calculated from the generating functional

Z[j] = 〈ψ|e
∫
j·φ |ψ〉, (4.1)

where j = (j1, j2, . . . ) stands for the collection of sources corresponding to the fields and
we use the abbreviation j · φ = j1φ1 + j2φ2 + · · · . In the “coordinate” representation of
the vacuum state 〈φ|ψ〉 = ψ[φ], the scalar product in Eq. (4.1) is defined by the functional
integral over time-independent fields φ(x)

Z[j] =

∫
Dφ |ψ[φ]|2 e

∫
j·φ. (4.2)
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Furthermore, the integral in the exponent is over spatial coordinates x of the static fields
φ(x). Expressing the vacuum wave functional in the form1

ψ[φ] = exp

(
−1

2
S[φ]

)
, (4.3)

the generating functional of the Hamiltonian approach to quantum field theory becomes

Z[j] =

∫
Dφ e−S[φ]+

∫
j·φ, (4.4)

which is a standard generating functional of the d = 3-dimensional Euclidean quantum
field theory defined by an “action” S[φ]. Here, this action is defined by the vacuum wave
functional ψ[φ] and will, in general, be non-local and non-linear. We therefore perform
a Taylor expansion of the action functional S[φ] in powers of the time-independent fields
φ(x). The constant part S[0] is fixed by the normalization of the wave functional and
the linear part can be absorbed into the external source. It is then sufficient to consider
expansions of S[φ] starting at second order

S[φ] =
1

2

∫
γ2 φ

2 +
1

3!

∫
γ3 φ

3 + · · · . (4.5)

Restricting the expansion to second order yields a Gaussian wave functional for which
the functional integral in Eq. (4.2) can be explicitly carried out. This corresponds to the
so-called mean-field approximation, where all higher order Green’s functions of the field
φ(x) are given in terms of the propagator 〈φφ〉.
In many cases the mean-field approximation is, however, not sufficient. Going beyond

the mean-field approximation, the functional integral in Eq. (4.2) can no longer be ex-
plicitly performed. However, we can calculate the desired Green functions by exploiting
Dyson–Schwinger equation techniques. Starting from the identity

∫
Dφ δ

δφ

(
e−S[φ]+

∫
jφ
)
= 0 (4.6)

we can derive, in the standard fashion, a set of Dyson–Schwinger equations (DSEs) for the
Green functions 〈φφ · · ·〉. This infinite tower of equations has to be truncated to get a closed
system of equations, and further simplifying assumptions on the form of the interaction
kernels γn entering the ansatz for the vacuum wave functional, see Eqs. (4.3) and (4.5), will
be required. Nevertheless, this approach allows us to go beyond Gaussian wave functionals
and calculate the static Green functions 〈φφ · · ·〉 in terms of the kernels γn. By means of
these static Green functions, the vacuum expectation value of the Hamiltonian 〈ψ|H |ψ〉
is expressed in terms of the kernels γn, which are then found by minimizing the energy
density.
In the Hamiltonian approach to quantum field theory one is not primarily interested

in the generating functional Eq. (4.2) itself but in expectation values of observables, in
particular of the Hamiltonian. For this purpose it turns out to be more convenient to
generalize Eq. (4.6) to

∫
Dφ δ

δφ

(
e−S[φ] K[φ]

)
=

∫
Dφ δ

δφ
(ψ∗[φ]K[φ]ψ[φ]) = 0, (4.7)

where K[φ] is an arbitrary functional of the underlying field φ.

1As long as we ignore the θ–vacuum of Yang–Mills theory, the vacuum wave functional can be chosen to
be real, which we will assume in the present paper.
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4.2.2 Derivation of the DSEs for the Hamiltonian approach to Yang–Mills

theory in Coulomb gauge

Below, we apply the general Dyson–Schwinger approach to the Hamiltonian formulation of
quantum field theory outlined above to Yang–Mills theory in Coulomb gauge (which also
assumes Weyl gauge Aa

0 = 0). Implementing the Coulomb gauge by the Faddeev–Popov
method, the expectation value of a functional K[A] of the (spatial components of the)
gauge field A is given by

〈K[A]〉 =
∫

Ω
DA JA |ψ[A]|2 K[A]. (4.8)

Here, ψ[A] = 〈A|ψ〉 denotes the Yang–Mills vacuum wave functional restricted to trans-
verse fields, ∂iA

a
i = 0, and JA = Det(G−1

A ) is the Faddeev–Popov determinant with

G−1
A = (−δab ∂2x − g Âab

i (x)∂xi )δ(x − y) (4.9)

being the Faddeev–Popov operator. Since we work only with spatial vectors, we will use
only Lorentz subscripts. Furthermore, g is the coupling constant, Âab = facbAc is the gauge
field in the adjoint representation of the colour group, and facb are the structure constants
of the su(Nc) algebra. The functional integration in Eq. (4.8) runs over transverse field
configurations and is restricted to the first Gribov region Ω or, more precisely, to the
fundamental modular region [23]. Moreover, we assume that the wave functional ψ[A] is
properly normalized, 〈ψ|ψ〉 ≡ 〈1〉 = 1. Writing the vacuum wave functional as in Eq. (4.3)

|ψ[A]|2 =: e−S[A] (4.10)

and choosing
K[A] = e

∫
j·A, (4.11)

Eq. (4.8) becomes the generating functional of the static Green functions of the (transverse)
gauge field A. In the following, it will be convenient not to fix K[A] to the form (4.11) but
rather to let K[A] be an arbitrary functional of the gauge field. Furthermore, to simplify
the bookkeeping we will use the compact notation

Aa1
k1
(x1) = A(1) , A ·B = A(1)B(1) =

∫
ddx Aa

i (x)B
a
i (x), (4.12)

such that a repeated label means summation over the discrete colour and Lorentz indices
along with integration over the spatial coordinates.

Consider now the following identity

0 =

∫

Ω
DA δ

δA(1)

{
JA e−S[A] K[A]

}
, (4.13)

which holds due to the fact that the Faddeev–Popov determinant JA vanishes on the
Gribov horizon ∂Ω, tacitly assuming that the considered functional K[A] does not spoil
the vanishing of JAK[A] on ∂Ω. Equation (4.13) with K[A] given by Eq. (4.11) becomes
the ordinary DSE of the usual (Lagrangian based) functional integral formulation of Yang–
Mills theory in Coulomb gauge [24] when the functional integration is extended over time-
dependent gauge fields Aµ(x, t) and S[A] is chosen as the usual classical action of Yang–
Mills theory.
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Working out the functional derivative in Eq. (4.13) yields the following identity
〈[

δ lnJA

δA(1)
− δS[A]

δA(1)

]
K[A]

〉
+

〈
δK[A]

δA(1)

〉
= 0. (4.14)

The derivative of lnJA can be written as

δ lnJA

δA(1)
=

δ

δA(1)
Tr lnG−1

A = Γ̃0(1; 3, 2)GA(2, 3), (4.15)

where we have introduced the bare ghost-gluon vertex2

Γ̃0(1; 2, 3) =
δG−1

A (2, 3)

δA(1)
. (4.16)

With this result, Eq. (4.14) can be cast in the form
〈
δS[A]

δA(1)
K[A]

〉
=

〈
δK[A]

δA(1)

〉
+ Γ̃0(1; 3, 2) 〈GA(2, 3)K[A]〉 , (4.17)

which is the basis of the gluon DSEs, exploited below in the evaluation of 〈H〉.
Introducing ghost fields in the usual way

JA = Det(G−1
A ) =

∫
Dc̄Dc e−c̄G−1

A
c, (4.18)

the expectation value (4.8) explicitly reads

〈K[A]〉 =
∫

Ω
DA

∫
Dc̄Dc K[A] e−S[A]−c̄G−1

A
c, (4.19)

and Eq. (4.17) can be written as
〈
δS[A]

δA(1)
K[A]

〉
=

〈
δK[A]

δA(1)

〉
+ Γ̃0(1; 3, 2) 〈c(2) c̄(3)K[A]〉 . (4.20)

The bare vertex Γ̃0 is the lowest-order perturbative contribution [7] to the full ghost-gluon
vertex Γ̃ defined by

〈A(1)GA(2, 3)〉 = 〈A(1) c(2) c̄(3)〉 = −D(1, 1′)G(2, 2′) Γ̃(1′; 2′, 3′)G(3′, 3), (4.21)

where
D(1, 2) = 〈A(1)A(2)〉 (4.22)

is the gluon propagator and

G(1, 2) := 〈GA(1, 2)〉 = 〈c(1) c̄(2)〉 . (4.23)

is the ghost propagator.
Equation (4.20) [or equivalently Eq. (4.17)] is the basic DSE of the Hamiltonian formula-

tion of Yang–Mills theory in Coulomb gauge, and we will refer to it as ‘Hamiltonian DSE’.
Below we will exploit this equation to express the various static (equal-time) correlators
occurring in the vacuum expectation value of the Hamilton operator by the variational
kernels γn [Eq. (4.5)] of the wave functional ψ[A]. This requires appropriate choices of the
so far arbitrary functional K[A].

2The bare ghost-gluon vertex Γ̃0 defined by Eq. (4.16) differs from the one of Ref. [4] by an overall sign.
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4.3 Expressing static correlators through propagators and proper

vertex functions

Choosing the functional K[A] in Eq. (4.20) as

K[A] = exp {j · A+ c̄ · η + η̄ · c} , (4.24)

where j and η̄, η are the gluon and ghost sources, we obtain the generating functional of
the full static (equal-time) Green functions

Z[j, η, η̄] = 〈exp{jA+ c̄η + η̄c}〉 =: eW [j,η,η̄], (4.25)

where W [j, η̄, η] is the generating functional of the connected Green functions

δW

δj(1)

∣∣∣∣
j=η̄=η=0

= 〈A(1)〉 = 0,
δ2W

δj(1)δj(2)

∣∣∣∣
j=η̄=η=0

= 〈A(1)A(2)〉 ,

δ3W

δj(1)δη̄(2)δη(3)

∣∣∣∣
j=η̄=η=0

= −〈A(1)c(2)c̄(3)〉 , etc.

(4.26)
Introducing the classical fields as3

A =
δW

δj
, c̄ = −δW

δη
, c =

δW

δη̄
, (4.27)

we can define the effective action Γ[A, c̄, c] through the Legendre transform

Γ[A, c̄, c] +W [j, η, η̄] = j ·A+ c̄ · η + η̄ · c, (4.28)

where the sources have to be expressed by Eqs. (4.27) in terms of the classical fields A, c̄,
c. From the effective action Eq. (4.28), the sources are obtained as

j =
δΓ

δA
, η =

δΓ

δc̄
, η̄ = −δΓ

δc
. (4.29)

Using Eqs. (4.27), differentiation with respect to the gluonic source can be expressed as

δ

δj(1)
=
δA(2)

δj(1)

δ

δA(2)
+
δc(2)

δj(1)

δ

δc(2)
+
δc̄(2)

δj(1)

δ

δc̄(2)

=
δ2W

δj(1)δj(2)

δ

δA(2)
+

δ2W

δj(1)δη̄(2)

δ

δc(2)
− δ2W

δj(1)δη(2)

δ

δc̄(2)
.

(4.30)

Similar expressions can be written for the derivatives with respect to the ghost sources.
Differentiating Eqs. (4.29) and using Eqs. (4.27) and (4.30) we can link, in the usual
way, the connected Green functions (derivatives of W ) with the proper vertex functions
(derivatives of Γ). As an example, we explicitly show how to express the full ghost-gluon

3With a slight abuse of notation, we employ the same symbol for both the classical fields and the quantum
fields which are integrated over. No confusion should arise, since they never appear together. Further-
more, derivatives with respect to Grassmann fields are always left derivatives.
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vertex Γ̃(1; 2, 3), defined in Eq. (4.21), by derivatives of the effective action. We start from
the identity

δ(1, 2) =
δ

δη(1)

δΓ

δc̄(2)

=
δ2W

δη(1)δj(2′)

δ2Γ

δA(2′)δc̄(2)
+

δ2W

δη(1)δη̄(2′)

δ2Γ

δc(2′)δc̄(2)
− δ2W

δη(1)δη(2′)

δ2Γ

δc̄(2′)δc̄(2)
,

(4.31)

which can be derived along the line of Eq. (4.30). Differentiating Eq. (4.31) with respect
to a gluonic source j(3) and using Eq. (4.30) yields

0 =
δ3W

δj(3)δη(1)δη̄(2′)

δ2Γ

δc(2′)δc̄(2)
+

δ2W

δη(1)δη̄(2′)

δ2W

δj(3)δj(3′)

δ3Γ

δA(3′)δc(2′)δc̄(2)
+ . . . (4.32)

where the omitted terms vanish when the sources are set to zero. By means of Eq. (4.26)
and of

δ2Γ[A, c̄, c]

δc(2)δc̄(1)

∣∣∣∣
A=c̄=c=0

= G−1(1, 2), (4.33)

the last relation can be expressed as

0 = −G−1(2, 2′)
〈
A(3)c̄(1)c(2′)

〉
+G(2′, 1)D(3, 3′)

δ3Γ[A, c̄, c]

δc(2′) δc̄(2) δA(3′)

∣∣∣∣
A=c̄=c=0

. (4.34)

Comparison with Eq. (4.21) shows

Γ̃(1; 2, 3) =
δ3Γ[A, c̄, c]

δc(3) δc̄(2) δA(1)

∣∣∣∣
A=c̄=c=0

. (4.35)

Similarly, defining the n-gluon proper vertex function by

Γn ≡ Γ(1, 2, . . . , n) =
δnΓ[A, c̄, c]

δA(1) δA(2) · · · δA(n)

∣∣∣∣
A=c̄=c=0

, (4.36)

the full gluon n = 2, 3, 4, 5-point functions defined by Eq. (4.8) with K[A] = AA . . . can
be expressed through the proper vertex functions as

D(1, 2) ≡ 〈A(1)A(2)〉 = Γ(1, 2)−1, (4.37)

〈A(1)A(2)A(3)〉 = −Γ(1′, 2′, 3′)D(1′, 1)D(2′, 2)D(3′, 3), (4.38)

〈A(1)A(2)A(3)A(4)〉 = D(1, 2)D(3, 4) +D(1, 3)D(2, 4) +D(1, 4)D(2, 3)

+D(1′, 1)D(2′, 2)D(3′, 3)D(4′, 4)

{
−Γ(1′, 2′, 3′, 4′)

+D(5, 5′)
[
Γ(1′, 2′, 5)Γ(5′, 3′, 4′) + Γ(1′, 3′, 5)Γ(5′, 2′, 4′) + Γ(1′, 4′, 5)Γ(5′, 2′, 3′)

]}
,

(4.39)
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= −

Figure 4.1: Expression of the gluon three-point function [Eq. (4.38)] by means of three-
point proper vertex function and propagators. Here and in the following, fat shaded gray
blobs represent full Green’s functions, small filled dots connected Green’s functions, and
small empty dots proper vertex functions.

= − + 3 + 3

Figure 4.2: Expression of the full gluon four-point function [Eq. (4.39)]. The prefactors
indicate the number of possible permutations.

〈A(1)A(2)A(3)A(4)A(5)〉 = −Γ(1′, . . . , 5′)D(1, 1′) . . . D(5, 5′)+

+
[
〈A(1)A(2)A(6)〉 Γ(6, 3′, 4′, 5′)D(3, 3′)D(4, 4′)D(5, 5′) + 9 combinations

]

−
[
D(1, 1′)

〈
A(1′)A(6)A(7)

〉
Γ(6, 6′)Γ(7, 7′)

〈
A(6′)A(2)A(3)

〉 〈
A(7′)A(4)A(5)

〉

+ 14 combinations
]

−
[
D(1, 2) 〈A(3)A(4)A(5)〉 + 9 combinations

]
,

(4.40)

The proper n-point gluonic functions Γ(1, 2, . . . , n) Eq. (4.36) are by definition invariant
with respect to a permutation of external legs, i.e. of the entries 1, 2, . . . , n. Eqs. (4.38)–
(4.40) are represented in diagrammatic form in Figs. 4.1–4.3. The prefactors in Figs. 4.2,
4.3 indicate the number of the possible combinations. Consider, e.g., the second diagram
on the right-hand side of Fig. 4.3: out of the five external legs one can form

(
5
2

)
= 10 pairs

of external legs attached to the right vertex. The remaining three external legs have to be
attached then to the left vertex and thus do not add more possible combinations. In the
third diagram there are five possibilities to select the external leg attached to the internal
lines. From the remaining 4 external legs there are

(4
2

)
= 6 possibilities to choose the

two external legs at the right external vertex. This fixes also the external legs at the left
vertex. The symmetry of the diagram with respect to the interchange of the two external
vertices introduces an extra factor 1

2 . Therefore this diagram occurs with the multiplicity
5 · 6 · 1

2 = 15.

In a similar fashion one finds for the expectation value of two gauge fields and a ghost

= − + 10 − 15 − 10

Figure 4.3: Expression for the full gluon five-point Green function [Eq. (4.40)].
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= − + + + +

Figure 4.4: Vacuum expectation value of two gauge fields and a ghost and an anti-ghost
field after Eq. (4.41).

= − + − −

Figure 4.5: Vacuum expectation value of two ghost and two anti-ghost fields [Eq. (4.44)].

and anti-ghost field

〈A(1)A(2) c(3) c̄(4)〉 = 〈A(1)A(2)GA(3, 4)〉 = D(1, 2)G(3, 4)

+D(1′, 1)D(2′, 2)G(3, 3′)G(4′, 4)

{
−Γ̃(1′, 2′; 3′, 4′)

+ Γ(1′, 2′, 5)D(5, 5′)Γ̃(5′; 3′, 4′)

+ Γ̃(1′; 3′, 5)G(5, 5′)Γ̃(2′; 5′, 4′) + Γ̃(2′; 3′, 5)G(5, 5′)Γ̃(1′; 5′, 4′)
]}
, (4.41)

where the two-gluon-two-ghost vertex is defined by

Γ̃(1, 2; 3, 4) =
δ4Γ[A, c̄, c]

δc(4) δc̄(3) δA(2) δA(1)

∣∣∣∣
A=c̄=c=0

. (4.42)

The diagrammatic representation of Eq. (4.41) is shown in Fig. 4.4.

The last four-point function we need for the evaluation of 〈H〉 is the ghost four-point
function

〈c(1) c̄(2) c(3) c̄(4)〉 =
〈[
GA(1, 2)GA(3, 4) −GA(1, 4)GA(3, 2)

]〉
, (4.43)

which can be expressed in terms of propagators and proper vertices in the standard way,
yielding

〈c(1) c̄(2) c(3) c̄(4)〉 = G(1, 2)G(3, 4) −G(1, 4)G(3, 2)+

+G(1, 1′)G(3, 3′) Γ̃(5; 1′, 2′)D(5, 5′)Γ̃(5′; 3′, 4′)×
× [G(2′, 2)G(4′, 4)−G(2′, 4)G(4′, 2)]+

− Γ̃(1′, 3′, 2′, 4′)G(1, 1′)G(2′, 2)G(3, 3′)G(4′, 4) ,

(4.44)

where the four-ghost vertex is defined by

Γ̃(1, 3, 2, 4) =
δ4Γ[A, c̄, c]

δc(4) δc(2) δc̄(3) δc̄(1)

∣∣∣∣
A=c̄=c=0

. (4.45)

Equation (4.44) is represented diagrammatically in Fig. 4.5
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4.4 The vacuum wave functional and corresponding DSEs

So far, all manipulations have been exact. In Sec. 4.2.2 we have presented the Hamiltonian
DSEs for arbitrary wave functionals. To proceed further, we have to make an ansatz for
the form of the vacuum wave functional ψ[A], which by Eq. (4.10) defines the ‘action’
functional S[A].

In perturbation theory, the vacuum wave functional in the form Eqs. (4.3), (4.5) has
been determined up to order O(g2) by a solution of the Schrödinger equation, and the
resulting expressions for the kernels γ2, γ3, and γ4 are given in Ref. [25]. In the present
non-perturbative approach, we will assume a wave functional of the form Eqs. (4.3), (4.5)
with an ‘action’ functional to be given by

S[A] = ω(1, 2)A(1)A(2) +
1

3!
γ(1, 2, 3)A(1)A(2)A(3)+

+
1

4!
γ(1, 2, 3, 4)A(1)A(2)A(3)A(4).

(4.46)

For historical reason, we have denoted 1
2γ(1, 2) by ω(1, 2). Consistent with our convention

on the proper vertices Eq. (4.36), we will frequently use the shorthand γn ≡ γ(1, . . . , n).
The functions ω ≡ 1

2γ2, γ3, and γ4 are variational kernels which will be determined by min-
imization of the vacuum energy density. As discussed before, Eq. (4.46) can be considered
as arising in leading orders of a systematic Taylor expansion of the ‘action’ functional.

Let us also stress that the ghost fields do not enter the Yang–Mills vacuum wave func-
tional ψ[A]. The ghost fields are auxiliary fields to represent the Faddeev–Popov de-
terminant in local action form. By the very definition of the ghost fields [Eq. (4.18)]
the ghost-gluon vertex in the ‘action’ [i.e. the exponent of Eq. (4.19)] has to be the bare
vertex and, in principle, there is absolutely no need to include ghost or ghost-gluon ker-
nels as variational kernels in the wave functional. However, due to approximations to be
introduced, for practical purposes, one might also include ghost or ghost-gluon vertices
as variational kernels in the wave functional to improve the latter. If the exact gluon
wave functional ψ[A] were used, the variational principle would determine the ghost-gluon
kernel as the bare one and higher ghost kernels to vanish. Therefore we will not include
additional ghost vertices into the variational ansatz for the vacuum wave functional.

By construction, the variational kernels γn (which are purely gluonic) are totally sym-
metric with respect to permutations of the overall indices. Furthermore, the wave func-
tional defined by Eqs. (4.10), (4.46) is normalizable even when the restriction of the func-
tional integration to the first Gribov region is ignored, provided the kernel γ4 is positive
definite, which we will assume for the moment and which later on will be confirmed by our
calculations. With the action functional Eq. (4.46), the Hamiltonian DSE (4.17) becomes

2ω(1, 2) 〈A(2)K[A]〉 + 1

2
γ(1, 2, 3) 〈A(2)A(3)K[A]〉+

+
1

3!
γ(1, 2, 3, 4) 〈A(2)A(3)A(4)K[A]〉 =

=

〈
δK[A]

δA(1)

〉
+ Γ̃0(1; 3, 2) 〈GA(2, 3)K[A]〉 . (4.47)

Except for the non-locality of the variational kernels ω, γ3, and γ4, the functional Eq.
(4.46) has the same structure as the ordinary Yang–Mills action. Therefore, the DSEs



94 Article 4. Non-Gaussian wave functionals in Coulomb gauge Yang–Mills theory

1

2
− −

1

3!
= 0

Figure 4.6: Diagrammatic representation of Eq. (4.48). The empty square boxes denote
the variational kernels γn.

≡ ω(1, 2) ≡ γ(1, 2, 3) ≡ γ(1, 2, 3, 4)

Figure 4.7: Variational kernels occurring in the exponent of the wave functional.

resulting from Eq. (4.47) will have the same structure as the DSEs of ordinary d = 3
Yang–Mills theory in Landau gauge, however with bare vertices replaced by the non-
local variational kernels ω, γ3, and γ4. Equation (4.47) is our fundamental DSE for the
Hamiltonian approach to Yang–Mills theory in Coulomb gauge.

4.4.1 DSEs of gluonic vertex functions

The first DSE is obtained by setting K[A] = 1 in Eq. (4.47). Using 〈A〉 = 0 and the
expression Eq. (4.38) for the three-point function yields the identity

0 =
1

2
γ(1, 2, 3)D(2, 3) − Γ̃0(1; 3, 2)G(2, 3)

− 1

3!
γ(1, 2, 3, 4) Γ(2′ , 3′, 4′)D(2, 2′)D(3, 3′)D(4, 4′),

(4.48)

which is diagrammatically illustrated in Fig. 4.6. Equation (4.48) is not really a dynamical
equation but rather a constraint, which can be used to simplify tadpole terms in the
evaluation of higher-order DSEs. It is also easy to see that in lowest order perturbation
theory each term in Eq. (4.48) vanishes separately.
The DSE for the gluon propagator follows from Eq. (4.47) by puttingK[A] = A, yielding

2ω(1, 3) 〈A(3)A(2)〉 + 1

2
γ(1, 3, 4) 〈A(3)A(4)A(2)〉+

+
1

3!
γ(1, 3, 4, 5) 〈A(3)A(4)A(5)A(2)〉 = t(1, 2) + Γ̃0(1; 4, 3) 〈GA(3, 4) A(2)〉 ,

(4.49)

where we have introduced the abbreviation

t(1, 2) ≡ δa1a2 tk1k2(x1) δ(x1 − x2) (4.50)

and tk1k2(x1) = δk1k2 − ∂x1
k1
∂x1
k2
/∂2x1

is the transverse projector. By means of Eqs. (4.38),
(4.39), the three- and four-point functions in Eq. (4.49) can be expressed through the
proper vertex functions Γn. By multiplying Eq. (4.49) by the inverse gluon propagator
Eq. (4.37) and defining

D(1, 2)−1 = Γ(1, 2) =: 2Ω(1, 2), (4.51)

Eq. (4.49) can be cast in the form

Ω(1, 2) = ω(1, 2) − ξ(1, 2) + χ(1, 2) + φ1(1, 2) − φ2(1, 2) + φt(1, 2), (4.52)
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−1
= 2 −

1

2

︸ ︷︷ ︸

=:2ξ(1,2)

+

︸ ︷︷ ︸

=:2χ(1,2)

+

+
1

2
︸ ︷︷ ︸

=:2 φ1(1,2)

−
1

3!
︸ ︷︷ ︸

=:2 φ2(1,2)

+
1

2

︸ ︷︷ ︸

=:2 φt(1,2)

Figure 4.8: Diagrammatic representation of the DSE for the gluon propagator, Eq. (4.52).

where we have introduced the following loop terms

ξ(1, 2) = 1
4 γ(1, 3, 4)D(3, 3′)D(4, 4′) Γ(3′, 4′, 2), (4.53a)

χ(1, 2) = 1
2 Γ̃0(1; 3, 4)G(3

′ , 3)G(4, 4′) Γ̃(2; 4′, 3′), (4.53b)

φ1(1, 2) =
1
4 γ(1, 3, 4, 5)D(3, 3′)D(4, 4′)D(5, 5′)D(6, 6′) Γ(4′, 5′, 6) Γ(3′, 6′, 2), (4.53c)

φ2(1, 2) =
1
3!2 γ(1, 3, 4, 5)D(3, 3′)D(4, 4′)D(5, 5′) Γ(3′, 4′, 5′, 2), (4.53d)

φt(1, 2) =
1
4 γ(1, 2, 3, 4)D(3, 4). (4.53e)

Equation (4.52) is represented diagrammatically in Fig. 4.8, and is recognized as the usual
DSE for the gluon propagator of Landau gauge Yang–Mills theory [26], except for the
replacement of the bare Yang–Mills vertices (defined by the Yang–Mills Lagrangian) by
the variational kernels γn (defined by the ansatz Eq. (4.46) for the vacuum functional),
which are represented by open square boxes, see Fig. 4.7. Note that the gluon loop ξ(1, 2)
[Eq. (4.53a)] disappears when the three-gluon kernel γ3 is absent from the exponential [Eq.
(4.46)] of the wave functional [Eq. (4.10)]. For a Gaussian wave functional (γ3 = γ4 = 0)
only the ghost loop χ(1, 2) [Eq. (4.53b)] survives from the loop terms in the DSE (4.52),
Fig. 4.8.

Choosing K[A] = A(2)A(3) in Eq. (4.47) yields the DSE for the three-gluon vertex,

2ω(1, 4) 〈A(4)A(2)A(3)〉 + 1

2
γ(1, 4, 5) 〈A(4)A(5)A(2)A(3)〉 +

+
1

3!
γ(1, 4, 5, 6) 〈A(4)A(5)A(6)A(2)A(3)〉 = Γ̃0(1; 5, 4) 〈GA(4, 5) A(2)A(3)〉 .

(4.54)

By means of Eqs. (4.38)–(4.41), the first two terms on the left-hand side and the right-
hand side of Eq. (4.54) can be expressed in terms of proper vertex functions Γn. The
explicit evaluation of the five-point function is quite lengthy, and we quote only the result.
Restricting ourselves to terms involving up to one loop (which is sufficient to obtain the
energy 〈H〉 up to three overlapping loops, see the introduction), and chopping off the
external propagators we eventually find from Eq. (4.54) the DSE for the proper three-
point vertex function Γ(1, 2, 3)

Γ(1, 2, 3) = γ(1, 2, 3) + γ(1, 4, 5)D(4, 4′)D(5, 5′)D(6, 6′) Γ(2, 4′, 6) Γ(3, 5′, 6′)
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1
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

 .

Figure 4.9: Diagrammatic representation of the DSE (4.55) for the three-gluon proper ver-
tex function. The factor 2 in front of the ghost loop accounts for the two diagrams differing
in the direction of the ghost line.

= + . . .

Figure 4.10: Leading order DSE for the four-gluon vertex.

− Γ̃0(1; 4, 5)G(4
′ , 4)G(5, 5′)G(6′, 6)

[
Γ̃(2; 6, 4′) Γ̃(3; 5′, 6′) + 2 ↔ 3

]

− 1

2
γ(1, 4, 5)D(4, 4′)D(5, 5′) Γ(4′, 5′, 2, 3)

+ Γ̃0(1; 4, 5)G(4
′ , 4)G(5, 5′) Γ̃(2, 3; 5′, 4′)

− 1

2

[
γ(1, 2, 4, 5)D(4, 4′)D(5, 5′) Γ(4′, 5′, 3) + 2 ↔ 3

]
, (4.55)

which is represented diagrammatically in Fig. 4.9.

Analogously, one can derive the DSE for the four-gluon vertex. Restricting ourselves
again up to three loops in the energy 〈H〉, one finds just the “tree-level” expression

Γ(1, 2, 3, 4) = γ(1, 2, 3, 4) + . . . (4.56)

Any loop contribution to Γ4 generates at least four-loop terms in the energy, which are
beyond the scope of the present paper.

4.4.2 The DSEs for the ghost propagator and the ghost-gluon vertex

Inverting the defining equation of the Faddeev–Popov operator [Eq. (4.9)] one finds the
following identity [4]

GA(1, 2) = G0(1, 2) −GA(1, 4)A(3) Γ̃0(3; 4, 5)G0(5, 2), (4.57)

where G0(1, 2) = [(−∂2)−1](1, 2) is the bare ghost propagator and Γ̃0 is the bare ghost-
gluon vertex defined in Eq. (4.16). Taking the expectation value of Eq. (4.57) and using
Eq. (4.21) yields the usual DSE for the ghost propagator [4]

G(1, 2)−1 = G0(1, 2)
−1 − Γ̃(3; 1, 4)G(4, 4′)D(3, 3′) Γ̃0(3

′; 4′, 2), (4.58)

which in momentum space reads

G−1(p) = p2 +
i g

N2
c − 1

∫
ddq

(2π)d
fabcΓ̃abc

i (q;p− q,−p)
tij(q) pj
2Ω(q)

G(p− q), (4.59)

and which is represented diagrammatically in Fig. 4.11.
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−1
=

−1
−

Figure 4.11: Diagrammatic representation of the ghost DSE Eq. (4.58).

= + + +

Figure 4.12: Diagrammatic representation of the DSE (4.60) for the ghost-gluon vertex.

To derive the DSE for the ghost-gluon vertex there are two possibilities. The first one is
to multiply Eq. (4.57) by the gauge field and to take the expectation value of the resulting
expression. This leads to

〈A(1)GA(2, 3)〉 = −〈A(1)A(4)GA(2, 5)〉 Γ̃0(4; 5, 6)G0(6, 3). (4.60)

The remaining expectation value can be expressed in terms of proper vertices by means
of Eqs. (4.21) and (4.41). After chopping off the external propagators, this results in
the DSE for the ghost-gluon vertex shown in Fig. 4.12. Equation (4.60) is exact, i.e.
not truncated, but not very convenient for the evaluation of the energy density. A more
convenient form of the DSE for the ghost-gluon vertex is obtained by putting K[A] = GA

in our general Hamiltonian DSE (4.47), thereby using the chain rule for the derivative of
the ghost Green’s function and using Eqs. (4.41), (4.44) to express vacuum expectation
values through propagators and proper vertex functions. The resulting equation reads at
one-loop level

Γ̃(1; 2, 3) = Γ̃0(1; 2, 3) + γ(1, 4, 5)D(4, 4′)D(5, 5′)G(6, 6′) Γ̃(4′; 2, 6) Γ̃(5′; 6′, 3)

+ Γ̃0(1; 4, 5)G(4
′ , 4)G(5, 5′)D(6, 6′) Γ̃(6, 2, 4′) Γ̃(6′; 5′, 3)

− 1

2
γ(1, 4, 5)D(4, 4′)D(5, 5′) Γ(4′, 5′; 2, 3)

+ Γ̃(1; 4, 5)G(4′ , 4)G(5, 5′) Γ̃(2, 5′, 3, 4′).

(4.61)

and is shown in Fig. 4.13. The main difference between Eqs. (4.60) and (4.61) is that
while Eq. (4.60) is exact, in Eq. (4.61) two-loops terms involving higher-order vertices are
neglected. Nevertheless, to our purpose, calculating the energy up to three loops, Eq.
(4.61) is more convenient. We will use this equation in Sec. 4.5 to simplify the expression
for the kinetic and Coulomb energy.

4.5 Energy density of the Yang–Mills vacuum

The DSEs of the Hamiltonian approach derived in Sec. 4.4 are not ‘equations of motion’ in
the usual sense, but rather connect the various Green functions with the kernels occurring

= + + −
1

2
+ + . . .

Figure 4.13: Diagrammatic representation of the DSE (4.61) for the ghost-gluon vertex.
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in the ansatz for the wave functional, while these kernels themselves are at this point not
yet fixed. Here is where the variational principle comes into play: we will now evaluate
the expectation value of the Yang–Mills Hamiltonian for the wave functional (4.10) with
the ansatz (4.46) and then minimize it with respect to the variational kernels γn.
The Yang–Mills Hamiltonian in Coulomb gauge reads [27]

H =

∫
ddx

[
1

2
J −1
A Πa

i (x)JA Πa
i (x) +

1

4
F a
ij(x)F

a
ij(x)

]

+
g2

2

∫
ddx ddy J−1

A ρa(x)F ab
A (x,y)JA ρ

b(y).

(4.62)

Here, Πa
k(x) = −iδ/δAa

k(x) is the momentum operator, and F a
ij = ∂iA

a
j−∂jAa

i +gf
abcAb

iA
c
j,

is the non-abelian field strength tensor. The first two terms in Eq. (4.62) are the electric
(kinetic) and magnetic parts of the ordinary Yang–Mills Hamiltonian restricted to the
curvilinear “coordinate” space of Coulomb gauge. The third (Coulomb) term arises from
the resolution of Gauss’s law and describes the interaction of the non-abelian colour charge
(of the fluctuating gauge field) with density

ρa(x) = Âab
i (x)Πb

i (x) (4.63)

through the non-abelian Coulomb interaction kernel

F ab
A (x,y) =

[
(−D̂∂)−1(−∂2)(−D̂∂)−1

]a,b
x,y

. (4.64)

The Yang–Mills Hamiltonian in Coulomb gauge Eq. (4.62) is a positive definite operator.
Accordingly the energy 〈ψ|H |ψ〉 is bounded from below (by zero) and the variational
principle is applicable.
For later use, we rewrite the magnetic term of the Hamiltonian in the symmetrized form

1

4
F a
ij F

a
ij = −1

2
A∂2A+

g

3!
T3A

3 +
g2

4!
T4A

4, (4.65)

where the interaction kernels are given in momentum space by

T abc
ijk (p,q,k) = i fabc[δij(p− q)k + δjk(q − k)i + δki(k − p)j] (4.66a)

and

T abcd
ijkl =

{
fabef cde(δik δjl − δil δjk)

+ facef bde(δij δkl − δjk δil)

+ fadef bce(δij δkl − δik δjl)
}
.

(4.66b)

The bare four-gluon vertex [Eq. (4.66b)] is independent of the momenta.

4.5.1 Technicalities

To evaluate the vacuum expectation values of the kinetic term and of the Coulomb
Hamiltonian, it is convenient to perform an integration by parts in the gauge field. This
leads to expressions of the form

〈
δS[A]

δA(1)

δS[A]

δA(2)
f [A]

〉
, (4.67)
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where f [A] is a functional of the gauge field which does not contain any momentum
operator. In principle, we could now explicitly write down the variations of the action Eq.
(4.46) and evaluate the expectation value Eq. (4.67). Then one would recognize that some
terms can be combined and simplified by using the DSEs (4.52), (4.55). Therefore, a more
efficient way to evaluate the expectation value Eq. (4.67) is to use the Hamiltonian DSEs
from the very beginning.

Putting K[A] = δS/δA(2)f [A] in the general DSE (4.17) we obtain

〈
δS[A]

δA(1)

δS[A]

δA(2)
f [A]

〉
=

〈
δ2S[A]

δA(1) δA(2)
f [A]

〉

+

〈
δf [A]

δA(1)

δS[A]

δA(2)

〉
+ Γ̃0(1; 3, 4)

〈
δS[A]

δA(2)
GA(4, 3)

〉
.

(4.68)

The last two terms on the r.h.s. of Eq. (4.68) can again be re-expressed through the DSEs
(4.17), thereby putting K[A] = δf [A]/δA and K[A] = GA, respectively, and using the
definition of the bare ghost-gluon vertex Γ̃0, Eq. (4.16). This results finally in the relation

〈
δS[A]

δA(1)

δS[A]

δA(2)
f [A]

〉
=

〈
δ2S[A]

δA(1) δA(2)
f [A]

〉
+

〈
δ2f [A]

δA(1) δA(2)

〉

+ Γ̃0(1; 4, 3)

〈
δf [A]

δA(2)
GA(3, 4)

〉
+ Γ̃0(2; 4, 3)

〈
δf [A]

δA(1)
GA(3, 4)

〉

+ Γ̃0(1; 4, 3) Γ̃0(2; 6, 5)
〈
f [A]

[
GA(3, 4)GA(5, 6) −GA(3, 6)GA(5, 4)

]〉
.

(4.69)

We stress that this is an exact identity, which holds for f [A] being an arbitrary functional
of the gauge field only, i.e. not containing the momentum operator. Furthermore, it will
be sometimes convenient to express the last expectation value in terms of ghost fields

〈
f [A]

[
GA(3, 4)GA(5, 6) −GA(3, 6)GA(5, 4)

]〉
= 〈f [A] c(3) c̄(4) c(5) c̄(6)〉 . (4.70)

4.5.2 Kinetic energy

After an integration by parts, the vacuum expectation value of the kinetic part of the
Yang–Mills Hamiltonian [first term in Eq. (4.62)] can be expressed as

Ek =
1

2

∫

Ω
DA JA

δψ[A]

δA(1)

δψ[A]

δA(1)
=

1

8

〈
δS[A]

δA(1)

δS[A]

δA(1)

〉
. (4.71)

The last expectation value has precisely the form of Eq. (4.69) with f [A] = 1 and the
two external indices contracted. The terms in Eq. (4.69) involving functional derivatives
of f [A] then vanish, and with the explicit form of the action Eq. (4.46) we find for the
kinetic energy

Ek =
1

8

[
2ω(1, 1) + 2φt(1, 1) + Γ̃0(1; 4, 3) Γ̃0(1; 6, 5) 〈c(3) c̄(4) c(5) c̄(6)〉

]
. (4.72)

Here, φt is the gluon tadpole term occurring in the gluon DSE (4.52) and being defined
by Eq. (4.53e). The ghost four-point function 〈cc̄cc̄〉 occurring in the last term can be ex-
pressed by means of Eq. (4.44) in terms of propagators and proper functions. Contracting
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2ηc = 2η2 =

Figure 4.14: Diagrammatic representation of the contributions (4.75) to the kinetic energy
density.

Eq. (4.44) with the two bare ghost-gluon vertices as in Eq. (4.72), one obtains

Γ̃0(1; 4, 3) Γ̃0(1; 6, 5) 〈c(3) c̄(4) c(5) c̄(6)〉 = 4χ(1, 3)D(3, 4)χ(4, 1) −
[
Γ̃0(1; 5

′, 6′)

+ Γ̃0(1; 4, 3)Γ̃(7; 3
′, 6′)Γ̃(7′; 5′, 4′)G(3, 3′)G(4′, 4)D(7, 7′)

+ Γ̃0(1; 4, 3)Γ̃(3
′, 5′, 4′, 6′)G(3, 3′)G(4′, 4)

]
G(6′, 6)G(5, 5′) Γ̃0(1; 6, 5).

(4.73)

where χ(1, 2) is the ghost loop defined by Eq. (4.53b). The terms in the square brackets
represent precisely the first, third, and fifth term of the right-hand side of the truncated
DSE (4.61) for the ghost-gluon vertex. Therefore we can use Eq. (4.61) to rewrite the
terms in the bracket in Eq. (4.73) in more compact form

Ek =
1

4
[ω(1, 1) + φt(1, 1) − χ(1, 1) + 2χ(1, 2)D(2, 3)χ(3, 1) + ηc(1, 1) − η2(1, 1)], (4.74)

where we have introduced the abbreviations

2ηc(1, 2) = Γ̃0(1; 3, 4)G(3
′ , 3)G(4, 4′)G(5, 5′)Γ̃(6′; 5′, 3′)Γ̃(7′; 4′, 5)D(6, 6′)D(7, 7′)γ(6, 7, 2),

2η2(1, 2) = Γ̃0(1; 3, 4)G(3
′ , 3)G(4, 4′)Γ̃(5′, 6′; 4′, 3′)D(5, 5′)D(6, 6′)γ(5, 6, 2),

(4.75)

see Fig. 4.14. Equation (4.74) can be slightly rewritten by using the gluon DSE (4.52) to
eliminate the variational kernel ω (or, more precisely, the sum ω + φt) in favour of the
inverse gluon propagator Eq. (4.51). Assuming furthermore that the various loop terms
[Eqs. (4.53)] are colour diagonal, e.g.

ξabij (k) = δab tij(k) ξ(k), etc. (4.76)

which is guaranteed by global colour invariance, we can express the kinetic energy in
momentum space as

Ek =
(N2

c − 1)(d − 1)

4
V

∫
d̄p

{
[Ω(p)− χ(p)]2

Ω(p)
+ ξ(p)− φ1(p) + φ2(p)− 2ηc(p)

}
,

(4.77)
where the terms φ1,2 are defined in Eqs. (4.53c) and (4.53d), and ηc is given in Eq. (4.75).
Furthermore, in Eq. (4.77) we have introduced the abbreviation

d̄p ≡ ddp

(2π)d
,

and V is the spatial volume which arises as in Ref. [4].
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The ghost and gluon loop contributions defined in Eqs. (4.53) read in momentum space

χ(p) =
tij(p)

2(N2
c − 1)(d− 1)

∫
d̄q Γ̃abc

0,i (p;q− p,−q) Γ̃acb
j (−p;q,p− q)G(q)G(p − q),

(4.78)

ξ(p) =
1

16(N2
c − 1)(d − 1)

∫
d̄q dk

(γ3 ◦ Γ3)(p,q,k)

Ω(q)Ω(k)
δ(p + q+ k) . (4.79)

In the above equations, Γ̃ and Γ3 are, respectively, the full ghost-gluon and three-gluon
vertices defined by Eqs. (4.35), (4.36). We have also introduced here the contraction of
two colour and Lorentz tensor structures through transverse projectors as

A ◦B := Aabc
ijk(p,q,k) til(p) tjm(q) tkn(k)B

abc
lmn(−p,−q,−k). (4.80)

Furthermore, the term η2 [Eq. (4.75)] has been discarded, since it gives rise exclusively
to higher-order contributions with more than three loops in the energy, which are beyond
our truncation scheme.

4.5.3 Magnetic energy

In the notation of Eq. (4.65) the magnetic energy is given by

EB =
1

4

〈
F 2
ij

〉
= −1

2

〈
A∂2A

〉
+
g

3!
T3
〈
A3
〉
+
g2

4!
T4
〈
A4
〉
. (4.81)

The first term on the right-hand side of Eq. (4.81) can be expressed by means of the
gluon propagator [Eq. (4.22)], while the second term can be expressed through the proper
three-point function Γ3 [Eq. (4.38)]:

g

3!
T3
〈
A3
〉
= − g

3!
T3 ◦ Γ3 〈AA〉3 . (4.82)

In momentum space, these two energy contributions read

(N2
c − 1)(d − 1)

4
V

∫
d̄p

p2

Ω(p)
− g V

8 · 3!

∫
d̄p d̄q dk

(T3 ◦ Γ3)(p,q,k)

Ω(p)Ω(q)Ω(k)
δ(p+ q+ k). (4.83)

Let us turn now to the last term in Eq. (4.81),
〈
A4
〉
. The four-point function is expressed

by means of Eq. (4.39) in terms of gluon propagators and proper vertex functions. The dis-
connected terms in Eq. (4.39), i.e. the products of two gluon propagators, when contracted
with the bare four-gluon vertex T4 [Eq. (4.66b)] results in

g2
Nc(N

2
c − 1)

16
V

∫
d̄p d̄q

d(d− 3) + 3− (p̂ · q̂)2
Ω(p)Ω(q)

. (4.84)

which is the usual gluon tadpole term, which occurs already when a Gaussian wave func-
tional is used. Notice that, since the q integral does not depend on an external momentum,
we can replace q̂iq̂j → 1

dδij in the integrand, and using

d(d− 3) + 3− 1

d
=

(d− 1)3

d
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Figure 4.15: Contributions from the three- and four-gluon vertices to the magnetic energy,
from left to right: second term in Eq. (4.83), Eq. (4.84), Eq. (4.85), and Eq. (4.86). The
filled diamonds stand for the bare vertices T3, T4 [Eqs. (4.66)] occurring in the magnetic
part of the Hamilton operator [Eq. (4.65)].

we can rewrite Eq. (4.84) as

g2
Nc(N

2
c − 1)

16

(d− 1)3

d
V

∫
d̄p d̄q

1

Ω(p)Ω(q)
. (4.84′)

Besides this, we get from the last term in Eq. (4.81) by using Eq. (4.39) also a contribution
containing the proper four-point vertex function Γ4:

− g2 V

16 · 4!

∫
d̄p d̄q d̄k dℓ

(T4 ◦ Γ4)

Ω(p)Ω(q)Ω(k)Ω(ℓ)
δ(p + q+ k+ ℓ), (4.85)

and a contribution containing two three-gluon vertices

g2 V

8

∫
d̄[pqkℓ]

T abcd
ijmn Γ

abe
ijl (−p,−q,p+ q) Γecd

lmn(k+ ℓ,−k,−ℓ)

32Ω(p)Ω(q)Ω(k)Ω(ℓ)Ω(p+ q)
(2π)dδ(p + q+ k+ ℓ).

(4.86)
The Lorentz indices in Eq. (4.86) are supposed to be contracted by transverse projectors,
which we have not explicitly written down in order to prevent the equation from getting
cluttered. The various interaction contributions to the magnetic energy given by Eqs.
(4.83)–(4.86) are shown in Fig. 4.15. Notice that the diagrams with a four-gluon vertex
contain already three loops.

4.5.4 Coulomb energy

After an integration by parts, as in the case of the kinetic energy, the vacuum expectation
value of the Coulomb Hamiltonian [last term in Eq. (4.62)] can be expressed as

Ec =
g2

2

∫
DA JA

∫
ddx ddy

[
Âac

i (x)
δψ[A]

i δAc
i (x)

]∗
F ab
A (x,y)

[
Âbd

j (y)
δψ[A]

i δAd
j (y)

]
. (4.87)

In order to exploit our compact notation, we rewrite the colour charge density Eq. (4.63)
as

ρ(1) = R(1; 2, 3)A(2)
δ

i δA(3)
, (4.88)

where
R(1; 2, 3) = −R(1; 3, 2) = fa1a2a3 δi2i3 δ(x1 − x2) δ(x1 − x3). (4.89)

In this notation, the Coulomb energy Eq. (4.87) reads

Ec =
g2

8
R(1; 3, 4)R(2; 5, 6)

〈
FA(1, 2)A(3)A(5)

δS[A]

δA(4)

δS[A]

δA(6)

〉
. (4.90)
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The remaining expectation value can, in principle, be expressed in terms of (so far un-
known) higher order vertex functions. The required manipulations are, however, quite
involved, and further simplifications are needed for practical reasons. Here we will again
restrict ourselves to terms containing up to three overlapping loops in the energy. With
this approximation we can factorize the Coulomb kernel FA (see also Ref. [4]) as

Ec ≃
g2

8
R(1; 3, 4)R(2; 5, 6) 〈FA(1, 2)〉

〈
A(3)A(5)

δS[A]

δA(4)

δS[A]

δA(6)

〉
. (4.91)

The Coulomb propagator 〈FA〉 is discussed later in Sec. 4.6.3. The remaining expectation
value has precisely the form (4.67) with f [A] = AA, and from Eq. (4.69) we obtain

〈
δS[A]

δA(4)

δS[A]

δA(6)
A(3)A(5)

〉
=

〈
δ2S[A]

δA(4) δA(6)
A(3)A(5)

〉
+

〈
δ2

δA(4) δA(6)
[A(3)A(5)]

〉

+ Γ̃0(4; 8, 7)

〈
δ

δA(6)
[A(3)A(5)]GA(7, 8)

〉
+ Γ̃0(6; 8, 7)

〈
δ

δA(4)
[A(3)A(5)]GA(7, 8)

〉

+ Γ̃0(4; 8, 7) Γ̃0(6; 8
′, 7′)

〈
A(3)A(5)

[
GA(7, 8)GA(7

′, 8′)−GA(7, 8
′)GA(7

′, 8)
]〉
.

(4.92)

When inserted into Eq. (4.91), this expression can be simplified by exploiting the colour
antisymmetry of the vertices R, see Eq. (4.89): for this reason, the part of Eq. (4.92)
symmetric with respect to the interchange of the indices (3 ↔ 4) or (5 ↔ 6) vanishes.
Furthermore, the two terms on the r.h.s. of Eq. (4.92) with a single (bare) ghost-gluon
vertex Γ̃0 yield identical contributions when inserted into Eq. (4.91).

The first four terms on the right-hand side of Eq. (4.92) can be straightforwardly eval-
uated as in the preceding sections. With the explicit form of the ‘action’ Eq. (4.46), one
obtains for these terms

t(3, 6) t(4, 5) + 2 Γ̃0(4; 8, 7) t(3, 6) 〈A(5)GA(7, 8)〉 + 2ω(4, 6) 〈A(3)A(5)〉+
+ γ(4, 6, 7) 〈A(7)A(3)A(5)〉 + 1

2 γ(4, 6, 7, 8) 〈A(7)A(8)A(3)A(5)〉 =
= t(3, 6)

[
t(4, 5) − 4χ(4, 7)D(7, 5)

]
+ 2ω(4, 6)D(3, 5)+

− γ(4, 6, 7)D(5, 5′)D(3, 3′)D(5, 5′) Γ(3′, 5′, 7′) + 1
2 γ(4, 6, 7, 8) 〈A(7)A(8)A(3)A(5)〉 ,

(4.93)

where we have used Eqs. (4.21), (4.22), and the definition of the ghost loop [Eq. (4.53b)].
We are still left with the four-point function in Eq. (4.93), and with the six-point function
in the last term in Eq. (4.92). To work out these terms, we notice that the Coulomb energy
Eq. (4.91) can be diagrammatically represented as

where the “blob” (including the four lines attached to it) represents the v.e.v. given by the
last bracket in Eq. (4.91), and the double line stands for the Coulomb propagator 〈FA〉.
Since we need the energy up to three loops, we should keep only those contributions to
the “blob” which either factorize in two disconnected lines or which are either irreducible
or at most one-particle reducible (no box diagrams). At this order, for the last term in
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Eq. (4.93) it is sufficient to keep from the expression for
〈
A4
〉
given in Eq. (4.39) only the

disconnected terms, yielding

1
2 γ(4, 6, 7, 8) 〈A(7)A(8)A(3)A(5)〉 =
= 1

2 γ(4, 6, 7, 8) [D(3, 5)D(7, 8) +D(3, 7)D(5, 8) +D(3, 8)D(5, 7) + . . .]

= D(3, 5) 2φt(4, 6) + γ(4, 6, 7, 8)D(7, 3)D(8, 5) + . . .

(4.94)

where we have used the definition of gluon tadpole φt (4.53e) and made use of the symmetry
properties of the four-gluon kernel γ4. The dots in Eq. (4.94) stand for terms which give rise
to energy contributions with more than three loops. Following the same line of reasoning,
the last term in Eq. (4.92) can be transformed to

Γ̃0(4; 8, 7) Γ̃0(6; 8
′, 7′)

〈
A(3)A(5)

[
GA(7, 8)GA(7

′, 8′)−GA(7, 8
′)GA(7

′, 8)
]〉

= Γ̃0(4; 8, 7) Γ̃0(6; 8
′, 7′)

{
D(3, 5)

〈[
GA(7, 8)GA(7

′, 8′)−GA(7, 8
′)GA(7

′, 8)
]〉

+
〈
A(3)GA(7

′, 8′)
〉
〈A(5)GA(7, 8)〉 + . . .

}

= D(3, 5)
[
−2χ(4, 6) + 4χ(4, 7)D(7, 8)χ(8, 6) + . . .

]

+ 4D(3, 7)χ(7, 6)D(5, 8)χ(8, 4) + . . .
(4.95)

where we used Eqs. (4.21), (4.44) and discarded terms involving more than three loops in
the energy. Collecting all terms given by Eqs. (4.92)–(4.95) and inserting the result into
(4.91), we finally obtain the Coulomb energy to the desired (three-loop) order

Ec =
g2

8
R(1; 3, 4)R(2; 5, 6)F (1, 2)×

×
{
2D(3, 5)

[
ω(4, 6) + φt(4, 6) − χ(4, 6) + 2χ(4, 7)D(7, 8)χ(8, 6)

]

+ t(3, 6)
[
t(4, 5) − 4χ(4, 7)D(7, 5)

]
+ 4D(3, 7)χ(7, 6)D(5, 8)χ(8, 4)

− γ(4, 6, 7)D(5, 5′)D(3, 3′)D(5, 5′) Γ(3′, 5′, 7′)

+ γ(4, 6, 7, 8)D(7, 3)D(8, 5)
}
.

(4.96)

where F (1, 2) = 〈FA(1, 2)〉. For later use we rewrite this expression in momentum space.
Exploiting the symmetries of the entries and expressing the variational kernel ω through
the inverse gluon propagator Ω, as we did for the kinetic energy, Eq. (4.96) can be cast
into the form

Ec = g2
Nc(N

2
c − 1)

16
V

∫
d̄p d̄q F (p+ q)

[d− 2 + (p̂ · q̂)2]
Ω(p)Ω(q)

×
{
[Ω(p)− χ(p)− Ω(q) + χ(q)]2 + ξ(p)Ω(p) + ξ(q)Ω(q)

}

− V
g2

8

∫
d̄p d̄q d̄ℓ F (ℓ)

tim(p) tjn(q) tkl(p+ q)

Ω(p)Ω(q)Ω(p+ q)
f gadf gbe

× γcdelmn(p+ q, ℓ− p,−q− ℓ) Γcab
kij(−p− q,p,q)

+ V
g2

8

∫
d̄p d̄q d̄ℓ F (ℓ)

tij(p) tlm(q)

Ω(p)Ω(q)
fabcfadeγbdceiljm(ℓ− p,p,−ℓ− q,q)

(4.97)

where F (k) is the Fourier representation of the Coulomb propagator 〈FA〉, see Sec. 4.6.3
below. If we discard the three- and four-gluon kernels γ3 and γ4, which also removes the
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gluon loop ξ(p) [Eq. (4.53a)], this expression reduces to the Coulomb energy obtained in
Refs. [4,5] with a Gaussian wave functional,

Ec = g2
Nc(N

2
c − 1)

16
V

∫
d̄p d̄q F (p+ q)

[d− 2 + (p̂ · q̂)2]
Ω(p)Ω(q)

×

×
[
Ω(p)− χ(p)− Ω(q) + χ(q)]2

]
, (4.98)

The new features introduced by the inclusion of the three- and four-gluon kernels will be
studied in the subsequent sections.

4.6 Determination of the variational kernels

In the previous section we have expressed the vacuum energy 〈ψ|H |ψ〉 in terms of the
variational kernels ω, γ3, and γ4 (occurring in our ansatz Eq. (4.10), (4.46) for the vacuum
wave functional ψ[A]) and of the proper vertices Γn, Γ̃n. We now use the DSEs (4.52),
(4.55), (4.56), and (4.61) to express the proper vertex functions Γn, Γ̃n occurring in the
energy in terms of the variational kernels γn. We are then in a position to determine these
kernels by minimizing 〈ψ|H |ψ〉. To make the calculations feasible, we will resort to a
skeleton expansion of 〈ψ|H |ψ〉, keeping at most three-loop terms. As we will see, this is
the minimum number of loops required to obtain a non-trivial four-gluon kernel γ4. In
the variation of the energy with respect to 1

2γ2 = ω and γ3 we will restrict ourselves up
to two loops terms in 〈ψ|H |ψ〉, which will be sufficient to get a non-trivial γ3 and a one
loop gap equation for ω.

4.6.1 Three- and four-gluon kernel

Below we determine the three-gluon kernel in leading order in the number of loops. For
this purpose, it is sufficient to keep up to two-loop terms in the energy. The relevant
contributions come then from the gluon loop ξ [Eq. (4.79)] occurring in the kinetic energy
[Eq. (4.77)], and the magnetic energy contribution (4.83). These terms contain the three-
gluon kernel γ3 either explicitly or implicitly via the three-point proper vertex Γ3, which
by its DSE (4.55) is given in lowest order by the three-gluon kernel γ3. All remaining
terms of Γ3 contain additional loops and will henceforth be discarded, resulting in the
“tree-level” expression Γ3 = γ3. Inserting this expression in Eqs. (4.79) and (4.83), and
taking into account the symmetry of these kernels, the variation of these energy terms
with respect to the three-gluon kernel γ3 leads to

δ

δγ3

∫
d̄p d̄q d̄ℓ

δ(p+ q+ ℓ)

Ω(p)Ω(q)Ω(ℓ)

[
(γ3 ◦ γ3)

Ω(p) + Ω(q) + Ω(ℓ)

4
− (γ3 ◦ gT3)

]
!
= 0, (4.99)

which fixes the three-gluon kernel to

γabcijk (p,q,k) =
2 g T abc

ijk (p,q,k)

Ω(p) + Ω(q) + Ω(k)
, (4.100)

where the tensor T abc
ijk (p,q,k) is defined in Eq. (4.66a). The obtained three-gluon kernel

γ3 is reminiscent of the perturbative one following from a solution of the Yang–Mills
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Schrödinger equation in leading order in the coupling constant g [25]

γ
(0)abc
ijk (p,q,k) =

2 g T abc
ijk (p,q,k)

|p|+ |q|+ |k| , (4.101)

except that the perturbative gluon energy |k| is replaced in Eq. (4.100) by the non-
perturbative one Ω(k). Note that, in principle, the Lorentz indices in Eqs. (4.100) and
(4.101) are contracted with transverse projectors, which we did not explicitly write down,
since they arise naturally as these kernels are always contracted with either transverse
gauge fields or the corresponding transverse Green functions.

The variational determination of the four-gluon kernel γ4 is technically somewhat more
involved. The terms of 〈H〉 contributing to the variation with respect to γ4 are those
containing γ4 either explicitly or implicitly via the DSEs (4.55), (4.56) for the proper
three- and four-gluon vertices Γ3, Γ4. Terms explicitly containing γ4 are the φ1,2 terms
[Eqs. (4.53c) and (4.53d)] of the kinetic energy [Eq. (4.77)], as well as the last term of the
Coulomb energy [Eq. (4.97)]. Terms containing Γ3 or Γ4 are given by the gluon loop ξ [Eq.
(4.79)] in the kinetic energy [Eq. (4.77)] as well as by the magnetic energy contributions
(4.83) and (4.85). All terms contributing to the variation of the energy with respect to γ4
are collected below:

1

4!2
γ(1, 2, 3, 4)D(1, 1′)D(2, 2′)D(3, 3′) γ(1′, 2′, 3′, 4)

− 1

16
γ(1, 2, 3, 4) γ(3′ , 4′, 5)D(5, 5′) γ(5′, 1, 2′)D(2, 2′)D(3, 3′)D(4, 4′)+

+ Γ(1, 2, 3)D(1, 1′)D(2, 2′)

[
1

16
γ(1′, 2′, 3)− 1

3!
D(3, 3′)T (1′, 2′, 3′)

]

− 1

4!
γ(1, 2, 3, 4)D(1, 1′)D(2, 2′)D(3, 3′)D(4, 4′) γ(1′, 2′, 3′, 4′)

+
g2

8
F (1, 2)R(1; 3, 4)R(2; 5, 6) γ(4, 6, 7, 8)D(7, 3)D(8, 5) .

(4.102)

For simplicity, we have not explicitly symmetrized this expression with respect to a per-
mutation of the indices of γ4.

4 In the above expression we have used the DSE (4.56) to
replace the four-gluon vertex Γ4 by the four-gluon kernel γ4. To be consistent, we have to
use the DSE for the three-gluon vertex [Eq. (4.55)], to express the vertex function Γ3 in
Eq. (4.102) by the variational kernels, where it is sufficient to retain only terms involving
γ4 or Γ4, and the latter is to be replaced by γ4 due to the DSE (4.56). Taking into account
the symmetry properties of the quantities involved, by Eq. (4.55) we are led to make the
following replacement in Eq. (4.102)

Γ(1, 2, 3) → − 1

2
γ(3, 4, 5)D(4, 4′)D(5, 5′) γ(4′, 5′, 1, 2)

− γ(3, 1, 4, 5)D(4, 4′)D(5, 5′) γ(4′, 5′, 2) .
(4.103)

4Recall that, by definition, γ4 is totally symmetric with respect to a permutation of indices. Strictly
speaking, one should first symmetrize Eq. (4.102) and then take the variation. However, the same
result is more conveniently obtained by taking the variation of the unsymmetrized expression and
symmetrizing afterwards.
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With this replacement, the variation of Eq. (4.102) with respect to γ4 is now straightfor-
ward and yields after proper symmetrization with respect to external indices of γ4
[
Ω(k1) + Ω(k2) + Ω(k3) + Ω(k4)

]
γabcdijkl (k1,k2,k3,k4) = 2 g2 T abcd

ijkl

−1

2

{
γabeijm(k1,k2,−k1 − k2) tmn(k1 + k2) γ

cde
kln(k3,k4,k1 + k2)

+ γaceikm(k1,k3,−k1 − k3) tmn(k1 + k3) γ
bde
jln (k2,k4,k1 + k3)

+ γadeilm(k1,k4,−k1 − k4) tmn(k1 + k4)γ
bce
jkn(k2,k3,k1 + k4)

}

−2g2
{
fabef cdeδijδkl

[
Ω(k1)− Ω(k2)

]
F (k1 + k2)

[
Ω(k3)− Ω(k4)

]

+ facef bdeδikδjl
[
Ω(k1)−Ω(k3)

]
F (k1 + k3)

[
Ω(k2)− Ω(k4)

]

+ fadef bceδilδjk
[
Ω(k1)− Ω(k4)

]
F (k1 + k4)

[
Ω(k2)− Ω(k3)

]}
.

(4.104)

F (p) is again the Fourier representation of the Coulomb propagator 〈FA〉. Equation
(4.104) yields a four-gluon kernel γ4, which is reminiscent of the perturbative one [25]
except that the perturbative propagators and vertices are replaced by the full ones.

4.6.2 Gap equation

Given the explicit form of the energy functional, Eqs. (4.77), (4.83)–(4.86), (4.97), it is
more convenient to use the DSE (4.52) for the gluon propagator to express the kernel ω(p)
in terms of the gluon energy Ω(p), and vary the energy density with respect to Ω−1(p).
The vacuum energy is given by closed loop diagrams, and the variation with respect to
the gluon propagator Ω−1(p) reduces the number of loops by one. If the (gap) equation
for Ω(p) is to be calculated up to one loop, it is sufficient to keep up to two loops in the
energy. At this order, the energy density ε defined by 〈H〉 =: V (d− 1)(N2

c − 1)ε is given
by

ε =
1

4

∫
d̄p

p2 + [Ω(p)− χ(p)]2

Ω(p)

− g2Nc

3!8(d − 1)

∫
d̄p d̄q

γ3
Ω(p)Ω(q)Ω(p+ q)

◦
[
Ω(p) + Ω(q) + Ω(p+ q)

4
γ3 − gT3

]

+
g2Nc

16(d− 1)

∫
d̄p d̄q [d− 2 + (p̂ · q̂)2]F (p+ q)

[Ω(p)− χ(p)− Ω(q) + χ(q)]2

Ω(p)Ω(q)
,

(4.105)

see Eqs. (4.77), (4.83) and (4.98). In Eq. (4.105) we have discarded the tadpole term,
Eq. (4.84) or (4.84′), since it represents an irrelevant constant, which disappears after
renormalization. Except for the gluon loop (second term), the energy density Eq. (4.105)

was already obtained in Refs. [4,5], where a Gaussian wave functional multiplied by J−1/2
A

was used. The gluon loop is lost when a Gaussian wave functional is used, for which
Green’s functions with an odd number of fields vanish.

In principle, in Eq. (4.105) the three-gluon kernel γ3 [Eq. (4.100)] obtained from the
variational principle δε/δγ3 = 0 depends on Ω(p). However, since the energy density ε
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Eq. (4.105) with γ3 given by Eq. (4.100) is already stationary with respect to variations
of γ3, we can ignore the implicit Ω(p) dependence of ε via γ3. Variation of ε [Eq. (4.105)]
with respect to Ω−1(k) then yields the gap equation

Ω(p)2 = p2 + χ(p)2 − IG(p) + IC(p), (4.106)

where χ(p) is the ghost loop [Eq. (4.78)],

IG(p) =
1

4(d− 1)(N2
c − 1)

∫
ddq

(2π)d
1

Ω(q)Ω(p+ q)
γ3 ◦

[
gT3 − γ3

Ω(p) + Ω(p+ q)

4

]

(4.107a)
is the gluon-loop contribution, and

IC(p) =
g2Nc

2(d − 1)

∫
ddq

(2π)d
[
d− 2 + (p̂ · q̂)2

]
F (p+ q)

×
[
Ω(q)− χ(q) + χ(p)

]2 − Ω(p)2

Ω(q)

(4.107b)

arises from the Coulomb term. Except for the gluon loop IG(k), Eq. (4.106) is the gap
equation found already in [4].
If we insert the expression derived above in leading order for the three-gluon kernel γ3

[Eq. (4.100)] into the gluon-loop contribution [Eq. (4.107a)], this takes the form

IG(p) =
g2Nc

d− 1

∫
ddq

(2π)d
2Ω(p) + Ω(q) + Ω(p+ q)
[
Ω(p) + Ω(q) + Ω(p+ q)

]2
Σ(p,q)

Ω(q)Ω(p+ q)
, (4.108)

where the function Σ arises from the contraction of the Lorentz structure of two three-
gluon vertices upon imposing momentum conservation

T3 ◦ T3
∣∣
k=−p−q

=: 4Nc (N
2
c − 1)Σ(p,q), (4.109)

and is given explicitly by

Σ(p,q) =
[
1− (p̂ · q̂)2

] [
(d− 1)(p2 + q2) +

(d− 2)p2q2 + (p · q)2
(p+ q)2

]
. (4.110)

To exhibit the UV-behaviour of the various loop terms, let us consider them in leading
order in perturbation theory [7,25], where F (p) = 1/p2 and χ(p) = 0. In this order we
find with 3-momentum cut-off Λ for the divergent parts

IG(p) =
g2Nc

(4π)2

[
4

3
Λ2 +

22

15
p2 ln

Λ2

p2

]
, (4.111a)

IC(p) =
g2Nc

(4π)2

[
4

3
Λ2 − 8

15
p2 ln

Λ2

p2

]
. (4.111b)

One observes that the quadratic divergence in Eq. (4.106) cancels, and the sum of the
logarithmic ones is consistent with the result of Lagrangian-based perturbation theory in
Coulomb gauge [24,28]

|p|
Ω(p)

= 1 +
1

2p2
[IG(p)− IC(p)]) + . . . = 1 +

g2Nc

(4π)2−ε

(
1

ε
− ln

p2

µ2

)
+ . . . (4.112)
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for the gluon energy Ω(p) and fit to Eq.
(4.107a).

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  2  4  6  8  10

D
(p

)

p

lattice

Gaussian functional

Non-Gaussian functional

Figure 4.17: Comparison of the gluon propa-
gator obtained in Ref. [8] with a Gaussian
wave functional (dashed line) with the cor-
rected one from Eq. (4.114) (full line), and
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where we have used dimensional regularization with d = 3− 2ε.
To estimate the size of the contribution of the gluon loop [Eq. (4.107a)] to the gap

equation (4.106), we use the gluon energy Ω obtained with a Gaussian wave functional
in Ref. [8] as input. For practical purposes, we fit the Ω(p) obtained in Ref. [8] to the
formula

Ω(p) =

√

p2 +
m4

a

p2
+ c2 , (4.113)

which yields m4
a ≃ 0.36σ2c, c

2 ≃ 1.0σc. The numerical results of Ref. [8] and the fit to
Eq. (4.113) are shown in Fig. 4.16. The gluon loop [Eq. (4.107a)] is UV divergent. In
principle, the UV-divergent part is removed by the renormalization of the gap equation
(4.106), which can be done analogously to Refs. [12,29]. We therefore calculate

Ωnew(p)
2 = Ωold(p)

2 −
(
IG(p)[Ωold]− IG(p)div

)
, (4.114)

where IG(p)div is the (known) perturbative divergent part of the gluon loop, which has
been subtracted, and Eq. (4.113) has been used for Ωold(p). The (inverse) gluon propagator
Ωnew(p) Eq. (4.114) is shown in Fig. 4.17 together with the one obtained previously [8]
with a Gaussian wave functional Ωold(p). The mismatch in the UV is due to the anomalous
dimension developed by Ωnew(p) and absent in Ωold(p). As seen in Fig. 4.17, significant
correction from the gluon loop arises in the mid-momentum regime, a behaviour which was
observed also in Landau gauge [30,31]. This a posteriori supports the use of the Gaussian
wave functional for the description of the infrared regime.

4.6.3 The Coulomb form factor

With the explicit expression of the three- and four-gluon kernels, γ3 [Eq. (4.100)] and γ4
[Eq. (4.104)], on hand, we are left with three coupled equations: Eq. (4.59) for the ghost
propagator, Eq. (4.61) for the ghost-gluon vertex, and the gap equation (4.106) for the
gluon propagator. The final piece which is missing for closing this set of equations is the
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non-abelian colour Coulomb potential F (1, 2) defined by the vacuum expectation value of
the Coulomb kernel [Eq. (4.64)]

F (1, 4) = 〈FA(1, 4)〉 =
〈
GA(1, 2)G

−1
0 (2, 3)GA(3, 4)

〉
. (4.115)

The quantity g2F (1, 2) directly relates to the heavy quark potential [32] and is hence a
renormalization group invariant quantity. Before we come to the evaluation of 〈FA〉, let us
remark that in practical application it is not necessary to explicitly solve the DSE (4.61)
for the ghost-gluon vertex. Rather it is sufficient to replace the full ghost-gluon vertex
Γ̃ [Eq. (4.35)] by the bare one Γ̃0 [Eq. (4.16)]. This approximation is motivated by the
‘non-renormalization’ theorem for this vertex [33]. Although this theorem was originally
proven [33] and confirmed on the lattice [34,35] for QCD in Landau gauge, the arguments
carry over to the present case of Coulomb gauge. A perturbative evaluation of the ghost-
gluon vertex in Coulomb gauge shows indeed that its quantum corrections are finite and
independent of the scale [7,25].
The vacuum expectation value 〈FA〉 is commonly expressed in terms of the Coulomb

form factor f . This quantity measures the deviation of 〈FA〉 from the factorized form
〈GA〉G−1

0 〈GA〉 and is defined in momentum space by

F (p) =: G(p) f(p)p2G(p), (4.116)

where G = 〈GA〉 is the ghost propagator [Eq. (4.23)]. By taking the vacuum expectation
value of the operator identity

FA =
∂

∂g

(
g GA

)
, (4.117)

the Coulomb form factor f(p) can be related to the ghost form factor d(p) and from the
ghost DSE (4.59) the following (approximate) integral equation for the Coulomb form
factor is obtained [4,36]

f(p) = 1 + g2
Nc

2

∫
d̄q

1− (p̂ · q̂)2
Ω(q)

(p− q)2G2(p− q) f(p− q). (4.118)

In the derivation of this equation no assumption on the form of the vacuum wave functional
enters, so this equation remains also valid for non-Gaussian wave functionals.
With the approximation Γ̃ [Eq. (4.35)] → Γ̃0 [Eq. (4.16)], Eqs. (4.59), (4.106), and

(4.118) form a closed set of coupled equations for the ghost propagator G(p), the gluon
energy Ω(p), and the Coulomb form factor f(p), whose solutions provide the variational
solution of the Yang–Mills Schrödinger equation. These equations have to be renormalized,
which can be done in exactly the same way as in Refs. [4,12,29]. The numerical solution
of this set of equations can be carried out as in the case of the Gaussian wave functional
[4,8] and is subject to future work.
As already mentioned before, the use of a Gaussian wave functional misses the con-

tribution of the bare three-gluon vertex and thus the gluon loop in the gap equation.
Fortunately, as we have seen in the previous subsection, the gluon loop is IR subleading
compared to the (included) ghost loop, and thus irrelevant for the IR behaviour of the
Green functions. Therefore the results of Refs. [4,8] remain fully valid in the IR. In par-
ticular, the gluon propagator does not change in the IR. The gluon loop does, however,
matter in the UV and is responsible for the anomalous dimension of the gluon propagator,
which enters the running coupling constant.
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4.7 The three- and four-gluon vertex

As we have seen, the gap equation differs from the one obtained in [4] only by the gluon
loop contribution, which gives sizeable corrections in the mid-momentum regime. In the
present section, we investigate the three- and four-gluon vertices Γ3,4 by using the ghost
and gluon propagators determined with a Gaussian wave functional [8] as input. We will
not resort to the tree-level result Γn = γn but rather solve the corresponding DSEs to
one-loop order.

4.7.1 Solution of the truncated three-gluon vertex DSE

The DSE for the three gluon-vertex at one-loop order is given by Eq. (4.55). Assuming
ghost dominance (see for example Ref. [6]), we keep only the ghost-loop (the third term
on the right-hand side of Eq. (4.55) and Fig. 4.9). Furthermore, we replace the full ghost-
gluon vertex by the bare one, see Sec. 4.6.3. After extracting the colour structure, the
truncated DSE for the three-gluon vertex becomes

Γijk(p,q,k) = γijk(p,q,k) + ig3Nc

∫
d̄ℓ G(ℓ)G(ℓ − p)G(ℓ + q)ℓiℓj(ℓ− p)k , (4.119)

where momentum conservation k+p+q = 0 is implied and we have omitted longitudinal
terms, which, by definition, cannot enter the proper n-point vertex functions Eq. (4.36) of
the transverse (Coulomb) gauge field. Possible tensor decompositions of the three-gluon
proper vertex are given in Refs. [37,38]. Here, for sake of illustration, we confine ourselves
to the form factor corresponding to the tensor structure of the bare three-gluon vertex,
defined by

f3A :=
Γ(0)

3 ◦ Γ3

Γ(0)

3 ◦ Γ(0)

3

, (4.120)

where Γ(0)

3 is the perturbative vertex given in Eq. (4.101). Restricting the kinematic con-
figuration to the case where two external momenta have the same magnitude, i.e.

q2 = p2 = p2, q · p = cp2, (4.121)

the form factor Eq. (4.120) depends only on two variables, the magnitude p of the two
momenta and the cosine c of the angle between them. Contracting Eq. (4.119) with the
bare three-gluon vertex Eq. (4.101), thereby using the variational kernel γ3 [Eq. (4.100)]
and the tensor structure T3 given in Eq. (4.66a), yields the following equation for the form
factor f3A [Eq. (4.120)]

f3A(p
2, c) =

2p +
√

2p2(1 + c)

2Ω(p2) + Ω(2p2(1 + c))

− g2
Nc

4

2 +
√

2(1 + c)

p(1− c)(9 + 8c+ c2)

∫
d̄ℓ G(ℓ)G(ℓ− p)G(ℓ+ q) B(ℓ,p,q),

(4.122)
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Figure 4.18: Ghost form factor from [8] and fit to Eq. (4.124).

where we have introduced the abbreviation

B(ℓ,p,q) = ℓ
2
[
p2(1− c)− (1 + 2c)(ℓ · q− ℓ · p)

]
+

(ℓ · q)3
p2

− (ℓ · p)3
p2

− (1 + c)
[
(ℓ · q)2 + (ℓ · p)2

]

+ (ℓ · q)(ℓ · p)
[
c(1 + c) + 2 +

1− c

p2
(ℓ · q− ℓ · p)

]
.

(4.123)

The apparent singularity at c = 1 in the coefficient in front of the integral in Eq. (4.122)
is cancelled by the numerator, and the whole term is regular in the collinear limit. Also
the singularities at ℓ = 0, ℓ = p, and ℓ = −q are integrable.

For the actual calculation of f3A [Eq. (4.120)] we use the numerical result for Ω(p) and
G(p) obtained in Ref. [8] (with a Gaussian wave functional) as input. For Ω(p) we use the
parametrization Eq. (4.113) while the ghost form factor d(p) = p2G(p) is parametrized
as

d(x) = a

√
1

x2
+

1

ln(x2 + c2)
, x2 =

p2

σc
, (4.124)

with σc being the Coulomb string tension. The fit to the data shown in Fig. 4.18 yields
a ≃ 5 and c ≃ 4.

The form Eq. (4.124) of the ghost form factor embodies also the non-perturbative anom-
alous dimension, which in turn guarantees the convergence of the integral in Eq. (4.122).

The numerical results for f3A(p
2, c) are shown in Fig. 4.19 for some values of the cosine

of the relative angle, c. The logarithmic plot (left panel) shows that the curves for different
c have the same power law behaviour in the infrared region, namely p−3, in agreement
with the IR analysis of the ghost loop carried out in Ref. [38], according to which the
IR exponent of the form factor f3A should be three times the one of the ghost dressing
function Eq. (4.124).5 The linear plot (right panel) shows that the form factor approaches
unity in the high-momentum regime and changes sign in the mid momentum regime.

5In Ref. [6], due to the use of a Gaussian wave functional, the bare term escaped, and only the ghost loop
was calculated for a different solution of the DSEs [4], which leads to less IR singular ghost and gluon
propagators.
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lattice data are shown by courtesy of A. Maas.

In Ref. [39] the form factor f3A [Eq. (4.120)] of the three-gluon vertex was evaluated on
the lattice for d = 3 Yang–Mills theory in Landau gauge. The result is shown in Fig. 4.20
and compares well to our result in low-momentum regime. In particular, in both studies,
the sign change of the form factor occurs roughly at the same momentum where the gluon
propagator has its maximum. The d = 3 Yang–Mills theory in Landau gauge can be
interpreted as using the wave functional

ψ[A] = N exp

[
− 1

4µ2

∫
(F a

ij)
2

]
(4.125)

in the Hamiltonian approach to d = 3+1 Yang–Mills theory in Coulomb gauge. This wave
functional can be considered to represent the strong coupling limit of the true vacuum wave
functional [40]. In Ref. [41] it was shown by means of lattice calculations that this wave
functional yields static propagators which in the IR compare well with those obtained in
d = 3+1 Yang–Mills theory in Coulomb gauge. Thus we can conclude from Fig. 4.20 that
our results compare favourably with the lattice data.
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4.7.2 Estimate of the four-gluon vertex

Because of its DSE (4.56), the four-gluon vertex is given in leading order (neglecting loops)
by the variational kernel γ4 [Eq. (4.104)] determined in Sec. 4.6.1. A form factor for the
four-gluon vertex can be introduced along the same line of Eq. (4.120)

f4A :=
Γ(0)

4 ◦ γ4
Γ(0)

4 ◦ Γ(0)

4

, (4.126)

where Γ(0)

4 is the perturbative four-gluon vertex, which is obtained from Eq. (4.104) by
the replacements Ω(p) → |p|, F (p) → 1/p2. We consider here the form factor f4A at the
symmetric point, where

p2
1 = . . . = p2

4 = p2, pi · pj = −1

3
p2 (i 6= j). (4.127)

For this kinematic configuration the terms in Eq. (4.104) stemming from the Coulomb
interaction do not contribute to this vertex, and one finds for the form factor Eq. (4.126)

f4A(p
2) =

p

Ω(p2)

171 − 960[g0 + g(p2)] + 8704 g0 g(p
2)

171− 1920 g0 + 8704 g20
, (4.128)

where

g(p2) =

[
p

2Ω(p2) + Ω(43p
2)

]2
, (4.129a)

g0 = g(p2)
∣∣∣
Ω(p2)=p

= 3
8(2−

√
3). (4.129b)

The function f4A [Eq. (4.128)] is shown in Fig. 4.21. The function multiplying p/Ω(p2)
in Eq. (4.128) is of O(1), and the form factor at the symmetric point Eq. (4.127) can be
fairly well represented by the gluonic dressing function p/Ω(p2) alone.
In the above calculation of the four-gluon vertex we have neglected all loop diagrams,

in particular the ghost loop. From analogous investigations in Landau gauge [42] one may
expect that the ghost loop dominates the IR behaviour of the four-gluon vertex as it did
for the three-gluon vertex. We will defer this issue to future research.
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4.8 Summary and conclusions

We have presented a general method to treat non-Gaussian wave functionals in the Hamil-
tonian formulation of quantum field theory. By means of well-established Dyson–Schwinger
equation techniques, the equal-time Green functions and, in particular, the expectation
value of the Hamiltonian are expressed in terms of kernels occurring in the exponent of the
vacuum wave functional. These kernels are then determined by the variational principle
minimizing the vacuum energy density. The method was applied to Yang–Mills theory
in Coulomb gauge using a vacuum wave functional which contains up to quartic terms in
the exponent. In leading order (in the number of loops) the cubic and quartic interaction
kernels obtained from the variational principle are reminiscent of the corresponding expres-
sions obtained in leading order of a perturbative solution of the Yang–Mills Schrödinger
equation, except that the unperturbed gluon propagators are replaced by the full ones. We
have estimated these interaction kernels γ3,4 and the corresponding proper gluon vertex
functions Γ3,4 by using the gluon and ghost propagators found in the variational approach
with a Gaussian wave functional. The resulting three-gluon vertex compares fairly well to
the available lattice data obtained in d = 3 Landau gauge. The (gap) equation of motion
obtained from the variation of the energy density with respect to the gluon propagator con-
tains the gluon loop, which was missed in previous variational approaches due to the use of
a Gaussian wave functional. We have shown that the gluon loop gives a substantial contri-
bution in the mid-momentum regime while leaving the IR sector unchanged. Furthermore
(together with the contribution from the non-abelian Coulomb interaction already fully
included in previous studies [4]), it also provides the correct asymptotic UV behaviour of
the gluon propagator in accord with perturbation theory [7]. The approach developed in
the present paper allows a systematic treatment of correlations in the Hamiltonian ap-
proach to interacting quantum field theories (analogous to the so-called ‘exponential S’
method in many-body physics) and opens up a wide range of applications. In particular,
it allows us to extend the variational approach from pure Yang–Mills theory to full QCD.
This will be subject to future research.
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Abstract The topological susceptibility is calculated within the Hamiltonian approach
to Yang–Mills theory in Coulomb gauge, using the vacuum wave functional previously de-
termined by a variational solution of the Yang–Mills Schrödinger equation. The numerical
result agrees qualitatively with the predictions of lattice simulations.

5.1 Introduction

At the classical level, quantum chromodynamics (QCD) with massless fermions is chirally
symmetric; that is to say, the QCD Lagrangian is invariant under separate global flavor
rotations of the left- and right-handed quarks. For Nf massless quark flavors the chiral
symmetry group is

SUV (Nf )× SUA(Nf )× UV (1) × UA(1), (5.1)

where the vector (axial vector) symmetry groups denoted by a subscript V (A) rotate
left- and right-handed fermions in the same (opposite) way. The chiral symmetry is a
good starting point for the Nf = 3 light quark flavors u, d, s. In the quantum theory,
the SUA(Nf ) is spontaneously broken by the dynamical condensation of quarks, 〈q̄q〉 6= 0,
which results in the generation of a constituent quark mass and gives rise to N2

f − 1 Gold-
stone bosons, which can be identified with the octet of light pseudoscalar mesons. Further,
the small but finite (current) quark masses break the axial SUA(Nf ) explicitly and induce
a mass for the pseudoscalar mesons. Furthermore, the SUV (Nf ) is softly broken by the
differences in the current quark masses, which lifts the mass degeneracy of the pseudo-
scalar mesons. The UV (1) symmetry corresponds to baryon number conservation and
remains unbroken in the QCD vacuum. The UA(1) symmetry, however, has been an issue
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for quite some time. If the UA(1) were intact, the light hadrons would occur in degen-
erate parity doublets, which is not the case. Furthermore, if UA(1) were spontaneously
broken, there should be a (nearly) massless (or at least light) pseudoscalar flavor singlet
meson, the “would-be” Goldstone boson of spontaneous UA(1) symmetry breaking. The
only candidate is the η′, which, however, is by far too heavy to qualify for this particle.
It was first shown by Adler [1], Bell and Jackiw [2] that the UA(1) is anomalously broken,

i.e. broken by quantum effects. The anomalous breaking of the global UA(1) symmetry
manifests itself in the non-invariance of the fermionic integration measure [3,4] and results
in the well-known axial anomaly, which for massless quarks reads

∂µj
µ
5 (x) = 2Nf q(x). (5.2)

Here, jµ5 (x) = ψ̄(x)γµγ5ψ(x) is the axial current and

q(x) =
g2

32π2
F a
µν(x)F̃

µν
a (x) (5.3)

is the topological charge density in Minkowski space, with

F a
µν = ∂µA

a
ν − ∂νA

a
µ + g fabcAb

µA
c
ν (5.4a)

F̃µν
a =

1

2
εµνρσF a

ρσ (5.4b)

being the field strength tensor and its dual (fabc are the structure constants of the su(Nc)
algebra and g is the coupling constant; we use colour sub- and superscripts indiscrimin-
ately). Adler and Bardeen showed [5] that Eq. (5.2) does not recieve corrections from
higher-order diagrams. Although q(x) is a total divergence

F a
µν F̃

µν
a = 2∂µK

µ, (5.5)

where

Kµ = εµνρσ
[
Aa

ν∂ρA
a
σ +

1

3
gfabcAa

νA
b
ρA

c
σ

]
(5.6)

is the topological current, there are topologically non-trivial field configurations (in Euc-
lidean space) such as instantons [6,7], magnetic monopoles [8] or center vortices [9,10], for
which the topological charge

Q =

∫
d4xe q(x) (5.7)

is non-zero (for smooth field configurations of finite Euclidean action, Q is integer-valued).
As a consequence of the existence of these field configurations, the axial charge

Q5 =

∫
d3x j05 (x) (5.8)

is not conserved [11,12].
Using large-Nc arguments, Witten [13] and Veneziano [14] showed that the axial ano-

maly provides a mass term for the pseudoscalar flavor singlet meson given by

m2
η′ +m2

η − 2m2
K =

2Nf

F 2
π

χ, (5.9)
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where Fπ ≃ 93 MeV is the pion decay constant and

χ =

∫
d4xe 〈0|q(x) q(0) |0〉 (5.10)

is the topological susceptibility, which is a purely gluonic quantity (in Minkowski space
Eq. (5.10) has an additional factor −i). Since this quantity is defined as vacuum expect-
ation value it is clear that its evaluation requires non-perturbative methods. Indeed, in
perturbation theory the topological susceptibility vanishes to all orders. This quantity has
been calculated on the lattice (see Refs. [15,16] for recent calculations) and the results are
compatible with the prediction of the Witten–Veneziano formula Eq. (5.9)

χ ≃ (180 MeV)4 (5.11)

using the experimental data for the meson masses and Fπ as input.
Like the string tension [17], the topological susceptibility seems to be dominated by

center vortices [18]. In fact, a center vortex model of the infrared sector of Yang–Mills
theory [19] yields a value for χ compatible with lattice results [20].

Topologically non-trivial Euclidean field configurations such as instantons and center
vortices describe quantum tunneling between topologically different Yang–Mills vacua [21],
see Eq. (5.12) below. Like in quantum mechanics, this quantum tunneling is fully accoun-
ted for by the solution of the Yang–Mills Schrödinger equation. Recently, progress has
been made in determining the vacuum wave functional by a variational solution of the
Yang–Mills Schrödinger equation in Coulomb gauge [22–30]. There is good evidence to
believe that the obtained wave functional contains the essential infrared physics: the ab-
sence of gluons from the physical spectrum in the infrared [25], a linearly rising potential
for static colour charges [27] and a perimeter law for the ’t Hooft loop [28]. In the present
paper we use the Yang–Mills wave functional determined in Refs. [25,27] to calculate the
topological susceptibility given by Eq. (5.10).

The organization of the paper is as follows: In the next section we briefly review the
θ-vacuum in the Hamiltonian approach. In section 3 we derive the expressions for the
topological susceptibility in the Hamiltonian approach in Coulomb gauge and evaluate
the relevant matrix elements. Our numerical results are presented in section 4. Some
concluding remarks are given in section 5.

5.2 The θ-vacuum in the canonical quantization approach

Consider Yang–Mills theory in the Weyl gauge Aa
0 = 0. The classical (time-independent)

vacuum configurations are pure gauge spatial fields

Ai = Aa
i ta =

i

g
U∂iU

†, (5.12)

where ta are the Hermitian generators of the gauge group. Imposing the usual boundary
condition that the gauge function U(x) ∈ SU(Nc) approaches a unique value for |x| → ∞
(independent of the direction x̂) compactifies R3 to S3 and consequently the U(x) can
be classified according to the winding number n[U ] ∈ Π3(S3) [21]. The classical vacuum
configurations Eq. (5.12) belonging to different winding numbers are separated by infinite
potential barriers. In the quantum theory, tunnelling between the different classical vacua
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occurs and in a semiclassical picture, the barrier penetration is described by instantons,
(space-)time-dependent solutions of the classical Euclidean Yang–Mills equation of motion,
which interpolate between vacuum configurations differing in the winding number by ±1.
We will not resort here to a semiclassical description but instead approximately solve the
Schrödinger equation, which fully accounts for the quantum tunnelling.
In Weyl gauge the physical coordinates are the spatial gauge fields Aa

i (x) and the cor-
responding canonical conjugate momenta are given by the chromoelectric field Ea

i (x) =
F a
0i(x). In canonical quantization the electric field is promoted to the momentum oper-

ator Πa
i (x) = −iδ/δAa

i (x) satisfying canonical commutation relations, and the Yang–Mills
Hamiltonian reads

H =
1

2

∫
d3x

[(
Πa

i (x)
)2

+
(
Ba

i (x)
)2]

, (5.13)

where

Ba
i =

1

2
εijk F

a
jk = εijk

[
∂jA

a
k +

g

2
fabcAb

jA
c
k

]
(5.14)

is the non-abelian magnetic field.
In Weyl gauge, Gauss’s law is lost from the equations of motion and has to be imposed

as a constraint on the wave functional

D̂ab
i Πb

i(x)Ψ [A] = −g ρaext(x)Ψ [A]. (5.15)

Here,
D̂ab

i = δab∂i + gÂab
i , Âab = facbAc (5.16)

is the covariant derivative in the adjoint representation of the gauge group and ρaext(x)
denotes the external colour charge density of the matter fields. The operator D̂Π on the
left-hand side of Eq. (5.15) is the generator of time-independent small gauge transforma-
tions (n[U ] = 0). In the absence of external charges, ρaext(x) = 0, Gauss’s law requires the
wave functional to be invariant under small gauge transformations only, while under large
gauge transformation it needs to be invariant only up to a phase [31,32]

Ψθ[A
U ] = e−iθn[U ]Ψθ[A]. (5.17)

Here, θ is a free real parameter, which characterizes the vacuum wave functional and is
called the vacuum angle. Since n[U ] ∈ Z, the wave functional of the θ-vacuum Eq. (5.17)
has the property

Ψθ+2π[A] = Ψθ[A], (5.18)

which qualifies θ as an angle variable. θ is not known a priori and is not determined by
the theory itself but must be fixed by experiment. One measurable effect of θ would be a
non-vanishing neutron electric dipole moment [33]. Current measurements [34] restrict θ
to the extremely small value |θ| ≤ 10−10.
The transformation property Eq. (5.17) can be realized by the ansatz

Ψθ[A] = e−iθW [A]φ[A], (5.19)

where φ[A] is a gauge invariant wave functional, φ[AU ] = φ[A], and

W [A] =
g2

16π2

∫
d3x K0(x) =

g2

16π2
εijk

∫
d3x

[
Aa

i ∂jA
a
k +

g

3
fabcAa

iA
b
jA

c
k

]
(5.20)
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is the Chern–Simons action, which changes under gauge transformations by the winding
number n[U ]

W [AU ] =W [A] + n[U ]. (5.21)

The wave functional Eq. (5.19) does, however, not fulfill Eq. (5.18). In the appendix
we show how Eq. (5.19) has to be modified to promote θ to an angle variable. We also
show there that Eq. (5.19) is a correct wave functional when θ is restricted to [0, 2π).
In the following, the cyclic property Eq. (5.18) of the vacuum wave functional will be
irrelevant, since we are anyway interested only in infinitesimally small θ, see Eq. (5.22)
below. Therefore, we can use the simpler wave functional Eq. (5.19).

The quantity of interest is the topological susceptibility Eq. (5.10) which in the Hamilto-
nian approach can be defined by [13]

V χ =
d2〈H〉θ
dθ2

∣∣∣∣
no quarks

θ=0

, (5.22)

where V is the spatial volume and

〈H〉θ = 〈Ψθ|H |Ψθ〉, 〈Ψθ|Ψθ〉 = 1 (5.23)

is the expectation value of the Yang–Mills Hamiltonian in the θ-vacuum. To evaluate the
θ-dependence of 〈H〉θ, the following identity will be useful

δW [A]

δAa
i (x)

=
g2

8π2
Ba

i (x), (5.24)

where Ba
i is the magnetic field Eq. (5.14). Obviously, the θ-phase in Eq. (5.19) can only

contribute to the kinetic term of the Yang–Mills Hamiltonian Eq. (5.13). With Eq. (5.24)
we find from Eq. (5.19)

Πa
i Ψθ[A] = e−iθW [A]

(
Πa

i − θ
g2

8π2
Ba

i

)
φ[A]. (5.25)

Inserting this relation into Eq. (5.15) and using the Bianchi identity

D̂ab
i B

b
i (x) = 0 (5.26)

we find that the wave functional φ[A] satisfies the same Gauss law as Ψθ[A]

D̂ab
i Πb

i φ[A] = −g ρaext φ[A]. (5.27)

To make contact with previous results obtained in the Hamiltonian approach to Yang–Mills
theory (see Refs. [25,27]), it is convenient to work with the θ-independent wave functional
φ[A] and absorb the θ-dependence into the Hamiltonian by defining

〈Ψθ|H |Ψθ〉 = 〈φ|Hθ |φ〉. (5.28)

Using Eq. (5.25) we find

Hθ =
1

2

∫ (
Πa

i − θ
g2

8π2
Ba

i

)2

+
1

2

∫ (
Ba

i

)2
. (5.29)



122 Article 5. Topological susceptibility in SU(2) Yang–Mills theory

An alternative way to arrive at this Hamiltonian is to add the topological θ-term directly
to the original classical Lagrangian

L = −1

4
F a
µν F

µν
a + θ

g2

32π2
F a
µν F̃

µν
a =

1

2

(
E2 −B2

)
+ θ

g2

8π2
E ·B. (5.30)

The θ-term is a total derivative and does not contribute to the classical equation of motion.
It does, however, change the canonical momentum from Πa

i = F a
0i to

Πa
i = F a

0i + θ
g2

8π2
Ba

i (5.31)

and after canonical quantization in Weyl gauge one finds again the Hamiltonian Hθ [Eq.
(5.29)].
Instead of working (for ρaext(x) = 0) with gauge invariant wave functionals φ[A], it is

more convenient to explicitly resolve Gauss’s law Eq. (5.27) by fixing the gauge. For
this purpose Coulomb gauge ∂iA

a
i = 0 is particularly convenient and will be used in the

following. In Coulomb gauge, the gauge field is transverse A = A⊥ but this is not true
for the momentum operator. We split the momentum operator into longitudinal and
transverse parts Π = Π⊥ + Π‖, where Π⊥ = −iδ/δA⊥. The latter satisfies the canonical
commutation relation for transverse fields

[
A⊥a

i (x),Π⊥b
j (y)

]
= i δab tij(x) δ(x − y), (5.32)

where tij(x) = δij − ∂i∂j/∂
2 is the transverse projector.

Gauss’s law Eq. (5.27) can be solved for the longitudinal part Π|| in the standard fashion
yielding

Π‖ |φ〉 = −g∂(−D̂∂)−1(ρext + ρg) |φ〉, (5.33)

where ρag = Â⊥ab
i Π⊥b

i is the colour charge density of the gluons and (−D̂∂) is the Faddeev–
Popov kernel in Coulomb gauge. With the aid of Eq. (5.33), one derives from Eq. (5.29) the
gauge fixed Hamiltonian of the θ-vacuum (by considering 〈φ|Hθ |φ〉 and using integration
by parts in the kinetic term). This yields1

Hθ = H0 + θ
g2

8π2
H1 +

(
θ
g2

8π2

)2

H2 . (5.34)

where

H0 =
1

2

∫
d3x

[
J −1
A Πa

i (x)JAΠ
a
i (x) +Ba

i (x)B
a
i (x)

]

+
g2

2

∫
d3xd3y J−1

A ρa(x)JA F
ab
A (x,y)ρb(y)

(5.35)

is the usual Coulomb gauge fixed Hamiltonian [35] for θ = 0 and the θ-dependent terms
are given by

H1 = −1

2

∫
d3x

[
Ba

i (x)Π
a
i (x) + J−1

A Πa
i (x)JAB

a
i (x)

]

+
1

2

∫
d3xd3y

{
Gab

A (x,y)∂xi B
a
i (x)gρ

b(y) + J −1
A gρa(x)JAG

ab
A (x,y)∂yi B

b
i (y)

}
(5.36)

1In the following, all field and momentum operators are transverse and we will omit the symbol ⊥.
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and

H2 =
1

2

∫
d3x Ba

i (x)B
a
i (x). (5.37)

In the above expressions, JA = Det(−∂iD̂i) is the Faddeev–Popov determinant, GA is the
Green function of the Faddeev–Popov operator

−∂iD̂ab
i (x)Gbc

A (x,y) = δac δ(x − y), (5.38)

FA denotes the Coulomb operator

F ab
A (x,y) =

[
(−∂iD̂i)

−1(−∂2)(−∂jD̂j)
−1
]ab
x,y

(5.39)

and ρ is the sum of external and dynamical colour charge densities

ρa = ρaext + ρag = ρaext + fabcAb
i Π

c
i . (5.40)

For the present purpose, the evaluation of the topological susceptibility χ (which is entirely
defined in the gluon sector), the external charges are not needed and we will put ρaext = 0
in the following. The Faddeev–Popov determinant JA represents the Jacobian of the
transformation from the (flat) non gauge-fixed configuration space to the (curved) space
of the Coulomb gauge fixed fields. In particular, this Jacobian enters the integration
measure of the scalar product of wave functions

(Φ1, Φ2) =

∫
DA JA Φ

∗
1[A] Φ2[A]. (5.41)

The integration of transverse field configurations extends over the first Gribov region Ω
[36], allowing the surface terms to be discarded in integration by parts. Although the
integration should be restricted to the fundamental modular region Λ ⊂ Ω [37], there is
evidence that integration over Ω yields the same expectation values [38].

Following Ref. [25] we introduce the “radial” wave functional

Φ̃[A] = J 1/2
A Φ[A] (5.42)

which removes the Faddeev–Popov determinant from the integration measure of the scalar
product. Matrix elements of observables O[A,Π] can then be expressed as

∫
DA JA Φ

∗
1OΦ2 =

∫
DA Φ̃∗

1 Õ Φ̃2 , (5.43)

where we have introduced the transformed operator

Õ[A,Π] = J 1/2
A O[A,Π]J −1/2

A = O[A, Π̃]. (5.44)

An operator O[A] depending only on the field variable Aa
i (x) is obviously not changed

by this transformation, while the momentum operator transforms as

Π̃a
i (x) = Πa

i (x) +
i

2

δ lnJA

δAa
i (x)

. (5.45)

The transformed Hamilton operator H̃θ = J 1/2
A HθJ −1/2

A is obtained from Hθ by repla-

cing Π by Π̃. H̃0 was explicitly given in Ref. [25]. Furthermore, since Ba
i (x) is a function

of the field variable only, H2 does not change (H̃2 = H2). The explicit expression for H̃1

is given in the next section.
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5.3 Matrix elements for the topological susceptibility

We are interested here in the topological susceptibility, Eq. (5.22). Since this quantity is
defined as second derivative of 〈Hθ〉 at θ = 0, it is sufficient to calculate 〈Hθ〉 up to second
order in θ. This requires to treat H2 in first-order and H̃1 up to second-order perturbation
theory in θ. We then find

V χ = 2

(
g2

8π2

)2

〈0|H2 |0〉 −

∑

n 6=0

|〈0|H̃1 |n〉|2
En


 (5.46)

where {|n〉} denotes the set of eigenstates of H̃0. We use here a Dirac notation for the
radial wave functionals Eq. (5.42), 〈A|0〉 = Φ̃0[A].
For the unperturbed Hamiltonian H̃0, we use the variational results obtained in Refs.

[25,27]. For the (radial) vacuum wave functional the following Gaussian form was chosen

Φ̃0[A] = 〈A|0〉 = N exp

[
−1

2

∫
d3x d3y Aa

i (x)ωij(x,y)A
a
j (y)

]
, (5.47)

where ωij(x,y) = tij(x)ω(x,y) and ω(x,y) is an integration kernel determined by min-
imization of the energy density. By means of Wick’s theorem we can express expectation
values of powers of field operators by the gluon propagator

〈0|Aa
i (x)A

b
j(y) |0〉 =

1

2
δab ω−1

ij (x,y). (5.48)

Note that ω(x,y) depends only on |x−y| and by Eq. (5.48) its Fourier transform represents
the single quasi-gluon energy.
The vacuum wave functional |0〉 [Eq. (5.47)] is annihilated aai (x) |0〉 = 0 by the operator

aai =
1√
2

[
ω
1/2
ij Aa

j + iω
−1/2
ij Πa

j

]
, (5.49)

which is the annihilation operator of a quasi-gluon with energy ω. Here and in the fol-
lowing we suppress the explicit spatial dependence of the involved quantities and include
the spatial coordinates in the Lorentz indices, so that contracted Lorentz indices imply
integration over the spatial coordinate. The corresponding creation operator reads

aa†i =
1√
2

[
ω
1/2
ij Aa

j − iω
−1/2
ij Πa

j

]
, (5.50)

and from Eq. (5.32) follows that these operators satisfy the usual Bose commutation
relation [

aai (x), a
b†
j (y)

]
= δab tij(x) δ(x − y) (5.51)

(temporarily restoring the explicit spatial dependence for clarity).
By repeated application of the creation operator a† [Eq. (5.50)] on the vacuum Eq.

(5.47) a complete basis for the gluon Fock-space of quasi-gluons is generated

|n〉 = Nn

n∏

k=1

aak†ik
(xk) |0〉. (5.52)
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For a proper normalization of these quasi-particle states the additional normalization
factor Nn is required when two or more indices take the same value, which can occur due
to the bosonic character of these quasi-particle excitations.

With a complete basis of the Yang–Mills Hilbert space at our dipsosal we can explicitly
carry out the perturbative calculations in Eq. (5.46). The expectation value of H2 can be
straightforwardly evaluated, yielding

〈0|H2 |0〉 =
N2

c − 1

2
V

∫
d3k

(2π)3
k2

ω(k)

+ g2
Nc(N

2
c − 1)

16
V

∫
d3k

(2π)3
d3q

(2π)3
3− (k̂ · q̂)2
ω(k)ω(q)

.

(5.53)

The second term in Eq. (5.46) contains a sum over an infinite number of states with
an arbitrary large number of quasi-gluons and we have to resort to some approximations.
Motivated by the variational calculation for θ = 0 [25,27] we restrict ourselves to terms
involving up to two loops in the energy. Under this assumption, H̃1 [Eq. (5.36)] is given
by

H̃1 = −
∫

d3xΠa
i (x)B

a
i (x) +

∫
d3x d3y Gab

A (x,y) ∂xi B
a
i (x) gÂ

bc
j (y)Πc

j(y), (5.54)

and we can use the following factorization in the matrix elements of the second term of
Eq. (5.54)

〈0|GA (∂B) (gÂΠ) |n〉 ≃ 〈0|GA |0〉〈0|(∂B) (gÂΠ) |n〉, (5.55)

where 〈GA〉 is the ghost propagator. With these approximations, the relevant contributions
to the second term in Eq. (5.46)

−
∑

n 6=0

|〈0|H̃1 |n〉|2
En

=: M2 +M3 (5.56)

come from two quasi-gluon states, n = 2

M2 = − 1

2!

∑

1,2

|〈0|BΠ |2〉 − 〈G〉〈0|∂BgÂΠ |2〉|2
E2

, (5.57)

and from the 3-quasi-gluon states, n = 3

M3 = − 1

3!

∑

1,2,3

|〈0|BΠ |3〉|2
E3

. (5.58)

The prefactors 1/2! and 1/3! take the normalization of the states Eq. (5.52) into account
and avoid multiple counting. E2 and E3, respectively, denote the energies of the two- and
three-quasi-gluon states and accordingly are given by sums of, respectively, two and three
ω’s.
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The matrix elements in Eqs. (5.57), (5.58) can be evaluated by means of Wick’s theorem,
yielding

M2 = −N
2
c − 1

2
V

∫
d3k

(2π)3
k2

ω(k)
+

− g2
Nc(N

2
c − 1)

2
V

∫
d3k

(2π)3
d3q

(2π)3
k2

ω(k)
G(k + q)

×
(

1

ω(k)
+

1

ω(q)

)[
1 + (k̂ · q̂)2

2
+

k · q
k2

]
, (5.59)

M3 = −g2 Nc(N
2
c − 1)

48
V

∫
d3k

(2π)3
d3q

(2π)3
d3p

(2π)3
ω(k) + ω(q) + ω(p)

ω(k)ω(q)ω(p)

×
[
2− 2(k̂ · q̂)(k̂ · p̂)(p̂ · q̂)

]
(2π)3δ(k+ q+ p). (5.60)

Within our approximations the expression in the bracket in Eq. (5.46) is given by the
sum of Eqs. (5.53), (5.59) and (5.60). The term involving 〈G〉2 in Eq. (5.57) does not
appear in Eq. (5.59) since it involves three loops. It is worth noting that the first term in
Eq. (5.59) cancels the first term in Eq. (5.53). This cancellation is due to the fact that
the Gaussian wave functional is exact in an Abelian theory and the two terms are actually
the leading order contribution to the topological susceptibility in perturbation theory in
powers of g, where χ vanishes identically. In Ref. [39] it has been explicitly shown that
this cancellation occurs also in next-to-leading order.
The integrals in Eqs. (5.53), (5.59) and (5.60) are UV divergent. Since the topological

susceptibility χ vanishes to any (finite) order perturbation theory in g, in principle, all UV-
divergences should cancel. However, the approach [24,25] we are using is non-perturbative
and, due to the approximations involved, does not include all terms of a given power in
g. As a consequence, there is a mismatch of UV-singularities and our expression for χ is
UV-divergent. To remove these spurious UV-singularities we subtract from all propagators
the corresponding tree-level form, i.e. we make the following replacements

ω−1(k) → ω−1
s (k) = ω−1(k)− 1/

√
k2 , (5.61a)

G(k) → Gs(k) = G(k)− 1/k2. (5.61b)

This is in the spirit of the zero-momentum subtraction scheme. The replacement Eq.
(5.61) makes the integrals Eqs. (5.53), (5.59) and (5.60) convergent. Using the symmetry
of the integrands we can finally cast the expression for the topological susceptibility into
the form

χ = g2
(
g2

8π2

)2

Nc(N
2
c − 1)(I1 + I2), (5.62)

where

I1 =
1

4

∫
d3k

(2π)3
d3q

(2π)3
ω−1
s (k) ω−1

s (q)

[
1− k2 1− (k̂ · q̂)2

(k+ q)2

]
(5.63a)

I2 = −
∫

d3k

(2π)3
d3q

(2π)3
k2 ω−1

s (k)
[
ω−1
s (k) + ω−1

s (q)
]
Gs(k+ q)

[
1 + (k̂ · q̂)2

2
+

q · k
k2

]
.

(5.63b)
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Figure 5.1: Comparison between the numerical results of Ref. [27] (crosses) and the para-
metrizations Eq. (5.64) (lines) for the inverse gluon propagator (top panel) and the ghost
form factor (bottom panel).

Eq. (5.63a) follows from the sum of Eq. (5.60) and the second term in Eq. (5.53) while
Eq. (5.63b) follows from the second term in Eq. (5.59). The angular integration in Eq.
(5.63a) can be performed analytically.

5.4 Results

The expressions for the topological susceptibility, Eqs. (5.62) and (5.63), depend via the
gluon and ghost propagators, ω−1 and G, on the vacuum properties, i.e. on the vacuum
wave functional. We will use here the ghost and gluon propagators determined in Ref.
[27] as input. Furthermore, to simplify our calculations the numerical solutions obtained
in Ref. [27] for the gluon and ghost propagators were fitted by the following ansätze

ω(k) =

√
k2 +

m4

k2 , (5.64a)

G(k) =
1

k2

√
1 +

M2

g2 k2 , (5.64b)

(g is the coupling constant). The parametrization Eq. (5.64a) of the gluon energy was
already assumed heuristically by Gribov [36]. A factor g was included in the parametriza-
tion of the ghost propagator Eq. (5.64b) in order to facilitate the fitting to the numerical
results of Ref. [27], where a factor g was included in the definition of the ghost form factor
d(k) 2

G(k) =
d(k)

g k2 . (5.65)

The numerical solutions of Ref. [27] and their parametrizations by Eq. (5.64) are shown in
Fig. 5.1. The integrals Eq. (5.63) entering the topological susceptibility Eq. (5.62) recieve
their dominant contributions from the infrared momentum regime, where the parametriz-
ations Eq. (5.64) give a perfect fit to the numerical solutions. The infrared part of the

2The inverse ghost form factor gd−1(k) has the meaning of the dielectric function of the Yang–Mills
vacuum [40].
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Figure 5.2: Running coupling as calculated in [27].

parametrizations Eq. (5.64)

ωir(k) =
m2

√
k2

, dir(k) =
M√
k2

(5.66)

was fitted to the infrared behaviour of the gluon and ghost propagators found in Ref. [27]
by solving the corresponding Dyson–Schwinger equations (DSEs). In the Hamiltonian
approach in Coulomb gauge the physical scale is the Coulomb string tension σc, i.e. the
coefficient of the linear term in the non-abelian Coulomb potential. In units of the Coulomb
string tension σc the fit of Eq. (5.66) to the numerical solutions of the DSEs yields m2 =
0.614 and M = 4.97, while from the (analytic) infrared analysis of the DSEs [25,27,41]
one extracts the values m2 = 2/π ≃ 0.637 and M =

√
8π ≃ 5.01.

With the definition Eq. (5.65) of the ghost form factor in the variational calculation
of Refs. [22–27] the coupling constant g drops out from the DSEs and the value of the
coupling constant never had to be specified. Contrary to this, the topological susceptib-
ility Eq. (5.62) explicitly contains the coupling constant. In principle, after a complete
renormalization procedure, in all physical (renormalized) quantities the coupling constant
should be replaced by the running one defined in a renormalization group invariant way.
Such a complete renormalization program is not yet feasible, although some progress in
this direction has been made.3 Fortunately the running couling constant calculated in
Ref. [27] in the Hamiltonian approach in Coulomb gauge (see Fig. 5.2) has a very weak
momentum dependence in the infrared regime. It basically stays constant below the in-
frared scale

√
σc. It is this low-momentum regime which gives the major contribution to

the integrals Eq. (5.63). We will therefore use the plateau value of the running coupling
constant. Using the definition of the non-perturbative running coupling given in Ref. [43],
its value at zero momentum is [41]

αs(0) =
g2(0)

4π
=

16π

3Nc
. (5.67)

Numerical (Gauss–Legendre) evaluation of the integrals Eq. (5.63) yields

I1 = (0.077
√
σc)

4, I2 = (0.021
√
σc)

4. (5.68)

3The counterterms required for the renormalization have been identified [30,42].
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Then we find for the topological susceptibility for Nc = 2

χ
1
4

√
σc

= 0.45 . (5.69)

It was shown in Ref. [44] that σc is an upper bound for the string tension σ extracted
from the Wilson loop. Lattice calculations performed in Ref. [45] for SU(2) show that
σc ≃ 1.5σ, while Ref. [46] seems to suggest an even larger value for σc. In Fig. 5.3 we
present our numerical result for the topological susceptibility as a function of σc/σ. For
1 < σc/σ < 1.33, χ is inside the range predicted by the lattice data [47–50]. Choosing
σc = 1.5σ we find with

√
σ = 440 MeV

χ = (240 MeV)4. (5.70)

This value is somewhat larger than the lattice prediction χ = (200–230 MeV)4.

5.5 Summary and conclusions

We have calculated the topological susceptibility χ within the Hamiltonian approach to
Yang–Mills theory in Coulomb gauge using the gluon and ghost propagators determined
previously by a variational solution of the Yang–Mills Schrödinger equation as input.
To our knowldedge this is the first ab-initio continuum calculation of the topological
susceptibility, granted the approximations adopted. The precise numerical value for χ
depends on the relation between the Coulomb string tension and the one extracted from
the Wilson loop. It is therefore very desirable to perform a sophisticated calculation of the
Wilson loop within the present approach. Adopting the relation σc = 1.5σ as suggested
by lattice calculations, the numerical value obtained for χ is in reasonable agreement with
the lattice data. The results obtained in the present paper are quite encouraging for the
calculation of further hadronic quantities within the present approach. This will require
the inclusion of the quarks.
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Appendix

In the following, we show how the wave functional Eq. (5.19) can be modified to fulfill
Eq. (5.18), so that θ becomes a true angle variable. For this purpose consider the wave
functional

Ψ̄θ[A] =

∫ 2π

0
dθ′ δ[θ, θ′] Ψθ′ [A], (5.71)

where

δ[θ, θ′] =
1

2π

∑

m

e−im(θ−θ′) (5.72)

is the periodic δ-function satisfying δ[θ + 2π, θ′] = δ[θ, θ′]. Inserting Eq. (5.19) into Eq.
(5.71) we obtain

Ψ̄θ[A] =
∑

m

e−iθmf(m−W [A]) φ[A], (5.73)

where

f(x) =
1

2π

∫ 2π

0
dθ′ eiθ

′x . (5.74)

The functional Ψ̄θ[A] satisfies both Eq. (5.17) and Eq. (5.18) and thus can be used as the
wave functional of the θ-vacuum. According to Eq. (5.73), it has the form

Ψ̄θ[A] =
∑

m

e−iθm Ψm[A], (5.75)

where

Ψm[A] = f(m−W [A]) φ[A]

=
1

2π

∫ 2π

0
dθ′ eimθ′ Ψθ′ [A]

(5.76)

is a localized wave functional centered at the classical vacuum U∂U † with winding number
n[U ] = m. It satisfies the relation

Ψm[AU ] = Ψm−n[U ][A]. (5.77)

Replacing Ψ̄θ[A] by Ψm[A] corresponds to the so-called ‘tight binding’ approximation in
solid states physics.

We are not using this approximation. From Eq. (5.76) it is seen that our wave functional
Ψθ[A] is the Fourier transform of Ψm[A].
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Using the Poisson relation, the periodic δ-function Eq. (5.72) can be expressed as

δ[θ, θ′] =
∞∑

l=−∞

δ(θ − θ′ + 2πl), (5.78)

where δ(x) denotes the ordinary δ-function. Inserting this representation into Eq. (5.71)
we find

Ψ̄θ[A] = Ψθ+2πl0 [A], (5.79)

where l0 is defined by the condition

θ + 2πl0 ∈ [0, 2π). (5.80)

This shows that Ψθ[A], Eq. (5.19), is a correct representation of the wave functional of the
θ-vacuum for θ ∈ [0, 2π).
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Viresque acquirit eundo.

(Publius Vergilius Maro)

Inclusion of dynamical quarks

In this work, only the purely gluonic sector of QCD has been investigated so far. Although
pure Yang–Mills theory is fascinating by itself, the evaluation of hadronic observables
requires the inclusion of matter fields. A generalization of the non-perturbative methods
described so far to dynamical fermion fields is beyond the scope of this thesis; nevertheless,
a short overview of the perturbative behaviour of full QCD will be given in this short
chapter.

6.1 Perturbative QCD vacuum state

From the QCD Lagrangian Eq. (I.21), which defines the theory of interacting quarks and
gauge fields, the QCD Hamilton operator in Coulomb gauge

Hqcd =

∫
ddx ψ†(x)

[
−iα ·∇− gα ·A(x) + βm

]
ψ(x) +Hym (6.1)

can be derived with the standard methods. In Eq. (6.1), αi and β are the Dirac matrices,1

and the (transverse) gauge field is a matrix in the fundamental representation of the colour
algebra. The Yang–Mills Hamiltonian Hym is the same as given in Eq. (I.122) except that
the external colour charge has to be replaced by the fermion charge

ρaext(x) → ψm†
α (x) tmn

a ψn
α(x), (6.2)

where the tmn
a ’s are the group generators in the fundamental representation. (For the sake

of brevity, the superscript ‘F ’ identifying the fundamental representation is discarded
throughout this chapter.) Furthermore, in this chapter Greek subscripts are Dirac spinor
indices. In the quantized theory, the fermion fields satisfy the canonical anticommutation
relation {

ψm
α (x), ψn†

β (y)
}
= δmnδαβ δ(x − y). (6.3)

The perturbative analysis can be carried out along the same lines of Article 2. The
fermion field operator is decomposed in Fourier modes

ψm
α (x) =

∫
ddp

(2π)d
eip·x ψm

α (p),

ψm
α (p) =

1√
2Ep

∑

s

[
bm(p, s)uα(p, s) + dm†(−p, s)vα(−p, s)

]
,

(6.4)

1The non-covariant form of the Dirac matrices is used here, with β ≡ γ0 and αi
≡ γ0γi.
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where
Ep ≡

√
p2 +m2 (6.5)

is the fermion “energy”, and s labels the two independent spinor solutions of the Dirac
equation. In order to fulfil the anticommutation relation (6.3), the ladder operators must
satisfy the anticommutation rules

{
bm(p, s), bn†(q, s′)

}
= δmnδss′ δ̄(p− q) =

{
dm(p, s), dn†(q, s′)

}
, (6.6)

with all other anticommutators vanishing. The Dirac spinors u, v appearing in Eq. (6.4)
are normalized to

u†(p, s)u(p, s′) = 2Ep δss′ = v†(p, s) v(p, s′), (6.7a)

u†(p, s) v(−p, s′) = 0. (6.7b)

For later convenience, it is useful to introduce the following orthogonal projectors

S(±)(p) :=
Ep ± hd(p)

2Ep

, (6.8)

where
hd(p) = α · p+ βm (6.9)

is the Dirac operator. These are projectors in the sense that

S(+)(p)u(p, s) = u(p, s), S(+)(p) v(−p, s) = 0,

S(−)(p) v(−p, s) = v(−p, s), S(−)(p)u(p, s) = 0,
(6.10)

and that they satisfy

S(+)(p) + S(−)(p) = 1, S(+)(p)S(−)(p) = 0, [S(±)(p)]2 = S(±)(p). (6.11)

Furthermore, the projectors S(±) are related to the Dirac spinors by the sum rules

∑

s

u(p, s)⊗ u†(p, s)

2Ep

= S(+)(p),
∑

s

v(−p, s)⊗ v†(−p, s)

2Ep

= S(−)(p). (6.12)

With the help of the orthogonality relations (6.7), the free fermionic Hamilton operator
can be rewritten in terms of the ladder operators as

Hd =

∫
ddp

(2π)d
ψ†(p)hd(p)ψ(p)

=

∫
ddp

(2π)d
Ep

[
bm†(p, s) bm(p, s) + dm†(p, s) dm(p, s)

]
+ E0 ,

(6.13)

where E0 is the (negative divergent) zero-point energy. The vacuum state of the free
theory is annihilated by the operators b and d,

bm(p, s) |0〉 = 0, dm(p, s) |0〉 = 0. (6.14)

Their Hermitian conjugate operators generate the eigenstates of Hd,

Hd b
m†(p, s) |0〉 = (E0 + Ep)b

m†(p, s) |0〉; (6.15)
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an analogous relation holds for d†.
In the Hamiltonian approach, the fermion propagator is defined by

Smn
αβ (p) δ̄(p − q) :=

〈
1
2

[
ψm
α (p), ψn†

β (q)
]〉
. (6.16)

The commutator occurring in Eq. (6.16) is due to the ambiguity of the equal-time limit
in the time ordering. Exploiting the canonical anticommutation relations Eq. (6.3), Eq.
(6.16) can be rewritten as

Smn
αβ (p) δ̄(p − q) =

〈
ψm
α (p)ψn†

β (q)
〉
− 1

2 δ
mn δαβ δ̄(p− q). (6.16′)

Equation (6.16) [(6.16′)] is the quantity which should be compared with the equal-time
propagator obtained in the Lagrangian approach by integrating out the temporal compon-
ent of the four-momentum. The free fermion propagator is given by the expectation value
in Eq. (6.16) evaluated in the vacuum state defined by Eq. (6.14). With the help of the
anticommutation relations Eq. (6.6) and of the orthogonality properties Eqs. (6.7) of the
Dirac spinors, the free propagator can be easily evaluated,

S(0)(p) =
hd(p)

2Ep

. (6.17)

This propagator is related to the projectors S(±) [Eq. (6.8)] by

S(±)(p) =
1

2
± S(0)(p),

1

2

[
S(+)(p)− S(−)(p)

]
= S(0)(p). (6.18)

The perturbative expansion of the Hamilton operator can be performed as described in
Sec. 2.2.2. The first-order perturbation stems from the minimal coupling in Eq. (6.1),

H
(q)
1 =

∫
d̄dp1 d̄dp2 ψ

†(p1)
[
−gα ·A(p1 − p2)

]
ψ(p2)

= −g tmn
a αi

αβ

∫
d̄dp1 d̄dp2 ψ

m†
α (p1)A

a
i (p1 − p2)ψ

n
β (p2), (6.19a)

while the second order perturbative operator arises from the Coulomb interaction

H
(q)
2 = tmn

a tkla
1

2

∫
d̄d[p1p2p3p4] δ̄(p1 − p2 + p3 − p4)

× ψm†
α (p1)ψ

n
α(p2)

1

(p1 − p2)
2
ψk†
β (p3)ψ

l
β(p4). (6.19b)

Equation (6.19b) represents the Coulomb interaction of the quark charge densities. From
the expansion of the Coulomb term in the Yang–Mills Hamiltonian Eq. (I.122) also a mixed
term arises, which represents the interaction between the fermion and the gauge field
charge [see Eq. (2.81)]. This term, however, does not matter for the one-loop evaluation
of the propagators, and will henceforth be discarded.

The corrections to the QCD vacuum wave functional can be evaluated by means of the
fermionic generalizations of Eqs. (2.38). The vacuum functional is, at lowest order, the
tensor product of the vacuum functionals of each sector,

|0〉qcd = |0〉ym ⊗ |0〉q, (6.20)
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and vacuum expectation values can be factorized in products of fermionic and gluonic
terms. In the following, the tensor product will be not explicitly written, and it is implied
that fermion operators act on |0〉q, while gauge field operators act on |0〉ym. Furthermore,
with the help of Eq. (6.10), the closure relation in the free theory can be rewritten in terms
of field operators as

∑

m,s,p

bm†(p, s) |0〉〈0|bm(p, s) =
∑

m,p

S(+)

αβ(p)ψ
m†
α (p) |0〉〈0|ψm

β (p),

∑

m,s,p

dm†(p, s) |0〉〈0|dm(p, s) =
∑

m,p

S(−)

αβ(p)ψ
m
β (p) |0〉〈0|ψm†

α (p).
(6.21)

This allows the matrix elements occurring in Eqs. (2.38) to be expressed in terms of field
operators only, for which Wick’s theorem holds. Equation (6.21) is similar to the represent-
ation Eq. (2.37) used for the gluonic states. However, whilst Eq. (2.37) is a simplification
which needs a supplementary calculational rule, Eq. (6.21) is an exact identity.

Using Eq. (2.38a), the first-order correction

|0〉(1) =
∑

tmn
a

[
S(+)(p)αi S(−)(−q)

]
αβ

Ep +Eq + |p+ q| ψm†
α (p)ψn

β (−q)Aa
i (p+ q) |0〉 (6.22)

arises from the first-order perturbative operator Eq. (6.19a), the quark-gluon vertex. The
second-order perturbative contribution to the vacuum wave functional contains a fermionic
part

|0〉(2) = CF

∑[
S(+)(p)

(
tij(p+ q)

2|p+ q|
αiS(0)(−q)αj

Ep + Eq + |p+ q| −
S(0)(−q)

2(p+ q)2

)
S(−)(p)

]

αβ

× 1

Ep

ψm†
α (p)ψm

β (p) |0〉, (6.23)

as well as a term involving gauge field operators

|0〉(2) = 1

4

∑ tr
[
S(+)(p)αi S(−)(−q)αj

]

Ep + Eq + |p+ q|
1

|p+ q| A
a
i (−p− q)Aa

j (p+ q) |0〉. (6.24)

In Eq. (6.23), CF is the Casimir invariant of the fundamental representation of SU(Nc)

CF =
N2

c − 1

2Nc
. (6.25)

The fermionic second-order term Eq. (6.23) contributes only to the quark propagator,
while the gauge field contribution Eq. (6.24) yields a quark-loop term to the gluon propag-
ator. On the other hand, the first-order term Eq. (6.22) gives a one-loop correction to
both the gluon and the quark propagator.

Equations (6.22) and (6.23) can be rewritten also in terms of the ladder operators by
means of Eqs. (6.4) and (6.10), yielding

|0〉(1) =
∑ u†(p, s)αi v(q, s′)

Ep + Eq + |p+ q|
tmn
a

2
√
EpEq

bm†(p, s) dn†(q, s′)Aa
i (p+ q) |0〉 (6.22′)
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for the first-order correction, and

|0〉(2) = CF

∑
u†(p, s)

(
tij(p+ q)

2|p+ q|
αiS(0)(−q)αj

Ep + Eq + |p+ q| −
S(0)(−q)

2(p+ q)2

)
v(−p, s′)

× 1

2E2
p

bm†(p, s)dm†(−p, s′) |0〉 (6.23′)

for the fermionic second-order term.

6.2 Gluon propagator and β function

The correction to the gluon propagator can be evaluated as described in Sec. 2.4.1. The
evaluation of the matrix elements is straightforward, and the dynamical quark fields yield
an additional loop integral to the one-loop form factor given in Eq. (2.62)

D(1)

A (p)q =
tij(p)

2(d− 1)p2

∫
ddq

(2π)d
2|p|+ Eq + Ep+q

(|p|+ Eq + Ep+q)2
tr
[
S(+)(p+ q)αi S(−)(q)αj

]
. (6.26)

The Dirac trace can be explicitly worked out with the usual rules, and Eq. (6.26) can be
rewritten as

D(1)

A (p)q =
2

(d− 1)p2

∫
ddq

(2π)d
2|p|+ Eq + Ep+q

(|p|+Eq + Ep+q)2

× (d− 1)
[
EqEp+q + q · (p+ q) +m2

]
− 2qitij(p)qj

EqEp+q

. (6.26′)

As discussed in Articles 2 and 3, the result Eq. (6.26′) can be compared with the result
from the Lagrangian approach. The quark-loop contribution to the gluon form factor
evaluated in Ref. [1] reads

D(1)

AA(p)q =
2

(d− 1)p2

∫
dd+1q

(2π)d+1

(d− 1)
[
q24 + q4p4 + q · (q+ p) +m2

]
− 2qitij(p)qj

(q2 +m2)[(p + q)2 +m2]
,

(6.27)
where p2 = p24 + p2 is the squared Euclidean four-momentum. The dressing function of
the equal-time propagator is related to the dressing function Eq. (6.27) of the energy-
dependent propagator by

D(1)

AA(p)q = 2|p|
∫

dp4
2π

D(1)

AA(p)q
p2

. (6.28)

Inserting Eq. (6.27) into Eq. (6.28) and performing the integrals over p4 and q4, Eq. (6.26
′)

is recovered. Using the results of Ref. [1], the expression Eq. (2.74) for the dimensionally
regularized gluon propagator can be rewritten as

DA(p) = 1 +
g2

(4π)2−ε

[(
Nc −

2Nf

3

)(
1

ε
− γe − ln

p2

µ2

)
+ · · ·

]
(6.29)

where it has been assumed that Nf fermion species are present. From the non-renormaliza-
tion of the ghost-gluon vertex, the first coefficient of the β-function becomes

β0 =
11Nc − 2Nf

3
, (6.30)

which is the well-known, gauge-invariant result.
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6.3 Quark propagator

Starting from Eq. (6.16), the perturbative expansion of the quark propagator can be
written as

Smn
αβ (p)δ̄(p − q) = S(0)mn

αβ (p)δ̄(p − q) +
∑

k+l>0

gk+l(k)〈0|ψm
α (p)ψn†

β (q) |0〉(l), (6.31)

where S(0) is the perturbative propagator given in Eq. (6.17). The evaluation of the matrix
elements arising from the insertion of Eqs. (6.22) and (6.23) into Eq. (6.31) is, although
lengthy, straightforward, and the result reads

S(p) = S(0)(p)

[
1− g2CF

∫
ddq

(2π)d
1

(Ep + Eq + |p+ q|)2
d− 1

2|p+ q|

]

+ g2
CF

Ep

∫
ddq

(2π)d
1

2(p+ q)2

[
1

2
S(0)(−q)− 2S(0)(p)S(0)(−q)S(0)(p)

]

− g2
CF

Ep

∫
ddq

(2π)d
1

(Ep + Eq + |p+ q|)2
tij(p+ q)

2|p+ q|

[
(Eq + |p+ q|)1

2
αi S(0)(−q)αj

− 2(2Ep + Eq + |p+ q|)S(0)(p)αi S(0)(−q)αj S(0)(p)

]
. (6.32)

There are now several ways to define form factors for the static propagator. For example,
a possible choice is to define form factors for the inverse propagator,

[S(0)(p)]−1 = 2
α · p+ βm√

p2 +m2
⇒ S(p)−1 = 2A(p)

α · p+ βM(p)√
p2 +M2(p)

. (6.33)

Although this would be the most appropriate choice in a non-perturbative approach, a
different parametrization for the propagator will be assumed here

S(p) =
A(p)α · p+ β B(p)

2Ep

. (6.34)

This form is more convenient to investigate the renormalization of the propagator at one-
loop order and to compare it with the result from the Lagrangian approach [1]. The
one-loop expressions for the form factors A, B can be extracted from Eq. (6.32) by

A(p) =
Ep pi
2p2

tr
[
αiS(p)

]
, B(p) = Ep

2
tr
[
βS(p)

]
. (6.35)

The evaluation of the traces is straightforward, and results in

A(p) = 1− g2
m2CF

2p2E2
p

∫
ddq

(2π)d
p · (p+ q)

Eq(p+ q)2

− g2
CF

2p2E2
p

∫
ddq

(2π)d
1

Eq|p+ q|(Ep + Eq + |p+ q|)2

×
{[

(d− 3)p · q+ 2
[p · (p+ q)][q · (p+ q)]

(p+ q)2

] [
m2(Ep + Eq + |p+ q|)− p2Ep

]

+ (d− 1)p2
[
E2

pEq +m2(2Ep + Eq + |p+ q|)
]}

(6.36a)
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for the form factor of the kinetic term, and

B(p) = m+mg2
CF

2E2
p

∫
ddq

(2π)d
p · (p+ q)

Eq(p+ q)2

+mg2
CF

2E2
p

∫
ddq

(2π)d
1

Eq|p+ q|(Ep + Eq + |p+ q|)2

×
{
(2Ep + Eq + |p+ q|)

[
(d− 3)p · q+ 2

[p · (p+ q)][q · (p+ q)]

(p+ q)2

]

+ (d− 1)
[
(p2 −m2)Ep + p2|p+ q| −m2Eq

]}
(6.36b)

for the mass term.
As discussed in Articles 2 and 3, these form factors can be compared with the results

of the Lagrangian approach. In Ref. [1], the quark propagator (in Euclidean space) is
parametrized as

S(p) =
p4Ft(p) +α · pFs(p) + βM(p)

p24 + p2 +m2
(6.37)

where all dressing functions are functions of both p2 and p24. In Eq. (6.37) the component
of the form p4pi has been discarded, since it does not arise at one-loop level.2

The static propagator is obtained by the energy-dependent one [Eq. (6.37)] by integrat-
ing out the temporal component p4 of the four-momentum. Since the dressing function
Ft(p) is an even function of p4, this component vanishes in the equal-time limit. After
performing also the integral over the temporal component of the loop momentum, the
other two dressing functions reduce to Eqs. (6.36a) and (6.36b),

∫
dp4
2π

Fs(p)

p24 + p2 +m2
= A(p),

∫
dp4
2π

M(p)

p24 + p2 +m2
= B(p). (6.38)

The renormalization of the quark propagator presents no significant difficulty. Perform-
ing the integral in some regularization scheme, the form factors have the form

A(p) = 1 + g2a1, B(p) = m(1 + g2b1), (6.39)

with some coefficients a1, b1. Inserting this into Eq. (6.34) yields

S(p) =
1

2
√

p2 +m2

[
α · p(1 + g2a1) + βm(1 + g2b1)

]
. (6.40)

The renormalized mass mR can be introduced as usual by

m = ZmmR, Zm = 1 + g2c1, (6.41)

which allows Eq. (6.40) to be rewritten as

S(p) =

(
1− g2

c1m
2
R

p2 +m2
R

)
α · p(1 + g2a1) + βmR[1 + g2(b1 + c1)]

2
√

p2 +m2
R

. (6.42)

2Lattice calculations [2] indicate that this component vanishes.
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The term in the parentheses in Eq. (6.42) arises from replacing the bare mass m in the
denominator of Eq. (6.40) by the renormalized mass mR. Since the bare propagator is
related to the renormalized one by

S(p) = Z2
α · p+ βmR

2
√

p2 +m2
R

, (6.43)

the mass and quark wave function renormalization constants Zm and Z2 must be defined
by

Zm = 1 + g2(a1 − b1), Z2 = 1 + g2
p2a1 +m2

Rb1
p2 +m2

R

. (6.44)

The coefficients a1, b1 can be obtained either by integrating the results of the Lagrangian
approach over the temporal component p4 of the four-momentum, or by evaluating the
integrals Eqs. (6.36) with a cut-off momentum Λ. In the first case, the divergent parts are
with d = 3− 2ε

a1 = − CF

(4π)2
p2 + 4m2

R

p2 +m2
R

1

ε
, b1 =

CF

(4π)2
2p2 −m2

R

p2 +m2
R

1

ε
. (6.45)

The coefficients in front of the ε pole in Eq. (6.45) are found as factors multiplying lnΛ2

when evaluating the integrals with a cut-off momentum Λ. The two form factors A, B
cannot be separately renormalized, since the coefficients in Eq. (6.45) are momentum
dependent. However, the quark mass and wave function renormalization constants [see
Eq. (6.44)] result in the momentum-independent quantities

Zm = 1− g2CF

(4π)2
3

ε
+ · · · , (6.46a)

Z2 = 1− g2CF

(4π)2
1

ε
+ · · · , (6.46b)

where the renormalization scheme dependent terms have been discarded. In particular,
Eq. (6.46a) is the (at this order perturbatively) gauge invariant result for the mass renor-
malization constant, which agrees with the results for the pole mass from covariant gauges
(see e.g. Refs. [3–5]).
It should be remarked here that this renormalization program shows the necessity of

working with the propagator defined by Eq. (6.16). If the commutator is not included in
the definition, the resulting propagator is not multiplicatively renormalizable.
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I love it

when a plan comes together.

(John ‘Hannibal’ Smith)

Conclusions

In this work, the ground state of pure Yang–Mills theories has been investigated within
the Hamiltonian approach in Coulomb gauge. A thorough one-loop perturbative analysis
of the propagators has been performed. Because of asymptotic freedom, the full vacuum
wave functional is expected to exhibit the same behaviour at high energies as the per-
turbative ground state. The numerical calculations performed so far in a non-perturbative
variational approach did confirm this expectation. However, it is interesting to notice that
the anomalous dimensions of the propagators extracted both from those calculations and
from the lattice differ significantly from the corresponding one-loop results. While it is
known that the two-loop corrections to the anomalous dimensions in Landau gauge are
small compared with the leading order, the Coulomb gauge state of the art lacks such
knowledge. In fact, no two-loop results for the Yang–Mills propagators and vertices in
Coulomb gauge have been obtained yet, either in the Lagrangian or in the Hamiltonian
approach. The only two-loop calculation [Nucl. Phys. B575, 359 (2000)] focused on the
cancellation of the energy divergences. It would be conceivable that such corrections are
comparable to the leading order results. Moreover, it should be recalled that, in the
Hamiltonian approach, the number of perturbative operators grows with the perturbative
order. It should also be reminded that the renormalization group improvements which led
to the anomalous dimensions Eq. (3.97) [see p. 76] rested on the assumption of multiplicat-
ive renormalizability, which has not yet been proven for Coulomb gauge. The discrepancy
between the one-loop expressions for the anomalous dimensions and the non-perturbative
results is thus hardly a surprise.

A general method to treat non-Gaussian wave functionals has also been presented. The
procedure relies on well-developed Dyson–Schwinger techniques, and one can draw from
the experience gathered on the subject over the last years. Nevertheless, several issues
still require some light to be shed on them. As in all continuum approaches, a trunca-
tion scheme to handle the infinite tower of coupled integral equations is necessary. In
the case of the variational approach, one is confronted with two systems of equations—
the Dyson–Schwinger equations connecting the proper vertex functions with the kernels
occurring in the ansatz for the wave functional, and the variational equations stemming
from the minimization of the vacuum expectation value of the Hamilton operator. At
the order considered in Article 4, no ambiguity arises, at least for the gluon propagator.
However, when dealing with the higher-order kernels, the interplay between the two sys-
tems of equations, and how the truncation procedures interfere with each other, has to be
carefully investigated. In pursuing this line of research, this is possibly one of the most
fundamental issues of the variational approach in the Hamiltonian framework. While the
higher-order kernels do not influence the infrared sector of the theory, they give significant
contributions to the mid-momentum regime, on which hadronic physics crucially depends.
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An improvement of the wave functional in the GeV region is thus necessary.
While the evaluated vacuum wave functional seems to grasp the essential features of the

infrared behaviour of Yang–Mills theories, its final use (and one of particle physics’ main
goals at all) is to calculate hadronic observables. A first step in this direction has been
taken in Article 5. Although some of the approximations involved there are rather crude,
the result is quite encouraging. The reason for investigating the topological susceptibility
is that it can be evaluated in the pure gauge sector. Further developments require of
course the non-perturbative inclusion of dynamical quarks.

᾿Εν γὰρ τοῖς ἔργοις αὐτοῦ ἀναστρεφόμενοι διερευνῶσιν καὶ πείθονται τῇ ὄψει,
ὅτι καλὰ τὰ βλεπόμενα.

‘For they search busily among his works, but are distracted by what they see,
because the things seen are fair.’ (Wis. 13,7)
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