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Abstract

The subject of this dissertation is boosting research on word sense disambigua-
tion (WSD) for German. WSD is a very active area of research in computa-
tional linguistics, but most of the work is focused on English. One of the
factors that has hampered WSD research for other languages such as German
is the lack of appropriate resources, particularly in the form of sense-annotated
corpus data. Hence, this work inevitably has to start with the preparation of
resources before actual WSD experiments can be performed. The work pro-
gram is fourfold. Firstly, since sense definitions are necessary to distinguish
word senses (both for humans and for automatic WSD algorithms), the Ger-
man wordnet GermaNet is (semi-)automatically extended with sense descrip-
tions. This is done by automatically mapping GermaNet senses to descrip-
tions in the online dictionary Wiktionary. Secondly, since the availability of
sense-annotated corpora is a prerequisite for evaluating and developing word
sense disambiguation systems, two GermaNet sense-annotated corpora are con-
structed. One corpus is automatically constructed and the other corpus is
manually sense-annotated. Thirdly, several knowledge-based WSD algorithms
are applied and evaluated — using the newly created sense-annotated corpora.
These algorithms are based on a suite of semantic relatedness measures, in-
cluding path-based, information-content-based, and gloss-based methods. Ex-
periments on gloss-based methods also employ the newly harvested definitions
from Wiktionary. Fourthly, several supervised machine learning classifiers are
applied to the task of German WSD, including rule-based methods, instance-
based methods, probabilistic methods, and support vector machines. The
classifiers rely on a wide range of machine learning features and their evalua-
tion focuses on several aspects, including a comparison of several algorithms,
a detailed analysis of the implemented features, and an investigation of the in-

fluence of syntax and semantics on the disambiguation performance for verbs.




Fir Jens und meine Eltern

11



Acknowledgements

I would like to acknowledge everyone who supported me during the work on
this thesis. Chronologically the first to thank are those who raised my interest
in the topic of natural language processing during my master studies in Darm-
stadt and Reykjavik: without Prof. Dr. Bettina Harriehausen-Miihlbauer, Dr.
Hrafn Loftsson, and Timo Reuter I would not have turned to this research
area.

I am very grateful to my supervisor Prof. Dr. Erhard Hinrichs in several —
conceptual and institutional — respects: of course, for supervising me working
on the thesis and providing me with useful remarks, but also for giving me the
opportunity to develop and extend my personal knowledge and strengths in
many diverse aspects of computational linguistics and of the university’s daily
work. He was always patient with me and gave me enough space to tackle
those research questions I am interested in, while, at the same time, guided
me into the right direction.

I would like to thank my second reviewer Prof. Dr. Gerhard Jéager and the
other members of my dissertation committee, Prof. Dr. Fritz Hamm, PD Dr.
Helmut Schmid, and Prof. Dr. Andrea Weber, for their valuable feedback and
comments.

Due to my computer science background I am thankful to my ‘linguistic’
colleagues: to Reinhild Barkey mainly for GermaNet-related collaborations
and discussions and to Kathrin Beck and Dr. Heike Telljohann for TiiBa-D/Z-
related linguistic input.

Many thanks to Dr. Yannick Versley for making it possible to reuse his
annotation tool for sense annotation in the TiBa-D/Z treebank, to Corina

Dima, Christina Hoppermann, and Jianqgiang Ma for fruitful discussions during

11



our ‘PhD meetings’, and to all anonymous reviewers for their comments on
papers that were published as part of this thesis. I would like to thank my SfS
colleagues Dr. Chris Culy, Marie Hinrichs, Dr. Daniél de Kok, Jochen Saile,
Daniil Sorokin, Johannes Wahle, Dr. Holger Wunsch, Dr. Thomas Zastrow, and
Ramon Ziai and my external colleagues Prof. Dr. Chris Biemann, Dr. Christian
Meyer, Tristan Miller, and Prof. Dr. Torsten Zesch for valuable support and
feedback on several aspects of my thesis.

I am thankful to the many student assistants who were part of the Germa-
Net project at certain times — both on the programmatic as well as on the
lexicographic side. In particular, thanks to Tatiana Vodolazova, Anne Brock,
Agnia Barsukova, Edo Collins, and Steffen Tacke for their implementation
contributions and Johannes Wahle, Sarah Schulz, Valentin Deyringer, and
Annabell Grasse for helping with manual annotations.

Since English is not my native language I am grateful to Sian Alsop, Dr.
Scott Martens, and Tristan Miller for proof-reading some of my chapters.

This thesis was written using the KIEX thesis template provided by the
Engineering Department of the University of Cambridge[l]

Mein besonderer Dank gilt meinen Schwiegereltern, die mir jederzeit viel
Verstandnis und Geduld entgegengebracht haben.

Am allermeisten und von ganzem Herzen mochte ich Jens und meinen
Eltern fiir ihr Verstéindnis und fiir ihre bedingungslose Unterstiitzung danken.
Ich widme euch aus Dankbarkeit diese Arbeit, denn ohne euch hétte ich es
nicht geschafft.

"http://www-h.eng.cam.ac.uk/help/tpl/textprocessing/ThesisStyle/

v


http://www-h.eng.cam.ac.uk/help/tpl/textprocessing/ThesisStyle/

Table of Contents

Abstract
Acknowledgements
Table of Contents

Citation Conventions

I Introduction

1 Introduction
1.1 Goals. . . . . .
1.2 Word Senses to be Disambiguated . . . . . . .. ... ... ...
1.3 Motivation . . . . . .. ..
1.4 Contributions . . . . . . . ... ...
1.5 Chapter Guide . . . . . . .. ... ...

2 Fundamentals and Related Work on WSD
2.1 Introduction to the Task of WSD . . . . . .. .. ... ... ..
2.2 Evaluating WSD Systems . . . . . .. .. ... ... ..
2.2.1 Evaluation Measures . . . . . ... ... ... ......
2.2.2 Evaluation Procedure . . . . . . ... ... ... .....
2.2.3 Baselinesand Bounds. . . . . ... .. ... .. .....
2.2.4 SensEval and SemEval Competitions . . . ... ... ..
2.3 WSD Approaches and State of the Art . . . . ... ... ....
2.3.1 Knowledge-Based Approaches to WSD . . . . . ... ..




TABLE OF CONTENTS

2.3.2  Supervised Machine Learning Approaches to WSD . . . [39

2.3.3 Related Work on German WSD . . . . .. ... ... .. B0l

3 Fundamentals of GermaNet 55
3.1 Comparing GermaNet with WordNet . . . . . . ... ... ... [50)
3.2 Lexical Units and Synsets . . . . . .. ... ... ... ..... By
3.3 Lexical Semantic Relations . . . . . . . ... ... ... ... .. [610)
3.4 The Hierarchy . . . . . . . . . .. ... ... 641
3.5 Interlingual Links to Princeton WordNet . . . . . . .. ... .. 651
3.6 Nominal Compounds . . . . . ... .. ... ... ... ..... 66!
3.7 Verbal Frames . . . . . . . . . ... ... ... ... ... ..., 68}
3.8 Data Formats for GermaNet . . . . . . . . ... ... ... ...
3.9 Coverage of GermaNet . . . . . . . . ... ... ... ... [73]

II Preparation of the Resources 75

4 Aligning GermalNet with Wiktionary irdrd
4.1 Wiktionary . . . . . .. .. (10)

4.2 The Idea of the Alignment Algorithm . . . . . . . ... ... .. (531
4.3 Implementation of the Alignment Algorithm . . . ... ... .. R4l
¥

4.4 FEvaluation . . . . . . . .

45 Results. . . .. . 901
4.6 Related Work on Aligning Wordnets . . . . . . ... ... ... 951
4.7 Conclusion and Continuing Work . . . . . . ... ... ... .. 971
5 Creating Sense-Annotated Corpora 99
5.1 Related Work on Sense-Annotated Corpora. . . . . . . ... .. 1011
5.1.1 Manually Sense-Annotated Corpora for English . . . . . 102
5.1.2  Manually Sense-Annotated Corpora for German . . . . . 106
5.1.3 Automatically Sense-Annotated Corpora . . . . . . . .. 108]

5.2  Automatically Constructed WebCAGe . . . . . ... ... ... 111
5.2.1 Creation of a Web-Harvested Corpus . . . . .. ... ..
5.2.2  Automatic Detection of Target Words . . . . . . . . . ..

vi



TABLE OF CONTENTS

52.3 Evaluation . . . . . .. ... ... ... ... 117

5.2.4 Future Directions . . . . . . . . ... ... ... ... .. 119

5.3 Manually Sense-Annotated TiBa-D/Z . . . .. ... ... ... 120}
5.3.1 Linguistic Annotations in the Treebank . . . . . . . . .. [121]

5.3.2 Selection of Words to be Sense-Annotated . . . . . . .. 126

5.3.3 Annotation Process . . . . . . ... ... 134

5.3.4 Inter-Annotator Agreement . . . . .. .. ... ... .. 138

5.4 Comparison of WebCAGe and TiBa-D/Z . . . ... ... ... 41
5.5 Conclusion and Continuing Work . . . . . .. . ... ... ... [144]

6 Gold Standard Corpora 145
6.1 Creating Training and Test Sets . . . . . . . .. ... ... ... 146
6.2 Treatment of Annotations with No Sense or Multiple Senses 1501
6.3 Updating to WebCAGe 3.0 . . . . . . . . . ... ... ... ... 153]
6.3.1 WebCAGe 3.0 Overall Statistics . . . . . ... ... ... 153]

6.3.2 WebCAGe Gold Standard for Supervised WSD . . . . .

6.4 Sense-Annotated TiBa-D/Z Treebank . . . ... ... .. ... 156}
6.4.1 Updating to TiiBa-D/Z 9.1 . . . .. .. ... ... ... 156]

6.4.2 TiiBa-D/Z 9.1 Overall Statistics . . . . . ... ... ... 158

6.4.3 TuBa-D/Z Gold Standard for Supervised WSD . . . . . 1591

6.5 Sense-Annotated deWaC . . . . . .. ... ... L. 160l
6.5.1 Reasons for Choosing deWaC . . . . .. ... ... ... 160

6.5.2 Reuse of an Existing Sense-Annotated Corpus . . . . . . 61l

6.5.3 deWaC Overall Statistics . . . . . . ... ... ... ... 162

6.5.4 deWaC Gold Standard for Supervised WSD . . . . . .. 162

6.6 Automatic Linguistic Preprocessing . . . . . . .. ... ... .. 163
IIT Word Sense Disambiguation (WSD) 167
7 Knowledge-Based Word Sense Disambiguation 169!
7.1 Semantic Relatedness Measures . . . . . . ... ... ... ... 172l
7.1.1 Terminology . . . . . . . .. ..o o 173

7.1.2 Path-Based Measures . . . . . . . . ... ... ...... 174

vii



TABLE OF CONTENTS

7.1.3 Information-Content-Based Measures . . . . . . . . . .. 170
7.1.4 Gloss-Based Measures . . . .. ... ... .. ...... 180

7.2 Semantic Relatedness for WSD . . . . . ... .. ... ... .. 183
7.2.1 Context Window . . . . .. .. ... ... ... ..... 183
7.2.2 Random Sense Baseline. . . . . ... ... ........
7.2.3 Combined WSD Algorithms . . . . ... ... ... ... 186
7.2.4 Purely Knowledge-Based Setup . . . . . ... ... ... 187

7.3 Evaluating Knowledge-Based WSD . . . . .. .. ... .. ... 188
7.3.1 Profiling WSD Results for Nouns . . . . ... ... ... 189
7.3.2 Profiling WSD Results for Verbs . . . . . ... ... ... 197
7.3.3 Profiling WSD Results for Adjectives . . . . . ... ...
7.3.4 Profiling Context Window Sizes . . . . .. ... ... .. 2071

7.4 Summary and Conclusion . . . .. .. ... ... ... ..... 210
8 WSD Using Supervised Machine Learning Methods 215!
8.1 Machine Learning Features . . . . . .. ... ... ... ... .. 217
8.1.1 Automatic Linguistic Preprocessing . . . . . . . . . . .. 2211
8.1.2 Surface Features . . . . ... ... ... .. .......
8.1.3 Context Lemma Features. . . . . . ... ... ...... 2206]
8.1.4 Part-of-Speech Features . . . . ... ... ... ... .. 2271
8.1.5 Morphological Features . . . . . . ... ... ... ... .. 2371
8.1.6 Context Detail Features . . . . . ... ... .. ... .. 233
8.1.7 Sentence Structure Features . . . . . ... ... ... ..
8.1.8 Constituent Structure Features . . . . . ... ... ... 237
8.1.9 Verbal Frame Features . . . . . ... ... ... ... .. 240
8.1.10 Other Features . . . . . ... ... ... .. .......
8.1.11 Number of Features . . . . . . . ... ... ... ..... 248

8.2 Supervised Machine Learning with Weka . . . . . ... . .. .. 2501
8.2.1 Baseline Classifiers . . . . . .. .. ... ... ......
8.2.2 Classifiers Based on Decision Rules . . . . . ... .. .. 2521
8.2.3 Instance-Based Classifiers (Lazy) . ... ... ... ... 253
8.2.4 Probabilistic Classifiers . . . . . ... ... ... ..... 254]
8.2.5 Support Vector Machines . . . . . .. ... ... ... .. 250

Viil



TABLE OF CONTENTS

8.2.6 Combination . . . . . . . . ...

8.2.7 Automatic Feature Selection . . . . . . . . . ... ...

8.3 Evaluating Supervised Machine Learning Applied to WSD

8.3.1 Overview of WSD Results Using All Features . . . . .
8.3.2  WSD with Automatic Feature Selection. . . . . . . ..
8.3.3 Profiling Feature Groups . . . . . . ... ... .. ...
8.3.4 Profiling Verbs . . . . .. ...
8.4 Conclusion and Future Work . . . . . . .. ... ... ... ..

9 Concluding Remarks

9.1 Knowledge-Based vs. Supervised Learning Approaches . . . .
9.2 Comparison of Sense-Annotated Corpora . . . . . . .. .. ..
9.3 Future Work . . . . . .. ... ...

IV  Appendices

A Comparison of GermalNet Releases

B GermalNet’s Database Format

C Gold Standards Lemma Lists

D WSD Results on Test Set vs. Results by Cross-Validation

References

O
Z

=
&

I 3T
o Al
5 B

Y
X

1X



TABLE OF CONTENTS




Citation Conventions

Parenthetical literature citations are consequently and deliberately placed in
four different positions throughout this thesis. Firstly, citations at the end of a
paragraph (after any end of sentence punctuation mark) generally refer to the
paragraph — either to the whole paragraph or to most of it. Secondly, litera-
ture citations at the end of a sentence (before the sentence final punctuation)
usually refer to the whole sentence. Thirdly, literature citations in the middle
of a sentence refer to the phrase or term after which they are placed. Note that
this potentially includes the previous case, if such a phrase or term occurs at
the end of a sentence. It has to be left to the reader to figure out whether such
a citation refers to the whole sentence or to only a part of it — though it mostly
refers to the entire sentence or should be clear from the context otherwise. If
there are distinct references for several terms or phrases in the same sentence,
one sentence contains several citations at different positions. Fourthly, cita-
tions that are placed after the punctuation mark of one sentence and before
the beginning of the next sentence within the same paragraph refer to both
the sentence before and after the citation.

If no particular priority is implied for multiple citations, lists of citations
are generally first sorted chronologically and then alphabetically.

The position of footnotes is less complex: footnotes are placed after the end
of sentence punctuation to refer to an entire sentence. If this sentence is the
last sentence of a paragraph, the footnote might refer to the entire paragraph
or only to its last sentence. Footnotes inside a sentence refer to a particular
phrase or term (this implies their placement immediately before the sentence

final punctuation).
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Chapter 1

Introduction

1.1

Goals

The overall objective of this thesis is to overcome the bottleneck of German

word sense disambiguation (WSD) resources and to boost research on WSD for

German. In order to achieve this goal, the work inevitably has to start with the

preparation of the necessary resources before actual word sense disambiguation

experiments can be performed.

The work program of this thesis is fourfold:

(i)

(i)

Ezxtend GermaNet with sense definitions from Wiktionary: only about
10% of all entries in the German wordnet GermaNet [Hamp and Feldweg,
1997| have sense definitions. In order for humans to manually annotate
word occurrences in a corpus with senses from GermaNet, the distinction
of senses has to be clear in the minds of the annotators. Without sense
definitions, this distinction is difficult. Further, several WSD algorithms
rely on the existence of sense definitions. Therefore, the descriptions from
the online dictionary Wiktionary are automatically mapped to senses

from GermalNet in order to harvest them as sense definitions.

Create sense-annotated corpora annotated with GermaNet senses: the
availability of sense-annotated corpora is a necessary prerequisite for
evaluating and developing word sense disambiguation systems. Since

the overall objective of this dissertation is to overcome the bottleneck




1.1 Goals

(iii)

(iv)

of German WSD resources, the creation of sense-annotated corpora is
indispensable. The manual construction of sense-annotated corpora is
expensive; it is therefore timely and appropriate to investigate auto-
matic means of creating such a resource. The presented method for
automatically constructing a sense-annotated corpus relies on the map-
ping between GermaNet and Wiktionary described under (i) above to
harvest sense-specific example sentences from Wiktionary itself and ad-
ditional textual materials from other web-based textual sources such as
Wikipedia and online newspaper materials. In order to allow a com-
parison of the performance of WSD algorithms on these automatically
harvested web-based materials with a real authentic corpus and to over-
come the limitations of such an automatically constructed resource (like
the assumably varying quality of web texts and the restriction of not
being able to compile most frequent sense information due to the skewed
number of annotated target word occurrences), the TiiBa-D/Z treebank
|Telljohann et al., 2004, [2012] is manually extended by sense annotation

for a selected set of lemmas.

FEuvaluate several knowledge-based WSD algorithms on German: since one
of the main purposes of this thesis is to help boost research on WSD
for German, it uses the sense-annotated corpora described under (ii) to
evaluate and compare a wide range of knowledge-based WSD algorithms.
The knowledge-based WSD algorithms are based on a suite of semantic
relatedness measures, including path-based, information-content-based,
and gloss-based methods. Experiments on gloss-based methods also em-
ploy the newly harvested definitions from Wiktionary, which are linked
to corresponding GermaNet senses via the automatic mapping between

GermaNet and Wiktionary described under (i).

Fvaluate supervised machine learning classifiers on German WSD: an-
other set of WSD experiments uses several supervised classification al-
gorithms, including rule-based methods, instance-based methods, prob-
abilistic methods, support vector machines, and combined approaches.

The algorithms rely on a wide range of machine learning features such
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as morphological information for the target word, structural information
from the sentence, or co-occurring words or word classes. The evaluation
of the supervised WSD experiments focuses on several aspects, including
a comparison of several heterogeneous machine learning algorithms, a
detailed analysis of the implemented machine learning features, and an
investigation of the influence of syntax and semantics on the disambigua-

tion performance for verbs.

1.2 Word Senses to be Disambiguated

Ambiguity is a pervasive phenomenon in natural languages. The ambiguity of
words is due to the fact that words can have more than one meaning (in this
context also referred to as a word sense). The resolution of this word sense
ambiguity is referred to as word sense disambiguation (WSD). Word sense
disambiguation is the task of computationally assigning the most appropriate
senses to words occurring in a text — where the senses are usually taken from
a predefined sense inventory such as a dictionary or a lexiconH [Agirre and
Edmonds, 2006a; Navigli, 2009; Kwong, 2012|

The task of disambiguating word senses presupposes the existence of word
senses. Word senses are typically defined and listed in dictionaries. Many
heterogeneous approaches of how to define word senses exist, including be-
haviourist, conceptual, cognitive, contextual, definitional, denotational, de-
scriptive, distributional, feature-based, formal, generative, generativist, proto-
type, relational, structuralist, and truth-conditional approaches |Cruse] 2006;
Geeraerts, |2010; [Kwong), [2012; \Goddard and Wierzbickal 2014]. Since it would
be beyond the scope of this dissertation to account for all existing theories,
four prominent yet heterogeneous approaches are described in the followingﬂ

In the traditional componential analysis, which is also referred to as feature

analysis, conceptual categories are defined by semantic features that need to

L A variety of techniques for trying to solve the task of WSD exists — including knowledge-
based approaches and supervised or unsupervised machine learning approaches — which are
described in Chapter [2]

2See |Geeraerts [2010] for an extensive overview of approaches to defining word senses.




1.2 Word Senses to be Disambiguated

be both individually necessary and jointly sufficient. That is, every object
that jointly satisfies all features of a definition is classified into the particular
category and — the other way around — objects in a category must satisfy each
of the described features. For example, the conceptual category of birds might
be described as egg-laying vertebrates with wings, feathers, and a beak, i.e., ap-
propriate objects must satisfy features such as ‘being a vertebrate’; ‘egg-laying’,
‘with wings’, ‘with feathers’, and ‘with a beak’. While this approach is intu-
itive, it has several deficiencies: for example, features need to represent discrete
properties and conceptual categories are supposed to have clear boundaries,
although natural objects and their properties often have fuzzy boundaries.
Further, the status of all objects in a category is equal, although there usually
are main and subordinate representatives. In the example at hand, both robins
and penguins are equally classified into the birds category, although robins are
clearly more characteristic representatives of the birds category than penguins
are. |Goodenough, 1956; |[Katz and Fodor, [1963; [Pottier, (1964, |1965} (Greimas,
1966; |Lipka, [1987; Murphy), 2004]

Several theories were postulated to overcome these deficiencies. The most
prominent among those is the prototype theory, where categories tend to be-
come defined in terms of prototypes or prototypical instances that contain the
attributes most representative of items inside and least representative of items
outside the category |Rosch, 1978, page 30|. The features (attributes) in the
prototype theory thus have different relevance, which reflect the status of cer-
tain objects in a category. For example, robins represent prototypical birds,
while penguins are less prototypical birds. |Roschl 1975, [197§]

Another strategy is pursued by the relational approach, which defines word
senses in terms of their relations — such as synonymy, antonymy, hyponymy,
and meronymy — to other words. Prominent resources that encode word senses
in this relational manner are wordnets. A wordnet is a lexical semantic resource
that groups words into sets of synonyms (synsets) and interrelates word senses
and synsets in a network. For the example of a bird, the English Princeton
WordNetH [Miller, 1995} [Fellbaum), [1998a] encodes a hypernymy relation to the

!Note that in this thesis the term WordNet with a capitalized W and a capitalized
N consistently refers to the Princeton WordNet, while the term wordnet with all small
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synset {vertebrate, craniate}, meronymy relations to {wing}, {feather, plume,
plumage}, {beak, bill, neb, nib, pecker}, a holonymy relation to {flock}, etc. It
further links both {robin, redbreast, robin redbreast, Old World robin, Erithacus
rubecola} and {penguin} as indirect hyponyms.ﬂ |[Lyons, (1963, |1968; Cruse,
1986; Miller}, [1995; Geeraerts, [2010]

The distributional approach assumes that words with semantically similar
meanings occur in linguistically similar contexts (inter alia stated in Ruben-
stein and Goodenough|[1965], [Schiitze and Pedersen||1995], and Pantel [2005] —
each with slightly varying wordings). In this approach the definition of word
senses takes corpus occurrences into account. That is, occurrences of a word
in question are extracted from large collections of text and all word occur-
rences with distributionally similar contexts are grouped into clusters. For
each cluster that represents a certain amount of attested word occurrences, a
separate word sense is defined. This procedure of inducing word senses is also
referred to as word sense discrimination [Schiitzel [1998]. Although it does not
prevent word senses of being overlapping, it reflects attested examples of word
use. [Harris, 1955|1956} [Schiitze, |1992; Kilgarriff, 1997a, 2006} [Sahlgren) 2008;
Geeraerts, 2010; [Kwong|, 2012]

Since the present work takes word senses from the German wordnet Germa-
Net [Hamp and Feldweg, [1997] (see Chapter [3) and since the relational ap-
proach underlies the structure of wordnets, this relational approach is the one
mainly referred to when speaking about word senses throughout this disserta-
tion.

The task of word sense disambiguation assumes that it is possible to as-
sign predefined word senses to word occurrences in a text, given a particular

context. The emerging problems are twofold. Firstly, given the heterogeneity

case letters generally refers a wordnet resource — not necessarily to the English Princeton
WordNet, but potentially to wordnets of any language.

LAll relations in the example are taken from Princeton WordNet 3.1. For reasons of
simplicity only a subset of relations is used in the example. The comma-separated lists
within curly braces represent word senses linked by the synonymy relation (i.e., synsets).
Note that — although not given in the example — synsets in WordNet are mostly accompanied
by definitions, for the reason stated by Miller| [1995] page 40]: not enough semantic relations
are encoded into WordNet to support such constructions. Following standard lexicographic
practice, definitional glosses are included in most synsets.
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of possible sense definitions, the word senses listed in a specific dictionary re-
source might not necessarily reflect the exact meanings of words in a certain
text. Secondly, the interpretation of a word in a text often further depends on
implicit information — including pragmatic aspects or background knowledge
such as world knowledge or knowledge of a certain situation. For example, if
a group of men is having dinner at a restaurant, the noun #p in a statement
like he gave a tip to the waitress seems to refer to the ‘gratuity’ that one of the
men gave to their waitress. However, knowing that the man who payed usually
never gives gratuity, but generally likes to communicate and to propagate wis-
doms, the occurrence of ¢ip in the example rather seems to be used in its ‘hint/
advise’ sense. Despite these issues, research on automatic word sense disam-
biguation, which takes word senses as idealizations, has successfully employed
existing sense inventories (see Chapter [2)).

Word sense disambiguation further implicitly assumes that word senses
are discrete |Kwong, 2012|, but they are often hard to distinguish: where
exactly does one sense start and another one end? Is it at all possible to
clearly distinguish word senses, i.e., are they categorical or do they represent
overlapping continua? For example, the two words light and dark describe
apparently distinct properties of luminosity. Since luminosity is a continuum,
there are certain mediocre states, where it is hard to tell whether it is still
light or already dark, i.e., which state exactly represents the transition from
light to dark.

Although there is psychologically no doubt that word senses exist and many
natural language processing applications assume that they exist, the difficulty
in defining and distinguishing word senses raises the fundamental question
about their existence. It might sounds strange, but several researchers ques-
tioned whether word senses exist at all: two contributions to this debate include
I don’t believe in word senses by Kilgarriff [1997a] and Do word meanings ezist?
by Hanks| [2000]. Both Kilgarriff and Hanks| conclude that word senses indeed
exist, but they propose restrictions: Kilgarriff] [1997a, page 91| argued that
word senses exist only relative to a task and Hanks [2000, page 214| claimed
that traditional descriptions are misleading and that words have meaning po-

tentials, rather than just meaning.
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A remaining open question is thus about the right granularity of sense
distinctions. Although many natural language processing applications need
coarse sense distinctions that correspond to the homograph level, the required
sense granularity often depends on the purpose [Kilgarriff, 1997a; Ide and
Wilks| 2006]. Regardless of any dictionary or corpus, the noun ¢ip, for example,
should at least have the three distinct senses describing (i) the peak or end of
something pointed, (ii) the money given to a waiter as gratuity, and (iii) the
synonymous use as a hint or advice. These three senses are clearly distinct in
their meaning. If it is coincidentally the same word string — usually without a
common origin — that is used to express such distinct semantic concepts, they
are called homographs (from Greek homds ‘same’ and grapho ‘write’) [Ide and
Wilks, 2006].

However, the set of word senses is not identical for all word sense sources.
For example, distributional clustering approaches produce different sets of
senses depending on the corpora used, and lexicographers building dictionar-
ies do not necessarily agree on the same granularity level of sense distinctions.
Already the lexicographers working on the same series of a dictionary have
to produce different granularity sets of senses depending on the purpose of a
dictionary (main, shorter, concise, pocket) being produced by publishers such
as Oxford University Press[]

For the example noun tip, the Princeton WordNet further differentiates the
first of these senses into three more fine-grained senses described as (i-a) the

¢,

extreme end of something; especially something pointed, (i-b) ‘point’, ‘peak’, a
V shape, and (i-c) ‘crown’, ‘crest’, ‘top’, ‘summit’, the top or extreme point of
something (usually a mountain or hill )E| These more fine-grained senses share
a common origin and describe somewhat similar semantic concepts. In general,
all five distinguished sensesﬂ7 i.e., including the above-listed homographs plus
the three senses below the level of homography, are called polysemes (from
Greek poly- ‘many’ and séma ‘sign’). It has been argued in the literature that

WordNet is much too specific in defining too many fine-grained word senses

!This example is taken from [Ide and Wilks| [2006, page 49].

2These sense descriptions are taken from WordNet 3.1.

3Five senses, because sense (i) is further divided into three senses and thus resulting in
the five senses (i-a), (i-b), (i-¢), (ii), and (iii).




1.3 Motivation

|[Palmer, |2000; Ide and Wilks|, 2006].

However, the sense distinction in the German wordnet GermaNet is more
coarse-grained and does not distinguish that many different senses than the
Princeton WordNet. For example, there is one sense of Buch ‘book’ in Germa-
Net expressing the artifact book in the sense of several printed pages bound
together. In WordNet, there are two more fine-grained senses expressing this
semantic concept described as (i) a written work or composition that has been
published (printed on pages bound together) and (ii) ‘volume’, physical objects
consisting of a number of pages bound together. Another example would be
Mund ‘mouth’ in the sense of a human anatomy feature. There is one sense
in GermaNet and two senses in WordNet representing this semantic concept.
The two senses in WordNet are distinguished as (i) ‘oral cavity’, ‘oral fissure’,
‘rima oris’ the opening through which food is taken in and vocalizations emerge
and (ii) the externally visible part of the oral cavity on the face and the system
of organs surrounding the opem'ngﬂ

The distinction of word senses is clearly much easier on the homograph level
for the simple psycholinguistic reason that distinct enough senses are being rep-
resented separately in the mental lexicon and are thus easier to distinguish |Ide
and Wilks, 2006]. Many researchers have been experimenting with manually
or automatically collapsing similar fine-grained senses of existing sense inven-
tories such as WordNet into more coarse-grained ones |Fellbaum et al., 2001}
Agirre and Lacalle, 2003, [Mihalcea et all 2004; Navigli et al., [2007; Palmer
et al., 2007; Snow et al., 2007]. This has, inter alia, resulted in an immense

increase in performance on word sense disambiguation systems |Palmer et al.,
2006, |2007).

1.3 Motivation

The ability to disambiguate between word senses is essential to many natural
language processing applications. The two most prominent such applications

are information retrieval and machine translation. Depending on the applica-

IThese examples are taken from GermaNet 7.0 and WordNet 3.1.
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tion, word sense disambiguation can be an explicit step that has been imple-
mented on purpose or it can be an implicit task of a larger system without
representing a separate step. Irrespectively of whether WSD is implemented
explicitly or implicitly, it is often a necessary part of a natural language pro-
cessing system. [Kilgarriff, 1997bj Ide and Véronis, |1998} Resnik, 2006; Navigli,
2009|

Word sense disambiguation has been a very active area of research in com-
putational linguistics [Ide and Véronis, [1998; Agirre and Edmonds| 2006a; Nav-
igli, 2009], with most of the work focusing on English [Kilgarriff and Palmer,
2000]. One of the factors that has hampered WSD research for other lan-
guages has been the lack of appropriate resources, particularly in the form of
sense-annotated corpus data, which are necessary to evaluate WSD systems.
The WSD competitions at SensEval and SemEval (see Subsection were
organized for several languages including English, Italian, Spanish, Basque,
Estonian, Catalan, Japanese, Korean, Hindi, Romanian, Swedish, and Turk-
ish |Preiss and Yarowsky, 2001; Mihalcea and Edmonds, [2004; |Agirre et al.,
2007]. The organization of several competitions and tasks on WSD included
the preparation of the necessary resources such as sense-annotated corpora.
Thus, SensEval and SemFEval have helped a lot to increase research on WSD
also for languages other than English. Unfortunately, no one has yet orga-
nized any tasks specifically for German WSD. In all, there are very few WSD
resources for German and thus very little research on WSD for German (see
Section for an overview of related work).

With regard to a sense inventory, there are two approaches to WSD: those
who use a predefined sense inventory to label word occurrences with and oth-
ers who create their own sense distinctions by identifying groups of related
word occurrences in corpora. Traditionally, most of the research on WSD has
been using a sense inventory [Agirre and Edmonds, [2006a]. For English, the
Princeton WordNet is clearly the de facto standard sense inventory |Agirre and
Edmonds, 2006a; Navigli, [2009], albeit problems such as too fine-grained sense
distinctions that arise with its usage are well-known. This work follows the
large amount of research using a wordnet — here: the German wordnet Germa-

Net — as the sense inventory for WSD. The six main reasons why GermaNet
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is used as the sense inventory are the following:

(1)

(i)

(iii)

(iv)

The use of a predefined sense inventory makes it possible to evaluate au-
tomatic WSD systems against a gold standard, which is otherwise rather
difficult (i.e., for unsupervised learning techniques that try to automat-
ically create sense inventories by clustering similar word occurrences in

running text).

Using a wordnet as the sense inventory is fully in line with standard
practice for English where the Princeton WordNet is typically taken as
the gold standard.

Existing experience for other languages on creating sense-annotated cor-

pora and on developing systems for automatic WSD can be reused.

A sense inventory based on a wordnet makes it possible to employ the
wordnet’s structures, hierarchies, and relations for automatic sense dis-

ambiguation systems.

The criticism on the level of granularity in the Princeton WordNet is

reduced for GermaNet as it has much fewer distinct senses for a word.

Experiments by others [Saito et al., 2002] have shown the adequacy of

Germalet’s sense coverage for WSD.

1.4 Contributions

The main scientific contributions of this thesis are summarized in the following.

The list also includes short descriptions and links to the developed software

tools and language resources that are made freely available to the research

community.

e The extension of GermalNet with sense definitions from the Ger-

man version of Wiktionary is included in GermaNet (since release 7.0)

and is made freely available for download ]

"http://www.sfs.uni-tuebingen.de/GermaNet/wiktionary.shtml

12
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e The semi-automatic creation of a sense-annotated corpus for Ger-
man has resulted in the web-harvested corpus WebCAGe, which is freely

available online[l]

e The manual sense annotation of a treebank — in particular, the

German TiiBa-D/Z treebank — is freely available for academic usef

e The manual sense annotations in the deWaC corpus are updated.
Initially, Broscheit et al.| [2010] manually annotated the deWaC corpus
with senses from GermaNet 5.1. In the context of this thesis, these

annotations have been updated for GermaNet 9.0.

e A programming interface for the TiiBa-D/Z treebank has been

implemented in order to access the treebank programmatically.

e A wide range of knowledge-based WSD algorithms are evaluated for
German. These knowledge-based WSD algorithms are based on semantic

relatedness measures Pl

e In the context of these knowledge-based WSD experiments, the effect of
linking GermalNet with other lexical resources such as Wiktionary

is studied on the WSD performance of gloss-based relatedness methods.

e The performance and effectiveness of many different supervised ma-
chine learning algorithms when applied to the task of German WSD
is investigated. The learning algorithms include rule-based methods,
instance-based methods, probabilistic methods, support vector machines,

and combined approaches.

"http://www.sfs.uni-tuebingen.de/en/ascl/resources/corpora/webcage.html

2The sense annotation have been included in release 9.1 of the TiiBa-D/Z: http://www.
sfs.uni-tuebingen.de/en/ascl/resources/corpora/sense-annotated-tueba-dz.
html.

SThe semantic relatedness algorithms represent a GermaNet reimplementation of [Ped-
ersen et al.)s [2005] suite of semantic relatedness algorithms for the Princeton WordNet.
The reimplementation was performed by Anne Brock under the supervision of this the-
sis” author and is made freely available at http://www.sfs.uni-tuebingen.de/GermaNet/
tools.shtml#SemRelAPI.
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e These supervised machine learning algorithms rely on a variety of dis-
tinct machine learning features — including morphological informa-
tion for the target word, structural information from the sentence, co-
occurring words or word classes, and subcategorization information for

verbs. The impact on WSD of these features is analyzed in detail.

e The influence of syntax and semantics on WSD is analyzed. This is
particularly interesting for verbs where the syntactic structure in which

a verb occurs is often highly predictive of different word senses.

e The combination of WSD algorithms is studied both for knowledge-
based WSD and WSD using supervised machine learning methods.

e Finally, the thesis includes a comparison of knowledge-based with
supervised machine learning approaches for the task of German
word sense disambiguation and it compares three sense-annotated

corpora for the same task.

1.5 Chapter Guide

The division of this dissertation into chapters closely follows the above out-
lined work program (Section [I.1)). The interaction of all tasks is visualized in
Figure [I.1} That is, this thesis starts in Chapter [2| with an introduction into
the task of word sense disambiguation and into the evaluation setup of WSD
systems. The chapter further comprises the state of the art of WSD, in par-
ticular, it concentrates on related WSD studies that apply knowledge-based
approaches and supervised machine learning approaches, which are relevant
for WSD experiments in later chapters.

Chapter [3| introduces the GermaNet resource, which serves as a sense
inventory for all word sense disambiguation experiments in this thesis. The
chapter includes details about GermaNet’s representation of word senses and
lexical semantic relations, its hierarchical structure, its interlingual links to the
Princeton WordNet, its information on nominal compounds, and its encoding

of verbal frames.
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word sense disambiguation (WSD):

-
L"’u introduction and state-of-the-art
(Chapter 2)
sense
Inventory GermaNlNet | aligning GermaNet with
Tt ly Wiktionary (Chapter 4)
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5 ( A a wiki-based Open
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g (Chapters 5 & 6) .
3 web-harvesting of
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/ [Broscheit et al., 2010]
J"E’ l
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> WSD experiments WSD experiments
g (Chapter 7) (Chapter 8)

Figure 1.1: Interaction of all tasks in this dissertation.

The semi-automatic extension of GermalNet with sense definitions from
Wiktionary is the content of Chapter [4] This chapter describes and evaluates
the algorithm that maps lexical units in GermaNet to sense definitions in
Wiktionary. It further discusses related work on aligning wordnets with other

resources.

Since sense-annotated corpora for German were in short supply, there was a
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great demand to create such corpora. In Chapter [5] the creation of two differ-
ent sense-annotated corpora for German is described: the automatically web-
harvested corpus WebCAGe (short for: Web-Harvested Corpus Annotated with
GermaNet Senses) and the manually sense-annotated TiBa-D/Z treebank.
The chapter also includes a detailed comparison of the two sense-annotated
corpora.

The three sense-annotated corpora used as gold standards for the word
sense disambiguation experiments in the following two chapters are described
in Chapter [6] These corpora include the two sense-annotated corpora de-
scribed in the previous chapter (i.e., WebCAGe and TiBa-D/Z) and the
deWaC corpus, which was manually sense-annotated by Broscheit et al.|[2010].
To allow a fair and comparable evaluation of WSD systems on different cor-
pora, the sense inventory used for sense annotation must match for all cor-
pora. Thus, the chapter at hand presents updated versions of the three sense-
annotated corpora WebCAGe, TiiBa-D/Z, and deWaC. The chapter further
describes the division of gold standard corpora into training and test sets for
evaluating supervised machine learning algorithms.

Chapter [7] explores a wide range of knowledge-based word sense dis-
ambiguation algorithms for German. These WSD algorithms are evaluated
on the three available sense-annotated corpora WebCAGe, TiiBa-D/Z, and
deWaC described in the previous chapter. The algorithms are based on a suite
of semantic relatedness measures, including path-based, information-content-
based, and gloss-based methods, and they are applied and evaluated both
separately one algorithm at a time and in combination. Experiments on gloss-
based relatedness methods also employ the newly harvested definitions from
Wiktionary, which are linked to corresponding GermaNet senses via the auto-
matic mapping between GermaNet and Wiktionary described in Chapter [4]

Chapter [8] applies many supervised machine learning algorithms to the
task of German WSD. These algorithms, which are taken from the Weka
machine learning tool suite [Hall et all [2009], include rule-based methods,
instance-based methods, probabilistic methods, support vector machines, and
combined approaches. The chapter also describes the variety of distinct ma-

chine learning features on which the supervised machine learning algorithms
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rely — such as morphological information for the target word, structural in-
formation from the sentence, co-occurring words or word classes, and sub-
categorization information for verbs. The evaluation of the supervised WSD
experiments focuses on several aspects, including a comparison of several het-
erogeneous machine learning algorithms, a detailed analysis of the implemented
machine learning features, and an investigation of the influence of syntax and
semantics on the disambiguation performance for verbs.

Finally, Chapter [9] summarizes and concludes this dissertation with a
comparison of knowledge-based WSD with WSD using supervised machine
learning methods and with a comparison of sense-annotated corpora. The
chapter further discusses future work for the task of German word sense dis-

ambiguation.
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Chapter 2

Fundamentals and Related Work
on WSD

This chapter outlines the topic of word sense disambiguation (WSD) and
presents the state of the art relevant for this dissertation. It starts with
an introduction into the WSD task in Section 2.Il Section 2.2] describes the
evaluation setup of word sense disambiguation systems — including evaluation
measures for WSD systems (Subsection , the WSD evaluation proce-
dure (Subsection [2.2.2), baselines and bounds (Subsection [2.2.3)), and WSD
evaluation competitions (Subsection . Section introduces several ap-
proaches to WSD, including knowledge-based approaches and supervised ma-
chine learning approaches. It comprises the state of the art and concentrates
on related studies relevant for the disambiguation experiments in Chapters [7]
and [8, which apply knowledge-based approaches and supervised machine learn-
ing approaches to German WSD.

2.1 Introduction to the Task of WSD

Word sense disambiguation (WSD) is the task of computationally assigning the
most appropriate senses to words occurring in a text [Navigli, 2009; Kwong,
2012|. In stand-alone WSD systems, these senses are typically taken from

a predefined sense inventory. A sense inventory is a collection of predefined
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senses for the words of a certain language, i.e., a dictionary, a lexicon, or a
wordnet. Despite some problems and criticism, e.g., on the granularity level
of sense distinctions, the Princeton WordNet [Miller, 1995; Fellbaum), |1998a]

is the most commonly used sense inventory for English WSD. What makes

WordNet particularly popular as a sense inventory for WSD is its coverage
and availability. [Agirre and Edmonds| [2006a; Ide and Wilks, 2006; Navigli,
2009

There are several techniques for trying to solve the task of word sense

disambiguation, which all share a common underlying concept: in order to
disambiguate the sense of a target wordEl — i.e., the ambiguous word to be

disambiguated — they compare linguistic clues from the target word’s context

with the properties of each sense of that word [Agirre and Edmonds, 2006b].

This disambiguation procedure is illustrated in Figure [2.1]

context target word context
A l’ A
(- NV [ ] A
Since the customers were happy, they gave a large tip to the waitress.
\ J L J
tract extract word senses extract
extrac from sense inventory clues
clues
f-
fsense 1: the peak or end )
linguistic clues from the lues t of something pointed
context around the target use ciues 1o Is )
predict the sense 2: the money given
word: part-of-speech tags, > . .
. correct sense to a waiter as gratuity
morphology, collocations, N
subcategorization, etc. (sense 3: the synonymous |
A use as a hint or advice
e
| knowledge sources: ) /af'gon'thms; semantic |
(annotated) corpora, relatedness, word
dictionaries, wordnets, overlap, machine
‘\taxonomies, etc. ] learning, etc.

Figure 2.1: The general idea of word sense disambiguation.

The ambiguous target word in Figure [2.1]is the noun #ip. In the example,

this noun has three distinct senses, which are assumed to be taken from a

1Sometimes also head word.
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predefined sense inventory: (i) the peak or end of something pointed, (ii) the
money given to a waiter as gratuity, and (iii) the synonymous use as a hint or
advice. The task at hand is a classification task, i.e., the goal is to automat-
ically predict the sense that best fits the textual context in which the target
word occurs.

The text around the ambiguous target word serves as the context from
which linguistic clues are extracted. In the example, sentence serves as the

context — with the target word tip rendered in boldface.
(1) Since the customers were happy, they gave a large tip to the waitress.

This context is important for extracting linguistic clues. Depending on the
concrete WSD approach, these clues are further enriched by automatic tools
such as lemmatizers, tokenizers, or part-of-speech taggers, as well as by exter-
nal knowledge sources such as dictionaries, wordnets, or corpora. The variety
of information extracted from the context is generally very large, ranging from
syntactic information (such as part-of-speech tags, morphology, collocations,
and subcategorization) to semantic information (such as frequency distribu-
tions, selectional preferences, and semantic roles) to pragmatic information
(such as domains and pragmatics) |Agirre and Stevenson) 2006).

For disambiguating the target word, the clues from the target word’s con-
text are compared with the properties of each sense of the target word to
identify the sense that best fits the context in question. In the example in
Figure 2.1 the second sense of the target word tip referring to the money
given to a waiter as gratuity would be the correct target word sense for the
given context. The exact way the clues are extracted from the context and
used to predict the correct sense of a target word is determined by the WSD
algorithm. Several WSD techniques — including knowledge-based approaches
and supervised machine learning approaches — exist, which are described in
more detail in Section [2.3] below.

In order to judge the disambiguation quality, WSD systems are mostly
evaluated independently of a concrete application, i.e., as stand-alone WSD
systems. This type of evaluation is called in vitro evaluation. An alternative

approach is the in vivo evaluation, where a WSD system is evaluated in terms
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of its impact as one component in another application such as a translator or a
search engine. Although an in vivo setup seems to be more realistic, almost all
WSD systems are evaluated in a stand-alone manner, because it is much easier
to realize and evaluate. [Ide and Véronis, [1998; Palmer et al., [2006; Navigli,
2009]

The performance of stand-alone WSD systems is evaluated on sense-anno-
tated corpora. A sense-annotated corpus is a text in which occurrences of
words are annotated with their senses from a given sense inventory. Since sense-
annotated corpora serve as gold standards (i.e., datasets with correct sense
annotations |Kilgarriff, 1998a]) for the development, training, and evaluation of
word sense disambiguation systems, their availability is a necessary prerequisite
for WSD. However, sense-annotated corpora have typically been constructed
manually, making the creation of such resources time-consuming and expensive
and the compilation of larger data sets difficult. This problem is also referred
to as the knowledge acquisition bottleneck.

Two variants of the WSD task are distinguished that require different kinds
of sense-annotated corpora [Kilgarriff and Rosenzweig), 2000; |[Navigli, 2009]:

e All-words disambiguation: all or nearly all word occurrences in a
limited size of running text need to be disambiguated with the senses of
a given sense inventory. Sense-annotated corpora for this task contain
sense annotations for all word occurrences, and automatic systems trying
to tackle this variant of the WSD task need to be able to disambiguate all
words. Due to limitations of how much text can reasonably be annotated
in such an all-words, sense-annotated corpus, the resulting numbers of
instances for each lemma are limited and may not be of sufficient fre-
quency for supervised machine learning systems which rely on existing

training data for each lemma.

e Lexical sampling: many occurrences of a selected set of ambiguous
word lemmas are disambiguated with the senses of a given sense inven-
tory. Sense-annotated corpora for this task contain sense annotations
for many occurrences of the selected set of lemmas (the lexical sam-

ple), which is usually chosen in advance. The advantage of annotating
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a restricted set of lemmas is that the frequency per lemma can be set

appropriately for training machine learning models.

As do many existing sense-annotated corpora (see Section for an in-
depth presentation of sense-annotated corpora), the sense-annotated corpora
constructed and used in this thesis (see Chapters [f] and [6)) follow the lexical
sample variant. The decision to annotate a lexical sample is primarily mo-
tivated by the requirements of machine learning as the intended use of the
data. Such data are useful for training automatic machine learning models
only if there are enough instances of each item to be classified, which cannot
be assured for all words. Consequently, all WSD experiments in this thesis

(see Chapters 7| and [§]) are evaluated on lexical samples.

2.2 Evaluating WSD Systems

Automatic word sense disambiguation systems can be evaluated by compar-
ing their performance to the performance of other systems. Therefore, the
performance of a WSD system is typically measured in terms of a system’s
coverage, precision, and recall, as well as by a metric called F; — as introduced
in Subsection [2.2.1] The procedure of how these evaluation scores can be cal-
culated on annotated gold standard corpora is described in Subsection [2.2.2]
In order to judge the performance of a WSD system, the performance range
is often delimited by lower and upper bounds, which are described in Sub-
section [2.2.3] Besides these bounds, an even better way of evaluating WSD
systems is to compare them to other systems. For this purpose, a common eval-
uation framework is required, which is provided by the SensEval and SemEval
ventures (introduced in Subsection [2.2.4)).

2.2.1 Evaluation Measures

The standard measures to evaluate the performance of WSD systems are cov-
erage, precision, recall, and F;. |[Edmonds and Cotton) 2001} Palmer et al.,
2006; Navigli, |2009; Kwong, [2012]
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The coverage of a WSD system is calculated as the number of instances
where the WSD system returns a result, compared to the overall number of

instances in the test set used for evaluation:

# predictions provided by system

coverage = (2.1)

# total instances in test set

Recall is defined as the percentage of word instances that are correctly
disambiguated by the WSD system, out of all annotated word instances in the

test set on which the system is evaluated:

recall — # correct predictions by system

2.2
# total instances in test set (2:2)

In WSD terminology, the terms recall and accuracy are used synonymously

|[Palmer et al., [2006; Navigli, 2009], i.e., the formula is the same.

Precision is reported as the percentage of word instances that are correctly
disambiguated by the WSD system, out of the word instances addressed by
the system:

. # correct predictions by system (2.3)
recision = .
p # predictions provided by system
y Sy

The definitions above imply that for a perfect coverage of 100%, the values
of precision and recall are identical, while for a coverage below 100%, recall and
precision correlate insofar that it is possible to increase one while decreasing
the other. The goal is to find the optimal trade-off between the two measures.
For this purpose, the Fi-measure, also referred to as the balanced F-score,
is introduced, which represents the weighted harmonic mean of recall and

precision:
precision X recall

Fi=2x (2.4)

precision + recall
For a coverage of 100%, the value of Fy is equal to the values of recall and
precision. Thus, this measure is particularly useful for systems that do not

achieve perfect coverage.
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2.2.2 Evaluation Procedure

Word sense disambiguation systems such as knowledge-based systems that are
designated for disambiguating all words and that do not need any training
material are usually evaluated on all sense annotations available in a gold
standard (i.e., a sense-annotated corpus). Thus, the knowledge-based WSD

experiments in Chapter [7] are evaluated on all available annotations.

By contrast, supervised machine learning systems require a certain amount
of annotated instances per lemma for training. The gold standards for evaluat-
ing supervised WSD systems need to provide a certain amount of annotations
per lemma and ideally — though seldom the case because this is unrealistic —
also a certain amount of annotations per word sense. Thus, the supervised
WSD experiments in Chapter [§] are evaluated on a subset of annotations that
fulfill certain criteria (explained in Section [6.1).

In general, there are two main approaches to evaluate the performance of
supervised machine learning algorithms: evaluating on a separate test set or
evaluating by cross-validation. For the evaluation on a separate test set, some
annotations (referred to as the training set) are used for training a supervised
system; and another distinct portion of the annotations (the test set) are held
back while tuning the system on the training data, and later used to obtain
final evaluation results. As a drawback of separate, non-overlapping training
and test sets — particularly prevalent when the amount of annotated data is
limited — the evaluation results strongly depend on the specific split of the
data into training and test samples, i.e., there is a large variance |Refaeilzadeh
et al.,|[2009]. However, to meaningfully and accurately estimate an algorithm’s
ability to generalize, testing on unseen data is crucial. |Palmer et al.; 2006;
Witten et al., 2011

The alternative approach to evaluate supervised machine learning systems
is by cross-validation. Cross-validation partitions all available gold standard
annotations into k£ equally-sized sets. The process of training and evaluation
is repeated k times, where each of the k sets serves once as the test set: k£ —1
sets constitute the training portion and the single left-out set is used as the

test set to calculate coverage, recall, precision, and F;. The most common
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number k for partitioning all annotations is 10, which is also referred to as
10-fold cross-validation. For the final result, the evaluation metrics obtained

for the k repetitions are averaged. [Weiss and Kulikowski, |1991; Refaeilzadeh|

et all, 2009

Although evaluation by (repeated) cross-validation on all available data
could helps to lower the above-mentioned variance problem occurring for the
evaluation with separate training and test sets, there is a major advantage in
using a separate, unseen test set: it allows a more realistic estimate of the sys-
tem’s ability to continue to generalize after several experiments with distinct
classifiers, parameters, and features on the training set. The supervised ma-
chine learning experiments in Chapter [§ are evaluated on a completely unseen
test set (Section explains the division of gold standard corpora into training

and test sets). This evaluation procedure is in line with most related work on

supervised disambiguation of a lexical sample, e.g., Hoste et al. [2002a] and

Mohammad and Pedersen| [2004], and used for many SensEval and SemEval
tasks [Kilgarriff and Rosenzweig, |2000; Edmonds and Cotton, 2001; |Mihalceal
and Edmonds, 2004} |Agirre et al., 2007]. It also follows the WSD studies that
make use of these SensEval/SemEval datasets, including Lee and Ng [2002],
Dinu and Kiibler| [2007], and [de Oliveira et al.[2011] — to name only a few.

There are two approaches for how to calculate overall numbers for coverage,
recall, precision, and Fy: by micro-averaging over all annotations used for test-
ing or by macro-averaging over all lemmas, i.e, calculating according average

numbers for each lemma and then averaging the numbers for the lemmas.

and Ng| 2002; [Maarouf et al., 2014] While micro-averaging gives equal weight

to each annotated instance, which reflects the distribution of occurrences per
lemma, macro-averaging gives equal weight to each lemma, which results in a
reduced impact of lemmas with many occurrences in favor of lemmas with few
occurrences. All results in this dissertation are reported as micro-averaged —
as in many other studies, including [Patwardhan et al. [2003], Lee et al. [2004],
'Torres and Gelbukh [2009], and Wiriyathammabhum et al. [2012)].
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2.2.3 Baselines and Bounds

In order to judge the performance of a WSD system, the performance range
is often delimited by lower and upper bounds. The lower bound is typically
represented by a baseline, which is a very simple, commonly used disambigua-
tion algorithm, and which is assumed to be outperformed by more elaborate
WSD algorithms. Comparing the performance of a WSD system to the per-
formance of a baseline allows estimating the impact and efficiency of a WSD
system. The two most commonly employed lower baselines are the random

sense baseline and the most frequent sense baseline. [Navigli, [2009|

The random sense baseline randomly selects — for each target word oc-
currence — exactly one sense from the set of corresponding senses in the sense
inventory for the target word lemma. It is generally a good indicator of the dif-
ficulty of the task at hand, and is used in both Chapters[7]and [§] on knowledge-

based and supervised machine learning WSD experiments.

The most frequent sense baselmeﬂ always (i.e., for each target word occur-
rence) assigns the sense which has most occurrences in the annotations. |Gale
et all 1992a; Navigli, [2009; Preiss et al., 2009] This baseline is often difficult
to beat by WSD systems — especially for skewed sense distributions. Since
a separate sense-annotated corpus or training set is required to determine
most frequent senses, the most frequent sense baseline is used for compar-
ing WSD using supervised machine learning methods (Chapter [8) rather than
knowledge-based methods ]

On the other side of the performance scale, the upper bound is often rep-
resented by the inter-annotator agreement (IAA)EL which is the percentage of
sense annotations where human annotators agree on the annotated sense(s)
|Gale et al., 1992a]. TAA is calculated on sense annotations that have been

independently performed by two (or more) human annotators.

1Sometimes also most frequent sense heuristic [Miller et al.l [1994; [Mihalcea), |2006] or
first sense baseline/heuristic [McCarthyl, 2009; Naviglil, |2009].

2This procedure follows the approach by Kilgarriff and Rosenzweig| [2000] for SensEval,
who state that “baselines which use training data are intended for comparison with supervised
systems” |[Kilgarriff and Rosenzweig] [2000, page 28].

3Sometimes also inter-tagger agreement (ITA).
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2.2.4 SensEval and SemEval Competitions

Word sense disambiguation systems were developed since the 1950s [Ide and

'Véronis|, 1998]. However, since the necessary resources such as sense inven-

tories and sense-annotated gold standards for evaluating WSD systems were
not publicly available, the WSD systems were all evaluated on different sense
inventories and corpora. It was not objectively possible to judge which system
performed better with which parameter adjustments and, generally, to com-
pare the results of published works on WSD. Towards the end of the 1990s,
a strong interest in the possibility to compare WSD systems in a coherent
evaluation setup arose. |Gale et al., [1992a; Resnik and Yarowsky, 1997, |1999;
Kilgarriff and Palmer} 2000]

In 1998, the first open, community-based evaluation exercise for Word Sense

Disambiguation programs, called SensFEval, was organized |[Kilgarriff and Palmer),
2000, page 1]. Further SensEvals followed in 2001 [Preiss and Yarowskyl, 2001]
and 2004 [Mihalcea and Edmonds, 2004], and — with a broader spectrum of
semantic analysis tasks besides WSD and, thus, under the new name of Sem-
Eval — in 2007 [Agirre et all [2007], 2010 [Erk and Strapparaval, [2010], 2012[]
[Agirre et al.| 2012], 2013 [Manandhar and Yuret], [2013], and 2014
, E| The main motivation of these competition workshops was to

provide a common setup for evaluating automatic systems: all WSD systems

were supposed to disambiguate between senses of the same sense inventory and

were evaluated on the same sense-annotated gold standard corpora — includ-

ing a common scoring system [Melamed and Resnikl 2000]. Such a coherent

framework made it possible to compare WSD systems with each other.

The SensEval and SemEval workshops included tasks on all-words disam-

biguation |[Palmer et al) 2001; Navigli et al. [2007], lexical sample disam-

biguation [Kilgarriff, 2001; Mihalcea et al., 2004], cross-lingual disambigua-
tion [Lefever and Hostel [2010, 2013|, and multilingual disambiguation [Navigli

| 'The SemEval workshop in 2012 did not include a specific task on word sense disam-|
iguation. It is rather listed for the sake of completeness.

“For simplicity, the first three competitions are often referred to as SensEval-1, SensEval-
[2, and SensEval-3 throughout this thesis, while the SemEval workshops are referenced with|
[the corresponding year, i.e., SemEval-2007, SemEval-2010, etc. This notation is common in|
the literature. |
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et al., 2013|. Since several WSD competitions were organized for many dif-
ferent languages including English, Italian, Spanish, Basque, Estonian, Cata-
lan, Japanese, Korean, Hindi, Romanian, Swedish, and Turkish |Preiss and
Yarowsky, 2001; Mihalcea and Edmonds| 2004; |Agirre et al., 2007], the work-
shops helped a lot to increase research on WSD for many languages. The
organization of SensEval and SemEval also included the preparation and dis-
tribution of the necessary resources such as sense-annotated corpora. Unfor-

tunately, no one has yet organized any tasks specifically for German WSD/T|

2.3 WSD Approaches and State of the Art

Word sense disambiguation has been a very active area of research in compu-
tational linguistics, from the 1950s up to recent years |Ide and Véronis, 1998;
Agirre and Edmonds, 2006a; Navigli, [2009]. Most of the work on WSD has
focused on English. [Kilgarriff and Palmer, 2000] One of the factors that has
hampered WSD research for other languages has been the lack of appropri-
ate resources, particularly in the form of sense-annotated corpus data. Since
such sense-annotated corpora serve as gold standards for the development,
training, and evaluation of word sense disambiguation systems, it is not sur-
prising that there has been a steady progress in the development and in the
performance of WSD algorithms for languages such as English for which large
sense-annotated corpora are available and considerably less on languages with
a shortage of such corpora. In recent years, the WSD competitions at Sens-
Eval and SemEval boosted research on WSD for many languages by organizing
comparative WSD evaluation exercises including the preparation of the nec-
essary resources (see Subsection above for more details on SensEval and
SemEval). [Agirre and Edmonds, 2006a; Navigli, 2009

This section comprises related work on the topic of WSD, so as to be able

to relate the research reported in this dissertation to previous research on this

!The more recent tasks on cross-lingual disambiguation |Lefever and Hoste, [2010}, 2013]
and multilingual disambiguation [Navigli et al.,2013| include German as one of several target
languages. However, since these tasks focus on multi- and cross-lingual perspectives rather
than explicitly on German, they did not provide monolingual sense-annotated corpora for
German.
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topic[] There are a variety of techniques for trying to solve the task of word

sense disambiguation. Following the general WSD terminology (e.g., |Agirre
and Edmonds| [2006a], McCarthy| [2009], and Navigli [2009]), the techniques

are grouped into (i) knowledge-based approaches and (ii) machine learning

approaches, where the machine learning approaches are in turn distinguished

mto

(i)

(ii-a) supervised, (ii-b) unsupervised, and (ii-c) semi-supervised.

Knowledge-based approaches mainly use dictionaries or wordnets as
knowledge sources to disambiguate between word senses. They calcu-
late word overlaps or semantic relatedness between different words and
word senses to predict the correct sense for a given context. Chapter [7]
applies a wide range of knowledge-based word sense disambiguation al-
gorithms to German — see Section below for more details and an

overview of related works.

All machine learning approaches have in common that they use corpora
as knowledge sources, but they are different in the exact task they per-
form. Machine learning approaches are broadly distinguished into super-
vised and unsupervised, with semi-supervised and minimally supervised

approaches having an intermediate status between the two.

(ii-a) Supervised approaches to WSD adapt supervised machine learn-
ing methods to solve the task of assigning the correct sense to a
word. The task at hand is considered as a classification problem,
where the class that needs to be predicted is the corresponding
word sense (from a given sense inventory). Therefore, supervised
machine learning systems use sense-annotated corpora as knowledge
sources to train supervised classification algorithms how to predict
the correct sense from a given sense inventory. Chapter [§] explores

many supervised machine learning algorithms for disambiguating

IThis dissertation concerns two further topics besides the proper task of WSD, namely
the alignment of GermaNet to the web-based dictionary Wiktionary as well as the creation
of sense-annotated corpora. Related work on these topics is placed in the corresponding
chapters. More specifically, related work on aligning wordnets to Wiktionary is covered in
Subsection and related work on sense-annotated corpora is discussed in Subsection
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(ii-b)

(ii-c)

German word senses — see Section [2.3.2 below for an introduction

and an overview of the state of the art.

Unsupervised machine learning approaches to WSD aim to induce
word senses by clustering word occurrences with similar contexts in
unannotated corpora. This induction of word senses is independent
of a predefined sense inventory. It is also known as word sense
discrimination. Note that the aim of unsupervised machine learning
approaches, i.e., to discriminate between word senses independently
of a sense inventory, differs from the aim of the proper WSD task (as
defined in Section , which is to disambiguate between senses of a
predefined sense inventory. |Schiitze, 1998; Pedersen, 2006; Navigli,
2009]

The advantage of unsupervised machine learning approaches is that —
since they use unannotated corpora for clustering word senses —
they do not depend on sense-annotated corpora and are, thus, not
affected by the knowledge acquisition bottleneck (see Section
above). However, the downside is that the evaluation of the word
sense induction task is much more difficult than the WSD classifi-
cation task. The reason for this difficulty is that there are no clear
criteria on how to judge the quality of word sense clusters [Navigli,
2009]. Mainly due to this difficulty, the thesis at hand neglects word
sense discrimination methods and focuses on the task of word sense

disambiguation.

Semi-supervised or minimally supervised machine learning ap-
proaches to WSD aim to disambiguate between word senses with
very little sense-annotated data. That is, they tackle a classifica-
tion task (such as the supervised machine learning methods), but
they try to overcome the knowledge acquisition bottleneck by us-
ing unannotated corpora — together with small amounts of anno-
tated corpora. Therefore, semi-supervised or minimally supervised
machine learning approaches to WSD have an intermediate status

between supervised and unsupervised machine learning approaches.
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[Chapelle et al., [2006; Navigli, 2009; Zhu and Goldberg, 2009|

The idea of semi-supervised machine learning approaches is to in-
crease the impact of the small amount of available annotated train-
ing data by automatically harvesting new annotations. The two
most popular such approaches are bootstrapping methods (e.g.,
Yarowsky| [1995] and Mihalcea| [2004]) and methods that rely on
‘monosemous relatives’ (e.g., Leacock et al. [1998|, Mihalcea and
Moldovan| [1999], and |Agirre and Lopez de Lacalle [2004]). Both
these methods are explained in Section [5.1.3] where related work

on automatically sense-annotated corpora is covered[l]

Since it would be beyond the scope of this thesis to account for all exist-
ing studies and to provide a comprehensive introduction to all possible ap-
proaches, this section has a specific focus on related methods and studies on
knowledge-based approaches and supervised machine learning approaches to
WSD, which are relevant for the WSD experiments in Chapters [7] and [§] as
well as on previous studies who worked on WSD for Germanf] All previous
work covered in Subsections [2.3.1] and [2.3.2] focus on English — if not otherwise
stated — while Subsection 2.3.3describes related studies on German WSD. The

studies described are compared and related to the WSD experiments in this

thesis. Further detailed comparisons are provided at the appropriate positions
in Chapters [7] and [§

2.3.1 Knowledge-Based Approaches to WSD

Knowledge—basedﬂ WSD techniques make use solely of available lexical re-

sources including dictionaries or wordnets. They do not use annotated train-

!The automatic web-harvesting of the sense-annotated WebCAGe corpus, which is de-
scribed in Section[5.2] can be seen as one step of such a semi-supervised system. That is, the
automatic web-harvesting can be regarded as one approach to automatically harvest sense
annotations. However, the application of a proper bootstrapping method has to be left to
future work.

2The interested reader is pointed to|Ide and Véronis|[1998|, |Agirre and Edmonds|[2006a],
and |Navigli| [2009] for a broader range and more in-depth surveys of WSD methods and
studies.

3Sometimes also dictionary-based — depending on the context.
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ing data but rather use linguistic clues such as word overlaps with definitions,
selectional restrictions, or similarity between two words in a knowledge base
in order to tackle the WSD task. Since these linguistic clues are generally not
restricted to certain word classes, knowledge-based systems are often applied
to disambiguate all words in a running text. This high coverage is the ma-
jor strength of knowledge-based systems as compared to supervised machine
learning systems (see Subsection below), which are usually applicable to
only a restricted set of lemmas for which sense-annotated training material
is available. On the other hand, for this restricted set of lemmas, supervised
systems usually outperform knowledge-based systems. |Mihalceal, 2006 Mc-
Carthyl, 2009; Navigli, [2009]

Since the list of knowledge-based methods is long, this subsection concen-
trates on works and studies relevant for the knowledge-based WSD experiments
of this thesis (Chapter . Chapter [7|explores a wide range of knowledge-based
word sense disambiguation algorithms for German, including word overlap
methods and semantic relatedness measures. The most similar related works
are those by Patwardhan et al. [2003] and [Pedersen et al. [2005] — as described
in the following paragraphs.

Gloss-Based Word Overlap

Lesk| [1986] introduced a word sense disambiguation algorithm which operates
on the assumption that words occurring together in a text tend to share com-
mon words in their definitions of a dictionary. The |Lesk algorithm assigns an
ambiguous target word the sense whose definition in a dictionary has most
word overlaps with the dictionary definitions of the words in the context of
that target word. The two main underlying assumptions to this algorithm
(recorded by |Banerjee and Pedersen| [2003, page 806]) are: (i) words occurring
together in a text tend to be used in related senses and (ii) two senses are more
related the more words their definitions have in common.

Lesk| himself used the Oxford Advanced Learner’s Dictionary of Current
English as the source of sense definitions, but generally any semantic resource

that provides sense definitions can be used. For instance, the studies by [Kil-
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garriff and Rosenzweig [2000|, [Banerjee and Pedersen| [2002} [2003], Vasilescul
et al| [2004], Torres and Gelbukhl [2009], Ponzetto and Navigli [2010], and
Miller et al|[2012] outlined below all use WordNet as the resource of sense

definitions.

The original algorithm has two main problems: (i) the number of
comparisons increases exponentially when more than two words are being com-
pared and (ii) dictionary definitions are often sparse, which results in insuf-
ficient word overlaps and low coverage of the WSD algorithm. This is why
there are very few studies (among them Vasilescu et al. [2004] and
Gelbukh| [2009]) applying the algorithm in its original version.

Several variants of the [Lesk algorithm have been proposed to overcome

these problems and to improve the algorithm’s disambiguation performance.
The most prominent approach to overcome the computational complexity

problem for the comparison of more than two words is the simplified Lesk

algorithm |Kilgarriff and Rosenzweig), [2000]: each word is disambiguated in-

dividually by comparing its sense definition directly with the context (rather
than with the sense definitions of each word in the context) [Mihalcea) 2006].
Almost all studies using any variant of the algorithm apply this simplifi-

cation strategy (with the only known exception of Torres and Gelbukh|[2009] —

as mentioned above). The study by [Vasilescu et al. [2004], which compared
several variants on the all-words dataset of SensEval-2, showed that this
simplified variant is much more efficient and precise than the original

algorithm.
Among other variants, the simplified Lesk algorithm was used as
a baseline at the first two SensEval competitions. While hardly any (non-
supervised) WSD system was able to beat it at SensEval-1, many WSD sys-
tems beat it at SensEval-2. [Kilgarriff and Rosenzweig), [2000; Kilgarriff, 2001]
The most prominent approach to overcome the problem of sparse dictionary
definitions is the adapted Lesk algorithm |Banerjee and Pedersen, 2002, 2003].

This variant extends the original algorithm in two main respects: (i) the over-

lap calculation includes definitions of related synsets — based on the underlying
idea that two synsets are more related, the more overlaps their definitions and

the definitions of corresponding related words have — and (ii) overlaps con-
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sisting of sequences of words get higher scores. On the SensEval-2 lexical
sample dataset, Banerjee and Pedersen| [2002) |2003| achieved second best re-
sults compared to the SensEval-2 participating systems, which is about double
the accuracy compared to the original |Lesk| algorithm.

Basile et al.| [2007] proposed to use individual disambiguation strategies
for each word class and applied the adapted Lesk algorithm to disambiguate
adjectives and adverbs. They found that this word class-specific approach
achieves higher performance compared to the application of the same WSD
algorithm to all word classes.

Other popular approaches to overcome the problem of sparse dictionary def-
initions are by automatic harvesting of semantic relations [Ponzetto and Nav-
igli, [2010] and of distributionally similar words [Miller et al., 2012]. Ponzetto
and Navigli [2010] mapped WordNet to Wikipedia in order to incorporate Wi-
kipedia relations in addition to WordNet relations when applying the adapted
Lesk algorithm. On the Semeval-2007 coarse-grained all-words WSD task
[Navigli et al., [2007], [Ponzetto and Navigli [2010] achieved performance compa-
rable to the best supervised systems on this task. Miller et al. [2012] extended
sense definitions and contexts with distributionally similar words taken from
an automatically created distributional thesaurus. Their approach overcame
the problem of sparse sense definitions and significantly improved the results
of the adapted Lesk algorithm.

Another set of proposed variations on the original [Lesk| algorithm concerns
the way two sense definitions (or, for the adapted Lesk algorithm, a sense
definition and the context) are compared. [Lesk suggested to merely count the
words that two sense definitions have in common. [Kilgarriff and Rosenzweig]
[2000] do not simply count the number of words that a sense definition has in
common with the context of the target word, but calculate a sum based on the
inverse document frequency of each word in common. This inverse document
frequency represents the likelihood of a word occurring in an arbitrary sense
definition. Ramakrishnan et al. [2004] compute the cosine similarity between
the inverse document frequency vector weighted by the term frequency. Yet
another approach to computing the overlap was proposed by Basile et al.| [2014].

They used a word similarity function defined on a distributional semantic space
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to calculate the overlap between a sense definition and the context.

The WSD experiments in Chapter [7] apply a variant of the adapted Lesk
algorithm. The adapted Lesk variant is preferred since it overcomes the prob-
lem of sparse sense definitions from which the original |Lesk| algorithm suffers
|Banerjee and Pedersen, 2002, 2003]. Due to the low coverage of GermaNet’s
sense definitions, this sparsity problem is especially prevalent for the German
wordnet and — without including related synsets for calculating overlaps —
prevents any reasonable Lesk-like disambiguation.

Although all above-cited studies employing the simplified or the adapted
Lesk variant, or both variants in combination, are similar to the experiments
reported in Chapter , the main differences lie in the language (English vs.
German), and, consequently, in the lexical resource from which sense defini-
tions are taken (mostly WordNet for English vs. GermaNet for German) and
in the gold standard datasets (English vs. German sense-annotated corpora)
used for the evaluations.

A further commonality between Chapter m and [Ponzetto and Navigli [2010]
is that both enrich a wordnet with sense definitions in order to overcome the
problem of sparse definitions. Therefore, both Chapter [7] and [Ponzetto and
Navigli [2010] map a wordnet in question to a web-based, collaboratively con-
structed lexical resource. While Ponzetto and Navigli [2010] used a mapping of
the Princeton WordNet and Wikipedia to enrich WordNet with relations from
Wikipedia, Chapter [7] uses a mapping of GermaNet to the German Wiktionary
to enrich GermaNet with sense descriptions from Wiktionary.

However, even more similar studies compared to the knowledge-based WSD
experiments in Chapter [7]are those using a set of semantic relatedness measures
rather than only the Lesk algorithm. These algorithms are described in the

next paragraph.

Measures of Semantic Relatedness

To take up and continue the approach outlined in the previous paragraph,
gloss-based word overlap methods are to be considered as a kind of semantic

relatedness measure. In their work on the adapted Lesk algorithm outlined
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in the previous paragraph, Banerjee and Pedersen| [2003| noted that the more
words the definitions of two senses have in common, the more related these
senses are. In the continuation of their work, [Patwardhan et al. [2003] realized
that the measure used for determining semantic relatedness in the disambigua-
tion process can be substituted with any semantic relatedness measure. They
extend their WSD experiments to several further semantic relatedness mea-

sures [Pedersen et al. [2005], including{]

Ich: Similarity between two concepts is computed as the negative logarithm
of the length of the shortest path between the concepts (limited to hy-
pernymy /hyponymy relations only) over the path length of the overall
depth of the wordnet — as introduced by Leacock and Chodorow| [1998].

wup: Conceptual relatedness between two concepts is computed as the short-
est path length (limited to hypernymy /hyponymy relations) between the
two concepts, normalized by the depth of their lowest common sub-

sumer — as introduced by Wu and Palmer| [1994].

hso: For computing the semantic relatedness between two concepts, the length
of the shortest path between the concepts (not limited to the hypernymy/
hyponymy relations) and the change of ‘direction’ (i.e., the relations in
a wordnet can be grouped into upwards, downwards, and horizontal) are

considered — as introduced by [Hirst and St-Onge, [1998].

res: Similarity between two concepts is computed as the information content
of their lowest common subsumer in the graph — as introduced by Resnik
[1995].

jen: Similarity between two concepts is computed as the inverse of their dis-
tance (measured as the sum of the information contents of the con-
cepts minus double the information content of their lowest common sub-

sumer) — as introduced by Jiang and Conrath| [1997].

!Since this suite of semantic relatedness measures is used in the experiments of Chapter
and more details on the semantic relatedness measures are provided in Subsection [7.1] the
descriptions are deliberately kept brief at this point.
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lin: Similarity between two concepts is measured as the information content

(multiplied by two) of their lowest common subsumer over the sum of
the information contents of the concepts — as introduced by [1998].

Since the experiments in Chapter [7] use the same suite of semantic related-

ness algorithms (reimplemented for German), the works by Patwardhan et al.|

2003] and Pedersen et al. [2005] represent the most similar research studies.

Their experiments — and analogously also the experiments in this thesis — are
manifold: for instance, experiments are performed with different relatedness
measures, different word classes, and different context window sizes. Several
of their main findings are generally confirmed by the experiments in Chapter [7]
for German: for example, (i) larger context windows improve performance,
(ii) word overlap methods based on the adapted Lesk algorithm perform con-
sistently well, and (iii) most semantic relatedness measures other than word
overlap measures are ill-suited for disambiguating adjective and verb senses. A
more thorough comparison of the knowledge-based WSD experiments in this
thesis with those from |[Patwardhan et al.|[2003] and Pedersen et al.| [2005] are
provided throughout Chapter [7}

Besides the different languages under investigation, the major extension
of this thesis over the work of Patwardhan et al|[2003] and [Pedersen et al|

2005| is the combination of several semantic relatedness measures in a simple
majority voting scheme and in a Borda count setup. These combinations obtain
better overall results compared to the single measures applied. There are no
equivalent studies investigating such combined algorithms on a set of semantic
relatedness measures!]

Several approaches to build a combined knowledge-based WSD system used

separate measures depending on the word class. Basile et al.|[2007], for exam-

ple, used separate disambiguation strategies for each word class (including the

measures by [1986] and [1995]) — based on the assumption that

the disambiguation performance strongly depends on the word class. [Torres

IThere are several studies investigating combined WSD systems, including [Florian et al.
[2002|, [Florian and Yarowsky| |2002|, and Klein et al.|[2002|. But since (almost) all of these
studies combine supervised algorithms rather than semantic relatedness algorithms, they
are outlined in the following subsection. |
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and Gelbukh [2009] experimented with the semantic relatedness measures by
Lesk| [1986], |Jiang and Conrath| [1997], and |Lin| [1998] as well as the combina-
tion of these measures that also used different kinds of relatedness measures

for different classes of words.

2.3.2 Supervised Machine Learning Approaches to WSD

While WSD systems based on supervised machine learning (ML) methods
typically obtain far better results than knowledge-based systems (described
in the previous subsection), they presuppose the availability of training data
and thus their coverage is restricted to those lemmas for which training data is
available [Marquez et al.,[2006; Mihalceal 2006; Navigli, [2009]|. This subsection
describes several supervised ML approaches with a special focus on works and
studies relevant for the supervised WSD experiments in Chapter [8so as to be
able to relate the research reported in this dissertation to previous research.

Supervised approaches to WSD adapt supervised machine learning methods
to solve the task of assigning the correct sense to a word. The task at hand
is considered as a classification problem, where the class that needs to be
predicted is the corresponding word sense (from a given sense inventory). Since
the sets of word senses and thus the sets of classes to be predicted differ for each
lemma, training and classification of supervised WSD systems are usually (e.g.,
Ng and Lee [1996], Veenstra et al.| [2000], Hoste et al. [2002a], Marquez et al.
[2006], and Dinu and Kiibler| [2007]) performed separately for each lemma]l| —
as it is done in this thesis (Chapter . This separate classification of each
word lemma is also referred to as word-experts |Berleant|, 1995|.

In order to learn how to predict the corresponding word senses for unseen
words, supervised classification algorithms — also referred to as classifiers —
rely on corpora whose words are already annotated with senses from a given
sense inventory. Each such annotated word occurrence is denoted as an in-
stance. A certain amount of sense annotations serves for training a supervised

method how to predict the correct senses for unseen word occurrences; and

INote that some studies use an alternative approach of training and classifying word
senses of all lemmas at once (for example, [de Oliveira et al.| [2011] or [Kawahara and Palmer
[2014]).
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another set of sense annotations is used to evaluate the performance of the au-
tomatic disambiguation prediction. Since these sense-annotated corpora have
usually been constructed manually, their availability is restricted and their
construction expensive.

The contexts of these annotated words provide linguistic clues specific to
particular senses. Supervised WSD systems use these clues — referred to as
features — in order to disambiguate between word senses. That is, a feature
is a distinct bit of information that encodes linguistic clues from the context
of a target word [McCarthy, 2009] — such as morphological information for
the target word, structural information from the sentence, or co-occurring
words or word classes. The values of the set of features are specific to the
word instance they represent. Some in the literature frequently used machine

learning features include:

Co-occurrence: The occurrence of words in the context of the target word
is often used to encode ML features. Probably because these features
have proven to perform well, are still easy to obtain and applicable to all
words and word classes, they are popular in the literature [Lee and Ngj,
2002; Martinez et all [2002; Mihalceal, |2002b; Kope¢ et al., [2012]. This
type of feature is also used in the WSD experiments in Chapter [§] (see

Subsection [8.1.3)).

Parts of speech: Similarly, information on the parts of speech (POS) of those
words that occur in the context of the target word are available to all
target words. Machine learning features that encode POS information
on context words or on the target word itself are also often used fea-
tures [Lee and Ngj, 2002; [Martinez et al., 2002; Mihalceal, 2002b} Kiibler
and Zhekovay, 2009; Kope¢ et al., [2012]. Subsection m describes the
implementation of POS features for the WSD experiments in Chapter [§]

Syntax: Several popular features encode information on predicate-argument
structures and syntactic relations of the target word [Fellbaum et al.,
2001; Florian et al., 2002; Lee and Ng, 2002|. See Subsections m
and [8.1.9] for more details on how this kind of information is employed
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as features in the supervised WSD experiments in this thesis.

Several studies investigated the impact of individual features, either man-
ually [Hoste et al. [2002c; |Lee and Ng, 2002; |Yarowsky and Florian) 2002;
Bas et al., 2008| or with the help of automatic feature selection algorithms
[Mihalceal, 2002a.b [Le and Shimazul, [2004; Kope¢ et all 2012|. Chapter
also implements many different types of features and investigates an algorithm
for automatic feature selection to identify the set of features with the highest
positive impact on the WSD performance.

Supervised classification algorithms take these features from sense-
annotated training data to train a classifier how to predict the correct senses for
unseen instances. Several supervised machine learning methods exist, which
are different in the exact way the features are used to identify the correct
sense of a target word. The most popular ML algorithms in the literature em-
ploy different underlying classification theories, which mainly include methods
based on decision rules, instance-based approaches, probabilistic approaches,
support vector machines, and combined approaches. In previous WSD studies
that used supervised ML approaches to disambiguate word senses, the same
set of heterogeneous algorithms is prevalent for the task at hand. However, the
three predominant and most effective single supervised ML algorithms for the
task of WSD seem to be instance-based algorithms, support vector machines,
and naive Bayes.

Due to their popularity as supervised machine learning methods — in gen-
eral and for the WSD task — Chapter [§] explores all of the above-mentioned,
popular supervised ML algorithms for solving the task of disambiguating Ger-
man word senses. That is, Chapter [§| applies rule-based methods, instance-
based methods, probabilistic methods, support vector machines, and combined
approaches — all of which are described in the following subsections. Unlike
for the knowledge-based WSD experiments, where the most similar research
project was clearly identified (see Section above), there are distinct as-
pects of the supervised machine learning experiments that need to be related to
multiple previous studies. The most similar studies are probably those which

implement and assess a wide range of features (including Hoste et al.| [2002¢],
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Mihalceal [2002a)b], [Le and Shimazu [2004], and [Kope¢ et al| [2012]) or evalu-
ate and compare a wide range of supervised ML algorithms (including
[1996], |Zavrel et al.|[2000|, [Pedersen [2001], |Agirre and Martinez [2004], |Joshi
et al| [2006], and Marquez et al| [2006]) or both of these (including
[2002], [Yarowsky and Florian [2002], Bas et al. [2008], Kope¢ et al.|[2012],
and Wirtyathammabhum et al. [2012]).

Decision Rules

Supervised classification algorithms based on decision rules are among the sim-
plest to understand and implement. The rules use conditions to discriminate
between the classes to be predicted. For the task at hand, the rules dis-
criminate between the senses of the ambiguous target words. The conditions
encode specific values of the features representing the target words’ contexts
(usually only a certain subset of the features is included in a classification

model [Mitchell, |1997]). The three classification methods in this paragraph

differ from each other in the way how they create, represent, and apply these
rules.

Decision lists , are ordered lists of rules combining conditions
(for the WSD task, conditions correspond to features) with values (i.e., word
senses). The order of the rules is relevant for classification: a new instance is
sequentially compared to the rules in the list; the assigned word sense is the
one from the first rule whose condition is fulfilled by the instance. In this way,
decision lists can be though of as extended if — then — elseif — ... else —rules,
where highly discriminating rules are at the top of the list and more general
rules at the bottom, with the very last rule being the default case. |Rivest,
1987

There are two main approaches for constructing decision lists: directly from

training data |Yarowsky, [1994] or indirectly from a decision tree (see below).

In the approach by Yarowsky| [1994], feature-sense pairs are collected from

training data and sorted by the log-likelihood probabilities of senses having

the given feature values.

Besides Yarowsky]| [1994] [1995], 2000], many other studies — including Mooney|
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[1996|, Paliouras et al| [2000], Martinez et al.| [2002|, |Agirre and Martinez
[2004], and Marquez et al. [2006] — applied decision lists to the task of word
sense disambiguation. Decision lists proved successful in the first SensEval
workshops |[Navigli, 2009].

Decision tables [Kohavi, [1995| represent rules in tabular forms: a set of
conditions (for the WSD task, the features — as for decision lists) is contrasted
to a set of resulting values (here, again, the word senses). That is, for the
WSD task, columns correspond to features and rows represent instances with
specific values for these features and assigned word senses. For constructing a
decision table, the features and instances are extracted from the training data.
Algorithms for constructing decision tables do usually not include every feature
and every instance from the training data, but rather a reduced set. During the
classification process, a new instance is compared to all feature combinations
stored in the decision table, and, if there is at least one matching instance,
the assigned word sense is the one which is stored with the majority of these
matching instances. |[Kohavi, 1995|

Decision tables were previously applied to the task of word sense disam-
biguation [Paliouras et al., 2000; Pancardo-Rodriguez et al., [2005; Bas et al.,
2008; Kope¢ et al., [2012], albeit much less often than decision lists (see above)
or decision trees (read on).

Decision trees |Quinlan|, 1993] encode classification rules as branching struc-
tures. Each branching node models a rule condition that partitions the data
into subsets; for the WSD task, each such node represents a feature and each of
the branches represents a feature value. The terminal nodes in a decision tree
depict the classes to be predicted; for the task at hand, the terminals depict
the word senses. |Quinlan, [1993; Mitchell, 1997; |[Pedersen), 2001|

Most decision tree algorithms, including the popular C4.5 algorithm |Quin-
lan, [1993|, induce decision trees from training data recursively and in a top
down procedure. They first put the most informative conditions (i.e., features)
at the top of the tree and add more general ones at the bottom — with the
aim of achieving high classification performance with a minimal set of condi-
tions. In order not to overfit the training data but be able to generalize to

new instances, trees are pruned appropriately. [Quinlan 1993; Mitchell, 1997;
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'Pedersen, [2001]

The classification of a new instance follows a path from the decision tree’s

root node to one of its leaf nodes — branching at each inner node according

to the value of the corresponding feature. [Quinlan) 1993; Pedersen, 2001]

The word sense finally assigned is the one which is represented by the leaf
node reached. By following the paths from the root to the leaves and creating
one rule for each such leaf node, decision trees can be converted into decision
lists [Paliouras et al., 2000; Witten et al., 2011]. (This is the above-indicated
indirect way of constructing decision lists.)

Several studies investigated decision trees for WSD, for example,
[1996], Paliouras et al.| [2000], |Zavrel et al. [2000], Pedersen| [2001} 2002], [Lee|
and Ngj [2002], Mohammad and Pedersen| [2004], |Joshi et al.| [2006], and
[2012]. However, although decision trees are popular and widely used
supervised algorithms [Pedersen, 2001} Marquez et al., 2006|, their popularity

does not hold for the task of word sense disambiguation [Marquez et al., |2006;
Navigli, 2009]. One major obstacle of using decision trees for WSD is their

lower performance compared to other machine learning algorithms |[Mooney,

1996; Navigli, 2009|, which is probably caused by two main problems: (i) for

small training sets, leaf nodes include very few instances, which results in
unreliable predictions, and (ii) for training data with many features or many
feature values, the tree consists of many inner nodes, which causes data sparse-

ness problems [Marquez et al., 2006; Navigli, [2009).

Decision lists can partly counter these drawbacks mainly due to their sim-

plicity. On the other hand, decision trees allow more complex decisions at

each branching node [Rivest, 1987, Marquez et all [2006]. However, none of

the decision-rule-based approaches reaches the performance and popularity of

the approaches described in the following paragraphs.

Instance-Based Learning

In contrast to the decision-rule-based approaches, the instance—basedEl classi-

fiers described in this paragraph achieve high WSD performance and are thus

1 Also memory-based, exemplar-based, or lazy.
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very popular for WSD. The large number of previous research projects inves-

tigating instance-based algorithms for WSD includes [Mooney, [1996], Ng and|
Lee| [1996], [1997], Escudero et al.| [2000b], Paliouras et al.| [2000], [Veen-
stra et al| [2000], [Zavrel et al|[2000], Hoste et al|[2002b], [Mihalceal [2002al],
Decadt et al|[2004], Pancardo-Rodriguez et al.| [2005], [Marquez et al.| [2006],
Bas et al,| [2008|, Kiibler and Zhekoval [2009], Kope¢ et al. [2012], and |Wiriy-|
athammabhum et al. [2012].

During the training phase, instance-based learning algorithms store all

training instances to memory, which is why they are also referred to as memory-
based. Proper processing is postponed until classification, which is why they
are also characterized as lazy. For classification, new instances are compared
to the stored instances and a distance function determines the closest training
instance(s) for a given test instance. Final predictions depend on the class val-
ues of these closest training instances, which are also called nearest neighbors.

The majority sense of the most similar stored instances are assigned to a given

test instance. [Marquez et al., |2006]
The k-nearest neighbor (kNN) classifier [Cover and Hart, [1967| is the most

basic and most popular instance-based learning algorithm. It represents in-

stances as feature vectors and identifies the k nearest neighbors, i.e., the £ most
similar instances, according to a similarity metric. The algorithm has two rel-
evant parameters. Firstly, the exact similarity metric used for measuring the
similarity between instances; popular similarity metrics are the Hamming dis-
tance or the Euclidean distance. Secondly, the number & defines how many
nearest neighbors, i.e., how many most similar instances, are considered for
classification. In the simplest case, where k is 1, only the most similar in-
stance is relevant and the predicted word sense is the one stored for this single
nearest neighbor. If k£ is larger than 1, the assigned word sense is the one
associated with the majority of most similar instances. Since this majority
voting is be problematic for skewed class distributions, weighted refinement
variants, which either give more weight to relevant features or which give more
weights to instances more similar to the new instance to be classified, are quite
common. [Mitchell, 1997, |Daelemans et al. [1999; Daelemans and Hoste, [2002;
Marquez et al., | 2006; Navigli, 2009
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The main difference of the instance-based approach compared to other
supervised algorithms such as the ones based on decision rules is that there
is no reduction, modification or restructuring of the training data; during the
training phase, all examples are stored as-is; and the comparison is delayed
until the classification phase [Mitchell, [1997; Daelemans and Hoste, [2002]. A
well-known problem of instance-based algorithms, which arises from the fact
that all available features and instances are stored without any preprocessing
or preselection, is that irrelevant features and improperly scaled feature values
often lead to incorrect classifications. [Mitchell, 1997] The solution to this
problem is to weight features according to their relevance and, in the most
extreme case, to disregard irrelevant features altogether. On the other hand,
storing all training data can also be advantageous: |Daelemans et al. [1999|
attribute the high generalization performance of instance-based algorithms to

the fact that these algorithms retain outlying instances.

Probabilistic Classification

This paragraph describes two machine learning algorithms based on proba-
bilistic computations: naive Bayes and maximum entropy.

The naive Bayesﬂ classifier [Duda and Hart, [1973| is among the simplest
probabilistic classifiers. During the training process, it estimates for individual
features their probabilities of belonging to specific classes. These probabilities
are calculated on the basis of the frequencies with which the features occur
for certain classes in the training data. For classification, the naive Bayes
classifier estimates for a new instance the conditional probabilities with which
the instance belongs to a certain class. These probabilities are estimated by
multiplying the individual probabilities for each feature to occur for a certain
class. The classifier assigns the class (i.e., word sense), which has the high-
est overall probability (i.e., the product of the probabilities of the individual
features belonging to a certain class) for the new instance. |Mitchell, |1997;
Paliouras et al. 2000; Navigli, |2009)

The classifier is characterized as Bayesian because it uses the Bayes theo-

1Spelling variant: naive Bayes.
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rem for its probability calculation. The Bayes theorem [Bayes, [1763| specifies
the posterior probability for a new instance given the probabilities in the train-
ing data. [Mitchell, 1997; Paliouras et al., |2000; Navigli, [2009] The classifier is

further referred to as naive because it assumes conditional independence of all

features given a class. Although this strong assumption is practically seldom
fulfilled, naive Bayes performs well for the task of word sense disambiguation

compared to other supervised methods. Naive Bayes classification has often

been applied to WSD in the literature, for example, by Mooney| [1996], Escud-
ero et al.| [2000b|, Paliouras et al. [2000|, Zavrel et al.| [2000], [Pedersen| [2000,
2001], Klein and Manning [2002|, Lee and Ng| [2002], |Yarowsky and Florian|
[2002], |Agirre and Martinez|[2004], Lamjiri et al.| [2004], Le and Shimazu [2004],
‘Wu et al.| [2004], Pancardo-Rodriguez et al.| [2005], Joshi et al. [2006], Marquez
et al. [2006], Bas et al.| [2008|, [Kope¢ et al.| [2012], and Wiriyathammabhum|

et ] 2012).

A mazimum entropy classifier aims to maximize the conditional likelihood

of classes on the basis of the training data. Therefore, each feature from the
set of given features represents a constraint. These constraints are posed by
the distribution of the features observed in the training data. The size of the
feature set and, thus, also the size of the constraints set is not restricted. In
contrast to naive Bayes, the probability model underlying a maximum entropy
classifier does not assume feature independence.

Given the feature constraints, a maximum entropy classifier computes prob-
ability models that satisfy the constraints. This set of models that satisfy the
given constraints can be infinitely large. The learning aim of a maximum en-
tropy classifier is to identify the most uniform model among the set of models.
This most uniform model is the model where uncertainty is at its maximum
and, since entropy is a measure of uncertainty, it is at the same time the model
with the highest entropy. The motivation behind identifying the maximum en-
tropy model is to restrict the probability model to those assumptions that can
be extracted from the distribution in the training data rather than to assume
any further information that is not observed in the training data. [Berger
et al, |1996; Manning and Schiitze, [1999)

Maximum entropy models were applied to the task of word sense disam-
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biguation by, for example, |Zavrel et al. [2000], [Dang and Palmer| [2002], Suarez
and Palomar|[2002], Lamjiri et al.|[2004], Suarez Cueto| [2004], Wu et al.|[2004],
Chen| [2006], Tratz et al.[2007], and Wiriyathammabhum et al.| [2012].

Support Vector Machines

Support Vector Machines (SVMs) |Cortes and Vapnik, 1995} [Vapnik, 1995| use
hyperplanes to separate training instances into two classes — as illustrated in
Figure Therefore, training instances are mapped into the feature space
by a function referred to as a kernel. The circles and squares in the left part
of Figure [2.2] represent instances of two distinct classes. The idea is to find a
hyperplane that separates the instances of these two classes (see the middle

part of the figure).

icr)lfszell;;;e; hyperplane maximum maximum margin
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Figure 2.2: The idea of support vector machines.

The optimization goal of SVMs is to identify the hyperplane with the largest
margin to the closest instances of both classes. This is illustrated in the right
part of Figure 2.2 The instances of both classes that are closest to the hy-
perplane are also called support vectors (the filled circles and squares in the
figure). In case the training instances are not separable by a hyperplane, a
trade-off between a low training error and a large margin has to be made.
This trade-off is controlled by the regularization parameter C. |Cortes and
Vapnik, |1995; Witten et al 2011]

SVMs are, by default, linear classifiers, i.e., they use linear models to map
instances into the feature space. However, instead of using a linear mapping

of instances into the feature space, SVMs can map instances non-linearly into
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high-dimensional features spaces by using non-linear kernels such as polyno-

mial or Gaussian functions |[Boser et al., [1992].

The two most relevant parameters for support vector machines are (i) the
regularization parameter C' to control the trade-off between a low training
error and a large margin and (ii) the choice of the kernel function. For support
vector machine classification, a test instance is mapped into the same feature
space in which the hyperplane is located and classified according to the side
of the hyperplane it belongs to.

In the base case, SVMs can discriminate between two classes only. To
apply SVMs to multi-class problems, several approaches exist. Among the
most popular approaches to solve multi-class problems with SVMs is the one-
versus-one method. For this method, an SVM classifier is constructed for
every pair of classes, and the individual classification results are combined by
a maximum voting strategy to build a final classification result.
Tibshirani, 1998; [Duan and Keerthi, |2005]

Support vector machines have previously demonstrated high performance
among supervised methods and are thus very popular for many kinds of classi-
fication tasks. Since their high performance has also been proven for the task
of WSD, they are very popular for disambiguating word senses |Zavrel et al.
2000}, [Cabezas et al.l 2001} Lee and Ng|, [2002; [Agirre and Martinez, 2004} [Lee
et al.l 2004; Wu et al., 2004} [Pancardo-Rodriguez et al., [2005; [Joshi et al.|
2006} Marquez et all, [2006; Wiriyathammabhum et all, [2012; [Maarouf et al.|
2014).

Combination

It has been shown for various NLP tasks, including word sense disambiguation
[Florian et al. 2002; [Florian and Yarowsky] 2002; Klein et al., 2002], that

multiple classifier systems outperform single decision systems. Many of the

best performing systems at SensEval-3 were combined classifiers [Mihalcea
2004]. This subsection describes two popular combination strategies:
voting and boosting.

In a woting combination, several distinct machine learning classifiers are
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combined as follows: each single classifier votes for a candidate sense of the
target word, the votes are summed, and the target word sense(s) with the
highest sum are defined to be the overall disambiguation result. Several pa-
rameters influence the performance of a voting algorithm, such as the choice of
single algorithms to be combined or whether the voting assigns equal weights
to each single classifier or individual weights (depending on the single classi-
fier’s performance). Related WSD studies that combined single classifiers by
voting include Ilhan et al. [2001], [Florian et al.| [2002], Hoste et al.| [2002¢],
Klein et al|[2002], and [Turney! [2004] [

Boosting pursues a different combination strategy than voting: rather than
combining classifiers for different machine learning algorithms, several classi-
fiers are iteratively trained with the same ML algorithm (referred to as the
base classifier), but on reweighted training instances after each iteration, to
finally build an ensemble classifier. The most popular boosting algorithm is
AdaBoost |Freund and Schapire, 1996|: the base classifier is initially run on
the unweighted training data. After each run, all instances in the training
data are reweighted to give higher weights to misclassified instances and the
base classifier is rerun on this reweighted data. This process of running and
reweighting is repeated for a fixed number of iterations. Boosting was applied
to the task of word sense disambigutation by, for example, Escudero et al.
[2000a], Lee and Ng|[2002], Martinez et al. [2002], [Marquez et al.| [2006], and
Kopec¢ et al.| [2012].

2.3.3 Related Work on German WSD

Most of the work on word sense disambiguation has focused on English. [Kil-
garriff and Palmer, 2000] One of the factors that has hampered WSD research
for German has been the lack of appropriate resources, particularly in the

form of sense-annotated corpus data. Since these corpora are a prerequisite

!Note that the idea of combining individual WSD algorithms by voting to build a joint
classifier is not bound to supervised machine learning methods. Indeed, the WSD experi-
ments in Chapter [7| include a method that combines knowledge-based WSD methods. The
reason, however, why this subsection on combined methods is placed under the section on
supervised machine learning methods is because for the task of WSD it has mostly been
applied to supervised ML methods.
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for the development, training, and evaluation of word sense disambiguation
systems, it is not surprising that there has been little research on languages
with a shortage of such corpora. Due to the lack of sense-annotated corpora
for German prior to the construction of the sense-annotated corpora described
in Chapters [p] and [6] there has been relatively little research on WSD for this
languageﬂ

As it is the case for the WSD experiments in this thesis, all previous research
on automatic word sense disambiguation work for German using GermaNet
as a sense inventoryﬂ [Widdows et al., [2003; Steffen et al., 2004; Broscheit
et al., 2010; Henrich and Hinrichs| |2012] focused on the lexical sample task for
WSD, i.e., the disambiguation of a fixed set of polysemous target words. The
only exception is the study by [Saito et al. [2002] who — by manual means —
demonstrated the appropriateness of GermaNet’s sense coverage for WSD and
therefore regard all words in running text.

Saito et al.| [2002] is the earliest known German WSD study using Germa-
Net as a sense inventory. It describes the manual creation of a sense-annotated
corpus from German novels for children and young people and from German
newspaper articles. All content words (adjectives, nouns, and verbs) were au-
tomatically extracted from this corpus and, together with possible GermaNet
senses, presented to human annotators. With this manual sense annotation
of all words in running text, Saito et al. [2002] demonstrated the adequacy of
GermalNet’s sense coverage for WSD — an important preliminary step for any
automatic WSD system using GermaNet as the sense inventory, but not yet a
proper automatic disambiguation system.

The studies by Widdows et al. [2003]| and |Steffen et al.| [2004] applied un-

supervised methods for domain-specific WSD on medical texts. Stetten et al.

!Note that while this subsection describes related work on German WSD with the focus
on the disambiguation systems, Subsection invokes the same body of research [Saito
et al.,2002; Widdows et al.l 2003; [Steffen et al., 2004; [Broscheit et al.,|2010] with an emphasis
on comparing the employed sense-annotated corpora.

2A separate branch of research studies (e.g., Erk |2005]|, Burchardt et al|[2009], and
Rehbein et al.| [2009]) investigates the disambiguation of frames (semantic classes) or frame
elements (semantic roles) from the German FrameNet (http://www.laits.utexas.edu/
gframenet/). These works are not outlined in this subsection, because the approaches
differ fundamentally: the sense inventories are based on different linguistic theories (frames
vs. concepts), which crucially influence the work on WSD.
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[2004] applied two separate WSD methods: one method automatically deter-
mines domain-specific senses of ambiguous target words on the basis of their
relative statistical relevance across several domain-specific corpora. The other
method is instance-based and uses k-nearest neighbor classification in an un-
supervised manner. Here, they used the Weka machine learning tool suite,
which is also used in the WSD experiments in Chapter [§] though in a super-
vised manner. The best results reported by [Steffen et al.|[2004] were obtained
by a combined approach that applies the two methods in a disjunctive man-
ner: if one method is unable to assign any word sense, the other method is
applied. This finding that a combined algorithm improves the results generally
corroborates the results in this dissertation. However, the two most significant
deviations between the study by |Steffen et al.| [2004] and the experiments in
this thesis are (i) their domain-specificity and (ii) their application of unsuper-

vised methods (vs. knowledge-based and supervised approaches in this thesis).

Widdows et al.| [2003]| performed unsupervised WSD for English and Ger-
man and derive their sense inventory for these two languages from the Med-
ical Subject Headings thesaurus (MeSH) contained in the Unified Medical
Language System (UMLS). They applied three unsupervised WSD methods:
(i) bilingual disambiguation based on a parallel corpus of English-German
medical scientific abstracts obtained from the Springer Link web sitdT] (ii) collo-
cational disambiguation as introduced by [Yarowsky! [1995] which automatically
extracts multi-word expressions and collocations from UMLS as seed examples
for Yarowsky’s algorithm, and (iii) disambiguation using related UMLS terms
following the idea of the [Lesk [1986] algorithm. This third method resembles
the knowledge-based approach in Chapter [7]in some respects: both techniques
apply a variant of Leskls [1986] dictionary-based word overlap method and
both techniques use related terms and concepts to extend the coverage of the
overlaps method. However, the approach by [Widdows et al.| [2003] achieved
best results with manually annotated information on co-occurring concepts,
which is not available in the context of this thesis. The availability of this

type of information originates from the use of a different sense inventory (i.e.,

"http://link.springer.de/
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UMLS).

The studies of [Widdows et al.| [2003] and Steffen et al.| [2004] both focused
on the medical domain and are thus domain-dependent. A more recent study
[Broscheit et al., 2010 performed WSD on a domain-independent German
corpus — i.e., on the web-harvested de WaC' corpus (see Section for more
details). Since the sense annotations in the deWaC corpus have recently been
made publicly available, they have been updated to the most recent version of
GermaNet in the context of this thesis (see Section [6.5)). The revised deWaC
sense annotations are employed in the WSD experiments in Chapters [7] and

The disambiguation system by [Broscheit et al. [2010] used GermaNet as a
knowledge base and the graph-based algorithm Personalized PageRank (PPR)
of |Agirre and Soroa| [2009], the unsupervised algorithms of McCarthy et al.
[2004] and Lapata and Keller| [2007] for determining the most frequent sense,
and a simple majority voting algorithm that combines the single algorithms.
The best results reported by [Broscheit et al.| [2010] were not obtained by the
voting approach but rather by the PPR algorithm alone.

In general, the performance obtained by the knowledge-based WSD exper-
iments in Chapter [7| are comparable to the results by Broscheit et al. [2010]
on the same sense-annotated corpus. The only sizable deviation is in the per-
formance of the combined algorithms: the results reported in Chapter [7] of
this thesis improve in combination, which contradicts Broscheit et al.’s finding
that there is no improvement. However, it is important to note that a com-
parison of the results from Broscheit et al.| [2010] with the results of this thesis
is not entirely fair. There are two main factors that influence the results (see
Section for more discussion). Firstly, the versions of the underlying sense
inventory and, thus, also the sense annotations are different (see Section
for details). Secondly, the evaluation setups differ both in the employed al-
gorithms as well as in the use of backoff strategies for cases where the WSD
algorithms are unable to assign any word sense.

The most recent paper on German word sense disambiguation was pub-
lished by Henrich and Hinrichs [2012]. It explored several knowledge-based
WSD algorithms that are based on a suite of semantic relatedness measures,

including path-based, information-content-based, and gloss-based methods.
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Since the individual algorithms produced diverse results in terms of preci-
sion and thus complemented each other well in terms of coverage, a set of
combined algorithms was investigated and compared in performance to the in-
dividual algorithms. Among the single algorithms considered, a word overlap
method derived from the |Lesk| [1986] algorithm yielded the best F-score. This
result was outperformed by a combined WSD algorithm that uses weighted
majority voting. All reported WSD experiments utilized GermaNet as a sense
inventory and WebCAGe (which has been constructed as part of this disserta-
tion — see Section as a sense-annotated corpus. The experiments [Henrich
and Hinrichs, 2012] were performed in the context of a pilot study as part of
this thesis, particularly of Chapter []] The underlying idea to use semantic
relatedness measures for WSD is the same. However, the WSD experiments
described in the paper used old versions of GermaNet and WebCAGe, whereas
Chapter [7] reports on experiments with the most recent versions. Chapter [7]
extends Henrich and Hinrichs| [2012] by presenting WSD results for two addi-
tional sense-annotated corpora, i.e., TiiBa-D/Z and deWaC, which were not
available in the context of Henrich and Hinrichs [2012]. Moreover, it includes

the evaluation of adjectives and verbs while the paper focused solely on nouns.
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Chapter 3
Fundamentals of GermalNet

This chapter introduces the German wordnet GermaNet, which serves as a
sense inventory for all word sense disambiguation experiments in this thesis.

A wordnet is a lexical semantic resource that interrelates word senses and
semantic concepts in a network. It partitions the lexical and conceptual space
into a set of semantic concepts that are interlinked by lexical semantic relations.
Since wordnets encode principles resembling semantic dictionaries, thesauri,
and lightweight ontologies, they can be seen as a combination of all of them.
The first resource of this kind and also the most prominent one is the Princeton
WordNet for English [Miller, |1995} [Fellbaum), [1998a]. Its development began
in the 1980s under the auspices of George A. Miller at Princeton University.
Following the idea of the Princeton WordNet, several wordnets have been
developed for other languages.

The development of the German wordnet GermaNet [Hamp and Feldweg,
1997| started in 1997 at the University of Tiibingen. It is modeled after the
Princeton WordNet and, thus, the two wordnets share the same basic assump-
tions. However, since GermaNet is built from scratch, the two resources deviate
in several respects — as itemized in Section [3.1}

GermalNet covers the three word classes of adjectives, nouns, and verbs. It
encodes word senses and semantic concepts (see Section that are inter-
linked by lexical semantic relations (see Section [3.3). The wordnet is hierar-
chically structured in terms of the hypernymy relation of synsets (described
in Section [3.4). Furthermore, GermaNet includes interlingual links to the
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3.1 Comparing GermalNet with WordNet

Princeton WordNet (Section , encodes information on nominal compounds
(Section and on verbal frames (Section [3.7)).

If not otherwise stated, the most recent version of GermaNet available at
the time of finishing the writing of this dissertation — i.e., release 9.0, as of April
2014 — is described throughout this chapter. However, since the development
of the resource is still in process, several versions of GermaNet are relevant
for this dissertation. The overview of the coverage of GermaNet releases given
in Section [3.9| reports on the resource’s active process of development and
illustrates the variety of extensions that entered GermalNet. Together with
Appendix [A] it provides a detailed summary of the four GermaNet releases
most significant throughout this dissertation; including information on which
release serves as the basis for which task in this dissertation, and, vice versa,

which release contains which newly contributed information.

3.1 Comparing GermalNet with WordNet

Germalet is based on the Princeton WordNet for English. The two resources
share the same basic principles and assumptions. For example, their under-
standing of lexical units and synsets as well as their encoding of relations
between those entries is similar. However, GermaNet is built from scratch and
is not simply translated. Mainly due to language specifics, the two wordnets
deviate in several respects. In order to better understand the nature of these

differences, the following list outlines the most important points of disparity:ﬂ

Coverage WordNet’s coverage is larger than the coverage of GermaNet:ﬂ
117659 vs. 93246 synsets, 206 941 vs. 121810 lexical units, and 155287
vs. 110738 literals. Furthermore, GermaNet does not include adverbs,
while WordNet does.

Granularity The sense distinction in WordNet is more fine-grained than in

GermaNet. The average number of word senses per literal in WordNet is

!The versions compared are WordNet 3.0 and GermaNet 9.0.
2This fact is hardly surprising, since the development of WordNet started before the
work on GermaNet.
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3 Fundamentals of GermaNet

about 1.33 (i.e., 206 941 total word-sense pairs divided by 155 287 unique
strings), which is higher than the corresponding average of about 1.10 in
GermaNet (i.e., 121810 lexical units divided by 110 738 literals).

Artificial concepts GermaNet encodes artificial concepts to systematically
fill lexical gaps and to avoid unjustified co-hyponymy — as explained
in Subsection [3.4 WordNet also uses artificial concepts, but less sys-
tematically and without any special label, which makes their automatic
identification difficult. [Hamp and Feldweg, [1997]

Adjective hierarchy As for the other word classes, adjectives in GermaNet
are ordered hierarchically in terms of the hypernymy /hyponymy relation.
By contrast, WordNet encodes antonymous satellite synsets (see Miller

[1998b] for a documentation of adjectives in WordNet).

Verbal frames Mainly due to language specifics, GermaNet’s verbal frames
capture more details than those in WordNet: reflexives, grammatical
case, expletive subjects, and to-infinitives are explicitly encoded in Germa-

Net. See Subsection for more details on GermaNet’s verbal frames.

Compounds In GermaNet, nominal compounds are split into their constituent
parts and labeled with linguistic information such as foreign words and
named entities — see Subsection and [Henrich and Hinrichs [2011].
This kind of information makes particular sense for German, where com-

pounds are almost always spelled as one word.

Connectedness GermaNet is a completely connected graph hierarchy with-
out any dangling subgraphs, whereas WordNet consists of several distinct
hierarchies — one for each semantic field (see Subsection [3.4)).

Maintenance format While the development environment of WordNet uses
so-called lexicographer files, the GermaNet maintenance format has been

converted from lexicographer files to a relational database — as described
in Appendix |B|and Henrich and Hinrichs| [2010a].
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3.2 Lexical Units and Synsets

3.2 Lexical Units and Synsets

GermalNet represents meanings of words, i.e., word senses, as lexical units.
Since two word senses are synonyms if they express the same semantic con-
cept, (near-)synonymous lexical units are grouped together to form synsets
(synonym sets). That is, GermaNet represents semantic concepts as synsets,
which are set-representations of the semantic relation of synonymy.

The German wordnet distinguishes less word senses than the Princeton
WordNet (as mentioned in the previous subsection). An explicit guideline

among lexicographers was stated in the very first paper on GermaNet:

“The amount of polysemy is kept to a minimum in Germanet, an
additional sense of a word is only introduced if it conflicts with the
coordinates of other senses of the word in the network. When in
doubt, GermaNet refers to the degree of polysemy given in standard
monolingual print dictionaries.”

[Hamp and Feldweg, (1997, page 10|

Synsets in GermaNet belong to a word class (adjective, noun, or verb) and
to a semantic field (see Table for the list of 38 semantic ﬁeldsE[). Origi-
nally, the division into semantic fields was for organizational purposes, i.e., to
divide synsets into multiple files. However, since GermaNet’s conversion into
a relational database (see Appendix , these semantic fields are not organi-
zationally required anymore, but rather serve as a grouping of synsets into
semantically related topics. Since lexical units belong to synsets, correspond-
ing information on word classes and semantic fields can easily be identified for
lexical units as well.

Optionally, synsets can be assigned deﬁnitionsﬂ Prior to the research re-
ported in Chapter [4] on semi-automatically enriching GermaNet with sense

descriptions from Wiktionary, only 10% of all synsets were accompanied by

Note that the semantic fields resemble the unique beginners in WordNet (see Section
below). However, mainly due to language specific differences of the two wordnets, the lists
are not exactly identical: for instance, labels Verhalten and privativ are not available in
WordNet, while act and process are not used in GermaNet.

2Note that the terms definition, gloss, and sense description are used interchangeably
throughout this thesis.
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Table 3.1: Semantic fields in GermaNet.

| Semantic field | |Semantic field (continued) |
Allgemein ‘general’ Motiv ‘motive’

Artefakt ‘artifact’ Nahrung ‘food’

Attribut ‘attribute’ Naturgegenstand ‘natural object’
Besitz ‘possession’ Naturphdnomen ‘natural
Bewegung ‘motion’ phenomenon’
Form ‘shape’ Ort ‘place’

Gefiihl ‘feeling’/‘emotion’ Pertonym ‘pertainym’

Geist ‘spirit’ Perzeption ‘perception’
Geschehen ‘event’ Pflanze ‘plant’

Gesellschaft ‘social’ privativ ‘privative’

Gruppe ‘group’ Relation ‘relation’

Kognition ‘cognition’ Schopfung ‘creation’
Kommunikation ‘communication’| | Substanz ‘substance’
Konkurrenz ‘competition’ Tier ‘animal’

Kontakt ‘contact’ Tops ‘tops’

Kérper ‘body’ Veranderung ‘change’
Koérperfunktion ‘bodily function’ Verbrauch ‘consumption’
Lokation ‘location’ Verhalten ‘behavior’

Menge ‘quantity’ Zeit ‘time’

Mensch ‘person’

definitions. This semi-automatic enrichment has resulted in harvested defini-
tions for about 30% of all GermaNet 7.0 lexical units (i.e., 29433 out of 99 523,
see Table in Section . It should be noted that these harvested sense
descriptions are assigned to lexical units rather than synsets; but again, a list

of corresponding Wiktionary descriptions can easily be identified for synsets.

Since a lexical unit represents a word sense, it carries information on the
word itself, including its orthography. In the context of the recently adopted
German spelling reform (Neue Deutsche Rechtschreibung, Rat fur deutsche
Rechtschreibung [2006]), lexical units can have optional orthographic variants.
Since GermaNet release 5.2, as well as its obligatory main orthographic form,
a lexical unit can also have further optional variants. These variants include
spelling variants, which characterize the differences between the old and the
new German spellings, and specify whether the old variant is still valid in the

new orthography:
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Main orthographic form A lexical unit always encodes a main orthographic
form, which represents the correct spelling of a word according to the
rules of the recently adopted German spelling reform [Rat fiir deutsche
Rechtschreibung, 2006].

Orthographic variant In case of an alternative spelling that is permissible
according to the new German spelling, a lexical unit can optionally have
an orthographic variant. An example of this kind is the German noun
Delfin ‘dolphin’. Apart from the main form Delfin, there is an ortho-
graphic variant Delphin.

Old orthographic form If the orthography of a word has changed in the
context of the spelling reform, the old orthographic form represents the

main form from the old German spelling.

Old orthographic variant This encodes an orthographic variant that was
permissible prior to the spelling reform. It is encoded only if the variant

is no longer valid in the new orthography.

Furthermore, lexical units contain information about whether they repre-

sent a named entity or whether they are stylistically marked.

3.3 Lexical Semantic Relations

Lexical units and synsets are interlinked by lexical semantic relations. Germa-
Net distinguishes two types of relations: conceptual relations are established
between two semantic concepts, i.e., synsets; lexical relations are established
between two individual lexical units.

The following list explains all conceptual (semantic) relations. For each

relation, it includes an example for each applicable word class.

hypernymy /hyponymy This is the most important conceptual relation in
a wordnet. Hypernymy connects a more specific item (a hyponym) to

its more generic concept (a hypernym). The inverse direction, i.e., from
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3 Fundamentals of GermaNet

the hypernym to the hyponym, is referred to as hyponymy. Since hyper-
nymy/hyponymy is a transitive relation, it has a hierarchical structuring
function within GermaNet — see Subsection below. It is applicable
to all three word classes of adjectives, nouns, and verbs, as the following
examples illustrate respectively:
— adipds ‘adipose’ has hypernym dick ‘fat’

dick has hyponym adipds
— Fufiball ‘football’ has hypernym Ball ‘ball’

Ball has hyponym Fuflball
— boxen ‘to box’ has hypernym schlagen ‘to hit’

schlagen has hyponym boxen

component meronymy /holonymy Meronymic relations (also called part-
whole relations) make up the second largest portion of conceptual rela-
tions in GermaNet. Prototypically, they are annotated between nouns
only: the part is referred to as the meronym, and the whole object is
referred to as the holonym. GermalNet’s part-whole relation is distin-
guished into four subclasses — as introduced by Hinrichs et al.| [2013]
for GermaNet release 6.0 — of which component meronymy is the most
prevalent. Component meronymy is established between an object and
its component parts; and the inverse component holonymy relates a com-
ponent part to its larger object.
— Hand ‘hand’ has component meronym Finger ‘finger’

Finger has component holonym Hand

member meronymy /holonymy The relation of a group to one of its mem-
bers is denoted as member meronymy. The inverse direction, i.e., from a
member to its group, is denoted as member holonymy.
— Flotte ‘fleet’ has member meronym Schiff ‘ship’
Schiff has member holonym Flotte

substance meronymy /holonymy This relation connects an object to the
substance from which it is made or the substance of which it consists

(substance meronymy); and the other way around (substance holonymy).
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— Fahrrad ‘bike’ has substance meronym Stahl ‘steel’

Stahl has substance holonym Fahrrad

portion meronymy /holonymy Objects, which can be portioned into smaller
units, are involved in the portion meronymy relation.
— Tag ‘day’ has portion meronym Stunde ‘hour’

Stunde has portion holonym Tag

entailment The most prominent example of entailment is the temporal inclu-
sion of one event by another event — also referred to as a kind of subevent.
In GermaNet, events in this sense are realized by verbs or nouns, i.e., the
entailment relation might be established between two verbs (as in the
first example given below) or between two nouns (see second example
below). This relation has an inverse relation; the notation says that if
concept A entails concept B, then concept B is entailed by concept A.
— schnarchen ‘to snore’ entails schlafen ‘to sleep’

schlafen is entailed by schnarchen

— Anrufer ‘caller’ entails Telefonat ‘phone call’

Telefonat is entailed by Anrufer

causation If one action causes another action or if an action results in a cer-
tain condition (i.e., a resultative state), a causation relation is encoded.
This relation has no inverse relation. It predominantly connects verbs
with verbs (see first example given) or verbs with adjectives (see second
example).
— bremsen ‘to break’ causes verlangsamen ‘to decelerate’

— korrigieren ‘to correct’ causes richtig ‘correct’

association This relation does not concretize the exact nature of the rela-
tionship. It rather connects two semantic concepts that are somehow
related to each other, but whose type of connection is not one of the
previously itemized relations. Association relations are defined in both
directions, i.e., if concept A is related to concept B, then concept B is
equally related to concept A. In general, such associations are possible

between all word class combinations, but in practice the relation mostly
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involves at least one noun.
— Brauerer ‘brewery’ is related to Bier ‘beer’
Bier is related to Brauerei
— rocken ‘to rock’ is related to Rockmusik ‘rock music’

Rockmusik is related to rocken

The following list of lexical relations is smaller than the list of concep-
tual relations. Again, each item explains the relation in question and gives

illustrative examples.

synonymy Clearly, the linkage of synonyms is the most prominent lexical re-

lation. Two word senses are synonyms if they express the same semantic
concept. Synonymy is established indirectly by grouping synonymous
lexical units into synsets (i.e., synonym sets). The relation is bidirec-
tional and equally connects two (or even more) lexical units. Synonymy
occurs for all word classes, as illustrated by the following examples:
— bunt ‘colorful’ has synonym wielfarbig ‘colorful’

vielfarbig has the synonym bunt
— Karotte ‘carrot’ has the synonym Mohre ‘carrot’

Mohre has the synonym Karotte
— abspielen ‘to pass a ball’ has the synonym passen ‘to pass a ball’

passen has the synonym abspielen

antonymy Pairs of opposites are also called antonyms. The antonymy rela-

tion links antonymous lexical units in a bidirectional manner. Although
antonyms exist for all three word classes — as the three examples show —
antonymy is by far most frequently encoded between adjectives.
— kalt ‘cold” has the antonym warm ‘warm’

warm has the antonym kalt
— Frau ‘woman’ has the antonym Mann ‘man’

Mann has the antonym Frau
> schlieffen ‘to close’ has the antonym dffnen ‘to open’

offnen has the antonym schlieffen
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pertainymy This relation encodes derivation with a semantic origin. The
base word determines the meaning of the derived word such that the
meaning of the derived word cannot be understood without knowing the
meaning of the base word. By definition, it connects words of different
word classes. In general, all word class combinations are possible, though
some are more frequent in GermaNet. Clearly the most prominent ex-
ample of pertainymy relates a denominal adjective with its nominal base
(see first example below). In many other cases it relates a deadjectival
nominalization with its adjectival base (see second example), a deverbal
adjective with its verbal base (see third example), or a denominal verb
with its nominal base (see forth example). Pertainymy is encoded unidi-
rectional, i.e., without an inverse relation.
— schriftstellerisch ‘authorical” has the pertainym Schriftsteller ‘author’
— Miidigkeit ‘tiredness’ has the pertainym miide ‘tired’
> schldfrig ‘drowsy’ has the pertainym schlafen ‘to sleep’

> biirsten ‘to brush’ has the pertainym Biirste ‘brush’

participle This relation links a derived word to its base in a similar way
to pertainymy, but is restricted to relations between deverbal adjectives
with participle formﬂ and their verbal bases. As before, this relation
does not have an inverse relation.

— isoliert ‘isolated’ has the participle isolieren ‘to isolate’

3.4 The Hierarchy

Wordnets are hierarchically structured in terms of the hypernymy /hyponymy
relation of synsets. In the Princeton WordNet, several distinct hierarchies ex-
ist. Each hierarchy roughly corresponds to a semantic field (see the description
of semantic fields in Section above). The top synsets of these hierarchies
are called unique beginners [Fellbaum), [1998b; [Miller, |1998a|. This is different

in the German wordnet. Since release 5.2, GermaNet is a completely connected

!Note that GermaNet does not generally cover all participles, it includes only those
participles whose meanings go beyond the meanings of the base verbs.
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graph without any dangling subgraphs. There is a single artificial top node
(labeled as GNROOT') subsuming all synsets of all word classes. The previous
unique beginners are direct or indirect hyponyms of this common top synset.

Artificial concepts such as the top node GNROOT represent non-lexicalized
concepts which help to structure the GermaNet hierarchy and to avoid un-
justified co—hyponymyﬂ. GermaNet contains artificial concepts (i) for purely
structural requirements as well as (ii) for lexical gaps in the German language.
Artificial nodes of type (i) subsume proper artificial concepts that are unlikely
to be lexicalized in any language, whereas artificial concepts of type (ii) are
likely to be lexicalized in other languages.

Several semantic concepts express more than one aspect of meaning. To
capture multiple equally important hypernyms for a semantic concept, Germa-
Net allows the encoding of more than one hypernym for a synset. This phe-
nomenon is referred to as cross-classification and is systematically employed
to capture multiple meaning aspects for a concept rather than encoding only

a partial aspect.

3.5 Interlingual Links to Princeton WordNet

The interlingual index (ILI) represents an extensive multilingual lexical
database which connects wordnets of different languages. The central com-
ponent of this database is a list of basic vocabulary meanings taken from
the Princeton WordNet for English, to which corresponding concepts from
wordnets of other languages are linked. That is, the index allows a map-
ping of concepts of different languages via lexical semantic relations such as
hypernymy, hyponymy, synonymy, near-synonymy, holonymy, meronymy, etc.
[Vossen, |1998| [2002]

The ILI was initially created in the context of the EuroWordNet projectﬂ

I'Two synsets with the same hypernym — see Subsection above — are denoted as
co-hyponyms.

2For more information about the EuroWordNet project, please see Vossen| [1998]
and [Vossen| [2002], and the project webpages of the GlobalWordNet (http://www.
globalwordnet.org/) and the EuroWordNet (http://www.illc.uva.nl/EuroWordNet/
#EuroWordnet)) projects.
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3.6 Nominal Compounds

In the context of this project, 20000 ILI records were created for GermaNet.
These allow the mapping of GermaNet senses to the corresponding entries in
the Princeton WordNet (and, as a consequence, also to corresponding entries in
other wordnets). For compatibility with recent versions of GermaNet, existing
GermaNet—ILI records have been revisedﬂ and, since release 7.0, integrated
into the official GermaNet release. The German part of the ILI is extended
to 28661 records in GermaNet release 9.0 (see Table in Section 3.9). By
far the most frequent type of interlingual relation is synonymy which occurs in
72.3% of all German ILI records. While near-synonymy is encoded in 16.3%

and hypernymy in 6.6%, the other types of relations occur much scarcer.

3.6 Nominal Compounds

Compounding is a highly productive word formation process in German re-
sulting in complex words with two or more constituent parts. In GermaNet,
nominal compounds are split into their constituent parts, i.e., modifier and
head [Henrich and Hinrichs, 2011]. The splitting identifies the immediate con-
stituents at each level of analysis and thus reflects the recursive nature of
compounds that have more than two constituent parts, such as Autobahnan-
schlussstelle ‘motorway junction’ — see Figure|3.1l The immediate constituents
of this compound are Autobahn ‘motorway’ and Anschlussstelle ‘junction’, with
the first constituent further split into Auto ‘car’ and Bahn ‘way’ and the second
constituent further split into Anschluss ‘connection’ and Stelle ‘place’.

What makes compound splitting for German a challenging task is the fact
that compounding is not always simple string concatenation, but often involves
the presence of intervening linking elements or the elision of word-final charac-
ters in the modifier constituent of a compound |[Eisenberg;, 2006].E| Compound
splitting in GermaNet is supported by an automatic algorithm described in

Henrich and Hinrichs [2011]. The basic idea of this algorithm combines several

!Note that the revised GermaNet-ILI records link lexical units, although the original ILI
designated the mapping of synsets.

JLanger| [1998| presents a frequency table for German linking morphemes and elisions,
according to which approximately half of the compounds he investigated contain some kind
of linking morpheme or elision.
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Autobahnanschlussstelle

Autobahn Anschlussstelle

Auto Bahn Anschluss Stelle

Figure 3.1: Split compound Autobahnanschlussstelle ‘motorway junction’.

individual compound splitters to identify the immediate constituents of nomi-
nal compounds at each level of analysis. All automatically split compounds are
manually post-corrected and enriched with information on relevant properties
before they are inserted into GermaNet.

The rightmost head constituent of German nominal compounds is, by def-
inition |Eisenberg) [2006], a noun. By contrast, modifiers are manually labeled

with appropriate classes — see Table (3.2

Table 3.2: Modifier classes.

’ Class \ Example

adjective | kurz ‘brief’ in Kurzbeschreibung ‘brief description’
adverb nicht ‘non-" in Nichtraucher ‘non-smoker’

noun Tomate ‘tomato’ in Tomatensuppe ‘tomato soup’
particle selbst ‘self-" in Selbstmotivation ‘self-motivation’
preposition | vor ‘pre-’ in Vorname ‘prename’

pronoun niemand ‘nobody’ in Niemandsland ‘no-man’s-land’
verb klappen ‘to fold’ in Klappstuhl ‘folding chair’

In GermaNet, all modifiers are lemmatized and if a modifier is ambiguous
with respect to its word class (due to conversion), both possibilities are spec-
ified: for example, the verb feiern ‘to feast’ and the noun Feier ‘feast’ are
encoded as modifier alternatives for the compound Feiertag ‘feast day’; for the
compound Reisekosten ‘playing card’, both the verb reisen ‘to travel’ and the
noun Reise ‘travel’ are specified as plausible modifiers.

Furthermore, several properties are manually encoded for modifiers and
heads, as shown in Table [3.3]

67



3.7 Verbal Frames

Table 3.3: Properties for compound constituents.

] Property \ Example (and explanation, if needed)
abbreviation™ IP ‘IP’ in IP-Paket ‘IP packet’
affixoids have a special grammatical status
affixoid* between bound and free morphemes; e.g.,
haupt ‘main’ in Hauptbahnhof ‘main station’
foreign word* Offset ‘offset’ in Offsetdruck ‘offset printing’

bound morphemes which are borrowed from a
combining form*® | foreign language and whose meaning stems from
(German: konfiz) |that particular language, e.g.,

bio- ‘organic’ in Biosiegel ‘organic seal’

opaque morpheme* | Him- in Himbeere ‘rasperry’

proper name’ Valentin ‘Valentine’ in Valentinstag ‘Valentine’s Day’

Zieher nominalization for ‘to pull” (word does not
exist in isolation) in Schraubenzieher ‘screwdriver’
drei Zimmer ‘three-room’ in

Dreizimmerwohnung ‘three-room flat’

virtual word form?

word group!

*Property occurs both for modifiers and heads.
TProperty occurs for heads only.
J;Property occurs for modifiers only.

$The term combining form is taken from Bauer| [1983] pages 213fL.].

For many applications, it is helpful to have information about the parts of
the compound, as usually the semantic interpretation of a compound is based
on the meaning of its constituent parts. Therefore, in the most recent version
of GermaNet, all nominal compounds have been identified, split into their con-
stituent parts, and labeled with appropriate linguistic information. Altogether,
62.4% of all nouns in GermaNet are compounds (i.e., 54 759 out of 87811 noun
lemmas)E] In Chapter , some WSD experiments use the information on the

splitting of compounds in GermaNet.

3.7 Verbal Frames

All verb senses in GermaNet have frames and example sentences illustrating

the sense in question. Verbal frames denote syntactic patterns for verbs (also

IThe numbers are calculated for GermaNet release 9.0.
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referred to as subcategorization or valency). They represent sequences of frame
labels that refer to different types of phrasal and sentential categories, including
nominal, accusative, dative, genitive, or prepositional objects. They purely en-
code syntactic structures rather than semantic information. The basic idea of
GermaNet’s verbal frames is based on the CELEX Lexical Databasdl] [Baayen
et al. [1995]. In the CELEX terminology |Gulikers et al., |1995|, these frame
label categories are referred to as complements or complementation codes.
Table[3.4 presents all frame labels that occur in GermaNet’s verbal frames —
ordered alphabeticallyﬂ The table briefly explains each frame label and gives a
sample sentenceﬁ which exemplifies the frame label in question. In GermaNet,
each example sentence is related to a verbal frame; but verb senses might have

further frames without sentences.

Table 3.4: Frame labels occuring in GermaNet’s verbal frames.

Fr
lai)r;lle Explanation and example
AT Verbal infinitive clause;
+ Das Kind kann schwimmen® . (‘The child can swim.’)
o
2 AN Noun phrase in accusative case (accusative object);
e . , .
= + Br ziichtet Dalmatiner™ . (‘He breeds Dalmatians.’)
2 Reflexive pronoun in accusative case (accusative object);
C| AR* - 1AR ([« )
< — Ich sonne mich™™. (‘I sun myself.’)
A7 Verbal infinitive clause with zu ‘to’;
s Sie begann [zu singen/'?. (‘She began to sing.’)

Continued on next page

! Although the underlying idea comes from the CELEX database, the concrete encoding
is heavily adjusted for GermaNet. For example, GermaNet provides frames for verb senses
rather than for lemmas and uses an easily readable compact notation rather than a complex
numeric code. Furthermore, GermaNet includes reflexive, sentential, and subject frame
labels which are not included in the original CELEX.

2The frame labels are abbreviations of two (or three) letters: basically, the first letter
denotes the grammatical function and the second letter subdivides the frame labels by
syntactic categories.

3Most examples are simplified versions of GermaNet’s example sentences.
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Table 3.4: Continued from previous page.

Frame
label

Explanation and example

BC~

Causative adverbial, can be realized by an adverb or by an adverbial
or prepositional phrase;
— Seine Augen leuchten [vor Freude/P¢. (‘His eyes glow with joy.’)

BD*

Directive adverbial, can be realized by an adverb or by an adverbial
or prepositional phrase;
— Sie blickt [in die Ferne/PP. (‘She looks into the distance.’)

BL*

Locative adverbial, can be realized by an adverb or by an adverbial
or prepositional phrase;
— Ich bin [im Schwimmbad/PL. (‘1 am in the swimming pool.’)

Adverbial of manner, can be realized by an adverb or by an adverbial
or prepositional phrase;
— Er ist jung®™. (‘He is young.’)

Adverbial

BO*

Comitative adverbial, realized by a prepositional phrase;
— Sie scherzt [mit ihm/PC. (‘She jokes with him.")

BR*

Role adverbial, realized by a prepositional phrase;
— Er tritt [als Zeuge/PT auf. (‘He appears as witness.’)

BS*

Instrumental adverbial, can be realized by an adverb or by an ad-
verbial or prepositional phrase;
— Das Baby rasselte [mit seinem Spielzeug/P.

(‘The baby rattles with its toy.”)

BT~

Temporal adverbial, can be realized by an adverb or by an adverbial
or prepositional phrase;
— Die Geschifte dffnen [samstags um 9 Uhr[PT.

(‘The shops open Saturdays at 9 o’clock.”)

DN~

Noun phrase in dative case (dative object);
— Sie hort [der Musik/PN zu. (‘She listens to the music.”)

Dative

DR*

Reflexive pronoun in dative case (dative object);
— Er merkt sichP® alle Details. (‘He memorizes all details.’)

DS*

Subordinate clause introduced with dass ‘that’;
— Dies bedeutet, [dass er gewinnt/PS. (‘This means that he wins.’)

Sentential

FS*

Interrogative sentence;
— Wir werden klarstellen, [wie es dazu kam[F™S.
(‘We will clarify how it came about.’)

Continued on next page
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3 Fundamentals of GermaNet

Table 3.4: Continued from previous page.

Fr

lairgle Explanation and example
— Interrogative sentence with question particle ob ‘whether’/if’;
"g FSot | = Sie fragt, [ob ich morgen einen Termin habef'™™°.
S (‘She asks whether I have an appointment tomorrow.”)
.;f Interrogative sentence beginning with a ‘w’-interrogative pronoun
§ ; (e.g., wer ‘who’, was ‘what’, wie ‘how’);

g FSw'l s Der Chef entscheidet, [wer welche Aufgabe tibernimmt/f">® .
@ (‘The boss decides who undertakes which task.”)
s Noun phrase in genitive case (genitive object);
Z|aN* |+ Er gedachte [seines toten Vaters/N.
& (‘He commemorated his dead father.”)

NE' |Expletive subject es ‘it’; — Es™E nieselt. (‘It drizzles.’)

.g A second noun phrase or adjectival phrase in nominative case be-
®INGtH |sides the subject (in German Gleichsetzungsnominativ or Pradikats-
g nominativ); — Er ist [ein Kiinstler/N¢. (‘He is an artist.’)
S NN Noun phrase in nominative case which represents the subject of the
z sentence; — [Die Benzinpreise/™ steigen. (‘Petrol prices rise.”)
g, Prepositional phrase;
ol pp* | Der See glinzt [im Mondschein|FT .
R~ (‘The lake glistens in the moonlight.”)

*Frame label can be specified either as obligatory or as optional.

TFrame label is always specified as obligatory.

iStrictly speaking, verbal infinitive clauses do not encode case. However, since infinitive
clauses both with and without zu ‘to’ can often be substituted by accusative objects, the
corresponding frame labels Al and AZ are assigned to the accusative group in the table.

If a verbal frame requires more than one frame label, the frame labels are
concatenated by dots (). For example, the frame NN.DN.AN.BD consists of
the four frame labelﬂ of a nominative subject (NN), a dative and an accusative

object (DN and AN), and a directive adverbial (BD).

While most of the frame labels are obligatory, some frame labels can be

specified as optional. Optional frame labels are indicated by a lower case second

letter, e.g., NN.Dn.AN.Bd specifies the same frame as above with optional

dative and adverbial frame labels. Table 3.4 marks all frame labels that can

Four is the maximum number of frame labels combined in one verbal frame.
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be specified either as obligatory or as optional with a superscript * and frame
labels that exist only in an obligatory version with a superscript .

Verbs differ in the degree of correlation between word senses and frames,
ranging from total correlation to a complete lack of correlation. That is, while
the syntactic structure in which a verb occurs is highly predictive of different
word senses for some verbs, syntactic structures are not informative enough to
distinguish word senses for other verbs. The manually sense-annotated verbs
in the TiiBa-D/Z treebank are selected to represent a mixture of correlations
among word senses and frames — see Section [5.3] The impact of features
encoding verbal frame information on machine learning systems for automatic

word sense disambiguation is tackled in Chapter

3.8 Data Formats for GermalNet

Since GermaNet 7.0, the official release package contains two data formats:

XML format The GermaNet XML format was initially developed by Kunze
and Lemnitzer| [2002], but modifications of the GermaNet data itself led
to an adapted XML format. An updated version (for GermaNet 5.3) is
presented in Henrich and Hinrichs| [2010b]. The most recent version (for
GermaNet release 9.0, as of April 2014) subsumes four different kinds
of XML files described by four DTDs. Firstly, the XML files which
represent all synsets and lexical units of GermaNet are organized around
the three word classes included in GermaNet: nouns, adjectives, and
verbs. Since the semantic space for each word class is divided into a
number of semantic subfields (see Subsection [3.2)), there are altogether
54 such synset files. Secondly, one XML file contains all relations, both
conceptual and lexical. Thirdly, the interlingual links to the Princeton
WordNet (see Subsection are stored in a separate file. Fourthly, three
files — one per word class — contain the recently introduced GermaNet-
Wiktionary alignment, including the Wiktionary sense descriptions that
extend several lexical units from GermaNet (see Chapter {| for more
details).
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3 Fundamentals of GermaNet

Relational database The working development copy of GermaNet was con-
verted into a relational database — as described in [Henrich and Hinrichs
[2010a]. The database model follows the internal structure of Germa-
Net, which means that there are tables to store synsets, lexical units,
conceptual and lexical relations, etc. The complete database structure
is detailed in Appendix [B] Since GermaNet 7.0, a dump of the relational

database is included in the official release package.

3.9 Coverage of GermaNet

GermaNet aims for a broad, general, and domain-independent language cov-
erage of the three word classes of adjectives, nouns, and verbs. It covers only
the most common technical terms and includes named entities of locations
whereas it excludes named entities of persons. The insertion of new words
into GermaNet follows a corpus-based approach. That is, lexicographers pro-
cess frequency-sorted lists of lemmas, extracted from large text corpora. This
approach implies a prioritization of base vocabulary. However, at a certain
point — when all base vocabulary of the German language has been included —
the lemma lists also itemize less frequent words. Concerning the current sta-
tus of GermaNet, potentially new entries for nouns, for instance, mainly cover
compounds whereas potentially new entries for verbs often constitute particle
verbs.

The development of GermaNet started in 1997, and is still in progress.
Since the resource is publicly released on a yearly basis, six official GermaNet
releases were published during the work on this dissertation. Table presents
coverage numbers for the four most relevant versions (see Appendix [A| for
detailed descriptions).

Comparing the coverage of the first listed release 6.0 from April 2011 with
the most recent release 9.0 as of April 2014, the table reports an increase of
more than 130% in the number of synsets, lexical units, and literals. This
substantial extension requires a consequent treatment and consistent docu-

mentation of GermaNet releases throughout the work of this dissertation. It
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3.9 Coverage of GermaNet

Table 3.5: Comparison of relevant GermaNet releases.

Official GermaNet release

6.0 | 70 | 80 | 9.0
Release date 04/2011 | 05/2012 | 04/2013 | 04/2014
Synsets 69594 | 74612 | 84584 | 93246
Lexical units 93407 | 99523 | 111361 | 121810
Literals, i.e., lemmas 85214 | 89819 | 100750 | 110738
Lexical units per synset 1.34 1.33 1.32 1.31
Conceptual relations 81852 | 87115 | 96925 | 105912
Lexical relations* 3562 3544 4081 4258
Interlingual index (ILI) - 19609 | 26307 | 28661
Wiktionary sense descriptions - 29433 | 29544 | 29475
Split compounds - - 40474 | 54759

*Since the synonymy relation is not explicitly encoded in GermaNet but indirectly
determined by the grouping of lexical units into synsets, the specified numbers
of lexical relations exclude synonymy.

further presupposes the adjustment and update of all sense-annotated corpora
to the same, most-recent version of GermaNet (see Chapter @, in order to
make the experimental WSD results for the three corpora comparable and
up-to-date.

Each task and experiment of this thesis uses the most recent version of
GermaNet that was available when the work commenced. Thus, several Germa-
Net releases serve as a basis for different tasks; and, vice versa, several manual
and (semi-)automatic extensions entered a new GermaNet release. In all of the
following chapters, the corresponding GermaNet version is specified for each
task described. Appendix [A] provides a detailed summary of all significant
GermaNet releases referenced in this thesis; including information on which
release serves as the basis for which task, and which release contains which

newly contributed information.
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Chapter 4

Aligning GermalNet with
Wiktionary

Sense deﬁnition{] in a dictionary or wordnet serve a number of important

functions:

(i) They help to distinguish different senses of a word both for humans
and computers. Especially in those cases where a sense does not have

synonyms that allow identifying the sense.

(ii) They enhance the usability of dictionaries and wordnets for a wide vari-
ety of NLP applications, including word sense disambiguation, machine

translation, information retrieval, and semantic similarity measures.

(iii) They facilitate the sense alignment of dictionaries or wordnets with other

lexical resources.

Although wordnets pursue the relational approach of defining word senses
(see Section , the Princeton WordNet for English provides sense definitions
for most of its synsets. Mainly for the reason stated by Miller| [1995, page 40]:
not enough semantic relations are encoded into WordNet to support such con-
structions. Following standard lexicographic practice, definitional glosses are

included in most synsets. For example, the synset {pipe, tube} is explained as a

1 As stated in Footnote [2| on page the terms definition, gloss, and sense description
are used interchangeably throughout this thesis.
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hollow cylindrical shape. While such definitions or descriptions are useful — not
only for the three points (i) to (iii) listed above — many wordnets for languages
other than English — including GermaNet — lack comprehensive coverage of
such deﬁnitionsEl Rather, these wordnets rely on the implicit mutual disam-
biguation of word senses by the members of a synset. For example, for the
synsets {pipe, tobacco pipe} and {pipe, tube}, the contrast between the lexical
units tobacco pipe and tube indicates which senses are documented by the two
synsets. This type of implicit disambiguation has its limits for those words
where the individual senses are synsets with only one member. For example,
GermaNet contains two senses for the word Pfeife, which can either refer to a
whistle or a tobacco pipe, with each sense represented by a single lexical unit

as the only member of a synset (see the right part of Figure .

Wiktionary
['wik[anri] n.,

a wiki-based Open
Pfe ife part-of-speech Content dictionary

inflection table

Substantiv, f [Bearbeiten] Germallet

Worttr g hyphenation Kasus | Singular | Plural
Pfei-fe, Plural: Pfei-fen ———— = - -

Aussprache: pronunciation Nominatly |dle Pfeife  die Preifen /‘[1- Pfeife ‘tobacco pipe” | noun | Artefakt
|PA: ['pfafa], Plural: ['pfaxfn] Genitiv der Pfeife |der Plei

Bedeutungen: senses Dativ e den Pfeifen Hypernyms  Raucherzubehér, Raucherbedarf Behalter, Behltnis

[1] Gerat zum Erzeugen von
Tonen, bei dem Luft in der Regel

a1y cie Peite |die Pleifen Hyponyms  Meerschaumpfeife Glaspfeife Wasserpfeife

(iber eine Kante geblasen wird Schillum
(2] die Hupe von Schiffen und Q
I —{(2_Pfeife whistie” )
noun | Artefakt
3] veraltet: Pikkoloflote whistle ‘

[
[4] Gerat zum Rauchen

[5] Blasrohr des Glasbldsers
[

6] umgangssprachlich: Versager [ A “ Hyponyms  Trillerpfeife Orgelpfeife
[7] Penis des Mannes -

Hypernyms  akustisches Gerét

Herkunft: etymology

. [1] zwei Pfeifen
mittelhochdeutsch phife,

pfife,

Figure 4.1: Sense mapping example using Pfeife ‘tobacco pipe; whistle’.

In order for humans to manually annotate word occurrences in a corpus
with senses from GermaNet (which is the topic of the next Chapter , the

distinction of senses has to be clear in the minds of the annotators. Without

IThe reason for this lack of sense definitions is an entirely pragmatic one: the inclusion
of descriptions in a wordnet requires considerable human resources, which are often not
available.
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4 Aligning GermalNet with Wiktionary

sense definitions, this distinction is difficult as the Pfeife example has illus-
trated. Furthermore, several WSD algorithms rely on the existence of sense
definitions (see Chapter [7]). That is, having sense definitions in GermaNet
is obviously beneficial for the purposes of this dissertation, but GermaNet’s
coverage of definitions is far from complete and does not include, e.g., the
synsets for Pfeife. Prior to the research reported hereﬂ only 10% of all synsets
in GermaNet were accompanied by definitions. Given the broad coverage of
GermalNet, adding descriptions to the missing 62582 synsets by purely man-
ual, lexicographic work would be an arduous task. Therefore, the possibility of
employing automatic or semi-automatic methods for adding sense descriptions
would be extremely valuable.

The purpose of this chapter is to explore this possibility on the basis of Wik-
tionary, a freely available, web-based dictionary containing sense definitions.
The two above mentioned senses of Pfeife in GermaNet are defined as Gerdt
zum FErzeugen von Tonen, ber dem Luft in der Regel iber eine Kante geblasen
wird ‘instument for producing sounds, where air is usually blown across an
edge’ and Gerdt zum Rauchen ‘instrument for smoking’ in Wiktionary (see
the left part of Figure . The idea is to automatically harvest Wiktionary’s
definitions by mappingﬂ word senses in GermaNet to the corresponding entries
in Wiktionary, as illustrated in Figure [1.1 Such a sense mapping relies heavily
on word sense disambiguation, i.e., the task of identifying the correct sense of
a word in one resource that matches the corresponding sense of the word in a
second resource requires the disambiguation of the matching word senses. In
the running example this means that, starting with the first sense of Pfeife
in GermaNet, an automatic disambiguation algorithm has to decide which of
the seven sense descriptions from Wiktionary for the word Pfeife matches this

‘tobacco pipe’ sense.

Note that this chapter is an extended version of work that has previously
been published by Henrich et al.|[2011]. The described algorithm is the same,

but this chapter gives more details on the results. Also note that recently this

!That is, for GermaNet release 6.0, April 2011.
2Note that the terms mapping and aligning/ alignment are used interchangeably through-
out this thesis.
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chapter has independently been published |[Henrich et al., |2014b].

The following Section briefly introduces the web-based dictionary Wik-
tionary and motivates why this resource has been used for the automatic
harvesting of sense definitions. A word sense alignment algorithm is devel-
oped that performs the automatic harvesting of sense definitions for GermaNet
senses — see Sections and A comparison of different setups of the algo-
rithm yields as the best result an accuracy of 93.8% and an Fi-score of 84.3,
which confirms the viability of the proposed method for automatically enrich-
ing GermaNet — see Sections [£.4 and [£.5] Related work on aligning wordnets
with Wiktionary is presented in Section [4.6]

4.1 Wiktionary

Wz’ktionaryﬂ is a web-based dictionary that is available for many languages,
including English and German. As is the case for its sister project Wikipedia,
it is written collaboratively by volunteers and is freely availableﬂ. The online
dictionary follows the idea of a traditional dictionary by distinguishing several
meanings of a word. Distinct word senses are identified by sense descriptions
and accompanied with example sentences illustrating the sense in question.

Furthermore, Wiktionary provides information such as parts of speech, hy-
phenation, possible translations, inflection, etc. for each word. It includes,
among others, the same three word classes of adjectives, nouns, and verbs that
are also available in GermaNet. Wiktionary provides relations to other words,
e.g., in the form of synonyms, antonyms, hypernyms, hyponyms, holonyms,
and meronyms. In contrast to GermaNet, the relations are (mostly) not dis-
ambiguated.

As an example, a part of a word entry is shown on the left side of Figure[4.1]
It shows, inter alia, information on the word’s part of speech (Substantiv, f),
hyphenation (Pfei-fe, Plural: Pfei-fen), inflection (see the table with inflected

word forms for all four German cases in singular and plural), and a list of

!See http://www.wiktionary.org
2Wiktionary is available under the Creative Commons Attribution/Share-Alike license
http://creativecommons.org/licenses/by-sa/3.0/deed.en.
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descriptions for the seven distinguished word senses.
The reason why Wiktionary has been chosen to harvest sense definitions

for GermalNet is threefold.

(i) Wiktionary is freely available and its license allows the redistribution of

harvested materials.

(ii) There is a freely available Java-based library JWKTL]Y| [Zesch et al.,[2008]

that allows accessing all Wiktionary data programmatically.

(iii) The overlap of terms that are in both resources is large enough, as re-
ported by a survey of the overlaps of GermaNet and Wiktionary which
shows that, disregarding word sense disambiguation, about 30,488 terms
(45.23%) in GermaNet are also present in the German Wiktionary [Zesch,
2010b|.

For the present project, a downloaded copy of the German Wiktionary as
of February 2, 2011 is utilized, consisting of 46 457 German words comprising
70 339 word senses.

4.2 The Idea of the Alignment Algorithm

In the current scenario of Wiktionary and GermaNet, the aim is to correctly
map a GermaNet lexical unit to a Wiktionary sense definition in order to har-
vest sense definitions from Wikionary. This task includes word sense disam-
biguation, i.e., given a sense from one resource it has to identify (disambiguate)
the correct matching sense from the other resource. For each lemma (also re-
ferred to as the target word, i.e., the word under consideration) contained in
Germalet, it takes all lexical units representing that lemma and tries to dis-

ambiguate which of Wiktionary’s senses for that lemma is the correct matchﬂ

'http://www.ukp.tu-darmstadt.de/software/jwktl

2Note that this procedure of collecting candidate pairs coincides with the work by Meyer
and Gurevych| [2011] (see related work in Section [4.6) on aligning WordNet with the English
Wiktionary. Eventually — on the level of synsets — both studies (theirs and the one presented
in this chapter) have collected as the candidate alignments for a synset all senses from
Wiktionary for all synonymous words in that synset.
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4.2 The Idea of the Alignment Algorithm

There can be more than one occurrence of a target word in GermaNet,
thus a target word can correspond to a number of lexical units, each belong-
ing to a distinct semantic concept, i.e., synset. The mapping of each sense
definition in Wiktionary needs to consider all synsets containing the target
word in GermaNet. Further, due to different sense granularities and distinct
coverages of Wiktionary and GermalNet, some senses in GermaNet may corre-
spond to more than one, exactly one, or even no senses in Wiktionary. In the
other direction, some Wiktionary senses correspond to more than one sense
in GermaNet. Even if there is exactly one sense in both resources, this does
not necessarily mean that they match. For example, there is exactly one sense
for Angeln ‘fishing’ in GermaNet and exactly one sense for Angeln in Wiktio-
nary described as Landschaft im Nordosten Schleswig-Holsteins ‘region in the

north-east of Schleswig-Holstein’; but these two senses are clearly distinct.

The other challenge for the mapping is the absence of sense definitions in
GermaNet, which prohibits, e.g., simply applying a word overlap disambigua-
tion (such as the [Lesk| [1986] algorithm, see Subsection out-of-the-box.
Hence, in this chapter a word sense alignment algorithm is developed, which
accommodates auxiliary information from GermaNet and Wiktionary to en-

able a word overlap approach.

Lexical fields: Therefore, the notion of lexical fields is introduced. Lexical
fields substitute sense descriptions in GermaNet by encapsulating relations and
semantic field information.ﬂ That is, lexical fields are a bag of words that
represent the lexical unit in question. Figure 4.2] visualizes the extraction of
the lexical field information for one sense of the word Eisen ‘iron’ in GermaNet.
All lexical units (the items in the boxes with a white background in Figure
related to the target word — either directly by a lexical relation or indirectly
by a conceptual relation — are extractedﬂ For example, the synonym Ferrum

‘ferrum’, the hypernyms Schwermetall ‘heavy metal’, Mineralstoff ‘mineral’,

LA similar kind of technique using all related words for constructing pseudo glosses has
been used by |Gurevych| [2005] for the purpose of computing semantic relatedness for any
two words in GermaNet.

2As indicated by the panel (with the caption key) in the top left part of Figure
conceptual relations connect synsets whereas lexical relations connect lexical units contained
in synsets.
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etc., the holonyms Fisenerz ‘iron ore’, Stahl ‘steel’, etc., the hyponyms Magnet
‘magnet’, Gusseisen ‘cast iron’; etc. — to name only a few. In addition to
the terms obtained via lexical and conceptual relations, the lexical fields are
further enriched by the semantic field (see Section that the target word
belongs to. The word Eisen, for example, belongs to the semantic field Substanz
‘substance’. This is why the term Substanz is added to the lexical field. All
words that have been added to the lexical field in the example are listed on
the right in Figure 4.2

Lexical unit Eisen ‘iron’ and its context in GermaNet Lexical field

Eisen
Element Ferrum
Substanz
Chemisches Schwermetall
Element Mineral
Mineralstoff
Element
Chemisches Element
Roheisen
Gusseisen
Magnet
Magnetstein

key

Mineral

nset conceptual relation nse

'.
lexical relation

—
Schwermetall

Primary relations

hypernymy

Rost
Eisenoxid
Stahl
Eisenerz
Eisen-Erz

{ccre- )
i
eisenhaltig
eisern

\ J \ J/

Secondary relations

Figure 4.2: Lexical field example using Fisen ‘iron’.

Given a target word, the alignment algorithm counts the overlaps between
each of Wiktionary’s sense definitions and each of the lexical fields represent-
ing lexical units in GermaNet. For example, the lexical field of Fisen ‘iron’
in GermaNet contains the hypernym Chemisches Element (see the box on
the right in Figure , which appears in the first sense definition of Fisen
in Wiktionary described as Chemie, ohne Plural: chemisches Element, silber-
weifSes, bei Feuchtigkeit leicht ozidierendes Metall ‘Chemistry, without plural:
chemical element, silver-white, on dampness easily rusting metal’.

Coordinated relations: Besides the application of lexical fields for count-

ing word overlaps, the alignment algorithm utilizes the occurrence of the same
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relations in GermaNet and Wiktionary — which is referred to as coordinated re-
lations. As mentioned in the introductory sections on Wiktionary (Section
and GermaNet (Section [3.3), the two resources have several relations in com-
mon, for example the hypernymy and the hyponymy relations. Thus, if a
lexical unit in GermaNet and a sense in Wiktionary both show the same hy-
pernyms, this is a strong indicator for their equality. For example, Fisen in
the sense of ‘iron’ in GermaNet and the first sense of Eisen in Wiktionary
both show, among others, the same hypernym Schwermetall and the same two
hyponyms Roheisen and Gusseisen, which are a good indicator that these two
entries express the same semantic concept.

Utilizing the overlap information of lexical fields and coordinated relations

is the underlying idea of the developed alignment algorithm.

4.3 Implementation of the Alignment Algorithm

Preprocessing: Wiktionary sense descriptions are tokenized and stopwords,
such as determiners, are withdrawn. All words are normalized using either
stemming (Snowball stemmer |Porter, 1980]) or lemmatization (TreeTagger
[Schmid, [1994]) [ Since compounding is a highly productive word formation
process in German |Eisenberg, [2006], splitting compounds that occur in the
sense descriptions in Wiktionary and in the lexical fields in GermaNet increases
the overlap rate. For instance, after splitting the compound Wasserwelle ‘wa-
terwave’ into its two components Wasser ‘water’ and Welle ‘wave’, an overlap
(of Wasser) with the first sense definition in Wiktionary, i.e. Physik: Erhe-
bung von Wasser ‘physics: elevation of water’, can be captured. Duplicates,
which arise due to compound splitting, are eliminated to avoid multiple overlap
counts for the same word. For example, one sense of the word Welle has the
compound Wasserwelle as a synonym and thus the compound appears in the
lexical field of Welle. Compound splitting therefore results in two occurrences
of Welle in the same lexical field (of which one occurrence is eliminated to

avoid multiple counts).

!Several experiments with stemming and lemmatization yielded better results with stem-
ming. Thus, all below described experiments use stemming as a preprocessing step.
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Different versions: Basically, two versions of the alignment algorithm
are implemented, which can be run separately or in combinationﬂ The first
variant utilizes the lexical fields in GermaNet as described above. All words
are included into the lexical field that are directly connectedﬂ to the target
word. For experimenting with different sets of words, two types of relations
are distinguished: primary relations, such as synonymy, hypernymy, and hy-
ponymy, constituting the fundamental structure of a wordnet; and secondary
relations, such as association, causation, entailment, holonymy, meronymy,
and pertainymy with a subordinated importance. In the previous example
of Fisen ‘iron’, all words that are connected by a primary relation are listed
above the line in the box on the right in Figure 1.2 and all words connected
by a secondary relation are listed below the line. An overlap of single words
is calculated between a tokenized Wiktionary sense description and a lexical

field belonging to a target lexical unit in GermaNet.

The second variant of the alignment algorithm counts the overlaps of co-
ordinated relations between GermaNet and Wiktionary (as explained in Sec-
tion . Therefore, all relations that occur in both resources, such as syn-
onymy, antonymy, hypernymy, hyponymy, meronymy, and holonymy, are con-

sidered.

Overlap count: More precisely, each of the target lexical units in Germa-
Net is represented by a lexical field (as described in Section . An overlap
is calculated between a lexical field in GermaNet and a sense description in
Wiktionary. The overlap is a mere count of the number of words z; for z; € X,
where X is a set of words representing the lexical field of a target lexical unit
in GermaNet found in the set of words of a Wiktionary sense description —
optionally augmented by the coordinated relations overlap. Further, in case

that there is exactly one sense in both resources for a given word, an initial

L Additionally to these options the algorithm can be run in a case-sensitive and in a
case-insensitive mode. By distinguishing nouns, which are always capitalized in German,
case-sensitivity automatically reduces the number of potentially erroneous combinations,
and thus in several runs of the algorithm the case-sensitive mode always outperformed the
case-insensitive mode. This is why all reported experiments rely on a case-sensitive setup.

2Here, directly connected means that the path length between two words is exactly one —
disregarding the type of relation (lexical or conceptual).
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count of 1 is given to the overall count of overlaps/f]

The alignment algorithm maps the Wiktionary sense definitions with the
highest overlap counts to a given lexical unit in GermaNet and disregards all
other overlap counts (even if those are above Zero)E| Notice that the overlap
calculation can result in the same overlap score for several senses in Wiktionary.
In these cases, more than one Wiktionary sense definition is mapped onto the
lexical unit in questior] and is taken to mean that the lexical unit in GermaNet
is jointly described by the Wiktionary sense descriptions in question.

Algorithm setups: As the lexical fields do not consist of continuous word
sequences but rather of single words, it is not possible to give more weight to
longer sequences of word matches as it is done by Banerjee and Pedersen| [2003].
In order to be able to fine-tune the most reliable set of relations, the algorithm
includes the possibility of specifying individual weights for different relations.

A set of alignment experiments were conducted that differ from each other
in the weight assigned to the terms that make up the lexical field of a given
GermaNet lexical unit (see Table . For setups A — C, only the terms con-
tributed by a single primary relation are considered (given a non-zero weight).
Setup D considers only all secondary relations and setup E only all coordi-
nated relations. In setup F, all terms obtained by the primary, secondary, and
coordinated relations are given equal weight. In addition, a set of experiments

has been conducted where the terms obtained by the different relations were

INeedless to say, assigning an arbitrary count of at least 1 to the overlap score between
words occurring exactly once in both resources results in a positive mapping of these two
senses which, in turn, results in a prediction of false positives for all cases, where those
senses do not match (see the example of Angeln in Section above). However, such cases
are rare and therefore the heuristic in question works well in practice (see the evaluation
section below).

2The use of a threshold that defines the minimum overlap count an alignment candidate
should have in order to be classified as correct (which has proven useful in related work, e.g.,
when used with Personalized PageRank and cosine on word vectors [Meyer and Gurevychl
2011; Niemann and Gurevych}2011]) is not applicable here, since the absolute overlap counts
are skewed and can differ enormously for different target words — mainly depending on the
number of words that the lexical fields and the sense descriptions in Wiktionary contain.
Further, experiments with more sophisticated calculations, such as introducing a dynamic
threshold by determining the average of all overlap counts for a word and defining all counts
that are above this average as a predicted mapping, did not show noticeable improvements.

3Note that this stands in contrast to other approaches, e.g., Niemann and Gurevych
[2011], who have assigned only the one most similar alignment candidate as this has shown
best performance in their experiments on mapping WordNet to Wikipedia.
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4 Aligning GermalNet with Wiktionary

given different weights. Setup G shows the weight assignments that produced

optimal results for a precision and recall evaluation (see Section below).

Table 4.1: Different algorithm setups (numbers indicate weights).

Lexical field overlap Coordi-
Setup| Primary relations |Secondary| nated

Hyper. ‘ Hypo. ‘ Syno.| relations |relations
A 1 0 0 0 0
B 0 1 0 0 0
C 0 0 1 0 0
D 0 0 0 1 0
E 0 0 0 0 1
F 1 1 1 1 1
G 2 0.5 3 0.5 3

4.4 FEvaluation

In order to be able to evaluate the automatic alignment of lexical units in
GermalNet with senses in Wiktionary, the mappings produced by the developed
disambiguation algorithm were manually checked by two experienced lexicog-
raphers. In order to ensure a comprehensive evaluation of lexical items with
different degrees of polysemy, the evaluation reports results for five different
polysemy classes: words having (i) one sense in GermaNet, (ii) two senses in
GermaNet, (iii) three or four senses, (iv) five to ten senses, and (v) more than
ten senses in GermaNet. Table [£.2] shows the total number of words in each
polysemy class for the three word classes contained in GermaNet that were
available for the evaluation. Altogether, 20997 distinct WordsE] with an aver-
age of 1.3 senses (i.e., 27309 lexical units of which 3241 are adjectives, 19423
are nouns, and 4 645 are verbs) were manually checked by the lexicographers.

Since the number of senses assigned to a word in GermaNet and Wik-
tionary may differ and since the lexical coverage of the two resources only

partially coincides, a given word sense in GermaNet may have no counterpart

! The numbers from Table do not exactly add up to 20997 because some words
belong to more than one word class.
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4.4 Evaluation

Table 4.2: Evaluated words and their sense distributions.

|No. of senses| Adjectives | Nouns | Verbs |

1 2328 13391 | 1393

2 319 1872 | 510
3-4 71 557 320
5-10 8 91 135
> 10 0 1 23
Total 2726 15912 | 2381

in Wiktionary at all, or it may correspond to exactly one or more than one
senses in Wiktionary. The same holds true in the inverse direction. Figure
illustrates the range of possible mappings for the word Archiv, for which each
resource records three distinct senses. Accordingly, three times three sense
combinations need to be considered. This number rises exponentially with
more available senses. The solid arrows in Figure denote the correct map-
pings: the first sense in GermaNet (‘data repository’) corresponds to the first
sense in Wiktionary, the second sense in GermaNet (‘archive’) corresponds
to both the second and third senses in Wiktionary, and the third sense in

GermaNet (‘archived file’) does not map onto any sense in Wiktionary.

3 senses for Archiv 3 sense descriptions for Archiv in Wiktionary
in GermaNet
1 | Sammlung historisch oder aus anderen Griinden
[Archiv ‘data repository’ e —> bedeutsamer Dokumente
| L ‘Collection of documents that are historically or for other reasons important’

Einrichtung, Institution zur Aufbewahrung und Pflege historisch
oder aus anderen Griinden bedeutsamer Dokumente
‘Institution for storing and maintenance of historically
or for other reasons important documents’

Archiv ‘archive’ -

Gebdude oder Gebdudeteil, der eine Institution zur

Archiv ‘archived file’ = Aufbewahrung von Dokumenten enthélt
‘Building or part of the building containing an institution for storing documents’

Figure 4.3: Sense mapping example using Archiv ‘data repository; archive;
archived file’.

A truly meaningful evaluation has to reflect the nature of the task at hand:
the semi-automatic enrichment of lexical units in GermaNet with appropriate

sense descriptions from Wiktionary. A very crude approach would simply map
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4 Aligning GermalNet with Wiktionary

all word senses recorded in GermaNet for a given word with all corresponding
sense descriptions documented in Wiktionary. Such an approach would require
a lot of human post-editing to eliminate all inappropriate mappings. Since
the unwanted mappings far outnumber the number of correct mappings, this
approach would be clearly inappropriate. In fact, the motivation behind the
developed alignment algorithm is precisely to map only plausible candidates for
correct mappings in terms of word overlap between lexical fields in GermaNet
and sense descriptions in Wiktionary. These considerations clearly show that
the task at hand requires maximizing accuracy in order to minimize the amount
of human post-processing required.

The calculation of accuracy, precision, and recall for the task of sense align-
ment differs slightly from the calculation for the task of word sense disambigua-
tion as defined in Subsection 2.2.1l In order to calculate the evaluation metrics

for the sense alignment task, sets of correct and incorrect mappings are defined:

True positives: all correctly identified mappings for a word.

False positives: all erroneously indicated mappings for a word.

True negatives: all candidate mappings for a word that are correctly not

identified as a mapping.

False negatives: all erroneously not identified mappings for a word.

Accuracy, precision, recall, and F; are computed per word as follows. Ac-
curacy is calculated as the percentage of sense alignments that are correctly
identified plus the sense alignment candidates that are correctly not mapped by
the alignment algorithm, out of all candidate sense mappings for a word (i.e.,
all combinations of GermaNet senses with sense descriptions from Wiktionary

for a word in question):

TP + FP
TP + TN + FP + FN

accuracy of the alignment per word = (4.1)

Recall is defined as the percentage of word senses that are correctly mapped
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by the system, out of all word senses that are supposed to be aligned:

TP

S L — (4.2)
TP + FN

recall of the alignment per word =
Precision is reported as the percentage of word senses that are correctly

mapped, out of all word senses that the alignment mapped:

TP

—_— 4.
TP + FP (43)

preciston of the alignment per word =

The F;-measure is calculated per word using Formula (12.4) defined in Sub-
section [2.2.1| using the above definitions for precision and recall. The overall
values for accuracy, precision, recall, and F; are then computed as the average

of all word values.

4.5 Results

Table shows the results for the described task separately for the previously
defined polysemy classes (columns). The rightmost column depicts the overall
results without classifying words with respect to their number of different
senses. The rows show the different algorithm setups A — E (described in
Section separately for each of the three word classes of adjectives, nouns,
and verbs (column POS). Rows marked with All POS denote results for all
word classes.

To begin with, the average scores for all three word classes in all setups A —
G are above 90% accuracy. This suggests that human correction is needed for
only one out of 10 mappings between GermaNet and Wiktionary suggested by
the algorithmﬂ This underscores the overall feasibility of the approach.

As setups A — E each take into account only one relation type (see Ta-
ble , a comparison of the results directly reflects the suitability of the
different relation types when applied independently of each other. One of the

most striking findings among the results of this evaluation is that the use of hy-

ITo be even more precise, the average accuracies for setups A to E are actually above
93% and thus human correction is needed for only one out of 14 mappings.
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4 Aligning GermalNet with Wiktionary

Table 4.3: Accuracy of the alignment.

Number of senses in GermalNet
Setup| POS 5 13— 4[5-10] > 10| All
Adj. 194.7% | 83.2% | 93.6% | 99.0% | N/A | 93.3%
A Nouns |94.3% |89.0% | 92.9% | 90.0% | 100% | 93.6%
Verbs [92.3% | 87.0% | 92.2% | 93.6% | 85.8% | 91.2%
All POS | 94.2% | 88.0% | 92.7% | 92.4% | 86.4% | 93.3%
Adj. 194.4%|79.3%|91.9% | 99.1% | N/A | 92.6%
B Nouns |94.2% | 88.4% |89.9% | 87.0% | 0% | 93.3%
Verbs |92.3% | 88.5% | 94.6% | 92.9% | 85.4% | 91.8%
All POS | 94.1% | 87.3% [91.7% | 90.8% | 81.9% | 93.1%
Adj. 195.0% | 81.9% |93.9% | 97.9% | N/A |93.4%
C Nouns |94.6% |90.2% |93.6% | 92.3% | 0% |94.0%
Verbs [92.3% |89.7% 1 96.9% | 97.3% | 97.8% | 92.7%
All POS | 94.5% | 89.1% | 94.8% | 95.4% | 93.7% | 93.8%
Adj. 193.1% | 81.1% | 93.6% | 99.4% | N/A | 91.7%
D Nouns |94.2% |89.4% |94.5% | 91.0% | 0% | 93.6%
Verbs [92.4% | 87.7% | 96.8% | 94.7% | 92.4% | 92.1%
All POS | 93.9% | 88.1% [ 95.2% | 93.5% | 88.5% | 93.2%
Adj. |94.1% | 85.3% | 91.8% | 97.3% | N/A% | 93.0%
B Nouns |94.4% | 87.2% | 88.1% | 85.6% | 100% | 93.3%
Verbs |92.6% |90.5% |97.3% | 95.6% | 97.1% | 93.0%
All POS | 94.2% | 87.6% [91.5% | 91.8% | 97.3% | 93.2%

pernyms (setup A) and synonyms (setup C) outperforms the use of hyponyms
(setup B) and secondary relations (setup D). The fact that hypernyms and
synonyms outperform the other relations is not surprising since sense defini-
tions often refer to a hypernym or synonym term which is then described in
more detail to fit the specific properties of the entity being described. For ex-
ample, the English WordNet defines the noun convertible as ‘a car [|hypernym)|
that has a top that can be folded or removed’.

The single application of coordinated relations (setup E), in turn, is better
than all previous setups (for verbs) or among the best (for adjectives). Again,
this result is hardly surprising since coordinated relations are present when the
same two terms are connected by the same lexical relations in both resources
(see Section [4.2|for a more detailed explanation of coordinated relations). Such

a scenario is highly predictive for a correct mapping between corresponding
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senses in the two resources. By contrast, the results for nouns on setup E do
not outperform the other setups. One explanation for this lower performanceﬂ
is the preference of related terms (setups A — D) being often referred to in
definitions of nouns with which the occurrence of coordinated relations cannot
compete.

A comparison of the results for the three different word classes yields the
following tendencies: the results for nouns are slightly higher for all of the
different lexical relations (93.3% to 93.6%) than the results for the other two
word classes (91.7% to 93.4% for adjectives and 91.2% to 93.0% for verbs).
One explanation for this higher performance must be, that related terms are
often referred to in order to describe nominal concepts.

For verbs, the hypernymy relation (setup A) seems to perform particularly
poorly. The explanation for this low performance is probably, that definitions
of verb senses rarely use hypernyms, which supports the assumption that verbs
are usually defined differently than adjectives and nouns.

For words with one sense or with five to ten senses adjectives almost always
outperform the other two word classes, whereas for words with two senses
adjectives show lowest performance compared to nouns and verbs.

Perhaps the three most remarkable observations when comparing the re-

sults for the different polysemy classes in Table [4.3] are:

(i) The drop in performance for all three word classes for words with exactly
two senses. Compared to the performances for words having one sense
there is a drop of between 2.0% to 15.1% for words having two senses for

all algorithm setups.

(ii) The increase in performance for all three word classes for words with 3-4

senses compared to words with 2 senses in GermaNet.

(iii) There is no regularity in performance for words with more than 4 senses

in GermaNet.

Denoting the performance as lower is meant in a relative sense, i.e., compared to the
results for the other setups for nouns. Note that setup E for nouns does not perform lower
than setup E for adjectives and verbs.
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4 Aligning GermalNet with Wiktionary

At first glance, one would suspect that the performance of the algorithm
would decrease as the number of senses increases. In other words, the difficulty
of the task of aligning sense definitions with lexical units should increase with
the number of senses available. This expectation holds true for the comparison
of words with one and two senses (see (i) above) but is not empirically con-
firmed for words with more than two senses (see (ii) and (iii) above). The real
explanation for what looks like contradictory findings has to do with the ratio
of true positives and true negatives. For the task at hand of aligning sense def-
initions with word senses in GermaNet, the true negatives outnumber the true
positives, and the ratio between the two becomes more and more skewed as
the number of word senses and the number of corresponding sense descriptions
increases. The fact that the alignment algorithm shows no attested degrada-
tion in performance for highly polysemous words attests to the suitability of
the algorithm for the task at hand.

What still remains to be explained is why words with exactly one sense do
not necessarily show best performance. This is due to the heuristic that adds
a count of one to the count of overlaps in cases where there is exactly one sense
in both resources.

The extreme scores of 0% and 100% for the nouns having more than ten
senses in GermaNet also require some explanation. The explanation is simple:
there is only one noun with more than ten senses. It is the word Dollar, which
has a total of 15 different senses denoting national currencies such as US-
Dollar, Canadian Dollar, Hongkong-Dollar, etc. with one common hypernym
Wihrungseinheit ‘currency unit’. In Wiktionary, there is one sense definition
for Dollar with the wording Wdhrungseinheit in verschiedenen Staaten, z.B.
den USA und Kanada ‘currency unit in different countries, e.g., in the USA
and Canada’. Since the hypernym Wihrungseinheit matches the Wiktionary
sense description, the alignment algorithm detects an overlap for each sense
resulting in a 100% score for setup A which considers only the hypernymy
relation. The same holds true for setup E (coordinated relations) since the
GermaNet sense of Dollar and the Wiktionary sense description of Dollar
have the same hypernym Wdihrungseinheit. For the other relations (setups B,

C, and D) the score is 0% because there is simply no lexical overlap for any of
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them.

As mentioned above, for the task at hand, the true negatives outnumber the
true positives by a wide margin, and this distribution becomes more and more
skewed as the number of senses for a word increases. For this very reason, an
accuracy-based evaluation is particularly important since it takes false positives
into account. However, apart from the accuracy of the mappings proposed by
the algorithm, the recall behaviour of the alignment algorithm is also relevant.
Poor recall would mean that many empirically correct mappings go undetected
by the algorithm and therefore have to be manually added. Therefore, recall
is also computed for different setups of the algorithm (see Table . Recall of
the single application of hypernyms (setup A) and coordinated relations (setup
E) is better than all other setups of single relations (setups B, C, and D). Again,
this result is hardly surprising since coordinated relations are present when the

same two terms are connected by the same lexical relations in both resources.

Table 4.4: Accuracy, precision, recall, and F-measure.

’ Setup \ Accuracy \ Recall \ Precision \ F, ‘

A 93.3% | 72.1% 71.3% | 71.7
93.1% | 61.2% 60.8% | 61.0
93.8% | 63.8% 63.4% | 63.6
93.2% | 61.3% 60.8% [ 61.0
93.2% | 73.6% 73.5% | 73.5
92.3% | 83.8% 82.8% | 83.3
91.9% | 84.6% 84.1% | 84.3

[Bascline|  53.7%] 50.7% |  44.2% [47.2]

Blics|Nes|iwli@]fivs)

The best recall values are obtained by those settings where all relations are
taken into account for the construction of the lexical field (setups F and G).
Notice also that, compared to accuracy, there is a much wider spread in the
results for recall, ranging from 61.2% (setup B) to 84.6% (setup G). This is
hardly surprising since recall is bound to improve with the number of terms
included in the lexical field as candidate for overlap.

For completeness, Table also contains the scores for precision and F;.
The fact that precision does not rise much above 84% means that there still is

an error rate of 16%, i.e., 16% of the proposed links are wrong.
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The baseline of randomly mapping Wiktionary senses to lexical units in
GermaNet (see row Baseline in Table demonstrates that the mapping
task as such is far from trivial. All setups A to G significantly outperform the

baseline. This constitutes strong evidence of the feasibility of the approach.

4.6 Related Work on Aligning Wordnets

The alignment of lexical resources has been widely studied in recent years.
Most of the work has focused on English resources — investigating the alignment
of the Princeton WordNet with other lexical resources. Early studies reported
on mapping WordNet to the Longman Dictionary of Contemporary English
and with Roget’s thesaurus [Kwong, 1998, to the Hector lexicon [Litkowski,
1999, to the Suggested Upper Merged Ontology [Niles and Peasel [2003], or to
the Oxford Dictionary of English |[Navigli, 2006] — to name only a few. More
recently, several studies investigated the alignment of WordNet with Wikipedia
(including |Ruiz-Casado et al. [2005], Suchanek et al. [2007], Ponzetto and
Navigli| [2009, 2010|, [Toral et al. [2009], [Niemann and Gurevych [2011], and
Fernando and Stevenson| [2012]).

Previous work on aligning German resources is limited to the mapping of
GermaNet to the German version of Wikipedia |[Henrich et al. 2012a] and
to the Digital Dictionary of the German Language (Digitales Warterbuch der
Deutschen Sprachd', DWDS) [Henrich et al. [2014a].

The approach by Meyer and Gurevych [2011], which maps WordNet to
the English version of Wiktionary, was developed in parallel to the one pre-
sented in this chapter (first published in 2011 [Henrich et al., 2011]). Their
alignment has very much followed the approach by Niemann and Gurevych
[2011] who aligned WordNet with Wikipedia — especially in the conception
of their alignment algorithm, i.e., the application of similarity measures and
the use of a threshold. As the candidate alignments for a synset in WordNet
Meyer and Gurevych [2011] collected for all synonymous words in that synset
all senses from Wiktionary. Following Niemann and Gurevych [2011], they

Ihttp://www.dwds.de
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4.6 Related Work on Aligning Wordnets

used the Personalized PageRank algorithm [Agirre and Soroa, 2009 and the
cosine on word vectors (previously also used by Ruiz-Casado et al.| [2005]) to
calculate similarity between a Wiktionary definition and a WordNet synset. In
a training phase, they determined a threshold learned from a training set that
defines the minimum similarity score an alignment candidate should have in
order to be classified as correct. In experiments with different configurations
of the measures, a higher precision from the PageRank algorithm and a higher
recall from the cosine measure resulted in a better F;-score for a combination
of the two measures. Albeit Meyer and Gurevych! [2011] did on English data
what is described in this chapter on German, i.e., they automatically aligned
senses in Wiktionary and WordNet, their intention differs from the one behind
this chapter. Their motivation behind the mapping is to extend the coverage
of a joint resource whereas this chapter focuses on the systematic enrichment
of an existing resource, i.e., GermaNet, by sense definitions.

In a recent study, Matuschek and Gurevych [2013] developed a graph-based
algorithm for automatically aligning several datasets available for German
and English including GermaNet and Wiktionary. The GermaNet—Wiktionary
mapping described in the present chapter was used as a gold standard in their
evaluation. Matuschek and Gurevych [2013]| proposed a two step approach
supposed to be independent of the underlying resources to be mapped: the
first step of their algorithm consists of several approaches to constructing a
graph for a lexical resource, where they relied not only on existing relations
or hyperlinks, but also introduced new relations with the help of monosemous
terms occurring in sense descriptions. In a second step, they performed the
actual sense alignment by first aligning all terms that are monosemous in both
resources, which connects the two resources by an initial set of relations. Then
each polysemous sense was mapped to the candidate sense that is connected
by the shortest path (computed with the Dijkstra shortest path algorithm [Di-
jkstral, [1959]) relying on the initial set of relations between the two resources.
They experimented with several configurations and combinations evaluated
on existing alignments including WordNet-Wiktionary |[Meyer and Gurevych,
2011] and GermaNet—Wiktionary (present chapter) and achieved competitive

performance compared to the results by the creators of those alignments.
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The study that is closest in spirit to the approach presented here is the
one by |Gongalo Oliveira and Gomes| [2013|. Their procedure of automatically
assigning definitions to synsets in the Portuguese wordnet Onto.PT [Gongalo
Oliveiral 2013| follows the approach proposed in Henrich et al. [2011], which
is a previously published version of this chapter. Thus, they also follow the
word overlap approach to identify matching word senses in order to harvest
descriptions. The work by |Gongalo Oliveira and Gomes [2013] differs from the
present work especially in the language and therefore also in the resources used.
More specifically, they use three Portuguese dictionaries to harvest definitions
for the Portuguese wordnet Onto.PT.

What distinguishes the work in the present work from earlier studies is
the fact that all automatically aligned data were manually checked and, if

necessary, post-corrected.

4.7 Conclusion and Continuing Work

Sense definitions are a crucial component for wordnets. However, as GermaNet
rarely contained sense definitions, comprehensive sense definitions were badly
needed in order to enhance its usability for a wide variety of NLP applications.
The present chapter has described a method for semi-automatically enriching
lexical units in GermaNet with appropriate sense descriptions from Wiktionary.
It has resulted in harvested definitions for about 30% of all GermaNet 7.0 senses
(i-e., 29433 out of 99523, see Table [3.5]in Section [3.9). These definitions have
already been included into GermaNet (since release 7.0) and have also been
made freely available onlineE]. An accuracy of more than 90% suggests that
human correction was needed on average for only one out of 10 mappings
suggested by the algorithm. Moreover, the estimations of recall and precision
result in 84.6% and 84.1%, respectively. These numbers underscore the overall
feasibility of the approach and verify its usability for the task at hand. This
suggests the applicability of the approach to other resources.

The most obvious uses of the outcome of this chapter’s work include:

Ihttp://www.sfs.uni-tuebingen.de/GermaNet/wiktionary.shtml
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4.7 Conclusion and Continuing Work

e An automatic method for creating a sense-annotated corpus harvested
from the web that relies on the mapping between GermaNet and Wik-
tionary is explored in Section [5.2]

e The harvested definitions help human annotators to understand the mean-
ing of a word when manually sense-annotating a corpus, which is the
topic of Section [5.3]

e The impact of the harvested descriptions on WSD algorithms relying on

the existence of such sense descriptions are explored in Chapter [7]

A natural next step would also be to implement more elaborate alignment
algorithms such as Personalized PageRank, cosine similarity on word vectors,
or graph-based Dijkstra that have been used in other approaches (see Sec-
tion . Though, a comparison with related work shows that the resulting
improvement is likely to be modest.ﬂ Of course, a better automatic alignment
would make the manual post-correction easier for human annotators and thus
it would definitely be worth experimenting with more elaborated alignment
algorithms, if the mapping between Wiktionary and GermaNet had not yet
been completely manually post-corrected and the goal of harvesting definitions
from Wiktionary not yet been achieved. Apart from that, as the GermaNet—
Wiktionary sense alignment dataset is freely available and one of the goals of
this thesis is to boost WSD research on German (and aligning resources heav-
ily includes WSD), other researchers are highly encouraged to use it as a gold
standard in their experiments with more elaborated alignment algorithms — as
it has already been done by Matuschek and Gurevych! [2013].

IThe only comparable work on the same language and resource pair is the one by [Ma-
tuschek and Gurevych| [2013]. They have reported results that are 4.2% (for recall), 9.9%
(for precision), and 2.7 (for Fi-score) higher and 8.8% (for accuracy) lower than the ones
presented in this chapter. For this comparison, the setups that report highest numbers are
taken. The reason why the accuracy in this chapter is higher than theirs whereas the preci-
sion in this chapter is lower than theirs lies in the differing focus of parameter adjudication;
in this chapter, the aim is to achieve high accuracy.

98



Chapter 5

Creating Sense-Annotated

Corpora

A sense-annotated corpus is a text in which occurrences of words are annotated
with their senses from a given sense inventory. A sense inventory is a collection
of predefined senses for the words of a certain language, i.e., a dictionary or
a wordnet. Sense-annotated corpora serve as a gold standard for the develop-
ment and evaluation of word sense disambiguation (WSD) systems. The task
of WSD is to automatically assign senses of a predefined sense inventory to
the word occurrences in a text — see Chapter 2l Manually corrected sense-
annotated corpora are used to train and to evaluate such automatic WSD
systems. The availability of large sense-annotated corpora is a necessary pre-
requisite for any supervised and many semi-supervised approaches to WSD.
It is therefore not surprising that most research on WSD has focused on lan-
guages such as English for which large sense-annotated corpora are available
and considerably less on languages with a shortage of such corpora. This chap-
ter helps to close this gap by creating two sense-annotated corpora for German,

a language for which the availability of sense-annotated corpora is restricted.

Thus far, sense-annotated corpora have typically been constructed manu-
ally, making the creation of such resources expensive and the compilation of
larger data sets difficult, if not completely infeasible. It is therefore timely

and appropriate to explore alternatives to manual annotation and to inves-
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tigate automatic means of creating sense-annotated corpora. In this chapter
(Section , an automatic method for creating a domain-independent sense-
annotated corpus harvested from the web is described. It relies on a correct
sense mapping between GermaNet and Wiktionary (described in Chapter [4)) to
harvest sense-specific example sentences from Wiktionary itself and additional
textual materials from other web-based textual sources such as Wikipedia and
online newspaper materials. The data obtained by this method have pro-
duced the German WebCAGe (short for: Web-Harvested Corpus Annotated
with GermaNet Senses) resource.

In order to allow a comparison of the performance of WSD algorithms on
these automatically harvested web-based materials with a real authentic corpus
and to overcome the limitations of such an automatically constructed resource
(like the assumably varying quality of web texts and the restriction of not being
able to compile most frequent sense information due to the skewed number
of annotated target word occurrences), the TiiBa-D/Z treebank is manually
extended by GermaNet sense annotation for a selected set of lemmas (see
Section |5.3]). This manual creation of such a corpus is along the same lines as
many other sense-annotated corpora (see Section , although the systematic
selection of verb lemmas to be manually sense-annotated sets the presented
work apart from related work. This selection is determined by the goal of
analyzing the influence of syntax and semantics on automatic WSD which is
particularly interesting for verbs where the syntactic structure in which a verb
occurs is often highly predictive of different word senses.

There are two kinds of sense-annotated corpus (see Chapter [2| for details):

e All-words disambiguation: all or nearly all word occurrences in a
limited size of running text are annotated with the senses of a given

sense inventory.

e Lexical sampling: all occurrences in a text of a selected set of ambigu-
ous word lemmas chosen in advance are annotated with the senses of a

given sense inventory.

Both sense-annotated corpora described in this chapter (WebCAGe and
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the sense-annotated TiiBa-D/Z) follow the lexical sample Variantﬂ and use
GermalNet as the sense inventory. For the WebCAGe corpus, the automatic
harvesting method meant that only the lexical sample option was possible.
For sense annotation in the TiiBa-D/Z, the decision to annotate only a lexical
sample is motivated by the requirements of machine learning as the intended
use of the data. Such data are useful for training automatic machine learning
models only if there are enough instances of each item to be classified. Due
to limitations of how much text can reasonably be annotated manually in an
all-words, sense-annotated corpus, the resulting numbers of instances for each
token are not of sufficient frequency for machine-learning applications.

The purpose of this chapter is to describe and evaluate the construction
of two sense-annotated corpora for German: the automatically web-harvested
corpus WebCAGe (Section and the manually sense-annotated TiBa-D/Z
treebank (Section . The chapter continues with a detailed comparison
of the two sense-annotated corpora in Section and ends with concluding
remarks in Section [5.5

Parts of this chapter have already been published: Henrich et al.| [2012b]
describe the automatic harvesting method used to create the WebCAGe sense-
annotated corpus, and [Henrich and Hinrichs) [2013, |2014] introduce the manual

sense annotation in the TiBa-D/Z treebank.

5.1 Related Work on Sense-Annotated Corpora

There are many sense-annotated corpora available; primarily for English, much
fewer for other languages. For English, there are many sense inventories used
in sense-annotated corpora, including Princeton WordNet, HECTOR lexicon
|[Atkins, [1993|, and Longman’s Dictionary of Contemporary English (LDOCE)
[Procter, [1978]. In German, there are much fewer sense-inventories used.
This section discusses both manually and automatically constructed sense-
annotated corpora. With relatively few exceptions to be discussed shortly
(Section [5.1.3)), the construction of sense-annotated corpora has focussed on

L As do many existing corpora — see Section
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manual methods (Sections [5.1.1} and [5.1.2)).

5.1.1 Manually Sense-Annotated Corpora for English

The manual annotation of a sense-annotated corpus is usually done either
(i) token-by-token, i.e., by sequentially going through all word tokens in the
corpus, or (ii) lemma-by-lemma, i.e., one word lemma at a time. The first
listed procedure is applicable only if most or all word tokens of a running
text are annotated in an all-words manner. The problem with this token-by-
token procedure is that annotators have to look up all senses of a word for
each annotation they do. By contrast, in the lemma-by-lemma annotation
procedure, an annotator first takes a look at all senses of a word in the sense
inventory, then goes through all occurrences of that word lemma in the text
and — having in mind all possible senses of the word — annotates each occurrence
with the corresponding sense from the inventory. The advantage of this lemma-
by-lemma procedure (compared to a token-by-token procedure) is a higher
quality since the annotator who processes one word at a time has all senses of
that particular word in mind and apparently can conduct a more consistent
annotation. |Kilgarriff] 1997¢; Palmer and Xuel 2010

The annotation procedure for many manually sense-annotated corpora starts
with an initial annotation step in which two or more human annotators sense-
annotate the same set of word occurrences. In a second adjudication step, an-
other annotator — the adjudicator — goes through all those occurrences where
there was a mismatch between the annotations from the initial step or where
there was a comment marking unclear or uncertain cases and tries to solve
those conflicts. In some annotation projects — especially in those where the
sense-annotated corpus is being created by the same research group which
maintains the sense inventory — the sense inventory is updated with senses
that are missing during the annotation process in order to improve the sense
inventory and make it even more feasible for the annotation process. |Palmer
et al., |2001; Palmer and Xue, 2010|

The organization of several shared task competitions on WSD at SensEval
and SemEval (see Subsection included the preparation of the necessary
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evaluation resources such as sense-annotated corpora. Several sense-annotated
corpora were constructed and used in the context of these competitions. The
sense-annotated corpus which was used as a gold standard in the first SensEval
shared task competition |Kilgarriff] 1998a.b; Kilgarriff and Rosenzweig), 2000|
is a part of the Hector corpus [Atkins, |[1993|. It comprises texts taken from the
British National CorpusE] (BNC) that were manually annotated with senses
from the Hector lexicon. In a 20M-word pilot for the BNC, 200 000 instances
of altogether about 300 lemmas were manually sense-annotated in a lexical
sample manner (statistics are taken from Kilgarriff] [1998b]). During the sense-
annotation process, the sense inventory was subsequently updated with missing
word senses.

From SensEval-2 onwards, WordNet was mainly used as the sense inventory
for the English tasks. In the second SensEval competition, there was a lexical
sample task and an all-words task — both using WordNet as the sense inventory.
The lexical sample task exclusively annotated verbs [Fellbaum et all 2001;
Palmer et al., |2001]. In the gold standard for this task, between 75 and 300
occurrences in the Penn TreeBank II Wall Street Journal [Marcus et al., [1993|
of about 30 highly polysemous verbs were annotated — adding examples from
the BNC if there are too few in the Penn Treebank. For the all-words task,
5000 word occurrences of running text were annotated in the treebank |[Palmer
et al) 2001]. The WordNet sense inventory was updated in the process of
annotation.

For the SensEval-3 all-words task, again 5000 word occurrences of running
text were annotated with WordNet senses |Snyder and Palmer, [2004]. For
the SensEval-3 lexical sample task [Mihalcea et al., |2004], 5 adjectives and
32 nouns were annotated with WordNet senses, and 20 verbs were annotated
with senses taken from Wordsmyth?] The reason for using a different sense
inventory for verbs in the latter corpus is the weak performance of WSD sys-
tems in the SensEval-2 English lexical sample task, which the organizers of
SensEval-3’s lexical sample task claimed is due to the high polysemy of verbs

in WordNet [Mihalcea et al.,[2004]. The lexical sample sense-annotated corpus

Ihttp://www.natcorp.ox.ac.uk/
’http://www.wordsmyth.net/
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is constructed by volunteers in the context of the Open Mind Word Expert
project (OMWE) |Chklovski and Mihalcea, [2002] — see below.

Furthermore, in the SensEval-3 competition, the Princeton WordNet Gloss
Corpus was used |Litkowski, 2004]. This corpus, which was created in the con-
text of the ‘eXtended WordNet project’, contains WordNet sense annotations
of the words occurring in WordNet’s glosses [Harabagiu et al.; [1999; [Mihalceal
and Moldovan, [2001].

Although this section does not list all tasks in the subsequent SemEvall]
competitions, it is interesting to note that an ongoing discussion about the
granularity of senses in the sense inventory had already started by the second
SensEval [Palmer], [2000; [Edmonds and Cotton) 2001] (also see Section [1.2).
One of the most often reported obstacles when creating a sense-annotated
corpus is a too fine-grained distinction of senses in the dictionary — especially
when using the Princeton WordNet as a sense inventory. To counter this
problem, several approaches cluster WordNet senses to use a more coarse-
grained sense inventory for sense annotation (see, e.g., [Fellbaum et al.| [2001],
Mihalcea et al. [2004], or Palmer et al. [2007]). As a result, some tasks in
subsequent SemEval competitions used semantically grouped WordNet senses
to serve as more coarse-grained sense distinctions, such as, for example, the
lexical sample task [Pradhan et al., 2007] and the all-words task |[Navigli et al.|
2007 at SemEval-2007.

Several sense-annotated corpora were created besides SensEval and Sem-
Eval. One of the best known of these corpora is SemCor (Semantic Concor-
dance) |Miller et al., [1993; Landes et all (1998], which was constructed by
the research team that maintains WordNet. The textual sources for SemCor
were taken from the Brown Corpus |Francis and Kucera, [1982] and the novella
The Red Badge of Courage written by Stephen Crane in 1895 [Crane, 1895|.
SemCor comprises 186 files from the Brown Corpus that are sense-annotated
with all open class word tokens plus another 166 files in which verbs are sense-
annotated. Altogether, 234 113 occurrences of 23 346 word lemmas were anno-

tated with WordNet senses in an all-words manner. Since SemCor was created

! After the third SensEval competition it was renamed SemEval (see Subsection .
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in the same research group who maintains WordNet, a subsequent update of
the sense inventory was performed during the annotation process.

In the interest corpus [Bruce and Wiebe| 1994, [1998|, 2369 occurrences
of the noun interest were manually annotated in the Penn TreeBank Wall
Street Journal with senses taken from Longman’s Dictionary of Contemporary
English (LDOCE) [Procter, [1978].

The Penn TreeBank Wall Street Journal corpus was annotated by several
researchers. [Wiebe et al.|[1997], for example, annotated the 25 most frequent
verbs in a lexical sample manner with their WordNet senses. Palmer et al.
[2000] annotated verbs and the corresponding headwords in their noun argu-
ments and adjuncts in 5000 words of running text with their WordNet senses.

In the DSO corpus |[Ng and Lee, [1996], a total of 192800 word instances
taken from the Brown Corpus and the Wall Street Journal were annotated
with WordNet senses of 191 frequent words (121 nouns and 70 verbs).

In the line, hard and serve corpora |Leacock et al.,|1993] 1998|, about 4 000
examples of each of the three words line (noun), hard (adjective), and serve
(verb) were manually sense-tagged in texts taken from the Wall Street Journal,
the American Printing House for the Blind, and the San José Mercury News.

The work of Mihalcea| [2007] followed a two-step approach for creating a
sense-annotated corpus. It started with automatically harvesting Wikipedia
text passages containing polysemous words that are part of a hyperlink. The
result of this step was a set of hyperlink labels for each polysemous word. In
a second step, all these labels were manually mapped to their corresponding
WordNet sense. This manual mapping is equivalent with annotating multi-
ple word occurrences in Wikipedia with word senses from WordNet. In their
experiments, Mihalceal [2007] reported on the annotation of 30 word lemmas
with an average of 316 occurrences each.

MASC (Manually Annotated Sub-Corpus) |Ide et al., 2010; Passonneau
et al.| 2012 is a corpus with multiple layers of linguistic annotation — includ-
ing WordNet sense annotation. It consists of 500000 tokens from different
genres of contemporary American English text from the Open American Na-
tional Corpus (OANC). For each lemma from a selected set of 114 polysemous

words, about 1000 occurrences were annotated with WordNet senses. The
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sense inventory was updated during the sense-annotation process.

Since the quality measured in terms of inter-annotator agreement is re-
ported higher when the manual annotation was performed by experts, i.e.,
linguists, lexicographers, or trained students in the field, most of the sense
annotation was performed by experts. However, there is always a trade-off
between quantity and quality. On the one hand, supervised algorithms require
a lot of training material, i.e., a lot of sense-annotated occurrences. On the
other hand, employing experts who do the manual sense annotation is very

costly.
In the Open Mind Word Expert project (OMWE) |Chklovski and Mihalcea,

2002, a different approach was investigated in order to increase the number
of sense-annotated examples at low cost. OMWE gathered sense annotations
from web users while playing a game in which they are supposed to disam-
biguate words in context. The underlying corpus data includes texts from
the Penn TreeBank and Los Angeles Times, and the sense inventory is taken
from WordNet. With this method, 70 000 instances of 230 lemmas were sense-
annotated with WordNet senses [Palmer et al., 2006, page 85]. A portion of
the OMWE data was used in the SensEval-3 competition.

Note that although this list of sense-annotated corpora is long, it is certainly

not complete.

5.1.2 Manually Sense-Annotated Corpora for German

There are only a few sense-annotated corpora for GermaNet. Some sense-
annotated corpora for German exist, but have either not been distributed or

are not annotated with senses from GermaNet.

Saito et al.| [2002] manually developed a German corpus from novels for
children and young people and from newspaper articles, which altogether com-
prised 5625 word tokens. Following the token-by-token all-words annotation
variant, all content words with entries in GermaNet (2199 word tokens) were

annotated with GermaNet senses. Although five annotators were involved, all
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word tokens in all parts of the corpus were annotated only once.|I|

In the context of the MuchMore projectEL an English-German parallel med-
ical corpus was obtained from scientific abstracts from the Springer Link web-
site. In this corpus, 2421 occurrences of 25 nouns relevant to the medical do-
main were manually annotated with GermaNet senses |[Raileanu et al., 2002)|.
The same medical corpus was manually annotated for 24 ambiguous German
UMLSY| (Unified Medical Language System) termg’| — each of which occurs at
least 11 times in the corpus [Widdows et al., 2003]. UMLS consists of sev-
eral components. For the sense annotation, the authors use concepts from the
MeSH (Medical Subject Headings) thesaurus, which is part of UMLS. Both
for GermaNet and UMLS, two annotators conducted the sense-tagging. The
medical corpus including all sense annotations is freely available for downloadﬂ

In the study by Broscheit et al. [2010], a lexical sample of 40 ambigu-
ous word lemmas (of which 6 are adjectives, 18 are nouns, and 16 are verbs)
was selected by translating words taken from the English SensEval-2 test set
data. At least 20 occurrences of each of these lemmas in the deWaC' corpus
(the German part of the WaCky corpora [Baroni et al., 2009]) were manu-
ally annotated with GermaNet senses. Altogether there were 1154 annotated
occurrences. Recently, the sense annotations in this corpus have been made
publicly available[f]

What can be noted is that three GermaNet sense-annotated corpora exist
[Raileanu et al., 2002; Saito et al., [2002; Broscheit et al., |2010] of which two
are freely available [Raileanu et al., 2002; Broscheit et al., 2010]. All three
corpora rely on old GermaNet Versionsﬂ which stem from the time before per-
sistent database identifiers were introduced to GermaNet (see Appendix .

This means that a unique and reliable identification of senses throughout dif-

!The only exception are 170 word tokens that were annotated by all five annotators in
order to analyze inter-annotator agreement.

’http://muchmore.dfki.de/

3http://www.nlm.nih.gov/research/umls/

4Albeit this paragraph reports on sense-annotated corpora for German, it should not be
concealed that the corpus was also annotated with 70 ambiguous English UMLS terms.

Shttp://muchmore.dfki.de/resources3.htm

Shttp://projects.cl.uni-heidelberg.de/dewsd/

"The most recent of the studies, i.e., |[Broscheit et al. [2010], used GermaNet 5.1 which
was released in April 2008.

107


http://muchmore.dfki.de/
http://www.nlm.nih.gov/research/umls/
http://muchmore.dfki.de/resources3.htm
http://projects.cl.uni-heidelberg.de/dewsd/

5.1 Related Work on Sense-Annotated Corpora

ferent GermaNet versions is not possible and thus, unfortunately, these corpora
are not compatible with recent versions of GermaNet. However, since the sense
annotations in the deWac corpus have recently been made publicly available,
they have been updated in the context of this thesis (see Section to the
most recent version of GermaNet in order to be used in the WSD experiments
in Chapters [7] and [§|

The most recent papers on the creation of a manually GermaNet sense-
annotated corpus were published by Henrich and Hinrichs| [2013], 2014]. They
describe the manual sense annotation of almost 18 000 occurrences of a lexical
sample of 109 word lemmas (30 nouns and 79 verbs) in the TiiBa-D/Z treebank.
This sense-annotated corpus is the only GermaNet sense-annotated corpus
where the sense inventory was updated during the annotation process. The
corpus is freely available — as part of the treebank. The sense-annotated TiiBa-
D/Z has been constructed as part of this dissertation (see Section and is
used throughout the WSD experiments in Chapters [7] and

Further details on several GermaNet sense-annotated corpora are given in
Section below, which presents a detailed comparison of the sense-annotated
corpora by Raileanu et al. [2002] and Broscheit et al.|[2010] with the two sense-

annotated corpora constructed in this chapter.

5.1.3 Automatically Sense-Annotated Corpora

Compared to the large amount of manually sense-annotated corpora, there
are very few previous attempts to automatically harvest corpus data for the
purpose of constructing a sense-annotated corpus.

One of the first attempts at automatically creating sense-annotated data
is the semi-supervised method developed by Yarowsky [1995]. Yarowsky first
collected all example sentences that contain a polysemous word from a very
large corpus of about 460 million words spanning news articles, scientific ab-
stracts, spoken transcripts, and novels. In a second step, a small number of
examples that are representative for each of the senses of a polysemous tar-
get word were selected from this corpus. These representative examples were

manually sense-annotated and then fed into a decision-list supervised WSD
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algorithm as a seed set for iteratively disambiguating the remaining examples
collected in step 1. The selection and annotation of the representative exam-
ples in Yarowsky’s approach was performed completely manually and therefore
limited to the amount of data that can reasonably be annotated by hand. The
main difference between Yarowsky’s approach and the approach described in
this chapter is that the first one relies on a manually sense-annotated seed
sample to harvest further examples whereas the latter one relies on a mapping
between the sense inventory and a second resource to automatically harvest
sense-annotated data.

Leacock et al. [1998|, Mihalcea and Moldovan| [1999], and Agirre and
Lopez de Lacalle [2004] proposed a set of methods for automatic harvesting
of large corpora and web data for the purposes of creating sense-annotated
corpora. In the first study of this kind, Leacock et al. [1998| developed
a method based on WordNet and ‘monosemous relatives’ with the goal of
creating unsupervised training examples for a statistical WSD classifier. The
approach worked as follows: in order to harvest corpus examples for a poly-
semous word, WordNet relations such as synonymy, hypernymy, hyponymy,
and co-hyponymy were inspected for the presence of unambiguous words, i.e.,
words that appear only in exactly one synset. Their system first retrieved
monosemous synonyms and monosemous daughter collocations containing the
polysemous word as its head, if available, before it fell back on other types
of monosemous relatives such as hypernyms or co-hyponyms. The examples
found for these monosemous relatives in the San José Mercury News, a corpus
of about 30 million words, were then sense-annotated with the particular
sense of its ambiguous word relative.

Agirre and Lopez de Lacalle [2004] applied the monosemous relatives
method to acquire sense-annotated examples from the World Wide Web.
They used monosemous hypernyms, direct and indirect hyponyms, and
co-hyponyms to query the search engine Google. Sense-specific example
sentences were extracted from the search snippets returned by Google.

In order to increase coverage of the monosemous relatives approach, Mi-
halcea and Moldovan! [1999] developed a gloss-based extension, which relied on

information from the WordNet definition of the sense in question for all those
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cases where a monosemous relative was not contained in the WordNet dataset
or did not result in enough acquired examples. Mihalcea and Moldovan| [1999]
retrieved example sentences also by querying the World Wide Web. Their
procedure starts by querying the search engine AltaVista on monosemous syn-
onyms. They did not consider other monosemous relatives such as hypernyms
or co-hyponyms since these produced less representative examples. If there
were no monosemous synonyms available or if there were too few resulting ex-
amples, they formulated queries representing simplified versions of synset defi-
nitions. Finally, their approach produced sense-specific examples by replacing
the search term, i.e., the monosemous synonym or the shortened definition, by
the polysemous word.

By focusing on web-based data, the work by Mihalcea and Moldovan| [1999]
and Agirre and Lopez de Lacalle| [2004] resembles the research described in the
present chapter. However, the underlying harvesting methods differ. While
the approach in this chapter relies on a wordnet to Wiktionary mapping, their
approaches (also including the initial study by [Leacock et al|[1998]) all rely
on the monosemous relatives heuristic.

Compared to the approaches described so far, the study by Santamaria
et al. [2003] is closest in spirit to the approach presented in this chapter. It
also relies on an automatic mapping between wordnet senses and a second web
resource. While the approach presented in this chapter is based on automatic
mappings between GermaNet and Wiktionary, their mapping algorithm maps
WordNet senses to web directories from the Open Directory Project (ODP).
Since these ODP directories contain natural language descriptions of websites
relevant to the directory in question, this textual material can be used for
harvesting sense-specific examples. The ODP project also covers German so
that, in principle, their harvesting method could be applied to German in order
to collect German sense-tagged data.

Previous work on the automatic construction on sense-annotated corpora
for German include the paper published by Henrich et al.| [2012b]. Tt describes
an automatic method for creating a domain-independent sense-annotated cor-
pus harvested from the web. This automatic method relied on the mapping

between GermaNet and Wiktionary (described in Chapter [4)) to harvest sense-
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specific example sentences from Wiktionary itself and additional textual ma-
terials from other web-based textual sources such as Wikipedia and online
newspaper materials. The data obtained by this method have resulted in the
German WebCAGe resource, which is freely available online. WebCAGe has
been created as part of this dissertation (see Section [5.2] for a detailed descrip-
tion) and is used in the WSD experiments in Chapters [7] and [§]

The studies by Henrich et al|[2012a] and Henrich et al.| [2012c| applied
WebCAGe’s automatic harvesting method to other resources. In the study de-
scribed in [Henrich et al. [2012a], the authors first created a mapping between
GermaNet and Wikipedia in order to harvest GermaNet sense-annotated ma-
terials from Wikipedia articles. On the basis of this Wikipedia—GermaNet
mapping, GermaNet sense-specific word occurrences were extracted from Wiki-
pedia articles. Henrich et al.| [2012¢| applied the automatic harvesting method
to English. They took the existing mapping between WordNet and Wiktionary
provided by Meyer and Gurevych [2011] as a basis to harvest sense-specific ex-
ample sentences from the English Wiktionary. Since the latter study relied
on a WordNet-Wiktionary mapping, the underlying sense inventory for the

sense-annotated data is the Princeton WordNet.

5.2 Automatically Constructed WebCAGe

This section reports on the (semi-)automatic creation of the WebCAGe sense-
annotated corpus for German. WebCAGe stands for Web-Harvested Corpus
Annotated with GermaNet Senses. Since WebCAGe’s text harvesting and sense
annotation is done automatically, with a manual post-correction in order to
ensure high quality, the approach is referred to as semi-automatic.

To date, sense-annotated corpora have typically been constructed manu-
ally, making the creation of such resources expensive and the compilation of
larger data sets difficult, if not completely infeasible. This chapter explores an
alternative to manual annotation and investigate automatic means of creating

sense-annotated corpora.

An automatic method for creating a sense-annotated corpus should ideally
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maximize both quality and quantity of the automatically generated data. On
the one hand, the quality of an automatically generated sense-annotated corpus
should be high enough to be usable as is or with a minimal amount of manual
post-correction. On the other hand, the resulting sense-annotated materials (i)
should be non-trivial in size, (ii) should be as domain-independent as possible,
and (iii) should be freely available for other researchers.

The method presented in this section satisfies all of the above criteria and
relies on the following resources as input: (i) a sense inventory and (ii) a
mapping between the sense inventory in question and a web-based resource
such as Wiktionary or Wikipedia. For WebCAGe, the sense inventory is taken
from GermaNet, and the web-harvesting relies on the mapping of GermaNet
and Wiktionary. While the present section focuses on one particular language,

the method as such is language-independent.

5.2.1 Creation of a Web-Harvested Corpus

The starting point for creating WebCAGe is the mapping of GermaNet senses
to Wiktionary sense definitions as described in Chapter [ The original pur-
pose of this mapping was to automatically add Wiktionary sense descriptions
to GermaNet. However, the alignment of these two resources opens up a much
wider range of possibilities for data mining community-driven resources such
as Wikipedia and web-generated content more generally. It is precisely this po-
tential that is fully exploited for the creation of the WebCAGe sense-annotated
corpus.

Figure[5.1]illustrates the existing GermaNet—Wiktionary mapping using the
example word Bogen. The polysemous word Bogen has three distinct senses in
GermaNet which directly correspond to three separate senses in Wiktionary.ﬂ
Each Wiktionary sense entry contains a definition and one or more example
sentences illustrating the sense in question. Since the target word (rendered in
Figure in boldface) in the example sentences for a particular Wiktionary

sense is linked to a GermaNet sense via the sense mapping of GermaNet with

INote that there are further senses in both resources not displayed here for reasons of
space.
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Wiktionary, the example sentences are automatically sense-annotated and can
be included as part of WebCAGe.

3 senses with example sentences for Bogen in Wiktionary
3 senses —

) for Bogen Sport, Jagd, Militér: aus Holz gefertigte und mit einer Sehne versehene
in GermaNet || gcpysswaffe zum Abschiefien von Pfeilen
‘sports, hunting, military: wooden weapon with a bowstring for firing arrows’

Bogen
‘bow as weapon’

Example: ,Die SchwarzfiiRe trugen ihre Festkleider, die mit allerlei Zierat geschmiickt waren,

den Bogen mit den Pfeilen auf dem Riicken[...].“ [ Gutenberg: Gustave Aimard, Freikugel])

nach bestimmten, meist standardisierten Maf8en beschnittenes bzw. D
geschopftes Papier ‘paper that is cut or created in accordance with a standardized size’

Bogen
‘sheet of paper

’

| Example: ,Nach 60 Minuten wird er auswendig 390 Nullen und Einsen auf ein Blatt Papier
schreiben, genau in derselben Reihenfolge wie auf dem Bogen, der jetzt vor ihm liegt.”

[ zeit online — http://www.zeit.de/1997/32/gedachni.txt.19970801.xml]

‘violin bow’

8 Musik: mit Haar bespannter hélzerner Stab zum Bespielen von
ogen Saiteninstrumenten

‘music: wooden stick with hair stretched along it, for playing stringed instruments’

Example: ,Die Bespannung des Bogens muss wiederholt durch Streichen auf einem Geigen-
Kolophon-Block mit dem natiirlichen Balsamharz Kolophonium prapariert werden(...].“

[ Wikipedia article ,,Violine”]

Figure 5.1: Sense mapping of GermaNet and Wiktionary using the example of
Bogen.

Wiktionary example sentences are often linked to external references, in-
cluding sentences contained in the German Gutenberg text archiveﬂ (see link
in the topmost Wiktionary sense entry in Figure , Wikipedia articles (see
link for the third Wiktionary sense entry in Figure , and other textual
sources (see the second sense entry in Figure . It is precisely this collec-
tion of heterogeneous material that can be harvested as additional material
for WebCAGe by following the links to Wikipedia, the Gutenberg archive,
and other web-based materials. The external webpages and the Gutenberg
texts are obtained from the web by a web-crawler that takes URLs as input
and outputs the texts of the corresponding web sitesEl The Wikipedia arti-
cles are obtained by the open-source Java Wikipedia Library JWPIEl

'http://gutenberg.spiegel.de/
“Thanks to Yannick Versley and Yana Panchenko for making available their web-crawler.
“http://www.ukp.tu-darmstadt.de/software/jwpl/
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et al., 2008|. Since the links to Wikipedia, the Gutenberg archive, and other
web-based materials also belong to particular Wiktionary sense entries that
in turn are mapped to GermaNet senses, the target words contained in these
materials are automatically sense-annotated.

Notice that the target word often occurs more than once in a given text. In
keeping with the widely used heuristic of ‘one sense per discourse’ [Gale et al.,
1992b|, multiple occurrences of a target word in a given text are all assigned to
the same GermaNet sense. An inspection of the annotated data shows that this
heuristic has proven to be highly reliable in practice. It is correct in 99.96% of
all target word occurrences in the Wiktionary example sentences, in 96.75% of
all occurrences in the external webpages, and in 95.62% of the Wikipedia files.

WebCAGe is developed primarily for the purpose of the word sense disam-
biguation task. Therefore, only those target words that are genuinely ambigu-
ous are included in this resource. Since WebCAGe uses GermaNet as its sense
inventory, this means that each target word has at least two GermaNet senses,
i.e., belongs to at least two distinct synsets.

The GermaNet—Wiktionary mapping is not always one-to-one. Sometimes
one GermaNet sense is mapped to more than one sense in Wiktionary (as de-
scribed in Section . Figure illustrates such a case. For the word Archiv
each resource records three distinct senses. The first sense (‘data repository’)
in GermaNet corresponds to the first sense in Wiktionary, and the second sense
in GermaNet (‘archive’) corresponds to both the second and third senses in
Wiktionary. The third sense in GermaNet (‘archived file’) does not map onto
any sense in Wiktionary at all. As a result, the word Archiv is included in
the WebCAGe resource with precisely the sense mappings connected by the
arrows shown in Figure The fact that the second GermaNet sense corre-
sponds to two sense descriptions in Wiktionary simply means that the target
words in the examples are both annotated by the same sense. Furthermore,
note that the word Archiv is still genuinely ambiguous since there is a sec-
ond (one-to-one) mapping between the first senses recorded in GermaNet and
Wiktionary. However, since the third GermaNet sense is not mapped onto any
Wiktionary sense at all, WebCAGe does not contain any example sentences

for this particular GermaNet sense.
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3 senses with example sentences for Archiv in Wiktionary

Ve D
A : . = N\ |
3 senses (Sammlung historisch oder aus anderen Griinden \
for Archiv bedeutsamer Dokumente
in GermaNet ‘Collection of documents that are historically or for other reasons important’
( \/\Example: ,Unser Archiv ist leider fiir einige Zeitabschnitte sehr unvollstéandig.” &

7 N\
Archiv
‘data repository’ Einrichtung, Institution zur Aufbewahrung und Pflege historisch
oder aus anderen Griinden bedeutsamer Dokumente ‘Institution for

storing and maintenance of historically or for other reasons important documents’

. I Example: ,Viele Firmen, politische Organisationen, Hochschulen etc. betreiben ein
Archiv : -
eigenes Archiv.

‘archive’

Gebdude oder Gebdudeteil, der eine Institution zur

Aufbewahrung von Dokumenten enthdilt
Archiv ‘Building or part of the building containing an institution for storing documents’

archivediile Example: ,In der KarlsstraRe liegt das Archiv der Stadt.”

Figure 5.2: Sense mapping of GermaNet and Wiktionary using the example of
Archiv.

The following section describes how the target words within these textual

materials can be automatically identified.

5.2.2 Automatic Detection of Target Words

For highly inflected languages such as German, target word identification is
more complex compared to languages with an impoverished inflectional mor-
phology, such as English, and thus requires automatic lemmatization. More-
over, the target word in a text to be sense-annotated is not always a simplex
word but can also appear as subpart of a complex word such as a compound.
Since the constituent parts of a compound are not usually separated by blank
spaces or hyphens, German compounding poses a particular challenge for tar-
get word identification. Another challenging case for automatic target word
detection in German concerns particle verbs such as ankindigen ‘announce’.
Here, the difficulty arises when the verbal stem (e.g., kindigen) is separated
from its particle (e.g., an) in German verb-initial and verb-second clause types.

As a preprocessing step for target word identification, the text is split into

individual sentences and tokenized with the help of the sentence detector and
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the tokenizer of the Apache OpenNLP tool suiteE|. Lemmatization is per-
formed by TreeTagger |Schmid, [1994]|. Further, compounds are split by using
BananaSplitﬂ Since the automatic lemmatization and compound splitting are
not 100% accurate, target word identification also utilizes the full set of in-
flected forms for a target word whenever such information is available. As it
turns out, Wiktionary can often be used for this purpose as well since the Ger-
man version of Wiktionary often contains the full set of word forms in tablesE|

such as the one shown in Figure for the word Bogen.

Kasus Singular Plural 1 Plural 2
Nominativ der Bogen die Bogen die Bogen
Genitiv des Bogens | der Bogen | der Bogen
Dativ dem Bogen | den Bogen  den Bogen

Akkusativ | den Bogen | die Bogen | die Bégen

Figure 5.3: Wiktionary inflection table for Bogen.

Figure shows an example of a sense-annotated article for the target
word Bogen ‘violin bow’. The article is an excerpt from the Wikipedia article
Violine ‘violin’, where the target word (surrounded by gray boxes) appears
many times. Only the first three and the 12th occurrences shown in the figure
(marked with 1, 2, 3, and 12 on the left) exactly match the word Bogen as is.
All other occurrences are either the plural form Bdgen (5 and 8), the genitive
form Bogens (9 and 13), part of a compound such as Bogenstange (4, 10 and
11), or the plural form as part of a compound such as in Fernambukbdgen and
Schiilerbogen (6 and 7).

A textual representation of this sense-annotated Wikipedia article is shown
in Figure [5.5. The figure shows an excerpt of the XML data format in which
WebCAGe is made available. Each target word occurrence is annotated with
an XML <head> element. The information for each occurrence of a target

word consists of the GermaNet sense(s), i.e., the lexical unit identifier(s) (XML

"http://opennlp.apache.org/

’http://niels.drni.de/s9y/pages/bananasplit.html

3The inflection table cannot be extracted with the Java Wikipedia Library JWPL. It is
rather extracted from the Wiktionary dump file.
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N Cropped Wikipedia article from:
L http://de.wikipedia.org/wiki/Violine
— WIKIPEDIA
V|0||ne \ 7 Free Encyclopecia J

Die Violine (Geige, Abk.: VI.) ist ein Streichinstrument aus verschiedenen Hélzern. lhre vier Saiten (g — d’
1|-a'- ez) werden mit einem|Bogen gestrichen. In der Tradition der klassischen europdischen Musik spielt
die Violine eine wichtige Rolle — viele groBe Komponisten haben ihr bedeutende Teile ihres Schaffens engl.: violin, ital.: violino
gewidmet. Violinen werden von Geigenbauern hergestellt.

Violine

N

Der Bogen [Bearbeiten]

Der Bogen besteht héufig aus dem Rotholz Pernambuk . Gutes Pernambuk ist gerade gewachsen und die
Fasern verlaufen parallel, die|Bogenstange kann dann besonders dlinn gearbeitet werden und weist eine
ideale Elastizitat auf. Pernambuk eignet sich somit besonders fiir qualitativ hochwertige Bégen| Da das
Vorkommen der Holzart begrenzt ist, haben Pernambukbdgen einen hohen Preis. Einfachere
Schilertbdgen sind meist aus Brasilholz gefertigt. Heute werden, auch von Berufsgeigern, zunehmend
Bogen aus Kohlefaser (Karbonfiber) verwendet.

I L

Am unteren Ende des Bogens befindet sich der sogenannte Frosch aus Ebenholz, meist verziert mit einer
10/11 [runden Perlmutt-Einlage. Zwischen Frosch und Bogenspitze (Kopfchen) sind die|Bogenhaare
eingespannt. Dies sind ca. 180 bis 250 Haare vom Hengstschweif’! bestimmter Pferderassen. Durch das Klassifikation
12 |Drehen einer Schraube (Beinchen) wird der Bogen in Spannung versetzt (die Spannung muss nach dem

Spiel jeweils wieder geldst werden). Die Haare verfligen Uber feine Widerhaken, welche die Saiten beim

Chordophon
Streichinstrur]

1
Dartiberstreichen in Schwingung bringen. Dafiir miissen die Haare aber zuvor mit Kolophonium Tonumtang
13 |(natirliches Balsamharz) prapariert werden. Das erreicht man durch mehrfaches Streichen des Bogens é : =]
Uber einen Kolophonium-Block. c:
-

Figure 5.4: Wikipedia article Violine ‘violin’ with highlighted occurrences of
target word Bogen ‘violin bow’.

attribute luids), the lemma of the target word (XML attribute lemma), and
the GermaNet word class information (attribute P0S), i.e., a for adjectives, n

for nouns, and v for verbs.

5.2.3 Evaluation

In order to assess the effectiveness of this approach, this section examines the
overall size of WebCAGe and the relative size of the different text collections
(see Table , and it presents a precision- and recall-based evaluation of
the algorithm that is used for automatically identifying target words in the
harvested texts (see Table . Below, Section compares WebCAGe to
other sense-annotated corpora for German.

Table shows that Wiktionary (7644 tagged word tokens, column Wiktio-
nary examples) and Wikipedia (1732, column Wikipedia articles) contribute
by far the largest subsets of the total number of tagged word tokens (10 750)
compared with the tokens from the external webpages (589, column external

pages) and the Gutenberg texts (785 tagged word tokens, column GB texts).
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<corpus lang="de">
<text id="nomen_Bogen_13522" src="https://de.wikipedia.org/wiki/Violine"
title="Violine">

[...] Der <head id="3" luids="19087" lemma="Bogen" pos="n">Bogen</tag>
besteht haufig aus dem Rotholz Pernambuk (Fernambuk). Gutes Pernambuk
ist gerade gewachsen und die Fasern verlaufen parallel, die <head id="4"
luids="19087" lemma="Bogen" pos="n">Bogen</tag>stange kann besonders
dinn gearbeitet werden und weist eine ideale Elastizit&dt auf. Das Holz
eignet sich somit besonders fiir qualitativ hochwertige <head id="5"
luids="19087" lemma="Bogen" pos="n">Bdgen</tag>. Da das Vorkommen der
Holzart begrenzt ist, haben Fernambuk<head id="6" luids="19087"
lemma="Bogen" pos="n">bogen</tag> einen entsprechen hohen Preis.
Einfachere Schiiler<head id="7" luids="19087" lemma="Bogen"
pos="n">bégen</tag> sind meist aus Brasilholz gefertigt. Heute werden,
auch von Berufsgeigern, zunehmend <head id="8" luids="19087"
lemma="Bogen" pos="n">Bogen</tag> aus Kohlefaser (Karbonfiber)
verwendet.

Am unteren Ende des <head id="9" luids="19087" lemma="Bogen"

pos="n">Bogens</tag> befindet sich der sogenannte Frosch aus Ebenholz,
meist verziert mit einer runden Perlmutt-Einlage. [...]

</text>
</corpus>

Figure 5.5: Excerpt from Wikipedia article Violine ‘violin’ tagged with target
word Bogen ‘violin bow’.

Table 5.1: Current size of WebCAGe.

Wiktionary | External | Wikipedia GB All

POS .
examples pages articles| texts| texts
Number Adj. 575 31 79 28 713
of tagged | Nouns 4103 446 1643 655| 6847
word Verbs 2966 112 10 102{ 3190
tokens All POS 7644 589 1732 785| 10750
Number Adj. 565 31 76 26 698
of tagged Nouns 3965 420 1404 624 6413
sentences Verbs 2945 112 10 102 3169
All POS 7475 563 1490 752| 10280
Total Adj. 623 1297 430| 65030| 67380
tumber of Nouns 4184 9630 6851376159 | 396824
sentences Verbs 3087 5285 263 | 146755155390
All POS 7894 16212 7544587944 | 619594

These tokens belong to 2607 distinct polysemous words contained in
GermaNet, among which there are 211 adjectives, 1499 nouns, and 897 verbs.
On average, these words have 2.9 senses in GermaNet (2.4 for adjectives, 2.6
for nouns, and 3.6 for verbs).

For the purpose of the present evaluation, a precision and recall analysis is
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conducted for all text types separately for the three word classes of adjectives,
nouns, and verbs. Table [5.2] shows that precision and recall for all three word
classes that occur for Wiktionary examples, external webpages, and Wikipedia
articles lies above 92%. The only sizeable deviations are the results for verbs
that occur in the Gutenberg texts. Apart from this one exception, the results
in Table prove the viability of the proposed method for automatic harvest-
ing of sense-annotated data. The average precision for all three word classes is
of sufficient quality to be used as-is if approximately 2-5% noise in the anno-
tated data is acceptable. In order to eliminate such noise, manual post-editing
is required. However, such post-editing is within acceptable limits: it took
an experienced research assistant a total of 25 hours to hand-correct all the
occurrences of sense-annotated target words and to manually sense-tag any

missing target words for the four text types.

Table 5.2: Evaluation of the algorithm of identifying the target words.

Wiktionary | External | Wikipedia | Gutenberg
POS .
examples | webpages articles texts
=| Adj. 97.70% 95.83% 99.34% 100%
:% Nouns 98.17% 98.50% 95.87% 92.19%
§ Verbs 97.38% 92.26% 100% 69.87%
A All POS 97.32% 96.19% 96.26% 87.43%
Adj. 97.70% 97.22% 98.08% 97.14%
=| Nouns 98.30% 96.03% 92.70.% 97.38%
Q
~| Verbs 97.51% 99.60% 100% 89.20%
All POS 97.94% 97.32% 93.36% 95.42%

5.2.4 Future Directions

The approaches of [Yarowsky| [1995|, [Leacock et al. [1998|, Mihalcea and
Moldovan, [1999] and |Agirre and Lopez de Lacalle [2004] (see descriptions
in Section provide interesting directions for further enhancing the
WebCAGe resource. It would be worthwhile to use the automatically
harvested sense-annotated examples as the seed set for [Yarowsky's [1995|
iterative method for creating a large sense-annotated corpus. Another fruitful

direction for further automatic expansion of WebCAGe is to use the heuristic
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of monosemous relatives used by [Leacock et al.| [1998|, by Mihalcea and
Moldovan, [1999], and by |Agirre and Lopez de Lacalle| [2004]. However, these
matters have to be left for future research.

In order to validate the resource and language independence of the au-
tomatic harvesting approach that was developed to create WebCAGe, the
method was also applied to other resources. A precondition for such an exper-
iment is an existing mapping between the sense inventory in question and a
web-based resource such as Wiktionary or Wikipedia. In the study described
in Henrich et al|[2012a], the authors first create a mapping between Germa-
Net and Wikipedia in order to harvest German sense-annotated materials from
Wikipedia articles. In the study described in [Henrich et al. 2012¢|, the har-
vesting method was applied to English, taking the existing mapping between
the Princeton WordNet and the English version of Wiktionary provided by
Meyer and Gurevych|[2011] as a basis. The results of these experiments [Hen-
rich et al.; 2012alc] confirm the general applicability of WebCAGe’s harvesting
approach for automatically creating sense-annotated data to other resources

and languages.

5.3 Manually Sense-Annotated TiiBa-D/Z

This section describes the manual sense annotation of a selected set of lemmas
in the TiiBa-D/Z treebank |Telljohann et al., 2004} 2012|. The sense inventory
used for tagging word senses is taken from GermaNet. The underlying tex-
tual resource, the TtiBa-D/Z treebank, is a German newspaper corpus already
semi-automatically enriched with high-quality annotations at various levels of
language including parts of speech, morphology, syntactic constituency, etc.
Subsection describes all annotation layers in detail. The use of treebank

data is motivated by the following considerations:

1. The grammatical information contained in a treebank makes it possi-
ble to utilize a much richer feature set for automatic WSD compared
to sense-annotated training data that otherwise contain little or no lin-
guistic annotation [Fellbaum et al. 2001 (Chen and Palmer] 2009]. This

120



5 Creating Sense-Annotated Corpora

is particularly useful for automatic WSD of verbs where the syntactic
structure in which a verb occurs is often highly predictive of different

word senses.

2. Since the TtiBa-D/Z is based on a newspaper corpus, this ensures a broad
coverage of topical materials such as politics, economy, society, environ-
mental issues, sports, arts and entertainment. This broad coverage of
topics also makes it possible to obtain reliable information about the

relative frequency of different senses of a given word.

Manual sense annotation of the TiiBa-D/Z is along the lines of most other
sense-annotated corpus projects (see Section. In several related annotation
projects, there was a special interest in the sense annotation of verbs. For
example, there was a lexical sample task at SensEval-2 which was dedicated
to verbs [Fellbaum et al., 2001; Palmer et al., 2001] and in the all-words sense-
annotated corpus SemCor, there is an additional set of 166 Brown Corpus files
in which only verbs were sense-annotated |[Miller et al., [1993; Landes et al.,
1998|. This motivates putting a special emphasis on the systematic selection
and annotation of verbs in the TiiBa-D/Z. What sets this work apart from
related work is the systematic selection of verb lemmas to be manually sense-
annotated (see Section below). This selection is determined by the goal
of analyzing the influence of syntax and semantics on automatic WSD, which
is particularly interesting for verbs where the syntactic structure in which a

verb occurs is often highly predictive of different word senses.

5.3.1 Linguistic Annotations in the Treebank

The Tibingen Treebank of Written German (TtuBa-D/Z) is a German newspa-
per corpus with high-quality annotations at various levels of language includ-
ing parts of speech, morphology, and syntactic constituency. Textual materials
from the daily newspaper ‘die tageszeitung’ (taz)ﬂ are semi-automatically en-

riched with linguistic annotations. That is, automatically pre-annotated data

Ihttp://www.taz.de/
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are manually corrected with the help of the graphical tool Annotate [Plaehn,
1998].

The TiiBa-D/Z is the largest manually or semi-automatically annotated
treebank for German. The work on the treebank is still in progress, which
mainly includes adding textual materials. The TiBa-D/Z is freely available
for academic usel[l]

Each newspaper article is split into paragraphs and sentences, and each
sentence in turn into tokens. The most recent release of the TiiBa-D/Z that is
available at the time when the manual sense annotation started is release 8.0.
It contains 1365642 tokens occurring in 75408 sentences that are taken from
3 356 newspaper articlesﬂ

Example shows a sample sentence from the treebank with its English

translation.

(2)  Wegmanns haben sich einen Hund zugelegt[]
(‘The Wegmanns have adopted a dog.”)

Figureshows the same sentence with several layers of linguistic annotation.
The upper part of the figure shows the syntactically annotated tree structure,
below are word level annotations.

The treebank includes various linguistic annotation layers, several of which
can be found in Figure The following list details all annotations that
matter for the WSD experiments in this thesis — especially as input to ma-

chine learning features in the context of supervised WSD experiments (see

Chapter [3)):

Sentence segmentation All newspaper articles in the TiiBa-D/Z are sepa-

rated into individual sentences. The example in Figure [5.6| represents

!See http://www.sfs.uni-tuebingen.de/en/ascl/resources/corpora/tueba-dz.
html| for the details on licensing the treebank resource and a Java API to access the data
programmatically.

2Note that release 8.0 of the TiiBa-D/Z is the most recent release available at the time
when the manual sense annotation started. However, the treebank version used for the WSD
experiments in Chapters [7| and [§] is release 9.1 — as described in Section @

3Sentence 60611 from TiiBa-D/Z 9.1.

4In this thesis, all syntactic tree visualisations such as the one shown in Figure are
created with the export function of the treebank search tool TIGERSearch |Lezius, [2002].
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VROOT

@X=PED)  (VXFID

Wegmanns haben sich einen  Hund zugelegt

Wegmann haben¥%aux  #refl ein Hund zu#legen .
NE VAFIN PRF ART NN VVPP 5.
np* 3pis ds*3 asm asm

Figure 5.6: An annotated example sentence from the TiBa-D/Z.

one sentence, labeled with SIMPX on the highest level of the syntax
treell]

Tokenization Sentences, in turn, are split into individual tokens, shown in

the example figure in the first line of text below the syntax tree.

Lemmatization Each token is lemmatized, as shown in the second line of text
in Figure [5.6 This annotation layer encodes additional information on
various linguistic phenomena — three of which are shown in the example
sentence: auxiliary verbs are represented by %aux at the end of the
lemmas (see lemma haben%auz for the second token in the example
sentence). Reflexive personal pronouns are annotated with #refl (see
the annotation of the third token sich). Separable verb particles are
marked with a hash symbol (#, see the particle verb zu#legen in the

example sentence).

Parts of speech Tokens are annotated by their parts of speech (POS) using
the Stuttgart-Tiibingen-TagSet (STTS) [Schiller et al., 1999]. The STTS

! Actually, the node marked with VROOT is even above the SIMPX node. It integrates
all elements of the sentence, including punctuation.
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consists of 54 hierarchically structured tags. That is, the first characters
of each tag encode one of the 11 main word classes of nouns (N), verbs
(V), articles (ART), adjectives (ADJ), pronouns (P), etc. Depending
on the main word class, these tags are subclassified to encode word class
specific information. For the main word class of nouns, for example, the
tagset distinguishes appellative nouns (tag NN) from proper nouns (tag
NE). For adjectives, it distinguishes between attributive adjectives (tag
ADJA) and adverbial and predicative adjectives (tag ADJD), to give but

two examples.

The STTS tags for punctuation marks start with a dollar symbol (§).
That is, ‘$.” for sentence-final punctuation, ‘$,” for commas, and ‘$(’ for

other sentence-internal punctuation.

The third text line in Figure [5.6|shows the POS tags for each token in the
example sentence, where NFE stands for proper noun, VAFIN for auxil-
iary, finite verb, PRF for reflexive personal pronoun, ART for definite
or indefinite article, NN for appellative noun, VVPP for past participle,

main verb, and ‘§.” for sentence-final punctuation.

Inflectional morphology The treebank annotates inflectional morphology
such as case, number, gender, person, mood, and tense. The kind of mor-
phological information available differs for each word class. The TiiBa-
D/Z stylebook specifies which morphological information is annotated
for which parts of speech. For example, it encodes case, number, and
gender for nouns and (attributive) adjectives, whereas it encodes person,

number, mood, and tense for finite verbs.

The last line in the example figure represents the annotation of in-
flectional morphology. The labels are abbreviations, where a star (*)
marks underspecified information: np* stands for nominative/plural/
underspecified number, 8pis for third person/plural/indicative/present
tense, ds*3 for dative/singular/underspecified gender/third personﬂ and

!There is an error in TiiBa-D/Z’s morphological annotation of sentence 60611: token
sich needs to be annotated with dp*3 instead of ds*3, i.e., plural instead of singular. This
will be corrected in the upcoming release 10.0 of the treebank. However, since this error
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asm for accusative/singular/masculine.

Phrases Phrase labels — such as NX which stands for noun phrase, ADJX
for adjectival phrase, VXFIN for finite verb phrase, and VXINF for
non-finite verb phrase — form the fundamental structural elements of
TiiBa-D/Z’s syntax trees. In Figure , phrase labels are surrounded by
ovals. Note that not all labels surrounded by ovals are phrase labels —

see the annotation of topological fields below.

Topological fields On the highest syntactical level, sentences in the TiiBa-
D/Z treebank are structured according to topological sequences [Herling),
1821; Drach) [1937; [Hohle, 1986 which are widely used in German syn-
tax to characterize word order regularities among different clause types.
In German sentences, verbal elements, i.e., the Linke Satzklammer ‘left
sentence bracket” (LK) and the Verbkomplez ‘verb complex’ (VC), di-
vide the sentence into Vorfeld ‘initial field’ (VF'), Mittelfeld ‘middle field’
(MF), and Nachfeld ‘final field” (MF). In the example figure, topological
fields are also surrounded by ovals. Depending on the position of the
finite verb, the topological structure distinguishes three sentence types:
verb-initial, verb-second, and verb-final. The example sentence represents

a verb-second type.

Grammatical functions and syntactic constituency Tokens, phrases, to-
pological fields, and sentences can have edge labels (the labels in boxes
with a grey background in the example figure) which specify grammati-
cal functions. On the phrase level, HD denotes the head of the phrase

which can be realized by a single token or a phrase.

The annotation of phrases with labels — such as in Figure the ON
which stands for nominative object, the OD which stands for dative
object, the OA which stands for accusative object, or the OV which

stands for verbal object — annotates the syntactic constituency structure

does not affect the description of TiiBa-D/Z’s annotation layers in this thesis, the sentence
is well suited for illustrating all annotations, because it is simple yet does it contain various
annotation phenomena.
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of a sentence. These complements represent arguments of a verb such
as accusative, dative, genitive, prepositional, or adverbial objects. The
constituent structure is annotated below the level of topological fields.
That is, phrases whose edge labels specify their grammatical function are
attached to a topological field. Due to a relatively flexible word order in
German, the structural variety of constituents within topological fields

is large.

Named entities Named entities are classified into the five subclasses of or-
ganisation (ORG), person (PER), location (LOC), geo-political entity
(GPE), and other (OTH). To denote a phrase as a named entity, the
node label is assigned one of these named entity classes. In the example
sentence, the nominal phrase Wegmanns is classified as a named entity

of type person (by assigning PER to the corresponding node label NX )EI

Referential relations The TiiBa-D/Z contains eight types of referential re-
lations. Besides the two most prominent referential relations — i.e., coref-
erence and anaphora — the treebank includes cataphoric relations, exple-
tives, bound relations, split antecedents, instances, and inherent reflex-

ives

Details about all treebank annotations, except for the referential relations,
are documented in the TiBa-D/Z stylebook |Telljohann et al. 2012]. The

annotation of referential relations is specified in Naumann [2007].

5.3.2 Selection of Words to be Sense-Annotated

The sense annotation in the TiiBa-D/Z is geared toward the lexical sample task
in WSD (as in many existing corpora, including Kilgarriff [1998a|, Palmer et al.
[2001], Raileanu et al. [2002], Mihalcea et al. [2004], Broscheit et al. [2010], and

!Named entities are annotated on the phrase level, as the example illustrates. Addi-
tionally, on a different level of annotation, the part-of-speech tag for each individual token
included in the phrase is often (but does not necessarily have to be) annotated with the
POS tag NE.

2From this annotation layer only information on expletives is used in the WSD experi-
ments.
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Passonneau et al. [2012]), rather than toward the all-words task. The decision
against sense annotation of all words of running text in a selected subcorpus is
motivated by the requirements of machine learning. Such data are useful for
training (semi-)automatic machine learning models only if there are sufficiently
many instances for each item to be classified. Due to limitations of how much
text can reasonably be annotated manually in an all-words, sense-annotated
corpus, the resulting numbers of instances for each token are not of sufficient
frequency for machine-learning applications. The selection of lemmas to be

sense-annotated in the TiiBa-D/Z was guided by the following criteria:

1. The selected lemmas have at least two senses in GermalNet and occur at

least 16 times in the TiiBa-D/Z (release 8.0).

2. The sample as a whole represents a good balance of frequencies and

number of distinct word senses.

3. The selected words include both nouns and verbs so as to be able to
compare and evaluate the effectiveness in WSD of structured linguistic

information present in treebanks across the two word classes.

4. For verbs, the selected lemmas display different degrees of correlations

between word senses and verbal frames.

As a result of the above criteria, a total of 109 lemmas (30 nouns and
79 verbs) were selected for manual sense annotation. Table provides an
overview of the entire lexical sample annotated in the TiiBa-D/Z. All numbers
in this chapter (and, thus, in this table) refer to release 8.0 of the treebank.ﬂ

The nouns are chosen by frequency and polysemy so as to be able to analyze
the impact of different amounts of instances in the training data and different
degrees of polysemy on automatic WSD. Altogether, the 30 nouns occur 7538
times in the TiBa-D/Z 8.0 — at least 22 times and at most 1427 times. On

average, there are 251 occurrences per noun lemma. The average polysemy

!Since the sense-annotated corpus used as a gold standard throughout later chapters
(see Section for a description) is based on the newer release 9.1, it is about 13% larger
than the one described here.
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(number of senses in GermaNet) is 3.97 for the annotated nouns, ranging from

2-7 senses.

Table 5.3: Quantitative statistics of sense-annotated words.

’ \ Nouns \ Verbs ‘

Total number of annotated word lemmas 30 79
Total number of occurrences in TiiBa-D/Z | 7538 7967
Frequency range (occurrences/lemma) 22-1427 | 16-710
Average frequency (occurrences/lemma) 251 101
Polysemy range (senses/lemma) 2-7 2-14
Average polysemy (senses/lemma) 3.97 2.84

The 30 selected lemmas for nouns are listed in Table [5.4]in decreasing order
of their number of occurrences in the TiiBa-D/Z (column FJ). Column GN
contains the noun’s number of senses in GermaNet. Albeit inter-annotator
agreement (columns [AA and K) of the manual sense annotation is discussed
in Section below, the values are already listed in order not to replicate
the table at that point.

Table 5.4: 30 selected nouns to be sense-annotated. Abbreviations: F| (fre-
quency, decreasing order), GN (number of senses in GermaNet), JAA (inter-
annotator agreement), /& (Cohen’s kappa).

[Nouns | F| [GN[IAA] K | [Nouns [FL[GN|IAA| K |
Frau 14271 3 | 98.7 196.0| |Spur 85| 5 | 84.7|73.1
Mann 980 | 3 | 98.8 |94.7| | Anschlag 81| 5 1959|614
Land 962 | 7 197.9195.5| |Bein 781 3 974 |-1.3
Haus 668 | 5 | 85.8 |60.7| | Karte 75 4 199.6 | 100
Partei 606 | 3 |97.362.6| |Runde 751 6 920 |88.1
Grund 404 | 5 199.8 [96.9| |Sender 721 5 |83.860.8
Stunde | 367 | 4 |98.1]92.8| |Stuhl 49| 3 |98.0 100
Mal 250 | 2 | 100 | — Gewinn 46| 3 | 95.7 [89.2
Stimme | 250 | 3 | 98.0 [96.0| | Ausschuss 451 2 | 100 | —

Kopf 228 | 6 |97.8 |84.0| |Bestimmung 40| 6 | 90.8 |79.2
Band 150 | 5 |98.7]96.9| | Uberraschung| 39| 3 |96.6 [93.0
Tor 125 | 4 | 100 | 100 | | Teilnahme 31| 3 989 | -

Freundin| 115 | 3 |97.195.9| | Abfall 241 4 | 100 | 100
Hohe 112 | 2 |65.8[11.3| |Kette 231 4 739625
Fufs 109 | 3 199.1|79.7| | Abgabe 221 5 | 100 | 100
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For verbs, 7967 verb occurrences are annotated with the senses of 79 verb
lemmas (see Table[5.3)). The average occurrence per verb lemma is 101 with the
least frequent verb occurring 16 times, the most frequent one 710 times. The
average polysemy is 2.84, with the most polysemous verb showing 14 senses in
GermaNet.

Table lists the 79 selected lemmas for verbs — again ordered by their
frequency in the TiiBa-D/Z (column F]) — with their number of senses (column
GN) and inter-annotator agreement (columns IAA and K). Compared to the
noun’s table, the table for verbs additionally denotes the degrees of correlation
between the verb’s word senses and frames (column C'). The classification
of verbs into the four different correlation classes 1 to 4 is described in the
following.

The selection of verbs is guided by different degrees of correlations among
word senses and verbal frames. The syntactic structure in which a verb occurs
is often highly predictive of different word senses. The German verb enthalten
is a case in point. It has two distinct word senses of ‘to contain’ and ‘to
abstain’, which correspond directly to two distinct verbal frames. The former
requires a verbal frame with a nominative and with an accusative object, i.e.,
frame NN.AN in the GermaNet notation, as in sentence , while the latter

requires a reflexive pronoun as its object as in sentence with frame NN. .ARH

(3) [Das Medikament/NN enthilt Alkohol*N .

(‘The medicine contains alcohol.”)

(4)  IchNN enthalte mich™? eines Urteils.

(‘I abstain from passing judgment.’)

Verbs differ, however, in the degree of correlation between word senses and
verbal frames, ranging from total correlation to complete lack of correlation.
While enthalten (described above) is an example for perfect correlation, the
German verb begrifien is an example of the latter kind. Its senses of ‘to greet
someone’ and ‘to have a positive attitude toward something’ both have a verbal

frame with a nominative and accusative noun phrase, i.e., NN.AN.

Most examples in this subsection are shortened versions of GermaNet’s example sen-
tences. The notation of verbal frames in GermaNet is explained in Section
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Table 5.5: 79 selected verbs to be sense-annotated. Abbreviations: F| (fre-
quency, decreasing order), GN (number of senses in GermaNet), C (correlation
class), JAA (inter-annotator agreement), K (Cohen’s kappa).

[Verbs [FI[GN[C[IAA[ K | [Verbs __ [FI[GN|C[TAA[ £ |
heiften 709 4 |2]94.0 |90.9| |betragen 67| 2 (1] 100 | —

gelten 443 5 | 2| 97.7 196.2| |beraten 65| 3 |2]90.8|814
erhalten 346| 4 |3 |89.2 |76.4| |beschrinken |61 | 2 |1 |96.7]93.2
setzen 341| 14 | 4| 79.5 |75.4| |widmen 57| 2 |1 100 | 100
sitzen 303| 7 |3|92.4 [85.6| |empfehlen 541 3 |2 100 | 100
fragen 294 2 | 11]99.7 199.0| |gestalten 541 2 | 1]96.3]|78.0
aussehen 216 2 | 2| 92.1 |75.8| |entziehen 53] 3 [2]96.2]92.6
reden 195 3 | 3| 80.0 |45.8| | merken 53| 2 |[1]98.1]89.9
sterben 1891 2 |3 |984|79.2| |engagieren [49| 2 |1 | 100 | 100
ankiindigen 187 2 | 1] 100 | 100 | |bekennen 471 2 | 11979 |95.7
verkaufen 173| 5 [41]92.5|75.8| |wundern 46| 2 | 1978 |94.5
unterstiitzen |160| 2 | 3| 95.7 |38.1| |auffallen 45| 2 | 1]97.8 |95.1
bedeuten 159 3 |1|98.1|79.2| |riicken 43| 2 | 1| 100 | 100
leisten 152 3 |290.3 |83.1| |raten 42| 2 |1 100 | 100
bauen 151 3 |2]954|83.2| |bedenken 41 3 [ 2] 97.6 |94.0
verurteilen 150 2 [396.0 |86.6| |gestehen 401 2 |31 90.0 |80.0
reichen 137 4 |4 95.6 |91.8| |berufen 35| 2 [ 1] 100 | 100
verschwinden |126| 2 | 3| 73.8 |47.4| |klappen 351 3 [2] 100 | 100
geschehen 123| 2 |1|98.4|49.5| |kiindigen 35| 2 | 1714|429
griinden 118 4 |2 99.2|93.0| |zugehen 35| 6 |4]94.3|87.6
prasentieren |118| 2 |1 ] 98.9 |98.0| |erweitern 341 2 [1]97.1|84.1
freuen 110 2 |[11]90.9 |64.0| |versammeln |33 | 2 |1]97.0(93.9
informieren 1091 2 |1]98.2]93.0| |argern 331 2 (1] 100 | 100
herrschen 103 2 [399.0{90.4| |befassen 32| 2 |1]96.9|86.0
verdienen 103| 2 |2 ] 100 | 100 | |trauen 321 4 [1]922]91.1
aufrufen 96 | 2 |21]99.0|66.3| |vollzichen 321 2 |1]96.9 ]934
demonstrieren| 96 | 3 |2 | 87.5 |77.5| |zuriickgeben |32 | 2 |1 | 100 | 100
holen 93 | 6 |4|74.2 |65.4| |verstoRen 31| 2 |[1] 100 | 100
weitergehen 87| 2 |3]98.9 |88.3| |einschranken|30| 2 |1 ] 100 | 100
verfolgen 8 | 6 [3]91.8(89.0| |beschweren [27| 3 |2 | 100 | 100
versichern 8 | 3 |1]96.5(80.9| |identifizieren|27| 3 |2 | 92.6 |88.3
enthalten 84 | 2 |11 100 | 100 | |niitzen 271 2 [ 1] 100 | —

liefern 83| 4 |4]88.0(82.5]| |stehlen 26| 2 [ 1] 100 | 100
vorliegen 83| 2 |1]95.0|84.9]| |vorschreiben |26| 2 |3 ]96.2| 0.0
besitzen 82| 2 |3]92.7(84.2| |kleben 241 2 |1]|875|74.3
dréngen 76 | 3 |2|88.2|81.7| |verdoppeln [23| 2 | 1| 100 | 100
erweisen 721 3 | 1972 [84.6| |fressen 221 3 |4 72.7|54.3
existieren 721 2 | 3]98.6|0.0| |wiedergeben |21 | 3 |4 | 76.2|40.0
behandeln 71| 4 | 3|85.6|78.0| |verlesen 16 2 | 1] 100 | —

begriifsen 68 | 2 |3]98.5[96.2

The inclusion of different degrees of correlations between word senses and

verbal frames for verbs to be sense-annotated in T{iBa-D/Z makes it possible

130



5 Creating Sense-Annotated Corpora

to systematically assess the impact of information about syntax (e.g., verbal
frames) and of lexical semantics (e.g. the collocational behavior of the target
lemma) on machine-learning models for WSD. Ideally, features encoding verbal
frame information should suffice for verbs such as enthalten, while for WSD of
verbs such as begriifien they carry no weight whatsoever. In order to provide a
fine-grained spectrum of possible degrees of correlations between word senses
and frames for verbs, the verbs selected for sense annotation fall into four

distinct classes:

Class 1 All verbs in this class have distinct verbal frames for their word senses,
such as the above-illustrated example of enthalten (see Table [5.6)).

Table 5.6: Example for sense/frame correlation class 1.

’ enthalten \ Frame \ Example sentence ‘

[Das Medikament/™ enthdlt Alkohol*Y .
‘The medicine contains alcohol.’
to abstain Ich™N enthalte mich®® eines Urteils.

(from) NNAR ‘I abstain from passing judgment.’

to contain | NN.AN

Class 2 This class contains verbs where at least one sense has a verbal frame
distinct from the frames for the other senses. An example is given in
Table B.7] for the word entziehen. The first two senses ‘withdraw’ and
‘extract’ both have the same verbal frame of a nominative, an accusative,
and a dative object, while the third sense ‘to shirk doing sth.” is dis-
tinguished by requiring a nominative, a dative object, and a reflexive

pronoun.

Table 5.7: Example for sense/frame correlation class 2.

’ entziehen \ Frame \ Example sentence ‘

Sie"N entzog ihmPN [das Taschengeld/*N .
‘She withdrew his pocket money.’

SalNN entzieht [dem Korper[PN Wasser ™ .
‘Salt extracts water from the body.’

to shirk ErN entzog sich™ [der Arbeit/N .

doing sth. NN.DN.AR ‘He shirked the work.’

to withdraw | NN.DN.AN

to extract NN.DN.AN
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Class 3 All verbs in this class share the same verbal frames for all of their
senses, as the above given example of begriffen where both senses have a

frame with a nominative and an accusative noun phrase (see Table [5.8]).

Table 5.8: Example for sense/frame correlation class 3.

’ begriifien \ Frame \ Example sentence ‘
SieNN griifte ihn™N freundlich.

‘She greeted him friendly.’

positive NN AN [Der Chef[NN begriifit [diese Lisung/ Y.
attitute ) ‘The boss welcomes this solution.’

to greet so. | NN.AN

Class 4 This class comprises verbs that do not fall into any of the classes 1-3.
It contains for example the verb liefern with altogether four senses. As
illustrated in Table[5.9] two senses share the same nominative /accusative
frame and the other two senses have an additional dative object. Hence

this verb does not belong to any of the classes 1-3.

Table 5.9: Example for sense/frame correlation class 4.

| liefern | Frame | Example sentence

[Der Boden/N™ liefert [qute Ertrage/*" .
‘The soil supplies good yields.’

SieNN liefert [geniigend Beweise['Y .
‘She delivers enough evidence.’

to supply | NN.AN

to provide | NN.AN

to have N TS —

a fight NN DN.AN :926 liefern sich ’ [einen Kampf[*".
: They have a fight.

with sb.

Sie"N liefern unsPN [die Ware[*™ per Post.

to deliver | NN.DN.AN ‘They deliver the goods to us by post.’

The different degrees of correlation between word senses and frames de-
termine the systematic selection of verbs to be sense-annotated in the TiiBa-
D/Z. Only verbs that have at least two senses in GermaNet are considered.
Altogether, GermaNet contains 2739 verb lemmas with 7680 sensed'], i.e., on

average 2.8 senses per lemma. An inspection of these verb lemmas resulted

!Numbers are calculated on GermaNet 8.0, including only non-artificial GermaNet
senses.

132



5 Creating Sense-Annotated Corpora

in the distribution of the four sense/frame correlation classes in GermaNet as
documented in the upper part of Table denoted as All GN wverbs. That
is, about 22.6% of all non-articifial, polysemous verbs are classified into class
1, 25.7% into class 2, 47.6% into class 3, and the remainder of 5.1% falls into

class 4.

Table 5.10: Distribution of the four sense/frame correlation classes.

’ ‘ Correlation class ‘ 1 ‘ 2 ‘ 3 ‘ 4 ‘ Total ‘
= Total lemmas 592 703 | 1303 | 141 | 2739
g | Lemmas per class (in %) 21.6 | 25.7 | 47.6| 5.1 | 100%
| Number of senses 1215|2669 | 3039 | 757 | 7680
(:D Average polysemy 2.05 3.8 23| 5.4 2.8
< | Average frequency 9 68 15 74 23
2 Total annotated lemmas 38 17 16 8 79
g | - in representative sample 8 9 16 8 41
2| - in high correlation sample 30 8 0 0 38
= | Average polysemy 2.13 | 3.06| 288|562 | 2.84
é Average frequency 65 145 132 | 114 101
< | Total annotated occurrences | 2476 | 2466 | 2116 | 912 | 7950

The total set of annotated verbs is divided into two nearly equally sized
samples. One sample that is representative and well-balanced according to the
class distributions in GermaNet (as shown in the upper part of Table
and a second sample that contains verbs with a high correlation between word
senses and frames (i.e., verbs from classes 1 and 2). The motivation behind this
distinction into two samples is to facilitate the evaluation of WSD algorithms
that use verbal frame information for disambiguation. If a WSD algorithm
fails to perform well on the ‘high correlation’ sample, this would provide ev-
idence that such an algorithm has major drawbacks and will not work for
the representative, well-balanced sample at all. Furthermore, a comparison
on how machine learning algorithms perform on the two samples is highly in-
teresting. That is, to test the deviation in performance and learn about how
powerful such an algorithm can be for verbs that show a high correlation be-
tween word senses and verbal frames. The implementation, evaluation, and

discussion of such WSD experiments are topic of Chapter [§] in particular, of

Subsection [R.3.4l
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The first sample should not be biased toward specific sense/frame correla-
tion classes. The verbs in this sample should rather be fairly distributed over
the different classes insofar that they are distributed ‘representatively’ accord-
ing to the ratios of how many verbs in total occur in GermaNet for which of
the different classes. The amount of lemmas per correlation class included in
this lexical sample are listed in the second row denoted as in representative
sample in the lower part of Table [5.10]

The second sample contains verbs from those classes that allow a clear
distinction between different word senses with the help of their frames. That
is, those verbs where an automatic WSD algorithm based on verbal frame
information is expected to return good results since using the verbal frames
should allow distinguishing different senses of a word reliably. This means
that this second sample contains verbs from classes 1 and 2 (see row in high

correlation sample in the lower part of Table [5.10)).

5.3.3 Annotation Process

In order to assure good quality of the manual sense annotation and to calcu-
late inter-annotator agreement (see Section, sense annotation is indepen-
dently performed by two annotatord| (native German computational linguists)
for all word lemmas and occurrences. The annotators have the possibility to
indicate problematic word occurrences with comments to be discussed sepa-
rately.

The manual annotation is performed lemma-by-lemma (as in many related
annotation projects, for example, Kilgarriff| [1998a], Fellbaum et al.| [2001],
Saito et al. [2002|, and [Passonneau et al.|[2012]), i.e., an annotator first takes
a look at all senses of a word in GermaNet and then — having in mind all
possible senses — annotates each occurrence of that word in the TtuBa-D/Z
with the corresponding sense from GermaNet.

For each occurrence of a word in the treebank, the annotators are supposed

to select exactly one GermaNet sense from the list of available word senses, if

IThe two annotators are both familiar with GermaNet.: one annotator is Valentin
Deyringer, a student assistant of the GermaNet project, and the other annotator is Ver-
ena Henrich, this thesis’ author.
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possible. Since it is not always possible to select exactly one sense, i.e., when
it is either unclear or undecidable which of two senses is illustrated or none
of the senses is plausible, the annotation guidelines allow the assignment of
multiple senses or no sense for a word occurrence. The need to annotate more
than one sense does not arise very oftenE| This confirms both the results of
Raileanu et al. [2002] who annotated only 79 out of 2421 occurrences with
multiple senses and the findings of |[Véronis [1998, page 6] that “the average
number of senses [...| is not very high, which shows that annotators have a
tendency to avoid multiple answers.”

By contrast, annotators choose more often no sense from the list avaﬂableﬂ
Most of these cases are idiomatic expressions or figurative meanings where it
is not obvious which sense to choose. For example, the idiomatic expression
jdm. /etw. das Wort reden (‘to put the case for sb./sth.”) occurs several times

in the TiiBa-D/Z. For example in the phrase:

awrock:, der immer privat organisierten Olympischen Spielen das
5) N ki, der i vat isierten. Olympischen Spielen d
Wort geredet hat, E|
(‘Nawrocki, who always put the case for privately organized Olympic

Games, ...")

Since for this example annotators cannot produce one of the three senses for
reden, i.e., (1) ‘to give a speech’; (ii) ‘to talk’, or (iii) ‘denoting the way of how
to speak’, this occurrence is marked as idiomatic and not annotated with a
sense from GermaNet.

An experienced lexicographerﬁ, who is a native speaker of German and who
has been the main responsible expert for the lexicographic extension of Germa-
Net for several years, supervises the two annotators. In an adjudication step,
the expert goes through all occurrences, where the two annotators either do
not agree or at least one of them had a comment, and resolves disagreements.
This procedure of conducting independent annotations with an adjudication

step afterwards is along the lines with most other sense-annotation projects,

1Only 2 out of the more than 15000 occurrences are annotated with two senses.
2102 out of the more than 15000 occurrences are not assigned a GermaNet sense.
3Part of sentence 24016 from TiiBa-D/Z 9.1.

4Namely, Reinhild Barkey.
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including for example Kilgarriff and Rosenzweig| [2000], Fellbaum et al. [2001],
and [Passonneau et al.| [2012].

Where annotators found during the annotation process that a sense is miss-
ing from GermaNet, GermaNet is updated to include that sense. If the TiiBa-
D/Z contains occurrences of senses for the selected lemmas that are currently
not covered by GermaNet, the two annotators indicate for these occurrences
that a sense is missing in GermaNet. For example, the noun Mann had the
following two senses in GermaNet 7.0: (i) ‘man’ in the general sense of an adult
male person, and (ii) ‘husband’ in the more specific sense of a married man.

In sentence @, the noun Mann is used as a ‘unit for counting manpower’.

(6) Er will die Personalstirke der Bundeswehr auf 270.000 Mann re-
duzieren[]
(‘He wants to reduce the manning level of the German Armed Forces
to 270,000 men.’)

The lexicographic expert decides whether to add a missing sense to GermaNet.
In the case of Mann, the mentioned counting unit sense has been included P
The subsequent update of the sense inventory during the sense annotation
process brings about mutual benefits both for the sense inventory which is be-
ing extended and for the sense-annotated corpus which profits from a feasible
sense inventory. Such an update is common practice for all those annotation
projects where the sense-annotated corpus is being created by the same re-
search group which maintains the sense inventory (e.g., Miller et al|[1993],
Kilgarriff| [1998a], Palmer et al. [2001], and Passonneau et al.| [2012]).

The annotation process is supported by an online too]E| that shows for each
word occurrence in the TiBa-D/Z both the context (highlighting the word
itself in bold) and the list of possible GermaNet senses from which the correct
one has to be manually selected. Figure presents a screenshot with three

annotated occurrences for the lemma Fuf§ ‘foot’.

!Sentence 10692 from TiiBa-D/Z 9.1.

2In GermaNet 8.0

3This tool was developed by Yannick Versley for the purpose of previous annotation tasks
in the TtiBa-D/Z treebank such as the annotation of explicit and implicit discourse relations
|Gastel et al.| [2011]. Yannick made it possible to reuse the tool for WSD annotation.
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John M. Armleder interessiert vor allem die Irritation durch Gestaltung .
519412 Der Franzose macht Nierentische zu Couchlampen , indem er die
FiiBe an die Wand nagelt und Neonréhren unter die Tischplatte schraubt .

sense:  [35740_Korperteil|[46238_MaBeinheit][9370_Artefakt]

comment: “

Der Verkaufer fahrt dann einige Meter nebenher , fragt , ob nicht Interesse am
Erwerb seines zweiten Fahrzeugs besteht .
519684 Wird man handelseinig , geht der Handler zu FuB weiter .

sense:  [35740_Kdrperteil[46238_Maleinheit|[9370_Artefaki]

comment: &

Sie befinden sich in Untersuchungshaft .
522525 Zwei der weitgehend gestandigen Tatverddchtigen seien gegen
Auflagen wieder auf freiem FuB .

sense:  [35740_Kdrperteill[46238_MalBeinheit|[9370_Artefaki]

comment; Ubertragen 4

Figure 5.7: Screenshot of the online annotation tool showing three occurrences
of the noun Fuf.

GermaNet contains three senses for the noun Fuf. They are listed (includ-
ing the corresponding GermaNet identifiers) as (i) [35740_Korperteil] ‘part of
the body’, (ii) [46238_MafSeinheit] ‘unit of measurement’, referring to foot as
a unit of length, and (iii) /9370_Artefakt| ‘artifact’, representing the base of
objects such as furniture. Clicking on a sense label easily allows selecting and
deselecting the corresponding sense. Selected senses are highlighted in bold. In
the example screenshot in Figure[5.7] the first occurrence is annotated with the
artifact sense, whereas the second and third occurrences are each annotated
with the part of the body sense. The comment text fields allow to indicate
problematic word occurrences and to mark occurrences as idiomatic or trans-

ferred meaning. The third occurrence in the figure, for example, contains the
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comment dbertragen ‘transferred meaning’.

The context presented to the annotators consists of the complete sentence in
which the word occurs plus the preceding sentence. The hyperlinked sentence
numbers (for example, s19412, s1968/, etc.) allow easy inspection of the whole
newspaper article in case the immediate context is too narrow. In addition, the
annotators have access to all linguistic annotations in the TiBa-D/Z treebank

and to all sense-related information in Germalet.

5.3.4 Inter-Annotator Agreement

An inter-annotator agreement (IAA) score is calculated to assess the reliability
of the manual sense annotations. The calculated percentage of IAA accounts
for partial agreement using the Dice coefficient [Véronis| |1998|. The overall
percentage of agreement, which is obtained by averaging the Dice coefficient
for all annotated occurrences of the word class in question, is 96.4% for nouns
and 93.7% for verbs. This corresponds to Cohen’s kappa K [Cohen) [1960)|
values of 85.4 and 82.4 for nouns and verbs, respectively.ﬂ

The agreement for each of the 30 nouns is documented in columns TAA
and K in Table [5.4] (in Section above). With the two exceptions of Hdhe
(65.8%) and Kette (73.9%), the calculated IAA values for all other nouns are
at least above 80%, mostly even above 90%. The explanation for the low
agreement of the noun Hohe is due to the semantic distinction of the two
word senses in GermaNet which are very fine-grained and turned out to be
difficult to distinguish during the manual annotation process. The reason for
a low performance for Kette stems from a subsequent restructuring of the sense
inventory during the annotation process. A revision of senses in GermaNet has
been performed after one annotator had already tagged 5 out of 23 occurrences
(which constitutes already more than 20%) with a sense of Kette that has been

deleted. The tagging by the second annotator is conducted on the already

Since Cohen’s kappa does not allow multiple categories (i.e., multiple senses) for a word,
the technique by [Raileanu et al. [2002] of ignoring all words where one of the two annotators
selected more than one sense is followed. In this study, there are 60 such occurrences for
nouns and 17 for verbs. Furthermore, when both annotators always pick one sense for all
occurrences of a lemma, the kappa coefficient is not informative and those occurrences are
ignored in calculating the reported average.
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revised set of senses and thus the deleted word sense is never chosen.

The kappa coefficients (column K in Table show a much higher devi-
ation compared to the percentages of IAA. Here, the two by far worst results
are obtained for Hohe (11.3) and Bein (-1.3), while all other kappa values lie
above 60. The low K for Hohe was to be expected as a result of an already low
percentage of IAA. The explanation for a negative value for K is that there
is even less agreement between the annotators than an agreement by chance
would be. The reason for the negative kappa value for Bein is due to the
skewed distribution of annotated senses, i.e., the same predominant sense is
assigned to 77 out of 78 occurrences. The agreement by chance is thus nearly 1
and a deviation in the manual annotation influences the calculated coefficient
enormously. For lemmas where both annotators always pick the same sense for
all occurrences, Cohen’s kappa is not informative. It is technically not possible
to calculate the coefficient for these lemmas, because the agreement by chance
is 1, which would result in a division by zero. This is the reason why there are
no K values for the three nouns Mal, Ausschuss, and Teilnahme.

A detailed inspection of the IAA for single words did not show a correla-
tion between the IAA and the polysemy of a noun. The Pearson correlation
coefficient [Pearson) [1896| between the IAA and the number of senses a noun
has is -0.03, with a p-value of 0.88, i.e., without statistical significance. For
example, the most problematic nouns mentioned above show different numbers
of senses, i.e., 2 for Héhe, 3 for Bein, and 4 for Kette. Further, the reasons
for the annotator disagreement are diverse and obviously not connected to
the polysemy of a word, i.e., unclear sense distinction, skewed distribution of
annotated senses, and subsequent update of the sense inventory, respectively.
The other way around, the TAA values for the most polysemous nouns, i.e.,
97.9% for Land (7 senses), 97.8% for Kopf, 92.0% for Runde, and 90.8% for
Bestimmung (6 senses each) are comparable to the average of 96.4% for all
annotated nouns. For nouns, this finding that there is no obvious correlation
between the IAA and a word’s polysemy corroborates the results reported by
Fellbaum et al.| [2001] on sense-annotating the Penn Treebank with senses from
WordNet.

For each of the 79 verbs, the percentage of inter-annotator agreement (col-
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umn [AA) and Cohen’s kappa (column K) are listed in Table (in Sec-
tion above). In general, the inter-annotator agreement for verbs is slightly
lower than for nouns. However, similar to nouns, the calculated IAA values for
most verbs are at least above 80%, mostly even above 90%. The few exceptions
with a higher disagreement are verschwinden with 73.8%, holen with 74.2%,
kindigen with 71.4%, fressen with 72.7%, and wiedergeben with 76.2%. For
most of them (i.e., for verschwinden, holen, kindigen, and wiedergeben), the
difficulty is mainly caused by a fine-grained distinction of senses which make an
unambiguous annotation difficult. This detrimental effect for very fine-grained
word senses was already observed by [Palmer et al.| [2006, page 97|. They re-
port an improvement in the inter-annotator agreement from 71.3 to 82% for
the same SensEval-2 lexical sample task when more coarse-grained verb senses
are used instead of the fine-grained distinctions taken from WordNet 1.7. In
the case of holen, an additional complexity arises due to the addition of two
new word senses during the annotation process. For the verb fressen, most

disagreements occur for transferred usages of the verb.

For the same reasons that cause a lower percentage of TAA, it was ex-
pected for those verbs to yield lower K scores, which turned out to be true
(i.e., verschwinden (47.4), holen (65.4), kiindigen (42.9), fressen (54.3), and
wiedergeben (40.0)). The explanation for kappa coefficients of 0.0 for the two
verbs ezistieren and vorschreiben is a skewed distribution of annotated senses.
Both for ezistieren and for vorschreiben, all except one occurrence (by one
of the two annotators) are assigned the same word sense. This results in an
agreement by chance of nearly 1 which in turn results in a very low kappa co-
efﬁcientﬂ For the verbs betragen, niitzen, and verlesen no K values are given
because both annotators always picked one sense for all occurrences and thus

the coefficient is not informative for those lemmas.
For verbs, the observation for the TiiBa-D/Z sense annotation differs from
Fellbaum et al.[s [2001] finding that there is no obvious correlation between

the TAA and a word’s polysemy when sense-annotating the Penn Treebank.

1Since the chance agreements for these cases are nearly 1, Cohen’s kappa is basically not
informative for those cases, but since it is not exactly 1, it is technically possible to calculate
the coeflicient.
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For the sense annotation in the TiiBa-D/Z, the Pearson correlation coefficient
between the inter-annotator agreement and the polysemy of a verb is -0.39.
The coefficient’s absolute value is not remarkably highﬂ to claim a strong cor-
relation, but there is at least a higher correlation than for nouns, and, with a
p-value smaller than 0.001, the correlation for verbs is statistically significant.

Overall, the reported percentage of IAA is very high. The values are com-
parable to the agreement statistics reported in Raileanu et al.|[2002] for their
work in creating a German sense-annotated corpus. The observed agreement
values are much higher than those observed for English. |Véronis [199§], for ex-
ample, observes a pairwise Dice coefficient of 73% for nouns and 63% for verbs.
Palmer et al. [2006] report an inter-annotator agreement of 71.3% for the En-
glish verb lexical sample task for SensEval-2. The reason for much higher TAA
values for German than for English is the different number of distinct senses:
an average of 3.97 for German nouns and 2.84 for German verbs (see the last
column in Table |5.3) as opposed to an average of 7.6 for English nouns and
12.6 for English nouns in the case of [Véronis| [1998, Table 3].

5.4 Comparison of WebCAGe and TiiBa-D/Z

The purpose of this section is to contrast the two sense-annotated corpora
that were described in this chapter, to analyze advantages and disadvantages of
each of them, and to compare them with existing German sense-annotated cor-
pora. The main commonalities between WebCAGe (see Section [5.3)), the sense-
annotated TiiBa-D/Z (see Section [5.2)), and the two other sense-anntated cor-
pora available for German constructed by Raileanu et al.|[[2002| and Broscheit
et al|[2010)P] are that they all (i) use GermaNet as the sense inventory, (ii) fol-
low the lexical sample variant, i.e., several occurrences of a closed set of lemmas

are sense-annotated, and (iii) are freely available to the research Communityﬂ

!Since ‘not remarkably high’ describes the absolute value of the correlation coefficient,
it means that the coefficient is ‘not remarkably distinct from zero’.

2Note that Broscheit et al. [2010] annotate the German deWaC corpus and that these
sense annotations are updated to the most recent version of GermaNet (see Section for
details) and reused for the WSD experiments in Chapters [7| and

3Note that, unfortunately, only parts of WebCAGe are freely available for download due
to legal restrictions on some of the underlying textual materials.
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Table summarizes several properties of the four sense-annotated cor-
pora. Both WebCAGe and the sense-annotated TiiBa-D/Z are considerably
larger than the other two sense-annotated corpora. WebCAGe has by far the
highest diversity of word lemmas annotated whereas TtiBa-D/Z has most over-
all sense-annotated occurrences. It is important to keep in mind, though, that
WebCAGe is the result of an automatic harvesting method, whereas the other
resources were manually constructed. This automatic method can constitute
a viable alternative to the labor-intensive manual method only if it is of suffi-
ciently high quality that it can be used as is or can be further improved with
minimal manual post-editing. WebCAGe’s method proved high quality and,
additionally, all automatic sense annotations were manually post-corrected. It
should be noted that the development time and thus the costs for the con-
struction of an automatically harvested corpus is much less compared to the

manual sense annotation of a comparable amount of occurrences.

Table 5.11: Comparing WebCAGe and the sense-annotated TiiBa-D/Z to other

sense-tagged corpora of German.

Annotated | Broscheit | Raileanu
WebCAGe | 1iBa-D/Z | et al. 2010 | et al. 2002
Sense Adj. 211 0 6 0
tagged Nouns 1499 30 18 25
word Verbs 897 79 16 0
lemmas All POS 2607 109 40 25
Total 7 of tagged 10 750 15505 1154 2421
word tokens
Average frequency 4 142 29 97
Average polysemy 2.9 ca. 3 4.8 3.3
Domain medical
independent yes yes yes domain
Underlying texts web data | newspaper | web data :E?;;Z(ii
Additional none lemia’ Pots, lemma, lem]:a’ Pots,
annotations PO, Sy POS PO, YRR
coreference, etc. UMLS senses
Creation type automatic manual manual manual
Update of
. no yes no no
sense inventory
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Although the average polysemy of the sense-annotated lemmas is similar,
i.e., it is between 2.9 and 3.3 for three out of four corpora (with one excep-
tion of 4.8), the average frequencies show a much higher deviation — ranging
from 4 for WebCAGe to 142 for TiiBa-D/Z (see Table [5.11). This reveals
the major advantage of the sense-annotated TtiBa-D/Z compared to the other
corpora, especially compared to WebCAGe. The explanation why there are
apparently few annotated occurrences per word lemma in WebCAGe is due to
the automatic creation approach. The WebCAGe harvesting method produces
sense-annotated examples for a very large number of lemmas, but only a few
examples for each lemma. In contrast, the sense annotation in the TtiBa-D/Z
comprises an even larger number of occurrence for a much smaller set of lem-
mas. If the purpose of the corpus is to test the scalability of a WSD algorithm
on as many distinct lemmas as possible, this favors WebCAGe. If the purpose
is to train machine learning models, where there is a need of sufficiently many

instances for each item to be classified, TtiBa-D/Z is clearly more suitable.

The main reason why two sense-annotated corpora have been constructed
in the present chapter is to experiment with the impact of the two kinds
of corpora on automatic WSD (see Chapters [7| and . Different genres and
different text types are expected to be less relevant for WSD than, for example,
the availability of linguistic annotations, distinct motivations of which lemmas
are sense-annotated, and different frequencies of annotated occurrences per

lemma.

For many natural language processing applications — not only for WSD —
it is useful to know which senses are more frequent than others and which
ones are the most frequent ones for a lemma. While it is possible to extract
this information from TiBa-D/ ZEL it is not possible for WebCAGe, because
the harvesting method returns a very skewed number of annotated senses and
lemmas and does not annotate all subsequent occurrences of a lemma in a

coherent text.

Finally, note that the sense-annotated TiiBa-D/Z is the only GermaNet

sense-annotated corpus where the sense inventory was updated during the

LAt least for general language taken from newspaper texts.
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annotation process to ensure completeness.

5.5 Conclusion and Continuing Work

The current version of GermalNet has not been used in sense-annotation
projects other than described in this thesis. This chapter has described the
construction of two sense-annotated corpora using the most current version
of GermaNet with the goal of providing a gold standard for the development
and evaluation of word sense disambiguation systems. The two corpora follow
two radically different construction approaches and have different strengths
and weaknesses. Both are freely available to the research communityﬂ The

obvious next steps after constructing these sense-annotated corpora include:

e Experiments with word sense disambiguation algorithms for German us-

ing the newly created sense-annotated corpora as a gold standard.

e Comparison and impact on WSD of the two kinds of sense-annotated
corpora (different genres, different text types, different linguistic anno-
tations available, different underlying text quality, different motivation
of which lemmas are sense-annotated, different numbers of annotated

occurrences per lemma) on different WSD algorithms.

e The implementation, evaluation, and discussion of automatic WSD using
contextual features in order to investigate on the influence of syntax and

semantics on automatic WSD for verbs.

These topics are addressed in Chapters [7] and [§]

!See http://www.sfs.uni-tuebingen.de/en/webcage.shtml and http://www.sfs.
uni-tuebingen.de/en/ascl/resources/corpora/sense-annotated-tueba-dz.html
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Chapter 6

Gold Standard Corpora

This chapter describes the three sense-annotated corpora used as gold stan-
dards for the word sense disambiguation experiments in Chapters[7]and [§ To
allow a fair and comparable evaluation of automatic WSD systems on differ-
ent corpora, the sense inventory used for sense annotation must match for all
corpora. Since the sense annotations in the gold standard corpora are each
based on the most recent version of GermaNet that was available when their

creation commenced, they all rely on different GermaNet releases:

(i) The web-harvested corpus WebCAGe is (semi-)automatically annotated
with senses from GermalNet’s release 6.0— see Section

(i) Manual sense annotation of the TiiBa-D/Z treebank, described in Sec-
tion [5.3] relies on GermaNet’s version 8.0.

(iii) Broscheit et al.[[2010] manually annotated a lexical sample in the deWaC

corpus with senses from GermaNet 5.1.

In order to make the experimental WSD results for the three corpora com-
parable and up-to-date, all sense annotations are updated to the most recent
version of GermaNet available at this point of the dissertation — which is re-
lease 9.0, as of April 2014 (see Section. While knowledge-based word sense
disambiguation experiments (Chapter [7]) can and are evaluated on all available
annotations, supervised WSD (Chapter [§]) requires both a separate test set for

evaluation as well as a certain amount of annotated instances per lemma for

145



6.1 Creating Training and Test Sets

training. Supervised WSD experiments are evaluated on a subset of annota-
tions that fulfill certain criteria. Section explains these requirements and
the division of gold standard corpora into training and test sets.

A difficult issue for evaluating WSD systems is that of annotations with
multiple senses or with no sense. The treatment of such annotations in the
context of this work is explained in Section [6.2]

Sections [6.3] and of this chapter present the updated versions of
the sense-annotated corpora WebCAGe, TiiBa-D/Z, and deWaC, respectively.
The stated corpus versions serve as gold standards for WSD experiments in
later chapters. All corpora are annotated for distinct lexical samples of se-
lected words. The corpus descriptions include statistics on the number of
lemmas included in the sense-annotated lexical samples and on the total num-
ber of annotated token occurrences for each lemma. Since the annotations
employed for supervised systems have to fulfill certain criteria (as described in
Section , for each corpus a separate subsection reports on the annotations
included in the gold standards used for supervised WSD.

Furthermore, during the WSD experiments all three corpora are automat-
ically enriched with linguistic information including sentence segmentation,

tokenization, and lemmatization. These automatic linguistic annotations are

detailed in Section [6.6].

6.1 Creating Training and Test Sets

Supervised approaches to WSD utilize and, if necessary, adapt supervised
learning methods to solve the task of assigning the correct sense to a word.
They rely on existing training corpora whose words are already annotated with
senses from a given sense inventory. While supervised WSD systems typically
obtain far better results than knowledge-based systems, they presuppose the
availability of training data [Marquez et all, 2006; Navigli, [2009).

There are two main approaches to evaluate the performance of supervised
algorithms: evaluating by cross-validation on all available data or evaluating
on a separate, unseen test set (see Subsection . To meaningfully and
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accurately estimate an algorithm’s ability to generalize, testing on unseen data
is crucial. Therefore, some annotations (referred to as the training set) are used
for training a supervised system; another distinct portion of the annotations
(the test set) are held back while tuning the system on the training data, and
later used to obtain final evaluation results. |[Palmer et al., 2006; |Witten et al.|
2011

Furthermore, it is important that training and test sets are representative
samples of the data. This can be achieved by proportionally stratifying all
available annotations. That is, rather than dividing the annotations in the
order of their occurrence or completely randomly, training and test portions
are proportionally stratified, which means that the overall proportionality of
class occurrences in the dataset is preserved. Thus, proportional stratification
guarantees — to a certain degree — representative samples. [Witten et al. [2011]

As a drawback of separate, non-overlapping training and test sets — partic-
ularly prevalent when the amount of annotated data is limited — the evaluation
results strongly depend on the specific split of the data into training and test
samples |Refaeilzadeh et al., 2009]. Although evaluation by (repeated) cross-
validation on all available data could help to lower this variance problem, the
supervised experiments in Chapter 8| are evaluated on a completely unseen
test set. This evaluation procedure primarily allows a more realistic estimate
of the system’s ability to continue to generalize after several experiments with
distinct classifiers, parameters, and features on the training setH Further, this
procedure is in line with most related works on supervised disambiguation
of a lexical sample, e.g., [Hoste et al. [2002a] and Mohammad and Pedersen
[2004], and used for many SensEval and SemEval tasks |Kilgarriff and Rosen-
zweig, 2000; [Edmonds and Cotton, 2001; [Mihalcea and Edmonds, 2004} Agirre
et al., 2007]. It also follows the WSD studies that make use of these SensEval/
SemEval datasets, including Lee and Ng| [2002], Dinu and Kiibler| [2007], and
de Oliveira et al.| [2011] — to name only a few.

The three German gold standard corpora available for this dissertation are

n order to judge the impact of the two evaluation procedures and to analyze how much
the evaluation results differ for the two procedures, Appendix [D] compares WSD results
obtained by cross-validation with results obtained on a separate, unseen test set and proves
the viability of the proposed evaluation procedure.
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divided into training and test sets by following a 2:1 ratio. The use of a 2:1 ratio
is recommended by [Palmer et al.| [2006, pages 77f.] for evaluations of the WSD
tasks. Since this ratio is, for example, employed by the English lexical sample
tasks in SensEval-2 |Kilgarriff, 2001] and SensEval-3 [Mihalcea et al., [2004],
it is, consequently, also employed by all works using these datasets, including
Lee and Ng| [2002], Escudero Bakx| [2006], and |de Oliveira et al.| [2011].
Ideally, there should be a lot of sense-annotated occurrences available for
each lemma — more specifically, for each word sense. [Marquez et al. 2006| In
practice, only a restricted amount of annotations exist — for some languages and
lemmas there are more, for others there are less. In order to assure a minimum
level of meaningfulness when experimenting with supervised methods, a critical
mass of annotated material is required per lemma. This amount is specified

by three criteria:

(c-i) Evaluation of supervised WSD systems is pointless for lemmas for which
there is only one sense annotated, because the system would be trained
only on one sense, i.e., it can classify only one sense, and the results can

thus be evaluated only for this one sense available in the test set.

(c-ii) To ensure both that a supervised classifier can potentially learn a word
sense and that a supervised system is potentially evaluated for a word
sense, there should be for each word sense at least one annotated oc-
currence in the training set and at least one occurrence in the test set,
respectively. That is, it makes sense to consider senses for which at least
two annotations exist which can then be divided into distinct training and
test sets. For technical reasons, this minimum is increased to three, be-
cause the method for stratified splitting all annotations into training and
test sets from the Weka machine learning tool suite [Hall et al., 2009] —
used for the supervised experiments in this thesis (see Section — re-
quires at least three annotations per sense to ensure the inclusion of at

least one annotation per sense in both the training and the test set.

(c-iii) If all annotations are divided into training and test sets to allow the

evaluation on a final test set that has been held back, there should be a
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minimum number of annotated occurrences of at least 15 (counting only
those senses that fulfill criterion c-ii) to ensure that, for a 2:1 split, there
are at least five annotations in the test set. Although five annotations
in the test set are already borderline, they constitute the lowest accept-
able threshold. A minimum of five annotations divides the result scale
into a maximum size of 20 percent per scale unit, below which random
chance would predominate any meaningful evaluation result. For several
lemmas, more annotations are available and, thus, a more fine-grained
granularity range is given. Although such a more fine-grained granu-
larity range would generally be preferred for all lemmas, it has to be

counter-balanced with the manual annotation effort.

More formally, let 7' denote the set of tokens (¢ € T') in the corpus, L the
set of lemmas (I € L) in GermaNet, s the set of senses (s € S) in GermaNet,
and let A : {(T,L,S)} denote each (¢,l,s) € A an annotation of a token ()
with its lemma (1) and sense (S)H The set of annotations which fulfill the three
above-itemized criteria c-i to c-iii are then identified as

A {(T,L,S)} C A where

A ={{t.l,s) € A|Tprseall =1"Ns#5], (6.1)
{0, sy e All=UNs=5} >3,
{1,y € A| =1} > 15}

Supervised WSD experiments in Chapter [§| are evaluated only on those
annotations where all three criteria are met, i.e., that fulfill Equation .
That is, those annotations where a lemma has at least two word senses with
at least three annotated occurrences each, and where a lemma has at least 15
annotated occurrences for those senses with at least three occurrences.

To build training and test sets, all annotated occurrences are extracted
for which the corresponding lemmas and senses fulfill all three of the specified

criteria. The Weka machine learning tool suite is employed to create a stratified

L Also see the explanation in Section on how tokens annotated with more than one
sense or no sense from GermalNet are treated.
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sample of these remaining annotations per lemma into two-thirds training set
and one-third test set.

Note, however, that the criteria established in this section apply only to
the evaluation of supervised systems (Chapter , whereas knowledge-based
word sense disambiguation experiments (Chapter [7)) can and are evaluated on

all available annotations[l

6.2 Treatment of Annotations with No Sense or

Multiple Senses

While most annotations assign exactly one GermaNet sense to a token, a few
tokens are annotated with more than one sense or no sense from GermaNNet.
There is very little if any information in the WSD literature on how to treat
such annotations. To overcome the lack of a standard procedure, this section
describes the treatment of annotations with multiple senses or no sense in
the context of this work. Table [6.1] overviews these annotations for the three
corpora WebCAGe, TiiBa-D/Z, and deWaC. It first lists the total numbers
in the overall available corpus annotations. It then shows the corresponding
numbers in the subset of annotations used for evaluating supervised WSD
systems. Note that the reason for why the numbers strongly differ for the
three corpora is due to distinct sets of annotated lemmas in each corpus.
There are only 164 tokens (144 in the subset used for supervised evaluation)
for which no GermaNet sense is annotated: 0 in WebCAGe, 107 in the TiiBa-
D/Z (out of 17910 annotations, see Subsection [6.4.2), and 57 in deWaC (out
of 1083 annotations, see Subsection . These cases occur in the TiiBa-
D/Z and deWaC, for example, for idiomatic expressions or figurative meanings
where it is not obvious from the context which sense to choose. The reason why
there are no such annotations in WebCAGe is due to its automatic harvesting
method (see Section [5.2). That is, WebCAGe harvests tokens in context only

IThe overall sense annotations available in each of the three corpora WebCAGe, TiiBa-
D/Z, and deWaC is documented in Subsections [6.3.1} [6.4.2] and [6.5.3] respectively, while
the amount of sense annotations included in the ‘supervised’ gold standards for each of the
three corpora is documented in Subsections [6.3.2} [6.4.3, and [6.5.4}
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Table 6.1: Annotations with no sense or multiple senses.

No | Multiple
Sense | Senses

Overall W?bCAGG 0 753
annotations TiBa-D/Z | 107 23

deWaC 57 0
Data for WebCAGe 0 196*
supervised | TiiBa-D/Z 93 22*
WSD deWaC 51 0

*Only the first listed sense in these annotations is

considered, see description below.

for those Wiktionary entries which have mappings to GermaNet senses, and
thus it does not include tokens which are not annotated with any GermaNet

sense.

In order to account for the fact that there exist contexts for which a token
cannot be assigned a GermaNet sense (in TiBa-D/Z and deWaC), the no
sense annotations are not ignored but regarded as a separate class. For both
knowledge-based and supervised systems, this treatment is straightforward
and does not require any modification of the WSD algorithms or evaluation

procedure.

By contrast, tokens with more than one assigned sense are more difficult
to handle. There are several plausible ways in which to deal with them. The
fairest approach would be (i) to give partial credit to the WSD system if
it disambiguates some but not all of the annotated word senses |Resnik and
Yarowsky, 1997, 1999|. Other approaches could be (ii) to simply ignore these
annotations in the evaluation or (iii) to score a system already as correct if it
assigns only one of the multiple senses. Yet other alternatives could modify
the annotations insofar as (iv) all but one sense is removed from the gold
standard or (v) the original annotation in the gold standard is replaced by
multiple annotations, one for each sense. Although alternatives (ii) through
(v) are easier to implement, method (i) would be desirable because it gives a

fairer estimate of a WSD system’s performance.

Since the system for knowledge-based WSD in Chapter [7] is implemented
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completely from scratch, the evaluation can account for partially correct sense
disambiguation using the Dice coefficient |[Véronis, 1998|. The problem with
the supervised WSD environment in Chapter [§]is that the underlying machine
learning tool suite Weka does not support such multilabel classification [Witten
et al., 2011], and thus evaluation by procedure (i) is not possible. A careful
weighing of alternatives (ii) to (v) proved (iv) to be a suitable alternative — for

several reasons:

e Simply ignoring multiple annotations (approach (ii)) is not feasible due
to the considerable number of annotations with multiple senses in Web-
CAGe. Although the TiiBa-D/Z has only 23 such multi-sense annota-
tions and deWaC does not include any, in WebCAGe, 753 tokens are

annotated with more than one sense (out of 10402 annotations in total,

see Subsection [6.3.1) [[

e The reason why approach (iii) is not adopted is because it would produce

slightly higher evaluation results than would be genuinely correct.

e By contrast, approach (v) would slightly worsen the results because it
produces duplicate contexts with distinct sense annotations which nega-

tively affect supervised learning methods.

e Finally, the disadvantage of approach (iv) is that it artificially reduces
the gold standard annotations which might lower some and improve other
results quasi randomly. Whether the results for an annotation is acci-
dentally improved, left the same, or worsened depends on the concrete
annotation instance and on its resemblance to other annotations for the
same lemma. That is, when all but the first annotated sense are ignored
(approach (iv)), the overall results are indirectly averaged. Compared
to the other alternatives, approach (iv) appears fairest overall and its

drawbacks seem least severe.

!The explanation for why there are considerably many multi-sense annotations in Web-
CAGe is, again, due to the automatic creation approach. Whenever the mapping between
GermaNet and Wiktionary connects more than one GermaNet sense with the same entry in
Wiktionary, the harvested texts are annotated with all GermaNet senses in question.
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In short, knowledge-based WSD experiments in Chapter [7] handle anno-
tations with multiple labels by giving partial credit using the Dice coefficient
(approach (i)), while supervised WSD experiments in Chapter [§| handle such
annotations by ignoring all but the firstly listed sense (approach (iv)).

6.3 Updating to WebCAGe 3.0

Section |5.2|explains the web-harvesting and (semi-)automatic sense annotation
of WebCAGe. Updating its sense inventory from GermalNet 6.0 to GermaNet
9.0 mainly affects annotations (i) of which the senses do not exist in the new
release anymore or (ii) where the set of senses has otherwise changed for a
specific lemma. With the help of persistent database identifiers that reliably
identify word senses in GermalNet across releases (since release 5.2, see Ap-
pendix , all relevant annotations can easily be identified automatically.

Those annotations that fall in class (i) are eliminated without replacement.
Therefore, the updated WebCAGe contains a few less annotated tokens com-
pared to its previous version.

All annotations in class (ii) need to be inspected individually. For each
of them it has to be decided manually whether the newly added or removed
senses reflect independently added or removed senses that are completely new
or removed, respectively, or whether the new set of senses involves a merging
or splitting of senses compared to the previously available set of senses. De-
pending on this manual inspection, each annotation is updated (or removed)
appropriately.

The WebCAGe resource is made freely available online/[T]

6.3.1 WebCAGe 3.0 Overall Statistics

The version of WebCAGe which is compatible with GermaNet 9.0 is identified
as 3.0. This version is used throughout the WSD experiments. Table[6.2|shows

WebCAGe 3.0’s statistics on sense-annotated lemmas and tokens.

'http://www.sfs.uni-tuebingen.de/en/ascl/resources/corpora/webcage.html
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6.3 Updating to WebCAGe 3.0

Table 6.2: Overall sense annotation statistics of WebCAGe 3.0.

] \ Adj. \ Nouns \ Verbs \ All POS ‘
Total # of annotated

212 1537 959 2708
word lemmas
- in Wiktionary examples | 212 1537 959 2708
- in external webpages 11 85 35 131
- in Wikipedia articles 2 43 3 48
- in Gutenberg texts 2 34 18 o4

Total # of tagged 694 | 6522 | 3186 | 10402
word tokens

- in Wiktionary examples | 560 4090 2962 7612

- in external webpages 30 424 112 566
- in Wikipedia articles 79 1381 10 1470
- in Gutenberg texts 25 627 102 754

Frequency range
(occurrences/lemma)
Average frequency
(occurrences/lemma)
Polysemy range
(senses/lemma)
Average polysemy
(senses/lemma)

1-83 | 1-185 1-45 1-185

2-10 2-11 2-26 2-26

2.5 2.8 3.7 3.1

Altogether, 10402 occurrences of 2 708 lemmas (212 adjectives, 1 537 nouns,
and 959 verbs) are sense-annotated in WebCAGe 3.0. That is, the average oc-
currences for an annotated lemma is 4. The explanation for why there are
apparently few annotated occurrences per word lemma is due to the auto-
matic creation approach. The WebCAGe harvesting method produces sense-
annotated examples for a very large number of lemmas, but for only a few
examples for each lemma.

For all word classes, the numbers of annotated word tokens from Web-
CAGe’s four text types — i.e., Wiktionary example sentences, Wikipedia arti-
cles, Gutenberg texts, and external webpages — add up to the total numbers of
tagged occurrences. By contrast, the numbers of annotated word lemmas do
not add up to the total numbers, because several lemmas occur in more than
one text category. The reason why the numbers of lemmas annotated in the

Wiktionary example sentences equal the total numbers of lemmas is due to
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WebCAGe’s harvesting method. That is, only those lemmas for which there

is an appropriate example sentence available in Wiktionary were considered.

6.3.2 WebCAGe Gold Standard for Supervised WSD

Although WebCAGe contains more than 10 000 sense annotations of more than
2700 lemmas, only 1761 annotated occurrences of 43 lemmas (3 adjectives, 33
nouns, and 7 verbs) qualify for evaluating supervised WSD. Table shows
the statistics of WebCAGe 3.0’s remaining sense-annotated lemmas and tokens
that fulfill the three criteria formulated in Section [6.1] This remaining set of
WebCAGe annotations is later used as a gold standards for supervised WSD
experiments in Chapter [§

Table 6.3: WebCAGe 3.0 sense annotation subset for supervised WSD.

| | Adj. | Nouns | Verbs | All POS |

Total # of annotated word lemmas 3 33 7 43

Total # of tagged word tokens 128 1471 162 1761
- in training set 87 992 110 1189
- in test set 41 479 52 572

Frequency range 17-83 | 15-184 | 16-45 | 15-184

(occurrences/lemma)

Average frequency 43 A5 93 Al
(occurrences/lemma)

Polysemy range in GermaNet B B B B

(senses in GermaNet/lemma) 23 25 23 25
Average polysemy in GermaNet 93 9.6 91 95

(senses in GermaNet/lemma)
Polysemy range of occurring words
(occurring senses/lemma)

Average polysemy of occurring words
(occurring senses/lemma)

2-2 2-5 2-3 2-5

2.0 2.2 2.1 2.2

With the help of Weka, all these remaining annotations are stratified into
training and test sets — following a 2:1 ratio. That is, by definition, the numbers
of annotated word tokens in the training and test sets add up to the total
numbers of annotated word tokens. The specific numbers contained in the

training and test sets are also stated in Table [6.3]
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Table [C.1) in Appendix [C]lists all lemmas contained in the supervised gold
standard. It states for each lemma its overall number of annotations and
its numbers of annotations in the training and test sets. The table provides
details on the percentage distributions of all occurring senses. The percentage
of the most frequently recorded sense is later used as a baseline for WSD. It
is comparable to the most frequent sense baseline, i.e., when the WSD system

always assigns the sense which has most occurrences in the annotations.

6.4 Sense-Annotated TiiBa-D/Z Treebank

The TiiBa-D/Z treebank |Telljohann et al., [2004, [2012] is a German newspa-
per corpus with high-quality annotations at various levels of language including
parts of speech, morphology, and syntactic constituency (see Subsection m
in the previous chapter). In the context of this dissertation, a selected set of
lemmas is manually sense-annotated in the treebank — as described in Sec-
tion [5.3] For the word sense disambiguation experiments in later chapters, the
most recent version of the TiiBa-D/Z (that is, release 9.1 as of December 2014)
is used; and all sense annotations are updated to the most recent GermaNet
release 9.0. Section outlines these updates, Section summarizes the
statistics on the updated sense annotations, and Section reports on the
corresponding gold standard used for supervised word sense disambiguation

experiments.

6.4.1 Updating to TiiBa-D/Z 9.1

Updating the sense annotations in the TiiBa-D/Z to the newest release of
GermaNet differs from updating the annotations in WebCAGe in three main

ways:

e [t is not only the sense inventory which is available in a newer version, it
is also the underlying textual resource which has been extended. In the
most recent version of the treebank (that is, release 9.1 as of December
2014), all sense annotations are updated to the most recent GermaNet

release 9.0.
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e [f the annotators found occurrences of word senses that were not covered
by GermaNet, the lexicographic expert decided whether to add those
senses to GermaNet (see Section . That is, the sense inventory is ap-
propriately updated with missing word senses during the manual sense
annotations in the TiiBa-D/Z. The foundation for a potentially good
fit with the inventory is provided. Furthermore, since the sense anno-
tation in the TiiBa-D/Z has been performed recently, there are only a
limited number of lemmas for which the set of senses in GermaNet has

fundamentally changed after this annotation.

e The TiiBa-D/Z sense annotation is initially performed on release 8.0 of
the treebank — as presented in Section [5.3] From the beginning, all pre-
pared textual materials that were supposed to be included in TtiBa-D/Z
releases 9.0 and 9.1 were manually annotated with word sense informa-
tion. Only when the treebank was ready to be released could the sense
annotation be finished, because only then all linguistic information was
available to identify missing or superfluous annotations. That is, the pre-
pared textual materials for inclusion in the new treebank release did not
contain reliable lemma and part-of-speech information, which is required
to reliably identify all occurrences of a lemma with the demanded word

class.

In conclusion, due to previous work during the initial annotations, the
upgrade of the sense annotation in the TiiBa-D/Z mainly affects annotations
which occur in the new textual materials. Therefore, the new TiBa-D/Z
release contains more annotations than the version described in Section
Since the update of the sense inventory has been an ongoing process until
recently, there are not many annotated lemmas for which the set of senses
in GermaNet has changed, and, thus, only minor work is needed to update

already existing annotations.
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6.4.2 TiiBa-D/Z 9.1 Overall Statistics

Table [6.4] overviews the statistics on sense-annotated lemmas and tokens in
the TiiBa-D/Z 9.1. This treebank release contains about 10000 additional
sentences, which results in about 2400 additional sense-annotated tokens com-
pared to its version 8.0 described in Section [5.3

Table 6.4: Overall sense annotation statistics of TiiBa-D/Z 9.1.

’ \ Nouns \ Verbs \ All POS ‘

Total # of annotated
word lemmas

Total # of tagged
word tokens
Frequency range
(occurrences/lemma)

30 79 109

8803 9107 17910

24-1699 | 21-801 | 21-1699

Average frequency

293 115 164
(occurrences/lemma)

Polysemy range
(senses/lemmal)
Average polysemy
(senses/lemma)

2-7 2-14 2-14

4.1 2.8 3.2

The sense annotation in the TiiBa-D/Z comprises a very large number of
occurrence for a small set of lemmas. Altogether, there are 17910 occurrences
of 109 lemmas (30 nouns and 79 verbs) sense-annotated in TuBa-D/Z 9.1.
The average frequency for an annotated lemma is 164. This high frequency
constitutes the major advantage of the sense-annotated TiiBa-D/Z compared
to the other available corpora.

The 30 nouns occur 8803 times in the treebank — at least 24 times and
at most 1699 times. On average, there are 293 occurrences per noun lemma.
The average polysemy (number of senses in GermaNet) is 4.1 for the annotated
nouns, ranging from 2-7 senses.

For verbs, 9107 verb occurrences are annotated with the senses of 79 verb
lemmas. The average occurrence per verb lemma is 115 with the least frequent
verb occurring 21 times, the most frequent one 801 times. The average poly-

semy is 2.8, with the most polysemous verb showing 14 senses in GermaNet.
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Appendix [C] documents for each of the 109 lemma details such as the num-
ber of sense-annotated occurrences, the number of senses in GermaNet, and

the number of senses occurring at least once in the treebank — see Table

6.4.3 TiBa-D/Z Gold Standard for Supervised WSD

Table [6.5] shows that 16 738 — from the total of 17910 — sense-annotated to-
kens fulfill the criteria formulated in Section [6.1] and are thus included in the
TiBa-D/Z gold standard used for evaluating supervised WSD systems. These

annotations belong to 92 lemmas (24 nouns and 68 verbs).

Table 6.5: TiiBa-D/Z 9.1 sense annotation subset for supervised WSD.

’ \ Nouns \ Verbs \ All POS ‘

Total # of annotated word lemmas 24 68 92
Total # of tagged word tokens 8198 8540 16 738
- in training set 0474 5711 11185
- in test set 2724 2829 5553
Frequency range 221699 | 24-799 | 22-1699
(occurrences/lemma)

Average frequency 349 126 189
(occurrences/lemma)

Polysemy range in GermaNet 3 3 B
(senses in GermaNet/lemma) 37 21 21
Average polysemy in GermaNet

(senses in GermaNet/lemma) 43 29 33
Polysemy range of occurring words 9 7 9.9 9.9
(occurring senses/lemma)

Averag(? polysemy of occurring words 3.4 9.6 98
(occurring senses/lemma)

Weka’s implementation for stratification is used to divide all annotations
into 66% training and 33% test set. The overall counts contained in the training
and test sets are stated in Table Lemma-specific numbers of annotations
available in the training and test sets are given in Table (Appendix [C).
The table in the appendix also provides details on the percentage distributions
of all occurring senses. The percentage of the most frequently recorded sense

is used in the WSD experiments as the most frequent sense baseline.
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6.5 Sense-Annotated deWaC

The more gold standard annotations available, the more reliable and meaning-
ful the evaluation of word sense disambiguation experiments — especially for
languages such as German where the availability of sense-annotated materials
is restricted. For this reason, the sense annotations in the deWaC corpus are
employed in addition to the other two corpora.

This gold standard consists of a subset of sentences extracted from the
deWaC corpus which are manually annotated with senses from GermaNet.
The deWaC corpus is the German part of the WaCky corpora |[Baroni et al.,
2009]. It is constructed by harvesting from the web with the goal of creating
a corpus of diverse contents and genres. Therefore, a variety of websites with
the German domain ending .de are crawled for basic German vocabulary. Al-
together, deWaC consists of 1.7 billion words. The TreeTagger [Schmid), [1994]
was applied to enrich tokens with their lemmas and part-of-speech tags.

In the context of their WSD study, Broscheit et al. [2010] selected a lexical
sample of 40 ambiguous word lemmas (including 6 adjectives, 18 nouns, and
16 verbs) by translating words taken from the English SensEval-2 test set data
[Palmer et all [2001]. They manually annotated a total of 1154 occurrences in
the deWaC corpus with senses from GermaNet 5.1 — at least 20 occurrences
for each lemma in the lexical sample. These sense-annotations in deWaC have
been made publicly accessibleE] only during the compilation of the two sense-

annotated corpora described in Chapter [

6.5.1 Reasons for Choosing deWaC

Besides the main motivation that more gold standard annotations support
the meaningfulness of WSD experiments, there are three additional reasons
why the sense-annotated deWaC also serves as a gold standard in the WSD
experiments in Chapters [7] and [§ firstly, to allow a comparison and to study
the influence of three different gold standards on word sense disambiguation

experiments. Secondly, the deWaC sense-annotations are now freely available.

!Thanks to Anette Frank and Simone Paolo Ponzetto for making available their deWaC
sense annotations — http://projects.cl.uni-heidelberg.de/dewsd/.
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Thirdly, the corpus is supposed to be domain-independent.

The only other existing and available GermaNet-annotated corpus would be
the medical corpus obtained from scientific abstracts from the Springer Link
website. It was sense-annotated by Raileanu et al. [2002] in the context of
the MuchMore projectﬂ The preference of deWaC over this medical Springer
corpus is mainly due to the GermaNet versions used for sense annotation.
Since the medical Springer corpus was created before 2002, it uses a rather
old version of GermaNet. Although their paper [Raileanu et al., [2002] does
not state a specific version of GermaNet, they report the size of GermaNet
as 16 000 words. Considering that GermaNet’s release 9.0 contains more than
110000 lemmas, i.e., about seven times as many, their version would be difficult
to map onto the current GermaNet version and every lemma would probably
need to be re-annotated. The GermaNet version used for annotating deWaC
is clearly newer and, thus, obviously easier to map to the current release of
GermaNet.

6.5.2 Reuse of an Existing Sense-Annotated Corpus

In a similar way to updating WebCAGe’s sense annotation inventory, adjusting
the sense annotations in deWaC to GermaNet 9.0 mainly affects annotations
where the set of senses for a specific lemma has changed from GermaNet release
5.1 to release 9.0. Unlike WebCAGe’s initial sense annotations, the sense
annotations in deWaC do not yet possess persistent database identifiers that
reliably identify word senses in GermalNet across releases. These identifiers
are available only since release 5.2 (see Appendix . Thus, it is more difficult
to reliably identify or match all senses in question automatically. Finally, all
annotations are revisited and, if necessary, re-annotated with the appropriate
senses from GermaNet 9.0.

The revised deWaC sense annotations have slightly decreased in number
compared to the original version. This is mainly due to leaving out three
lemmas with all their annotations. One of these lemmas is left out because

it has only one sense in GermaNet. Another lemma, an adjective, is taken

'http://muchmore.dfki.de/
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out because most of its occurrences represented non-inflectible tokens such as
particles or adverbs rather than adjectival occurrences. For the third left-out
lemma, the set of senses had been completely revised in GermaNet and it
was not possible to easily map the senses from the different releases onto each
other. Furthermore, a few annotations are removed if their lemma or word
class in the specific context does not correspond to a GermaNet entry, because
the task of recognizing lemma and POS is not tackled in the scope of this
dissertation.

The contexts of the original deWaC sense annotations provided onlindﬂ by
Broscheit et al. [2010] are restricted to sentential phrases only. Since such
restricted contexts pose a specific challenge to WSD, which is not the desired
research goal to tackle in this thesis, the contexts of the revised version of the
deWaC sense annotations are enlarged. These larger contexts are extracted

from the proper deWaC corpus, which is also freely available onlineﬂ.

6.5.3 deWaC Overall Statistics

The GermalNet 9.0 sense annotations in deWaC, which are used for WSD
experiments, comprise 1083 occurrences of 37 lemmas: 90 annotations for the
4 adjectives, 385 annotations for the 18 nouns, and 608 annotated tokens for
the 15 verbs — see Table [6.6] This implies an average of 29 annotations per
lemma.

Details for each of the 37 lemmas — including the number of sense-annotated
tokens, the number of senses in GermaNet, and the number of senses with at

least one annotation — are listed in Table [C.4] in Appendix [C]

6.5.4 deWaC Gold Standard for Supervised WSD

From the deWaC sense annotations, a gold standard for evaluating supervised
WSD systems is formed analogously to WebCAGe and TiiBa-D/Z — see Sec-
tions [6.3.2] and [6.4.3] respectively. Table shows the subset of annotations

1See Footnote [1{ on page for the link to the original deWaC sense annotations.

2 The Web-As-Corpus Kool Yinitiative (short: WaCky) project group [Baroni et al., [2009]
provides large web corpora for several languages, including the German deWaC corpus, at
http://wacky.sslmit.unibo.itl

162


http://wacky.sslmit.unibo.it

6 Gold Standard Corpora

Table 6.6: Overall sense annotation statistics of deWaC.

] | Adj. | Nouns | Verbs | All POS |

Total # of annotated
word lemmas

Total # of tagged
word tokens
Frequency range
(occurrences/lemma)
Average frequency
(occurrences/lemma)
Polysemy range
(senses/lemma)
Average polysemy
(senses/lemma)

4 18 15 37

90 385 608 1083

20-30 | 20-30 | 18-127 | 18-127

23 21 41 29

2-9 2-11 3-26 2-26

2.5 3.9 7.9 2.7

included in this ‘supervised’ gold standard. Altogether, there are 903 annota-
tions, belonging to 31 lemmas (4 adjectives, 15 nouns, and 12 verbs), which
fulfill the criteria formulated in Section and are thus employed for evalu-
ating supervised WSD experiments. With Weka, the annotations per lemma
are stratified into two-thirds training data and one-third test data. The table
also lists the total counts of annotated tokens contained in the training and
test sets.

Lemma-specific counts of annotated tokens included in the training and
test sets are given in Appendix [C| Table [C.5] The table in the appendix
also provides details on the percentage distributions of all occurring senses.
The percentage of the most frequently recorded sense is used in the WSD

experiments as the most frequent sense baseline.

6.6 Automatic Linguistic Preprocessing

For both knowledge-based and supervised word sense disambiguation experi-
ments — described in Chapters[7] and [§] respectively — all corpora are automat-

ically preprocessedE] In order to identify and preprocess the context windows

!Technically, the automatic linguistic processing takes place during the WSD experi-
ments (for the knowledge-based WSD experiments) and when the training files get created
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Table 6.7: deWaC sense annotation subset for supervised WSD.

] | Adj. | Nouns | Verbs | All POS |

Total # of annotated word lemmas 4 15 12 31
Total # of tagged word tokens 82 315 506 903

- in training set o7 217 342 616

- in test set 25 98 164 287
Frequency range 19-23| 1828 |18-115| 18115
(occurrences/lemma)

Average frequency 91 91 49 99
(occurrences/lemma)

Polysemy range in GermaNet

(senses in GermaNet /lemma)
Average polysemy in GermaNet
(senses in GermaNet /lemma)
Polysemy range of occurring words
(occurring senses/lemma)

Average polysemy of occurring words
(occurring senses/lemma)

2-9 2-11 3-26 2-26

2.5 3.9 8.9 6.0

2-3 24 2-11 2-11

2.5 2.3 3.9 3.0

used for disambiguating word senses (see Sections and [8.1]), the three
gold standard corpora described in this chapter, i.e., deWaC (Section ,
TiiBa-D/Z (Section[6.4), and WebCAGe (Section [6.3)), are automatically split

into sentences, tokenized, and lemmatized — as depicted in the following list:

Sentence segmentation With the help of the sentence detector of the
Apache OpenNLP tool suitdl] all texts are split into individual sen-
tences. The sentence detector implements a maximum entropy model to
evaluate whether or not the punctuation characters ‘.’; ‘I’ and ‘?” in a
given text signify the end of a sentence. The German model provided?]

is trained on the Tiger treebank |Brants et al., |2004].

Tokenization The tokenizer available on the TreeTagger for Java websitd]

(for the supervised experiments). Furthermore, only those sentences and tokens for which
automatic linguistic annotation is required during the WSD experiments are actually pro-
cessed. Thus, the three corpora are not (made) available in fully automatically preprocessed
versions.

Ihttp://opennlp.apache.org/

2 Available at http://opennlp.sourceforge.net/models-1.5/.

3The tokenizer was proposed by Richard Eckart de Castilho and is available at http:
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is used for tokenization. It uses Java’s built-in Breaklterator — a very
simple yet functional tokenizer which even separates characters that are

not part of a word, such as symbols or punctuation marks.

Lemmatization TreeTagger |[Schmid, 1994] is a part-of-speech tagger which
is also able to lemmatize tokens. Since for lemmatization with TreeTag-
ger a lexicon lookup is performed, the availability of a lexicon is required.
The official parameter file for German provided on the TreeTagger web-
site, includes such a lexicon. Further details about the TreeTagger, its
probailistic tagging method, and a link to the available parameter file

are provided in Subsection [8.1.1

In order to allow a direct comparison of the WSD results for all three
corpora with the same given quality of preprocessing, this automatic prepro-
cessing is also performed on TiBa-D/Z’s texts, although the treebank already
contains manual sentence segmentation, tokens, and lemmas (see Section
for further explanation).

In addition to these annotations, several supervised machine learning fea-
tures require part-of-speech tags, morphological information, syntactical struc-
tures, and translations to English. These automatic annotations are explained
in the section on machine learning features (Subsection .

//code.google.com/p/tt4d]j/wiki/SimpleTokenizer!

165


http://code.google.com/p/tt4j/wiki/SimpleTokenizer
http://code.google.com/p/tt4j/wiki/SimpleTokenizer
http://code.google.com/p/tt4j/wiki/SimpleTokenizer
http://code.google.com/p/tt4j/wiki/SimpleTokenizer
http://code.google.com/p/tt4j/wiki/SimpleTokenizer
http://code.google.com/p/tt4j/wiki/SimpleTokenizer
http://code.google.com/p/tt4j/wiki/SimpleTokenizer
http://code.google.com/p/tt4j/wiki/SimpleTokenizer
http://code.google.com/p/tt4j/wiki/SimpleTokenizer
http://code.google.com/p/tt4j/wiki/SimpleTokenizer
http://code.google.com/p/tt4j/wiki/SimpleTokenizer
http://code.google.com/p/tt4j/wiki/SimpleTokenizer
http://code.google.com/p/tt4j/wiki/SimpleTokenizer
http://code.google.com/p/tt4j/wiki/SimpleTokenizer
http://code.google.com/p/tt4j/wiki/SimpleTokenizer
http://code.google.com/p/tt4j/wiki/SimpleTokenizer
http://code.google.com/p/tt4j/wiki/SimpleTokenizer
http://code.google.com/p/tt4j/wiki/SimpleTokenizer
http://code.google.com/p/tt4j/wiki/SimpleTokenizer
http://code.google.com/p/tt4j/wiki/SimpleTokenizer
http://code.google.com/p/tt4j/wiki/SimpleTokenizer

6.6 Automatic Linguistic Preprocessing

166



Part 111

Word Sense Disambiguation
(WSD)

167






Chapter 7

Knowledge-Based Word Sense

Disambiguation

Word sense disambiguation (WSD) has been a very active area of research in
computational linguistics (see Chapter . It is the task of computationally
assigning the most appropriate senses to words occurring in a text |[Navigli,
2009]. In stand-alone WSD systems, these senses are taken from a predefined
sense inventory such as a wordnet. Most of the work on WSD has focused
on English. One of the factors that has hampered WSD research for other
languages has been the lack of appropriate resources, particularly in the form
of sense-annotated corpus data. Due to the lack of sense-annotated corpora
for German prior to the construction of the sense-annotated corpora described
in Chapters [p] and [6] there has been relatively little research on WSD for this
languageE] The purpose of this chapter and the following chapter is to help
close this gap. They focus on WSD for German, utilize GermaNet as the sense

inventory, and make use of the three sense-annotated corpora recently made
available for this language: WebCAGe, TiiBa-D/Z, and deWaC.

There are a variety of techniques for trying to solve the task of WSD — in-
cluding knowledge-based, supervised, and unsupervised approaches. While the
next chapter investigates WSD using supervised machine learning methods,

this chapter focuses on knowledge-based WSD. In general, knowledge-based

'For more discussion, see Chapter
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techniques make use solely of available lexical resources including dictionar-
ies or wordnets. They use clues such as selectional restrictions or similarity
between two words in a knowledge base in order to tackle the WSD taskH

The present chapter explores a wide range of knowledge-based word sense
disambiguation algorithms for German. These WSD algorithms are based on
a suite of semantic relatedness measures, including path-based, information-
content-based, and gloss-based methods. The set of employed semantic relat-
edness measures is described in Section [Z.1] below.

The word sense disambiguation of a polysemous target word in a given
sentence starts with a calculation of semantic relatedness for all sense combi-
nations in question around the ambiguous target word to be disambiguated, as
illustrated in Figure . That is, a relatedness measure rel(ts, cs) is calculated
for each sense of the target word to each sense of each word in the context. The
computed relatedness values are illustrated in the table in Figure where
rel(ts, cs) can be one of the employed semantic relatedness measures.

Without a regort to the police the insurance company does not replace the loss.

= Ohne Anzeige bei der Polizei ersetzt die Versicherung den Schaden nicht.

input

sentence
noun 1in noun2in noun 3in
context context context

| I

context word 1, | context word 2, | | context word 2, | | context word 2, ' | context word 3,

sense 1 (cs,,) sense 1 (cs,,) sense 2 (cs,,) sense 3 (cs,;) sense 1 (cs,,)
TW sense 1 rel(ts,, cs;,) | rel(ts,, cs,,) | rel(tsy, cs,,) | rel(ts,, cs,3) | rel(ts,, cs3;) @>
> v 1 1 L9521 17 ©922 1 ©523 1 931 ts, = 1.2
(ts1) =0.1 =05 =0.0 =0.2 =04

I

TW sense 2 rel(ts,, cs;;) | rel(ts,, cs,;) | rel(ts,, cs,,) | rel(ts,, cs,3) | rel(ts,, cs3;) @>
N 2 CS11 2 €521 2, CS22 2 CS23 2 CS31 ts.=2.7
(th) =0.7 =0.2 =0.3 =0.9 =0.6

TW sense 3 rel(ts,, cs,4) | rel(tss, cs,;) | rel(tss, cs,,) | rel(ts,, cs,3) | rel(ts,, cs;,) @>
._>
(ts3) =1.0 =0.9 =0.5 =0.4 =0.8

Figure 7.1: Knowlege-based algorithm for disambiguating a target word.

In a next step, all calculated scores per target word are summed and the
target word sense (or senses) yielding the highest sum is returned.
Experiments on gloss-based relatedness methods also employ the newly har-

vested definitions from Wiktionary, which are linked to corresponding Germa-

1See Subsection for an overview of knowledge-based WSD algorithms and related
works.
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Net senses via the automatic mapping between GermaNet and Wiktionary de-
scribed in Chapter [d Furthermore, since the individual relatedness algorithms
produce diverse results in terms of precision that complement each other well
in terms of coverage, combined algorithms are investigated and compared in
performance to the individual algorithms.

In short, this chapter has the following four main goals:

(i) To apply a wide range of knowledge-based WSD algorithms to German —
including the three word classes of adjectives, nouns, and verbs — since
the range of methods that has thus far been applied to this language is
rather limited (as described in Chapter [2).

(ii) To study the combination of knowledge-based WSD methods in a ma-

jority voting scheme and in a Borda count setup.

(iii) To study the effect of linking GermaNet with Wiktionary (Chapter {4))
on WSD, which is relevant for gloss-based methods.

(iv) To evaluate and compare the performance of knowledge-based WSD

methods on three heterogeneous sense-annotated corpora.

This chapter is based on an earlier published paper [Henrich and Hinrichs,
2012|. The underlying idea to use semantic relatedness measures for WSD
is the same. However, the WSD experiments described in the paper use old
versions of GermaNet (release 6.0) and WebCAGe (unpublished pre-version),
whereas this chapter reports on experiments with the most recent versions of
GermaNet (i.e., release 9.0) and WebCAGe (version 3.0). This chapter presents
WSD results for two additional sense-annotated corpora, i.e., TiiBa-D/Z and
deWaC, which were not available in the context of Henrich and Hinrichs| [2012].
Moreover, it includes the evaluation of adjectives and verbs while the paper
focused solely on nouns.

The remainder of this chapter is structured as follows: Section intro-
duces the terminology and the measures for computing semantic relatedness.
Section describes how these measures are applied to disambiguate word

senses. The results of the knowledge-based WSD experiments are presented
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and discussed in Section [7.3] — separately for the three word classes of adjec-
tives, nouns, and verbs. Finally, Section [7.4] summarizes all findings from this

chapter and concludes.

7.1 Semantic Relatedness Measures

In order to be able to apply a wide range of knowledge-based WSD algorithms
to German, the same suite of semantic relatedness algorithms that was pre-
viously used by [Pedersen et al| [2005]] for English WSD is reimplemented
for German?] The basic ideas of these algorithms are summarized in the fol-
lowing subsectionsﬂ Following |Pedersen et al.’s [2005] terminology, the algo-
rithms are grouped into path-based (Subsection , information-content-
based (Subsection [7.1.3), and gloss-based (Subsection [7.1.4). The measures in
these groups are different from each other with regard to the type of informa-
tion they use for computing semantic relatedness: the path-based measures
rely on GermalNet’s graph structure to compute the shortest path between
two concepts; the information-content-based measures rely on concept prob-
abilities, i.e., relative word frequencies in a large corpus; and the gloss-based
measures make use of sense definitions to count word overlaps. Due to the
different kinds of information employed, the measures have different strengths
and weaknesses, which are discussed in Section [7.3] where the different types
of measures are evaluated and compared in a knowledge-based word sense

disambiguation setup.

!Ted Pedersen, Siddharth Patwardhan, Jason Michelizzi, and Satanjeev Banerjee de-
veloped the WordNet::Similarity package in Perl |[Pedersen et al., 2004], which implements
several measures to compute similarity between word senses in the Princeton WordNet. It
is available at http://wn-similarity.sourceforge.net/|

2This suite of semantic relatedness algorithms was reimplemented for GermaNet by Anne
Brock under the supervision of this thesis’ author. It is made freely available online — see
http://www.sfs.uni-tuebingen.de/GermaNet/tools.shtml#SemRelAPI,

3Also see the original papers cited in each subsection for detailed descriptions and [Bu-
danitsky and Hirst| [2006] for an overview.
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7 Knowledge-Based Word Sense Disambiguation

7.1.1 Terminology

Semantic relatedness and semantic similarity are two similar yet distinct con-
cepts. In the literature [Resnik} [1995; Patwardhan et al.,|2003} |[Pedersen et al.,
2005; Budanitsky and Hirst, [2006} |Zeschl 2010a|, semantic similarity between
two words is understood as the resemblance of their meanings, i.e., the likeness
of two semantic concepts. Semantic relatedness between two concepts is often
defined as their direct or indirect relationship in a taxonomy such as a word-
net. In this view, semantic relatedness is a more general term than semantic
similarity, because two concepts can be related in a wordnet but yet not se-
mantically similar.ﬂ For example, ‘hard’ and ‘soft’ are semantically related
because a wordnet would link them with an antonomy relation, but antonyms
are, by definition, semantically opposites, so the two concepts are not seman-
tically similar. |Resnik, 1995; |[Patwardhan et al., [2003; Pedersen et al., 2005;
Budanitsky and Hirst, 2006} Zesch, [2010a]

In the following, some definitions are made to understand the descriptions
of the relatedness measures in the subsections below. In general, the measures
Tl pname(S1, S2) compute semantic relatedness between two semantic concepts
(i.e., synsets) s; and sy in GermaNet. The shortest path from synset s; to
synset sy in terms of the hypernymy/hyponymy relations in the GermaNet
graph is stated as pathlength(sy, s2). As a special case, depth(s) refers to the
shortest path from synset s to GermaNet’s root node. GermaNet’s artificial
root node (also see Section [3.4)) is abbreviated as GNROOT.

The term least common subsumeﬂ of two synsets s; and s, — expressed as
LCS(s1,$2) —is defined as the most specific (direct or indirect) hypernym that
the two synsets have in common, i.e., the shared hypernym h with the largest
depth(h), which means the longest possible path to GermaNet’s root node.

In general, the hypernymy /hyponymy relation is defined to connect seman-
tic concepts of the same word class. Thus, all measures that rely on hyper-
nymy /hyponymy relations to compute the shortest path or the least common

subsumer of two concepts in the GermaNet graph are limited to comparing

In the context of this chapter, the more general concept of semantic relatedness is
usually meant, if not otherwise stated.
2Sometimes also lowest common subsumer.
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synsets of the same word class.

7.1.2 Path-Based Measures

All path-based measures use the GermaNet graph structure to compute the
shortest path between two concepts contained in the graph. It has to be noted,
however, that even paths with the same length can be significantly different
from each other. For example, paths between two specific concepts are differ-
ent from paths between two general concepts. That is, two directly related,
specific concepts are often very similar (e.g., ‘dog’ and ‘poodle’), whereas two
directly related, general concepts are often more distant (e.g., ‘physical entity’
and ‘physical object’). To take these differences into account, the shortest
paths need to be normalized. The measures described in this subsection differ
from each other in the way of how they normalize these shortest paths. The
first three itemized measures (path, lch, and wup) normalize path lengths by
incorporating information on the specificity of concepts, i.e., by incorporat-
ing information on which level in the GermaNet hierarchy the concepts are
located, while the fourth method (hso) incorporates the number of ‘direction

changes’ for normalization. [Pedersen et al. 2005]

path: This is the simplest method used to calculate semantic relatedness be-
tween two concepts s; and sy. It computes relatedness as a function of
the distance between two nodes (i.e., pathlength(si, s2)) normalized by

the longest possible ‘shortest path’ between any two nodes in GermaNet

(i.e., MAXSHORTESTPATH).

MAXSHORTESTPATH — pathlength(si, s2)
MAXSHORTESTPATH

(7.1)

1€l patn (S1, S2) =

where the constant MAXSHORTESTPATH is the maximum path
length of all shortest paths in GermaNet. For GermaNet 9.0,
MAXSHORTESTPATH is calculated as 35.

Ich: This method also computes the shortest path between two nodes s; and

sy by the function pathlength(sy, s2) — similarly to the previous method
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but with a different normalization. Leacock and Chodorow| [1998] define
similarity between two concepts as the negative logarithm of the length
of the shortest path between the two concepts (limited to hypernymy/
hyponymy relations only) over twice the path length of the overall depth
of the wordnet{]

pathlength(sy, s2)
2 x MAXDEPTH

relien (81, $2) = — log (7.2)

where MAXDEPTH is the maximal distance of all synsets from GN-
ROOT. For GermaNet 9.0, MAXDEPTH is 20.

wup: Again, conceptual relatedness between two concepts s; and sy is com-

hso:

puted as the shortest path length (limited to hypernymy /hyponymy rela-
tions) between the two concepts, i.e., pathlength(sy, s2). Wu and Palmer
[1994] normalize the path length by the depth of the two synsets’ least

common subsumer, i.e., depth(LCS(s1, s2)).

2 x depth(LCS(s1, s2))
pathlength(sy, s2) + 2 x depth(LCS(s1, $2))

(7.3)

relyup (51, S2) =

Since the path-based relatedness measure introduced by Hirst and St-
Onge| [1998] is not limited to the hypernymy/hyponymy relations, it
can be computed for concepts of different word classes. |[Hirst and St-
Onge| [1998| categorize relations in a wordnet as being ‘upwards’ (e.g.,
hypernymy, holonymy, is-entailed-by), ‘downwards’ (such as hyponymy,
meronymy, entails, causes), and ‘horizontal’ (including is-related-to, syn-
onymy, antonymy, has-participle, pertainymy), and refer to a change of
‘direction” whenever the path between two concepts consists of two rela-

tions from distinct groups.

Hirst and St-Onge| [1998| define ‘strong relations’ as identical concepts,
concepts with a direct horizontal link, or when one word lemma of one

synset is contained in one of the other synset’s lemmas (presumably

'In the implementation, 1 is added to numerator and denominator to avoid an infinite
result for the logarithm of zero, which would otherwise occur for identical concepts.
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a compound). ‘Medium-strong relations’ refer to paths between two
concepts that (i) have a maximum length of five when considering all
types of relations and (ii) confirm specified patterns such as u+, u+d+,
u+h+, u+h+d+, d+, d+h+, etc., where ‘u’ refers to upward relations,

‘d’ to downward relations, and ‘h’ to horizontal relationsﬂ

In the current implementation, the relatedness value for strong relations
is set to 15. Semantic relatedness between two medium-strong related
concepts considers the length of the shortest path between the concepts

(i.e., pathlength(sy, s2), as before) and the number of ‘direction’ changes:

relpso (1, 82) = C' — pathlength(sq, s2) — k X d (7.4)

where C' is the maximum value for these medium-strong relations, k the
factor to scale the number of direction changes, and d the number of
changes of direction in the shortest path between the two synsets. The
results reported in the experiments in Section [7.3| use the default values

of 10 and 1 for parameters C' and k, respectively.ﬂ

Although path, Ich, and wup allow arbitrarily long paths between concepts,
the paths’ computation considers only hypernymy /hyponymy relations. Since
this type of relation always connects concepts of the same word class, these
measures are restricted to synsets of the same word class. The shortest path
computation in hso is not limited to the hypernymy /hyponymy relation. Thus,
hso is applicable to concepts of different word classes. However, since the
hso measure prohibits long paths between two synsets and many changes in
direction, the measure is restricted to the set of synset combinations that are

‘close’ enough in the GermaNet graph.

7.1.3 Information-Content-Based Measures

The measures in this subsection are different from the previously described

measures with regard to the type of information they use for computing se-

!See the paper by [Hirst and St-Onge| [1998| for more information.
2Note that both the value for strong relations and the maximum value for medium-strong
relations differ from those used in the implementation by [Pedersen et al.| [2005] for English.
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mantic relatedness. That is, while the path-based measures use GermaNet’s
graph structure to compute the shortest path between two concepts, the mea-
sures described in this subsection rely on concept probabilities, i.e., relative
frequencies of words in a large corpus.

More specifically, the three measures in this subsection, i.e., res, jcn, and
lin, rely on the information content (IC) of a concept in the GermaNet graph.
The information content graduates semantic concepts from general to specific.
The more specific a concept, the smaller its probability and, thus, the higher
its informativeness. Conversely, the more generic or abstract a concept, the
higher its probability, but the lower its IC. The IC of a semantic concept is
determined by the negative logarithm of the concept’s probability. |[Resnik,
1995|

In the present implementation, the information content of a semantic con-
cept is estimated by the relative frequency of the word in a large corpus,
namely the Tubingen Partially Parsed Corpus of Written German (TuPP-
D/Z) [Miiller, [2004; Ule, 2004]. The TiPP-D/Z is a German newspaper corpus

of 200 million words, freely available for academic usel]

Since there are no large German corpora available with all words sense-
annotated, the frequency of a word is assigned to all synsets containing that
WOI"dE| and cumulatively to all direct and indirect hypernyms of these synsets
up to GNROQOT. This cumulative counting means that occurrences of more
specific concepts are also added to the frequencies of more general concepts.
More formally, the information content /C(s) of a semantic concept s is sum-

marized as
> cumFreq(w)
weW (s)

1C(s) = —log cumFreq(GNROOT)

(7.5)

where cumFreq(s) is the cumulated frequency of synset s (i.e., the frequency of

s and cumFregs of all hyponyms) and W(s) is the set of words w in synset s.

Furthermore, all three measures employ the least common subsumer (LCS)

"http://www.sfs.uni-tuebingen.de/en/ascl/resources/corpora/tuepp-dz.html

?Note that this assigment of a word’s frequency to all corresponding synsets follows
the approach by [Patwardhan et al|[2003|, whereas Resnik| [1995] proposes to divide the
frequency by the number of synsets.
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7.1 Semantic Relatedness Measures

of two synsets. Since the LCS is determined by the hypernymy/hyponymy re-
lation, which always connects concepts of the same word class, these measures

are limited to comparing synsets of the same word class.

res: [Resniks [1995] measure to compute semantic similarity is the simplest
IC-based measure. It assumes (i) that two concepts are more related
the more information they share and (ii) that the shared information
of two concepts can be quantified by the information content of two
concepts’ lowest common subsumer. Thus, this measure defines semantic
relatedness between two concepts s; and ss to be the information content

of the two concepts’ least common subsumer:lﬂ
relyes(s1, 82) = IC(LCS(s1, $2)) (7.6)

More specifically, [Resnik [1995] measures semantic similarity of two con-
cepts as the negative logarithm of the probability of their least common
subsumer in the graph. To use a terminology consistent with the other
measures, Resnik's [1995] measure is labeled as rel s, although, strictly
speaking, he defines a measure to compute semantic similarity rather

than relatedness.

jen: The idea of |[Jiang and Conrath/s [1997] measure extends |[Resnik/s [1995|
measure in that it associates the information content of two concepts’
least common subsumer with the individual information contents of the
two concepts. The assumption behind this measure is that two con-
cepts are more related the smaller the difference between the I1C of two

concepts’ LCS and the sum of the two concepts’ 1Cs.

Jiang and Conrath [1997] define semantic distance of two concepts as the

sum of the ICs of the concepts minus twice the IC of their LCS:

distjen (51, 52) = IC(51) + 1C(s2) — 2 x IC(LCS(s1, 52)) (7.7)

'If more than one LCS for two concepts exist, the ‘most informative’ one is taken, i.e.,
the more specific concept.
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Conceptually, semantic distance in a graph is the inverse of semantic
relatedness. In the implementation, the distance measure is turned into
a similarity measure by subtracting it from the maximum possible ‘dis-

tance’ of any two concepts in GermaNetﬂ
r€licn (51, 82) = JONMAXDIST — dist e, (51, S2) (7.8)

where the maximum possible ‘distance’ in terms of the jen measure is

defined as

JONMAXDIST = max(dist e, (1, 52))
= max([C(s1) + IC(s2) —2 x IC(LCS(s1, 52)))
— MAX _IC + MAX_IC — 2 x IC(GNROOT)
— MAX IC + MAX IC —2x0

=2x MAX IC
1
gfrequency of GNROOT

=2x—1lo

(7.9)

That is, JONMAXDIST is twice the IC of two leaf nodes with
the highest IC (MAX _IC), whose LCS is GNROOTP Assum-

ing that a leaf has the assigned default minimal frequency of 1,

MAX _IC = —log e—rennoor- JCNMAXDIST is constant for

a specific GermaNet release and lemma frequency list. For the current

implementation with GermaNet release 9.0 using frequencies from
TuPP-D/Z, the value for JONMAXDIST is approximately 37.65.

lin: Lin’s [1998] measure is similar to the measure by Jiang and Conrath||1997]
in that it considers the same information contents, i.e., the individual in-
formation contents of two concepts and the information content of the
two concept’s lowest common subsumer. However, the components in-

teract differently. To measure similarity between two concepts s; and so,

INote that this way of turning the distance measure into a relatedness measure differs
from the implementation by [Pedersen et al.|[2004], who calculate relatedness as the inverse
of the distance, i.e., m

2The IC of GNROOT is 0.
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Lin| [1998] computes the IC (multiplied by 2) of the two concepts’ LCS

over the sum of the ICs of the two concepts:

2 x IC(LCS(s1, 55))
IC(s1) + 1C(s2)

relyin(s1, S2) = (7.10)

7.1.4 Gloss-Based Measures

The measures in this subsection are again different from the previously de-
scribed measures with regard to the type of information they use for comput-
ing semantic relatedness. That is, the measures in this subsection use neither
the GermaNet graph to calculate paths or least common subsumers nor word
frequencies to calculate information contents for words. The measures in this
subsection rather make use of sense definitions to count word overlaps.

Lesk [1986] introduces a word sense disambiguation algorithm assuming
that words occurring together in a text tend to share a common topic. The
algorithm counts the word overlaps between the definitions of an ambiguous
target word and the definitions of the words in its context. [Banerjee and
Pedersen [2003] apply Lesk’s algorithm to the task of computing semantic
relatedness between synsets of WordNet. They extend the original measure by
including definitions of related synsets. The underlying idea is that the more
related two synsets are, the more overlaps their definitions and the definitions
of corresponding related words have/]

The measures in this subsection calculate semantic relatedness between two
concepts 1 and sy by counting words shared by the ‘bags of words’ (BOW) of
two concepts:

r€liesk (51, $2) = BOW (s1) N BOW (s2) (7.11)

where BOW () is a set of distinct words harvested for synset s. Word over-
lap methods can generally compare two words of any word class. Several
options allow specifying which words to include in these bag of words repre-
sentations of synsets. Since the coverage of definitions for GermaNet synsets is

limited, the newly harvested definitions from Wiktionary, which are linked to

See Subsection for more details on the original Lesk|[1986] algorithm and Banerjee
and Pedersen’s [2003] adapted variant.
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corresponding GermaNet senses via the automatic mapping between Germa-
Net and Wiktionary described in Chapter [d] are also employed. Furthermore,
lexical fields are examined for calculating word overlaps. Lexical fields sub-
stitute sense descriptions by encapsulating related words — as introduced in
Section [£.2] Using the mapping from GermaNet to Wiktionary, such lexical
fields can also be obtained for Wiktionary.

The choice of whether to include deﬁnitionﬂ (see Section [3.2)) or lexical
fields (see Section from Wiktionary or GermaNet results in many different
bags of words. Since it would be too much to report experiments for all possible
variant{?, the following list itemizes the five versions for which results are
reported and discussed in Section [7.3] The main reasons for including these
five variants is to be able (i) to compare the performance of glosses as opposed
to lexical fields, (ii) to study the impact of bags of words constructed solely
from GermaNet with those constructed solely from Wiktionary, and (iii) to
study the general impact of the alignment between GermaNet and Wiktionary

(i.e., all improvements over lesk-GermaNet).

lesk-GermaNet: All available information from Germalet is included into

the bags of words, i.e., both glosses and lexical fields from GermaNet.

lesk-Wiktionary: All available information from Wiktionary is used for
counting word overlaps, i.e., both glosses and lexical fields from

Wiktionary.

lesk-glosses: All glosses — both from GermaNet and Wiktionary — are in-
cluded into the bags of words.

lesk-lex-fields: All lexical fields — both from GermalNet and from Wiktio-

nary — are used for constructing the bags of words.

1 As stated in Footnote [2[ on page the terms definition, gloss, and sense description
are used interchangeably throughout this thesis.

2Further possible variants include any other combination of glosses/lexical fields and
GermaNet/Wiktionary that is not itemized in the list. For example, variants where (i)
only glosses from GermaNet, (ii) only glosses from Wiktionary, (iii) only lexical fields from
GermaNet, (iv) only lexical fields from Wiktionary, (v) lexical fields from GermaNet and
glosses from Wiktionary, (vi) lexical fields from Wiktionary and glosses from GermaNet,
etc., are used.
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lesk-all-info: All available information is used, i.e, glosses and lexical fields
both from GermaNet and Wiktionary.

Besides the general choice of whether definitions or lexical fields from Wik-
tionary or GermaNet are included in the bags of words, there are many more
parameters for the gloss-based methods. The results reported in the WSD
experiments below use the following default values, which turned out to be

generally (i.e., across word classes and corpora) the most reliable:

All POS The experiments described below include words of all word classes

in the bags of words representations.

All words and orthographic forms from synset The bags of words in-
clude all words from a synset, i.e., all orthographic forms of all synony-

mous lexical units.

Compound splitting Nominal compounds are split into their constituent
parts before being included in the bag of words. It turned out that
information on compound constituents available in GermaNet is more
reliable than external compound splitters. The reason might be that the

compounds in GermaNet are manually post-corrected automatic splits —
see Henrich and Hinrichs [2011] and Subsection

Stemming and case folding To generally increase the word overlap counts,
all words in the bags of words are stemmed (using the Snowball stemmer

[Porter| |1980]) and converted to lower case.

Hypernyms only As with the word overlap experiments in Chapter [4 dif-
ferent types of related words can be included into the lexical fields. The
experiments reported in the present chapter consider hypernyms only —

disregarding all other relation types.

Maximum path length Hypernyms and hypernyms of hypernyms up to a

maximum distance of 4 are added to the bags of words for a synset.

Minimum specificity Even hypernyms within this maximum distance of 4

are included only if they have a minimum distance of 2 to GermaNet’s
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root node. That is, synsets from the first two upper levels of the Germa-

Net hierarchy are excluded.

7.2 Semantic Relatedness for WSD

The knowledge-based word sense disambiguation of a polysemous target word
in a given sentence starts with the extraction of the appropriate context words
for each target word. This context window is explained in Subsection [7.2.1]
below.

In a next step, for each above-described relatedness measure taken in iso-
lation, semantic relatedness is calculated between all senses of the target word
with all senses of all words in this context window, as illustrated in Figure
(on page above. That is, a relatedness measure rel(ts, cs) is calculated
for each sense ts; of the target word to each sense csj; of each word j in the
context. The computed relatedness values are illustrated in the table in Fig-
ure[7.1} All calculated values per target word are summed and the target word

sense (or senses) yielding the highest sum are returned. More formally:

arg max ts; ‘= max Z rel(ts;, csjx) (7.12)

) ts; €T
tsi€T ! ts; €T, csj,€C

where T is the set of all target word senses and C' the set containing all senses
of all words in the context window (described in the next subsection).

In case of ties, i.e., when more than one sense achieves the maximum value
by Equation [7.12, all corresponding target word senses are returned by the
algorithm. By contrast, if no target word sense achieves a value above zero,

the algorithm does not return any target word sense.

7.2.1 Context Window

The window of context contains words surrounding the target word to be
disambiguated. To determine the context window, the texts around the target
words are automatically split into sentences, tokenized, and lemmatized — as

described in Section [6.6] Stopwords such as determiners, identified with the
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help of a given lis]]| are ignored. Since semantic relatedness as defined above
(in Section can be calculated only for word lemma entries in GermaNet,
the context window generally contains lemmas — rather than tokens — and is
restricted to lemmas covered by GermaNet. Note that this restriction is in
line with [Pedersen et al. [2005] who include only words with entries from the
Princeton WordNet into their context window.

As also explained in Section above, all measures that rely on hyper-
nymy /hyponymy relations for computing semantic relatedness are limited to
comparing synsets of the same word class. This applies to all information-
content-based methods (res, jen, and lin) and most path-based methods (path,
lch, and wup, but not hso). The context windows for these measures are fur-
ther restricted to words of the same word class than the target word. Word
class information is taken from GermaNet Pl

Similarly to [Pedersen et al. [2005]|, experiments are conducted with dif-
ferent context window sizes — see Subsection [7.3.4] for detailed observations.
In particular, windows of sizes between 1 and 50 words are explored, which
are not restricted to sentence boundaries and where the target word occurs
in the middlemost position, if possible. The specified sizes do not include the
target word. For instance, a context window of size four includes two words
to the left and two words to the right of the target word. Further experi-
ments use a context window which consists of all words with the appropriate
word class from within the same sentence than the target word. The finding
by [Pedersen et al. [2005] that larger context windows improve performance

is generallyff| confirmed for German across word classes and corpora (also see

!The stopwords list is copied from the Snowball stemmer |Porter, 1980], available at
http://snowball.tartarus.org/algorithms/german/stop.txt.

“In contrast to English, very few German words with identical lemma forms belong to
multiple word classes. More specifically, 28 out of 110738 lemmas in GermaNet 9.0 have
entries in more than one word class. Consequently, for the purpose at hand it is absolutely
sufficient to use GermaNet’s word class information — even with randomly choosing the 28
ambiguous cases.

3A few exceptions exist for some gloss-based measures, which obtain slightly better
results for the context window which consists of all words from within the same sentence
than the target word. This, in turn, corroborates the findings by [Vasilescu et al.| [2004] that
performance of such word overlap algorithms decreases for larger contexts windows. Larger
contexts have generally (i.e., across word classes and corpora) turned out to be the most
reliable in the WSD setup of the present chapter.
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Subsection [7.3.4]). Thus, the results reported in Subsections to use

a context window size of 50 words.

7.2.2 Random Sense Baseline

The random sense baseline represents a lower baseline for comparison with
the WSD algorithms. For each target word occurrence, the baseline randomly
selects exactly one sense from the set of corresponding GermalNet senses for
the target word lemma. It is generally a good indicator of the difficulty of the
task at hand.

The approach pursued in this chapter of selecting one sense from the set
of GermaNet senses differs from the implementation by Henrich and Hinrichs
[2012], where the option of no appropriate sense from GermaNet is included
in the set of senses from which the baseline randomly selects one entry. The
inclusion of this no sense option reflects the annotation setup which includes
cases where it is not possible to annotate a sense from GermaNet. However,
since there are generally few annotations with no sense (see Section , the
baseline implemented in this chapter, which excludes this option, achieves a
considerably higher performance than the baseline by Henrich and Hinrichs
[2012] — most prominently, the baseline in this chapter achieves a perfect cov-
erage of 100%. It is thus more difficult for the WSD algorithms to beat this
baseline.

As a second baseline, a most frequent sense baseline, i.e., when the WSD
system always assigns the sense which has most occurrences in the annotations,
is sometimes used as an upper baseline for WSD. The main reason why the
experiments of this chapter are not directly compared to such a baseline is
to keep the setup purely knowledge-based and without any training bias — as
described in Subsection[7.2.4 below. However, a most frequent sense baseline is
employed in Chapter [§ on WSD using supervised machine learning methodsﬂ
This procedure follows the approach by |Kilgarriff and Rosenzweig [2000] for

SensEval, who state that “baselines which use training data [such as the most

IFurthermore, detailed sense distributions per lemma, which are comparable to a most
frequent sense baseline, are provided in Appendix@
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frequent sense baseline| are intended for comparison with supervised systems”

|[Kilgarriff and Rosenzweig) 2000, page 28].

7.2.3 Combined WSD Algorithms

It has been shown for various NLP tasks, including part-of-speech tagging
[van Halteren et al.; 2001; Henrich et al.,[2009] and word sense disambiguation
|[Florian et al., 2002; Florian and Yarowsky, 2002; Klein et al. 2002|, that
multiple classifier systems outperform single decision systems. Further, the
performance of such methods is usually better the more diverse the individual
systems are [Polikar, [2006].

Several WSD algorithms used in the present chapter employ — on the one
hand — rather similar knowledge: all information-content-based measures use
frequency information, all path-based and IC-based measures use the Germa-
Net hierarchy, and all gloss-based algorithms calculate word overlaps. On
the other hand, since groups of algorithms are based on different underlying
ideas, they are likely to produce diverse results: the information-content-based
measures utilize frequency counts which are not used for the path-based al-
gorithms; and both the path-based and information-content-based measures
directly employ the GermaNet hierarchy to calculate relatedness which is dif-
ferent for the gloss-based algorithms. Therefore, combining the algorithms into
a joint classifier appears to be a reasonable direction to pursue.

The combined algorithms in this chapter take all individual algorithms de-
scribed in Section[7.I]above as input. In order to be able to combine the values
of these individual algorithms into a joint overall score, the values returned by
the single relatedness measures are normalized from zero to one. The combina-
tions in this chapter employ simple majority voting and Borda count |[Polikar,
2006

Majority voting Each relatedness measure votes for a candidate sense of the
target word. The votes are summed with an equal weight of one; and the
target word sense(s) with the highest count is defined to be the overall

disambiguation result.
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7 Knowledge-Based Word Sense Disambiguation

Borda count Each relatedness measure ranks the candidate senses of the
target word. The first ranked sense receives a value of N — 1 (where N
is the amount of senses the target word has), the second ranked sense
gets N — 2 votes, etc. Thus, the last ranked candidate sense receives a
value of 0. The values are summed for each target word sense; and the

sense(s) with the highest value win(s).

Several approaches can improve the performance of a combined algorithm,
such as (i) selecting a subset of single algorithms to be combined (rather
than combining all of the above described), (ii) maximizing the precisions
of the single algorithms by thresholds, and (iii) using weighted majority vot-
ing (rather than simple majority voting without weights). The reason why
these approaches are not pursued in this chapter is to keep the setup purely
knowledge-based and without any training bias — as described in the following

subsection.

7.2.4 Purely Knowledge-Based Setup

For the WSD algorithms at hand, precision could be maximized by thresh-
olds that allow the algorithms to yield non-zero values only if their scores
are above a certain value, which would, in effect, reflect a minimal level of
confidence. Since there is an inverse relationship between recall /coverage and
precision, such thresholds apparently lead to a loss in coverage and recall (see
Subsection for a description of the trade-off between precision and recall).
However, the performance of combined algorithms can be boosted by maxi-
mizing the precision of the single algorithms — even the loss in coverage and
recall of the single algorithms can be compensated in a combined algorithm as
long as the coverage of the single algorithms complement one another.

In the experiments by Henrich and Hinrichs [2012], the performance of
combined algorithms are boosted by maximizing the precision of the single
algorithms with such thresholds. Furthermore, a combination by weighted
majority voting outperformed simple majority voting and Borda count.

However, the main reason why the experiments in this chapter do not utilize

thresholds and weighted majority voting, nor a most frequent sense baseline, is
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to keep the setup purely knowledge-based and without any training bias. That
is, determining most frequent senses and identifying optimal threshold values
for the single algorithms or optimal weights for a weighted majority voting
algorithm would either require a separate training set, which is generally very
uncommon for knowledge-based systems, or would introduce a bias when the
reported evaluation results are obtained on the same data that is used for

adjusting thresholds and weights or for identifying most frequent senses.

7.3 Evaluating Knowledge-Based WSD

In order to evaluate the knowledge-based WSD setup, an extensive set of
experiments using many different measures of semantic relatedness and two
algorithms for combining those individual results is performed. Since the
evaluation of WSD experiments is more reliable and meaningful the more
gold standard annotations available, the evaluation in this section considers
all available sense annotations for German. The experiments are run on all
annotations from the three German corpora described in Chapter [6} the semi-
automatically constructed, web-harvested WebCAGe (Section , the manu-
ally sense-annotated TiiBa-D/Z treebank (Section[6.4)), and the web-harvested
and manually sense-annotated deWaC (Section [6.5]).

Performance of the algorithms is measured in terms of coverage, recall,
precision, and F; — calculated by their standard formulas as described in Sub-
section [2.2.1l Results are reported as overall numbers, i.e., micro-averaged

over all annotated instances rather than macro-averaged over all lemmas]l]

The following subsections report WSD results separately for the three word

classes available in GermaNet: nouns, verbs, and adjectives]

1See Section for more information on micro- and macro-averages.

2The reason why adjectives are — against alphabetic order — reported last is that only two
of the three corpora contain sense annotations for this word class while sense annotations
for nouns and verbs are available in all three corpora.
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7.3.1 Profiling WSD Results for Nouns

Table[7.T] gives coverage, recall, precision, and Fy-scores for all above-described
knowledge-based WSD algorithms evaluated on all noun instances from the
three sense-annotated corpora. The principle structure of the table divides
the results for the three sense-annotated corpora by two horizontal lines: it
first prints the results for WebCAGe, in the middle for TiiBa-D/Z, and at the
bottom for deWaC. For each corpus, Table shows the results for one re-
latedness measure at a time as explained in Section [7.2] for the two combined
WSD algorithms outlined in Subsection [7.2.3] and for the random sense base-
line from Subsection[7.2.2] According to the classification from Section[7.I} the
relatedness algorithms are grouped into path-based (Ich, wup, path, and hso),
information-content-based (res, jen, and lin), and gloss-based (lesk-*) — sepa-
rated by horizontal lines. In general, prominently high results are highlighted

in boldface, whereas unexpectedly low values are italicized.

Results for Nouns in WebCAGe

The upper part of Table shows that — with the exceptions of hso and lesk-
GermaNet, which stand out from the rest in terms of precision — the single
relatedness measures all achieve similar results for recall (between 44% and
50%) and precision (between 49% and 56%), and, consequently, also for F;
(between 48 and 51) when evaluated on all sense-annotated nouns in Web-
CAGe. The path-based hso measure achieves overall the highest precision of
64.38%. By contrast, hso achieves the lowest recall of 38.30%, which is the
reason for an Fi-score comparable to the other algorithms. This low recall
is not surprising since hso has a low coverage. What rather remains to be
explained is why hso has such a low coverage. This is due to the nature of
the relatedness measure: since the hso measure prohibits long paths between
two synsets and many changes in direction, the measure returns a positive
value only for a restricted set of synset combinations that are ‘close’ enough
in the GermaNet graph. A low coverage is, thus, caused by the fact that the
hso measure apparently does not return positive values when comparing the

target words with many words from the context window.

189



7.3 Evaluating Knowledge-Based WSD

Table 7.1: Knowledge-based WSD results for nouns.

’Corpus‘ Method

‘ Coverage‘ Recall ‘Precision‘ ¥ ‘

path 89.90% | 44.42% |  49.41% | 46.78

lch 89.90% | 46.04% |  51.22% | 48.49

wup 84.65% | 44.46% |  52.53% | 48.16

hso 59.49% | 38.30% | 64.38% | 48.03

2 4| res 83.89% | 45.03% | 53.68% | 48.98

3 S B |jen 89.90% | 45.92% |  51.08% | 48.36
Q& Elun 83.89% | 45.15% |  53.83% | 49.11
O & | lesk-GermaNet 80.34% | 47.95% | 59.68% |53.17
S 2 | lesk- Wiktionary 97.90% | 49.85% 50.92% | 50.38
28~ lesk-glosses 77.66% | 43.82% 56.43% | 49.33
© B | lesk-lex-fields 97.81% | 49.59% |  50.70% | 50.14
lesk-all-info 98.30% | 50.17% |  51.04% | 50.60
majority voting 98.57% | 54.91% 55.70% | 55.30

Borda count 98.57% | 55.52% 56.32% | 55.92

random sense 100.00% | 42.41% 42.41% | 42.41

path 100.00% | 25.45% |  25.45% | 25.45

Ich 100.00% | 29.01% |  29.01% | 29.01

wup 99.99% | 46.63% |  46.64% | 46.63

hso 97.14% | 46.89% |  48.28% | 47.57

2, | res 99.99% | 26.77% | 26.78% | 26.78
N g jen 100.00% | 52.77% 52.77% | 52.77
A8 g |lin 99.99% | 42.60% |  42.60% | 42.60
& £ = [lesk-GermaNet 99.98% | 55.45% |  55.46% | 55.45
B o Q| lesk-Wiktionary | 100.00% | 67.19% |  67.19% | 67.19
& w | lesk-glosses 99.59% | 52.32% 52.54% | 52.43
© = | lesk-lex-fields 100.00% | 58.72% |  58.72% | 58.72
lesk-all-info 100.00% | 56.67% 56.67% | 56.67
majority voting 100.00% | 57.86% 57.86% | 57.86

Borda count 100.00% | 66.77% 66.77% | 66.77

random sense 100.00% | 27.22% 27.22% | 27.22

path 99.48% | 38.70% |  38.90% | 38.80

lch 99.48% | 41.82% |  42.04% | 41.93

wup 99.48% | 42.08% |  42.30% | 42.19

hso 96.36% | 44.94% |  46.63% | 45.77

o w | Tes 99.48% | 45.71% |  45.95% | 45.83

B Sg jen 99.48% | 49.61% | 49.87% | 49.74
Q 3 g |lin 99.48% | 49.61% | 49.87% | 49.74
= % 8 [lesk-GermaNet 99.74% | 40.00% |  40.10% | 40.05
2 1; ® | lesk- Wiktionary 100.00% | 38.18% 38.18% | 38.18
% 4 lesk-glosses 98.44% | 43.12% 43.80% | 43.46
lesk-lez-fields 100.00% | 42.86% |  42.86% | 42.86
lesk-all-info 100.00% | 41.82% 41.82% | 41.82
magjority voting 100.00% | 55.06% | 55.06% | 55.06

Borda count 100.00% | 52.47% |  52.47% | 52.47

random sense 100.00% | 29.61% 29.61% | 29.61
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The gloss-based lesk-GermaNet measure, which uses glosses and lexical
fields from GermaNet to calculate word overlaps, yields — with a value of 53.17 —
overall the highest Fi-score. Since WebCAGe contains sense annotations for
exactly those words for which GermaNet has harvested sense descriptions from
Wiktionary, it seems surprising that lesk-GermaNet outperforms the other
relatedness measures — especially the other gloss-based measures which all use
information from Wiktionary. The explanation for this behavior lies mainly in
the prominently higher precision of 59.68% for lesk-GermaNet which leads to
a higher F-score.

Further, the single relatedness algorithms — again with the exception of
hso — yield good results in terms of coverage ranging from 77.66% to 98.30%.
However, the gloss-based algorithms which use glosses and lexical fields from
GermaNet (lesk-GermaNet) or which use glosses from both GermaNet and
Wiktionary (lesk-glosses) score lower in coverage than the other algorithms.
One explanation for this lower coverage is that the glosses do not contain
enough lexical material. This defect can be remedied by including lexical ma-
terial in the lexical fields obtained from Wiktionary. There is a considerable
jump in coverage from 80.34% for lesk-GermaNet, which uses only glosses and
lexical fields from GermaNet to calculate word overlaps, to an almost com-
plete coverage of 98.30% achieved by lesk-all-info, which makes use of lexical
fields and glosses from both resources. This jump in coverage underscores the
usefulness of aligning GermaNet with Wiktionary (see Chapter [4]) for such
gloss-based algorithms.

In general, the results obtained by the gloss-based measures lie above those
of path-based and information-content-based measures: the F-score of 49.33
for lesk-glosses, which is the lowest result among the gloss-based measures,
outperforms the F-score of 48.11 for lin, which is the highest result among the
path-based and information-content-based measures. This finding that word
overlap methods perform well corroborates the results reported by [Pedersen
et al|[2005] for English WSD[T| It indicates that words from glosses or lexical

! Generally, it does not make much sense to compare the numbers of English WSD results
from [Pedersen et al. [2005] with numbers of German WSD experiments from this chapter,
because the wordnets which serve as sense inventories and the sense-annotated materials
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fields of the appropriate target word senses often occur in WebCAGe’s context
windows.

The best results are achieved by combining all single algorithms. Table
also shows the results of the experiments with the two combined algorithms
using majority voting and Borda count — as described in Subsection [7.2.3|
The best overall result with an F-score of 55.92 is achieved by the combination
with Borda count. This result contradicts the previous finding of Broscheit
et al.| [2010] who did not obtain better results by combining individual WSD
algorithms.

In general, the results presented for nouns in WebCAGe represent an up-
dated version of the experiments reported by Henrich and Hinrichs|[2012]. The
results are comparable, though due to different versions for both the sense in-
ventory and the sense-annotated corpus, they are not exactly identical.ﬂ That
is, the WSD experiments described in the paper use old versions of GermaNet
(release 6.0) and WebCAGe (unpublished pre-version), whereas this chapter
reports on experiments with the most recent versions of GermaNet (i.e., release
9.0) and WebCAGe (version 3.0).

What remains to be explained is the only remarkable deviation in the re-
sults, which is for the reported random sense baselines. This deviation is due
to different implementations of the baseline (see Subsection for further
details): in contrast with the implementation in |Henrich and Hinrichs| [2012],
the baseline in this chapter excludes the option of no appropriate sense from
GermaNet from the set of senses from which the baseline randomly selects one
entry. This is the reason why the baseline in this chapter achieves a perfect
coverage of 100%. Although the inclusion of this no sense option would reflect

the annotation setup which includes cases where it is not possible to annotate

differ considerably (see Subsection for a comparison of GermaNet with Princeton Word-
Net). The strongest difference that impacts the WSD results is probably the granularity of
the sense distinctions. This is reflected in the random sense baselines when comparing these
baselines from [Pedersen et al. [2005] with those in the following subsections. However, it is
interesting to compare general tendencies and whether or not they are in common to WSD
experiments for the two languages.

!Furthermore, the gloss-based algorithms differ in the information used for calculating
word overlaps. Only the gloss-based algorithm that uses lexical fields and glosses from
GermaNet and Wiktionary is used both in the paper (abbreviated as lesk-Ggw-Lgw) and in
this chapter (labeled as lesk-all-info).

192



7 Knowledge-Based Word Sense Disambiguation

a sense from GermalNet, there are generally few annotations with no sense
(see Section . Thus, the baseline implemented in this chapter achieves
a considerably higher performance than the baseline by Henrich and Hinrichs
[2012] and is consequently more difficult to beat. Nevertheless, Table[7.1]shows
that for the evaluation scores of recall, precision, and F; obtained for nouns in
WebCAGe — with the only exception of hso in terms of recall — all algorithms

outperform this random sense baseline by a wide margin.

Results for Nouns in TiiBa-D/Z

The most striking finding among the results of the evaluation on all sense-
annotated nouns in the TiBa-D/Z treebank — shown in the middle of Ta-
ble — is that the gloss-based lesk- Wiktionary measure, which uses glosses
and lexical fields from Wiktionary, yields outstandingly high results: 67.19%
recall, precision, and F-score at a coverage of 100%. This result is the most re-
markably highest result over all three corpora that a single relatedness measure
achieves. It is 12 points higher than the F-score achieved by the gloss-based
measure that uses solely GermaNet information (lesk-GermaNet). This find-
ing again underscores the usefulness of aligning GermaNet with Wiktionary

for gloss-based algorithms.

Since not all GermaNet words with sense annotations in TiiBa-D/Z con-
tain Wiktionary sense descriptions, it seems especially surprising that lesk-
Wiktionary performs significantly better when evaluated on the TiBa-D/Z
than on WebCAGe: the Fi-score is 17 points higher for the treebank than for
WebCAGe, i.e., 67.19 vs. 50.38, respectively. This comparison gives evidence
that the study by Henrich and Hinrichs| [2012], which evaluated knowledge-
based WSD only on the WebCAGe corpus, was not biased towards artificially

high results due to evaluating only words with a Wiktionary mapping.

While the single relatedness measures (with only two exceptions in terms of
precision) performed similarly when evaluated on nouns in WebCAGe, there
is much more variance for TiiBa-D/Z. On the one hand, three of the single

measures (lch, path, and res) perform particularly poorly with F;-scores below
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301 On the other hand, all gloss-based measures reach Fj-scores above 52.
The difference between the worst F-value of 25.45 obtained by path compared
to the best value of 67.19 obtained by lesk- Wiktionary is 42. This difference

is the largest gap obtained over all word classes and corpora.

As already found for nouns in WebCAGe, the results obtained by the gloss-
based measures lie above the path-based and information-content-based mea-
sure results: the F-score for lesk-glosses, which is the lowest result among the
gloss-based measures, is in the same range (between 51 and 52) with the F-score
for jecn, which is the highest result among the path-based and information-
content-based measures. It corroborates the finding by Pedersen et al.| [2005|
for English WSD that word overlap methods perform well, and it indicates
that words from glosses or lexical fields of the appropriate target word senses

often occur in TiiBa-D/Z’s contexts.

Since the single relatedness measure lesk- Wiktionary already performs ex-
tremely well, the combined measures do not help: with F-measures of 57.86
and 66.77, majority voting and Borda count decrease the overall result of
67.19 obtained by lesk- Wiktionary. This lesk- Wiktionary score is the best
overall evaluation result achieved on the TiiBa-D/Z data. It outperforms the
best WebCAGe result, which is obtained for the Borda count algorithm, by 11
points (i.e., best Fy-score of 67.19 for TiiBa-D/Z vs. 55.92 for WebCAGe). This
fact seems particularly surprising when considering the baselines: the random
sense baseline for WebCAGe has an F-score of 42.41, about 15 points higher
than the score of 27.22 for TiiBa-D/Z. The explanation for what looks like con-
tradictory findings must have to do with the nature of the corpus texts. That
is, WebCAGe contains several annotations for which only a restricted context
is available (i.e., the example sentences harvested from Wiktionary itself are
single sentences only without a larger context — see Section , whereas all of

the sense annotations in TiiBa-D/Z have sufficiently large contexts. Subsec-

Tt is interesting to note that both lch and path would perform significantly better (about
15%) with the setup applied in [Henrich and Hinrichs| [2012], where individual results — de-
pending on whether they lie above or below a certain threshold — get scaled up or down,
respectively. As already outlined in Subsection [7.:2:4] above, the main reason why the exper-
iments in this chapter do not utilize thresholds is to keep the setup purely knowledge-based
and without any training bias.
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tion [7.3.4] below performs detailed experiments with different context sizes and
compares the availability of contexts for all three corpora. The fact that more
context is available for TiBa-D/Z than for WebCAGe is also reflected in the
consistently high coverage of more than 99% for almost all WSD algorithms
when evaluated on TiiBa-D/Z (with the only exception of 97.14% coverage
obtained by hso), as opposed to (still good, but nevertheless lower) coverage
results below 90% for several WSD algorithms when evaluated on WebCAGe.

Results for Nouns in deWaC

The WSD results for nouns in deWaC are shown in the bottom of Table [l
Most single relatedness measures achieve F-scores between 41 and 4dI| — with
little variance. The exceptions are path and lesk- Wiktionary, which perform
lower than the other relatedness measures (with Fy-scores between 38 and 39),
and jen and lin, which outperform all other single algorithms with a score of
49.74.

As for TiiBa-D/Z, all WSD algorithms yield consistently high coverage of
more than 98%. The reason is also the same as for the treebank: sufficiently
large contexts for all sense annotations in deWaC.H The only exception is — as
is also the case for WebCAGe and TiiBa-D/Z — hso which achieves a slightly
lower but still very good coverage of 96.36%. The explanation why hso has a
lower coverage is provided in the discussion on the results for nouns in Web-
CAGe above. It is mainly due to the nature of the relatedness measure, which
prohibits long paths between two synsets or many changes in direction and
thus returns positive values only for a restricted set of synset combinations
that are ‘close’ enough in the GermaNet graph.

All in all, information-content-based measures produce the strongest re-
sults for nouns in deWaC, which is also reflected by the facts that the best

Since the coverage is (almost) 100% for all WSD algorithms, the values for precision
and recall are very similar to the F-scores — see Subsection for an explanation of the
relationship between the performance measures of coverage, precision, recall, and Fj.

2Note that the contexts of the original deWaC sense annotations provided online by
Broscheit et al.| [2010] are restricted to sentential phrases only. The revised version of the
deWaC sense annotations used in this thesis is enriched by larger contexts extracted from
the proper deWaC corpus |Baroni et al.| [2009]. See Section for more details on the
original as well as the revised versions of the sense annotations in the deWaC corpus.

195



7.3 Evaluating Knowledge-Based WSD

scoring single measures are jcn and lin and that all results obtained by the
information-content-based measures lie above all path-based and gloss-based
measure results. This is different from the finding for the T1iBa-D/Z treebank,
where gloss-based measures perform best. The real explanation for what looks
like contradictory findings has to do with the kind of words contained in the
contexts of the target words. That is, while words from TiiBa-D/Z’s contexts
are often also used in glosses or lexical fields of the appropriate target word
senses, words from deWaC'’s contexts are apparently often closely related to the
appropriate target word senses in terms of the taxonomic hypernymy structure
of the GermaNet graph.

With an F-score of 43.46, the best scoring word-overlap measure for deWaC
is lesk-glosses, which uses glosses from GermaNet and Wiktionary for calcu-
lating word overlaps. This result again stands in contrast to the results from
WebCAGe and TiiBa-D/Z, where of the gloss-based measures, lesk-glosses
performs worst.

As for WebCAGe, the combined algorithms outperform the single mea-
sures. Majority voting yields — with an F-score of 55.06 — the highest result
for nouns in deWaC. However, for all single algorithms the WSD results for
deWaC are significantly lower than the results for WebCAGe and TiiBa-D/Z.
One explanation for this lower performance is related to the lower random
sense baseline (compared to the random sense baseline for WebCAGe), which
suggests that the disambiguation for nouns in deWaC is more difficult than
the disambiguation for nouns in WebCAGe. However, this does not explain
the lower performance compared to TiiBa-D/Z. There must be a further ex-
planation, which can be related only to the nature of the corpus texts. That
is, data from the web, which is the basis for the WebCAGe and deWaC cor-
pora, is apparently noisier or for other reasons harder for WSD algorithms
than newspaper texts, which are the basis for the TiiBa-D/Z treebank.

The results for nouns in deWaC are comparable to previously published
experiments on the same sense-annotated corpus. Broscheit et al.| [2010] re-
port Fi-scores between 41 and 49 for most of the WSD algorithms they use,
including the two methods to predict most frequent sense information origi-
nally proposed by McCarthy et al.| [2004] and Lapata and Keller| [2007], and
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a simple majority combination of single algorithms. As their best overall re-
sult, Broscheit et al| [2010] report an F-score of 55.49, which they achieve
with the Personalized PageRank algorithm [Agirre and Soroal [2009]. As for
combining individual WSD algorithms, the results reported in this chapter im-
prove in combination, which contradicts [Broscheit et al[s finding that there
is no improvement. However, it is important to note that a comparison of
the results from Broscheit et al.| [2010] with the results of this chapter is not
entirely fair. There are two main factors that influence the results. Firstly,
the versions for both underlying resources, i.e., the sense inventory and the
sense-annotated corpus, are different. The WSD experiments described in the
paper use old versions of GermaNet (release 5.1) and the sense annotations
in deWaC, whereas this chapter reports on experiments with the most recent
version of GermaNet (i.e., release 9.0) and a revised version of the sense anno-
tations (see Section [6.5]for details). Secondly, the evaluation setups differ both
in the used algorithms (semantic relatedness algorithms in this chapter vs. the
Personalized PageRank algorithm in the paper) as well as backoff strategies
for cases where the WSD algorithms are unable to assign any word sense (the
experiments reported in this chapter do not use any backoff while |Broscheit

et al. [2010] do, which mainly leads to a perfect coverage of 100%).

7.3.2 Profiling WSD Results for Verbs

This subsection discusses the knowledge-based sense disambiguation of verbs.
Table provides results in terms of coverage, recall, precision, and F-score —
separately for the three sense-annotated corpora. Analogously to the table for
nouns, two horizontal lines divide the results for WebCAGe (at the top), from
those for TtiBa-D/Z (in the middle), and for deWaC (at the bottom). For each
corpus, Table presents the results for the single relatedness measures, for
the two combined WSD algorithms, and for the random sense baseline. Groups
of relatedness measures, i.e., path-based (lch, wup, path, and hso), information-
content-based (res, jen, and [lin), and gloss-based (lesk-*), are separated by
horizontal lines. As for nouns, remarkably high results are highlighted in bold-

face, whereas low values are italicized.
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Table 7.2: Knowledge-based WSD results for verbs.

’Corpus‘ Method ‘ Coverage ‘ Recall ‘ Precision ‘ ¥ ‘
path 43.16% | 17.92% 41.53% | 25.04

lch 43.16% | 18.27% 42.33% | 25.52

wup 20.79% | 11.77% | 39.52% | 18.14

hso 28.81% | 12.37% 42.92% | 19.20

® @ | res 29.79% | 12.08% 40.57% | 18.62

) 8 g | jen 43.16% | 18.20% 42.18% | 25.43
g% % lin 29.79% | 12.27% 41.20% | 18.91
Q g — | lesk-GermaNet 49.06% | 21.44% 43.70% | 28.76
S o B | lesk-Wiktionary | 91.84% | 39.96% |  43.51% | 41.66
= ® S: lesk-glosses 59.54% | 32.42% 54.45% | 40.65
™ O | lesk-lex-fields 90.18% | 38.54% 42.74% | 40.53
lesk-all-info 92.34% | 41.37% 44.80% | 43.02
majority voting 95.54% | 42.50% 44.48% | 43.47

Borda count 95.54% | 44.95% | 47.04% | 45.97

random sense 100.00% | 35.56% 35.56% | 35.56

path 99.99% | 37.58% 37.58% | 37.58

lch 99.99% | 39.34% 39.35% | 39.35

WUP 98.86% | 41.93% 42.42% | 42.18

hso 94.98% | 39.99% 42.10% | 41.02

B | TES 98.86% | 40.33% 40.80% | 40.56
N gg jen 99.99% | 55.64% | 55.64% | 55.64
A8 g |lin 98.86% | 44.46% |  44.97% | 44.72
& g 2 | lesk-GermaNet 98.43% | 39.45% 40.08% | 39.77
A 2 | lesk-Wiktionary 92.12% | 45.24% 49.11% | 47.10
=3 w | lesk-glosses 95.18% | 37.39% 39.28% | 38.31
= lesk-lex-fields 94.29% | 46.72% 49.55% | 48.10
lesk-all-info 99.91% | 48.95% 48.99% | 48.97
majority voting 100.00% | 51.60% 51.60% | 51.60

Borda count 100.00% | 52.10% 52.10% | 52.10

random sense 100.00% | 36.17% 36.17% | 36.17

path 100.00% | 22.86% 22.86% | 22.86

lch 100.00% | 22.04% 22.04% | 22.04

wup 99.67% | 19.24% 19.31% | 19.28

hso 99.34% | 17.27% 17.38% | 17.33

w w | 7es 99.67% | 15.79% 15.84% | 15.82

g g jen 100.00% | 22.70% 22.70% | 22.70
%E g lin 99.67% | 17.43% 17.49% | 17.46
B g,ﬂ.-’ lesk-GermaNet 98.85% | 24.51% 24.79% | 24.65
2 g lesk- Wiktionary 97.20% | 25.99% 26.73% | 26.36
2% lesk-glosses 98.85% | 21.38% 21.63% | 21.51
lesk-lex-fields 100.00% | 21.88% 21.88% | 21.88
lesk-all-info 100.00% | 22.86% 22.86% | 22.86
magjority voting 100.00% | 25.66% 25.66% | 25.66

Borda count 100.00% | 27.80% | 27.80% | 27.80

random sense 100.00% | 13.65% 13.65% | 13.65
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7 Knowledge-Based Word Sense Disambiguation

Results for Verbs in WebCAGe

The upper part of Table shows that, especially when compared to the eval-
uation on nouns in WebCAGe, the WSD algorithms all achieve very heteroge-
neous results for the four performance measures of coverage, recall, precision,
and F;-score when evaluated on all sense-annotated verbs in WebCAGe. The
lesk-glosses measure achieves overall the highest precision of 54.45%, whereas
lesk-all-info yields among the single relatedness measures the best F-score of
43.02. By contrast, wup, lin, and res achieve the lowest F-scores — between 18
and 19.

A comparison of the results for the three different types of relatedness
measures shows that gloss-based measures (with F-scores between 28 and 43)
outperform path-based and information-content-based measures (with F-scores
between 18 and 26). This behavior corroborates the findings for nouns in
WebCAGe and TiiBa-D/Z as discussed in Subsection above. It proves
that words from glosses or lexical fields of the appropriate target word senses

often occur in WebCAGe’s contexts.

The most striking observation among the results for verbs in WebCAGe is
that the alignment between GermaNet and Wiktionary considerably improves
the WSD performance: with F-scores between 40 and 43, the gloss-based mea-
sures that employ information from Wiktionary (lesk- Wiktionary, lesk-glosses,
lesk-lex-fields, and lesk-all-info) clearly outperform the gloss-based measure
that merely employs information from GermaNet (lesk-GermaNet) and which
achieves an F-score of 28.76. Further, the individual relatedness measures
that do not use information from Wiktionary (including all path- and IC-
based measures and lesk-GermaNet) achieve coverage between 28% and 49%,
whereas those relatedness measures that employ Wiktionary achieve consider-
ably higher coverage, between 59% and 92%. These findings underscore the
usefulness of aligning GermaNet with Wiktionary for such gloss-based algo-
rithms and explain why lesk-all-info yields the best F-score among the single

relatedness measures.

Even better results than for lesk-all-info are achieved by combining all

single algorithms: majority voting achieves an F-score of 43.47 and Borda
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7.3 Evaluating Knowledge-Based WSD

count achieves the best overall result with an F-score of 45.97.

In comparison to the evaluation on nouns in WebCAGe (see Table
above), the performance for verbs is considerably lower: for path-based and
information-content-based measures, the F-values are between 21 and 30 points
lower, whereas for gloss-based measures, the F-scores are mostly about 8-10
points lower — with the only exception of lesk-GermalNet, where the F-score
for verbs is 24 points lower. The difference in performance of the combined
measures is between 10 and 11 points for majority voting and Borda count.
Since the random sense baseline is a good indicator of the difficulty of the task
at hand, a lower random sense baseline for verbs indicates that the task of
disambiguating verbs is more difficult that the task of disambiguating nouns.
The obvious explanation for a lower random sense baseline is a higher polysemy.
In the present case, the lower performance cannot be explained solely by the
random sense baseline, because it is only 6 points lower for verbs than for
nouns. Rather, low coverage for verbs causes low recall, which in turn heavily
influences the Fi-scores. However, there must be a further explanation related
to the word class of verbs. That is, semantic relatedness measures are little
suitable for disambiguating verb senses. This finding generally corroborates
the results reported by |Pedersen et al. [2005] for English WSD.

According to Pedersen et al. [2005] page 27|, the low disambiguation per-
formance of path-based and IC-based measures for verbs was to be expected
because these measures were originally meant for nouns rather than for verbs.
Their explanation is that since the WordNet hierarchies for verbs are very
shallow compared to the hierarchies for nouns, path-based and information-
content-based measures are much more effective for nouns while more of an ex-
perimental nature when applied to verbs. Since the verb hierarchies in Germa-
Net have similar density as those for English verbs (as compared to those of
German and English nouns), this suggests that [Pedersen et al.’s [2005] expla-

nation also holds true for German WSD.

Overall, the analogy that path-based and IC-based measures perform
poorly while most gloss-based measures perform well above random guessing
confirms the findings by [Pedersen et al. [2005].
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7 Knowledge-Based Word Sense Disambiguation

Results for Verbs in TiiBa-D/Z

As for verbs in WebCAGe and for nouns in TiiBa-D/Z, the single relatedness
measures achieve heterogeneous results when evaluated on verbs in the tree-
bank — shown in the middle of Table The range begins with 37.58 as the
lowest F-score, achieved by the path measure, and goes up to the highest result
of 55.64, which is obtained by jen. For all evaluation scores, i.e., in terms of
coverage, recall, precision, and F;, obtained for verbs in TiiBa-D/Z, all WSD

algorithms outperform the random sense baseline by a wide margin.

Table shows that, although the baselines for verbs in TiiBa-D/Z and
for verbs in WebCAGe are with F-scores of 35.56 and 36.17 very similar, the
results for verbs in TiiBa-D/Z outperform the results for verbs in WebCAGe
for most WSD methods. The explanation for this behavior must have to do
with the nature of the corpus texts — as already outlined in the discussion
of results for nouns above. That is, WebCAGe contains several annotations
for which only a restricted context is available (i.e., the example sentences
harvested from Wiktionary itself are single sentences only without a larger
context — see Section [5.2), whereas all of the sense annotations in TiiBa-D/Z
have sufficiently large contexts. The availability of context in the individual
corpora is analyzed in Subsection below. The large contexts available
in the TiBa-D/Z is also reflected in the consistently high coverage of more
than 92% for all WSD algorithms when evaluated on verbs in TiiBa-D/Z, as
opposed to considerably lower coverage between 28% and 92% for the semantic

relatedness algorithms when evaluated on verbs in WebCAGe.

The highest F-score of 48.97 among the gloss-based measures, which is
the second highest score among all semantic relatedness measures, is achieved
by using lexical fields and glosses both from GermaNet and Wiktionary to
calculate word overlaps (i.e., by the lesk-all-info measure). Lesk-all-info out-
performs the result obtained by using lexical fields and glosses solely from
GermaNet to calculate word overlaps (i.e., lesk-GermaNet) by 9 points. This
finding — once again — underscores the usefulness of aligning GermaNet with
Wiktionary.

Since the single relatedness measure jen already performs very well, the
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7.3 Evaluating Knowledge-Based WSD

combined measures do not help: with F-scores of 51.60 and 52.10, majority

voting and Borda count decrease the overall result of 55.64 obtained by jcn.

Results for Verbs in deWaC

The bottom part of Table [7.2] shows the evaluation results for verbs in deWacC.
All WSD algorithms produce very poor results: the single relatedness measures
achieve Fi-scores between 16 and 26 — without any exceptions. The lowest
result of 15.82 is obtained by res, and the highest result of 26.36 by lesk-
Wiktionary. Even the combination with Borda count is — with a score of 27.80 —
only slightly higher than the highest result obtained by a singe relatedness
measure.

Overall, these results are the worst results achieved among all corpora and
word classes. The most obvious explanation for this behavior is the high pol-
ysemy for verbs in deWaC, which is, with an average of 7.9, by far the highest
among all corpora and word classes (see Chapter @ The conclusion is that
none of the knowledge-based algorithms — not even the combined classifiers —
is suited for disambiguating verbs in deWaC. The only positive finding con-
cerning the disambiguation of verbs in deWaC is that — despite their bad
performance — all WSD algorithms outperform the random sense baseline for
all evaluation scores, i.e., in terms of coverage, recall, precision, and Fi, as
shown in the last row in Table [7.2]

A direct comparison to previously published experiments on the same sense-
annotated corpus, which was possible for nouns (see Subsection , is not
possible for verbs, because Broscheit et al. [2010] report results for nouns only
and for all words (including adjectives, nouns, and verbs), but not for verbs
only. However, the large drop in performance reported by |Broscheit et al.
[2010] for all word classes compared to the results for only nouns implies that
the performance for the disambiguation of both adjectives and verbs is much
worse than the performance for nouns. Even if such a direct comparison is not
entirely fair for several reasons (also see the discussion for nouns in deWaC
above), the tendency that the disambiguation of verbs is much more difficult

than for nouns corroborates the results by Broscheit et al.| [2010] on German
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7 Knowledge-Based Word Sense Disambiguation

WSD.

7.3.3 Profiling WSD Results for Adjectives

The knowledge-based disambiguation of adjectives differs from the experi-
ments by Pedersen et al.| [2005] for English: in particular, path-based and
information-content-based algorithms are available only for German adjectives
but not for English ones (when using Princeton WordNet to calculate semantic
relatedness). The reason is that the Princeton WordNet does not structure ad-
jectives hierarchically (as explained in Subsection , which precludes the use
of relatedness measures based on hypernymy paths. By contrast, GermaNet
encodes adjectives comparable to nouns and verbs in a hypernymy hierarchy,
and, thus, allows experimenting with the same set of relatedness measures as
for the other two word classes.

Table [7.3] presents the evaluation results for the knowledge-based sense
disambiguation of German adjectives. The structure of the table follows the
table structures for nouns and verbs above — with the exception that it includes
results only for WebCAGe and deWaC, the two corpora that contain sense
annotations for adjectives.ﬂ For both corpora, Table lists coverage, recall,
precision, and F-score for each of the single relatedness measures (grouped
by type), for the two combined WSD algorithms, and for the random sense
baseline. As before, very high and very low results are emphasized in boldface

and in italic, respectively.

Results for Adjectives in WebCAGe

The two most striking findings among the WSD results of the evaluation on
adjectives in WebCAGe — shown in the upper part of Table [7.3| — are (i) the
strong positive impact of linking GermaNet with Wiktionary and (ii) the great
improvement when combining individual WSD methods.

With respect to the observation (i), while the gloss-based method that

merely uses information from GermaNet (i.e., lesk-GermaNet) achieves only

IThe TiiBa-D/Z treebank contains sense annotations for nouns and verbs only.
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Table 7.3: Knowledge-based WSD results for adjectives.

’Corpus‘ Method ‘ Coverage ‘ Recall ‘ Precision ‘ F4 ‘
path 50.14% | 19.74% 39.37% | 26.50

lch 50.14% | 28.82% 57.47% | 38.39

wup 36.46% | 24.93% 68.38% | 36.54

hso 41.07% | 23.92% 58.25% | 33.91

o 8| Tes 35.73% | 23.78% 66.53% | 35.03

v 8 g | jen 50.14% | 20.03% 39.94% | 26.68
35 £ | lin 35.73% | 24.64%| 68.95% | 36.31
2~ lesk-GermaNet 32.13% | 19.16% 59.64% | 29.01
3= S| lesk-Wiktionary | 93.37% | 41.35% |  44.29% | 42.77
= % S lesk-glosses 51.59% | 32.85% | 63.69% | 43.35
O | lesk-lex-fields 91.21% | 40.78% 44.71% | 42.65
lesk-all-info 93.95% | 42.65% 45.40% | 43.98
majority voting 96.11% | 54.90% 57.12% | 55.99

Borda count 96.11% | 55.19% 57.42% | 56.28

random sense 100.00% | 44.81% 44.81% | 44.81

path 100.00% | 22.22% 22.22% | 22.22

lch 100.00% | 18.89% 18.89% | 18.89

WUP 100.00% | 25.56% 25.56% | 25.56

hso 92.22% | 26.67% 28.92% | 27.75

o w75 100.00% | 26.67% 26.67% | 26.67
o< Jjen 100.00% | 25.56% 25.56% | 25.56
°F- g lin 100.00% | 21.11% |  21.11%| 21.11
2 % © | lesk-GermaNet 86.67% | 18.89% |  21.79% | 20.24
-g = <t | lesk- Wiktionary 100.00% | 40.00% 40.00% | 40.00
S 5 | lesk-glosses 100.00% | 23.33% 23.33% | 23.33
lesk-lex-fields 100.00% | 40.00% | 40.00% | 40.00
lesk-all-info 100.00% | 40.00% 40.00% | 40.00
majority voting 100.00% | 28.89% 28.89% | 28.89

Borda count 100.00% | 32.22% 32.22% | 32.22

random sense 100.00% | 18.89% 18.89% | 18.89

an F-score of 29.01, all gloss-based methods that employ Wiktionary informa-
tion outperform this score by at least 13.5 points. The main reason for the
low performance for lesk-GermaNet is its lower coverage, which indicates that
GermaNet glosses do not contain enough lexical material for an effective use of
a word overlap method. This defect can be remedied by including lexical ma-
terial in the glosses and lexical fields obtained from Wiktionary, which causes

a considerable jump in coverage and therefore also in the overall F-measure.

Generally, with F-scores between 42 and 44, the gloss-based methods which
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7 Knowledge-Based Word Sense Disambiguation

employ Wiktionary information (lesk- Wiktionary, lesk-glosses, lesk-lex-fields,
and lesk-all-info) clearly outperform the individual relatedness measures which
do not use information from Wiktionary (including all path- and IC-based
measures and lesk-GermaNet) and which achieve F-scores between 26 and
38. This finding once more underscores the usefulness of aligning GermaNet
with Wiktionary for word overlap algorithms and explains why the gloss-based
method that uses all information from GermaNet and Wiktionary (i.e., lesk-
all-info) again performs best among all single relatedness measures. It achieves
an F-score of 43.98.

The main reason for this performance improvement is considerably greater
coverage. That is, the individual relatedness measures that do not use informa-
tion from Wiktionary achieve coverage between 32% and 50%, whereas those
relatedness measures that employ Wiktionary achieve considerably higher cov-
erage, between 51% and 94%. The fact that these improvements are especially
remarkable for adjectives and verbs in WebCAGe (less for nouns in WebCAGe)
has to do with the GermaNet resource — especially with its hypernymy struc-
ture. Due to a more elaborated noun hierarchy and less dense hierarchies for
adjectives and verbs, the path-based and information-content-based measures
are less effective for adjectives and verbs — as already discussed in Subsec-
tion [7.3.2] for verbs in WebCAGe.

With respect to the observation (ii), the fact that the combined algorithms
outperform the individual methods by a wide margin is not surprising since sev-
eral semantic relatedness measures achieve considerably high precision. These
high precision values compensate the extremely low coverage results and lead
to great overall improvements when combining individual methods. The high-
est overall F-score of 56.28 is achieved by the combination with Borda count.
Compared to the results obtained for the other two word classes in WebCAGe,
this score is comparable to the best result for nouns in WebCAGe (which is
55.92) while much better than the best result for verbs in WebCAGe (which
is 45.97). Furthermore, the combined methods outperform the random sense
baseline for all performance measures.

In general, precision above 63% (for several individual methods when eval-

uated on adjectives in WebCAGe) is outstandingly high among the results of

205



7.3 Evaluating Knowledge-Based WSD

all corpora and word classes. That is, for adjectives, nouns, and verbs (see
Tables Tables , and hardly any method achieves a comparably
high precision. On the other hand, the most obvious problem for adjectives
in WebCAGe is low coverage, and therefore also low recall, which depends on
coverage. However, the outstandingly high precision compensates for the low
coverage and recall insofar as the combined algorithms achieve overall compet-

itive F-scores above 55.

Results for Adjectives in deWaC

The WSD results for adjectives in deWaC are shown in the bottom of Ta-
ble As already found for verbs in deWaC, none of the knowledge-based
algorithms — not even the combined classifiers — is suited for disambiguating
adjectives in deWaC. All algorithms produce very poor results: most single re-
latedness measures achieve Fi-scores between 18 and 27 — with little variance.
The exceptions are the three gloss-based measures lesk- Wiktionary, lesk-lex-
fields, and lesk-all-info, which outperform all other algorithms (including the
combination algorithms) with a still very low score of 40. Again (as for verbs
in deWaC), the most obvious explanation for this low performance is the rela-
tively high polysemy for adjectives in deWaC and the general inapplicability —
as already discussed above — of path-based and information-content-based re-
latedness measures for adjectives and verbs.

As for verbs in deWaC, a direct comparison to previously published exper-
iments on adjectives in deWaC is not possible, because Broscheit et al.[[2010]
do not report separate results for adjectives. However, as explained in the
above discussion on verbs in deWaC, the results reported by [Broscheit et al.
[2010] implies that the performance for the disambiguation of adjectives and
verbs is much worse than the performance for nouns. The finding that the dis-
ambiguation of adjectives is much more difficult than for nouns corroborates
the results by Broscheit et al.| [2010] on German WSD.

With the setup applied in Henrich and Hinrichs| [2012], where individual
results — depending on whether they lie above or below a certain threshold —

get scaled up or down, respectively, the WSD algorithms would perform sig-

206



7 Knowledge-Based Word Sense Disambiguation

nificantly better on adjectives in deWaC. However, as already outlined in Sub-
section [7.2.4] above, the main reason why the experiments in this chapter do
not utilize thresholds is to keep the setup purely knowledge-based and without
any training bias.

Despite the poor overall results, Table reveals three positive findings
concerning the disambiguation of deWaC adjectives. Firstly, most WSD algo-
rithms outperform the 18.89 F-score of the random sense baseline. Secondly,
all except two algorithms achieve a perfect coverage of 100% — with the minor
exceptions of hso and lesk-GermalNet, though they still achieve good cover-
age of 92.22% and 86.67%, respectively. This is much different in comparison
to the coverage of adjectives in WebCAGe, which is significantly lower for
most relatedness measures. Thirdly, and most importantly, the alignment of
GermaNet and Wiktionary has a very large positive impact on the WSD re-
sults. While lesk-GermaNet achieves only an F-score of 20.24, the gloss-based
methods that employ Wiktionary information (particularly lesk- Wiktionary,
lesk-lez-fields, and lesk-all-info) double the result to a score of 40. This large
improvement is one of the most striking findings among the results of all cor-

pora and word classes that the alignment with Wiktionary reveals.

7.3.4 Profiling Context Window Sizes

As mentioned in Subsection above, knowledge-based WSD experiments
are conducted with context windows between 1 and 50 word tokens. Figure
shows the results for these context window sizes for the overall consistently best
performing measure from the previous three subsections, i.e., for the combined
algorithm Borda count. The figure plots the performance results in terms of
the Fi-score (on the y-axis) for each word class and gold standard corpus (the
distinct curves) for several context window sizes (on the x-axis). Note that the
x-axis is skewed in that it includes single steps for context windows between 1
and 15 word tokens, but 5-word steps for context windows between 15 and 50
tokens.

Figure shows clearly that larger context windows improve disambigua-

tion performance across word classes and gold standard corpora. This finding
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Performance (in terms of Fy, for Borda count)
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corroborates the results by Pedersen et al. [2005] on English WSD. For all
except one word class—corpus combination, the plotted curves in Figure [7.2]
generally raise consistently: some results improve significantly, others improve
only minimally or with some local fluctuations, but they clearly improve with
larger context window sizes. The only exception are adjectives in the deWaC
corpus, for which the performance is strongly varying for different window
sizes. The explanation for this unsteady curve is that there are only few sense-
annotated adjectives in the deWaC gold standard.

Since the tendency that larger context windows improve disambiguation
performance across word classes and gold standard corpora is clear (with only
one exception), the results reported in the previous three subsections (Sub-
sections to used a context window of 50 tokens. More specifically,
they use a window of up to 50 lemmatized tokens from the context surrounding
the target word. Since the semantic relatedness measures can be calculated
only for word lemma entries in GermaNet, the context window contains only
lemmas covered by GermaNet. As described in Subsection above, the
50-token context windows are not restricted to sentence boundaries and the
target word occurs in the middlemost position, if possible.

However, for those annotations where only a restricted context is available,
the context windows include less than 50 word lemmas. These restricted con-
texts are particularly frequent for WebCAGe, where most example sentences
harvested from Wiktionary itself (which constitute about 73% of all sense an-
notations in WebCAGe — see Subsection , Table are single sentences
only without a larger context. For altogether 73.8% of all sense annotations
in WebCAGe, the context window contains less than the desired amount of 50
lemmas. The average number of words contained in WebCAGe’s context win-
dows is 16.1 only (12.0 for adjectives, 21.3 for nouns, and 6.4 for verbs). These
restricted contexts cause lower coverage for the WSD experiments reported for
the WebCAGe corpus in the previous subsections.

By contrast, all sense annotations in TiiBa-D/Z and deWaC have suffi-
ciently large contexts. In the TiBa-D/Z, only 6.3% of all sense annotations
contain context windows with less than 50 tokens. This corresponds to an

average of 48.8 words for the treebank’s context windows. The available con-
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text window sizes for deWaC are comparable to those in the TtiBa-D/Z. That
is, 4.8% of the sense annotations in deWaC have a context window with less
than 50 tokens, which corresponds to an average of 49.1 words in the context
windows. The sufficiently large contexts available for TiiBa-D/Z and deWaC
is reflected in the consistently high coverage for the WSD experiments on these

two corpora in the previous subsections.

7.4 Summary and Conclusion

The present chapter has explored a wide range of knowledge-based WSD al-
gorithms for German. These algorithms are based on semantic relatedness
measures, including path-based, information-content-based, and gloss-based
methods. In addition, combined algorithms have been investigated and com-
pared in performance to the individual algorithms. WSD experiments have
been run on all annotations from the three corpora WebCAGe, TiiBa-D/Z,
and deWaC — for the three word classes of adjectives, nouns, and verbs.

The evaluation in Section [7.3] has shown that random sense baselines are
outperformed by most algorithms for all sense-annotated corpora and word
classes. Table [7.4] summarizes the eight different evaluation results, i.e., for
three word classes evaluated on three sense-annotated corpora (excluding ad-
jectives from the TiiBa-D/Z for which there are no sense annotations avail-
able). For all sense-annotated corpora, it lists — separately for each word class —
best and worst results in terms of F—scoresﬂ together with the corresponding
WSD algorithms that achieved the respective scores. The table also indicates
whether or not the combination of single relatedness measures has improved
the overall WSD results and in what way the alignment of GermaNet with
Wiktionary has an effect on the performance.

Among the three word classes considered, the performance of knowledge-
based WSD algorithms is better for nouns than for adjectives and for verbs.
In general, while semantic relatedness measures perform well for nouns, they

are little suitable for disambiguating adjective and verb senses. This finding

IF-score values are rounded to the nearest integers.
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Table 7.4: Summary of the knowledge-based evaluation results.

POS | Best F-scores Worst F-scores Cor.nbl- Wlktlonary
nation |alignment
56 Borda count 26 jen hel
Adj. |56 majority voting | 27 path el pi helps a lot*
© 44 lesk-all-info 29 lesk-GermaNet | ot
&} 56 Borda count 47 path Iv in terms
5 Nouns | 55 magjority voting | (generally path- helps' O? Y §
3 53 lesk-GermaNet | and IC-based) ot coverage
é 46 Borda count 18 wup
43 majority voting | 19 res, lin, hso N
Verbs | 43 lesk-all-info 25 path, jen helps' helps a lot
(gen. gloss-based) |26 Ich
67 lesk-Wiktionary | 25 path does
§ Nouns | 67 Borda count 27 res not helps a lot*
@ (gen. gloss-based) |29 Ich helpt
© 56 jen 38 path d
Eg 52 Borda count 38 lesk-glosses oS hel lot*
B Verbs 52 majority voting | 39 lch Eolt 1 elps a lot
49 lesk-all-info 40 lesk-GermaNet | P
40 lesk- Wiktionary | 19 Ich hel
Adj. |40 lesk-lex-fields 20 lesk-GermaNet nfb_) ITQP helps a lot*
40 lesk-all-info 21 lin at a
% 55 majority voting | 38 lesk- Wiktionary helns
B Nouns | 52 Borda count 39 path lpt* does not helpt
3 (gen. IC-based) 40 lesk-GermaNet |2 *°
28 Borda count 16 res
Verbs | 27 lesk-Wiktionary | 17 hso, lin helps’ helps!
26 majority voting | 19 wup

*helps a lot := improvement by a wide margin.

Thelps := marginal to minimal improvement only.

Ydoes not help := marginal to minimal decrease.

®no help at all := decrease by a wide margin.

§only in terms of coverage := when considering individual gloss-based algorithms,
the F-scores have decreased, but coverages improved.

generally corroborates the results reported by |[Pedersen et al.| [2005] for English
WSD. A reason might be that the noun hierarchy in GermaNet (as in WordNet)

is denser than for the other two word classes.

As summarized in Table[7.4] the best performing WSD algorithms for ad-
jectives and verbs are solely gloss-based and combined algorithms. Accord-

ing to Pedersen et al. [2005, page 27|, a low disambiguation performance of
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7.4 Summary and Conclusion

path-based and IC-based measures for verbs was to be expected because these
measures were originally meant for nouns rather than for verbs. Their explana-
tion is that since the WordNet hierarchies for verbs are very shallow compared
to the hierarchies for nouns, path-based and information-content-based mea-
sures are much more effective for nouns while more of an experimental nature
when applied to verbs. Since the adjective and verb hierarchies in GermaNet
have similar density as those of English verbs (when compared to German and
English nouns), this suggests that Pedersen et al.’s [2005] explanation also
holds true for German WSD. The knowledge-based disambiguation of adjec-
tives differs from the experiments by [Pedersen et al.| [2005] for English since
path-based and information-content-based algorithms are available only for
German adjectives but not for English ones (when using Princeton WordNet
to calculate semantic relatedness). The reason is that the Princeton Word-
Net does not structure adjectives hierarchically (as explained in Section ,
which precludes the use of relatedness measures based on hypernymy paths.
By contrast, GermaNet encodes adjectives in a manner comparable to nouns
and verbs in a hypernymy hierarchy, and, thus, allows experimenting with the
same set of relatedness measures as for the other two word classes.

In seven out of the eight evaluation results in Table the combination
by Borda count is among the best performing algorithms; and in four of the
eight results, Borda count achieves the very best scores. The only exception is
adjectives in deWaC, for which a combination does not help at all. In six out of
the eight evaluation results, the other combined algorithm (majority voting) is
the algorithm that occurs second most commonly in the list of best performing
algorithms. No other method is so often among the best performing algorithms.
This finding proves that combined methods — in particular Borda count —
generally perform stronger and more consistent than single WSD algorithms.
This result contradicts the previous finding of Broscheit et al.| [2010] who did
not obtain better results by combining individual WSD algorithms.

The alignment between GermaNet and Wiktionary has an even more re-
markable positive impact on the performance of gloss-based WSD algorithms
than the combination of algorithms. Although it depends on the exact evalua-

tion setup (i.e., which word class is considered in which corpus), the use of the
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7 Knowledge-Based Word Sense Disambiguation

aligned Wiktionary information considerably improves the WSD performance.
This answers in the affirmative one of the leading questions for the research
reported here, namely, whether the GermaNet—Wiktionary mapping improves
the performance of knowledge-based WSD.

Although GermaNet’s coverage of definitions — even with the harvested def-
initions from Wiktionary — is far from complete, the gloss-based measures have
generally outperformed path-based and information-content-based measures.
This finding that word overlap methods perform well corroborates the results
reported by [Pedersen et al. [2005] for their experiments on English WSD. It
indicates that words from glosses or lexical fields of the appropriate target
word senses often also occur as context words.

Comparing the results for the three sense-annotated corpora, the WSD
results obtained for the TiiBa-D/Z treebank are the best, the results obtained
for WebCAGe second, while the results for deWaC are the worst. The most
apparent reason for the bad performance on the deWaC corpus is the much
higher polysemy of annotated words, which makes the sense disambiguation
more difficult. That is, while the average polysemy of sense-annotated words in
WebCAGe and TiiBa-D/Z is 3.1 and 3.2, respectively, the average polysemy
of sense-annotated words in deWaC is 5.7 and thus much higher. Another
reason for a better performance when evaluated on the TiiBa-D/Z is related
to the nature of the corpus texts: data from the web — which is the basis for
the WebCAGe and deWaC corpora — is apparently noisier or for other reasons
harder for WSD algorithms than newspaper texts — which is the basis for the
TiBa-D/Z.

The largest deviation when comparing the three corpora are coverage
results, which are particularly low for several (particularly path-based and
information-content-based) WSD algorithms when evaluated on WebCAGe.
This is hardly surprising when considering the nature of the corpus texts. That
is, WebCAGe contains several annotations for which only a restricted context
is available (i.e., the example sentences harvested from Wiktionary itself are
single sentences only without a larger context — see Section , whereas all
of the sense annotations in TiiBa-D/Z and in deWaC have sufficiently large

contexts. The availability of context was analyzed in Subsection [7.3.4]
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7.4 Summary and Conclusion

In general, most algorithms perform better than random guessing. Apart
from the low results obtained for adjectives and verbs in deWaC, the evaluation
results in this chapter prove the viability of the proposed knowledge-based
approach for German word sense disambiguation.

In order to boost the performance of such a knowledge-based WSD system,
natural next steps would be (i) to experiment with different parameter settings
of the algorithms used in this chapter, (ii) to employ different corpora for
obtaining word frequency for calculating information content — similarly to
the experiments by Patwardhan et al. [2003| — and (iii) to implement further
state-of-the-art WSD algorithms such as the Personalized PageRank algorithm
[Agirre and Soroa, 2009, which yielded the best results for German WSD
reported by Broscheit et al. [2010||H. Further, a very simple way to achieve
perfect coverage and therefore also to improve the disambiguation results is to
use a backoff strategy — such as choosing a sense at random for cases where
the WSD algorithms are unable to assign any word sense — which has shown
to work well in the experiments by [Broscheit et al. [2010] and |Miller et al.
[2012]. Many existing knowledge-based WSD systems suffer from the problem
of sparse knowledge (see Subsection , so it seems worthwhile to try Miller
et al./s [2012] approach to overcome this problem by expanding contexts and
word senses with distributionally similar words.

However, even if the knowledge-based approach can be improved, results
can be boosted only to a certain extent. Since supervised systems generally
perform much better than knowledge-based approaches to WSD [Kilgarriff and
Rosenzweig, 2000|, the following chapter focuses on WSD experiments using
supervised machine learning methods. While the knowledge-based results for
disambiguating nouns reported in this chapter are already good, it is even more
important to improve the very low results for adjectives and verbs. Therefore,
the following chapter explores several features that represent syntactic prop-
erties. It shows that — for all word classes — a supervised system performs far

better than the knowledge-based approach presented in the present chapter.

'However, the study by Henrich and Hinrichs [2012], for example, has found that the
use of the Personalized PageRank algorithm performs considerably lower than any of the
combined algorithms and many of the single algorithms in their setup.
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Chapter 8

WSD Using Supervised Machine
Learning Methods

As already pointed out in the introduction of the previous chapter, the purpose
of this chapter is to help close the gap of sparse research on German word
sense disambiguation. While the previous chapter investigated knowledge-
based WSD, this chapter focuses on German WSD using supervised machine
learning methods. In general, supervised approaches to WSD adapt supervised
machine learning methods to solve the task of assigning the correct sense to a

word.

The task at hand is considered as a classification problem, where the class
that needs to be predicted is the corresponding word sense (from GermaNet)
for a given context. In order to learn how to predict the corresponding word
senses for unseen words, supervised machine learning methods rely on corpora
whose words are already annotated with senses from a given sense inventory.
Each such annotated word occurrence is denoted as an instance. A certain
amount of sense annotations serves for training a supervised method how to
predict the correct senses for unseen word occurrences; and another set of sense
annotations is used to evaluate the performance of the automatic disambigua-
tion prediction (see Chapter |§] for a description of sense-annotated corpora for
German, especially Section on training and test sets for supervised WSD

systems).
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The contexts of these annotated words provide linguistic clues specific to
particular senses — such as morphological information for the target word,
structural information from the sentence, or co-occurring words or word classes.
Supervised WSD systems use these clues — referred to as features — in order
to disambiguate between word senses. Thus, sense-annotated word instances
are represented by corresponding features. The concrete features employed for
the WSD experiments in this chapter are described in Section below.

Given a set of classified instances, i.e., instances with assigned word senses
and corresponding features, a classification algorithm learns how to predict the
corresponding word sense for an unseen instance. For the experiments in this
chapter, the classification algorithms — also called classifiers — are taken from
the Weka machine learning tool suite [Hall et al., 2009] (see Section [8.2]for more
details). Experiments include rule-based methods, instance-based methods,
probabilistic methods, support vector machines, and combined approaches —
as described in Section 8.2l below.

In short, this chapter has the following four main goals:ﬂ

(i) To apply a wide range of supervised WSD algorithms to German — in-
cluding the three word classes of adjectives, nouns, and verbs — since
the range of methods that has thus far been applied to this language is
rather limited (as described in Chapter [2)).

(ii) To study the impact of several heterogeneous machine learning features

on the automatic disambiguation of German word senses.

(iii) To investigate the influence of syntax and semantics on WSD which is
particularly interesting for verbs where the syntactic structure in which

a verb occurs is often highly predictive of different word senses.

(iv) To evaluate and compare the performance of supervised WSD algorithms

on three heterogeneous sense-annotated corpora.

The following Section [8.1] outlines the variety of employed machine learn-

ing features. The Weka machine learning tool suite and the set of supervised

Note that goals (i) and (iv) are analogous to the goals of the previous chapter on
knowledge-based WSD for German.
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8 WSD Using Supervised Machine Learning Methods

machine learning classifiers that are used for the WSD experiments are de-
scribed in Section [8.2] The evaluation of the supervised WSD experiments in
Section focuses on several aspects, including a comparison of several het-
erogeneous machine learning classifiers, a detailed analysis of the implemented
machine learning features, and an investigation of the influence of syntax and

semantics on the disambiguation performance for verbs.

8.1 Machine Learning Features

The contexts of the ambiguous words to be disambiguated provide linguistic
clues specific to particular senses. Supervised WSD systems use these clues —
referred to as features — in order to disambiguate between word senses. A
feature — often synonymously referred to as an attm’buteﬂ — is a distinct bit of
information that encodes linguistic clues from the context of a target word [Mec-
Carthyl |2009], such as morphological information for the target word, struc-
tural information from the sentence, or co-occurring words or word classes.
The value of a feature is specific to the word instance it representsﬂ

This section describes the features implemented for the WSD experiments
in this chapter. The large amount and variety of implemented features sets
the presented work apart from related work. The main reason for putting so
much effort into the implementation of features is due to the experience of pre-

vious works: [Yarowsky and Florian [2002], inter alia, found that the impact

'In the machine learning terminology, which is adopted for this thesis, the terms feature
and attribute are often used synonymously while the term feature is prevalent (see, for
example, Weiss and Kulikowski| [1991] page 5| or [Marquez et al|[2006, page 169]). Even
in the official Weka book |[Witten et al. [2011, page 49] the two terms are sometimes used
interchangeably although there the term attribute is used predominantly. Note however,
that the expressions feature and attribute are distinguished by some researchers; in that
case attributes generally define properties and their set of possible values while features
are concrete realizations of attribute-value pairs assigned to instances [Kohavi and Provost,
1998, page 271].

“Supervised classification in Weka requires training and test data to conform to a certain
data format, in which instances are listed with appropriate feature values. Weka supports
two types of input formats. In this implementation, the Attribute-Relation File Format
(ARFF) is used. The set of features is shared by all instances in such a file, but the concrete
value of a feature depends on the corresponding instance (i.e., sense annotation) it represents.
[Witten et all [2011]
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8.1 Machine Learning Features

of features on the performance of WSD systems is significantly greater than
the impact of the applied classification algorithms; and [Lee and Ng| [2002] ex-
perienced better performance when combining several types of features rather
than employing only one single knowledge source.

Table [B.1] gives an overview of all implemented features. The leftmost
column (Grp.) groups the features depending on the type of information they
employ, such as information on the word’s surface forms, co-occurring lemmas,
part-of-speech, or morphology. The third column denotes the features’ data
type as either nominal (abbreviated as nom.), numeric (abbreviated as num.),
boolean (abbreviated as bool.), or string[l]

Several features are applicable to all word classes, while other features are
applicable to certain word classes only. The information on which features are
implemented for which word classes is specified in column Applicable for POS.

Finally, the last column gives example values for a feature in questionﬂ

Table 8.1: Machine learning features.

g" Feature name Type Applicable Example values
U for POS
word_form Fufs, Fiifsen, Fufe, ...
g last_3_chars string all Fufl, sen, ufe, iifse, ...
;:s; last_2_chars ufl, en, e, es, ...
separated_particle bool. verbs yes, no

Continued on next page

'For technical reasons, only nominal and numeric feature types are used in the actual
WSD experiments. Therefore, boolean- and string-typed features are represented as nomi-
nal. That is, boolean features are represented as nominal features with the two values true
and false, while string features are converted to nominal features after collecting all input
data. The difference between nominal and string types (in Weka) is that nominal features
have a predefined value set (which is the same for all lemmas) while string features can be
arbitrary strings, which might be different for each lemma. Once all features are collected,
such string features can easily be converted into nominal.

2Example values are sometimes abbreviated for reasons of space.
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8 WSD Using Supervised Machine Learning Methods

Table 8.1 Machine learning features (continued)

a, Feat T Applicable E 1 1

[

& eature name YPe| ¢ POS xample values

e ctx_lemmas_sent_bool

é ctx_lemmas_sent_6_bool | bool. all yes, no

S| ctx_lemmas_50_bool

+~

% | ctx_lemmas_sent_num

g ctx_lemmas_sent_6_num | num. all <number>

O/ ctx_lemmas_50_num
pos_1_left one STTS POS
pos_2_left tag, e.g.: ADJA,
pos_3_left ADJD,ADV, ART,

: nom. all

o pos_1_right APPR,CARD, FM,

8 pos_2_right ITJ, KON,NN, NE,
pos_3_right PDS, PIS, PRF, ...
pos nom. | adj.,verbs |ADJA,ADJD, ...
verbs_pos tri & VMFIN_VAINF, ...
verbs_pos_ignoring_aux SUIMg| ad]., houns VVINF_VMFIN;, ...

_ | morph_number nom. all singular, plural

,§ morph_case . nom., gen., dat., acc.

a0 nom. | adj., nouns

% morph_gender masc., fem., neuter

= | morph_person first, second, third

= — -

§ morph_mood nom. verbs indicative, subjunc.
morph_tense present, past
sentence_length num. all <number >

% adjective bool. nouns yes, no

g article nom. nouns def., indef., mein, ...

) adposition string nouns zu, in, bei, mit, an, ...

4;—'3 verbs _ ) wollen%aux_holen...

g . . string | adj., nouns -

O | verbs_ignoring_aux holen, héren, malen...
auxiliary_verb string verbs sein, haben, sollen, ...

g sentence_type nom. all initial, second, final

€| head

2 . bool. all yes, no

£ | passive

§ nx_length num. nouns <number>

% part_of _conjunction bool. nouns yes, no

&£ | grammatical _function nom. nouns OA,ON,OD, OPP...

Continued on next page

219




8.1 Machine Learning Features

Table 8.1 Machine learning features (continued)

Applicable

Feature name Type for POS

Example values

Grp.

has_ON
has_OA
has_OD
has_OG
has_FOPP
has_OPP bool. verbs yes, no
has_OS
has_OV
has_OADJP
has_OADVP
has_PRED
has_ES
NE_confidence
DR_confidence
AR_confidence
AN_confidence
DN _confidence
GN_confidence
AZ_confidence
Al_confidence
NG_confidence
DS_confidence
FSo_confidence

Constituent structure

num. verbs <number>

Verbal frames

FSw_confidence
FS_confidence
PP _confidence
Pp_confidence
NN_confidence

headline

; 1. 11
named_entity boo a yes, no

Other

translation string all mrs, woman, wife, ...

The features all employ different kinds of linguistic information (i.e., knowl-
edge sources), such as information on surface forms of words, co-occurring

lemmas, POS tags, morphology, or sentence structures. The sources for this
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8 WSD Using Supervised Machine Learning Methods

information are twofold: (i) for the TtiBa-D/Z treebank, manual linguistic an-
notations as described in Section serve as input, while (ii) for all three
corpora (TtiBa-D/Z, WebCAGe, and deWaC) automatic annotation tools are
employed. There are two main reasons why the automatic annotation is also
performed on TiBa-D/Z’s texts, although the treebank already contains man-
ual annotation for all linguistic phenomena in question. Firstly, to allow a
direct comparison of the WSD results for all three corpora with the same
compilation of linguistic details. Secondly, to study the influence of linguistic
annotation quality (manual versus automatic) on the WSD results.

The automatic annotations are outlined in the following subsection, before

the subsequent subsections describe all features in detail.

8.1.1 Automatic Linguistic Preprocessing

For both knowledge-based and supervised word sense disambiguation experi-
ments, the three gold standard corpora are automatically split into sentences,
tokenized, and lemmatized — as described in Section [6.6l In addition to
these annotations, several supervised machine learning features require part-
of-speech tags, morphological information, syntactical structures, and transla-

tions to English. Therefore, the following annotation tools are employed:

Part-of-speech tagging POS tagging is performed by the TreeTagger
[Schmid, [1994]. Its probabilistic tagging method represents probabilities
of tagged sequences of tokens with Markov Models, and uses binary
decision trees for estimating transition probabilities. With a modified
version of the ID3 algorithm |Quinlan) 1983], the decision trees are
recursively constructed from training data. The Viterbi algorithm
[Viterbi, [1967] is then used to decide the best tag sequence for a
sequence of tokens. The official parameter file for German is trained for
the STTS tagset. For the implementation, a Java wrapper around the

TreeTagger is employed.[]

'Helmut Schmid developed the TreeTagger. The tagger and several parameter files,
including the one for German used in this work, are available at http://www.cis.
uni-muenchen.de/"schmid/tools/TreeTagger/. Richard Eckart de Castilho built a Java
wrapper around TreeTagger, which is available at http://code.google.com/p/tt4j/.
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Morphological analysis Morphological information is annotated with RF-
Tagger |Schmid and Laws| [2008]. The tagger annotates tokens with
fine-grained part-of-speech tags which encode morphological information.
The fine-grained tagset is an enriched version of the STTS tagset. The
morphological information available for adjectives, for example, includes
case (nominative, genitive, dative, and accusative), number (singular and
plural), gender (feminine, masculine, and neuter), and degree (compara-
tive, positive, and superlative). For verbs, the tagset includes information
on person (1, 2, and 3), number (singular and plural), tense (past and
present), mood (indicative and subjunctive), and type (auziliary, modal,

or full) — to give but two examples.

The implementation of RFTagger is based on Hidden Markov Models.
It first splits all part-of-speech tags into attribute vectors and decom-
poses contextual POS probabilities of the Markov Model into products
of attribute probabilities. It then uses decision trees for estimating condi-
tional probabilities of these attributes. The official RF Tagger downloadﬂ
includes a German model trained on the Tiger treebank [Brants et al.
2004]. In the implementation, the Java interface to the RFTaggeIﬂ is

used.

Parsing The Berkeley Parserﬂ |Petrov et al. 2006] assigns the most likely
parse trees to input texts by learning probabilistic context-free gram-
mars (PCFGs). The parser follows a split-and-merge approach. It starts
by learning a PCFG from a heavily reduced initial structure. Repeat-
edly, non-terminals are divided into two non-terminals. For each such
splitting, the likelihood loss for merging the two non-terminals (i.e., for
undoing the splitting) is calculated. When this likelihood loss is little,
the two non-terminals are merged. As a result, the splitting facilitates

a good adaptation to the trained input and the merging allows more

'Helmut Schmid and Florian Laws developed RFTagger, available at http://www.cis.
uni-muenchen.de/ schmid/tools/RFTagger/.

“Niels Ott and Ramon Ziai developed the Java interface to RFTagger, available at http:
//www.sfs.uni-tuebingen.de/ " nott/rftj-public/,

SSlav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein developed the Berkeley
Parser, available at http://code.google.com/p/berkeleyparser/.

222


http://www.cis.uni-muenchen.de/~schmid/tools/RFTagger/
http://www.cis.uni-muenchen.de/~schmid/tools/RFTagger/
http://www.sfs.uni-tuebingen.de/~nott/rftj-public/
http://www.sfs.uni-tuebingen.de/~nott/rftj-public/
http://code.google.com/p/berkeleyparser/
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compact grammars with less rules compared to models for other parsers
(including Collins’ and Charniak’s parsers |Collins|, 1999; |Charniak, [2000]
and the Stanford Parser |[Klein and Manning, [2003]).

In order to produce parse trees comparable to the manual TiiBa-D/Z
treebank annotations, the Berkeley Parser is trained on the TiBa-D/Z
data from release 9.0[ This also facilitates the parser to structure sen-
tences according to topological sequences, which are widely used in Ger-

man synt aXE|

English translation Determining the English translation of a German word
in its specific context cannot make use of one translation tool out-of-
the-box. Rather, more complex preprocessing steps than for the other

automatic linguistic annotations are necessary.

Step 1: Three different approaches generate lists of English candidate
translations for German target words: (i) extracted from GermaNet’s
ILI recordiﬂ (ii) gained from the dict.cc German—English translation
listff| and (iii) produced with an existing machine translation tool, the
Microsoft Translator API] The three implementations (i) to (iii) are ap-
plied to the German target words and to their synonyms for all GermaNet
senses of these words. This procedure generates for each German target

word a set of candidate translations.

Step 2: The sentence in which the target word occurs is translated into
English with the Microsoft Translator AP]ﬁ. As part of the Microsoft

Translatorﬂ, this API offers an online translation service using statisti-

!Thanks to Daniél de Kok, Eyal Schejter, and Yannick Versley for their support on
training the Berkeley Parser.
2For more details on the general idea of topological fields in the TiiBa-D/Z, see Subsec-

tionJ@
See Section for a description of ILI.

4dict.cc is an online translation dictionary for different language pairs, including
German—English. The German—English translation list is provided at http://wwwl.dict.
cc/translation_file_request.php?l=e.

°The Microsoft Translator API is described in step 2 below.

5The Microsoft Translator API is available from the Windows Azure Marketplace: http:
//datamarket .azure.com/dataset/bing/microsofttranslator. The translation of up to
2000000 tokens per month is provided for free.

"See http://api.microsofttranslator.com.
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cal machine translation. It supports several language pairs, including

German—English. For the implementation, a Java wrapper is employedﬂ

Step 3: With the help of the three candidate translation lists created in
step 1, the translation of the German target word is identified heuristi-
cally in the English sentence translated in step 2. In the simplest case,
a translated word occurs in the same position than the target word in
the original sentence. That is, when the translated word at the corre-
sponding target word position occurs in at least one of the candidate
translation lists, that word is defined as the translation in the specific

context.

However, due to language-specific syntactical structures and phrasal
word orders, a translated sentence is seldom an exact word-for-word
translation. The position of a target word in the original German
sentence often differs from the position of the equivalent English word
in the translated sentence. In these cases, the translated sentence is
searched for matching words in the candidate translation lists from step
1 to identify potential translations of the target word in the specific
context. A heuristic, which takes the distance of the potential translated
word’s position compared to the position of the original word into
account, decides which translation to use in the specific context in cases
where multiple potential candidate translations are found in the English

sentenceE|

The following subsections describe all features in detail — grouped by the

type of linguistic information they employ.

1Jonathan Griggs developed the Microsoft Translator Java API — a Java wrap-
per around the Microsoft Translator API, available at https://code.google.com/p/
microsoft-translator-java-api/.

?Certainly, more sophisticated machine translation approaches might improve the quality
of the target word translation. However, the described implementation works well for the
purpose of a translational feature.
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8.1.2 Surface Features

The feature group ‘surface’ subsumes four features, all relying on the written

surface form of the target word itself:

word_form This feature represents the surface forms of the words themselves
as strings. It thus comprises information on capitalization, morphological
endings, and modification of German umlauts. For the lemma Fufs, for
example, there might be the value set of {FufS, Fiflen, Fufle, Fije,
Fufes, FUSSE}.

last_3_chars The last three characters of a target word serve as a surface
feature which, in a way, mainly includes morphological endings. The
value set for the example lemma Fuff contains {Fufs, flen, ufie, ife, fes,

SSE}.

last_2_chars Similarly, the last two characters form a separate feature. This
feature clearly very often encodes the same set of information as the

previous feature ‘last_3_chars’. Example values for the lemma Fuf§ are

{uf, en, e, es, SE}.

separated_particle This boolean-valued feature indicates whether the oc-
currence of a separable verb appears as one word or with its particle
separated. For the specific class of German separable verbs including a
particle — also referred to as particle verbs — the particle can occur sep-
arately from the lexical verb base. For example, the particle hoch ‘up’
in a verb such as hochladen ‘to upload’ can appear with the verb as one

word (see sentence (7a])) or occur separated from the verb base (as in

sentence ([7D))).

(7) a. Im Webportal kann jeder Benutzer Fotos hochladen.
(‘Every user can upload pictures to the web portal.’)
b. Im Webportal laden viele Benutzer Fotos hoch.
(‘Many users upload pictures to the web portal.”)

In the used gold standard corpora, separated particles can be identified
by their POS tag PTKVZ.
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8.1 Machine Learning Features

Since different surface forms and endings occur for words of all word classes,
the first three features listed are applicable for all relevant word classes, i.e.,
adjectives, nouns, and verbs. The applicability of the last feature listed is
restricted to particle verbs, because in German only particle verbs can have

separated particles.

8.1.3 Context Lemma Features

All features in this subsection make use of information on the occurrence of
lemmas in the contexts of the target words. In order to keep the number
of lemmas manageable and to ensure a certain level of meaningfulness and
generalizability of the created features, only lemmas with a certain frequency
are considered. In the experiments reported in Section[8.3] lemmas which occur
at least three times overall in all contexts of the target words are considered.
Punctuation marks, identified by their STTS POS tag starting with a dollar
symbol ($)[} and stopwords such as determiners, identified with the help of a
given listﬂ, are ignored for all features listed below.

The features in this section are available in a numeric and in a boolean-
valued variant. The numeric variant encodes the frequency with which the
lemma occurs in the context of the target word under consideration, whereas
the boolean variant simply states whether or not the lemma occurs at least
once in the context.

Since such contextual information is available for all tokens in a corpus,

the features are applicable to all word classes.

ctx_lemmas_sent_bool This boolean-valued feature encodes whether or not

a lemma occurs in the same sentence as a target word.

ctx_lemmas_sent_num The numeric variant of the previous feature specifies
the number of occurrences with which a lemma occurs in the sentential

context of a target word.

!The three STTS tags for punctuation marks are ‘$.” for sentence-final punctuation, ‘$,’
for commas, and ‘$(’ for other sentence-internal punctuation.

2The stopwords list is copied from the Snowball stemmer [Porter, 1980|, available at
http://snowball.tartarus.org/algorithms/german/stop.txt.
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ctx_lemmas_sent_6_bool This feature is similar though more restrictive
than the first one in the list. It also encodes whether a lemma occurs in
the context of a target word or not, but this time the considered context
is not the whole sentence but a maximum window of six tokens (three

on each side of the target word) within the boundaries of a sentence.

ctx_lemmas_sent_6_num Analogously, the frequency of a lemma in the
restricted context window of six words is represented in the numeric

variant of the feature.

ctx_lemmas_50_bool Different from the four previously listed features, the
context of this feature is not restricted to tokens within the sentence in
which a target word occurs. All lemmas which occur in a context window

of 50 words beyond sentence boundaries are considered.

ctx_lemmas_50_num This feature represents the frequency-based version of

the 50-word context feature.

Technically, there are more than six ‘context lemma’ features. For each
lemma (excluding stopwords), which occurs overall at least three times in the
specified context windows of all word instances, there is a separate feature
implemented.

In general, arbitrary context window sizes could be chosen. The decision
to report experiments for the above-listed context sizes supports a comparison
of heterogeneous contexts windows, i.e., a very small window size of at most
six tokens, a relatively variable-in-size context representing a sentence, and a
large window of 50 tokens.

Probably because these ‘context lemma’ features have proven to perform
well, are easy to obtain and applicable to all words and word classes, they are
popular in the literature |[Lee and Ngj, [2002; [Martinez et al., 2002; Mihalcea,
2002bj; Kope¢ et al., [2012].

8.1.4 Part-of-Speech Features

All nine part-of-speech features make use of the Stuttgart-Tiibingen-TagSet
(STTS) |Schiller et al.,|1999|, which comprises a total set of 54 POS tags. The
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8.1 Machine Learning Features

sentence

(8) Information will frei sein, heifit es|]

(‘Information wants to be free, it says.’)

from Figure with the target word frei ‘free’ (rendered in boldface in example
sentence ; surrounded by a dashed box in Figure serves as an illustrating

example for the features in this group.

= 1 e

[05]
SIMPX

[-] [-] [-]

D O (O K W

[oN] [HO ] [ov] [HO ] [oN]

[HO ] [HO ] [HO ] [HO ]
Information will sein , heilkt es
Information wollen%aux  frei sein , heiken es ]

NN VMFIN ADID  WVAINF %, VVFIN PPER $.

nsf 3sis 3sis nsn3

Figure 8.1: Example sentence for illustrating POS features.

Since the first six features listed below rely on contextual information,
which is generally available for all tokens in a corpus, they are applicable to all
word classes. Only tokens within the sentence in which the target word occurs

are considered.

!Sentence 50865 from TiiBa-D/Z 9.1.
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pos_1_left This feature encodes the STTS part-of-speech tag of the token
occurring immediately to the left of the target word. For the target
word fre: in the example sentence in Figure the extracted POS tag
value of the token to the left (i.e., will) is VMFIN.

pos_2_left Analogously, this feature encodes the STTS POS tag of the token
two tokens to the left of the target word. In the example, the token two
to the left of the target word frei is Information, and thus the extracted
POS tag is NN.

pos_3_left The part-of-speech tag of the token three to the left of the target
word is represented by feature ‘pos_3_left’. In the example sentence in
Figure 8.} there is no token three to the left which belongs to the same
sentence than the target word frei. In this case, the value of this feature

is left empty:.

pos_1_right Along the lines of the first three POS features listed, which
encode the POS tags of the tokens in the left context of the target word,
there are three such nominal features for the right context. ‘pos_1_right’
represents the POS tag of the token following the target word. In the
example, this is tag VAINF.

pos_2_right This feature encodes the part-of-speech tag of the token two
tokens to the right of the target word. In the example, the value of

feature ‘pos_2_right’ is §, (representing the comma).

pos_3_right The STTS tag of the token three to the right is extracted anal-
ogously, which is VVFIN (from token heifit) in the example.

pos The part of speech of the target word itself is encoded as a feature. Since
the STTS tagset does not further distinguish the tags for nouns, this
feature is applicable to adjectives and verbs. For adjectives, the nominal
value set includes the two values {ADJA, ADJD} only. For the example
target word frei from Figure[8.1] this feature has value ADJD. The range
of values for verbs is larger. It comprises the 12 verbal STTS POS tags
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starting with a ‘V’: {VAFIN, VAIMP, VAINF, VAPP, VMFIN, VMINF,
VMPP, VVFIN, VVIMP, VVINF, VVIZU, VVPP}[]

verbs_pos This feature, which is implemented for adjectives and nouns, con-
catenates the part-of-speech tags of all verbs in the sentence contain-
ing the target word. Although this feature apparently concerns part-
of-speech information, it makes use of the topological field to identify
the tokens of which POS information is extracted. The POS tags for
all tokens that are part of a verbal element in the topological model are
extracted and concatenated (by underscores) in the order in which the
tokens occur in the corpus. ‘All tokens that are part of a verbal element
in the topological model’ refers to all tokens that are part of an LK, a
VC, or a VCE field (see Subsection for a description of topological
fields). Including all verbal fields from the example sentence in Figure
results in the string VMFIN_VAINF_VVFIN (i.e., the POS tags from
the three verbs will, sein, and heifft in the order of their occurrence in

the corpus).

In the ideal case, i.e., assuming that the structural annotation is correct,
only those verbal elements from the topological field are considered that
actually match the target word. In the example, only the first LK field
containing token will and the VC field containing token sein match with

the target word frei. Thus, in the example, the correct value for this
feature is VMFIN_VAINF.

verbs_pos_ignoring_aux Similarly to the previously described feature, the
part-of-speech tags of verbs in the sentence containing the target word are
concatenated. It is analogously implemented for adjectives and nouns.
By contrast, this feature focuses on main verbs and omits auxiliary

verbs.ﬂ For the example target word frei, the ideal value of this fea-

INote that while these restricted feature value sets reflect the manual annotations in
the TiiBa-D/Z treebank, further POS tags certainly occur erroneously in the automatic
annotations.

2In the manually annotated TiiBa-D/Z, auxiliary verbs are identified by %auz or %passiv
markers at the end of the lemmas (see lemma wollen %auz for the second token in the sentence
in Figure . For the automatically annotated corpora, morphological information on
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ture is VAINF[

Related studies, including Lee and Ng| [2002], [Martinez et al., 2002, |Mi-
halceal [2002b] and [Kope¢ et al.[[2012], also implemented the first seven above-
listed ‘part-of-speech’ features, i.e., the POS tags of the tokens surrounding
the target word (in a context of £3 tokens) and the POS tag of the target

word itself.

8.1.5 Morphological Features

Six morphological features represent information on inflectional morphology,

i.e., number, case, gender, person, mood, and tense, of the target word.

morph_number Each target word contains information on its grammatical
number (singular or plural) or is left underspecified. The nominal value

set for this feature includes three entries: {singular, plural, underspeci-

fied}.

morph_case German morphology involves the four cases nominative, geni-
tive, dative, and accusative, which occur for adjectives and nouns. The
value set includes an underspecified marker: {nominative, genitive, da-

tive, accusative, underspecified}.

morph_gender Each German noun belongs to one of the three grammatical
genders masculine, feminine, and neuter. The gender of attributive ad-
jectives is determined by the corresponding noun. The nominal values

for this feature are {masculine, feminine, neuter, underspecified}.

morph_person Depending on the subject of a sentence, German verbs are

conjugated by person: {first, second, third, underspecified}

morph_mood German verbs signal linguistic modality. This feature repre-

sents two moods: {indicative, subjunctive}.

whether a verb is a full verb or an auxiliary verb is extracted with the help of RFTagger,
which is described in Subsection @ above.

LAs for the previous feature, the ideal implementation of this feature considers only
verbal elements that match the target word.
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morph_tense The tense of a German sentence is expressed by the verb. The
feature comprises the broad distinction between present and past tense:

{present, past, underspecified}.

For the manual TtiBa-D/Z annotation, morphological information on num-
ber, case, gender, person, mood, and tense is straight-forwardly extracted from
the treebank’s morphologic annotation layer (see Section . In its style-
book, the TtiBa-D/Z specifies the kind of morphological information available
for each part of speech. Table is a shortened version of the original table
copied from the TtiBa-D/Z stylebook |Telljohann et al., [2012|. It shows corre-
sponding morphological information for those adjectival, nominal, and verbal
POS tags that are relevant for the annotated target words and for which mor-

phological information is available in the treebank ]

Table 8.2: Morphological information available for certain parts of speech.

Morphological
POS information Comments
ADJA | €ase: number, underspecified for gender if plural noun is
gender underspecified, e.g. die/np* nordhessischen
/np* Grinen/np*,
underspecified for invariant local descrip-
tions, e.g. Berliner/***;
full morphology for cardinal numbers as ab-
breviation, e.g. im 4./dsn Jahrhundert/dsn
NN case, number, underspecified gender for specific nouns,
gender e.g. Abgeordnete (in plural) or Leute
VAFIN | Person, number,
mood, tense
VAIMP | number
person, number,
VMFIN mood, tense
person, number,
VVFIN mood, tense
German has only second person imperative
VVIMP | number fortms

!Those POS tags that are not included in the table are either not relevant for the
annotated target words or do not contain any morphological annotation.
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While this specification of which morphological information is available
for which part of speech reflects the manual annotations in the TtuBa-D/Z
treebank, any automatic annotations are certainly less controlled. For the au-
tomatic processing, morphological information is annotated with RFTagger —
as described in Subsection above.

Related studies that used morphological information of the target word as
features include [Ng and Lee| [1996] and Kope¢ et al.| [2012).

8.1.6 Context Detail Features

This subsection describes seven features which all use heterogeneous informa-

tion from the contexts of the target words.

sentence_length The length of the sentence in which a target word occurs
represents a numeric feature — available for target words of all word

classes.

adjective For nouns, this boolean feature encodes whether or not an adjective
belongs to the target noun. The relevant adjectives which modify nouns
are attributive adjectives (identified by their POS tag ADJA) syntac-
tically attached to the same nominal phrase NX than the target noun.
Technically, the value of this feature is set to true if there is an adjectival

phrase ADJX occurring in the target noun’s nominal phraseH

article German nouns often have a definite article (der/die/das ‘the’), an
indefinite article (ein/eine ‘a’/‘an’), or an attributive possessive pronoun
(such as mein(e) ‘my’, dein(e) ‘your’, unser(e) ‘our’, etc.). Linguistically,
a possessive pronoun is not an article, but because for German nouns
there can only either be an article or an attributive possessive pronoun,
this information can be encoded in one feature. In order to qualify for
this feature, the token in question syntactically needs to be part of the

same noun phrase NX than the target word.

IThis does not consider only attributive adjectives as true, but — on purpose — also
includes adjectival phrases containing, for example, a cardinal number (POS tag CARD) or
an attributive indefinite pronoun (POS tag PIDAT).
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The nominal value set of this feature is {definite, indefinite, none, mein,
dein, sein, ihr, unser, euer, Ihr}. All eligible tokens can be identified
by their POS tags (ART for definite or indefinite articles and PPOSAT
for attributive possessive pronouns) in combination with their lemma
(i.e., der/die/das versus ein/eine for part-of-speech tag ART or mein(e),
dein(e), sein(e), etc. for PPOSAT).

adposition By definition, a prepositional phrase PX in the TiiBa-D/Z con-
tains an adposition, i.e., a preposition, a postposition, or a circumposi-
tion. For the case that a target noun is syntactically part of a preposi-
tional phrase, the corresponding adposition is used as the value for this
featurell| Adpositions are identified by their POS tags, which all start
with the two letters AP in the STTS tagset: APPR for prepositions (and
left circumpositions), APPRART for prepositions with incorporated ar-
ticles, APPO for postpositions, and APZR for right circumpositions.
Sample values for this string feature include: {zu, in, bei, mit, von, tber,

durch, aus, auf, fir, nach, an, samt}.

verbs This feature concatenates all verbal lemmas of a sentence. Similarly
to the above-described feature ‘verbs_pos’ (see Subsection , which
concatenates verbal POS tags, it makes use of the topological field to
identify all verbal tokens. All tokens that are part of verbal field, i.e., an
LK, a VC, or a VCE, are extracted and their lemmas concatenated (by
underscores) in the order in which they occur in the corpus. Using the
same example sentence as above (see Figure with the target word
frei ‘free’, this results in the string wollen %auz_sein_heiffen. Again, the
ideal case is that only those verbal parts from the topological field are
considered that match the target word. Since in the example only the
first LK field containing token will and the VC field containing token
sein match with the target word frei, the ideal value for the present

feature is wollen %auz_ sein.

This feature and the next feature are both implemented for adjectives

In case of multiple adpositions in a PX, especially for circumpositions, all relevant
adpositions are concatenated (by underscores).
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and nouns.

verbs_ignoring_aux For this feature, all main verb lemmas of a sentence
are concatenated — similarly to the previous feature (which concatenates
all verbs), but without auxiliary Verbs.E| For the target word frei in the
example from Figure , the ideal value of this feature is sem.ﬂ

auxiliary_verb Different from the two previously listed features, this feature
specifies the usage of an auxiliary verb given a main verb as the target
word. It also makes use of the structure of the topological field to identify
matching verbs. Assuming that the target word under consideration is
the verb sein in the same example sentence from Figure [8.1] the value
for this feature is wollenf| Further sample values for the feature at hand

are {sein, haben, sollen, missen, wollen, werden, ...}.

8.1.7 Sentence Structure Features

The following six features employ information on sentence structures:

sentence_type Depending on the position of the finite verb, the concept of
topological fields distinguishes German sentences into three types: verb-
wniatial, verb-second, and wverb-final. The feature is available to target
words of all word classes. Its nominal value set includes an underspec-
ified marker (none) for elliptical or incomplete sentences: {verb_initial,

verb_second, verb_final, none}.

head Each token in the TtiBa-D/Z (and in the automatic annotation with
the Berkeley Parser — see Subsection above) has a direct edge label.

! As described for the analogous feature ‘verbs_pos_ignoring_aux’ encoding POS tags
instead of lemmas (see Subsection above), auxiliary verbs are identified by %aux or
%passiv markers at the end of the lemmas in the manually annotated TiiBa-D/Z. For the
automatically annotated corpora, morphological information on whether a verb is a full
verb or an auxiliary verb is extracted with the help of RFTagger, which is described in
Subsection above.

2As for the previous feature, the ideal implementation of this feature considers only
verbal fields that match the target word.

3Again, in case of the existence of multiple auxiliary verbs in one sentence, these are
underscore separated.
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In most cases, this marker denotes the token either as the head (label
HD) or as a non-head (label ") of a phrasdl] - captured in this boolean

feature called ‘head’.

passive This boolean-valued feature indicates whether or not passive voice
is used in the sentence in which the target word occurs. It is available
to target words of all word classes. In the implementation, a sentence
is marked as passive if the passive voice auxiliary verb werdenﬂ occurs

together with a past participldﬂ

nx_length Each noun is syntactically attached to a nominal phrase NX. This

numeric feature encodes the number of tokens subsumed under the target

noun’s NX.

part_of_conjunction For nouns, this boolean-valued feature specifies
whether the target word is directly part of a conjunction. Technically,
the feature value is set to true, if the direct noun phrase NX in which

the target noun occurs has the edge label KONJ denoting conjunctions.

grammatical_function This nominal feature specifies the closest edge label
for a target noun. That is, nouns are part of noun phrases (NX) which
are — depending on their status within the sentence — labeled with an
edge label denoting their appropriate grammatical function within the
sentence, such as ON, OD, OA, OG, MOD, ON-MOD, OA-MOD, etc.
For instance, for the noun Information in Figure [8.I] the corresponding

‘grammatical_function’ feature value would be ON.

IThe other two less-frequently occurring edge labels for denoting tokens, i.e., -NE for
excluding a token from a named entity phrase and VPT for separated verb prefixes, are
counted as non-heads in the current implementation.

’In the manually annotated TiiBa-D/Z, the lemmas of passive voice auxiliary verbs
are annotated as werden%passiv. For the automatically annotated corpora, morphological
information on whether a verb is a full verb or an auxiliary or modal verb is extracted with
the help of RFTagger.

3Past participles are identified by their part-of-speech tag VVPP.
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8.1.8 Constituent Structure Features

Grammatical information contained in a treebank makes it possible to utilize
features that rely on syntactic structures. This is particularly useful for the
disambiguation of verbs where the syntactic structure in which a verb occurs
is often highly predictive of different word senses. [Fellbaum et al. [2001],
Dligach and Palmer| [2008] and |Chen and Palmer [2009] previously showed
that the incorporation of features encoding syntactic structures improves the
performance of verb sense disambiguation systems for English.

In order to analyze the influence of syntax and semantics on automatic
WSD for German, an extensive set of features that encode syntactic struc-
tures is implemented: features based on constituent structures are described
in this subsection and features based on verbal frames are described in the
next subsection (Subsection [8.1.9)).

This subsection describes altogether 11 boolean-valued features that cap-
ture the syntactic constituency of verbs. Each of the features encodes the
existence of one of the complement edges, e.g., ON, OA, OD, OG, FOPP,
OPP, etc., specified in the TtuBa-D/Z Syntaxﬂ These complements mostly
represent objects of a verb such as accusative, dative, genitive, prepositional,
or adverbial objects. In addition to these complement edges, there is one
feature encoding the structural expletive, i.e., edge label ES.

All features use topological fields to extract complements for a verb. In the
ideal case, i.e., assuming that the structural annotation is correct, only those
complements from the topological field are considered that actually match the
target verb.E| Syntactic constituency features are available to verbal target
words. Also see the TiiBa-D/Z stylebook |Telljohann et al., 2012] for more

details on each edge label.

! Altogether, there are 13 complement edges specified in the TiiBa-D /Z stylebook |Telljo-
hann et alJ 2012, Table 3.8]. Both VPT, which denotes separated verb particles, and APP,
which denotes appositions, do not specify a feature in the current implementation, because
they are not relevant for the type of syntactic constituency described in this section. In
order to be able to produce such constituent structures with automatic tools that are com-
parable to the manual TiiBa-D/Z treebank annotations, the Berkeley Parser is trained on
the TiiBa-D/Z data — see Subsection above.

2See the description of the ‘verbs_pos’ feature in Subsection above for a concrete
example for what is meant by match the verb.
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has_ON This feature encodes whether or not a subject with the complement
edge label ON (nominative object) occurs in the topological field of a

verb.

has_OA This feature encodes whether or not an accusative object (edge label

OA) is realized in the topological field of a verb.
has_OD The existence of a dative object OD is captured accordingly.

has_OG Whether or not a verb has a genitive complement — annotated by
the OG edge label — is encoded by this feature.

has_FOPP Constituents marked with FOPP are optional prepositional ob-
jects including passivized subjects. These phrases are denoted as optional
since they can be left out without resulting in ungrammatical sentences.

An example is given in sentence @
(9) Das is gut [fir uns/"OPP [T (‘That’s good for us.’)

has_OPP In contrast to FOPP, prepositional phrases labeled by OPP are
mandatory complements. That is, without the OPP complement a sen-

tence would be ungrammatical — as illustrated in example sentence ((10)).

(10)  Beide stammen nimlich [aus dem Westen/T" F]
(‘Both are from the West.")

has_OS In examples such as in sentence ({11]), where subordinate clauses oc-
cupy the position of sentential objects, the sentential object is annotated
with the edge label OS. This ‘has_OS’ feature encodes whether or not

such a sentential object exists for the verb under investigation.

(11)  Die Spieler wissen, [worum es geht/?® f|
(‘The players know what it is about.’)

!Sentence 946 from TiiBa-D/Z 9.1.
2Sentence 3169 from TiiBa-D/Z 9.1.
3Part of sentence 735 from TiiBa-D/Z 9.1.

238



8 WSD Using Supervised Machine Learning Methods

has_OV Verbal objects are required by other verbs. Without these verbal
objects — labeled as OV — a sentence is usually either grammatically
incorrect or represents a completely different meaning. The example in
sentence illustrates the case that the meaning of the sentence would

change without the verbal object lesen ‘to read’.

(12)  Ich kimpfe dafiir, dass wir mit den Augen lesen®V lemen.ﬂ
(‘I fight that we learn to read with the eyes.”)

has_OADJP Adjectival objects that are required by the main verb of a sen-
tence are annotated with the edge label OADJP. Without the OADJP
constituent, the sentence would be grammatically incorrect or would have

a different meaning, such as in the example sentence ([13)).

(13)  Die Wibhlerregistrierung verlief schleppendOADJPH

(“The voter registration proceeded slowly.”)

has_OADVP Adverbival objects are annotated with the edge label OADVP.
Analogously to adjectival objects, constituents annotated with OADVP
are required by the main verb of a sentence and without them the sen-
tence would be grammatically incorrect or would have a different mean-

ing. An example is given in sentence ((14)).

(14)  Das sehen die Gewerkschaftler anders®APVY
(“The unionists see this differently.”)

has_PRED Predicates of verbs are annotated with the edge label PRED
in the TiBa-D/Z treebank — as illustrated in example sentence (L5).
Typical verbs for which predicates occur are, for example, sein, haben,
scheinen, aussehen, etc. (see TiiBa-D/Z’s handbook [Telljohann et al.
2012| for more details on when exactly the edge label PRED is anno-
tated). The existence of such a PRED label is encoded in the ‘has_pred’

feature.

!Sentence 45599 from TiiBa-D/Z 9.1.
2Sentence 12404 from TiiBa-D/Z 9.1.
3Sentence 1747 from TiiBa-D/Z 9.1.
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(15)  Jamal ist [wiitend/""EP [[] (‘Jamal is angry.’)

has_ES This feature specifies whether or not the topological field of the tar-
get verb includes the structural expletive Vorfeld-es (edge label ES). If
the pronominal form es ‘it’ is used as a purely structural dummy ele-
ment in the Vorfeld ‘initial field” position and is not correlated with any
other phrases of the sentence, it is labeled as ES. An example is given in
sentence (|16)).

(16)  Es®S geschieht hier m’chts.ﬂ (‘Nothing happens here.”)

Since the annotation of a sentence’s constituency structure is much more
difficult than other linguistic annotation such as lemmatization or part-of-
speech tagging, the quality of the features described in this subsection largely
differs: manual annotations are certainly more accurate than automatic parses.

This behavior is confirmed and discussed in the evaluation section below (Sec-

tion .

8.1.9 Verbal Frame Features

Verbal frames are captured in altogether 16 numeric features. Each of the fea-
tures encodes the existence of a frame label as used in GermaNet. These frame
labels mostly represent objects of a verb such as accusative, dative, genitive,
prepositional, or adverbial objects. As described in Subsection [3.7], the verbal
frames in GermaNet are adapted from the CELEX Lexical Database |Baayen
et al., [1995]. The frame labels typically differ from the names of non-terminal
symbols and dependency labels used by a parser trained on a particular tree-
bank. Therefore the tags need to be mapped; in the present work, a manual
tag mapping from GermaNet to TiiBa-D/Z has been performed. The con-
fidence scores assigned to individual frame labels have been determined by
human introspection and take into account how easy it is to map a GermaNet
frame label to TiiBa-D/Z’s annotation structure. If the GermaNet to T{iBa-

D/Z mapping is one-to-many for a given frame label, such a mapping may

ISentence 408 from TiiBa-D/Z 9.1.
2Part of sentence 6663 from TiiBa-D/Z 9.1.
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result in loss of information. Therefore, the frame label in question receives a
lower score than a label where the mapping from GermaNet to TiiBa-D/Z is
one-to-one and no information loss occurs.

Altogether, there are 23 frame labels specified in GermaNet (see Table
of which 15 are implemented as features in their obligatory version, i.e., NN,
AN, DN, etc. Prepositional phrases are further implemented in their optional
variant Pp (indicated by a lower case second letter).ﬂ

All implemented features in this subsection use topological fields to extract
verbal frames. In the ideal case, i.e., assuming that the structural annotation
is correct, only those frames from the topological field are considered that ac-
tually match the target VerbE| Since the features in this subsection rely on
similar and largely overlapping information on syntactic constituency infor-
mation of verbs, the verbal frame features in this subsection are similar to the
constituent structure features described in the previous subsectionﬁ However,
since the verbal frame features make use of more information than solely con-
stituent structures, they can be considered as an extension of the constituent
structure features described in Section B.I.8l

All verbal frame features are by definition available to verbal target words.
Since these features encode confidence scores assigned to specific frame labels,
their values are numeric. Those features that appear reliable and their Germa-
Net frame labels are easy to map to the annotation available in the TtiBa-D/Z
treebank can achieve the highest confidence scores. The following list sorts the

16 verbal frame features in decreasing order of confidence.

NE_confidence The GermaNet frame label NE expresses the expletive sub-

!The adverbial frame labels (starting with a ‘B’, i.e., BC, BD, BL, etc.) do not specify
features in the current implementation: on the one hand, adverbial frame labels as defined in
GermaNet can be realized in many different ways in a sentence and are, thus, very complex
and rather difficult to implement without an extensive analysis of annotated examples. On
the other hand, no such annotated examples are available and, in general, adverbial frame
labels are encoded too rarely in GermaNet so as to allow such an extensive analysis with
sufficiently many instances. For these reasons, their implementation as features is left to
future work.

2A concrete example for what is meant by match the verb is given in the description of
the ‘verbs_pos’ feature in Subsection [3.1.4 above.

3In some cases, where the features encode exactly the same information, the verbal
frame feature represents a numeric variant of its boolean-valued constituent structure feature
alternative from the previous subsection.
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ject es ‘it’. In the TiiBa-D/Z, all non-referential uses of the pronoun es
are annotated with the %expletive marker |[Naumann| [2007]. This sub-
sumes the structural expletive Vorfeld-es (TiBa-D/Z edge label ES),
but it also occurs for weather verbs and verbs with a missing agent, such

as in example sentence ((17)).

(17)  In Schieifen geht esN bergaufl]

(‘In serpentines it goes uphill.”)

For the feature at hand, the following three criteria identify occurrences
of GermaNet’s NE frame labels: (i) the lemma has to be es, (ii) it has to
be the subject of the sentence (annotated with edge label ON), and (iii)
it has to have an explicit %expletive annotationﬂ Since these criteria are
very clear, NE is the GermaNet frame label that can be mapped most
reliably to the annotation in TiBa-D/Z.

DR_confidence Identifying reflexive pronouns in dative case (GermaNet
frame label DR) is straight-forward: if a corresponding token exists
that represents a dative object (annotated with the edge label OD in
TiBa-D/Z) and that is a reflexive personal pronoun (annotated with
the part-of-speech tag PRF'). Sentence gives an example:ﬂ

(18)  Wegmanns haben sich®” einen Hund zugelegt.lﬂ
(‘The Wegmanns have adopted a dog.”)

AR _confidence Reflexive pronouns in accusative case are analogously
straight-forward to identify: they have to represent an accusative object
(edge label OA) and be a reflexive personal pronoun (POS tag PRF).

!Sentence 73995 from TiiBa-D/Z 9.1.

2Note that since these %expletive annotations are available only to the manually anno-
tated treebank, the corpora that rely on automatic annotations have to satisfice with criteria
(i) and (ii), which are certainly less reliable.

3The example was already given in Section where the manual annotations in the
TiiBa-D/Z treebank were explained. It is repeated here for convenience. However, in Sec-
tion m (Figure the sentence is also visualized with its complete syntactical annota-
tions.

4Sentence 60611 from TiiBa-D/Z 9.1.
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AN _confidence GermaNet’s frame labels distinguish between reflexive
accusative objects (AR) and general (non-reflexive) accusative objects
(AN). Both these frame labels are identified in the TiiBa-D/Z by the
OA annotation for accusative objects. The part-of-speech tags help
distinguishing between the reflexive and non-reflexive objects (reflexive

personal pronouns can be identified by their POS tag PRF).

For the ‘AN_confidence’ feature at hand, the maximum confidence score

is given for occurrences of non-reflexive accusative objects (i.e., edge label
OA occurs without POS tag PRF).

A problem arises, however, for reflexive uses of non-inherent reflexive
German verbs such as the verb waschen ‘to wash’ in sentence . These
cases are classified with frame label AN (rather than AR) in GermaNet,
but in the TtuBa-D/Z, they cannot be distinguished from inherent re-
flexive verbs. For this reason, occurrences of reflexive accusative objects

result in a confidence score minimally above zero for frame label AN.

(19)  Sonst wischt er sichOATPEE pjell]

(‘Otherwise he never washes himself.”)

DN_confidence Analogously to the accusative case, DN frame labels in
GermaNet are identified by dative object edge labels OD in TiiBa-D/Z,
and the problem of reflexive uses for non-inherent reflexive verbs is han-

dled similarly.

In certain cases, dative objects can be expressed with prepositional
phrases in dative case (annotated in TiBa-D/Z as facultative prepo-
sitional objects FOPP with appropriate dative case markers in the
morphological layer), such as the prepositional phrase mit den Daten
‘with the data’ in example . The existence of FOPP’s in dative case

give a much lower confidence score than a ‘real’” dative object.

(20)  Was [mit den Daten/"OFT geschehe, sei nicht diberpriifbarf]
(‘What happens with the data, would not be verifiable.”)

1Sentence 47605 from TiiBa-D/Z 9.1.
ZSentence 15714 from TiiBa-D/Z 9.1.
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GN_confidence Genitive objects are simply identified by their edge label
OG in TiBa-D/Z. Unlike for dative and accusative objects, the above-
described problem with non-inherent reflexive verbs does not exist for

German genitive objects.

AZ_confidence The existence of verbal infinitive clauses with zu ‘to’ (Germa-
Net frame label AZ) relies on annotations both from the structural as
well as from the part-of-speech layer in the treebank. On the structural
level, subordinated sentential objects (with edge label OS) are extracted.
Each of these OS sentences qualifies for this ‘AZ_confidence’ feature at
hand, if it (i) either contains a main verbs with zu-infinitive where the zu
is realized as an infix (such tokens are identified by their part-of-speech
tag VVIZU) or (ii) contains both a zu particle (identified by its POS
tag PTKZU) and an infinitive verb (identified by its POS tag starting
with ‘V’ and ending in ‘INF’) i.e., VVINF represents main infinitive
verbs, VAINF represents auxiliary infinitive verbs, and VMINF repre-
sents modal infinitive verbs). Sentence — represented in Figure
with all its annotation — gives an example for the second case (ii) as
described above: assuming that the target verb is lernen ‘to learn’; the
existence of frame label AZ (represented by zu leben) can be identified

with high confidence.

(21)  Ich lernte [zu leben/*? 1] (‘1 learnt to live.’)

AI_confidence The GermalNet frame label Al encodes verbal infinitive
clauses. It is identified in the treebank by a verbal object (identified
by its edge label OV') which contains an infinitive verb. As for the
previously described feature, infinitive verbs are identified by their
POS tags starting with ‘V’ and ending in ‘INF’, i.e., VVINF, VAINF,
or VMINF. For Al’s, however, it is important that the OV does not
contain any zu particles (POS tag PTKZU).

NG_confidence The GermaNet frame label NG represents additional noun

phrases or adjectival phrases in nominative case besides the subject (in

!Sentence 36 168 from TiiBa-D/Z 9.1.
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" Ich lernte Zu leben "

" ich lernen zu leben " .

$( PPER VVFIN  PTKZU  WVINF $( 5.
ns*l 3sit

Figure 8.2: An example for frame label AZ.

German Gleichsetzungsnominativ or Pradikatsnominativ). The equiva-
lence in TtiBa-D/Z annotates such cases with the edge label PRED. An
example is given in sentence above.

DS_confidence DS frame labels represent subordinate clauses introduced
with dass ‘that’. They are mapped to the annotation in the TtiBa-D/Z
as follows: subordinate clauses with the edge label OS5 whose first token

is dass (or daf in the old German ortography).

A lower confidence score is assigned to instances of direct speech (naively
identified by subordinate clauses in double quotes or by subordninate

clauses preceded by colons) and where the OS does not start with a
dass/da.

FSo_confidence The frame label F'So stands for interrogative sentences with
the question particle ob ‘whether’/‘if’. They are identified in the tree-

bank by subordinate clauses starting with token o0b.
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FSw_confidence Analogously, interrogative sentences with the interrogative
pronouns starting with ‘w’ (e.g., wer ‘who’, was ‘what’, wie ‘how’, etc.)
are identified in the treebank by subordinate clauses whose first token

starts with character ‘w’.

FS_confidence The identification of ‘general’ interrogative sentences
(GermaNet frame label FS), i.e., interrogative sentences without the
explicit demand for a certain interrogative pronoun, is less reliable
compared to the other above-described frame labels: it simply checks

the existence of a subordinate clause (OS5).

PP _confidence Although the identification of obligatory prepositional
phrases (frame label PP) appears straight-forward, i.e., edge label OPP,
the assigned confidence score is lower than for the other frame labels.
This is due to the wide and diverse range of possibilities to realize
prepositional objects. It even happens that the obligatory frame label
PP in GermaNet is realized as an optional prepositional object (FOPP)

in TiiBa-D/Z; but in that case, the confidence score is even lower.

Pp_confidence Optional prepositional phrases (indicated by a lowercase sec-
ond letter in the GermaNet frame label Pp) are mapped to TtiBa-D/Z’s
FOPP edge label. Again, it happens that concrete example sentences
are annotated with OPP although the phrase in question is specified as
optional on the GermaNet side. The confidence score is rather low for

the same reason given for the previous feature.

NN_confidence Identifying GermaNet’s NN frame labels, i.e., noun phrases
in nominative case which represent the subject of the sentence, is
straight-forward: those constituents annotated with the edge label ON
in TtiBa-D/Z. However, this frame label is the least meaningful, because

nearly all active German sentences have subjects.
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8.1.10 Other Features

Since the features described in this subsection do not exactly match any of the
other feature categories, they are subsumed in this ‘other’ group. The three
features are heterogeneous but applicable to all word classes. Note, however,
that the second feature is available only for the manual TtiBa-D/Z treebank
annotations, while the last feature is available only in connection with the

automatic preprocessing.

headline This boolean-valued feature encodes whether a target word is part
of a headline or occurs in regular text. This information is interesting
because headlines often contain incomplete or elliptical sentence struc-
tures. For example, for target words that occur as part of a headline the
values of syntactical features might be misleading or at least divergent
from those in regular sentences. Headlines are indicated appropriately in
the manually annotated TiiBa-D/Z. For the automatically preprocessed
texts, the value of this feature is evaluated by a simple heuristic that
checks whether the first sentence of the text at hand does not end with
a punctuation. Technically, the heuristic checks whether the POS tag
of the last token in the first sentence of the text does not start with
a dollar symbol (STTS POS tags starting with dollar symbols indicate

punctuation marks).

named_entity Although TiBa-D/Z’s part-of-speech tag layer includes the
tag NFE, which marks named entity tokens on the word level, proper
information on named entities is annotated on the phrase level (as de-
scribed in Section [5.3.1]). This boolean-valued feature specifies whether

or not a target word is part of a named entity phraseﬂ

translation The English translation of the target word in its specific context —
as described in Subsection above — is employed as a string feature

for target words of all word classes] The value set for lemma Frau, for

1Since the used model of the Berkeley parser is not adapted to output such information
on named entities, this feature is available for the manual treebank annotations only.

2Since the manually annotated TiiBa-D/Z treebank does not contain translations, this
feature is available only for automatically annotated texts.
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example, contains {mrs, woman, wife, madam, female, ms}.

8.1.11 Number of Features

To get an impression of how many of the above-described features are actually

created for a lemma, Table [8.3|lists the average numbers of features per lemma.

Table 8.3: Average numbers of features per lemma.

POS | WebCAGe| LuBa-D/2Z| TiBa-D/Z | 4 .
(manual) |(automatic)

Adj. 159 46

Nouns 197 356 348 53

Verbs 102 271 253 111

For each word class, the table provides average numbers of features for each
of the sense-annotated corpora (specified in the header column). The labels
WebCAGe and deWaC unambiguously refer to the particular corpora with the
same names, while the caption TWBa-D/Z (manual) refers to TiiBa-D/Z with
its manual linguistic treebank annotations and TuBa-D/Z (automatic) refers
to TiBa-D/Z with automatic linguistic annotations (as described in Subsec-
tion . The reason why Table does not include values for adjectives in
the TiiBa-D/Z is simply because the treebank contains only sense annotations
for nouns and verbs.

Counting the features described in the previous subsections for each word
class amounts to at most 23 different features for adjectives, at most 28 different
features for nouns, and at most 59 different features for verbdl] - excluding the
‘context lemma’ features, since these might result in an arbitrary number of
features (see Subsection above). This means that the differences between
these amounts (i.e., a maximum of 23, 28, or 59) and the numbers provided
in Table [8.3] are made up by ‘context lemma’ features, which is, in fact, the

majority or features.

INote that these amounts are the maximum possible numbers for the potential features,
since only those features are considered for which at least two distinct values occur for a
lemma in the sense-annotated data.
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Table shows that for lemmas in both TiiBa-D/Z versions considerably
more features are created than for the other two corpora; and in deWaC, lem-
mas have fewest features (especially for adjectives and nouns) compared to
the corresponding numbers in the other corpora. These differences in the av-
erage numbers of features are mainly due to the number of ‘context lemma’
features, which make up the majority class of features. If this type of feature
is plentiful, it means that the contexts of many sense annotations have several
lemmas in common. By contrast, if the amount of context lemma features is
sparse, it means that only few lemmas are common to at least three anno-
tated contexts (the minimum amount of three is chosen in order to keep the
number of lemmas manageable and to ensure a certain level of meaningfulness
and generalizability for the created features — as described in Subsection [8.1.3
above). Of course, few lemmas that occur in at least three annotated contexts
can also be caused by few annotations per lemma. But since this annotation
frequency is similar in WebCAGe where there are three to four times as many
features for adjectives and verbs than in deWaC, the lower number of created
(context lemma) features for deWaC must have to do with very heterogeneous
contexts. In the evaluation and discussion of the supervised WSD experiments
in Section below, it is shown that this fact (i.e, more heterogeneous con-
texts which result in a lower number of features) negatively affects the WSD

performance when evaluated on deWaC.

After the ‘context lemma’ features, the features based on part-of-speech
tags (see Subsection above) are the second most common features. The
reason for this is simple: with altogether nine ‘part-of-speech’ features, this
feature group constitutes the largest group (ignoring ‘constituent structure’
and ‘verbal frame’ features, which are by definition restricted to verbs). Fur-
ther, six of these features (those that rely on contextual information, i.e.,
‘pos_1|2|3_left’ and ‘pos_1|2|3_right’) are generally available for almost all
lemmas, since they are applicable to all word classes and the chance that at

least two distinct values occur for a lemma in the sense-annotated data is high.
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8.2 Supervised Machine Learning with Weka

In the WSD setup in this chapter the Waikato Environment for Knowledge
Analysis (short: Weka)E] is used — a machine learning tool suite developed
at the University of Waikato in New Zealand [Hall et al., 2009]. It provides
implementations for several machine learning tools, including tools and algo-
rithms for data pre-processing, classification, clustering, feature selection, and
visualization. Weka’s usefulness for the task of WSD has already been demon-
strated in many works, including Paliouras et al.| [2000], Pedersen! [2001}, [2002],
Lee and Ng| [2002], Lee et al.|[2004], Mohammad and Pedersen| [2004], |Steffen
et al. [2004], Turney| [2004], Joshi et al. [2006], Bas et al.|[2008], [Mtodzki and
Przepiorkowski [2011], Biemann| [2012], [Kope¢ et al.|[2012], and [Maarouf et al.
[2014].

The main reason for employing Weka in this chapter is to be able to apply
and compare a wide range of supervised machine learning algorithms to Ger-
man WSD. Even though for some algorithms the implementations in Weka
might not necessarily be the best performing onef?| the great advantage of
Weka is the free availability of many heterogeneous algorithms, which easily
allows the application of a large variety of supervised classification algorithms
|[Frank et al., [2005; Hall et al., [2009; Witten et al., 2()11]E] The subset of clas-
sifiers that is applied in this chapter is chosen (i) to cover several generally
popular, yet distinct machine learning approaches (rule-based, instance-based,
probabilistic, etc.) and (ii) to include those algorithms that have prevalently
been applied to WSD on other languages and that have shown to perform
well in related work (see Subsection . All classifiers are applied in their

"Weka (http://www.cs.waikato.ac.nz/ml/weka/) is implemented in Java and is freely
available under the GNU General Public License (http://www.gnu.org/licenses/gpl.
html). In the implementation, Weka’s stable version 3.6.10 is used |[Bouckaert et al.| [2013].

“Sandra Kiibler, personal communication.

3For the same reason given above for putting so much effort into the implementation of
features, less effort is put into the refinement of the classification algorithms: that is, the
impact of applied classification algorithms on the performance of WSD systems is signif-
icantly lower than the impact of the implemented features [Yarowsky and Florian| 2002].
Thus, for the purpose of this thesis, the application of many classifiers on a large variety
of high-quality features is more important than the application of one or only a few classi-
fiers with a high-quality implementation on only a small subset of moderately implemented
features.
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default parameter configurationd!] - if not otherwise stated.

The basic ideas (referring to the implementations in Weka) of the ap-
plied classification algorithms are summarized in the following subsectionﬂ -
grouped into baselines (Subsection , classifiers based on decision rules
(Subsection [8.2.2), instance-based classifiers (Subsection [8.2.3)), probabilistic
classifiers (Subsection , support vector machines (Subsection , and
combined classifiers (Subsection and a classifier for automatic feature
selection (Subsection . More comparative details including the strengths
and weaknesses of the particular approaches as well as pointers to correspond-
ing related works that previously applied the approaches in question to the
task of WSD are given in Subsection [2.3.2] of the related work chapter.

8.2.1 Baseline Classifiers

A baseline is a very simple, commonly used algorithm for solving the task
in question (see Subsection . Since baselines are assumed to be outper-
formed by more elaborated algorithms, comparing the performance of a WSD
system to the performance of a baseline allows estimating the impact and effi-
ciency of a WSD system |Navigli, 2009]. For the experiments in this chapter,

the following two baseline classifiers are applied:

ZeroR (short for Zero Rules) always predicts the majority classﬂ [Witten
et al., 2011). This classifier does not use any features and is thus very
simplistic. Due to its simplicity, ZeroR is often used as a baseline for
supervised learning systems. In the WSD terminology, ZeroR represents
the most frequent sense baseline (see Subsection [2.2.3).

OneR (short for One Rule) [Witten et al., [2011] uses one classification rule

which incorporates one feature. On the training data, OneR generates

IThe classifiers’ performance can certainly be boosted by adjusting their parameter
settings appropriately. However, experiments to identify optimal parameter settings for the
task of word sense disambiguation are left to future work.

2Also see the references in these subsections to the original papers for detailed descrip-
tions of the classifiers and [Witten et al. [2011] for an overview of all approaches and classifiers.

3Technically, ZeroR predicts the mode for nominal classes and it predicts the mean value
for numeric classes.
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one classification rule for each feature where each feature value predicts
the majority class for that value. From this set of rules, the classifier
chooses the rule with the smallest error rate. This single rule is used
for final predictions. Although it is also a simplistic classifier, OneR
produces surprisingly accurate results compared to state-of-the-art algo-
rithms [Holte, |1993].

8.2.2 C(Classifiers Based on Decision Rules

Classification algorithms based on decision rules use conditions to discriminate
between the classes to be predicted. For the task at hand, the rules discriminate
between the senses of the ambiguous target words. The conditions encode
specific values of the features representing the target words’ contexts. The
three classifiers in this subsection differ from each other in the way how they

create, represent, and apply these rules.

PART is a simple decision list classifier that recursively creates decision rules:
it temporarily constructs a partial decision tree (according to J48, see
below) for a set of training instances and creates a rule for the leaf node
with the largest coverage; all instances covered by this rule are removed
from the training set and the procedure is repeated for the smaller set of
instances until there are no instances left. This algorithm does not store
any trees and does not apply any global optimization. It is therefore fast
and simple, yet has it been demonstrated to produce competitive results
compared to other (rule-based) classifiers. |[Frank and Witten, 1998|

DecisionTable represents rules in a tabular form: a set of conditions (for
the WSD task, the features) is contrasted to a set of resulting values
(i.e., word senses). For the WSD task, columns correspond to features
and rows represent instances with specific values for these features and
assigned word senses. For constructing a decision table, a subset of
features and instances is selected from the training data with the help
of a best-first search algorithm. During the classification process, a new

instance is compared to all feature combinations stored in the decision
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table, and, if there is at least one matching instance, the assigned word
sense is the one which is stored with the majority of these matching
instances. [Kohavi, [1995; Witten et al.| 2011|

J48 is Weka’s implementation of the popular C4.5 decision tree algorithm
[Quinlan, [1993]. Tt induces decision trees recursively and in a top down
procedure from training data: the most informative conditions (i.e., fea-
tures) are put to the top of the tree and more general ones are added to
the bottom — with the aim of achieving high classification performance
with a minimal set of conditions. In order not to overfit the training
data but be able to generalize to new instances, trees in J48 are pruned
by default[l] [Witten et all, [2011]

The classification of a new instance follows a path from the decision
tree’s root node to one of its leaf nodes — branching at each inner node
according to the value of the corresponding feature. The finally assigned

word sense is the one which is represented by the reached leaf node.

8.2.3 Instance-Based Classifiers (Lazy)

During the training phase, instance-based learners store all training instances
in memory. Proper processing is postponed until classification, which is why
instance-based classifiers are also referred to as lazy learners. For classification,
new instances are compared to these stored instances and a similarity metric
determines the k nearest neighbors, i.e., the £ most similar instances, for a
given test instance. The majority sense of these k nearest neighbors is assigned
to a given test instance. [Marquez et al., 2006; [Witten et al., [2011]

The two relevant parameters of instance-based classifiers are: (i) the num-
ber k that defines how many nearest neighbors are considered for classification
and (ii) the similarity metric used for measuring the similarity between in-

stances.

IB1 sets k to 1 and is, thus, the simplest instance-based classifier [Aha et al.|

1991]. It defines the closest training instance for a given test instance in

'The default confidence value for pruning is 25%.

253



8.2 Supervised Machine Learning with Weka

terms of Euclidean distance, and predicts the class of this single nearest
neighbor. In case of a tie, i.e., that the smallest distance occurs for more
than one training instance, IBI takes the first instance found. IBI is

one specific IBk classifier (see next item).

IBk is a k-nearest neighbor classifier which allows several parameter configu-
rations, including the number of neighbors to use, the distance weighting
method, and the algorithm for searching nearest neighbors. In its default
configuration, IBk is equivalent to IB1 E| [Witten et al., [2011]

8.2.4 Probabilistic Classifiers

The three classifiers described in this subsection are based on probabilistic

computations.

NaiveBayes [Duda and Hart, 1973; |John and Langley, 1995| is based on the
Bayes theorem and naively assumes conditional independence of all fea-
tures given a classﬂ During the training process, NaiveBayes estimates
for individual features their probabilities to belong to specific classes.
These probabilities are calculated on the basis of the frequencies with
which the features occur for certain classes in the training data. For
classification, NaiveBayes estimates for a new instance the conditional
probabilities with which the instance belongs to a certain class. These
probabilities are estimated by multiplying the individual probabilities
for each feature to occur for a certain class. The classifier assigns the
class (i.e., word sense), which has the highest overall probability (i.e.,
the product of the probabilities of the individual features to belong to
a certain class) for the new instance. [Mitchell, 1997 [Paliouras et al.)
2000; Navigli, [2009; Witten et al.l 2011

A naive Bayes classifier is one specific Bayesian network classifier (see

IDue to this equivalence, WSD evaluation results in Section are reported for only
one of the two classifiers (namely, IBk).

2 Albeit this strong assumption is practically seldom fulfilled, NaiveBayes performs well
for the task of word sense disambiguation compared to other supervised machine learning
methods.
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next item) where all feature nodes have exactly one common parent

node, which represents the class node [Witten et al. 2011].

BayesNet builds a Bayesian network by representing features as nodes and
connecting these nodes in a directed acyclic graph [Bouckaert et al.
2013|. Each of the feature nodes defines a probability distribution that
models the class probabilities given the possible feature values. The
two relevant parameters for the BayesNet classifier are: (i) the search
method to find possible networks and (ii) the evaluation method to qual-
ify these networks. The default method to search for possible networks
is K2 |Cooper and Herskovits, 1991, |1992|. K2 constructs a network
by going through all feature nodes (assuming a given order) and adding
edges to previously processed nodes if they maximize the score of the
network. SimpleEstimator is set in Weka as the default network eval-
uation method, which estimates the conditional probability tables of a
Bayesian network [Witten et al., 2011].

Logistic implements a multinomial logistic regression model, i.e., it imple-
ments a logistic regression variant which is able to handle multiple classes.
Logistic regression is a probabilistic classifier which models the relation-
ship between nominal classes (i.e., word senses) and a set of given fea-
tures with a logistic regression function. By contrast to naive Bayes,
these feature do not need to be statistically independent. [Witten et al.|
2011

Since the implementation of Weka’s Logistic classifier is based on the
work by [le Cessie and van Houwelingen| [1992], it uses a ridge estimator
to improve the classification performance for large feature sets or for

highly correlated features.

Note that multinomial logistic regression is equivalent to maximum en-
tropy models [Klein and Manning), 2002; Yu et al., [2011; [Wiriyathammab-
hum et all 2012] — as introduced in Subsection [2.3.2]
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8.2.5 Support Vector Machines

Support Vector Machines (SVMs) |Cortes and Vapnik, 1995; |Vapnik] [1995|
use hyperplanes to separate training instances into two classes. Therefore,
training instances are mapped into the feature space by a function referred
to as a kernel. The optimization goal of SVMs is to identify the hyperplane
with the largest margin to the closest instances of both classes. In case the
training instances are not separable by a hyperplane, a trade-off between a low
training error and a large margin has to be made. This trade-off is controlled
by the regularization parameter C. For classification, a test instance is mapped
into the same feature space in which the hyperplane is located and classified
according to the side of the hyperplane it belongs to. |Cortes and Vapnik,
1995; Witten et al., 2011]

SMO is Weka’s implementation of the sequential minimal optimization al-
gorithm for training a support vector machine classifier |[Platt, 1998;
Keerthi et al., 2001]. It uses pairwise classification (one-versus-one) for
solving multi-class problems [Hastie and Tibshirani, [1998]. In its default
configuration, Weka’s SMO uses a linear model [Witten et al., [2011].

LibSVM is a library for support vector machines [Chang and Lin, 2011]. It is
not part of the Weka tool suite, but an external library{'| that can easily be
used in the Weka environment. LibSVM also implements a sequential
minimal optimization algorithm for training support vector machines
[Platt], [1998; [Fan et all 2005|. It uses a one-versus-one approach for
multi-class classification [Knerr et al., [1990|. In its default configuration,
LibSVM uses a Gaussian kernel [Chang and Lin, 2011].

8.2.6 Combination

Previous WSD studies |Florian et al, [2002} [Florian and Yarowsky, 2002; Klein
et al.| 2002; Mihalcea et al.| 2004 have shown that the performance of multiple

1Chih-Chung Chang and Chih-Jen Lin developed LibSVM, available at http://www.
csie.ntu.edu.tw/"cjlin/libsvm/.
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classifier systems outperform single classifiers. In this chapter, the following

two heterogeneous methods for combining single classifiers are used:

Vote provides a generic method for combining individual classifiers |Kittler
et al.,|1998; [Kuncheval 2004]. Its two relevant parameters allow selecting
(i) the set of individual classifiers to be combined and (ii) the rule used
for their combination. The default combination rule in Weka averages
the probability estimates of the individual classifiers and selects the class

with the highest average.ﬂ

In the current WSD setup, Vote combines four heterogeneous methods —
one from each of the previous subsections: the decision tree classifier
J48, the instance-based IBk classifier, the probabilistic NaiveBayes clas-
sifier, and the SMO support vector machine Classiﬁer.ﬂ Since these four
classification algorithms are all based on different underlying theories,
they are likely to produce diverse results and it is thus likely that they

complement each other well in a combined classifier.

AdaBoostM1 is a method for boosting another base classifier: the base clas-
sifier is initially run on the unweighted training data; after each run, all
instances in the training data are reweighted to give higher weights to
misclassified instances and the base classifier is rerun on this reweighted
data; this process of running and reweighting is repeated for a fixed num-
ber of iterations. In its default configuration, the number of iterations is
set to 10 and the base classifier to be boosted is DecisionStump, a one-

level decision tree classifier that is intended to be used with boostingﬁ

Tn order to test the same combination rule used for the knowledge-based experiments in
Chapter [7] Vote has also been applied with simple majority voting. However, the results in
this chapter are reported with Weka’s default combination rule, since it performed slightly
better than the combination by simple majority voting.

2Note that this set of classifiers is selected for combination mainly due to their hetero-
geneous underlying classification theories, with only a minimal amount of comparison. In
future work, more effort should be put into identifying the most optimal combination of
classifiers.

3A decision stump classifier was also used in related WSD studies which applied Ada-
Boost to WSD [Lee and Ngj, 2002; [Martinez et al., 2002; Marquez et al.l [2006}; [Kope¢ et al.,
2012|. Initial experiments with boosting other classifiers such as J48, IBk, NaiveBayes, and
SMO did not or only marginally improve the experimental results in this chapter over the
single classifier alternatives.
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|[Freund and Schapire, |1996; Witten et al 2011]

8.2.7 Automatic Feature Selection

Most machine learning classifiers are capable to determine the relevant features
that are most suitable for their classification process. Nevertheless, many
studies [Hall, [1999; [Mihalceal, 2002a,b; Guyon and Elisseeff, 2003; Liu and Yu,
2005] have shown that the performance of most classifiers is negatively affected
by irrelevant features and that a preselection of the most relevant features
helps to improve the classifiers’ performance. Feature preselection reduces
the dimensionality of the data by removing irrelevant features and thereby
optimizes the predictive accuracy of machine learning algorithms. [Hall, 1999;
Manning et al., 2008; [Witten et al., [2011]

AttributeSelectedClassifier has the goal of improving the performance of a
base classifier. It can be regarded as a wrapper that performs automatic
featurdﬂ selection on the training data before executing a specified base
classifier on these reduced data sets. |Witten et al., [2011]

AttributeSelectedClassifier has three parameters: (i) the search method
to find good subsets of features, (ii) the evaluation method to qual-
ify these feature subsets, and (iii) the base classifier to execute on the
feature-selected data sets. BestFirst is set in Weka as the default method
to search subsets of features (see Witten et al|[2011] for details). The
default feature evaluation method is CfsSubsetEval [Hall, [1999]. Cfs-
SubsetEvaﬂ evaluates each feature’s individual predictive ability and the
redundancy among features in order to identify feature sets with low

correlations among the features but high correlations with the class.

In order to investigate the impact of automatic feature selection in the
current WSD setup (see Sectionbelow), it is applied to all classifiers
described above, i.e., all classifiers are individually used as base classifiers
for AttributeSelectedClassifier.

L As explained in Footnote [1| on page the terms feature and attribute are used syn-
onymously in this thesis.
2The cfs in CfsSubsetEval stands for correlation-based feature selection.
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8.3 Evaluating Supervised Machine Learning

Applied to WSD

In order to evaluate the supervised machine learning setup for German word
sense disambiguation, an extensive set of experiments using a wide range of
machine learning features (see Section above) as well as many different su-
pervised classification algorithms (see Section above) is performed. As
described in the previous section, the implementation relies on the Weka
machine learning tool suite[] The evaluation in this section considers all
three sense-annotated corpora available for German: the semi-automatically
constructed, web-harvested WebCAGe (see Section , the manually sense-
annotated TiiBa-D/Z treebank (Section[6.4)), and the web-harvested and man-
ually sense-annotated deWaC (Section [6.5]).

In order to assure a minimum level of meaningfulness when experiment-
ing with supervised machine learning methods, a critical mass of annotated
material is required per lemma. Thus, only a certain subset of all available
gold standard data, which fulfills certain criteria as discussed and specified
in Section [6.1] is used for the evaluation in this chapter. Further, to allow a
more realistic, meaningful, and accurate estimate of an algorithm’s ability to
generalize after several experiments with distinct classifiers, parameters, and
features on the training data, testing is performed on a previously unseen por-
tion of the annotated gold standard data. This procedure is in line with most
related works on supervised disambiguation of a lexical sample (see Section
for pointers to corresponding previous works). In fact, since the availability of
sense annotations is sparse, the tuning of the system is evaluated by 10-fold
cross-validation (see Subsection on all available training data. During

In the implementation, version 3.6.10 of Weka’s Java API is used. The main reason why
the Java API is used rather than the Weka Experimenter is because the Experimenter does
not support all functionality required in the experiments at hand: most importantly, it does
not support the use of a separate test set. Note, however, that the used version of the API
does not yet support the calculation of micro average values as described in Subsection [2.2.2
‘Not yet’, because the developer version 3.7.x supports this functionality. The Weka API in
its stable version 3.6.10 only allows calculating averages weighted by classes, but since this
way of calculating averages is not common for the task of WSD, the calculation of average
values is self-implemented.
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this tuning process, the test set is held back and used only to obtain final
evaluation results![]

Since the sets of word senses and thus the sets of classes to be predicted
for the WSD task differs for each lemma, the supervised classification proce-
dure in this chapter is performed separately for each lemma. The separate
classification of each word lemma is sometimes also referred to as word-experts
[Berleant, 1995|. This approach is in line with most related works on super-
vised disambiguation of a lexical sample (see Subsection for pointers to
corresponding previous works).

As for the previous chapter on knowledge-based WSD, performance of the
algorithms is measured in terms of coverage, recall, precision, and F; — calcu-
lated by their standard formulas as described in Subsection [2.2.1] Results are
reported as overall numbers, i.e., micro-averaged over all annotated instances.ﬂ

The following subsections focus on several evaluation aspects under con-
sideration: including a comparison of several classification algorithms (Subsec-
tion , a detailed analysis of machine learning features (Subsections m
and , and an investigation of the influence of syntactic structures on the
disambiguation performance for verbs (Subsection [8.3.4).

8.3.1 Overview of WSD Results Using All Features

Table includes WSD performance scores in terms of the F;-measurd?| for
13 supervised classifiers (as described in Section evaluated on the test sets
of the available sense-annotated corpora (as described in Chapter E[) — taking
into account all available features (as described in Section . The principle

structure of the table prints the results for each classifier (specified on the left

!Note that this combination of 10-fold cross-validation for algorithm tuning with a held
back test set for obtaining final results was also performed by previous studies, including
Hoste et al.[[2002a], |[Decadt et al. [2004], [Escudero Bakx| [2006], and [Biemann| [2012]. Also
see Appendix [D] for a comparison between the WSD results obtained by cross-validation
with the results obtained on a separate, unseen test set.

2See Subsection for more information on micro- and macro-averages.

3Since the supervised WSD setup tries to assign a word sense for each instance, its
coverage is 100% and, thus, the value of F; is equal to the values of recall and precision (see
Subsection . For this reason Table does not explicitly include precision and recall,
but reports F1-scores.
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side of the table) one below the other. As specified in column POS, micro-
averaged scores are given for the three word classes of adjectives, nouns, and

verbs.

Table 8.4: WSD results for several supervised classifiers (F-score).

Classifier | POS | WebCAGe | LuBa-D/Z| TiBa-D/Z | 4 . o
(manual) | (automatic)

Adj. 80.49 60.00

2| ZeroR |Nouns|  79.96 80.54 80.54 60.20
k= Verbs 76.92 68.19 68.19 48.17
e Adj. 82.93 36.00
53 OneR | Nouns 62.42 49.05 34.14 45.92
Verbs 75.08 81.19 74.37 43.90

Adj. 87.80 64.00

PART |Nouns|  86.22 87.92 88.25 60.20

3 Verbs 86.54 85.68 77.84 53.05
E [Decision)  AdK- 85.37 60.00
g eTC;Z’lZ” Nouns|  81.42 86.78 86.86 65.31
G Verbs 75.00 85.79 78.15 51.22
g Adj. 87.80 64.00
Rl 748 |Nouns| 88.52 89.32 89.21 65.31
Verbs 86.54 86.25 78.58 55.49

_ Adj. 82.93 64.00
S| IBk |Nouns| 83.72 84.14 85.61 67.35
— Verbs 88.46 79.46 73.59 55.49
Naive- | AdJ. 82.93 64.00
Bayes Nouns|  89.35 85.10 84.65 64.29

< Verbs 92.31 83.07 77.06 54.27
z Bayes- Adj. 78.05 52.00
Z| Uy [Nouns|  90.40 88.73 89.17 64.29
E Verbs 90.38 86.28 80.63 59.15
£ Adj. 85.37 56.00
Logistic | Nouns 89.77 86.45 86.82 60.20
Verbs 92.31 7777 74.76 49.39

Adj. 82.93 68.00

SMO |Nouns| 91.44 90.57 90.86 68.37

= Verbs 96.15 86.53 79.99 60.37
AT 87.80 60.00
sy | Nouns|  84.13 81.06 80.84 59.18
Verbs 92.31 78.30 72.57 48.78

Adj. 90.24 64.00

g Vote | Nouns 92.28 90.71 90.38 67.35
£ Verbs | 98.08 86.71 80.74 59.76
2] Ada- | Adj. 82.93 52.00
S| Boost- |Nouns| — 84.97 85.21 85.50 61.22
M1 | Verbs 88.46 84.66 77.31 53.66

For each classifier, the table provides results for each of the sense-annotated
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corpora (specified in the header column). The labels WebCAGe and deWaC
unambiguously refer to the particular corpora with the same names, while the
caption TWiBa-D/Z (manual) refers to TiiBa-D/Z with its manual linguistic
treebank annotations (as described in Subsection and TiBa-D/Z (auto-
matic) refers to TiiBa-D/Z with automatic linguistic annotations (as described
in Sections|6.6{and . The reason why Table|8.4]does not include values for
adjectives in the TiiBa-D/Z is simply because the treebank contains only sense
annotations for nouns and verbs. For each corpus, the highest result achieved
for a particular word class is highlighted in boldface; the lowest values are

italicized.

Comparison of Classifiers

Table [8.4] shows that the 13 classifiers produce heterogeneous performance —
depending on the gold standard corpus and the word class. For instance, IBk
performs better on verbs in WebCAGe than on nouns in WebCAGe, while
it performs worse on verbs in TiiBa-D/Z than on nouns in TiBa-D/Z; on
the WebCAGe corpus, DecisionTable performs best for adjectives and worst
on verbs, while NaiwveBayes conversely performs best for verbs and worst for
nouns in WebCAGe — to give but two examples. This behavior that several
classifiers produce heterogeneous results for diverse data sets and word classes
corroborates the finding by [Yarowsky and Florian [2002| on their experiments
with several supervised machine learning algorithms (cosine vector, decision
lists, transformation-based learning, naive Bayes, BayesRatio, and feature-
enhanced naive Bayes) on multiple datasets for several languages (English,
Spanish, Swedish, and Basque). However, there are several recurring patterns
in this apparent heterogeneity, which are discussed below (in the paragraph en-
titled Comparison of Word Classes and Sense-Annotated Corpora on page 265
below). In general, it is important to note that there are no extreme differ-
ences between the individual classifiers. Their average results are all in the
same order of magnitude.

The most striking finding among the results presented in Table is that

the overall best performing classifiers are the single SMO support vector ma-
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chine classifier and the combined Vote classifier. These two classifiers achieve
consistently high performance, i.e., their results are among the highest results
across all word classes and corpora and they both achieve highest overall re-
sults in at least four of the ten POS-corpus combinations. That is, SMO
achieves overall the best results for adjectives, nouns, and verbs in deWaC and
for nouns in the TiiBa-D/Z with automatic linguistic annotations, and Vote
achieves overall the best results for all word classes in WebCAGe, for nouns
in the TiBa-D/Z with manual linguistic annotations and for verbs in both
TiBa-D/Z versions.

Good performance was to be expected both for SVMs and combined algo-
rithms, since both of them previously demonstrated high performance among
supervised machine learning methods when applied to the task of WSD: for
example, |Lee and Ng| [2002|, who experimented with the four classiﬁersE] of
SVMs, naive Bayes, AdaBoost, and decision trees, obtained best WSD results
with linear SVMs. [Zavrel et al. [2000] also found SVMs overall to perform
best when comparing several classification algorithms, including SVMs, naive
Bayes, memory-based algorithms, decision trees, maximum entropy, rule induc-
tion, and neural networks. For |Agirre and Martinez [2004], who experimented
with decision lists, naive Bayes, vector space models, and SVMs and with com-
binations thereof, SVMs obtained — among the single classifiers — best results
for Basque WSD and second best results for English WSD. In the experi-
ments by Marquez et al. [2006], SVMs also proved superior performance when
compared to naive Bayes, k-nearest neighbor, decision lists, and AdaBoost.
The explanation for a good performance of SVMs on the task of WSD is that
SVMs are capable of maintaining complex decision boundaries without over-
fitting, which is especially important for WSD given sparse training data for
each lemma |Zavrel et al., |2000]. The combination of single classifiers also of-
ten (e.g., by [Florian et al.|[2002]| and |Klein et al.| [2002]) showed superior WSD
performance compared to the single classifier alternatives; many of the best
performing systems at SensEval-3 were combined classifiers [Mihalcea et al.|

2004]. The explanation for a good performance of combined methods is that

ILee and Ng| [2002] also used the implementations provided by Weka.

263



8.3 Evaluating Supervised Machine Learning Applied to WSD

combining heterogeneous classification algorithms that produce diverse results
are likely to complement each other well and increase the WSD performance
in a combined classifier |[Jaeger et al., 2008].

Contrasting results are obtained for the second employed support vector
machine classifier. The LibSVM classifier is one of the worst performing clas-
sifiers for both TiiBa-D/Z versions and deWaC. Only for WebCAGe, LibSVM
obtains competitive results. The real explanation for what looks like contra-
dictory findings (i.e., one SVM classifier performs best, while the other SVM
classifier performs worst) must have to do with the implementations — more
specifically with the default kernel functions — applied in this chapter (see
Subsection [8.2.5] above). While SMO defaults to a linear model [Witten et al.|
2011], LibSVM uses by default a Gaussian kernel [Chang and Lin, 2011]. The
observed behavior corroborates the finding by related studies (including Lee
and Ng| [2002] and Wiriyathammabhum et al| [2012]) that achieved superior
WSD results by linear SVMs than by using non-linear kernels such as polyno-
mial or Gaussian. The reason for this behavior is probably due to the large
number of employed features when using the full set of features as described
in Section . According to [Hsu et al[s [2003] practical guide on how to ap-
ply support vector machines, linear kernels are more suitable than non-linear
kernels, if the number of features is large/[l]

Due to the skewed distribution of word senses, the most frequent sense base-
line (i.e., ZeroR) is difficult to beat and WSD systems are usually — if at all —
able to beat it only by a small margin [McCarthy, 2009]. The second baseline
employed in the current setup (i.e., OneR) makes use of only one classification
rule drawn from a single feature. Although it also is a very simplistic classifier,
OneR is said to produce surprisingly accurate results compared to state-of-the-
art algorithms [Holte, 1993|. However, for most POS-corpus combinations,
ZeroR outperforms OneR. This was to be expected since it is unlikely that a
single feature provides enough evidence so as to have a higher impact on the
disambiguation than given by the skewed distribution of word senses. Apart

from the low performance for LibSVM, whose results lie only minimally above

! This subject is revisited in the following Subsection on automatic feature selection,
where it is shown that LibSVM performs better with a reduced set of features.
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the most frequent sense baseline, for most POS—corpus combinations the other
classifiers perform significantly better than the two baseline classifiers. This
outcome confirms the general viability of the proposed supervised machine

learning approach for German word sense disambiguation.

Comparison of Word Classes and Sense-Annotated Corpora

Comparing the results for the three sense-annotated corpora in Table [8.4], the
WSD results obtained for WebCAGe are the best, the results obtained for the
TiBa-D/Z treebank second, while the results for deWaC are the worst. The
most apparent reason for the better performance on WebCAGe is the lower
polysemy of words. The other way around, the higher polysemy for words in
TiBa-D/Z and deWaC make the sense disambiguation more difficult. That is,
while the average polysemy of sense-annotated words (in the gold standards
used for evaluating supervised WSD systems) is 2.2 in WebCAGe, the average
polysemies of sense-annotated words in TiBa-D/Z and deWaC are 2.8 and
3.0, respectively (as documented in Chapter @

A comparison of the results for the three different word classes yields the

following tendencies (see Table [3.4)):

e When measured on TiBa-D/Z and deWaC, the WSD performance of
supervised machine learning classifiers is better for nouns than for verbs.

This finding corroborates the results reported by [Kilgarriff and Rosen-
zweig| [2000] and Pradhan et al. [2007] for English WSD.

e In accordance to the previous bullet point, the WSD performance for

adjectives in deWaC is also better than for verbs.

e By contrast, for WebCAGe, most classifiers perform better for verbs than

for adjectives and nouns.

Although the first two proportions correspond with the outcome of the
knowledge-based WSD experiments in Chapter [7] the underlying reason for
this behavior cannot be adopted. That is, semantic relatedness measures de-

pend on GermaNet’s hierarchies and since these hierarchies are much more
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shallow for verbs and adjectives than for nouns, path-based and information-
content-based measures are much more effective for nouns while more of an
experimental nature when applied to verbs and adjectives |Pedersen et al.,
2005, page 27].

Since the supervised machine learning experiments in this chapter do not
rely on GermaNet’s hierarchies, there must be another explanation for why the
prediction of noun senses is more efficient than the disambiguation of verbs and
adjectives in TiiBa-D/Z and deWaC, while the disambiguation of verb senses
is better for WebCAGe compared to the other two word classes. In fact, the
WSD performance in the current setup depends on many conditions. For
instance, it depends on (i) the extracted features from the context, which are
clearer and more consistently distinct for particular word classes and corpora,
(ii) the available training data, which again is more suitable and more efficient
for particular word classes and corpora, and (iii) the specific polysemy, which
is also a good indicator for the difficulty of particular lemmas.

The real explanation for the observed WSD performance is the complex
interaction of many dimensions — in particular it is the interaction of the
three aforementioned factors (i) to (iii). For example, the higher polysemy of
verbs in deWaC compared to adjectives and nouns partly explains the worse
performance of verbs in deWaC. The higher average frequency of annotated
occurrences per lemma for nouns in TiBa-D/Z compared to verbs in TiBa-
D/Z influences the better performance of nouns in that corpus.

The lower performance for deWaC must have to do with very heteroge-
neous contexts for the sense-annotated words in that corpus. This fact is
partly reflected by the number of features. In deWaC, lemmas have on aver-
age considerably fewer features (especially for adjectives and nouns) compared
to the corresponding numbers in the other corpora — as shown in Table
(in Subsection above). Considerably fewer features are due to fewer
context lemma features, which make up the majority class of features in the
current setup. If this type of feature is sparse, it means that only few lemmas
are common to at least three annotated contexts (see Subsection for a
description of the context lemma features). Of course, few lemmas that occur

in at least three annotated contexts can also be caused by few annotations
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per lemma. But since this frequency is similar in WebCAGe where there are
three to four times as many features than in deWaC, the lower performance

for deWaC must have to do with very heterogeneous contexts.

Manual versus Automatic Linguistic Annotations

The supervised WSD systems implemented in this chapter rely on various fea-
tures. As described in Section [8.1] above, the features employ different kinds
of linguistic information, such as information on surface forms of words, co-
occurring lemmas, POS tags, morphology, and sentence structures. While this
information is — for WebCAGe and deWaC — gained solely from automatic an-
notation tools, the sources for TtiBa-D/Z are twofold: (i) manual linguistic an-
notations as described in Subsection as well as (ii) automatic annotations
as for WebCAGe and deWaC as described in Sections and BIIl There
are two main reasons why the TiiBa-D/Z treebank texts are automatically
annotated with linguistic annotation, although the treebank already contains
manual annotation for all linguistic phenomena in question. Firstly, to allow
a direct comparison of the WSD results for all three corpora with the same
compilation of linguistic details. Secondly, to study the influence of linguistic
annotation quality (manual versus automatic) on the WSD results.

Column T%Ba-D/Z (manual) in Table 8.4 shows the WSD results obtained
by using the TiiBa-D/Z with its manual linguistic treebank annotations and
column TiBa-D/7Z (automatic) shows the corresponding results obtained by
using the automatic linguistic annotations. Since the word sense annotations
are identical in both versions, the reported most frequent sense baseline, i.e.,
classifier ZeroR, is — by definition — identical.

With average improvements between 3.0 and 7.8 F;-score points for the dif-
ferent classifiers (disregarding the baselines) compared to the results obtained
by the automatic features, the manual features have a consistently positive
impact on verbs. By contrast, the impact of manual features on nouns is much
less noticeable (< |1.5]) and clearly not only positive. With average changes
between —1.5 and +0.5 F-score points, manual features surprisingly have even

a negative impact on the majority of seven (versus four) of the classifiers (again
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disregarding the baselines).

The real explanation for what looks like contradictory behavior must have
to do with the kind of information on which the corresponding features are
based: that is, the most effective features for verbs in TiiBa-D/Z are based
on syntactic information such as ‘constituent structure’ features and ‘verbal
frame’ features (see paragraph Automatically Selected Features on page .
Syntactic structures are much more difficult to annotate — and, thus, more
inaccurate to obtain by automatic tools — than tokens, lemmas, and part-
of-speech tags, which are the basis for the most frequently used features for
nouns. On the other side, the very effective ‘translation’ feature, which is espe-
cially helpful for nouns (again, see paragraph Automatically Selected Features
on page , but which is available only for automatically annotated texts
(see Subsection , significantly increases the performance for nouns in

connection with the automatically gained features.

Comparison to Knowledge-Based Results

A comparison of the results from the knowledge-based WSD experiments in
Chapter [7| (Section , which were based on semantic relatedness measures,
with the WSD results obtained by supervised machine learning classifiers re-
ported in Table [8.4] corroborate the finding of previous research that super-
vised machine learning systems perform much better than knowledge-based
approaches to WSD [Kilgarriff and Rosenzweig) 2000; Mihalceal 2006; Mc-
Carthyl 2009; Navigli, [2009].

While the knowledge-based sense disambiguation in Chapter [7] performed
well for nouns, it was little suitable for disambiguating adjective and verb
senses: the best performing knowledge-based methods achieved average F-
scores between 53 and 67 for nouns, but only between 40 and 56 for adjectives
and between 28 and 56 for verbs — depending on the gold standard corpus.

By contrast, the best performing supervised classifiers achieve average F-
scores between 68 and 90 for adjectives, between 68 and 92 for nouns, and
between 60 and 98 for verbs — depending on the corpus used for evaluation, but

without any boosting such as feature selection. That is, the supervised machine
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learning methods outperform the knowledge-based systems by a very wide
margin: by about 28-34 F; points for adjectives, by about 13-36 for nouns,
and even by about 32-52 for verbs — again, depending on the gold standard.
It is, however, important to keep in mind that the supervised WSD approach
is applicable to only a subset of word token annotations (see Section for
details).

There are two crucial parallels between the results of the knowledge-based
and the supervised machine learning experiments. Firstly, combined methods
perform better or at least as good as the strongest single methods. The obvious
explanation for this behavior is that the individual algorithms produce diverse
results that complement each other well in a combined approach. Secondly,
among the three gold standard corpora considered, the results obtained for
deWaC are the worst — both for the knowledge-based and the supervised sys-
tems. The two most apparent reasons for the bad performance on the deWaC
corpus are the much higher polysemy of annotated words as well as more het-
erogeneous contexts compared to the other two corpora (see the paragraph en-
titled Comparison of Word Classes and Sense-Annotated Corpora on page [265
above for a detailed discussion), which both make the sense disambiguation

more difficult.

8.3.2 WSD with Automatic Feature Selection

Machine learning classifiers are generally capable to determine the relevant fea-
tures that are most suitable for the classification process. Nevertheless, many
studies [Hall, [1999; [Mihalceal, 2002a)b; Guyon and Elisseeff, 2003; Liu and Yu,
2005; Dinu and Kiibler, 2007; [Kiibler and Zhekovaj, 2009] have shown that the
performance of most classifiers is negatively affected by irrelevant features and
that a preselection of the most relevant features helps to improve the clas-
sifiers” performance. Since feature preselection reduces the dimensionality of
the data by removing irrelevant features and thereby optimizes the predictive
accuracy of machine learning algorithms, it is popular to automatically pres-
elect features before applying the proper classification algorithm. [Hall, 1999;
Manning et al., 2008; [Witten et al., [2011]
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The purpose of this subsection is twofold: (i) to investigate the impact of
automatic feature selection on the performance of supervised classifiers when
applied to German WSD and (ii) to identify the most popular selected features.
Feature selection is realized with Weka’s correlation-based feature selection
algorithm CfsSubsetEval (see the description of the AttributeSelectedClassifier

in Subsection above).

Comparison of Classifiers

Table [8.5] presents the WSD results with automatic feature selection in com-
parison to the WSD results without feature selection. The principle structure
of the table follows the layout of Table above, which presented the WSD
results without feature selection: it includes WSD performance scores in terms
of the Fi-measure for the same 13 supervised classifiers (as described in Sec-
tion evaluated on the available sense-annotated corporaﬂ (as described in
Chapter @

For an easier comparison, each entry in Table [8.5 reports the absolute
F-score obtained with automatic feature selection as well as the relative dif-
ferenceﬂ compared to the corresponding result without feature selection from
Table (i.e., values preceded by + or — symbols). For each corpus, the high-
est result achieved for a particular word class is highlighted in boldface; the
lowest values are italicized. Particularly high increases or decreases in per-
formance (with absolute values above 10) are analogously highlighted. The
reason why feature selection does not influence the performance of ZeroR is
by definition. That is, since the most frequent sense baseline relies solely on
the distribution of senses rather than on any features, the results of the ZeroR
classifier are identical with and without feature selection.

The results in Table[8.5]yield the tendency that automatic feature selection
improves the average performance for several classifiers. It is, thus, generally

a very simple approach to boost the performance of a WSD system and again

'Here, again, caption TiiBa-D/Z (manual) refers to TiiBa-D/Z with its manual linguis-
tic treebank annotations and TiBa-D/Z (automatic) refers to TiiBa-D/Z with automatic
linguistic annotations.

2This value is printed only if the corresponding difference is unequal to zero.
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Table 8.5: WSD results for several supervised classifiers with automatic feature
selection (F-score; + /— difference compared to results without feature selection

from Table .

Classifier | POS | WebCAGe | LuBa-D/Z | TiBa-D/Z | 4 .
(manual) (automatic)
Adj. [ 80.49 60.00
2 ZeroR | Nouns | 79.96 80.54 80.54 60.20
£ Verbs | 76.92 68.19 68.19 48.17
e Adj. | 85.37 124 40.00  +4.0
& | OneR |Nouns| 80.17 +17.8| 76.458 +27.4| 71.37 +37.2|52.04 +6.1
Verbs | 73.08 81.62 404 | 75.72  +1.3 | 46.3, +24
Adj. | 87.80 56.00 8.0
PART | Nouns| 87.06 +0.8 | 88.55 +0.6 | 88.55 0.3 |67.35 7.1
ks Verbs | 78.85 7.7 | 86.25 +0.6 | 77.91 +0.1 | 50.00 -3.0
E | Decision. | Adi- | 829324 60.00
2| e | Nouns | 8476 +3.3 | 87.37 0.6 | 87.30 0.4 |67.35 2.0
G Verbs | 75.00 86.00 0.2 | 78.72 40.6 |48.78 24
3 Adj. | 87.80 60.00 4.0
Sl 48 | Nouns| 8643 2.1 | 8851 -0.8 |8840 0.8 [66.33 +1.0
Verbs | 78.85 7.7 | 86.89 +0.6 | 78.69 +0.1 |58.54 +3.0
- Adj. | 8049 —24 64.00
§'| IBk |Nouns| 8894 52 |89.28 5.1 |89.43 +3.8 |66.33 -1.0
— Verbs | 94.23 +5.8 | 85.86 +6.4 | 7858 +5.0 | 56.10 +0.6
Naive. | Adj. [ 8537 124 68.00 +4.0
Bayes Nouns | 89.14 0.2 | 89.43 +4.3 | 89.50 +4.8 | 64.29
Q Verbs | 92.31 87.56 +4.5 | 80.21 +4+3.1 |57.93 3.7
2 Boves. | Adi [ 8293 49 63.00 +16.0
e Nye . |Nouns| 8935 -1.1 | 8921 105 |89.39 0.2 | 6327 1.0
= Verbs | 84.62 5.8 | 87.56 +1.3 | 80.63 57.93 1.2
£ Adj. | 8049 49 52.00 4.0
Logistic | Nouns | 84.97 4.8 | 8.28 -1.2 | 8.60 -0.2 | 61.22 +1.0
Verbs | 86.54 5.8 | 81.37 +3.6 | 7427 0.5 |51.83 +24
Adj. | 82.93 63.00
SMO | Nouns | 88.10 -3.3 |90.57 90.31 0.5 | 6531 -3.1
= Verbs | 90.38 5.8 | 86.00 0.5 | 79.89 0.1 |54.88 -5.5
AN Adj. [ 8049 73 64.00 +4.0
gy | Nouns| 8643 2.3 | 8500 48 | 86.01 452 | 6122 2.0
Verbs | 86.54 5.8 | 83.46 +5.2 | 77.06 +4.5 | 48.17 0.6
Adj. | 8293 7.3 72.00 +8.0
¢| Vote |Nouns|89.56 2.7 |89.98 0.7 |89.98 04 |6531 2.0
£ Verbs | 92.31 5.8 |87.73 +1.0 |80.77 +0.0 |58.54 -1.2
2] Ada- | Adj. | 8537 124 56.00 +4.0
8 Boost- | Nouns | 86.01 +1.0 | 85.17 0.0 85.87 +0.4 | 66.33 +5.1
M1 Verbs | 86.54 1.9 | 84.59 0.1 | 76.92 04 |5244 -1.2
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8.3 Evaluating Supervised Machine Learning Applied to WSD

confirms the general viability of the proposed supervised machine learning ap-
proach for German word sense disambiguation. Automatic feature selection
particularly improves the overall performance of classifiers OneR, IBk, Naive-
Bayes, and LibSVM. The increase in performance for IBk with automatic
feature selection was previously reported by Mihalceal [2002a,b]. One explana-
tion for this increase is that IBk is particularly sensitive to irrelevant features
because its decision considers only few nearest neighbors (in the current setup
where k is set to 1, in fact only the single closest instance is considered) [Wit-
ten et al. 2011, page 308|. The observation for NaiveBayes corroborates, for
example, the finding by Lee and Ng| [2002] that this classifier performs better
with feature selection. The improvement for LibSVM confirms the hypothesis
made in Subsection|8.3.1]above that the application of support vector machines
with non-linear kernels (LibSVM uses by default a Gaussian kernel) are more
suitable if the number of features is restricted rather than arbitrarily large.

However, the observed influence of automatic feature selection on the WSD
performance is in some cases heterogeneous. It very much depends on the
classifier, the word class, and the corpus used for evaluation whether and how
much automatic feature selection influences the disambiguation performance.
The impact of the OneR classifier on the disambiguation of nouns has the
most extreme improvement when comparing all classifiers in Table [8.5; +18
for WebCAGe, +27 for the manual TiiBa-D/Z, +37 for the automatic TiBa-~
D/Z, and +6 for deWaC . Another extreme improvement of +16 is reported for
BayesNet when evaluated on adjectives in deWaC. With absolute differences
of at most 8 Fy-score points for all other results, automatic feature selection
does much less noteworthy influence the performance of the other classifiers.

In fact, the performance for some classifiers decreases slightly — depending
on the gold standard used for evaluation. For example, the performance of
J48, Logistic, and Vote decreases when measured on WebCAGe, and the per-
formance of SMO decreases for all corpora. The latter observation confirms
the finding by [Lee and Ng| [2002] that linear support vector machines (SMO
uses by default a linear model) perform best without feature selection.

Even if there are no large deviations (besides the OneR baseline) when

comparing the results of the individual classifiers, it is important to notice
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8 WSD Using Supervised Machine Learning Methods

that SMO and Vote are still overall the best performing classifiers. Due to
three main reasons, the following subsections report performance results for

the SMO classifier only (and, where appropriate, also for the ZeroR baseline):

(i) If all numbers in the following tables and subsections were given for all
available classifiers, the amount of reported performance results would
explode without much information gain since there are generally no ex-
treme discrepancies between the results of the individual classifiers (their
performances are all in very similar ranges). That is, to allow more de-
tailed discussions of the reported results and to avoid unnecessary over-

head, the following experiments are reported for one classifier only.

(ii) Since SMO has proven — with and without feature selection — to be
among the best performing classifiers, consistent and reliable behavior is

expected without extreme deficiencies.

(iii) In the literature, support vector machines are — besides naive Bayes and
instance-based classifiers — among the most frequently used classifiers for
WSD and have shown superior performance compared to other machine
learning classifiers for the task at hand (see Subsection for more

details and for pointers to corresponding related works).

Automatically Selected Features

An inspection of the frequencies with which certain features are automatically
selected by the automatic feature selection algorithm allows identifying the
most popular and most effective features [Hall,|1999|. For each sense-annotated
corpus and word class, Table lists the selected featureﬂ (as described in

IThe labels in Table correspond to the feature labels introduced in Section Note
that the ‘context lemma’ features are grouped according to the six types of context windows
specified in Subsection [B:1.3] because regarding each lemma-specific feature individually
would give a wrong impression: since the individual ‘context lemma’ features suffer from
data sparseness (i.e., there is no single lemma — excluding stopwords — that occurs in multiple
contexts of many different target word lemmas), they would be moved to the bottom of the
list. For reasons of space, some of the labels are abbreviated: the relevant contexts for
the corresponding ‘context lemma’ features are abbreviated as SB (referring to the boolean
variant of the inner-sentential context), 65B (referring to the boolean variant of the 6-word,
inner-sentential context window), and 50B (boolean variant of the 50-word context window);
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8.3 Evaluating Supervised Machine Learning Applied to WSD

Section above) in decreasing order of frequency. The percentages specify
for how many lemmas the feature in question is automatically selected.

Table conveys the following general tendencies: features based on con-
textual clues around the target word (i.e., all features that disregard informa-
tion on the target word itself) are much more effective than features based
on the target word itself (i.e., the four surface features, the six morphological
features, and the single ‘pos’ featureED. This was to be expected. The inter-
pretation of this behavior is that the information extracted from the context
around the target word is more informative and predictive for the disambigua-
tion process than information about the target word itself. It corroborates the
previous finding by Kope¢ et al.| [2012] for Polish WSD where thematic fea-
tures (which correspond to the features here referred to as ‘context lemmas’)
were selected most frequently while keyword features (which are based on the
target word itself) were selected most seldom from their set of heterogeneous
features.

The pragmatic explanation why features from the ‘context lemma’ feature
group are overall most frequently selected is that the majority of features are
context lemmas (see Subsection [8.1.11)). The fact that the boolean variants
of these ‘context lemma’ features are selected more often than the numeric
variants is not surprising given the overall sparse amount of training data.
The individual ‘context lemma’ features suffer from data sparseness: even
if a lemma occurred a certain amount of times overall in the training data
contexts, it certainly very scarcely occurs multiple times in the same context.
Thus, certain feature values with counts above 1 are usually assigned to single
instances only, which makes the boolean variant more efficient.

The reason why features that encode part-of-speech tags are the second
most frequently selected feature type is the same as for the ‘context lemma’

features: they constitute a larger amount of features than the other feature
types (see Subsection [8.1.11]). Those ‘part-of-speech’ features that encode POS

the corresponding feature types in the numeric versions are abbreviated as SN, 65N, and 50N,
respectively. The less alienated label abbreviations are part_of_conj (part_of_conjunction),
grammatical_func (grammatical_function), and verbs_ign_auz (verbs_ignoring_aux).

Here, the single ‘pos’ feature encoding the target word’s part-of-speech tag (available
for adjectives and verbs) is meant rather than all features in the POS feature group.
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Table 8.6: Frequency of automatically selected features.

WebCAGe

TiiBa-D/Z
(manual)

TiiBa-D/Z
(automatic)

deWaC

Adjectives

66.7% ctx_lemmas_50B
66.7% ctx_lemmas_SB
66.7% pos_1_right
33.3% ctx_lemmas_50N
33.3% headline

33.3% pos

33.3% pos_2_left

33.3% pos_2_right
33.3% pos_3_left

33.3% translation

75.0% pos_1_right
50.0% pos_2_left

25.0% ctx_lemmas_50B
25.0% pos_2_right
25.0% sentence_length
25.0% verbs

25.0% verbs_ign_aux
25.0% verbs_pos

33.3% ctx_lemmas_6SB
33.3% ctx_lemmas_50B
33.3% ctx_lemmas_50N
33.3% ctx_lemmas_SB
33.3% ctx_lemmas_SN
33.3% pos_1_left

30.3% verbs

24.2% adposition

18.2% ctx_lemmas_6SN

45.8% adposition

45.8% ctx_lemmas_6SB
45.8% ctx_lemmas_50B
45.8% ctx_lemmas_50N
45.8% ctx_lemmas_SB
45.8% verbs_ign_aux
41.7% pos_1_left

41.7% word _form
33.3% article

62.5% ctx_lemmas_6SB
62.5% ctx_lemmas_50B
62.5% ctx_lemmas_SB
62.5% translation
58.3% verbs

45.8% adposition

33.3% ctx_lemmas_6SN
33.3% ctx_lemmas_50N
33.3% word_form

33.3% ctx_lemmas_6SB
33.3% ctx_lemmas_50B
33.3% verbs

33.3% word_form
26.7% pos_1_right
26.7% translation
20.0% article

20.0% ctx_lemmas_6SN
20.0% ctx_lemmas_50N

14.3% ctx_lemmas_50N
14.3% ctx_lemmas_SN
14.3% has_OS

14.3% has_OV

14.3% has_PRED
14.3% head

14.3% word _form

16.2% ctx_lemmas_6SN
16.2% has_FOPP
13.2% DN _confidence
13.2% has_OPP

13.2% auxiliary _verb
11.8% PP _confidence
11.8% has_PRED
11.8% word _form
10.3% morph_person
10.3% pos_2_right

[24 more suppressed]|

16.2% has_OA
16.2% last_3_chars
16.2% word _form
14.7% PP _confidence
11.8% has_PRED
11.8% Pp_confidence
11.8% pos_3_left
10.3% passive

[29 more suppressed|

@ |18.2% morph_case 33.3% ctx_lemmas_6SN |29.2% pos_1_left 20.0% ctx_lemmas_SB
2 |18.2% pos_2_left 33.3% pos_1_right 25.0% article 20.0% morph_case
Z. |18.2% sentence_type 29.2% verbs 25.0% pos_1_right 20.0% nx_length
18.2% translation 25.0% grammatical_func|20.8% ctx_lemmas_SN [20.0% adposition
15.2% article 25.0% morph_case 20.8% morph_case 20.0% sentence_type
15.2% part_of _conj 20.8% part_of _conj 20.8% morph_number |13.3% adjective
15.2% sentence_length |20.8% morph_number |16.7% sentence_type  [13.3% part_of_conj
12.1% adjective 16.7% ctx_lemmas_SN |12.5% part_of_conj 13.3% pos_1_left
12.1% grammatical _func|16.7% last_3_chars 12.5% last_3_chars 13.3% pos_2_right
12.1% pos_3_right 12.5% named _entity 12.5% nx_length 13.3% pos_3_left
[13 more suppressed| |12.5% last_2_chars 12.5% pos_3_left 13.3% sentence_length
12.5% sentence_type 12.5% verbs_ign_aux [7 more suppressed]
[10 more suppressed| [9 more suppressed]|
57.1% ctx_lemmas_6SB [42.6% AR_confidence [57.4% ctx_lemmas_6SB|50.0% ctx_lemmas_6SB
57.1% ctx_lemmas_50B |35.3% AN_confidence [57.4% ctx_lemmas_50B |50.0% ctx_lemmas_50B
57.1% ctx_lemmas_SB  |27.9% ctx_lemmas_6SB |57.4% ctx_lemmas_SB |50.0% ctx_lemmas_SB
57.1% pos_1_left 27.9% ctx_lemmas_50B [57.4% translation 50.0% ctx_lemmas_SN
42.9% pos_2_right 27.9% ctx_lemmas_50N [48.5% pos_1_right 50.0% pos_1_right
42.9% sentence_length |27.9% ctx_lemmas_SB |30.9% ctx_lemmas_50N [50.0% pos_2_right
28.6% AZ_confidence 27.9% ctx_lemmas_SN  [30.9% ctx_lemmas_SN |33.3% translation
28.6% pos_2_left 27.9% has_OA 30.9% pos_1_left 33.3% word_form
14.3% Al_confidence 27.9% pos_1_right 26.5% pos_2_left 25.0% ctx_lemmas_6SN
14.3% DR _confidence  |26.5% has_OD 23.5% auxiliary_verb  |25.0% ctx_lemmas_50N
_ng 14.3% FS_confidence 20.6% pos_1_left 20.6% AN_confidence |25.0% has_OA
£ 14.3% ctx_lemmas_6SN [20.6% pos_2_left 16.2% DN _confidence [25.0% has_ON

25.0% auxiliary _verb
25.0% pos_1_left
25.0% pos_3_right
16.7% NN _confidence
16.7% has_OPP

[15 more suppressed|
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tags of the tokens immediately preceding or following the target words are more
frequently selected than the other ‘part-of-speech’ features. This implies that
the part-of-speech tags in the immediate context are more meaningful for dis-
ambiguating word senses than the more distant POS tags. The high frequency
of selected ‘part-of-speech’ features is especially prevalent for adjectives, which
means that POS tags surrounding target adjectives are indicative of particular
word senses.

For nouns, the two features ‘verbs’ and ‘adposition’ (both from the ‘context
detail’ feature group, see Subsection are often selected. This means
that (i) for target nouns in general the verb of the sentence is helpful for
the disambiguation process and (ii) for target nouns that are syntactically
part of a prepositional phrase the corresponding adpositions (i.e., preposition,
postposition, or circumposition) provide meaningful clues specific to particular
word senses.

The fact that features encoding verbal frames and constituent structures
are often selected and, thus, very effective for verbs was to be expected. This
corroborates previous studies on verb sense disambiguation, including |Chen
and Palmer| [2005, 2009, Chen et al.| [2007|, and Dligach and Palmer| [2008],
who also found syntactic features useful for disambiguating verb senses. This
topic is investigated in more detail in Subsection [8.3.4] below.

The ‘translation’ feature, which is not available for the manually annotated
TiBa-D/Z, is among the most effective features for target nouns and verbs in
the automatically processed TiiBa-D/Z and in the other two corpora. This
means that English translations of the target words in their specific contexts
are highly predictive for different word senses. This observation relates in an
interesting way to the questions whether word sense disambigation is a sepa-
rate task or should better be viewed as part of a ‘larger’ task such as machine
translation |Kilgarriff, 1997b; Resnikl 2006] and whether or not explicit word
sense disambigation improves the performance of automatic machine transla-
tion systems |Cabezas and Resnik, [2005; |Carpuat and Wu, [2005] 2007; |Chan
et al., [2007]. For machine translation, word sense disambiguation generally
takes place — if not explicitly, then implicitly — and cannot be omitted alto-

gether.
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Albeit for reasons of space only features with frequencies of at least 10 per-
cent are printed in the table, the numbers of how many features are suppressed
indicates the overall amount and variety of selected features. In order to in-
terpret the frequencies in Table 8.6 it is helpful to know for each word class
and corpus the average numbers of selected features per lemma and the total
numbers of lemmas. These statistics are contributed in Table R for each
sense-annotated corpus and word class the number of selected features aver-
aged over all corresponding lemmas is given in columns Features—cfs. For an
easier comparison, columns Features—all replicate the average numbers of to-
tal features available from Table [8.3]above. Columns Num. of lemmas give the

total number of lemmas available in the corresponding gold standards used for

supervised WSD experiments (these numbers are taken from Tables
and , see Chapter @

Table 8.7: Average numbers of features per lemma.

TiBa-D/Z TiBa-D/Z

POS WebCAGe (manual) (automatic)

deWaC

Features | Num. of | Features | Num. of | Features | Num. of | Features | Num. of
cfs| all |lemmas| cfs | all |lemmas| cfs | all |lemmas |cfs| all | lemmas

Adj. |6.7| 159 3 2.8| 46 4
Nouns|8.8| 197 33 15.8 1356 24 13.91348 24 5.6 53 15
Verbs 6.3 | 102 7 12.21271 68 12.9]253 68 9.6| 111 12

In general, the average numbers of selected features per lemma are between
3 and 16 — depending on the word class and gold standard corpus. These
average numbers of selected features reflect the ratios of the overall available
features: for lemmas in both TiiBa-D/Z versions considerably more features
are selected than for the other two corpora; and in deWaC, lemmas have fewest
features selected (especially for adjectives and nouns) compared to the other
corpora.

The discrete frequencies reported in Table [8.6] for adjectives can be ex-
plained with the numbers in Table 8.7 WebCAGe contains only three sense-
annotated adjectives, which explains the values of 33.3% and 66.6%, while the
values of 25%, 50%, and 75% are due to four sense-annotated adjectives in

deWaC. The numbers in Table [8.7] also explain the apparently skewed amount
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of features for verbs, where there are altogether only 19 selected features for
WebCAGe, while clearly more in deWaC and the two TiiBa-D/Z versions (see
Table : this reflects the ratio of sense-annotated verbs in the different

corpora, i.e., there are only 7 sense-annotated verbs in WebCAGe.

8.3.3 Profiling Feature Groups

While the previous subsection analyzed the impact of automatic feature se-
lection, this subsection investigates the impact of individual feature groups on
the performance of German WSD. Table 8.8 presents WSD performance scores
for the SMO classifier]] in terms of the F;-measure when evaluated separately
on groups of features extracted from the available sense-annotated corpora.
These sets of features under investigation rely on different kinds of linguistic
clues, such as information on surface forms of words, co-occurring lemmas,
POS tags, morphology, and sentence structures (as described in Section (8.1)).
All values are presented separately for each word class and gold standard cor-
pus. For each corpus, the highest results achieved for a particular word class
are highlighted in boldface; the lowest values are italicized.

For some lemmas, where a feature group does not yield at least one feature
with at least two distinct feature values in the annotated data, the WSD
system is not able to attempt disambiguation. In this case, F; values are
calculated only on the subset of lemmas for which the WSD system is able
to attempt disambiguation. Percentages (in parenthesis) behind the F-score
values indicate the amount of lemmas for which the WSD system attempts
disambiguation, i.e., for how many percent of the lemmas at least one feature
in the specific group exists for which at least two distinct feature values occur
in the annotated data. The percentages are specified only if the WSD system
is not able to attempt disambiguation for all lemmas. That is, for all omitted
percentages, the value is implicitly 100%. The only exceptions are adjectives
and nouns for the ‘constituent structure’ and ‘verbal frames’ features, where

not even Fi-scores are provided. The reason is simple: these feature types

!See the paragraph entitled Comparison of Classifiers on pages [270ff. for an explanation
on why performance in this subsection is reported for the SMO classifier only.
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Table 8.8: Profiling feature groups (in terms of F-score for SMO).

Feature POS | WebCAGe TiBa-D/Z TuBa—D/.Z deWaC
group (manual) | (automatic)
Adj. | 82.93 56.00
Surface |Nouns| 82.62 (73%) | 81.83 81.83 66.67 (67%)
Verbs | 84.62 70.52 70.52 49.39
Context Adj. | 87.80 52.00
lemmas Nouns | 84.97 80.14 80.32 60.20
Verbs | 84.62 72.39 67.20 50.00
Adj. | 82.93 64.00
POS Nouns | 89.14 86.34 84.69 57.14
Verbs | 94.23 74.34 73.81 50.00
Morpho- Adj. | 82.93 56.00
Jogical Nouns | 79.54 82.23 82.27 63.27
Verbs | 80.43 (86%) | 70.10 69.42 50.61
Context Adj. |92.68 60.00
details Nouns | 85.39 85.06 84.18 62.24
Verbs | 73.08 69.21 68.40 48.17
Sentence | Adi | 80.49 60.00
Nouns | 80.17 81.90 80.51 59.18
SETUCEUTe | yrorhs | 75.00 69.88 68.96 1774 (92%)
Constituent | v 11 78 85 81.87 73.24 51.22
structure
Verbal | v s | 75.00 86.96 76.81 51.83
frames
Adj. | 82.93 57.89 (75%)
Other | Nouns | 82.17 (79%) | 81.11 (92%) | 87.48 (92%) |68.48(93%)
Verbs | 73.08 65.76 (72%) | 75.30 (97%) | 48.78

are not available for adjectives and nouns and, thus, the F-scores and the
percentages would be 0.

The reason why the results for both TiiBa-D/Z versions are the same for
the ‘surface’ feature group is because the extraction of surface information (see
Subsection is equivalent in both versions since it is independent from any
manual or automatic preprocessing such as part-of-speech tagging or parsing.

The results obtained with SMO for individual feature groups are generally —
with the only exception of adjectives in WebCAGe — between 2 and 9 Fi-score
points worse than the corresponding results obtained with SMO when using all
available features. This finding corroborates the results by Lee and Ng| [2002]
for English WSD that there is no single best knowledge source and that the

combination of several types of features leads to a better performance than the

use of only one single knowledge source.
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Most results reported in Table [8.§] are still competitive and often consis-
tently better than the results obtained by the knowledge-based WSD approach
in Chapter [7| (see Table for a summary of the knowledge-based WSD re-
sults). This result is especially remarkable given that some of the feature
groups contain only very few features for several word classes. For instance,
although there are only three to four ‘morphological’ features applicable for
a particular word class, when using only ‘morphological’ features the super-
vised WSD system outperforms the knowledge-based WSD system by about
8-34 Fi-score points — depending on the word class and gold standard corpus.
However, it must be noted that the reason for the good performance despite
few features is due to the behavior of a support vector machine classifier never
to perform (much) worse than the performance of the majority class baseline
(here, ZeroR). The explanation for this behavior has to do with the concept of
SVMs: when the given data is imbalanced and not separable by a linear hyper-
plane, a support vector machine resembles the majority class baseline [Akbani
et al.| 2004; Ben-Hur and Weston, 2010|. This happens in the present example;
when only very few features with very few distinct values occur, many of these
instances are mapped to the same point in the feature space and are, thus, on
the same side of the hyperplane. In this case, the behavior of SMO resembles
a majority class classification (i.e., ZeroR), but the performance of ZeroR is
often consistently better than the performance of the knowledge-based WSD
system.

The relatively bad performance reported for ‘context lemma’ features in
Table 8.8 when compared to the other feature types seems to contradict the
finding from the previous subsection (see paragraph Automatically Selected
Features on page where ‘context lemma’ features were often selected
by the automatic feature selection algorithm. The real explanation for what
looks like contradictory findings has to do with the interaction of features from
several feature groups: since the number of ‘context lemma’ features is large,
the chance that they are able to complement other features is high. However,
when employing only features from context lemmas, their performance is not
competitive compared to the other feature types. One explanation for this

behavior might be that although this feature type comprises many features —

280



8 WSD Using Supervised Machine Learning Methods

and thus its coverage is very large — the individual features suffer from data
sparseness: even if a lemma occurs a certain amount of times in the training
contexts and seems to be a good sense indicator, it does not necessarily have to
occur in the test data contexts at all, since the number of potentially occurring
lemmas in the context is theoretically infinite.

When evaluated separately on groups of features, the overall best and most
consistent performance is achieved for ‘part-of-speech’ features. The explana-
tion is twofold: on the one hand, this type of feature has a very high coverage,
because it is applicable to all word classes and evidently produces several dis-
tinct feature values. On the other hand, this feature type does not suffer
from the data sparseness problem as the ‘context lemma’ features, because the
range of attribute values is restricted to the 54 STTS part-of-speech tags. In
short, the POS features represent a good balance between diversity and cover-
age, which makes them particularly attractive and effective for disambiguating
word senses.

The fact that features from the ‘other’ group are available to only a subset
of all lemmas is not surprising since there are at most two features available
for which often no distinct values are recorded for the annotated instances.
However, the good performance on those nouns in TiiBa-D/Z and deWaC
for which disambiguation is possible with these ‘other’ features is due to the
‘translation’ feature. This result corroborates the finding from the previous
subsection where this feature turned out to be predictive since it was often
selected by the automatic feature selection algorithm (see paragraph on Auto-
matically Selected Features on page .

Finally, the features encoding verbal frames and constituent structures per-
form well — as expected [Chen and Palmer, 2005; Chen et al., 2007; Dligach
and Palmer] 2008; (Chen and Palmer} [2009]. ‘Verbal frame’ features achieve
best results for TiiBa-D/Z and deWaC compared to the results obtained for
the other feature groups. When explicitly using a certain subset of features, a
comparison of features obtained by the TiiBa-D/Z with its manual linguistic
annotations with the corresponding features obtained by automatic linguistic
annotations is possible: it is not surprising that for syntactic features manually

obtained annotations outperform their automatically obtained counterparts.
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For the other feature types, the WSD performance is approximately the same
with manually or automatically obtained features. The explanation for this
behavior has to do with the annotation difficulty: syntactical structures are
more difficult and inaccurate to obtain by automatic tools — compared to other
linguistic annotations such as lemmas, part-of-speech tags, and morphology.
Also note that verbs differ in the degree of correlation between word senses and
verbal frames, ranging from total correlation to a complete lack of correlation,
and that the set of sense-annotated verb lemmas in the TtiBa-D/Z treebank
has been selected to represent a mixture of such correlations (see Section
for more details on these correlations and on the selection of sense-annotated
verbs). This implies that the set of verbs sense-annotated in the TiiBa-D/Z
includes a certain amount of verbs with a high degree of such correlation. This

topic is investigated in more detail in the following subsection.

8.3.4 Profiling Verbs

This subsection investigates the influence of features based on syntactical struc-
tures — especially of ‘constituent structure’ and ‘verbal frame’ features — on
the WSD performance for verbs. It first summarizes the underlying criteria
from Subsection [5.3.2] on how the sense-annotated verbs were chosen, before
it analyzes several aspects of the performance of a supervised WSD system on

different verb classes (see pages 284ff.).

Different Correlations between Word Senses and Verbal Frames

Verbs differ in the degree of correlation between word senses and frames, rang-
ing from total correlation to a complete lack of correlation. That is, while
the syntactic structure in which a verb occurs is highly predictive of different
word senses for some verbs, syntactic structures are not informative enough
to distinguish word senses for other verbs. As explained in Subsection [5.3.2]
the manually sense-annotated verbs in the TiBa-D/Z treebank are selected
to represent a mixture of correlations among word senses and frames in order
to provide a fine-grained spectrum of possible degrees of correlations between

word senses and verbal frames. In short, the sense-annotated verbs are taken
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from four distinct classes{l

Class 1 All verbs in this class have perfect correlation between senses and

verbal frames; i.e., they have distinct frames for each of their word senses.

Class 2 This class contains verbs where at least one sense has a verbal frame

distinct from the frames for the other senses.

Class 3 All verbs in this class lack any correlation between word senses and

verbal frames; they share the same frames for all of their senses.

Class 4 This class comprises verbs that do not fall into any of the classes 1-3.

Table shows the numbers of sense-annotated verbs in the TiiBa-D/Z
that are available in the gold standard used for supervised WSD experiments
(see Subsection for more details). Note that this table represents an
updated version of Table [5.10, where the numbers were calculated on (i) old
versions of GermaNet and TiiBa-D/Z and (ii) for all available sense annotations

rather than on the subset used for supervised machine learning experiments.

Table 8.9: Distribution of the four sense/frame correlation classes.

’ Correlation class \ 1 \ 2 \ 3 \ 4 \ Total ‘
Total verb lemmas 31 15 14 8 68
- in representative sample 8 8 14 8 38
- in high correlation sample 23 7 0 0 30
Average polysemy 2.13 | 2.60 | 2.93 | 4.00 2.62
Average frequency 82| 175 | 168 | 128 126
Total annotated occurrences | 2548 | 2623 | 2347 | 1022 | 8540

The total set of sense-annotated verbs in the TiiBa-D/Z is divided into two
samples{’

ISee Section for examples and more details on the correlation classes for verbs.

2Note that the fotal numbers in Table correspond to the verb numbers in Table

3Technically, the two samples are constructed by the following procedure: first, all verb
lemmas that belong to correlation classes 1 and 2 are sorted in decreasing order of frequency
and every second lemma from these two correlation classes is taken for the ‘high correlation’
sample. This means that for class 1 every second lemma is taken until the required number
of 8 lemmas is reached and for class 2 every second lemma is taken until the end of the
sorted list is reached (which results in the required amount of 7 lemmas). The remaining
verb lemmas, i.e., those left from classes 1 and 2 and all lemmas from classes 3 and 4, are
used for the ‘representative’ sample.
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Representative sample One sample is representative and well-balanced ac-
cording to the class distributions in GermaNet. It is not biased toward

specific sense/frame correlation classes.

High correlation sample The second sample contains verbs with a high cor-
relation between word senses and verbal frames (i.e., verbs from classes
1 and 2). The assumption is that an automatic WSD algorithm based
on verbal frame information is expected to return good results for these
verbs since the frames should allow distinguishing different senses reli-

ably.

The amounts of lemmas per correlation class included in these lexical sam-
ples are listed in the second and third rows denoted as in representative sample
and in high correlation sample in Table [8.9

The motivation behind the distinction into two samples is to facilitate the
evaluation of WSD algorithms that use verbal frame information for disam-
biguation. If a WSD algorithm fails to perform well on the ‘high correlation’
sample, this would provide evidence that such an algorithm has major draw-
backs and will not work for the representative, well-balanced sample at all.
Furthermore, a comparison on how machine learning algorithms perform on
the two samples is highly interesting. That is, to test the deviation in perfor-
mance and learn about how powerful such an algorithm can be for verbs that

show a high correlation between word senses and verbal frames.

Analyzing the WSD Performance for Verbs

Table presents the WSD performance in terms of F; evaluated on verbs in
the TiiBa-D/Z. For the above-described verb samples and correlation classes,
the table includes detailed results obtained for different feature groups.

The principle structure of the table divides the results for the two TiiBa-
D/Z variants by two horizontal lines: it first prints the results obtained by
applying SMO to the features extracted from the manual linguistic treebank
annotations and then prints the results obtained by applying SMO to the
features based on the automatic linguistic annotations. On the bottom, the

table shows the performance of the ZeroR baseline for comparison.
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Table 8.10: Profiling verb classes in TiiBa-D/Z (in terms of F-score).

Feature all |Represent. |High corr. Correlation class
groups used |verbs| sample sample 1 ‘ 2 ‘ 3 ‘ 4
« | all features 86.53 81.46 92.27 95.37192.42|76.06|73.45
g|oonstituent gy g7 | 79.32 84.87  |88.60|83.58|77.61|70.50
<& | structures
g verbal frames | 86.96 83.15 94.12 97.39|91.85|76.32|72.86
3
= .
_ |const.struct i gr 70 | 8357 90432 |97.51(91.50|77.99|75.81
S| verbal frames
QO all except
§ const. struct.+ | 77.94 74.41 83.21 88.95|77.61|74.52|59.29
verbal frames
§ all features 79.99 77.55 79.73 85.75(84.39|73.87|68.44
% constituent
& 73.24 73.19 75.31 83.25|67.85|74.90|58.41
o | structures
g verbal frames | 76.81 75.65 76.37 83.61|80.25|72.84|60.18
S}
5| const. StIUCE oo g | 76,47 76.97 |83.85|79.91|74.26|59.59
5 verbal frames
; all except
= | const. struct.+ | 77.27 75.66 77.28 84.56|78.65|73.87|63.42
| verbal frames
ZeroR baseline | 68.19 70.91 69.89 80.40|60.16 | 72.72| 48.08

As specified in column Feature groups used, evaluation scores for both
TiiBa-D/Z variants are provided for several feature groups: (i) using all avail-
able features, (ii) using the ‘constituent structure’ features, (iii) using the ‘ver-
bal frame’ features, (iv) using both ‘constituent structure’ and ‘verbal frame’
features at the same time, and (v) using all available features except ‘con-
stituent structure’ and ‘verbal frame’ features. The WSD performance for
each of these feature groups is calculated for all verbs, for the representative
sample, for the high correlation sample, and for the four sense/frame corre-

lation classes — as recorded in the corresponding columns.ﬂ Note that even

INote that some of the results for all verbs in Table are equivalent to the corre-
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though the most frequent sense baselines (i.e., ZeroR) for the individual corre-
lation classes are very heterogeneous, the two samples are selected insofar that

the baselines obtain comparable results: both have an F;-score of around 70.

One of the most striking findings among the results of this evaluation is
that — when employing manual treebank annotations — the performance on
the ‘high correlation’ sample is significantly better than the performance on
the ‘representative’ sample. Depending on the employed feature groups, the
difference in performance is between 9 and 15 Fi-score points. Further, the
performance on correlation class 1 is better than the performance on class 2,
and the performance on both classes 1 and 2 are significantly better than the
performance on correlation classes 3 and 4. This behavior was to be expected.
It confirms that the correlation between word senses and verbal frames is a
strong indicator for disambiguating between verb senses. Maximum F;-scores
of 94.3 for the ‘high correlation’ sample and 97.5 for correlation class 1 —
obtained with ‘constituent structure’ and ‘verbal frame’ features — show how
powerful a WSD algorithm can be for the subset of verbs that show a high
correlation between word senses and verbal frames given that manual treebank

information is available.

For the automatically annotated treebank annotations, however, the same
difference in performance is much less pronounced. For instance, when using
the automatically obtained ‘verbal frame’ features, the performance on the
‘high correlation” sample is only 0.7 F-score point higher than the performance
measured on the ‘representative’ sample. However, with F;-scores of 83.6 and
80.3, the performance of correlation classes 1 and 2 is between 8-23 points
higher than the performance of 72.8 and 60 obtained for correlation classes 3
and 4. The fact that the performance increase is much lower when evaluated
on the automatically obtained features is not surprising. It is due to the
same reason as given in Subsection [8.3.3] above that the quality of syntactic
annotations plays an important role for the performance of a supervised WSD

system that uses these structures as features: syntactic annotations are difficult

sponding values reported previously: the results for all features were already reported in
Table [R.4] and the results for the ‘constituent structure’ features and ‘verbal frame’ features
were already reported in Table
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to obtain and, thus, their quality is more inaccurate to obtain by automatic

tools than by manual annotations.

A comparison of the results for the individual feature groups yields the ten-
dency that ‘verbal frame’ features achieve superior results compared to ‘con-
stituent structure’ features. This behavior is especially prevalent when using
the manual treebank annotations. The main reason for this higher performance
is due to the definitions of the correlation classes and verb samples, which
are based on verbal frames rather than on constituent structures. Another
explanation for the higher performance is probably that the ‘verbal frame’ fea-
tures use linguistic clues that are more indicative of different word senses than
the clues used by the ‘constituent structure’ features. For instance, the fea-
tures ‘has_OADJP’ and ‘has_OADVP’, which are based on the corresponding
constituents OADJP and OADVP, are much less relevant than the features
‘AR _confidence’ and ‘DR _confidence’, which take into account the availability

of accusative and dative objects realized by reflexive personal pronouns (also

see the feature descriptions in Subsections [8.1.8) and [8.1.9)). The only excep-

tion is for correlation class 3: for those lemmas that share the same verbal
frames for all of their senses in GermaNet, the performance of ‘constituent
structure’ features is slightly better than the performance of ‘verbal frame’
features. This can only be due to the fact that the occurring constituents for
some of these lemmas correlate with the corresponding senses — even though
there is no correlation between the senses and the verbal frames encoded in
GermaNet.

8.4 Conclusion and Future Work

This chapter has applied a wide range of supervised machine learning methods
to the task of German word sense disambiguation. These supervised machine
learning methods include classifiers based on decision rules, instance-based
classifiers, probabilistic classifiers, support vector machines, and combined
classifiers — all taken from the Weka machine learning tool suite. WSD ex-

periments have been run on the three corpora WebCAGe, TiiBa-D/Z, and
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deWaC — for the three word classes of adjectives, nouns, and verbs.

The WSD evaluation in Section [8.3] has shown that a support vector ma-
chine classifier and a voting combination classifier have overall performed best
among all applied classifiers. This finding corroborates previous studies, which
found that these classifiers perform best for the task of WSD, including Za-
vrel et al. [2000], |[Lee and Ng| [2002], Martinez et al.[2002|, and Agirre and
Martinez [2004] for support vector machines and |Florian et al.| [2002], Flo-
rian and Yarowsky| [2002], Klein et al. [2002], and |Mihalcea et al. [2004] for
combined algorithms. In general, the supervised word sense disambiguation
system has significantly outperformed the most frequent sense baseline, which
is known to be often difficult to beat by WSD systems |Gale et al., [1992a;
Navigli, 2009; |Preiss et al., [2009).

The use of an automatic feature preselection algorithm, which removes
irrelevant features and tries to optimize the predictive accuracy of machine
learning algorithms, has improved the performance for many of the used WSD
classifiers (see Subsection — as previously shown by Mihalcea [2002ab].
An inspection of several types of machine learning features has shown that
the coverage of ‘context lemma’ features is high and that these features have
complemented well with other features. By contrast, the performance of a
WSD system that relies only on context lemmas has performed badly. When
using a single feature type only, the best WSD results have been achieved by
‘part-of-speech’ features. However, overall best disambiguation performance
has been achieved by using all available features. This finding corroborates
the results by Lee and Ng| [2002] for English WSD that there is no single best
knowledge source and that the combination of several types of features leads
to a better performance than the use of only one single knowledge source.

Since the TiBa-D/Z contains high-quality manual treebank annotations
and all underlying texts have additionally been automatically annotated with
the same kind of linguistic annotations, the comparison of the results obtained
by these two annotation sources has allowed studying the influence of linguis-
tic annotation quality (manual versus automatic) on the WSD performance.
While the manual features have had a consistently positive impact on verbs,

their impact on nouns has been much less noticeable and not only positive
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compared to the results obtained by the automatic features. The reason for
this behavior has to do with the relevant features and their quality: on the
one hand, many effective features for verbs are based on syntactic annota-
tions, which are difficult to obtain and, thus, their quality is more inaccurate
to obtain by automatic tools than by manual annotations. On the other hand,
the English translation of a target word in its context has been — especially for
nouns — a very effective feature, but it has been available only for automatically
annotated texts.

Verbs differ in the degree of correlation between word senses and verbal
frames, ranging from total correlation to a complete lack of correlation. When
employing manual treebank annotations, the WSD performance significantly
increases when evaluated on verbs with a high correlation between senses and
frames compared to the WSD performance on verbs with no such correlation.
This behavior confirms that the correlation between word senses and verbal
frames is a strong indicator for disambiguating between verb senses. For the
automatically annotated treebank annotations, however, this increase in per-
formance is much lower. The explanation for this behavior is again related to
the quality of syntactic annotations, which are more accurate when manually
annotated than automatically obtained.

In comparison to the previous chapter, the supervised machine learning
methods have outperformed the knowledge-based systems by a very wide mar-
gin: by about 28-34 F; points for adjectives, by about 13-36 for nouns, and
even by about 32-52 for verbs — depending on the gold standard used for
evaluation. It is, however, important to keep in mind that the supervised
WSD approach presupposes the availability of expensive training data and
thus their coverage is restricted to those lemmas for which training data is
available [Marquez et al.; [2006; Mihalcea, [2006; Navigli, 2009].
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Chapter 9
Concluding Remarks

The overall objective of this thesis has been to overcome the bottleneck of
German word sense disambiguation resources and to boost research on WSD
for German. In order to achieve this goal, the work has started with the
preparation of the necessary resources before actual word sense disambigua-
tion experiments have been performed. That is, GermaNet has been aligned
with Wiktionary in order to harvest Wiktionary’s sense definitions (Chapter [4]).
Two sense-annotated corpora have been constructed — the automatically web-
harvested WebCAGe and the manually sense-annotated TtuBa-D/Z treebank
(Chapter [f). On the basis of these corpora, word sense disambiguation exper-
iments have been performed. These WSD experiments have utilized a wide
range of knowledge-based methods (Chapter [7)) as well as a wide range of
supervised machine learning methods (Chapter .

9.1 Knowledge-Based Approaches versus Super-
vised Learning Approaches to WSD

A comparison of the results from the knowledge-based WSD experiments in
Chapter [7] with the supervised machine learning WSD experiments in Chap-
ter [8| corroborates the two findings of previous research (i) that knowledge-
based systems have a larger coverage than supervised machine learning sys-

tems and (ii) that supervised learning systems perform much better than
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knowledge-based approaches to WSD [Kilgarriff and Rosenzweig, 2000; |Mi-
halceal 2006; McCarthyl, [2009; [Navigli, 2009]. The reason for a larger coverage
of the knowledge-based systems is that they do not need annotated training
data. By contrast, the supervised ML systems have achieved lower coverage
because they have relied on sense-annotated training data and have, thus, been
applicable to only a restricted set of lemmas for which sense-annotated train-
ing material is available. On the other hand, for this restricted set of lemmas,

the supervised systems have outperformed the knowledge-based systems.

While the knowledge-based sense disambiguation methods in Chapter [7]
have performed well for nouns, they have been ill-suited for disambiguating
adjective and verb senses. By contrast, the supervised classifiers in Chapter
have performed well for all word classes and far better than the knowledge-
based algorithms for all word classes.

In short, the supervised machine learning methods have outperformed the
knowledge-based systems by a very wide margin. It is, however, important to
keep in mind that the supervised WSD approach is applicable to only a subset

of word token annotations for which training data is available.

9.2 Comparison of Sense-Annotated Corpora

Comparing the results for the three sense-annotated corpora, the WSD re-
sults obtained for deWaC are the worst — both for the knowledge-based and
for the supervised learning methods. The most apparent reason for the bad
performance of knowledge-based WSD algorithms on the deWaC corpus is the
much higher polysemy of annotated words, which makes sense disambiguation
more difficult. Since the polysemy for words in deWaC’s gold standard used
for supervised experiments is comparable to the polysemy of words in the cor-
responding TiiBa-D/Z gold standard, there must be another reason for the
lower WSD performance when evaluating supervised methods on deWaC. One
explanation for this lower performance are very heterogeneous contexts for the
sense-annotated words in deWaC (see paragraph entitled as Comparison of
Word Classes and Sense-Annotated Corpora on page for a discussion).
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While both knowledge-based and supervised WSD experiments perform
worst when evaluated on deWaC, the results deviate on which corpus they per-
form best. That is, the knowledge-based WSD systems perform best for TiiBa-
D/Z while the supervised learning methods perform best for WebCAGe. The
explanation is as follows: WebCAGe contains several annotations for which
only a restricted context is available (i.e., the example sentences harvested from
Wiktionary itself are single sentences only without a larger context), whereas
all of the sense annotations in TiiBa-D/Z and in deWaC have sufficiently large
contexts. This restricted context is the reason why several knowledge-based
methods (particularly path-based and information-content-based) obtain par-
ticular low coverages for WebCAGe. On the other side, the higher performance
of supervised WSD systems when evaluated on WebCAGe can be explained
with the polysemies of words in the gold standards used to evaluate supervised
WSD experiments, which are lower for WebCAGe compared to the correspond-

ing polysemies recorded for the other two corpora.

9.3 Future Work

In order to boost the performance of knowledge-based and supervised WSD
systems, natural next steps would be to experiment with different parameter
settings of the algorithms and to implement further state-of-the-art WSD al-
gorithms that have not been included in the WSD experiments in Chapters
and [§ but that proofed to perform well in related WSD studies.

Further, a very simple way to achieve perfect coverage for the knowledge-
based system and, at the same time, to improve the disambiguation results is
to use a backoff strategy — such as choosing a sense at random for cases where
the WSD algorithms are unable to assign any word sense — which has shown
to work well (for example, in the experiments by |Broscheit et al. [2010] and
Miller et al. [2012]). However, even if the performance of the knowledge-based
systems can be improved, results can be boosted only to a certain extent. Since
the supervised learning systems have generally performed much better than
the knowledge-based approaches to German WSD (also see Subsection ,
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it seems much more effective to refine and improve the supervised machine
learning WSD methods. In particular, the coverage of the supervised system
should be extended to those lemmas for which no sense-annotated training
data is available.

In order to generally boost the performance and improve the impact of the

supervised WSD system, natural next steps include:

e The WSD performance of the individual classifiers could be boosted by
experimenting with different parameter settings of the algorithms. [Hoste
et al., |2002¢]

e Since combined classifiers usually outperform single WSD decision sys-
tems |Florian et al} 2002; Florian and Yarowsky, 2002; Klein et al., 2002;
Mihalcea et al., 2004, in future work, more effort could be put into iden-

tifying the most optimal combination of classifiers.

e It might be worth to employ further classification algorithms (that are
not part of the Weka tool suite) such as the memory-based algorithm
implementations in TiMBL [Daelemans et al., 2010|, which previously
yielded good performance for English WSD [Hoste et al., 2002bj; Dinu
and Kiibler, 2007 |de Oliveira et al.| [2011].

e Further, the application of unsupervised discrimination methods in com-
bination with sense labeling seems promising for extending the disam-
biguation coverage to lemmas for which no sense-annotated training ma-
terial is available. That is, to first discriminate between senses in an
unsupervised manner and, then, to assign a sense label to each of these

sense clusters — as proposed by Schiitze| [1998].

e For improving the performance of a supervised WSD system and for
extending its coverage to lemmas for which no sense-annotated training
data is available, algorithms for automatic acquisition of corpus examples
could be applied — similarly to the experiments by Yarowsky [1995],
Mihalceal [2004], (Gonzalo and Verdejo| [2006], and Kiibler and Zhekova
[2009].
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e In addition to extending the sense-annotated data, available data could
also be modified by instance sampling (sometimes also active learning).
The general idea of instance sampling is to modify the set of available
instances insofar that all class distributions are balanced — e.g., by re-
moving a certain amount of instances that are annotated with the most
frequent class from the training set |[Lewis and Gale, 1994]. Sampling
has shown to have a high impact particularly on imbalanced datasets,
which usually cause over-fitting. It was previously applied to WSD by
Fujii et al.|[1998], Chen et al.|[2006, [2013|, and |Zhu and Hovy| [2007].

e Some studies, including |de Oliveira et al| [2011] and Kawahara and
Palmer| [2014], have successfully trained and applied one classifier to
predict word senses for several or all lemmas at once (rather than train-
ing one classifier per lemma). This approach could also help to extend
the coverage of a supervised WSD system to those lemmas for which no

sense-annotated training data is available.

e A combination of supervised machine learning with knowledge-based
methods could integrate the strength of both approaches in order to
achieve high coverage and good performance at the same time. That
is, using knowledge-based WSD for those lemmas to which a supervised
WSD system cannot be applied due to no available training data. This
approach is comparable to what [Steffen et al.| [2004] call a disjunctive

combination of two heterogeneous systems.

e The representation of words as vectors, e.g., in the form of generic word
embeddings learned from large unannotated corpora, became very popu-
lar for many natural language processing tasks [Collobert et al., 2011]. It
is particularly popular, because it is universally applicable to many NLP
tasks and achieves high performance for many tasks while mainly relying
on unannotated data. The learning of sense-specific word representations
has recently opened up a new approach to word sense disambiguation.
Several studies used this approach for disambiguating word senses, in-
cluding Bordes et al.|[2012], |Chen et al. [2014], and |Guo et al.| [2014].
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Appendix A

Comparison of GermalNet Releases

This appendix summarizes all GermaNet versions that have been used during
the work on this dissertation. Information is provided on which GermaNet re-
lease serves as the basis for which task of this thesis and which release contains
which newly contributed information.

The development of GermaNet is still in progress, and it is released on a
yearly basis. That is, during the work on this dissertation, six official Germa-
Net releases have been published. Table in Section overviews coverage
numbers for the four relevant versions (releases 6.0 through 9.0). Each task in
this thesis relies on the most recent version of GermaNet that was available
when the corresponding work commenced. Thus, several GermaNet releases
serve as a basis for different tasks; and, vice versa, several manual and semi-
automatic extensions flow into new GermaNet releases. The corresponding
GermaNet versions are also specified in the thesis’ chapters for the described
tasks.

In all releases the GermaNet lexicographers add new entries for synsets and
lexical units for all three word classes of adjectives, nouns, and verbs, including
their relations[T] The following list provides specifics on each of the GermaNet
releases. It includes information on general, manual extensions (that are not

part of this dissertation) as well as on (semi-)automatic extensions created in

! Although several GermaNet extensions are created semi-automatically, this purely man-
ual, lexicographic work is not part of this dissertation. It rather forms the continuous process
of GermaNet development.
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the context of this thesis. The list also provides details on which GermaNet

release forms the basis for which extension or experiment in this dissertation.

GermalNet release 6.0 as of April 2011 serves as the basis for mapping
GermaNet with Wiktionary to harvest sense descriptions (see Chapter |4)).
Since this mapping builds the basis for the (semi-)automatic creation of
the sense-annotated corpus WebCAGe (see Section , the corpus is

initially sense-annotated with senses from GermaNet’s release 6.0

Automatic processing of nouns with the goal of splitting nominal com-
pounds is first performed on release 6.0 (see Section |3.6]).

On the manual side, the conceptual meronymy /holonymy relation is fur-
ther differentiated into the four subrelations of component, member, sub-
stance, and portion meronymy/holonymy — see Section as well as
Hinrichs et al.| [2013]. At the same time, the denotations of Germa-
Net relations are adopted for consistency with the Princeton WordNet
for English and for clearly indicating the direction of a relation. For
instance, the former ‘hyperonymy’/‘hyponymy’ relation is now ‘has hy-
pernym’/‘has hyponym’, the former ‘antonymy’ is now ‘has antonym’,

‘pertonymy’ changed to ‘has pertainym’, etc.

GermalNet release 7.0 (published in May 2012) is the first release which
contains sense descriptions from Wiktionary. GermaNet senses have been
mapped semi-automatically to Wiktionary sense descriptions with the
goal of extending lexical units in GermaNet with the respective descrip-

tions from Wiktionary (this sense alignment is described in Chapter 4]).

The first publicly released version of the web-harvested, (semi-)automati-
cally sense-annotated corpus WebCAGe (see Section refers to sense
identifiers from GermaNet 7.0.

Although GermaNet’s working copy has been stored in a relational
database since release 5.2 (see Appendix , a dump of the database

is in GermalNet 7.0 for the first time included in the official release

In Chapter |§|, the sense-annotations in WebCAGe are updated to release 9.0.
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package. This also facilitates the use of the GermaNet editing tool
GernEdiT (described in [Henrich and Hinrichs [2010a]), which was at

the same time made publicly available.

Another software tool made available is an API to calculate semantic
relatedness between senses in GermaNet. The implemented algorithms

are used in the knowledge-based WSD experiments in Chapter [7}

The interlingual index (ILI), initially created in the context of the Euro-
WordNet project, represents a mapping between wordnets of different
languages — see Section The German part of the ILI, which allows
the mapping of GermaNet senses to the corresponding entries in the
Princeton WordNet, has been manually revised and extended and it has

been integrated in GermaNet since release 7.0.

GermalNet release 8.0 was published in April 2013. This version serves as
a basis for the manual sense annotation of the TiiBa-D/Z treebank — as
described in Section 5.3 Updates to GermaNet resulting from this sense

annotation flow into GermaNet release 9.0[1

For the first time, GermaNet also includes information on split com-
pounds. A subset of nominal compounds was split into their constituents
(modifier and head) and labeled with linguistic information such as for-

eign words and named entities (see Section |3.6)).

Germalet release 9.0 as of April 2014 is the latest release available for the
work on this dissertation. It includes manual updates resulting from
sense-annotating the TiiBa-D/Z treebank (described in Section [5.3).

All sense-annotated corpora, i.e., WebCAGe, TiBa-D/Z, as well as
deWaC, used throughout the WSD experiments in Chapters [7] and

have been updated for this latest available version of GermaNet — see
Chapter [6]

For this release, all nominal compounds have been identified, split into

their constituent parts, and labeled with appropriate linguistic informa-

tion (as described in Section [3.6)).

'In Chapter @ the sense annotations in the treebank are updated to GermaNet 9.0.
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Appendix B

(GGermalNet’s Database Format

For GermaNet’s release 5.2 as of December 2009 the working development
copy of the resource is converted from lexicographer files into a state-of-the-
art relational database. The original database model (for GermaNet 5.2) is
summarized in [Henrich and Hinrichs [2010a|. This appendix presents the up-
dated database structure of the most recent version of GermaNet available at
the time of finishing the writing of this dissertation — which is release 9.0.
The model of the database follows the internal structure of GermaNet:
there are tables to store synsets, lexical units, conceptual and lexical relations,
etc. The model implies persistent database identifiers for all entries in Germa-
Net, including lexical units and synsets. The complete database structure for
GermaNet is shown as an entity-relationship diagram in Figure [B.1][] The suc-
ceeding list briefly explains each of the database tables and columns. Also see

Chapter [3] for details on information encoded in the GermaNet resource.

!Note that there are further database tables not shown in Figure because they do
not contain primary GermaNet data. These auxiliary tables are rather used internally by
GermaNet’s editing tool GernEdiT [Henrich and Hinrichs, 2010a], for example, to store the
editing history.
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Figure B.1
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e synset_table: Fach entry in this table represents a synset with all its
information. Synsets in GermaNet belong to a word class as well as to a

word category. Optionally, definitions can be assigned to synsets.
id: A unique identifier for this synset.

word_category_id: Specifies the unique identifier for the word cate-
gory (i.e., adj, nomen, or verben; see description

of word_category_table below) of this synset.

word_class_id: Specifies the unique identifier for the word
class (i.e., semantic field; see description of

word_class_table below) of this synset.

paraphrase: An optional description or definition of this

synset.

comment: An optional comment for this synset; mainly for

internal use during the lexicographic work.

e word_class_table: This database table stores all possible word Classe
(also referred to as semantic fields). Originally, the division into semantic
fields was for organizational purposes, i.e., to divide synsets into multiple
files. Since GermaNet’s conversion into a relational database, these seman-
tic fields are not organizationally required anymore, but rather serve as a

grouping of synsets into semantically related topics.
id: The unique identifier of this word class.

word_class: The semantic field itself, e.g. Artefakt ‘artifact’,
Bewegung ‘motion’, Geist ‘spirit’, etc. Table
in Section [3.2]lists all 38 semantic fields available

in GermaNet.

!Note that in GermaNet’s terminology, the term word class is used to refer to semantic
fields such as Artefakt ‘artifact’, Bewegung ‘motion’, etc., while the term word category is
used to refer to the more common sense of ‘word class’ such as adjective, noun, and verb.
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e word_category_table: Each synset is assigned a word category.

table stores the possible values for word categories.

id:

word _category:

A unique identifier for this word category.

Contains the value for the word class itself. Pos-
sible values are adj ‘adjective’, nomen ‘noun’, or

verben ‘verb’.

This

e lex_unit_table: Each entry in this table represents a lexical unit with all

its information. A lexical unit can have — besides its obligatory main ortho-

graphic form — further optional variants, which characterize the differences
between the old and the new German spellings (see Section .

id:
synset_id:

orth_form:

orth_var:

The unique identifier for this lexical unit.

Specifies the unique identifier for the synset to
which this lexical unit belongs. This identifier
can also be used to determine synonymous lexical
units, i.e., by taking all lexical units with the same

synset_id.

A lexical unit always encodes this main or-
thographic form, which represents the cor-
rect spelling of a word according to the rules
of the recently adopted German spelling re-
form (Neue Deutsche Rechtschreibung, Rat fir
deutsche Rechtschreibung| [2006]).

In the case of an alternative spelling that is per-
missible according to the new German spelling, a
lexical unit can optionally have an orthographic
variant. An example of this kind is the German
noun Delfin ‘dolphin’. Apart from the main form

Delfin, there is an orthographic variant Delphin.
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B GermalNet’s Database Format

old_orth_form: If the orthography of a word has changed in the
context of the spelling reform, the old ortho-
graphic form represents the main form from the

old German spelling.

old_orth_var: This encodes an orthographic variant that was
permissible prior to the spelling reform. It is en-
coded only if the variant is no longer valid in the

new orthography.

named_entity: Specifies whether this lexical unit is a named en-

tity or not.

artificial: Specifies whether this lexical unit is used to rep-

resent an artificial node in the graph.

style_marking: Specifies whether the style of this lexical unit is
marked —i.e., whether this lexical units represents

a stylistic variant.

comment: An optional comment for this lexical unit; mainly

for internal use during the lexicographic work.

e example_table: Each entry in this table represents an example that be-
longs to a lexical unit. Each example can have an associated verbal frame

that indicates a possible usage of the lexical unit for that particular frame.
id: A unique identifier for the example.

lex_unit_id: Refers to the unique identifier for the lexical unit

to which this example belongs.
text: The example sentence itself.

frame_type_id: Specifies the frame type of this example (op-
tional), see description of frame_type_table be-

low.
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e frame_table: Each entry in this table represents a syntactic frame that
belongs to a lexical unit. Frames specify the verbal frames of lexical units

— as described in Section
id: As before, a unique identifier for this frame entry.

lex_unit_id: The unique identifier of the lexical unit, to which

this frame belongs.

frame_type_id: Specifies the frame type of this frame, see descrip-

tion of frame_type_table below.

e frame_type_table: This table contains all possible verbal frames (see

Section .

id: A unique identifier.

frame: The frame type itself, e.g., NN.AN for subject
plus accusative object, NE for expletive subject
es ‘it’, or NN.DN. Az for subject and dative object

plus an optional infinitive clause with zu ‘to’ — as
described in Section @

o lex_rel_table: All lexical relations are stored in this table. A relation

connects a source lexical unit (from) with a target lexical unit (to). Also

see Section .

id: An identifier, as before.

rel_type_id: Specifies the type of lexical relation, see descrip-

tion of lex_rel_type_table below.

from_lex_unit_id: The source lexical unit from which this lexical

relation starts.

to_lex_unit_id: The target lexical unit to which this lexical rela-

tion goes.
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B GermalNet’s Database Format

e lex_rel_type_table: Here, all types of lexical relations are stored, as de-

scribed in Section .
id: Unique identifier.

name: The name of the lexical relation, i.e., has
antonym, has pertainym, or has participle, see
Section 3.3l Note that synonymy does not ap-
pear in this table, because the synonymy relation
is established indirectly by grouping synonymous
lexical units into synsets. That is, synonymy can
be determined by taking all lexical units with the

same synset_id.

direction: Specifies whether this lexical relation is valid in

one or both directions.

inverse: If the relation is valid in both directions, this col-

umn contains the name of the inverse relation.

e con_rel_table: This table contains all conceptual relations (see Ssec-
tion . Analogously to the encoding of lexical relations, this table con-

nects a source synset (from) with a target synset (to).
id: Unique identifier.

rel_type_id: Specifies the type of conceptual relation (see de-

scription of con_rel_type_table below).

from_synset_id: The source synset from which this conceptual re-

lation starts.

to_synset_id: The target synset to which this conceptual rela-

tion goes.
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e con_rel_type_table: Each entry in this table specifies one type of concep-
tual relation, as listed in Section

id: A unique identifier.

name: The name of the conceptual relation, e.g., has

hypernym, has member meronym, or entails (see

Section .

direction: Specifies whether this conceptual relation is valid
in one or both directions, or whether the relation
is valid in both directions, but with a different

inverse relation name.

inverse: Specifies the name for the conceptual relation in
the inverse direction, if the relation is valid in
both directions. For instance, if the relation name

is has hypernym the inverse name is has hyponym.

transitive: Specifies whether or not this conceptual relation

1S transitive.

e ili_table: This table contains the interlingual index (ILI) records which
map lexical units from GermaNet to corresponding synsets in the Princeton
WordNet; as explained in Section @

id: A unique identifier for this ILI record.

gn_lex_unit_id: The identifier for the lexical unit which is linked
to WordNet.

ewn_relation: Specifies the type of interlingual relation, e.g.,
synonymy, near-synonymy, hypernymy, etc. — see
the description of ewn_rel_table.

pwn_word: The corresponding English word from the Word-
Net synset belonging to pwn20_id, i.e., a transla-

tion of the GermaNet lexical unit gn_lex_unit_id.
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B GermalNet’s Database Format

pwn20_id:

pwn30_id:

source:

pwn20_paraphrase:

e ewn_rel_table: This table contains all possible interlingual relation types
from EuroWordNet which are used to link GermaNet to Princeton WordNet

(see Section ) :

id:

name:

The synset offset identifier from WordNet 2.0

matching the GermaNet lexical unit.

The NLP group of the Universitat Politécnica
de Catalunya provide automatically created map-
pings for several WordNet versionsH This synset
offset represents the WordNet 3.0 entry available
in this mapping for the corresponding WordNet
2.0 synset (pwn20_id).

Captures whether the data originates from the
EuroWordNet project or from the University of
Tiibingen.

The definition from WordNet belonging to the
synset identified by pwn20_id.

Unique identifier.

The name of the interlingual relation between
GermalNet lexical units and WordNet synsets,

e.g., synonymy, near-synonymy, hypernymy, etc.

— see Section @

1 Available at

http://www.talp.upc.edu/index.php/technology/

resources/multilingual-lexicons-and-machine-translation-resources/
multilingual-lexicons/98-wordnet-mappings.
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e ili_pwn20_synonym_table: This table contains all synonyms from Word-
Net for a given ILI record. It thus represents alternative translations for a

GermaNet lexical unit.
id: A unique identifier.
ili_id: The identifier of the ILI record from ili_table.

pwn20_synonym: A WordNet synonym from the synset specified in
the corresponding ILI record in ili_table identified
by ili_id.

e wkn_sense_table: This table contains harvested Wiktionary descriptions
assigned to GermaNet lexical units. The alignment between GermaNet and
Wiktionary is detailed in Chapter .

id: A unique identifier.

gn_lex_unit_id: The identifier for the lexical unit which
is linked to the Wiktionary sense repre-
sented by wkn_word_entry_id, wkn_sense_id,

and wkn_gloss.

wkn_word_entry_id: Identifier for a Wiktionary entry. This identifier
was assigned by the APIH used.

wkn_sense_id: Identifier for the Wikntionary sense inside a Wik-

tionary entry; again, this identifier was taken

from the APIH.

wkn_gloss: The Wiktionary sense description harvested for a

GermaNet lexical unit.

wkn_gloss_edited: Indicates whether the sense description from Wik-
tionary has been taken as it was or slightly altered

for GermalNet.

!The Java-based library JWKTL http: //www.ukp.tu-darmstadt.de/software/jwktl

was used to access all Wiktionary data.
2Ibid.
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e compound_table: This table contains information about the constituents
comprising nominal compounds, referring to a lexical unit. A compound
consists of a modifier and a head, each of which can have a property. In ad-
dition, modifiers also have categories. For some compounds, two alternative

modifiers exist. The encoding of compounds is described in Section @
id: A unique identifier for this compound entry.

comp_lex_unit_id: Identifier of the corresponding lexical unit in
lex_unit_table for which this compound informa-

tion is provided.
modifierl: Orthographic form of the first modifier.

mod1_property: Specifies a property of the first modifier (op-

tional). See compound_property_table.

mod1_category: Specifies the category of the first compound mod-

ifier (optional). See compound_category_table

modifier2: Orthographic form of the second modifier, if it

exists.

mod2_property: Optionally specifies a property of the second mod-

ifier.

mod2_category: Optionally specifies the category of the second

compound modifier.
head: Orthographic form of the compound’s head.

head_property: Optionally specifies a property of the compound’s
head.
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e compound_property_table: This table contains properties that might be
assigned for compound modifiers or heads. The complete list of properties,
including explanations and examples, is available in Table[3.3]in Section [3.6

It includes entries such as abbreviation, affizoid, or foreign word.
id: Unique identifier.

name: Contains a property for a compound constituent,

e.g., abbreviation, affizoid, or foreign word (also

see Table in Section .

e compound_category_table: This table contains categories such as adjec-
tive, adverb, noun, or particle assigned to compound modifiers. Table
in Section [3.6] provides a complete list of categories, including an example

for each category.
id: Unique identifier.

name: Specifies a category of a compound modifier, e.g.,
adjective, adverb, noun, or particle (see Table

in Section .

314



Appendix C

Gold Standards Lemma Lists

This appendix contains lemma-specific details for the gold standard corpora
described in Chapter [0 While knowledge-based word sense disambiguation
experiments can be evaluated on all available annotations, the annotations
employed for supervised WSD systems have to fulfill certain criteria — as de-
scribed in Section [6.1] That is, for each of the three sense-annotated corpora
deWaC, TiBa-D/Z, and WebCAGe, the entire set of annotations is used for
evaluating knowledge-based WSD (Chapter [7)) while only those annotations
which fulfill the criteria specified in Section are used for evaluating super-
vised WSD experiments (Chapter [§).

Altogether, this appendix includes five tables:

e Table lists all lemmas in WebCAGe 3.0’s supervised gold standard.
e Table shows details for all lemmas annotated in TtiBa-D/Z 9.1.

e Table provides details on the supervised gold standard subset of
TiBa-D/Z 9.1.

e Table presents all GermaNet 9.0 sense-annotated lemmas available
in the deWaC corpus.

e Table corresponds to the subset of sense-annotated lemmas in the
deWaC corpus that is used for supervised WSD experiments.
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While there are two tables for both the TiiBa-D/Z and deWaC listing (i)
all annotated lemmas and (ii) lemmas included in the supervised gold standard
subset, for WebCAGe only the list of lemmas included in the supervised gold
standard is presented, because it would be too much to list each of the 2708
lemmas contained in WebCAGe.

Each of the five tables follows the same template. They first list all adjec-
tives (if any), after the horizontal line all nouns, and finally all verbs (see first
column POS). For each of the word classes, the lemmas are sorted in decreas-
ing order of their number of annotated occurrences in the corresponding gold
standard. The overall number of annotations per lemma is stated in the fourth
columns, labeled with Freq. Besides these overall numbers of annotations per
lemma, the supervised gold standard tables, i.e., Tables [C.1] [C.3] and [C.5]

show the numbers of annotations contained in the training sets (in columns

Training set freq.) and in the test sets (columns Test set freq.).

While the third columns (labeled as GN) refer to the number of word senses
the lemma has in GermaNet, i.e., the lemma’s polysemy in general, the columns
marked with #s list the numbers of senses for which at least one annotation
exists in the gold standard. A superscript © indicates the existence of at least
one token for which no GermaNet sense is annotated. These cases occur,
for example, for idiomatic expressions or figurative meanings where it is not
obvious from the context which sense to chose. Due to the stratified approach
for sampling all annotated data into training and test sets (see Section ,
the count of occurring senses in the annotations (columns #s) is preserved for
training and test sets.

The ratio between the number of overall annotations and the number of
occurring senses is given in columns F /#SH It describes the average number
of annotated occurrences per word sense in the overall dataset. The average
annotations per sense in the training and test sets are proportionally smaller.
The division is supposed to be two thirds and one third of the overall average

of occurrences per word SQHSQH

I This ratio is especially important for supervised WSD experiments, and thus included
for the supervised gold standards.
2The calculation of the average numbers of annotated occurrences per sense for the train-
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C Gold Standards Lemma Lists

The columns labeled with Distr. (%) list the distributions of all occurring
word senses as percentages. For example, the most frequent sense of the noun
Frau in the TiiBa-D/Z occurs in 82 percent of all annotations for this lemma
(see Table . The other two senses occur in 10 and 8 percent. Due to
rounding, the percentages provided in the tables do not necessarily add up to
exactly 100. The first number in the Distr. columns is comparable to the most
frequent sense baseline, i.e., when the WSD system always assigns the sense
which has most occurrences in the annotations.

The counts of percentages (in columns Distr.) should theoretically match
the numbers of occurring senses (given in columns #s, also counting the oc-
currence of no sense from GermaNet indicated as superscript *). For those
lemmas where there are fewer percentage numbers listed than senses anno-
tated, 0 percentages due to rounding down infrequent senses were omitted.
For example, there are only 5 percentages listed in Table [C.2] for the noun
Land, although there are aﬂ senses for which at least 1 annotation exists in the
gold standard. That is, whenever there are fewer Distr. entries than occur-
ring senses, it can be assumed that the senses that are not listed occur very
seldomly.

Tableprovides details for each of the 43 lemmas (3 adjectives, 33 nouns,
and 7 verbs) remaining in WebCAGe 3.0’s supervised gold standard, which is
described in Subsection

Table C.1: 66 lemmas in WebCAGe’s supervised gold standard.

8 Lemma CN All supervised data Training | Test set
=¥ Freq. ‘ #s ‘ F/s ‘ Distr. (%) || set freq.| freq.
. | preufisch 2 83 2| 42 |964 56 27
T | beredt 3 28 | 2| 14 |57,43 19 9
< schamlos 2 17 2|9 |5347 12 5
Mut 3 184 | 2| 92 |91,9 123 61
2 San Marino 2 146 | 2 | 73 84,16 98 48
2 | Kongo 2 140 | 2 | 70 97,3 94 46
Z. | Option 2 129 | 2 | 65 |98,2 86 43
Dank 2 69 2 | 35 | 54,46 46 23

Continued on next page

ing and test sets are straight-forward — by respectively dividing the training set frequency
or the test set frequency by the number of annotated senses #s.
17 senses from GermaNet plus the no sense annotation.
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Table C.1: Continued from previous page.

8 Lemma CN All supervised data Training | Test set
=¥ Freq. ‘ #S ‘ F/s ‘ Distr. (%) || set freq.| freq.
Steuer 3 68 | 2 | 34 |81,19 46 22
Besetzung 3 62 3| 21 [89,6,5 42 20
Bogen 5 61 5 | 12 |48,21,16,10,5 41 20
Gemeinderat | 2 59 2 | 30 [95,5 40 19
Atrium 3 51 3 | 17 |55,27,18 34 17
Beichte 2 44 2122 (91,9 30 14
Eichel 2 39 | 2|20 |87,13 26 13
Wende 4 39 | 2| 20 |64,36 26 13
Export 2 29 | 2 | 15 (69,31 20 9
Harz 2 26 | 2 | 13 85,15 18 8
~| Pfote 2 26 | 2 | 13 |58,42 18 8
-dg Aspiration 3 24 2 | 12 | 88,13 16 8
.8 | Holocaust 2 23 2 | 12 165,35 16 7
£ |Hydraulik 2 || 23 | 2|12 [8317 16 7
S | Masche 2 20 | 2 | 10 |70,30 14 6
& | Explosion 2 19 | 2| 10 | 74,26 13 6
3 | Muft 2 18 [ 2] 9 |50,50 12 6
Z Disziplin 4 17 | 3| 6 |53,24,24 12 5
Ubermut 2 17 | 2] 9 |5941 12 5
Koks 2 16 | 2| 8 |69,31 11 5
Schopfer 3 16 | 2| 8 |56,44 11 5
Strang 2 16 | 2| 8 /63,38 11 5
Aufgebot 3 15 2 | 8 [5347 10 5
Berufung 5 15 3| 5 |47,27,27 10 5
Gefliigel 2 15 2 | 8 |80,20 10 5
Kluft 3 15 31 5 (33,33,33 10 5
Vatikan 3 15 2 | 8 |80,20 10 5
Verfall 4 15 2 | 8 [60,40 10 5
vergessen 2 45 2123 (91,9 30 15
abschieben 2 25 2 | 13 84,16 17 8
F: verarbeiten 3 24 | 3 | 8 [54,33,13 16 8
g | verdauen 2 19 2 | 10 163,37 13 6
? | wundern 2 17 | 2] 9 /6535 12 5
begehren 2 16 2| 8 [56,44 11 5
praparieren 2 16 2 | 8 [81,19 11 5
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C Gold Standards Lemma Lists

Table lists the entire set of 30 nouns and 79 verbs annotated in TiiBa-
D/Z 9.1 with lemma-specific details — see Subsection [6.4.2]

Table C.2: 109 lemmas annotated in TiiBa-D/Z 9.1.

8 Overall annotations

s Lemma GN Freq.‘#s‘Distr. (%)
Frau 3 1699 | 3 |82,10,8
Mann 3 1114 | 3 |90,8,2
Land 7 1112 | 7+|72,21,3,2,1
Partei 3 811 | 3 97,3
Haus 5 789 | 5 |81,9,8,2
Grund 5 460 | 5 |87,10,2,1
Stunde 4 426 | 4 |86,9,3,2
Stimme 4 289 | 4 |52,38,10
Mal 2 284 | 1 |100
Kopf 6 269 | 47(92,5,1,1
Band 6 159 | 5 |71,13,7,6,4
Tor 4 137 | 4 |40,39,20,1
Fuf 3 129 | 3 195,4,1

" Hohe 4 126 | 4 |64,22,8,6

g Freundin 3 122 | 2 165,35

ZO Anschlag 5 99 | 3%(95,2,2,1
Spur 5 94 | 5%(63,22,9,3,2,1
Bein 3 91 | 17]99,1
Runde 6 83 6 |43,24,18,8,5,1
Karte 4 76 4 150,38,9,3
Sender 5 76 4 171,14,9,5
Stuhl 3 60 3 [88,10,2
Ausschuft 2 50 1 1100
Bestimmung 6 48 4 (71,10,10,8
Gewinn 3 48 3 |75,17,8
Uberraschung | 3 42 3 (76,24,2
Teilnahme 3 37 1 | 100
Kette 4 25 4 |48,40,8,4
Abfall 4 24 2 196,4
Abgabe 5 24 3 (71,254
heiflen 4 801 | 4 |44,30,26
gelten 5 502 | 5 |53,35,7,4,1
setzen 14 || 404 | 9%|26,23,16,11,8,8,3,3,1

2 | erhalten 4 || 399 | 4+|61,21,19

ﬁ sitzen 7 345 | 67(66,11,10,8,3,2,1
fragen 2 344 | 2 | 78,22
aussehen 2 231 | 2 |83,18
reden 3 227 | 3%|83,8,6,3

Continued on next page
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Table C.2: Continued from previous page.

Overall annotations

n

8 Lemma GN Freq.‘#s‘Distr. (%)
sterben 2 220 | 2 |96,4
ankiindigen 2 211 | 2 |98,2
unterstiitzen 2 188 | 2 |95,7
bedeuten 3 187 | 3 196,3,1
verkaufen 5 186 | 47[81,11,6,1,1
verurteilen 2 180 | 27(85,14,1
leisten 3 176 | 3 |64,23,15
bauen 3 167 | 37(83,8,8,1
verschwinden | 2 159 | 2 | 53,47
griinden 4 148 | 4 |91,6,1,1
reichen 4 146 60,29,10,1
geschehen 2 145 | 2%197,2,1
herrschen 2 128 | 2 |195,6
préasentieren 2 127 | 2 |70,31
informieren 2 125 | 2 | 86,14
freuen 2 121 | 2 | 83,17
verdienen 2 115 | 2 | 71,29

__ | demonstrieren | 3 111 | 3 |59,26,14

T | holen 5 || 110 | 5|36,28,24,7.,4,1

Z | aufrufen 2 | 105 | 2 99,1

*g’ verfolgen 6 105 | 6 |30,28,12,11,10,9

L | weitergehen 2 101 | 2 |93,7

2| besitzen 2 99 2 167,33

& | versichern 3 99 | 3 [89,6,5

> vorliegen 2 96 2 81,19
enthalten 2 94 2 1919
liefern 4 93 | 47(41,29,18,10,3
erweisen 3 89 3 (89,74
existieren 2 88 2 99,1
dringen 3 84 3 143,32,25
behandeln 4 82 4 155,24,21,2
begriiften 2 79 2 71,29
beschranken 2 78 2 165,35
betragen 2 73 1 100
beraten 3 70 3 160,39,3
merken 2 62 2 189,11
entziehen 3 61 2 15248
widmen 2 60 2 150,50
empfehlen 3 58 3 190,9,2
gestalten 2 57 2 93,7
bekennen 2 54 2 161,39
wundern 2 54 2 | 74,26

Continued on next page
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C Gold Standards Lemma Lists

Table C.2: Continued from previous page.

n Overall annotations

8 Lemma GN Freq.‘#s‘Distr. (%)
auffallen 2 51 2 161,39
engagieren 2 51 2 | 78,22
raten 2 46 2 1964
riicken 2 45 2 176,24
bedenken 3 43 2 172,28
versammeln 2 42 2 | 55,45
vollziehen 2 42 2 160,40
erweitern 2 41 2 190,10
zugehen 6 41 | 47176,12,7,2,2
gestehen 2 40 2 150,50
berufen 2 39 2 59,41

='| klappen 3 39 2 97,3

§ kiindigen 2 || 39 | 277,26

‘= | trauen 4 39 4 146,33,15,13

S [stehlen 2 || 36 |1+|97.3

‘; verstolsen 2 36 2 97,3

=2 | zuriickgeben 2 36 | 2 (75,25

2 | rgern 2 36 | 2 |5347
befassen 2 35 | 2%(89,9,3
einschranken 2 35 2 194,6
identifizieren 3 34 3 [53,29,18
beschweren 3 33 21919
vorschreiben 2 31 1 1100
niitzen 2 29 2 197,3
kleben 2 28 2 161,39
verdoppeln 2 26 2 | 54,46
fressen 3 25 2 |64,36
wiedergeben 3 24 2 179,21
verlesen 2 21 1 100
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Table gives details of the supervised gold standard subset of TiiBa-D/Z
9.1, as explained in Subsection [6.4.3] This subset contains 24 nouns and 68

verbs, i.e., 92 lemmas altogether.

Table C.3: 92 lemmas in TiiBa-D/Z’s supervised gold standard.

8 Lemma CN All supervised data Training | Test set
o Freq.‘#s‘F/s‘Distr. (%) set freq.| freq.
Frau 3 1699 | 3 | 566 |82,10,8 1133 566
Mann 3 1114 | 3 | 371 (90,8,2 743 371
Land 7 1111 | 6% 159 | 72,21,3,2,1 741 370
Partei 3 811 | 3 |270(97,3 541 270
Haus 5 788 | 4 | 197 (81,9,8,2 526 262
Grund 5 458 | 4 | 115 |87,10,2,1 306 152
Stunde 4 || 426 | 4 |107(86,9,3,2 284 142
Stimme 4 288 | 3 | 96 |52,38,10 192 96
Kopf 6 268 | 3*| 67 93,5,1,1 179 89
Band 6 159 | 5 | 32 |71,13,7,64 106 53
" Tor 4 136 | 3 | 45 |40,40,20 91 45
g Fufs 3 128 | 2 | 64 |964 86 42
ZO Hohe 4 126 | 4 | 32 |64,22,8,6 84 42
Freundin 3 122 | 2 | 61 |65,35 82 40
Spur 5 91 4 | 23 |65,23,9,3 61 30
Runde 6 82 5 | 16 |44,24,18,9,5 55 27
Sender 5 76 4 | 19 |71,14,9,5 51 25
Karte 4 74 | 3| 25 (51,39,9 50 24
Stuhl 3 59 | 2| 30 |90,10 40 19
Bestimmung 6 48 | 4 | 12 |71,10,10,8 32 16
Gewinn 3 48 | 3 | 16 |75,17,8 32 16
Uberraschung | 3 41 2 | 21 |76,24 28 13
Abgabe 5 23 | 2| 12 74,26 16 7
Kette 4 22 2 | 11 |55,45 15 7
heifien 4 799 | 3 | 266 |44,30,26 533 266
gelten 5 502 | 5 | 100 |53,35,7,4,1 335 167
setzen 14 || 403 | 8T| 45 [27,23,16,11,8,8, 269 134
3,3,1
erhalten 4 397 | 3 |13260,21,19 265 132
2 sitzen 7 345 | 67| 49 |66,11,10,8,3,2,1 230 115
& | fragen 2 344 | 2 | 172 |78,22 230 114
” | aussehen 2 || 231 | 2 | 116 82,18 154 77
reden 3 227 | 3| 57 [83,8,6,3 152 75
sterben 2 220 | 2 | 110 |96,4 147 73
ankiindigen 2 211 | 2 | 106 |98,2 141 70
unterstiitzen 2 188 | 2 | 94 93,7 126 62
bedeuten 3 185 | 2 | 93 |97,3 124 61

Continued on next page
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C Gold Standards Lemma Lists

Table C.3: Continued from previous page.

8 Lemma CN All supervised data Training | Test set
& Freq. ‘ #S ‘ F/s ‘ Distr. (%) set freq. | freq.
verkaufen 5 184 | 3 | 61 |82,11,7 123 61
verurteilen 2 179 | 2 | 90 [85,15 120 59
leisten 3 176 | 3 | 59 |64,23,13 118 58
bauen 3 165 | 3 | 55 |84,8,8 110 55
verschwinden 2 159 | 2 | 80 |53,47 106 53
reichen 4 145 | 3 | 48 [61,30,10 97 48
griinden 4 144 | 2 | 72 |94,6 96 48
geschehen 2 143 | 2 | 72 |98,2 96 47
herrschen 2 128 | 2 | 64 |95,5 86 42
prasentieren 2 127 | 2 | 64 |70,30 85 42
informieren 2 125 | 2 | 63 |86,14 84 41
freuen 2 121 | 2 | 61 |83,17 81 40
verdienen 2 115 | 2 | 58 | 71,29 77 38
demonstrieren| 3 111 | 3 | 37 |59,26,14 74 37
holen 5 109 | 47| 22 |37,28,24,7,4 73 36
verfolgen 6 105 | 6 | 18 |30,28,12,11,10,9 70 35
weitergehen 2 101 | 2 | 51 |93,7 68 33
__| besitzen 2 99 2 | 50 67,33 66 33
Q| versichern 3 99 3| 33 [89,6,5 66 33
Z | vorliegen 2 1 96 | 2|48 |81,19 64 32
*g’ enthalten 2 94 | 2| 47 91,9 63 31
L | liefern 4 93 | 47| 19 [41,28,18,10,3 62 31
2| erweisen 3 89 3| 30 [89,7,4 60 29
3 | dringen 3 84 3 | 28 [43,32,25 56 28
? | behandeln 4 || 80 | 3] 27 |5623.21 54 2
begriiffen 2 79 2 | 40 | 71,29 53 26
beschrinken 2 78 2 | 39 165,35 52 26
beraten 3 68 2 | 34 160,40 46 22
merken 2 62 2 | 31 89,11 42 20
entziehen 3 61 2 | 31 [52,48 41 20
widmen 2 60 2 | 30 |50,50 40 20
empfehlen 3 57 2129 91,9 38 19
gestalten 2 57 2 | 29 93,7 38 19
bekennen 2 54 2 | 27 161,39 36 18
wundern 2 54 2 | 27 74,26 36 18
auffallen 2 51 2 | 26 161,39 34 17
engagieren 2 o1 2| 26 |78,22 34 17
riicken 2 45 2 | 23 |76,24 30 15
bedenken 3 43 2 | 22 72,28 29 14
versammeln 2 42 2 | 21 |55,45 28 14
vollziehen 2 42 2 | 21 |60,40 28 14
erweitern 2 41 2 | 21 |90,10 28 13

Continued on next page
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Table C.3: Continued from previous page.

8 Lemma CN All supervised data Training | Test set
s Freq. ‘ #S ‘ F/s ‘ Distr. (%) set freq.| freq.
gestehen 2 40 | 2 | 20 |50,50 27 13
berufen 2 39 | 2| 20 (59,41 26 13
kiindigen 2 39 | 2| 20 |74,26 26 13
__| trauen 4 39 4 | 10 |44,28,15,13 26 13
T | zugehen 6 39 | 3|13 [79,13,8 26 13
Z | zuriickgeben | 2 || 36 | 2 | 18 75,25 24 12
*g’ Argern 2 36 | 2| 18 |53,47 24 12
L | befassen 2 34 | 2| 17 91,9 23 11
2 identifizieren 3 34 3 | 11 [53,29,18 23 11
5 | beschweren 3 33 2 | 17 (91,9 22 11
> kleben 2 28 | 2| 14 61,39 19 9
verdoppeln 2 26 2 | 13 |54,46 18 8
fressen 3 25 2 | 13 64,36 17 8
wiedergeben 3 24 2| 12 179,21 16 8
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C Gold Standards Lemma Lists

Table [C.4] presents all GermaNet 9.0 sense annotations available in the
deWaC corpus. As outlined in Subsection [6.5.3 these annotations comprise

37 lemmas (of which 4 are adjectives, 18 are nouns, and 15 are verbs).

Table C.4: 37 lemmas annotated in deWaC.

N Overall annotations
8 Lemma GN Freq. | #s | Distr. (%)
frei 9 30 8 137,30,10,7,7,3,3,3
-_:—;, fein 6 20 3 |70,25,5
< | kiihl 2 20 2 180,20
natiirlich 5 20 3 145,35,20
Schaltung 5 30 4 153,40,3,3
Zug 11 30 5 |43,37,13,3,3
Nutzen 3 25 2 160,40
Anfall 2 20 2 | 75,25
Arbeit 4 20 2 160,40
Aufschlag 4 20 2 | 55,45
Autoritat 2 20 2 |55,45
“ Bar 3 20 1 (100
g Blende 3 20 | 2%]55,25,20
2 Einrichtung | 4 20 3 |75,15,10
Halt 4| 20 | 4 |45,25255
Kanal 5 20 | 4%(30,25,20,15,10
Natur 3 20 2 |70,30
Ohnmacht 2 20 2 165,35
Post 3 20 2 180,20
Sinn 3 20 2 190,10
Spiel 6 || 20 |5%]55,15,10,10,5,5
Stuhl 3 20 3 [80,15,5
halten 26 || 127 |197]35,9,9,9,6,6,5,4,2,2,2.2,2.2.1,1,1,1,1,1
spielen 15 75 | 8t(41,21,21,54,3,1,1,1
sehen 11 60 8 [23,18,17,13,12,12,3,2
treiben 11 || 53 | 8 [34,25,15,13,8,2,2,2
fahren 6 35 4 146,46,6,3
aufschlagen | 8 30 | 67(37,30,17,7,3,3,3
2| finden 4| 30 | 4 |57,27,133
5 leben 4 30 3 167,30,3
? | passen 5 30 | 4 [80,13,3,3
tragen 11 30 7 140,33,10,7,3,3,3
verlassen 3 30 3 |80,13,7
arbeiten 4 20 4 185,5,5,5
benutzen 3 20 2 190,10
freimachen | 4 20 3 190,5,5
greifen 3 18 | 27(61,22,17
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Table lists the subset of 31 sense-annotated lemmas (4 adjectives, 15
nouns, and 12 verbs) in the deWaC corpus that is used for supervised WSD
experiments. See Subsection for a description.

Table C.5: 31 lemmas in deWaC'’s supervised gold standard.

8 Lemma CN All supervised data Training | Test set
o Freq. ‘ #8 ‘ F/s ‘ Distr. (%) set freq. | freq.
frei 9 23 3 | 8 [48,39,13 16 7
,-_53 kiihl 2 20 | 2 | 10 [80,20 14 6
< | natiirlich 5 20 | 3| 7 [45,35,20 14 6
fein 6 19 | 2 | 10 |74,26 13 6
Schaltung 5 28 2 | 14 |5743 19 9
Zug 11 28 31 9 |46,39,14 19 9
Nutzen 3 25 2 | 13 60,40 17 8
Anfall 2 20 | 2| 10 75,25 14 6
Arbeit 4 20 | 2 | 10 |60,40 14 6
Aufschlag 4 20 | 2 | 10 |55,45 14 6
2 Autoritat 2 20 2 | 10 |55,45 14 6
3 |Blende 3 20 2] 7 |55,25,20 14 6
Z. | Natur 3 20 | 2 | 10 |70,30 14 6
Ohnmacht 2 20 2 | 10 165,35 14 6
Post 3 20 | 2 | 10 [80,20 14 6
Halt 4 19 | 3| 6 |47,26,26 13 6
Stuhl 3 19 | 2 | 10 |84,16 13 6
Einrichtung| 4 18 2|1 9 (8317 12 6
Kanal 5 18 | 4 | 5 |33,28,22,17 12 6
halten 26 115 | 11| 10 |38,10,10,10,7,6,5,4,3,3,3 i 38
spielen 15 70 | 47| 14 |44,23,23,6,4 47 23
sehen 11 57 6 | 10 [25,19,18,14,12,12 38 19
treiben 11 50 | 5 | 10 [36,26,16,14,8 34 16
fahren 6 32 2 | 16 |50,50 22 10
_§ finden 4 29 | 3| 10 [59,28,14 20 9
§ leben 4 29 | 2| 15 (69,31 20 9
passen 5 28 2 | 14 86,14 19 9
verlassen 3 28 2 | 14 86,14 19 9
aufschlagen | 8 25 | 27| 8 [44,36,20 17 8
tragen 11 25 3 | 8 [48,40,12 17 8
greifen 3 18 | 2| 6 |61,22,17 12 6
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Appendix D

WSD Results on Test Set versus
Results by Cross-Validation

The two main approaches to evaluate the performance of supervised algorithms
are by cross-validation or on a separate, unseen test set (see Subsection m
for details, including advantages and disadvantages of the two procedures).
Since the availability of sense annotations is sparse, the tuning of the super-
vised machine learning WSD systems in Chapter [§] is evaluated by 10-fold
cross-validation on all available training data. During this tuning process, the
test set is held back and used only to obtain final evaluation results. In order
to realistically, meaningfully, and accurately estimate the algorithms’ ability to
generalize after several experiments, the WSD experiments reported in Chap-
ter |8is evaluated on separate test sets for each of the available sense-annotated

corpora.

In order to judge the impact of the two evaluation procedures and to ana-
lyze how much the evaluation results differ for the two procedures, Table [D.1
compares the results obtained on separate test sets (marked with Test set
in column Ewal. type) with the results obtained by 10-fold cross-validation on
all available training data (marked with 10-CV'). Analogously to Table
in Subsection Table includes WSD performance scores in terms of

the Fi-measure separately for the available sense-annotated corpora and the
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supervised classiﬁers.ﬂ

In general, the performance results reported for the separate test sets are
minimally higher than those obtained by cross-validation. However, there are
only small differences — mostly below 2.0 F;-score points. This confirms the

viability of the proposed evaluation procedure for the task at hand.

Table D.1: Comparison of WSD results evaluated by cross-validation compared
to results obtained on separate test sets (F-score).

Classifier | =¥ | WebcAGe | TiBa-D/Z| TiBa-D/Z | 4 w. -
type (manual) | (automatic)
” 10-CV [76.37 74.26 74.26 52.76
3.3 i~ =~ 0.6
S| ZeroR | et set | 79.72 2 PP {7425 Y | 7425 2 5331 0"
2 10-CV |65.43 64.41 53.95 40.42
S| OneB | oot 16486 © 00 6542 2 10 5a6a 20T | 43000 ¢ T30
" 10-CV [ 80.66 86.29 81.62 56.66
5.7 0.5 13 0.2
E PART | Tt set | 8636 © 07 |86.78 © 00 82,05 ¢ 13 | 56.45
= | Decision- | 10-CV | 80.57 85.57 81.06 1.4 55.84
S| Table | Test set |81.12 ° "0 5608 277 8249 21 [ 5679 27
3 10-CV 8150 87.26 82.24 58.98
6.8 0.5 1.6 1.3
Sl M8 | Test set | 88.29 2 08 8775 2 0 | 8379 2 T 5o 4T
> 10-CV 180,91 80.04 78.42 56.82
N 3.2 1.7 1.1 3.5
ZlIBE gt set | 84.00 2 32 8176 2 T 7049 2T | 6oi2s 4T
Naive- | 10-CV | 85.53 82.74 80.25 57.63
) 3.6 1.3 0.5 0.9
2| Bages | Test set [89.16 ° %8406 ¢ 7 8079 2 0P | 5854 0"
2 Bayes- | 10-CV | 84.52 86.65 83.00 60.23
i 5.0 0.8 0.9 0.1
S| Net | Testset|89.51 0 0 8748 2 0% [guga 2100 | gps 0
S 10-CV |86.21 81.28 79.02 56.08
st : 3.5 8L 08|79 17 | 9698 5 54
A Logistic | pot ot 1 89.60 © 50 | 82.03 2 0% 80068 ¢ HT | 5366 ¢
10.CV |87.22 87.68 84.02 62.18
4.0 0.8 0.4 1.6
= SMO | st set [ 91.26 © 40 | 8851 ¢ 08| 8532 ¢ 704 | g376 2"
= 10-CV [81.83 7917 7649 o, 53085 o,
LibSVM | pect set | 85.14 © >3 17065 ¢ 0% | 76.63 ¢ 10 | 5331 21
= 10.CV [86.21 87.35 83.06 60.55
@ 6.5 1.3 1.5 2.2
2| YO Test set | 92.66 Q105 ga oy 2T gy 4TS g 2T
= Ada- | 10-CV [84.02 8431 80.72 51.92
1.1 . . 1.
S| Boosthr1 | Test set |85.14 11 8403 ¢ 00| 8133 2 100 | 56709 2 10

IThe WSD results reported for separate test sets in Table correspond to the results
reported in Table The reason why the numbers in the two tables are not identical is
because Table[8.4]reports separate numbers for adjectives, nouns, and verbs, while Table[D.]]
presents average numbers over all word classes.
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