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Summary 

In women breast cancer still is the most prevalent cancer and one of the 
leading causes of death. Progesterone receptor membrane component-1 
(PGRMC1) highly more expressed in cancerous breast tissue than in benign 
surrounding breast tissue may be involved in tumorigenesis and increase 
breast cancer risk. In recent investigations it could be shown that estrogens 
and certain synthetic progestogens can induce an increased proliferation rate 
in breast cancer cells via PGRMC1 suggesting a possible importance of the 
kind of estrogen and progestogen in terms of breast cancer risk when used as 
hormone therapy in the postmenopause. However, the detailed mechanisms 
through which PGMRC1 mediates proliferative effects elicited by 
progestogens and regulating its expression are still little known. It remained 
elusive whether PGRMC1 is secreted by breast cancer cells into plasma and 
thus might be used for cancer risk screening. Here we analyzed PGRMC1 
expression and the proliferative effect of progestogens in various breast 
cancer cell lines. In BM cells (endogenous estrogen receptor (ER-α) and 
PGMRC1), medroxyprogesterone acetate (MPA), norethisterone (NET), 
levonorgestrel (LNG) and drospirenone (DRSP) significantly increased the 
proliferation. However, these progestogens didn’t obviously alter the 
proliferation of SUM225CWN cells (only endogenous PGRMC1). In MCF-7 
breast cancer cells, the presence of PGRMC1 can sensitize E2-induced PS2 
mRNA levels, an estrogen response element. Interestingly it could be shown 
for the first time that certain progestogens such as NET also were able to 
induce an enhanced PS2 expression in MCF-7/PGRMC1 cells. No effect was 
found for progesterone. Addition of NET to E2 did not obviously alter the PS2 
mRNA levels as compared with E2 only. This effect of E2 and NET could be 
blocked by antagonists of ER-α, PGRMC1 and CK2, a kinase which is involved 
in cell proliferation, the effect being highest for the ER-α-antagonist. In order to 
elucidate the possible involvement of RANK/RANKL, its expression was 
investigated in various breast cancer cell lines. However, the expression of 
RANK and RANKL couldn’t be detected in these cell lines using western blot. 
Estradiol and progestogens didn’t significantly change cell proliferation and 
RANKL expression in ER-α negative, RANKL overexpressing cells. In 
co-cultures of MDA-MB-231 and MCF-7/PGRMC1 cells with osteoblast-like 
cells no induction of RANKL expression was found in the breast cancer cells. 
Thus the possible involvement of RANK/RANKL in the PGRMC1 mediated 
progestogenic effect remains unclear. To elucidate probable mechanisms on 
the influence on endogenous PGRMC1 expression, MCF-7 cells were 
transfected with a mimic of miRNA let-7i, since let-7i is considered as a tumor 
suppressor to inhibit malignant growth of cancer cells. We demonstrated that 
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let-7i targets PGRMC1 and inhibited endogenous PGRMC1 mRNA expression. 
Further, an analysis of PGRMC1 expression in the supernatant of breast 
cancer cells by western blot revealed that PGRMC1 could be secreted by 
these cells. However, first investigations with plasma samples from women 
with and without breast cancer weren’t successful in detecting PGRMC1.  
 
In summary we conclude from these results that ER-α may play an important 
role in the signal transduction of PGRMC1 activated by estradiol and 
progestogens, and PGRMC1 may participate in the ER-α/PS2 pathway. 
PGRMC1 expression might be regulated by a complex mechanism that might 
involve the suppressive action of miRNAs, e.g. let-7i, which could become a 
therapeutic target. Moreover, PGRMC1 might be a potential predictive 
biomarker for breast cancer risk especially in postmenopausal women using 
hormone therapy.  
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1. Introduction 

Progesterone receptor membrane component (PGRMC) is a member of 

membrane associated progesterone receptor (MAPR) family, which is widely 

distributed in eukaryotic organisms [1], it includes PGRMC1 and PGRMC2. 

PGRMC1 is a highly conserved ligand protein including a transmembrane 

region on N-terminal and a cytochrome b5 region. 

1.1 PGRMC1: discovery and localization 

In 1996, PGRMC1 was initially extracted from membrane fragments of mice 

hepatic [2], and was indicated that PGRMC1 distributed in the endoplasmic 

reticulum of hepatic extracts.  

1.1.1 Discovery and nomenclature 

The protein named PGRMC1 was purified in 1996 by Falkenstein and his 

colleagues [3]. In this year, Selmin and colleagues reported this gene 

sequence was aroused in 2,3,7,8-tetrachloro dibenzodioxine (TCDD) treated 

mice hepatocytes and named 25-Dx [4].  

 

In 2001, Falkenstein and colleagues [5] found that this protein was decreased 

from 56 kDa to 28 kDa through reducing agent dithiothreitol (DTT). In 2005, 

Selmin and coauthors named the 25-Dx as mPR [6]. Runko et al. reported that 

the antigen bound to the monoclonal antibody, which recognized Ventral 

Midline Antigen (VEMA). This PGRMC1 protein of mice was termed VEMA in 

their results [7]. PGRMC1 was an immunodominant antigen and termed Inner 

Zone Antigen (IZA) [8]. 
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In 2004, Runko and colleagues identified a lower eukaryotic PGRMC1 

homolog, named VEM-1 in Caenorhabditis elegans nematode. By a transgenic 

null mutation it was demonstrated that VEM-1 was intervened in the 

conduction of neurons and neuritogenesis in the nematode ventral midline [9]. 

In unicellular eukaryotes as Saccharomices cerevisae yeast, PGRMC1 

homolog, named Dap1 (damage-associated response protein), has been 

found to interfere with cytochrome P450 sterol synthesis and avoid DNA 

destroyed [10, 11]. The protein ‘Putative steroid receptor’ is also a PGRMC1 

homolog [12, 13]. 

 

In conclusion, the construction Phylogenic Tree depended on the resemblance 

of PGRMC1-related members of the MAPR family shows a wide eukaryotic 

distribution, but doesn’t distribute in prokaryotes [1].   

1.1.2 Subcellular localization 

PGRMC1 was first discovered to localize in the endoplasmic reticulum of 

hepatocytes [14]. In human MCF-7 cells, PGRMC1 was observed in 

perinuclear localization, consistent with endoplasmic reticulum [15]. Beausoleil 

and colleagues found PGRMC1 expression in nucleus of HeLa cells [16], the 

next year Sauer and co-workers observed phosphopeptides in PGRMC1 from 

spindles [17]. Raza and others identified 28 kDa form in microsomal and 58 

kDa in cytoplasm fractions of mice adrenal gland [8]. Immunohistochemistry 

(IHC) studied on Pukinje cells recommended PGRMC1 was localized in 

endoplasmic reticulum and Golgi apparatus [18].  

 

In SIGC cells, PGRMC1 was distributed upon the cells surface [19, 20]. 

PGRMC1 was located on the surface of sperm, since some antibodies may 

hold back progesterone initiated acrosome reaction [21, 22]. PGRMC1 

expression was increased in spinal cord-injured rats after progesterone 
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treatment, and the protein was immunolocalized on the membrane of neuronal 

cells [23]. Leel and colleagues suggested that PGRMC1 could be converted 

from membrane bound to cytoplasm forms [24].  

1.2 Structure and functional model of PGRMC1 

The specific proteins, which PGRMC1 interacts with are closely related to their 

subcellular localization. 

 

Some direct proteins that interact to PGRMC1 were observed in mammalians, 

while other proteins were demonstrated in lower organisms. PGRMC1 can 

interact with itself and compose dimer formation. Suchanek and colleagues 

detected that PGRMC1 was directed to constitute cross-linked homodimerics 

[25]. In 2005 Suchanek et al. demonstrated an interaction between 

co-transfected and affinity-tagged PGRMC1 and Plasminogen activator 

inhibitor RNA-binding protein 1 (PAIRBP1) [25]. PGRMC1 was participated in 

the progesterone-mediated inhibition of apoptosis in expression PAIRBP1 

cells [19, 20]. The cytoplasmic progesterone receptor (PR) didn’t present on 

granulosa/luteal cells after progestogen retreated. PR blocker RU486 could 

not prevent the action of progestogen anti-apoptosis. Nevertheless, PGRMC1 

and PAIRBP1 antibodies could block the role of progestogen, indicating that 

PGRMC1 or PAIRBP1 involved in the effect of progesterone [26]. 

 

Suchanek and coworkers also demonstrated the interactions among PGRMC1 

and SREBP cleavage-activating protein (SCAP), Insig-1 in COS7 cells [25]. 

Insig-1 and SCAP was participated in the feedback control process, which 

regulated cholesterol synthesis through increasing sterol regulatory element 

(SRE) and SRE-binding protein (SREBP) [27-30]. 

 

In mammals, PGRMC1 is involved in steroidogenesis. The repression of 
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does-dependence occurred the presence of the IZA (synonym of PGRMC1) in 

mice microsomal fraction [31]. In steroid tissues, IZAgs (PGRMC1) localization 

indicated that PGRMC1 was participated in the synthesis and metabolism of 

steroids [8]. 

 

Wright et al. observed that PGRMC1 bound to glucocorticoid site localized rat 

liver microsomes [32]. The result indicated that this site combined to the 

glucocorticoid and was contested by a variety of complexness such as 

progestogen and metyarapone.  

1.2.1 Structural model 

A pattern according to the homologous Arabidopsis 1J03 by Cahill, shows the 

composition of PGRMC1 [1].  N- and C-terminal areas of cytochrome b5 

region were located in the identical side, which formed a relatively protein 

binding pocket. Accordingly the N-terminal of PGRMC1, CK2 and SH3 target 

motif were likely to overlap each other in associated PGRMC1 structure. 

Similarly, CK2 and SH2 target motifs were situated on the contrary sides of 

binding-sites for ligand. It indicates that PGRMC1 may interact with 

corresponding proteins via binding sites. Therefore, it was suggested that the 

binding of ligand might influence the assumed interacting motif of PGRMC1. 

(Fig. 1) 
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1.2.2 Functional model 

As previously mentioned, the motif of protein putatively connected with 

signaling is suggestive that PGRMC1 is participated in membrane transport 

and signal transduction functions. Noticeable, the motifs of SH3 and SH2 could 

cause protein centered on cell membrane and facilitate the activity of cells. It 

offered a model of PGRMC1 as a ligand signal transduction protein. In this 

hypothetical model of the CK2-phosphorylated state, N-terminus of SH3 

domain and C-terminus of SH2 domain could be phosphorylated by CK2, but 
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didn’t react with other proteins. Because the CK2 C-terminus was 

conservatived and overlapped with SH2 domain, CK2 may regulate these 

domains function. Moreover it was observed that the dephosphorylated CK2 

domain may relocate PGRMC1. If the SH2 domain is participated, tyrosine 

phosphorylation could occur simultaneously. It is supposed that the interaction 

of the presumed domains are adjusted through tyrosine phosphorylated Y112 

and ligand pocket [1]. (Fig. 2)   
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1.3 PGRMC1 and disease 

PGRMC1 was initially cloned as the dioxin induced gene, suggesting that it is 

involved in stress-alleviation or stress response. Progesterone has 

neuroprotective effects. Labombarda et al. have observed that PGRMC1 

expression was increased when injured mice was cured with progestogen [23], 

and PGRMC1 expression was is detected in encephalon, which was increased 

after trauma [33]. Notwithstanding steroids did not combine to PGRMC1 

directly, it bound to other protein compounds and affected steroid hormone 

synthesis through the metabolism of cholesterol. PGRMC1 was detected in the 

has been detected in the T-lymphocytes [34]. PGRMC1 may be involved in the 

disease of the immune system.  

 

So far more research is focused on the relationship between PGRMC1 and 

cancer. PGRMC1 expression is higher in several cancers or tumor cells such 

as breast, thyroid, cervix, colon, and lung [35] than normal tissues. In 2005, 

Craven et al. suggested that PGRMC1 pertained to gene that regulate 

sensitivity of tumor cell to antineoplastic drugs [36]. Furthermore, it is 

suggested that PGRMC1 was involved in the regulation of chemo-sensitivity 

[37]. However PGRMC1 plays an effect of the connector proteins regardless of 

its combining targets. PGRMC1 is involved in the UNC-40/DCC receptor, 

which is in signal transduction. UNC-6/Netrin is related with the dependent 

receptor UNC-40/DCC In C. elegans. These cause apoptosis or survival 

response. The signal path of UNC-40/DCC, UNC-5 and Netrin are crucial to 

carcinogenesis in mammals. Netrin leads to apoptotic. Therefore UNC-5 and 

UNC-40/DCC are thought to be a cancer suppressor, which absence could 

cause tumor [38-41].  

 

This could be involved in neoplastic status. Signal transduction demands the 
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accumulation of proteins in enriched cholesterol and insoluble detergent which 

named lipid rafts [42]. Nevertheless, every presumed influences of PGRMC1 

to neoplasm are not certainly related with the raft and cholesterol. Therefore 

the pathway of mevalonate that prevents HMG-CoAR function was discovered 

for anti-tumor therapy [43-45]. 

1.3.1 PGRMC1 expression in breast cancer 

Breast cancer is the most prevalent tumor worldwide. PGRMC1 is more highly 

expressed in breast tumor tissue than non-malignant organizations. 

Nevertheless, PGRMC1 expression is usually detected within stromal tissue 

[23]. Crudden and coauthors suggested that PGRMC1 expression is higher in 

is breast cancer than relevant non-tumor tissues [35]. But Ji and coworkers 

showed that the expression of PGRMC1 ranged from minimal to strong in 

breast tumor tissues according to IHC and didn’t exist in normal mammary 

gland [46]. Multivariate analysis showed that PGRMC1 was a prognostic factor 

for breast tumor. PGRMC1 expression was strongly correlated with the 

progression of breast tumor, and may serve as a useful prognostic indicator of 

malignancy [46]. However, Causey and coworkers investigated 28 breast 

tumor specimen and 10 corresponding non-tumor tissues by RelqPCR and   

found that PGRMC1mRNA decreased observably with patient age [47]. The 

different results may be due to different detection methods, as mRNA levels 

are not always fully translated into protein levels. Another possible reason may 

be that different ethnic groups have been investigated, one from China [46], 

while the other was from the USA [47]. Therefore, it is necessary that more 

studies among different countries take the same methods. Neubauer and 

colleagues detected that the expression of PGRMC1 is elevated in ER 

(estrogen receptor)-negative breast cancer [48]. Neubauer and colleagues 

found that PGRMC1 expression colocqalizes with hypoxia in DCIS. Therefore, 

PGRMC1 levels may affect cell survival in response to stress conditions and 
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have a predictive value for prognosis [48, 49].  

1.3.2 Proliferative effect of progestins on breast cancer via PGRMC1   

We have been performing in vitro experiments with MCF-7 cells 

over-expressing PGRMC1. The results indicate that PGRMC1 mediates 

progestin dependent proliferative effect in these cells. The natural 

progesterone and progestogens applied to hormone therapy are distinct in 

proliferative effects on MCF-7 and MCF-7 WT12 (MCF7/PGRMC1) cells: 

progesterone, chlormadinone acetate (CMA) and nomegestrol act neutrally, 

whereas dienogest, drospirenone, dydrogesterone, MPA and norethisterone 

increase cells proliferation and may increase breast cancer risk. In WT-12 cells, 

the same progestins, detected a significant increase compared with MCF-7. 

The highest proliferation was observed in NET. Certain propestogens elevated 

the proliferation of PGRMC1 over-expressing cells [50]. The influence of 

progestins on proliferation might rely on their particular pharmacology. Then 

we investigated the influence of different concentrations of E2 as well as the 

present of the progesterone or progestins on MCF-7 cell lines over-expressing 

PGRMC1: MPA [51], P [51, 52], NET [52] and NOM [52]. E2 caused a 

significant does-dependent proliferation in WT-12 cells. Progesterone 

combined with E2 has no influence at any of E2 concentration. But, MPA 

indicated a pronounced proliferative effect at a low E2 concentration. NET 

significantly stimulated cell proliferation more pronounced in the continuous 

combined with E2 model than the sequential. No effect was seen for NOM, and 

P [52]. It may be concluded that NOM and P bound with E2 are neutral in the 

risk of mammary tumorigenesis at least in women over-expressing PGRMC1. 

In the mouse model, MCF-7/PGRMC1-inoculated cells were more sensitive 

towards E2 and shown a stronger proliferative response in the presence of 

norethisterone as compared to MCF-7 comprising carrier control. It suggested 

that over-expressing PGRMC1 cells could be easily formed into cancer in 
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women to receive NET/E2 treatment [53]. In the blocking experiment, only the 

presence of estrogen receptor antagonist fulvestrant was able to totally block 

the EP effect combination, i.e. E2 plus NET. Partial significant inhibitory effects 

could be found in the presence of AG205 (PGRMC1 antagonist), no effect was 

observed for PR A/B antagonist (RU486) [52]. Thus might make a significant 

effect in signal transduction of PGRMC1 activated via estrogen or progestins.      

1.3.3 Probable mechanism of PGRMC1 proliferation 

The mechanisms through which PGMRC1 mediates proliferative effects 

stimulated by progestins and may participate in tumorigenesis are still 

uncertain. Some studies suggested that PGRMC1 participates in signal 

transduction of protein kinases, which increased Akt activation through 

PGRMC1 and IkB phosphorylation and leads to NFkB activation [15]. PDK1 

phosphorylates and PGRMC1 contains binding sites for PDK1 [1]. However, 

the mechanism is still unclear. PGRMC1 contains several potential docking 

sites for binding proteins such as PDK1, which could increase Akt activation. A 

membrane-impermeable progesterone conjugate results in an increased 

cellular Ca2+ and the following phosphatidylinositol-3-kinase results in ERK1/2 

and PKC phosphorylation [54, 55]. However, PGRMC1 could induce ERK2 

phosphorylation. So ERK2 participates in the inhibitive feedback of signaling 

via the adjacent SH2 protein motif. To elucidate the probable mechanisms, the 

expression level of 15 downstream proteins of the signal transduction 

pathways were detected with reverse-phase protein array technology, and 

confirmed by western blot. The expression level of ERK1/2 in MCF-7 WT12 

was lowered by about 40% than that of MCF-7. However, the expression of 

ERK1/2 did not alter by stimulation of cells with progestins [54]. In rat neural 

progenitor cells, Liu and coworkers suggested that progesterone induces a 

PGRMC1-dependent cell proliferation via the ERK signaling pathway [56]. 

PGRMC1 can bind to P450 proteins [11], Insig-1 [25]. In summary, different 
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amounts of phosphorylated PGRMC1 may influence the tumor physiology [1]. 

According to the result of receptor blocking experiment, ER-α might make a 

significant effect the signal transduction of PGRMC1 activated via progestins. 

It is still unknown how PGRMC1 acts. Therefore, more and further studies are 

needed. 
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1.4 Aims of the studies  

PGRMC1 is highly expressed in several tumors, such as thyroid, ovary, colon, 

lung, and breast cancer. From the studies published so far, it became evident 

that PGRMC1 is required for tumor cell anti-apoptotic, proliferation, metastasis, 

and invasion. However, it remains elusive how PGRMC1 regulates the 

proliferation elicited by progestins and whether PGRMC1 is secreted by breast 

cancer cells. In spite of PGRMC1 plays a pronounced effect in tumorigenesis, 

the detailed mechanisms regulating its expression remain unclear so far. 

 

The purpose of this work was to study PGRMC1 expression and the influence 

of estradiol and different progestins on various breast cancer cells. Moreover, 

the effect of PGRMC1 in E2-induced PS2 expression was analyzed. It is not 

sure, if the various cell lines constitutively express Receptor Activator for 

Nuclear Factor κB Ligand (RANKL) whereas Receptor Activator of Nuclear 

Factor κB (RANK) and Osteoprotegerin (OPG) are detected in various breast 

cancer cell lines. Therefore, we planned to screen various cell lines for RANK 

and RANKL expression such as MCF-7, T47D, HCC70, HCC202, AR, BM and 

SUM225CWN. 

 

In addition, we further studied the regulatory mechanism that effects the 

expression of PGRMC1 in breast tumor cells, whether let-7i influences the 

mRNA level of PGRMC1. Furthermore, the presence of PGRMC1 protein 

(fragments) in cell culture supernatant was detected to develop a method to 

measure PGRMC1 expression from body fluids. 
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2. Materials and Methods 

2.1 Materials  

2.1.1 Chemicals and biological reagents 

Actin antibody (I-19)-R (Santa cruz, US) 

Agarose LE (Biozym, US) 

Albumin Standard (Thermo, US) 

Blue separopore CL-6B (Bio-world, Dublin) 

BCA protein assay reagent kit (Thermo, US)  

Chloroform (AppliChem, Germany) 

Coomassie brilliant blue R250 (Sigma, US)  

D-(+)-Glucose solution (Sigma, US) 

DMEM medium (Gibco, US)  

DMSO (AppliChem, Germany) 

DMSO (Sigma, US) 

Donkey anti-goat IgG-HRP (Santa cruz, US) 

DPBS (Gibco, US)  

ECL western blotting analysis system (Amersham, UK) 

ER-α antibody (H-184) (Santa cruz, US) 

Estradiol (Sigma, US)  

Ethanol (Merck, Germany)  

Fetal bovine serum (Gibco, US) 

Formaldehyde (Roth, Germany)  

GAPDH primer (Qiagen, Germany) 

Goat anti-mouse IgG-HRP (Santa cruz, US) 

Goat anti-rabbit IgG-HRP (Santa cruz, US) 

G418 sulfate (Merck, Germany) 
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HEPES buffer solution (Gibco, US) 

HA-probe antibody (Y-11) (Santa cruz, US) 

Hyclone FBS (Thermo, US) 

Hygromycin B (Invitrogen, Carlsbad, US) 

Let-7i mimic (Qiagen, Germany) 

Let-7i primer (Qiagen, Germany) 

LightCycler 480 SYBR Green I Master kit (Roche, Germany) 

Massruler low range DNA ladder (Thermo, US) 

Methanol (Roth, Germany) 

miRNeasy Mini Kit (cat. no. 217004) (Qiagen, Germany) 

miScript II RT Kit (Qiagen, Germany) 

miScript SYBR Green PCR Kit (Qiagen, Germany) 

M-MLV Reverse Transcriptase (Promega, US) 

Nonfat milk (Sucofin, Germany)  

Opti-MEM® I medium (Gibco, US) 

Page ruler prestained protein ladder (Fermentas, Germany) 

PBS tablet (Gibco, US)  

Penicillin/streptomycin (Sigma, US) 

PDH primer (Invitrogen, Germany) 

PGRMC1 antibody (#12444) (Cell signaling, US)  

PGRMC1 antibody (G-21) (Santa cruz, US) 

PGRMC1 primer (Qiagen, Germany) 

Phosphatase inhibitor cocktail (Sigma, US)  

Ponceau S solution 0.1% (Sigma, US)  

Protease inhibitor cocktail kit (Thermo, US)  

PVDF blot membrane (Amersham Lifescience, Sweden)  

QIAzol Lysis reagent (Qiagen, Germany) 

Random Primers, Oligo (dT) 15 Primer (Promega, USA) 

RANK antibody (Amgen, Germany) 
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RANK antibody (Santa cruz, US) 

RANKL antibody (Amgen, Germany) 

Recombinant RNasin Ribonuclease Inhibitor (Promega, USA) 

Rotiphorese® gel 30 (Roth, Germany) 

RNeasy Mini Kit (cat. nos. 74104 and 74106) (Qiagen, Germany) 

RPMI medium 1640 (Gibco, US)  

SDS loading buffer (Roth, Germany)  

Silencer negative control (Ambion, Germany) 

siPORT™ NeoFX™ Transfection Agent (Invitrogen, Germany) 

SNORA73A (Qiagen, Germany) 

Sodium pyruvate (Gibco, US)  

TEMED (Roth, Germany) 

TFF1 primer (Qiagen, Germany) 

Tris-HCl (Roth, Germany)  

Triton X-100 (Roth, Germany)  

Trypan blue stain (0.4%) (Gibco, US)  

Trypsin-EDTA (Sigma, US)  

TWEEN-20 (Roth, Karlsruhe, Germany) 
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2.1.2 Equipment 

-20°C refrigerator (Bosch, Germany)  

-80°C refrigerator (Heraeus, Germany)  

Balance CP323S-OCE (Sartorius, Germany) 

Biological safety cabinet (Heraeus, Germany)  

Cell culture flask (Greiner Bio-One, Germany) 

Cell freezing tube (Greiner Bio-One, Germany) 

Cell incubator (Binder, Germany)  

Centrifuge biofuge pico (Heraeus, Germany)  

Centrifuge 5417 R (Eppendorf, Germany)  

Electrophoresis cell (Biorad, US)  

Electronic pipettes (Pipetus, Germany) 

Electrophoresis power supply (Consort, Belgium)  

Electrophoretic transfer cell (Biorad, US)  

ELISA (Tecan sunrise, Germany) 

Filter paper (Whatman, UK)  

Fluovert FU microscope (Leica, Germany) 

Folie bag sealer (Krups, Germany) 

Gel electrophoreses and blotting equipment (BioRad, US)   

Ice maker (Scotsman, US) 

Incubator shaker (Heidolph Titramax, Germany) 

LightCycler®480 Instrument (Roche, Germany) 

Lumi-Imager (Roche, Germany) 

Magnetic stirrer (Uniequip, Germany)  

MicroliterTMSyringes (Hamilton, US) 

MS1 Minishaker (IKA, Germany)         

PH meter (Mettler Toledo MP225, Germany) 

Photometer (Eppendorf, Germany) 

Pipettes (Abimed, Germany)  
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PVDF blot membrane (Amersham Lifescience, Sweden)       

Shaker (Roth, Germany) 

Thermal Cycler (MJ Research PTC-220) (Roche, US) 

Thermomixer compact (Eppendorf, Germany) 

Transferpette (Eppendorf, Germany) 

Transilluminator (Herolab, Germany)  

Vacuum concentrator 5310 (Eppendorf, Germany) 

Vortex (Heidolph, Germany)         

Vortex-Genie (SI, US) 

Waterbath (Vivo, Germany)  
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2.2 Methods 

2.2.1 Methods for proliferation of breast cancer cell lines 

2.2.1.1 Cell culture  

 

Human breast cancer cells T47D, HCC70, HCC202, MCF-7, HBL100 and 

SUM225CWN were availabled from American Type Culture Collection (ATCC). 

BM and AR were isolated from Brigitte Gückel. All cells were planted in a 

humid 5% CO2 atmosphere at 37°C. HCC70 and HCC202 breast cancer cell 

lines were grown at RPMI-1640 media having 1% penicillin/streptomycin and 

10% fetal bovine serum (FBS). BM and AR cell lines were planted in DMEM 

culture media containing 1% penicillin/streptomycin and 10% FBS. HBL100 

was cultured in McCoy’s 5A media having 1% penicillin/streptomycin and 10% 

FBS. SUM225CWN was cultured in Ham’s F-12 media having containing 10% 

FBS, 0.1% Hydrocortisone, 0.05% Insulin and 1% penicillin/streptomycin. 

MCF-7 and T47D cells were routinely grown at RPMI-1640 media 

supplemented with 1% penicillin/streptomycin, 25 mmol/l HEPES and 10% 

FBS.  

 

Cells were seeded into a 100-mm culture plate using culture media. Then, 

cells were passaged using 0.25% trypsin/EDTA reagent (sigima). 

Trypsinization was blocked through mixing normal growth medium. They were 

moved to a 15-ml pipe and centrifuged for 5 minutes at 1,000 rpm. Afterwards, 

cells were treated with 5 ml of growth media and planted. 

 

2.2.1.2 Dissolution of estradiol, progesterone, and synthetic progestins 

 

Estradiol (E2), progesterone (P4) and the synthetic progestins 

medroxyprogesterone acetate (MPA), norethisterone (NET), chlormadinone 
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acetate (CMA), levonorgestrel (LNG), and desogestrel (DSG), were availabled 

from Sigma (Munich, Germany). drospirenone (DRSP) was a gift from 

Schering (Berlin, Germany). dydrogesterone (DYD) and nomegestrol (NOM) 

were purchased from LGM Pharma (Boca Raton, USA). All drugs were diluted 

with alcohol and stored at -20°C as 10-2 mol/l solutions. During the experiment, 

the final concentration of ethanol was less than 0.01%. This ethanol 

concentration was used in controls. 

 

2.2.1.3 Cell proliferation 

 

Proliferation was measured by stripping medium, i.e. phenol red-free medium 

supplemented with charcoal/ dextran FBS (Thermo, USA). About 5,000 cells 

were planted in 96-well dishes with growth media. The second day, the media 

was replaced with stripping media, and cells were incubated for two days. 

Afterward, the progestins were mixed into the growth medium. After five days, 

proliferative effect was determined using MTT method. In the same conditions, 

cells were incubated with blocker for five days. 

 

2.2.1.4 In vitro 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyl-tetrazolium bromide 

(MTT) assay 

 

Cell proliferation was analyzed through determining the yellow tetrazolium 

salts MTT. MTT was diluted 1:4 in culture phenol red-free media. 

 

Then, the media was poured from the culture dish. 100 µl MTT was poured to 

per well and cultured three hours. Incubator was centrifuged ten minutes, and 

then the supernatant was removed. The crystals were dissolved through 

adding 100 µl dimethyl sulfoxide (DMSO) to each well. It was analyzed by 

ELISA at 550 nm. The result was proportional with the number of cells. 
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In the previous study, MTT was better than BrdU-assay. In this experiment, 

0.925 correlation coefficient was detected. In own in-house experiments, we 

have verified MTT against cytometric analysis, and 0.96 correlation coefficient 

was found. The proliferation assay was executed triplicates and repeated three 

times, with each assay producing the same outcomes. 

 

2.2.1.5 Western blot analysis 

 

Western blot analysis is a common method to detect proteins using specific 

antibodies. Cells were washed two times using phosphate buffered saline 

(PBS), then lysed in Protein Extraction Reagent (PER) in the light of the 

recommendations (Pierce, Rockford, IL, USA). The concentration of protein 

was detected through bicinchoninic acid (BCA). In total, 25 µg protein extracts 

were analyzed each lane on a polyacrylamide gelatin and separated by 

electrophoresis. The SDS-PAGE gel had 12% acrylamide. This gelatin was 

blotted onto a nitrocellulose membrane (Amersham, USA) through a blot 

system at 4°C over night. Afterwards these membranes were blocked for two 

hours using 5% dried low fat milk powder dissolved in TBST buffer at ordinary 

temperature. Then, the membrane was interacted with the first antibody at 4°C 

over night. After washing three times with TBST, the second antibody 

incubated the membrane for two hours at ordinary temperature. 

Chemiluminescence was produced through the ECL WB Analysis System 

(Amersham, Germany). The signal was detected and quantified by 

Lumi-Imager and Lumi-Analyst 3.1 software (Boehringer, Mannheim, 

Germany). Western blot analysis was used to measure PGRMC1 and ER-α 

expression. The first antibody of analyzing cell lysates were rabbit 

anti-PGRMC1 antibody (#12444, 1:500, Cell signaling) and rabbit anti-ER-α 

antibody (H-184, 1:500, Santa Cruz). The secondary antibody was Goat 
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anti-rabbit (IgG-HRP, 1:500, Santa Cruz). Blot was re-probed with actin (I-19, 

1:1000, Santa Cruz) to provide protein loading controls. 

 

2.2.1.6 Statistical analysis 

 

The proliferation assay was performed triplicates, with each assay producing 

the same outcomes. Since the data wasn’t normally distributed, these results 

were analyzed by ANOVA with the logarithmated value. The overall alpha level 

is set to 0.05. 

2.2.2 Methods for PS2 

2.2.2.1 Cell culture  

 

MCF-7, ER-positive primary breast tumor cells, were availabled from ATCC. 

This cell line was grown in RPMI-1640 media having 1% 

penicillin/streptomycin, 25 mmol/l HEPES and 10% FBS in a humid 5% CO2 

atmosphere at 37°C. MCF-7 cell lines were seeded into a 100-mm culture 

plate useing RPMI-1640 growth medium and normally subcultured once a 

week.  

 

2.2.2.2 Transfection of MCF-7 cell lines (EVC and WT-12)  

 

MCF-7 cell lines were steady transfected through plasmid pcDNA3.1/Hygro 

having heme agglutinin-tagged PGRMC1 using lipofectamineTM 2000 

(Invitrogen, Karlsruhe, Germany), according to the protocol. 5x105 cells were 

transfected and incubated with RPMI-1640 media for one day. Afterwards, the 

media was replaced with media supplemented with 100 µg/ml hygromycin B. 

Transfection rates were measured by cotransfection of a GFP-expressing 

plasmid and immune fluorescence analysis. Cells were incubated for two 
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weeks, then limiting dilutions were executed three times to choose for stable 

cloned cells. 

 

Successful transfection was validated through PCR via chromosomal DNA. 

The sequences of the primers were 5’-CTGCTGCATGAGATTTTCACG-3’ 

hybridizing to nucleotides 71-91 of PGRMC1 open reading frame and 

5’-GCATAGTCCGGGACGTCATA-3’ hybridizing to the sequence coding for 

the HA tag. PCR products were sequenced. For experiments we used 

MCF-7/PGRMC1 clone WT-12. For control experiments MCF-7 transfected 

with 3HA were used (EVC-cells). 

 

2.2.2.3 Total RNA isolation  

 

RNA was obtained from cell pellets by the RNeasy Mini Kit (Qiagen) in 

accordance with the recommendations. The cell pellet was placed in -80°C for 

later experiments. Frozen pellet was lysed by adding appropriate volume of 

Buffer RLT Reagent. Then, the sample was pipeted into an RNeasy Mini 

column and centrifuged at room temperature. At the end, the RNeasy Mini spin 

column was added 50 µl RNase-free water to elute the RNA. Final RNA 

concentration and quality was measured with a spectrophotometer 

(Nano2Drop, Saveen Werner). The separated RNA samples were confirmed 

using 1.5% agarose gel electrophoresis.   

 

2.2.2.4 cDNA synthesis from total RNA  

 

Total RNA were used as the starting material in the reverse transcription 

reaction. We used miRNeasy Kits for purification of total RNA including miRNA. 

After RNA isolation, cDNA was synthesized using reverse transcriptase PCR 

with the RT cDNA Synthesis Kit (Promega). 1µg of total RNA was heated 
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together with Oligo (dT) 15 Primers and Random Primers for 10 minutes at 

70ºC, and reduced temperature on the ice. Afterwards, this sample mixed with 

reverse-transcription components in the light of Table 1. The 

reverse-transcriptase mixture has all ingredients of cDNA synthesis. 

 

The reaction was interacted for 60 minutes at 37ºC, and warmed at 95ºC for 

five minutes to inactivate components, then setted on the ice. Finally, 27.5 µl 

water of RNase-free was added to the synthesized cDNA, and 50 µl cDNA was 

placed in -20ºC freezer. The integrity of cDNA was checked by actin.  

 

 

2.2.2.5 Quantitative real-time PCR (qPCR)  

 

For qPCR experiments, RNA was obtained from cell pellets by the RNeasy 

Mini Kit (Qiagen). cDNA for qPCR was synthesized using RT cDNA Synthesis 

Kit (Promega) as previously mentioned. 

 

qPCR evaluated PS2 mRNA was executed on synthesized cDNA by the TFF1 

primers (for sequences see Table 4). To analyze PS2, 2 µl cDNA was added 

into qPCR system using the LightCycler 480 SYBR Green I Master kit (Roche). 
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The qPCR reaction (see Table 2) was executed on LightCycler®480 

Instrument (Roche, Germany). The following cycle parameters (see Table 3) 

were adopted. PDH RTPCR was used for normalization. Because PDH level of 

the sample was no difference under this condition, PDH was a good reference 

gene. For all primers, cDNA serial dilution was used as a standard curve. 

Water without cDNA was adopted for the negative control. The particularity of 

primer was validated using 2% agarose gel electrophoresis. The specificity of 

amplification was confirmed using melting curve of PCR product. The 

LightCycler® 480 1.5 Software was used to analyze the result and relative 

quantification by Ct value. 
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2.2.2.6 Statistical analysis 

 

All data were describe as means ± SD and data shown is the result of at least 

three replicates of three or more independent runs for each assay. Normal 

distributed data was further analyzed by ANOVA-test to compare variance of 

averages of several groups. For qPCR studies, Ct values from duplicates of 

each sample were normalized to those of PDH and analyzed using the ∆∆Ct 

method. Value was regarded as statistical significance at p<0.05 for all 

statistical outcomes. 

 

2.2.3 Methods for RANK/RANKL 

2.2.3.1 Cell culture  

 

Human breast tumor cells HCC70, HCC202, T47D, HBL100, MCF-7, BM, AR 

and SUM225CWN were maintained as mentioned above. L-cells RANKL, 

over-expressing RANKL was grown in DMEM media having 1% 

penicillin/streptomycin, 10% FBS, 1% NaCl, and 600 µg/ml of G418 sulfate. 

 

2.2.3.2 Co-cultures of breast cancer cells with osteoblast-like cells 

 

MDA-MB-231 cell lines were maintained using RPMI-1640 media containing 

10% FBS and 1% penicillin/streptomycin. CAL72 osteoblast-like cell lines were 
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maintained in DMEM medium having 1% penicillin/streptomycin, 1% 

insulin-transferrin-sodium selenite, 2% HEPES and 10% FBS. SAOS2 cell 

lines were planted in McCoy’s 5A media having 10% FBS and 1% 

penicillin/streptomycin. Cal72 and Saos2 cell lines (2×105/60 mm plate) were 

co-cultured with tumor cell lines (2×105/60 mm dish). MCF-7 WT12 and 

MDA-MB-231 cells were studied in co-culture systems. First, osteoblast-like 

cells were cultured. Then, before sowing osteoblast-like cells, 2×105 tumor cell 

lines were planted into 60 mm dish at two hours and co-cultured for the 

indicated periods (1 week or 2 weeks). The culture medium was changed 

every three days. All cell lines were grown at 37°C. 

 

2.2.3.3 Western blot analysis 

 

Western blot analysis was carried out as mentioned above. Cells were washed 

two times using PBS and lysed in PER kit. The concentration of protein was 

measured using the bicinchoninic acid. Each lysate (25 µg of protein) was 

analyzed each lane by SDS-PAGE. When we studied RANK expression, 

protein was separated through a 10% acrylamide and blotted onto 

nitrocellulose membrane. However, we use a 12% separating gel to detect 

RANKL. Immunoblotting was executed with the first antibody against RANK 

(1:1000; 1:500; 1:200), RANKL (1:1000; 1:500; 1:200) and Actin (1:1000), 

respectively. The gel was blotted onto a Hybond ECL nitrocellulose membrane 

at 4°C over night using a blot system. Then, membranes were blocked for 2 

hours in TBST containing 5% dried low fat milk and immersed using the first 

antibody at 4°C over night. The membrane was immersed using the secondary 

antibody for two hours after washing thrice by TBST. Chemiluminescence was 

produced through the ECL WB Analysis System (Amersham, Germany). The 

signal was detected and quantified by Lumi-Imager and Lumi-Analyst 3.1 

software (Boehringer, Mannheim, Germany). 
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2.2.3.4 Cell proliferation 

 

Cell proliferations were analyzed through determining the yellow tetrazolium 

salt MTT. MTT was diluted 1:4 in DMEM phenol red-free media. It was 

analyzed by ELISA at 550 nm. The result was proportional with the number of 

cells. 

 

2.2.3.5 Statistical analysis 

 

The proliferation assay was performed triplicates, with each assay producing 

the same result. Since the data was not normally distributed, these results 

were analyzed by ANOVA with the logarithmated value. The overall alpha is 

set to 0.05. 

 

2.2.4 Methods for let-7i 

2.2.4.1 Cell transfection with miRNA 

  

MCF-7 cell lines were transfected using siPORT™Neo FX™Transfection 

reagent, in accordance with the reverse transfection recommendations. Let-7i 

mimic was obtained from Qiagen (Germany) and used at 50 nM concentration. 

The negative control RNA (Silencer negative universal control) was obtained 

from Qiagen (Germany) too.  

 

Before the transfection, cells were treated using trypsin and diluted with normal 

growth media. Then, 5 µl Transfection reagent siPORT™ NeoFX™ was added 

into Opti-MEM® I agent to 100 µl, and 5 nm miRNA or control was diluted in 

Opti-MEM® I media. The diluted miRNA was added to the diluted siPORT™ 
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NeoFX™Transfection agent. The mix was incubated 10 minutes at room 

temperature and dispersed in a 6-well dish, and then 2x105 cells were added 

into one well and mixed. Transfected cells were cultured for 48 hours at 37°C 

in normal cell culture conditions (Fig. 3). 

 

2.2.4.2 Total RNA containing miRNA isolation  

 

RNA containing miRNA were isolated from cell pellets by the miRNeasy Mini 

Kit (Qiagen) in the light of the manufacturer’s recommendations. The cell pellet 

was placed in -80°C for later experiments. Frozen pellet was lysed by adding 

700 µl QIAzol Lysis Reagent and cultured at 15-25°C for five minutes. 140 µl of 

chloroform was mixed into the lysate. The mixture was shaken vigorously for 

fifteen and separated at 12,000 x g at 4°C for fifteen minutes by centrifugation. 

The upper layer having RNA was moved to another collection pipe. Avoid 

transferring any interphase. Then, the sample was pipeted into an RNeasy® 
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Mini column and centrifuged at room temperature. At the end, the RNeasy Mini 

spin column was added 50 µl RNase-free water to elute the RNA. Final RNA 

concentration and quality was measured with a spectrophotometer 

(Nano2Drop, Saveen Werner). The separated RNA samples were confirmed 

using 1.5% agarose gel electrophoresis.    

 

2.2.4.3 cDNA synthesis from total RNA containing miRNA   

 

Total RNA containing miRNA were used as the starting material in the reverse 

transcription reaction. It is not necessary to enrich for small RNA. We used 

miRNeasy Kits for purification of total RNA including miRNA. After RNA 

isolation, cDNA was synthesized using reverse transcriptase PCR with the 

miScript II RT cDNA Synthesis Kit (Qiagen). 1µg of total RNA was used in 

each reaction and mixed with reverse-transcriptase mixture on ice in 

accordance with Table 5. The reverse-transcription mixture has all ingredients 

of cDNA synthesis.  

 

The reaction was interacted for 60 minutes at 37ºC, and warmed at 95ºC for 

five minutes to inactivate components, then setted on ice. Then, 80 µl water of 

RNase free was added to the synthesized cDNA and 100 µl cDNA was placed 

in -20ºC freezer. The integrity of cDNA was checked by actin.  



 

40 

 

 

2.2.4.4 Polymerase chain reaction (PCR)   

 

2.2.4.4.A Semi-quantitative PCR  

DNA amplification was performed using PCR. PCR reaction (25 µl) was 

executed using Taq DNA polymerase (Promega) in the light of the protocol. 

The components listed below were mixed:  

 

The following cycle parameters were adopted: initial activation 94ºC for 3 

minutes; denaturation 94ºC for 30 seconds; annealing 56.3ºC for 30 seconds 

and extension 72ºC for 18 seconds (repeated 32 times). 

Template 1 µl (50-100 ng) 

dNTP 2.5 µl  

2.5mM MgCl2 0.75 µl 

10×Buffer  2.5 µl 

forward primer  1 µl  

reverse primer 1 µl  

Taq 0.2 µl(2.5U )  

H2O 14.8µl 

DMSO 1.25 µl  

Total volume 25 µl 
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PCR reactions were performed on Thermal Cycler (MJ Research PTC-220) 

and the products were analyzed using 2% agarose gel electrophoresis.   

 

2.2.4.4.B Quantitative real-time PCR (qPCR)  

 

For qPCR experiments, RNA containing miRNA were isolated from cells 

transfected 5 nM miRNA or control (Silencer negative control; Ambion) after 48 

hours by the miRNeasy Mini Kit (Qiagen). cDNA for qPCR was synthesized by 

the miScript II reverse transcription kit (Qiagen) as described above. 

 

To analyze the let-7i, 1 µl cDNA was added in qPCR system using the miScript 

SYBR Green PCR kit (Qiagen). The qPCR reaction (see Table 9) was 

executed using the LightCycler®480 Instrument (Roche, Germany). The 

following cycle parameters (see Table 7) were used. Let-7i was quantified 

using let-7i primer (Qiagen) and normalized using SNORA73A primer (Qiagen). 

Because no differences in SNORA73A levels were detected under this 

condition, SNORA73A was a good reference gene (All tests were performed 

twice. For analysis the results, the LightCycler® 480 1.5 Software was used). 

 

qPCR evaluated PGRMC1 mRNA (see Table 8) was executed on synthesized 

cDNA by the PGRMC1 primers (for sequences see Table 10) and  

LightCycler 480 SYBR Green I Master kit (Roche). The following cycle 

parameters (see Table 5) were used. Threshold cycle readings were used to 

calculate the relative amounts of PGRMC1 by normalizing them to the signal of 

GAPDH after validating that GAPDH mRNA levels did not differ among 

treatments. 

 

For all primers, cDNA serial dilution was used as a standard curve. Water 
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without cDNA was adopted for the negative control. The particularity of primer 

was verified through 2% agarose gel electrophoresis to confirm single 

amplification. LightCycler® 480 1.5 Software was used to analyze the result 

and relative quantification by Ct value. 
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2.2.4.5 Statistical analysis 

 

All data were described as means ± SD and data shown is the result of at least 

three replicates of three or more independent runs for each assay. Normal 

distributed data was further analyzed by ANOVA-test to compare variance of 

averages of several groups. For qPCR studies, Ct values from duplicates of 

each sample were normalized to those of SNORA73A or GAPDH and 

analyzed using the ∆∆Ct method. Value was regarded as statistical 

significance at p<0.05 for all statistical outcomes. 

 

 

2.2.5 Methods for supernatant 

2.2.5.1 Cell types 

 

MCF-7 and T47D were cultured. PGRMC1 was transfected into MCF-7 cell 

lines as mentioned above. The same methods were used to transfect T47D 

cell lines. 

 

2.2.5.2 Western blot analysis 

 

Western blot was excused as mentioned above. The concentration protein 

was determined using BCA. In total, 25 µg of protein was analyzed per lane 

and separated on 12% acrylamide gel via electrophoresis. Western blot was 

used to measure PGRMC1 expression. The first antibody of analyzing cell 

lysates was rabbit anti-PGRMC1 antibody (G21, 1:200, Santa Cruz). The 

secondary antibody was goat anti-rabbit (IgG-HRP, 1:500, Santa Cruz). Blot 

was re-probed with actin (I-19, 1:1000, Santa Cruz) to provide protein loading 

controls. For cell supernatant, the primary antibody was rabbit anti-PGRMC1 
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antibody (#12444, 1:200, Cell Signaling). Goat anti-rabbit (IgG-HRP, 1:500, 

Santa Cruz) was used as secondary antibody. 

 

2.2.5.3 Cell supernatant samples 

 

MCF-7 cell was cultured in RPMI-1640 media without serum for 24 hours. 

Then the medium was concentrated 10-fold using a filter tube Amicon Ultracel 

(Millipore, Billerica, MA) (Fig. 4). 0.25 ml slurry separopore blue CL-6B 

(Bio-world, Dublin) was added to the concentrated media for 30 minutes. The 

slurry was centrifuged at 1,000g for three minutes, then 20 µl was detected via 

western blot. The supernatant of T47D was obtained in the same way.  

 

2.2.5.4 PGRMC1 detection in plasma from breast cancer patients 

 

The specimens of plasma were obtained from the Women’s Hospital of      

Tübingen University, and the agreement was ratified by the Institutional 

Review Board. Plasma samples were performed by centrifugation at 13,000g 

for ten minutes, and then the supernatants were dissolved into Tris solution 

and mixed with 200 µl slurry for 30 minutes. The slurry was centrifuged at 
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1,000g for three minutes and 5 µl was detected via western blot. 

 

2.2.5.5 Statistical analysis 

 

The experiment was performed triplicates, with each assay producing the 

same outcomes.  
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3. Results 

3.1 Proliferation of breast cancer cell lines endogenously 

expressing PGRMC1 

3.1.1 PGRMC1 expression in various breast cancer cell lines 

PGRMC1 is a membrane of multi-protein progesterone binding complex and 

the molecular weight is 26 kDa. To analyze PGRMC1 expression in various 

breast tumor cell lines, lysates prepared from HCC202, HCC70, SUM225CWN, 

HCC1500, HBL100, BM and AR cell lines were analyzed by western blot. In 

Figure 5, the results of PGRMC1 levels in these cells are depicted. 

Endogenous PGRMC1 was detected in HCC70, SUM225CWN, HBL100, BM 

and AR cell lines. The highest expression was observed in SUM225CWN cell 

lines. 

 

 
Figure 5: PGRMC1 expression in various breast cancer cells. Western blot analysis of 
lysates prepared from HCC202, HCC70, SUM225CWN, HCC1500, HBL100, BM and AR cell 
lines. PGRMC1 is detected with a polyclonal rabbit anti-PGRMC1 antibody (#12444, Cell 
signaling) followed by anti-rabbit horseradish peroxidase antibody. Actin was used as a 
loading control (upper panel). 
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3.1.2 ER-α expression in various breast cancer cells 

ER-α, also known as -NR3A1 is encoded by the-gene-ESR1 and its molecular 

weight is 66 kDa. To analyze the expression of ER-α in various breast tumor 

cells, lysates prepared from T47D, HCC70, HCC202, SUM225CWN, HBL100, 

BM, AR and MCF-7 cell lines were detected by western blot. ER-α was 

detected in MCF-7, T47D and BM cells. However, ER-α expression wasn’t 

observed in other cell lines (Fig. 6). 

 

 
Figure 6: ER-α expression in various breast cancer cells. Western blot analysis of lysates 
prepared from T47D, HCC70, HCC202, SUM225CWN, HBL100, BM, AR and MCF-7 cell lines. 
ER-α is detected with a polyclonal rabbit anti-ER-α antibody (H-184, Santa cruz) followed by 
anti-rabbit horseradish peroxidase antibody. Actin was used as a loading control (upper 
panel). 

3.1.3 Effect of estradiol and progestins on the proliferation of breast 

cancer cell lines expressing PGRMC1 with and without co-expressing 

endogenous ER-α 

To analyze the influence of estradiol and progestogens on the proliferation of 

breast tumor cell lines, BM (endogenous ER-α and PGRMC1) and 

SUM225CWN cells (only endogenous PGRMC1) were stimulated with these 

hormones respectively. In Figure 7, the results of the proliferation assays in 

BM cells are depicted. MPA, NET, LNG, DSP and E2 significantly increased 

the proliferation. Incubation of DNG and DSG resulted in an increased 
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proliferation at the concentration of 10-6 M, no significant effect was seen at 

10-7 M. For P4, NOM, DYD and CMA, no significant effect was found. In Figure 

8, the results using SUM225CWN cells are shown. At the same condition, 

estradiol and progestins didn’t obviously alter the proliferation. 

 

 

 

 
Figure 7: Proliferation assays of BM with estradiol and all progestins. BM cell lines were 
treated using estradiol (E2; 10-10 or 10-9 M) and progesterone (P4), chlormadinone acetate 
(CMA), drospirenone (DSP), dienogest (DNG), desogestrel (DSG), dydrogesterone (DYD), 
levonorgestrel (LNG), medroxyprogesterone acetate (MPA), nomegestrel (NOM), 
norethisterone (NET) (each at 10-7 or 10-6 M). After 5 days, the proliferation was detected. Data 
was standardized using untreated cells (means ± SD; *P<0.05 vs untreated control).  
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Figure 8: Proliferation assays of SUM225CWN with estradiol and all progestins. 
SUM225CWN cell lines were treated with estradiol (E2; 10-10 or 10-9 M) and progesterone (P4), 
chlormadinone acetate (CMA), drospirenone (DSP), dienogest (DNG), desogestrel (DSG), 
dydrogesterone (DYD), levonorgestrel (LNG), medroxyprogesterone acetate (MPA), 
nomegestrel (NOM), norethisterone (NET) (each at 10-7 or 10-6 M). After 5 days, the 
proliferation was detected. Data was standardized using untreated cells. 

3.2 PGRMC1 sensitizes PS2 expression by E2-induced 

3.2.1 Effect of E2 on PS2 expression in MCF-7 cells 

In this experiment, different E2 (10-10, 10-9 and 10-8 M) concentrations were 

treated to MCF-7 cell lines, and PS2 mRNA levels were measured by 

qRT-PCR after one hour. E2 increased PS2 expression. Treatment of MCF-7 

cells with 10-9 M E2 significantly increased native PS2 mRNA about 40% of 

control value (P<0.05; Fig. 1). In this cell lines, this effect was increased with 

the increasing dose (Fig. 9). Therefore, 10-9 M E2 was utilized in further 

experiments. 
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Figure 9: The role of E2 on PS2 in MCF-7 cell lines. Cells were stimulated with 10-10, 10-9, 
and 10-8 M E2, respectively and endogenous PS2 expression was detected using qPCR, 
relative to PDH. Data was standardized using untreated cells (means ± SD; *P<0.05 vs 
control).  

3.2.2 PGRMC1-expressing cells show increased E2-induced level of 

PS2 

In this experiment, a fixed E2 concentration (10-9 M) was incubated with 

MCF-7 EVC and MCF-7 WT12 cell lines. PS2 mRNA levels were measured 

after one hour. In these cell lines, E2 could elicit an increase of PS2 mRNA 

(Fig. 10). In WT-12, which was transfected with PGRMC1, E2 induced a 

significant increase of about 60% (Fig. 10).  
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Figure 10: PGRMC1 shows elevated E2-induced level of PS2. MCF-7 with a plasmid 
control (EVC) and MCF-7 cells over-expressing PGRMC1 (WT-12) were stimulated with 
estradiol (10-9 M). PS2 expression was detected using qPCR, relative to PDH. Data was 
standardized using untreated cells (means ± SD; *P<0.05 vs control).  

3.2.3 PS2 blocking experiment (fulvestrant, TBCA, AG205) 

The influence of receptor inhibitors to PS2 mRNA levels was examined. In 

blocking experiments, fulvestrant (ER-α inhibitor), TBCA (CK2 inhibitor) and 

AG205 (PGRMC1 inhibitor) were used. As can be seen in Figure 11, 

E2-induced effect could be significantly blocked when fulvestrant was added to 

the incubation. Addition of CK2 II Inhibitor TBCA to E2, however, partial 

abrogated the E2-induced PS2 mRNA levels in WT-12 cell (Fig. 12). 

Furthermore, inhibitory effects occurred in the presence of AG 205 (Fig. 13). 
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Figure 11: PS2 blocking experiment (Fulvestrant). MCF-7 EVC and MCF-7 WT12 were 
incubated with estradiol (E2; 10-9 M) and fulvestrant (Ful; 10-6 M) alone and in combination. 
PS2 expression was detected using qPCR, relative to PDH. Data was standardized using 
untreated cells (means ± SD; *P<0.05 vs control).  
 

     
Figure 12: PS2 blocking experiment (TBCA). MCF-7 EVC and MCF-7 WT12 were 
incubated with estradiol (E2; 10-9 M) and TBCA (TBCA; 10-6 M) alone and in combination. PS2 
expression was detected using qPCR, relative to PDH. Data was standardized using untreated 
cells (means ± SD; *P<0.05 vs control).  
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Figure 13: PS2 blocking experiment (AG205). MCF-7 EVC and MCF-7 WT12 were 
incubated with estradiol (E2; 10-9 M) and AG205 (AG205; 10-6 M) alone and in combination. 
PS2 expression was detected using qPCR, relative to PDH. Data was standardized using 
untreated cells (means ± SD; *P<0.05 vs control). 

3.2.4 Effect of E2, P4, NET and E2 combined with P4 or NET on PS2 

expression 

In Figure 14, the results of the PS2 mRNA levels in MCF-7 EVC and MCF-7 

WT12 cells are depicted. NET (60%) and E2 (40%) significantly increased the 

expression of PS2 mRNA in WT-12, which was transfected with PGRMC1. For 

P4, no effect was found. Addition of the NET (10-6 M) in E2 combined manner 

did not obviously alter the PS2 mRNA levels as compared with the effect of E2 

only (Fig. 14). 
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Figure 14: Effect of E2, P4, NET and E2 combined with P4 or NET on PS2 expression. 
MCF-7 EVC and MCF-7 WT12 were incubated with estradiol (E2; 10-9 M), progesterone (P4; 
10-6 M) and norethisterone (NET; 10-6 M) alone or E2 in combination with P4 and NET. PS2 
expression was detected using qPCR, relative to PDH. Data was standardized using untreated 
cells (means ± SD; *, **P different from control). 
 

3.3 RANKL and RANK expression in various breast cancer 

cell lines 

3.3.1 RANK expression in the various cell lines 

RANK is a type I membrane protein and the molecular weight of RANK is 90 

kDa. To test RANK expression in various breast tumor cell lines, lysates 

prepared from T47D, HCC70, HCC202, SUM225CWN, HBL100, BM, AR and 

HCC1500 cell lines were detected by western blot. However, the polyclonal 

mouse anti-RANK antibody (N1H8, Amgen, Inc) (Fig. 16) and the polyclonal 

goat anti-RANK antibody (SC-7625, Santa Cruz) (Fig. 15) didn’t detect this 

protein in these cell lines.   
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Figure 15: RANK expression in the various cell lines (SC-7625). Western blot analysis of 
lysates prepared from T47D, AR, BM, HBL100, HCC1500, SUM225CWN, HCC70 and 
HCC202 cell lines. RANK is detected with a polyclonal goat anti-RANK antibody (SC-7625, 
Santa Cruz) followed by anti-goat horseradish peroxidase antibody. Actin provided a loading 
control (upper panel). 

 

 

Figure 16: RANK expression in the various cell lines (N1H8). Western blot analysis of 
lysates prepared from T47D, AR, BM, HBL100, HCC1500, SUM225CWN, HCC70 and 
HCC202 cell lines. RANK is detected with a polyclonal mouse anti-RANK antibody (N1H8, 
Amgen, Inc) followed by anti-mouse horseradish peroxidase antibody. Actin provided a 
loading control (upper panel). 

3.3.2 RANKL expression in the various cell lines 

RANKL is a type II transmembrane protein and the molecular weight of it is 

35-40 kDa. In this experiment, we used a polyclonal mouse anti-RANKL 

antibody (m366, Amgen, Inc) to evaluate RANKL expression in T47D, HCC70, 

HCC202, SUM225CWN, HBL100, BM, AR, and MCF-7 cell lines. As positive 
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control for RANKL L-cells were used which are transfected with RANKL 

expression plasmid. RANKL expression was verified by western blot only in 

the L-cells, while under the same experimental conditions in the breast cancer 

cell lines this protein was not detectable (Fig. 17). 

 

Figure 17: RANKL expression in various cell lines. Western blot analysis of lysates 
prepared from T47D, HCC70, HCC202, SUM225CWN, HBL100, BM, AR, L-cells RANKL and 
MCF-7 cell lines. RANKL is detected with a polyclonal mouse anti-RANKL antibody (m366, 
Amgen, Inc) followed by anti-mouse horseradish peroxidase antibody. Actin provided a 
loading control (upper panel). 

3.3.3 Co-culture of breast cancer cells with osteoblast-like cells 

Through a co-culture system, we analyzed the expression of RANKL in breast 

tumor cells with or without osteoblast-like cells by western blot. Cal72 and 

Saos2 are the human osteoblast-like cells. RANKL expression was verified by 

western blot only in the control L-cells, while under the same experimental 

conditions co-cultures of MCF-7 WT12 and MDA-MB-231 cell lines with Cal72 

and Saos2 cells did not detect RANKL expression (Fig. 18 and 19). 

 

Then, we analyzed RANK expression in breast tumor cells with or without 

osteoblast-like cells by western blot. RANK expression was verified using 

western blot in Cal72 and MDA-MB-231 cell lines, while under the same 

experimental conditions MCF-7 WT12 and Saos2 cells did not express RANK 

(Fig. 20 and 21). 
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Figure 18: RANKL expression in MDA-MB-231 co-culture systems. Co-culture of 
MDA-MB-231 with Cal72 and Saos2 cells for 1 week or 2 weeks. Expression of RANKL is 
assessed by western blot. RANKL is detected with a polyclonal mouse anti-RANKL antibody 
(m366, Amgen, Inc) followed by anti-mouse horseradish peroxidase antibody. Actin provided a 
loading control (upper panel). 

 
Figure 19: RANKL expression in MCF-7 WT12 co-culture systems. Co-culture of MCF-7 
WT12 with Cal72 and Saos2 cells for 1 week or 2 weeks. Expression of RANKL is assessed 
by western blot. RANKL is detected with a polyclonal mouse anti-RANKL antibody (m366, 
Amgen, Inc) followed by anti-mouse horseradish peroxidase antibody. Actin provided a 
loading control (upper panel). 
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Figure 20: RANK expression in MDA-MB-231 co-culture systems. Co-culture of 
MDA-MB-231 with Cal72 and Saos2 cells. Expression of RANK is assessed by western blot. 
RANK is detected with a polyclonal mouse anti-RANK antibody (N1H8, Amgen, Inc) followed 
by anti-mouse horseradish peroxidase antibody. Actin provided a loading control (upper 
panel). 

 
Figure 21: RANK expression in MCF-7 WT12 co-culture systems. Co-culture of MCF-7 
WT12 with Cal72 and Saos2 cells. Expression of RANK is assessed by western blot. RANK is 
detected with a polyclonal mouse anti-RANK antibody (N1H8, Amgen, Inc) followed by 
anti-mouse horseradish peroxidase antibody. Actin provided a loading control (upper panel). 
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3.3.4 Effect of estradiol and all progestins on L-cells RANKL cells in 

vitro 

In order to analyze the influence of estradiol and progestins on the proliferation 

of over-expressing RANKL cells, L-cells were incubated with these hormones. 

In Figure 22, the results of the proliferation assays in L-cells RANKL are 

depicted. Incubation of estradiol for 6 days didn’t significantly increase the 

proliferation at 10-10or 10-9 M. At the same condition, addition of progesterone 

or the synthetic progestogens didn’t obviously alter the proliferation of L-cells. 

 

 
Figure 22: Proliferation assays of L-cells RANKL with estradiol and all progestins. 
L-cells were stimulated with estradiol (E2; 10-10 or 10-9 M) and progesterone (P4), 
chlormadinone acetate (CMA), drospirenone (DSP), dienogest (DNG), desogestrel (DSG), 
dydrogesterone (DYD), levonorgestrel (LNG), medroxyprogesterone acetate (MPA), 
nomegestrel (NOM), norethisterone (NET) (each at 10-7 or 10-6 M). After 5 days, the 
proliferation was detected. Data was standardized using untreated cells. 

 

In the next experiment, we analyze the influence of estradiol and progestins on 

RANKL expression. L-cells were stimulated with these drugs respectively and 

RANKL levels were determined by western blot. At this treatment, E2 didn’t 
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significantly change the expression of RANKL in L-cells. Furthermore, addition 

of progesterone or the synthetic progestogens didn’t obviously alter RANKL 

levels (Fig. 23). 

 

 
Figure 23: Effect of estradiol and progestins on RANKL expression in L-cells. Western 
blot analyzes RANKL expression in L-cells. Cells were incubated with estradiol (E2; 10-9 M) 
and norethisterone (NET), progesterone (P4), nomegestrel (NOM), medroxyprogesterone 
acetate (MPA), levonorgestrel (LNG), dydrogesterone (DYD), drospirenone (DSRP), 
dienogest (DNG), desogestrel (DSG), chlormadinone acetate (CMA) (each at 10-6 M). RANKL 
is detected with a polyclonal mouse anti-RANKL antibody (m366, Amgen, Inc) followed by 
anti-mouse horseradish peroxidase antibody. Actin provided a loading control (upper panel). 
 

3.4 Let-7i regulates the expression of PGRMC1 mRNA 

For the purpose of test the impact of let-7i on endogenous PGRMC1 

expression, we transfected let-7i mimic into MCF-7 cells. After 2 days, 

PGRMC1 mRNA levels were measured. 
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In order to identify the result of transfection, we detected the level of let-7i. We 

found let-7i (Fig. 24 lane 2) was significantly increased compared to control 

(Fig. 24 lane 1). Thus, this proved that the transfection was successful. 

 

     

Figure 24: Semi-quantitative RT-PCR analysis PGRMC1 mRNA and let-7i in MCF7 cell 
lines transfected with the let-7i mimic and silencer. cDNA samples were made from 
MCF-7 cell lines transfected with let-7i (Lane 2), Control is shown in Lane 1. cDNA integrity 
was monitored using primers specific. Gene names are given on the right. All amplifications 
were performed in triplicate, representative results were presented. 
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The effect on let-7i expression by the transfection reagent was confirmed by 

amplification plot of real-time PCR. After 48 hours, let-7i was obviously higher 

than control (Fig. 25A). 

 

Figure 25: Amplification plot of let-7i and PGRMC1. (A) Real-time reverse 
transcription-PCR showed let-7i was obviously increased by transfection reagent let-7i mimic. 
(B) Amplification plots of let-7i. (C) Amplification plots of PGRMC1. 
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A dissociation curve analysis may be optionally performed to aid in verifying 

the character and status of PCR product (s). Dissociation curve was the qPCR 

software analysis step. Dissociation curve analysis of let-7i and PGRMC1 

shows that each sample yielded only one peak, which generated by the 

products of amplification (Fig. 26). 

 

Figure 26: Dissociation curve analysis of let-7i and PGRMC1. (A) Dissociation curve 
analysis of mature miRNA let-7i PCR products showing single peaks from the specific 
amplification products. (B) Dissociation curve analysis of PGRMC1 PCR products showing 
single peaks from the specific amplification products. 

 

Let-7i mimic reduced the PGRMC1 expression at mRNA level contrast to the 

control (P<0.05; Fig. 27A). Cells transfected with let-7i were increased 30 

times than the control group (P<0.05; Fig. 27B). Therefore, it demonstrated 

that let-7i targets PGRMC1 and negatively affects the level of PGRMC1 in 

MCF-7 cells. 
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Figure 27: Analysis of the effect of let-7i on mRNA expression of PGRMC1 in MCF-7 
transfected with let-7i mimic or silencer control. For qPCR, RNA containing miRNAs were 
isolated from cells transfected using 5 nM miRNA or control after 48 hours. (A) The mRNA of 
PGRMC1 after transfection was determined via qPCR. Normalization was quantified by 
GAPDH. (B) The let-7i level after transfection was determined via qPCR. Normalization was 
quantified by SNORA73A. Data was standardized using untreated cells (means ± SD; *P<0.05 
vs control).                                                                                              
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3.5 Secreted PGRMC1 by breast cancer cell lines 

3.5.1 PGRMC1 expression in breast cancer cell lines 

Western blot analysis for the MCF-7 WT12 protein produced an about 30 kDa 

band. This band was the predicted 28 kDa for PGRMC1 plus approximately 3 

kDa for the three HA tags (Fig. 28a). The endogenously PGRMC1 provides 

only a very faint signal at 28 kDa indicating a weak intrinsic PGRMC1 

expression (Fig. 28a). Nevertheless, merely the rabbit anti-PGRMC1 antibody 

(#12444, Cell Signaling) could detect this band. The polyclonal antibody (G-21, 

Santa Cruz) did not under the identical situation (Fig. 28b). This band could be 

disappeared through incubating of PGRMC1 antibody and recombinant 

peptide (Fig. 30). PGRMC1 antibody (#12444, Cell Signaling) could analyzed 

endogenously and exogenously PGRMC1 expression by Western Blot, which 

suggested that they were phosphorylated (Fig. 30a). The band of PGRMC1 

was blocked by recombinant peptide (Fig. 30b). In MCF-7/PGRMC1 cell lines, 

no signal was observed. To provide protein loading controls, actin 

(approximately 42 kDa) was measured with rabbit anti-actin antibody. 

 

The expression of PGRMC1 was analyzed by western blot in 

MCF-7/PGRMC1-3HA cells (MCF-7 WT12) and T47D/PGRMC1-3HA cells 

(Fig. 28 and 29). The rabbit anti-PGRMC1 antibody (#12444, Cell Signaling) 

exhibited highly sensitivity because it could detect PGRMC1 in the MCF-7 and 

T47D cells, whereas the G-21 antibody (G-21, Santa Cruz) showed a faint 

band at the corresponding condition (Fig. 28 and 29 lower panel). Maybe G-21 

antibody is not high sensitivity. Therefore, the rabbit anti-PGRMC1 (#12444, 

Cell Signaling) was used to detect PGRMC1 expression in cell supernatant.   
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Figure 28: PGRMC1 expression in MCF-7 WT12. Western blot analysis for lysates prepared 
from MCF-7 WT12 cell lines. (a) PGRMC1 is detected with a polyclonal rabbit anti-PGRMC1 
antibody (#12444, Cell Signaling) followed by anti-rabbit horseradish peroxidase antibody. 
Signals are visualized with chemiluminescence, and actin provided a loading control (upper 
panel). The exogenously and endogenously PGRMC1 signal was detected. (b) PGRMC1 is 
detected with a polyclonal rabbit anti-PGRMC1 antibody (G-21, Santa Cruz) followed by 
anti-rabbit horseradish peroxidase antibody. The exogenously PGRMC1 signal was detected 
only. 

 
Figure 29: PGRMC1 expression in T47D/PGRMC1-3HA cells. Western blot analysis of 
lysates prepared from T47D/PGRMC1-3HA cells. (a) PGRMC1 is detected with a polyclonal 
rabbit anti-PGRMC1 antibody (#12444, Cell Signaling) followed by anti-rabbit horseradish 
peroxidase antibody. Signals are visualized with chemiluminescence, and actin provided a 
loading control (upper panel). The exogenously and endogenously PGRMC1 signal was 
detected. (b) PGRMC1 is detected with a polyclonal rabbit anti-PGRMC1 antibody (G-21, 
Santa Cruz) followed by anti-rabbit horseradish peroxidase antibody. The exogenously 
PGRMC1 signal was detected only. 
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Figure 30: Recombinant PGRMC1 of MCF-7 WT12 cells. Western blot analysis for lysates 
prepared from MCF-7 WT12 cell lines. (a) PGRMC1 is detected with a polyclonal rabbit 
anti-PGRMC1 antibody followed by anti-rabbit horseradish peroxidase antibody. Signals are 
visualized with chemiluminescence. PGRMC1-3HA is detected at approximately 30 kDa. (b) 
No signals are detected. Here, the primary antibody was preincubated with recombinant 
PGRMC1. (Upper panels) The same lysates were incubated with an actin specific antibody for 
loading control. 

 
Figure 31: Recombinant PGRMC1 of T47D/PGRMC1-3HA cells. Western blot analysis of 
lysates prepared from T47D/PGRMC1-3HA cells. (a) PGRMC1 is detected with a polyclonal 
rabbit anti-PGRMC1 antibody followed by anti-rabbit horseradish peroxidase antibody. Signals 
are visualized with chemiluminescence. PGRMC1-3HA is detected at approximately 30 kDa. 
(b) No signals are detected. Here, the primary antibody was preincubated with recombinant 
PGRMC1. (Upper panels) The same lysates were incubated with an actin specific antibody for 
loading control. 

3.5.2 PGRMC1 detection in supernatant from breast cancer cell lines 

PGRMC1 is associated with secreted protein. We collected supernatant from 

the conditioned media without serum of breast cancer cell lines after 24 hours, 
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and then concentrated ten times prior to western blot. Supernatant was 

depurated through a cibacron blue column. Then PGRMC1 levels were 

detected by western blot. Theoretically, dead cells may release PGRMC1. 

Nevertheless, the cells used for the experiment were grown in cell cycle G1 

and no cells were dead under this condition (24 hours without serum) [57]. We 

used slurry Separopore blue CL-6B to treat the samples. Separopore blue 

CL-6B is an agarose conjugate in saline suspension used to purify 

protein. PGRMC1 was analyzed through western blot in the supernatant from 

MCF-7/PGRMC1 (MCF-7 WT12) (Fig. 32A) or T47D/PGRMC1 cell lines (Fig. 

32B). But, merely the rabbit anti-PGRMC1 antibody (#12444, Cell Signaling) 

could detect this band, under the identical situation the polyclonal antibody 

(G-21, Santa Cruz) did not. Therefore, the sensitivity of the antibody is 

important in this experiment.  

 
Figure 32: Detection of PGRMC1 in supernatant from breast cancer cells by western 
blot analysis. A) Conditioned media from MCF-7/PGRMC1 (MCF-7 WT12) were depurated 
through cibacron blue column and detected by western blot. The analysis shown the 
expression of PGRMC1 in the supernatant from MCF-7 WT12 cells used the polyclonal rabbit 
anti-PGRMC1 (Cell Signaling) (a) or the G-21 antibody (Santa Cruz) (b). The rabbit 
anti-PGRMC1 (Cell Signaling) measured the band, while the G-21antibody did not under the 
identical situation. B) Conditioned media from T47D/PGRMC1 cells were depurated through 
cibacron blue column and detected by western blot. The analysis shown the expression of 
PGRMC1 in the supernatant from T47D/PGRMC1 cells used the polyclonal rabbit 
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anti-PGRMC1 (Cell Signaling) (a) or the G-21 antibody (Santa Cruz) (b). The rabbit 
anti-PGRMC1 (Cell Signaling) measured the band, while the G-21antibody did not under the 
identical situation. For A and B, the supernatant was obtained and concentrated ten times prior 
to western blot.  
 

3.5.3 PGRMC1 detection in plasma from breast cancer patients 

We purified plasma from premenopausal and postmenopausal breast cancer 

patients, then PGRMC1 was analyzed by western blot. MCF-7/PGRMC1 

(MCF-7 WT12) cell lines were utilized as positive control. PGRMC1 expression 

was determined only in MCF-7 WT12 cell line, while under the same 

experimental conditions this protein was not detectable in the plasma (Fig. 33). 

 

Figure 33: PGRMC1 expression in plasma from breast cancer patients. Plasma specimen 
was depurated through a cibacron blue column. ‘‘N’’ refers to normal control, and ‘‘Pr’’ means 
premenopausal breast tumor patients and ‘‘Po’’ refers to postmenopausal breast tumor 
patients. PGRMC1 expression was analyzed by western blot. PGRMC1 is detected with a 
polyclonal rabbit anti-PGRMC1 (Cell Signaling) followed by anti-rabbit horseradish peroxidase 
antibody. 
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4. Discussion  

Breast cancer is the most prevalent tumor in women. According to statistics, 

women diagnosed with breast cancer is more than 1,000,000 per year and 

over 410,000 die of this disease [58]. PGRMC1 has been involved in breast 

tumor for a long time. Some studies have shown that PGRMC1 would be 

significant in carcinogenesis and elevate the risk of breast cancer. 

 

PGRMC1 includes a cytochrome b5 region and has protein and 

phosphorylation binding sites for SH2 and SH3 regions of tyrosine kinases [1], 

which is a member of membrane-associated progesterone receptor (MAPR) 

family and is widely distributed in eukaryotic organisms [1]. PGRMC1 

combined with some proteins participated in xenobiotic (Cyp3A4) [11, 59], 

hormone (Cyp21) [11], and sterol metabolisms (Cyp51) [11, 59, 60] and RNA 

binding (PAIR-BP1) [20, 61] in kidney tissue. Furthermore, PGRMC1 

combines P450 proteins and plays activation in metabolism of cholesterol and 

hormone [11, 59, 62]. PGRMC1 has been detected in several tumors, such as 

including colon, lung, breast, thyroid, and ovary cancer [35, 63-67]. In addition, 

PGRMC1 is required for cancer cell apoptosis resistance, anchorage 

independent growth, cancer growth, and metastasis [57, 61, 68].  

 

In this study, we demonstrated that ER-α plays a significant effect in the signal 

transduction of PGRMC1 activated by progestins and the presence of 

PGRMC1 can sensitize E2-induced PS2 mRNA levels. Furthermore, we 

evaluated the level of RANKL and RANK in various breast tumor cell lines and 

effect of estradiol and progestins on over-expressing RANKL cells. This was 

extended by findings showing that let-7i targets PGRMC1 and negatively 

affects PGRMC1 expression in breast tumor cells MCF-7. Moreover, PGRMC1 



 

72 

 

was present in breast cancer cell lines and could be secreted by these cells. 

4.1 Proliferation of breast cancer cell lines endogenously 

expressing PGRMC1 with and without co-expressing 

ER-alpha 

The interventional WHI (Women’s Health Initiative) trial and Million Women 

trial demonstrated a probable relationship between progestin treatment and 

improved risk for breast tumor in women after menopause [69, 70]. In contrast 

to this, in French E3N-EPIC study which enrolled about 80,000 women after 

menopause, hormone therapy that included progestins MPA or NET induced 

an increased breast cancer risk [71, 72]. Nevertheless, in the WHI study, 

estrogen did not increase but to reduce the risk of breast cancer [73]. 

Progestogens are conventionally thought to perform their influences by the 

position of progesterone receptors (PR) in cells. Some research indicated that 

progestogen might play an anti-proliferative effect via PR in breast cancer cell 

lines [74-76]. These results are contrasted with the above-mentioned 

observation. Additional results suggested the proliferation of synthetic 

progestogens [77, 78]. Therefore, the exact mechanism of progestogens 

effects on human breast cancer is unknown. This may be depend on the 

specific conditions of cells. 

 

PGRMC1 was found to be interrelated with the membrane-associated 

progesterone receptor activity. Furthermore, PGRMC1 is also highly 

expressed in many tumors and in tumor cells such as breast cancer. ER-α has 

a wide extent of physiological activation as a ligand transcription factors and 

overexpressed in approximately 75% of breast tumors. In humans, ER-α is 

encoded by the gene ESR1 [79]. ER-α over-expression is a major factor in 

human breast cancer prognosis. ER-α plays a significant effect in breast tumor 
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progression as well as outcome of patients [80]. 

 

We have surveyed the proliferation of progesterone and various synthetic 

progestins that are applied for hormone therapy on MCF-7 and MCF-7 WT12 

(MCF7/PGRMC1) cells in vitro. In MCF-7 cell lines, DYD, DSG, DRSP, NET 

and LNG raised the proliferative effect, the influence is maximum for NET. In 

MCF-7 WT-12, these hormone detected an obviously improved than in MCF-7. 

However, it was found no effect in NOM, P and CMA [50]. The presence of 

PGRMC1 sensitizes some synthetic progestins induced proliferative effect in 

MCF-7 cells. 

 

Our study has shown that some breast cancer cells, for example BM and 

SUM225CWN express PGRMC1. Interestingly ER-α was expressed in BM but 

not in SUM225CWN cells. The results of their proliferation assays with 

estradiol and all progestins are different. In BM cells, MPA, NET, LNG DSP 

significantly increased the proliferation and no significant effect was found for 

P4, NOM, DYD and CMA. The role of progestins on BM cells might rely on the 

particular pharmacology. However, these hormones didn’t obviously alter the 

proliferation of SUM225CWN. Thus ER-α plays a significant effect in the signal 

transduction of PGRMC1 activated by progestins. However, the exact 

mechanism is still unclear. Therefore, in order to verify this hypothesis and 

make it even more conclusive evidence, knockout or overexpression 

experiments for ER-α should be performed in the future and observe the 

proliferative effect of estradiol and progestins.  

4.2 PGRMC1 sensitizes PS2 expression by E2-induced 

PS2 (also called Trefoil factor 1) is a cysteine-rich acidic secreted protein [81, 

82] and over-expressed in several tumors, including kidney, colon [83-85] and 

breast cancer [86, 87]. PS2 is a classical estrogen-regulated gene through an 
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ERE (estrogen response element) in its promoter [82]. Masiakowski and 

colleagues found that expression of the pS2 gene is controlled by estrogen in 

MCF-7 cells [88]. Our study confirms that estradiol can increase the mRNA 

levels of PS2 in the MCF-7 cell line. The promoter PS2 includes activator 

protein 1 (AP-1) and ERE site. Therefore, AP-1 site with ERE intermediate 

estradiol-induced the expression of PS2 [89, 90]. Furthermore, our 

investigations showed that the E2-induced PS2 expression is more 

pronounced in PGRMC1-expressing cells, such as in WT-12 cells. As shown in 

earlier experiments breast cancer cells over-expressing PGRMC1 are more 

sensitive towards the E2-induced proliferative effect. According to our results 

this proliferative effect might be mediated via an enhanced expression of PS2. 

 

To explore which possible receptor-mediated mechanisms are included in the 

E2-induced PS2 expression in MCF-7 cell lines, antagonists of the ER-α 

receptor (fulvestrant), CK2 receptor (TBCA) or PGRMC1 (AG 205) were used. 

The presence of fulvestrant was able to obviously block the effect of E2. We 

have known that ER-α could induce several downstream genes level including 

PS2 [91]. Therefore, PGRMC1 may participate in the signal transduction of 

ER-α and PS2 activation by estrogen. The mechanism of interaction is still 

unclear. 

 

CK2 (Casein kinaseⅡ) is a conserved kinase protein that is constituted of 

catalysis and regulatory domains [92]. With a ubiquitous activity this enzyme 

has nearly 450 known substrates [93] and targets about 20% of the 

phosphoproteome [94]. CK2 was found to have both cytosolic and nuclear 

localization in eukaryotes cells and participated in important physiological 

procedures such as cellular proliferation, apoptosis and tumorigenesis [95, 96]. 

CK2 is a “lateral” (non-hierarchical) kinase [97] and has multiple effects on the 

signaling landscape in cancer [98]. CK2 might be a potential interaction sites 
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with PGRMC1. Therefore, we studied the effect of a serine/threonine kinase 

CK2 in PS2 expression through breast cancer cells over-expressing PGRMC1. 

We used the selective CK2 inhibitor, tetrabromocinnamic acid (TBCA), which 

acts as a potent and ATP-competitive inhibitor of Casein kinase Ⅱ . 

Surprisingly, treatment with TBCA decreased the E2-induced PS2 mRNA 

levels in PGRMC1 over-expressing cells. Therefore, CK2 is also intimately 

intertwined with PS2 and PGRMC1. 

4.3 RANKL and RANK expression in various breast cancer 

cells 

RANK belongs to the transmembrane protein family [99]. The gene resides on 

the human chromosome 18q22 [100, 101]. RANK is detected in osteoclasts 

and is involved in their differentiation and activation. RANK protein is also 

expressed on T cells, B cells, dendritic cells, and fibroblasts [102, 103]. Human 

RANK is constituted of 383 amino acids which participated in NF-κB function 

[104]. The binding of RANK could cause the activation of several signal 

transduction pathways [105, 106]. 

 

RANKL, a ligand for RANK, is a type II transmembrane protein and is found on 

the stromal cells, osteoblasts, and T-cells [107-109]. RANKL gene is found on 

13q14 and includes about 6 exons [102]. RANKL is a tumor necrosis factor 

(TNF)-related cytokine coded for by a single gene. However, the RANKL 

protein exists in three isoforms [110] : two of which possess a transmembrane 

domain of either 317 or 270 aa and a third isoform of 243 aa that acts as a 

soluble ligand (sRANKL). The expression of RANKL is influenced in stromal 

and osteoblast cells by several elements. It was detected in fewer 

organizations, yet at a high level in lung and thymus, as well as low level in 

other organs such as spleen [111]. Some studies shown that RANKL was still 
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detected in breast epithelium only at pregnancy or lactation period [112]. It was 

also expressed by some cancer cells, so it could stimulate cancer cells 

proliferation [113] through autocrine and paracrine mode. 

 

RANK and RANKL are involved in bone remodeling. Bone remodeling cycle is 

closely adjusted through RANK, RANKL, and osteoprotegerin (OPG). RANK 

mRNA expression is at a high levels through osteoclasts [114], and RANKL is 

expressed by most bone osteoblasts [115].  RANKL combines to RANK of 

osteoclasts, which results in osteoclast maturation [116, 117], increased 

osteoclast activity [117], and inhibits apoptosis of osteoclast [118]. OPG can 

inhibit RANK-RANKL interaction and osteoclast activity through combining to 

RANKL. 

 

Mouse presented invalid for RANK and RANKL by gene melting exhibited 

disturbed lobulo-alveolar structures during pregnancy, eliminating lactation 

[112, 115]. Deletion of the construction was owing to decreased differentiation 

and increased apoptosis of alveolar bud in functional breast during lactation 

[112]. Other studies found that RANKL [119] and RANK were also involved in 

ductal side-branching, alveolar differentiation and lumen formation in breast 

[120]. 

 

RANK/RANKL were originally shown to make a significant effect in 

physiological processes of T-cells, dendritic, and osteoclasts cells [121]. 

Recent research has demonstrated that RANK/RANKL play an essential effect 

in breast carcinogenesis and bone metastases [122-125]. Some studies 

reported that RANK/RANKL protects human breast cancer cells and avoids 

apoptosis [124] and increases in motility in this cell lines [123]. Other studies 

shown that RANK and RANKL signal transduction blocked could slow bone 

metastases [126]. 
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In 1999, Thomas and coworkers [127] first detected that breast tumor cells 

MCF-7, MDA-MB-231, T47D and breast tumor tissues display RANK, but 

didn’t display RANKL. However, other studies lately demonstrated that RANKL 

was also detected in MDA-MB-231and MCF-7 cell lines [122, 125, 128, 129]. 

The expression level of RANKL mRNA and protein were detected and 

up-regulated under hypoxic conditions in MCF-7 cells [130]. In our 

experiments, RANK expression was verified in MDA-231 and Cal72 cell lines, 

while under the same experimental conditions MCF-7 and T47D did not detect 

RANK expression by western blot. Furthermore, we didn’t find any 

constitutively expressed RANKL in various cancerous breast epithelial cell 

lines using western blot. The different results might owing to the basis level of 

RANKL expression is relatively low in these cell lines. Another possible reason 

may be the detection methods, as it is known that the expression level of 

mRNA is not always fully translated into protein. Therefore, we could use some 

methods to up-regulate the expression of RANKL, for example hypoxia 

inducible factor 1 (HIF-1). Since hypoxia can elevate RANK and RANKL 

expression in human breast cancer cell lines [130]. Another way, sensitive 

antibody should be recommended for detection of RANK and RANKL by 

western blot. Recent research suggested that the expression of RANKL in 

breast tumor cell lines was enhanced after co-cultured with primary 

osteoblasts like cells. Schubert and colleagues reported that co-cultured 

HCC70 cell lines with human primary osteoblasts increased RANKL 

expression[131]. Consistently, other studies also found that MDA-MB-231 cell 

lines were co-cultured with stromal cells and osteoblasts caused RANKL 

mRNA expression [132]. Therefore, using a co-culture system, we analyzed 

the RANKL level in breast tumor cells. However, co-cultured MCF-7/PGRMC1 

and MDA-MB-231 cells with osteoblast-like cells didn’t induced RANKL 

expression. The possible reason may be the detection methods, as it is known 
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that the expression level of mRNA is not always fully translated into protein. 

Different culture conditions and heterogeneity of cell lines may be another 

possible reason. 

  

According to results of animal experiments RANK/RANKL also appear to be 

essential in mediating the progesterone effects on breast development via 

progesterone receptor B [112, 133]. MPA therapy, which is applied for 

progesterone contraceptives and HRP, is related to an improved breast cancer 

risk. MPA leads to an affluent RANKL-induced of RANKL in breast epithelium 

and the absence of RANKL reduced the occurrence of breast tumor induced 

by MPA. RANK-defect mouse was a significantly retarded in hormone and 

oncogene induced carcinogenesis. RANKL-RANK signal transduction was 

needed to the survival and proliferation for breast cancer cells [124]. Thus, 

these studies imply that progesterone-RANKL-RANK axes make a critical 

effect in breast cancer initiation. Our study showed that estradiol and 

progestins didn’t significantly alter the proliferation of L-cells, over-expressing 

RANKL cell lines, and change the expression of RANKL. These observations 

may be due to the character of L-cells being different from tumor cells. L-cells 

are derived from a common totipotent stem cell. Furthermore, L-cells are 

estrogen receptor- negative cell lines. It may be the reason that progestins 

didn’t alter the proliferation of L-cells. 

4.4 Let-7i regulates mRNA of PGRMC1 

In spite of PGRMC1 express in several tumors and advance tumorigenesis, 

the detailed mechanisms regulating its expression are still little known. Some 

research showed that miRNAs could be involved in some genes expression 

and might regulate the expression of PGRMC1. MiRNA is 18-25 nucleotide (nt) 

small RNAs, which usually bind in the 3'-untranslated region of mRNA, 

resulting in degradation or translational repression of mRNAs, and potentially 
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lower levels of protein expression [134-138]. MiRNA makes a significant effect 

in almost every biological functions, such as development time, cell 

proliferation, and differentiation [139]. Deregulation of miRNA may related with 

human malignancies, occurrence, development, and outcomes [140]. 

Moreover, increasing results indicate that miRNA regulates cellular 

proliferation via various mechanisms. There are some miRNAs up-regulated in 

breast cancer, such as let-7, miRNA-125b, and miRNA-145 [141-143]. 

 

Let-7 is the second to be discovered miRNA [144]. Some research indicated 

that let-7 sequence of C. elegans is more conserved than mankind, which 

offered a role to miRNA as the genetic fundamental moderators in variety of 

living creatures [145]. Let-7 family miRNAs are important for carcinogenesis 

[146]. In mammals, let-7 is able to adjust a variety of oncogenes, for example 

RAS [147], MYC [147, 148], and HMGA2 [149]. Therefore, aberrant level of 

let-7 could lead to tumorigenesis and metastasis of several tumors, including 

breast, lung, colon, and ovarian cancer [142, 143, 150, 151]. While some 

genes targeted by let-7 miRNA were discovered, our study found another gene, 

PGRMC1. This research suggested that overexpression of let-7i negatively 

affects PGRMC1 expression in MCF7 cells, which probably offered an 

alternative interpretation for breast tumorigenesis.  

 

The length of PGRMC1 3'-UTR is 1212bp. Current research indicated that 

let-7i inhibits the expression of PGRMC1. A study of silicon suggested that 

let-7 bound to the 3'-UTR of PGRMC1 [152]. The 3'-UTR of PGRMC1 was 

presumed binding the let-7 subtypes [152]. Next, bioinformatics revealed that 

let-7 accordant with the sequence of PGRMC1 3'-UTR, suggesting PGRMC1 

may be a target of let-7, which was further confirmed by the cell transfection 

with miRNA [153]. 
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To analysis the impact of let-7 on the mRNA level of PGRMC1, we transfected 

let-7i mimic into MCF-7 cells. After 2 days, Let-7i mimic down-regulated the 

expression of PGRMC1. qPCR detected that let-7i repressed PGRMC1 

expression at the mRNA level. Over-expression of let-7 in MCF-7 cells 

inhibited the expression of PGRMC1 mRNA. To date, over 1,000 miRNAs 

have been found in humans (http://www.sanger.ac.uk/Software /). Whereas 

the number of mRNAs is about 30,000. Thus, a single miRNA may regulate 

many kinds of mRNA between the miRNA and mRNA [154]. Wendler and 

colleagues found that let-7i regulated PGRMC1 expression in ovarian cancer 

cells [152]. For this research, we found that let-7 miRNAs target PGRMC1 and 

negatively affects endogenous PGRMC1 mRNA expression in breast cancer 

MCF7 cells. 

 

Some binging sites for miRNAs were found in the PGRMC1 3'-UTR, such as 

let-7i [152]. Additionally, we have shown that let-7 miRNA targets PGRMC1 

and reduces expression of PGRMC1 in MCF-7 cells. In breast cancer, 

PGRMC1 expression and let-7 miRNA appears negative correlation. 

Furthermore, PGRMC1 promotes cellular proliferation and tumorigenesis [1]. 

Therefore our finding indicates a new regulatory mechanism in PGRMC1 

intermediated proliferation of breast tumor cells via miRNAs. Since let-7i 

makes a significant effect in the inhibition of some mRNAs participated in 

tumor advances, such as PGRMC1, which could be the candidate for drug 

therapies and the interaction has to be investigated in the future. 

4.5 Secreted PGRMC1 by breast cancer cell lines 

PGRMC1 was initially purified in endoplasmatic reticulum from swine liver cells 

[2]. PGRMC1 includes several interplay regions for phosphorylation [155]. 

PGRMC1 is mainly situated in cellular membranes and colocalizes with Golgi 

apparatus or endoplasmic reticulum [57]. Some research also introduced 
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nucleus and chromosomal location [20, 156, 157]. PGRMC1 could be 

discovered in nuclear, microsomal, mitochondrial, cytosolic and membrane, 

indicating that it could change its subcellular localization in different cell lines. 

It was confirmed that PGRMC1 was exist in mammary tumors. Furthermore, 

Crudden et al. suggested that PGRMC1 was significantly higher in breast 

cancer than appropriate normal tissues [35]. Our results implicated that 

PGRMC1 was detected in mammary tumor cells and could be secreted by this 

cells. Thus, PGRMC1 is related to secreted proteins. It indicated the potential 

source of plasma PGRMC1.  

 

PGRMC1 was expressed in breast tumor cells, while PGRMC1 was also 

expressed in the supernatant of the culture medium. Some studies implicated 

that PGRMC1 might conduce to the biological environment of tumorigenesis 

and could be used as biomarker or therapeutic target [158, 159]. PGRMC1 

could be converted from membrane bound to cytoplasm form [24], and could 

positioned in the tumor cell secretory vacuoles [160]. Furthermore, breast 

tumor cells secrete PGRMC1. The research will demand confirmation of 

plasma in breast cancer patients compared to noncancer women in the next 

trials. 

 

PGRMC1 belongs to secreted proteins which is an only basic composition and 

neurotrophic function [161], and combines to unconscious neuron receptors 

and promotes Akt signal [162]. PGRMC1 was secreted by tumor cells and was 

discovered in the supernatant from breast cancer cell lines by western blot. 

PGRMC1 promotes breast tumor cells growth and could lead to tumor 

formation. We first reported that PGRMC1 level was increased in supernatant 

of breast cancer cells. Nevertheless, the method demanded a refining 

procedure, which was not an easy step in clinical application. The sensitivity of 

antibody is important in this assay. Furthermore, we purified plasma of breast 
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tumor women. Then PGRMC1 was detected via western blot. However, 

PGRMC1 expression could not be detectable in plasma. The detection should 

use fewer purification procedures and a more sensitive antibody. 

 

PGRMC1 plays a significant effect in cancer development and metastatic 

through resistant to apoptosis and be up-regulated in multiple cancers. 

Shakeel and colleagues showed that PGRMC1 could be discovered in patient 

plasmas with lung tumor and matched healthy patients. We described that 

PGRMC1 was detected in breast tumors. Furthermore, PGRMC1 is increased 

in ER-negative breast cancers [48]. This study demonstrated that PGRMC1 

could be secreted by the breast tumor cell lines. The measurement of 

PGRMC1 levels could provide a method of determination who display a higher 

expression level of PGRMC1, and who may be predisposed to develop breast 

tumor. Therefore, PGRMC1 might be a predictor for cancer progression and a 

target for breast tumor treatment. 
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5. Conclusions 

PGRMC1 is elevated in tissues of breast cancer patients and is important in 

tumorigenesis. Certain synthetic progestins may increase the proliferation of 

PGRMC1-expressing breast tumor cells, while progesterone and other 

synthetic progestins such as nomegestrol (NOM) or chlormadinone acetate 

(CMA) reacted neutrally. Our findings point out an important role of ER-α in the 

proliferative effect induced by progestins. 

 

We confirm that the expression of the ER responsive gene pS2 is increased by 

estrogen in MCF-7 cells. Furthermore, we can demonstrate the new finding 

that the presence of PGRMC1 can sensitize E2-induced PS2 mRNA levels 

indicating for the first time that PGRMC1 may participate in the transcriptional 

regulation of PS2 by ER. In blocking experiments, antagonists of CK2 (TBCA), 

ER-α (fulvestrant) and PGRMC1 (AG 205) were able to block the effect of E2 

corroborating our new finding and suggesting that CKII may be involved. 

Fittingly, PGRMC1 contains two putative CKII phosphorylation sites. 

 

Since mice experiments published elsewhere [124] suggested an association 

of progesterone action and RANK/RANKL system we tried to investigate if 

PGRMAC1 may be involved in vitro. We were not able to detect RANKL 

endogenous expression in different breast cancer cells using western blot. 

Besides that progestins didn’t significantly up-regulate RANKL expression in 

normal and PGRMC1 overexpressing cells. From that we conclude that in vitro 

a different unknown factor is missing, which may be present in vivo and may 

be responsible for establishing the progesterone-RANK/RANKL axis. 

 

Regulation of PGRMC1 is quite unresolved, yet. Our findings confirmed 
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regulation of PGRMC1 expression by miRNA let-7i, in breast cancer cell lines, 

which has previously been shown in ovarian cancer cells [152], 

overexpression of let-7i negatively affects the expression of PGRMC1 in MCF7 

breast cancer cells. Since let-7i is considered to be a suppressor inhibiting the 

growth of malignant tumor cells by acting RAS [147], HMGA2 [149, 163], and 

c-Myc [164] including PGRMC1, this miRNA may be a candidate target for 

future drug therapy. 

 

PGRMC1 is expressed in breast tumor cells as well as has been suggested to 

have a prognostic effect in HRT. Therefore, an easy test of its expression in 

health women would be very helpful. The survey of PGRMC1 levels could 

provide a method of determination who display an increased expression level 

of PGRMC1 and who is likely to develop breast tumor treatment with HRT. It 

has previously suggested that PGRMC1 can be detected in plasma [160]. 

PGRMC1 might be a predictor for cancer progression and a target for breast 

tumor treatment. We were able to detect PGRMAC1 in supernatants from 

PGRMC1 overexpressing cells but not in the plasma of a small cohort of 

healthy persons and breast cancer patients. Further experiments are now 

needed to address the source of plasma PGRMC1 from breast tumor patients. 

 

In conclusion, our findings shown that ER-α and PGRMC1 signaling seem to 

be linked. PGRMC1 expression was adjusted through complex mechanism 

that relates the repression action of let-7i, which may be a potential therapeutic 

target for breast cancer. Furthermore, PGRMC1 is related to secreted proteins 

and that the level of secreted PGRMC1 is potential biomarker for breast 

cancer risk. 
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Zusammenfassung 

Nach wie vor steht die Prävalenz von Brustkrebs bei Frauen an erster Stelle 
vergesellschaftet mit einer relativ hohen Todesursache. Die 
Progesteronrezeptor-membrankomponente-1 (PGRMC1), die in 
Mammakarzinomgewebe stärker exprimiert wird als in gesundem 
Stromagewebe, könnte eine wichtige Rolle in der Genese des 
Mammakarzinoms spielen. In früheren Untersuchungen konnte gezeigt 
werden, dass Estrogene und einige synthetische Gestagen über PGRMC1 
eine erhöhte Proliferation in Mammakarzinomzellen induzieren können, ein 
Hinweis darauf, dass die Art des Estrogens und des Gestagens wichtig sein 
dürfte in Hinblick auf das Brustkrebsrisiko unter einer Hormontherapie in der 
Postmenopause. Allerdings ist noch unklar über welche Mechanismen dieser 
Effekt generiert wird und wie die endogene Expression von PGRMC1 reguliert 
werden kann. Offen ist ebenfalls die Frage, ob PGRMC1 von Brustkrebszellen 
in das Blut abgegeben wird und somit für ein Screening hinsichtlich eines 
möglichen erhöhten Brustkrebsrisikos verwendet werden könnte. In der 
vorliegenden Arbeit wurden die Proliferationsstimulierung via PGRMC1, 
Beeinflussung der Expression von PGRMC1 sowie mögliche Mechanismen 
der Signaltransduktion in verschiedenen Mammakarzinomzell-Linien sowie die 
Sekretion von PGRMC1 durch Karzinomzellen untersucht. In BM Zellen 
(endogene Expression von  Estrogenrezeptor (ER-α) und PGMRC1), 
erhöhten Medroxyprogesteronacetat (MPA), Norethisteron (NET), 
Levonorgestrel (LNG) und Drospirenon (DRSP) signifikant die Proliferation. 
Allerdings konnten diese Hormone die Proliferation von SUM225CWN Zellen 
(nur endogenes PGRMC1) nicht stimulieren. In MCF-7 Zellen war die 
Anwesenheit von PGRMC1 mit einer Sensitivierung gegenüber dem 
Estradiol(E2)-induzierten PS2 mRNA Level, einem estrogenem Zielgen, 
vergesellschaftet. Interessanterweise konnte zum erstenmal nachgewiesen 
werden, dass auch bestimmte Gestagene wie NET in der Lage waren die PS2 
Expression in MCF-7/PGRMC1 Zellen zu erhöhen, wohingegen kein Effekt für 
das natürliche Progesteron gefunden wurde. Diese Wirkung von E2 und NET 
konnte durch die Zugabe von Antagonisten gegenüber ER-α, PGRMC1 und 
CK2, einer Kinase, die in die Tumorzellproliferation involviert ist, blockiert 
werden, wobei der Effekt des ER-α-Antagonisten am stärksten war. Um eine 
mögliche Rolle von RANK/RANKL zu untersuchen, wurde zunächst die 
Expression dieser Komponenten in verschiedenen Mammakarzinomzell-Linien 
bestimmt. Mittels Westernblot konnte allerdings in keiner der untersuchten 
Zelllinien eine Expression von RANK oder RANKL nachgewiesen werden. In 
RANKL überexprimierenden, ER-α-negativen und PGRMC1-negativen Zellen 
konnte weder durch Estradiol noch durch Gestagene eine Erhöhung der 
Zellproliferation noch der RANKL-Expression bewirkt werden. In Kokulturen 
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von Osteoblasten mit Mammakarzinomzell-Linien mit und ohne 
Überexpression von PGRMC1 wurde versucht eine Induktion von RANK bzw. 
RANKL in den Mammakarzinomzell-Linien zu generieren. Dies gelang leider 
nicht, so dass die Rolle von RANK/RANKL als Mediator von 
Hormoninduzierten Proliferationen von PGRMC1 überexprimierenden Zellen 
noch offen ist. Als möglicher Mechanismus der Beeinflussung der 
PGRMC1-Expression wurden MCF-7 Zellen mit einem miRNA Let-7i Analogon 
transfiziert, da Let-7i als Tumorsuppressor fungiert. In der vorliegenden Arbeit 
konnte gezeigt werden, dass Let-7i die endogene PGRMC1-Expression 
inhibieren kann. PGRMC1 konnte im Überstand von verschiedenen 
Mammakarzinomzell-Linien mittels Westernblot nachgewiesen werden. 
Allerdings waren die ersten Versuche PGRMC1 in Plasmaproben von 
Patientinnen mit und ohne Mammakarzinom nachzuweisen nicht erfolgreich.  
 
Zusammenfassend ist festzustellen, dass ER-α eine wichtige Rolle in der 
Signaltransduktion von PGRMC1 nach Aktivierung durch Estradiol und 
synthetische Gestagene spielen dürfte und dass eine Interaktion von 
PGRMC1 mit ER-α den PS2 Signalweg stimulieren kann. Die 
PGRMC1-Expression kann möglicherweise durch verschiedene miRNAs wie 
z.B. Let-7i beeinflusst werden und bietet somit ein mögliches therapeutisches 
Ziel. Des Weiteren könnte PGRMC1 ein prädiktiver Biomarker für das 
Brustkrebsrisiko in Frauen unter Hormontherapie darstellen. 
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