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Abstract/Summary 

Parkinson’s disease (PD) is the second most common neurodegenerative disease and 

characterised by a progressive loss of dopaminergic neurons in the substantia nigra pars 

compacta and in other brain regions. Homozygous loss-of-function mutations in the DJ-1 

gene (PARK7) are a rare cause of familial early-onset PD. 

The protein encoded by PARK7 is involved in a variety of biological processes including 

transcriptional regulation, chaperone-like functions, oxidative stress response and mito-

chondrial protection. 

In the present study, we deciphered novel molecular mechanisms underlying the patho-

genicity of the c.192G>C DJ-1 mutation previously predicted to lead to a p.E64D amino 

acid exchange in the DJ-1 protein. 

To analyse the c.192G>C DJ-1 mutation, we generated and characterised different ex vivo 

patient-based cellular models including patient-derived primary fibroblasts, immortalised 

fibroblasts, induced pluripotent stem cells (iPSCs), iPSC-derived small molecule neuronal 

precursor cells (smNPCs) as well as iPSC-derived midbrain-specific dopaminergic (mDA) 

neurons. 

Analyses of DJ-1 expression in these patient-derived model systems from homozygous 

carriers of the c.192G>C DJ-1 mutation unexpectedly revealed that this mutation leads to 

the loss of DJ-1 protein in these cell types. Further experiments using qPCR and an in 

vitro splicing assay showed a splicing defect causing complete skipping of the mutation-

carrying exon 3 in the pre-mRNA. After deciphering the pathogenic mechanism, we devel-

oped a targeted genetic rescue strategy of the pathological skipping of exon 3. This was 

performed by using a specific U1 snRNA that specifically binds to the mutated DJ-1 pre-

mRNA and allows for the re-induction of physiological splicing. 

In addition, we extended our strategy by first candidate approaches aiming at a pharma-

cological rescue that may offer novel causative treatment options in patients carrying the 

c.192G>C DJ-1 mutation as well as for other diseases caused by the same mutational 

mechanism. 

Beyond the molecular genetic characterisation, we developed different patient-based cel-

lular models and addressed the functional effects of loss of DJ-1 protein in different patient-

derived cells carrying the c.192G>C DJ-1 mutation (human fibroblasts, iPSC-derived mDA 

neurons). 



 

VII 

These analyses revealed mitochondrial impairments upon loss of DJ-1 protein in fibro-

blasts, including fragmentation and reduced branching of mitochondria as well as a re-

duced mitochondrial membrane potential compared to healthy controls. The results corre-

late with our observations in primary cells from DJ-1 knockout mice and support the idea 

of a conserved role of DJ-1 in maintaining mitochondrial function. Moreover, mDA neurons 

of the index patient carrying the homozygous c.192G>C DJ-1 mutation showed increased 

lesion rates of mtDNA and no increase in mtDNA copy numbers, suggesting a lack of 

compensatory capacity. 

Our data substantially contribute to the understanding of mechanisms and functions of DJ-

1 mutations in PD pathogenesis, in particular focusing on mitochondrial phenotypes upon 

loss of DJ-1 in different human ex vivo models. This underlines the role of DJ-1 as an 

important key player in the response to oxidative stress and the maintenance of proper 

mitochondrial function and homeostasis. 

Overall, we show that the fibroblasts with an inherited c.192G>C DJ-1 mutation, mDA 

neurons differentiated from iPSCs of these human fibroblasts and the DJ-1 knockout mice 

constitute excellent knockout model systems to further dissect the role of DJ-1 in neuro-

degeneration in PD. This also offers human DJ-1 knockout models for future isogenic con-

trol experiments with a restituted endogenous DJ-1 background. Sequentially, it is possible 

to test whether disease related phenotypes might be rescued by reintroducing DJ-1 or 

correcting the defective splicing. 

Finally, the discovery of the underlying mechanism of the c.192G>C DJ-1 mutation opens 

up novel opportunities for a first genetic and maybe even pharmacological causative treat-

ment for PD. 
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1 Introduction 

1.1 Parkinson’s disease 

Parkinson’s disease (PD) is the second most common neurodegenerative brain disease 

after Alzheimer’s disease. The characteristic motor symptoms including rigidity, imbalance 

and uncontrollable shaking are all familiar to the general public. To date, there is no cure 

for PD and motor symptoms can only be alleviated to increase the quality of life of patients. 

Overall, 2% of the world’s population over 65 suffers from this debilitating disease and the 

incidence of PD is set to double in the next 20 years due to the demographic development 

of the population (people are living longer and the world’s population is growing) (Elbaz et 

al., 2002, Van Den Eeden et al., 2003). 

Amongst other famous people like Muhammad Ali, Johnny Cash, Adolf Hitler and Pope 

John Paul II who suffered from PD, is Michael J. Fox - who developed the disease very 

early in life. He established the Michael J. Fox Foundation, which raises money for re-

search through which we will hopefully be able to eventually decipher the cause of the 

disease. 

1.1.1 History of PD 

By the time James Parkinson formally described PD in 1817, the illness had been known 

for centuries and single cardinal symptoms had been mentioned in many different old texts 

(Stern, 1989). The oldest records about PD symptoms like palsies and tremor are from 

2500 B.C. They are found in ancient Indian texts about Ayurvedic medicine by Agnivesha 

(Stern, 1989). But also an old Egyptian papyrus from 1200 B.C. mentions “Parkinsonian” 

dribbling (Stern, 1989). Later, around 500 B.C., PD symptoms are also mentioned in an 

old Chinese medical text (Zheng, 2009). The writings of the Greek physician Galen who 

had a lot of influence in ancient times, mention tremor and gait disorders, he writes about 

“troubled limbs” (Stern, 1989). Tremor was also described by Leonardo da Vinci who writes 

about involuntary movements “without permission of the soul” (Calne et al., 1989). It was 

in 1690 when the Hungarian doctor Ferenc Pápai Páriz in his work “Pax corporis” de-

scribes the four cardinal symptoms of PD in Hungarian for lay public (Bereczki, 2010). In 

his monograph entitled “An essay on the Shaking Palsy”, James Parkinson writes about 6 

patients suffering from the “Shaking Palsy”, but he also acknowledges earlier descriptions 

of the symptoms by other people like Boissier de Sauvage who wrote about compulsive 

tremor in 1768 and Sylvius de la Böe who already mentions tremor in 1680 (Stern, 1989). 

Interestingly, James Parkinsons’ essay combines early symptoms with a late stage of the 

disease “The disease is of long duration: to connect, therefore, the symptoms which occur 
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in its later stages with those which mark its commencement, requires a continuance of 

observation of the same case, or at least a correct history of its symptoms even for several 

years” (Parkinson, 2002). Interestingly as well is that he also describes enteric symptoms 

already. In 1861, Jean-Martin Charcot rewarded Parkinsons’ work by calling PD “Maladie 

de Parkinson”. The French physician completed the work with a comprehensive descrip-

tion of the symptoms (Charcot, 1877). Approximately 100 years after James Parkinson 

described PD, it was Frederic Lewy who reported on one of the main characteristics of 

PD, which is now named Lewy bodies. He described intraneuronal inclusions in neurons 

of the brain of PD patients during autopsy (Lewy, 1912). Seven years later, Constantin 

Tretiakoff writes about the involvement of the substantia nigra in PD (Tretiakoff, 1919). In 

1957 and 1958 Carlsson descirbes that akinetik effects can be reversed by an intravenous 

injection of the dopamine (and noradrenaline) precursor, 3,4-dihydroxyphenylalanine 

(DOPA) (Carlsson et al., 1957, Carlsson et al., 1958). Only one year went by from the 

discovery that levels of the neurotransmitter dopamine are reduced in the brain of PD pa-

tients, or more specifically the striatum (Ehringer and Hornykiewicz, 1960), to the first treat-

ment with L-dopa, which is a metabolic precursor of dopamine (Birkmayer and 

Hornykiewicz, 1961). In the beginning, L-dopa was administered intravenously (Birkmayer 

and Hornykiewicz, 1961), however the oral administration as PD treatment has been es-

tablished since 1968 (Cotzias et al., 1969). Since that time, the treatment has not changed 

markedly, however several new important findings were made. In 1983, William Langston 

reported about young patients who suddenly acquired PD symptoms after having taken 

drugs with an impurity (Langston et al., 1983). This neurotoxin 1-methyl-4-phenyl-1, 2, 3, 

6-tetrahydropyridine (MPTP) is the first described environmental factor causing PD symp-

toms. The first genetic cause of PD was found in 1997 by Polymeropoulos and colleagues 

who described the first PARK gene α-synuclein (SNCA) (Polymeropoulos, 1997). PARK2 

was found one year later (Kitada, 1998) as a cause of autosomal recessive PD and in 

2003, PARK7 encoding DJ-1 was published as a cause of early-onset PD autosomal PD 

(Bonifati, 2003). To date, there are 21 PARK genes published. Current methods for the 

identification of PD genes like next-generation sequencing allowed to identify new mono-

genic forms of PD (Chartier-Harlin et al., 2011, Edvardson et al., 2012, Quadri et al., 2013). 

With the increasing use of large genome-wide association study (GWAS) meta-analyses 

in 2011, new putative genes associated with PD have been identified (Nalls, 2011). 

Today, we celebrate the World Parkinson’s Day on April 11th - James Parkinson’s birthday 

– and wear the red James Parkinson tulip as a symbol for PD. 
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1.1.2 Epidemiology (Greek: epi - on, demos - people, logos - study of) of Parkinson’s dis-

ease 

The major issues of analysing and comparing different epidemiological studies are the 

huge heterogeneity of the cohorts, differences in the evaluation of diagnostic criteria as 

well as the methodology of the various studies. This accounts not only for the high variation 

between different studies with regards to prevalence and incidence (Muangpaisan et al., 

2011, von Campenhausen et al., 2005), but also to morbidity and mortality (Macleod et al., 

2014). In PD, the prevalence increases with age. In the age group of 40 to 49 years, the 

prevalence is 41 per 100,000, this increases to 428 per 100,000 in individuals between 60 

and 69 years of age and that further increases significantly to 1,903 per 100,000 in the 

group of people over 80 (worldwide) (Pringsheim et al., 2014). The overall worldwide prev-

alence (over age 40) is 315 per 100,000 (Pringsheim et al., 2014). If these statistics are 

applied to the world’s population of people over age 40 from 2012 one gets to 7.5 million 

people in the world suffering from PD (Ross and Abbott, 2014). When comparing the prev-

alence of different continents, a geographic variation can be seen. Indeed, Asia has a 

lower prevalence than South America, Europe, North America and Australia (Ross and 

Abbott, 2014). Interestingly, a recent study comparing the differences in prevalence be-

tween men and women showed that the prevalence in women was not lower in all age 

groups (Twelves et al., 2003). However, it could be concluded that the incidence in men 

is slightly higher than in women. Additionally, men seem to have an earlier age of onset of 

disease (Twelves et al., 2003) while women usually show more benign phenotypes and 

disease progression is slower (Haaxma et al., 2007). 

In a study where projections were made to calculate the number of people with PD in 

Western Europe's five most and the world's ten most populous nations, the authors con-

cluded that  8.7 to 9.3 million people will be suffering from PD by 2030 (Dorsey et al., 

2007). 

Another interesting aspect is the effect of environmental factors. The most replicated en-

vironmental factor, which reduces the risk of getting PD, is smoking. It is also the most 

consistent factor, which impressively reduces the risk of developing PD by 60 % (Ross 

and Abbott, 2014). Other factors that are thought to be protective include coffee, tea, vita-

min D and exercise (Ross et al., 2000). On the other hand, exposure to pesticides such as 

the insecticides rotenone and permethrin and the herbicides paraquat and 2, 4- dichloro-

phenoxyacetic acid as well as some organochlorines and metals such as high dose man-

ganese increase the risk of getting the disease (Abbott et al., 2003, Kalantzi et al., 2001).  
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Although the overall mortality in PD patients is reduced, it is difficult to estimate an overall 

number of PD deaths. A recent review came up with mortality ratios between 1.2 and 2.4 

(Macleod et al., 2014). Interestingly, the main causes of death are similar to the ones in 

the healthy population, including cardiovascular diseases (Ho et al., 1989). The biggest 

concern for patients and their relatives is not an early death but rather reduced quality of 

life. Instead of increasing longevity, they are more interested in being able to live inde-

pendently and not suffer from depression and other non-motor symptoms such as sleep 

disturbances, constipation or smell impairment (Ross and Abbott, 2014). 

1.1.3 Clinical features and treatment of the disease 

Until to date there are no therapies available which slow or halt the underlying neurodegen-

erative process of this very common disease, as the loss of neurons cannot be stopped. 

At least a symptomatic treatment replacing the dopaminergic deficit or treating pathological 

oscillations of neuronal populations exist. 

The mean age of onset of PD is 65 years (de Rijk et al., 2000) and the diagnosis is mainly 

based on the clinical investigation requiring structural and only rarely functional brain im-

aging (Hughes et al., 1992). Interestingly, years before the first symptoms appear the A9 

dopaminergic pigmented neurons in the substantia nigra pars compacta start to die al-

ready (Ma et al., 1997). This can be seen by a white appearance of this region compared 

to a healthy brain. Only once 30 % of these neurons are gone the motor symptoms occur 

due to less dopamine in the striatum (Greffard et al., 2006, Ma et al., 1997). The reason is 

a compensatory increased release of dopamine of 50 % to 70 % in the remaining neurons 

(de la Fuente-Fernandez et al., 2011, Lee et al., 2000). There are even direct correlations 

between cell loss and motor dysfunction (Halliday et al., 2006, Jellinger and Paulus, 1992). 

The most common medications applied for treating motor symptoms in PD belong to four 

groups: Levodopa plus peripheral dopa decarboxylase inhibitors (Levodopa-PDDI), Dopa-

mine agonists, monoamine oxidase type B inhibitors (MAOBIs) and catechol-O-methyl-

transferase inhibitors (COMTIs). 

Although the motor symptoms are most recognised by the public, surveys tell that patients 

suffer more from the non-motor symptoms (Breen and Drutyte, 2013). These symptoms 

have a brought range and can be classified in four groups: 

1) Neuropsychiatric symptoms (for example depression and dementia), 

2) Autonomic symptoms (for example Constipation and Nausea), 

3) Sleep disturbances (for example vivid dreaming and insomnia) and 

4) Sensory symptoms (like for example olfactory deficits and taste deficits). 
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The treatment of the nonmotor symptoms of course depends on the symptoms, therapies 

are available for most of the symptoms, but like for all therapies there are side effects. All 

treatments can be supported by physiotherapy, logopedics and occupational therapy. 

Furthermore since in 1947 Spiegel and Wycis first used deep brain stimulation it is another 

option for treatment (Fukaya and Yamamoto, 2015). By implanting electrodes into the nu-

cleus subthalamicus overactive neurons can be inhibited. The advantage of this method 

is that the complications of dopaminergic medication like motor fluctuations can be effec-

tively treated and medication can be reduced together with improved motor abilities 

(Kleiner-Fisman et al., 2003, Deuschl et al., 2006). 

1.1.4 Contribution of genes in Parkinson’s disease 

In 1997, the first genetic cause of PD was discovered (Polymeropoulos, 1997). Since then, 

20 genetic causes have been identified (Table 1) and also approximately 28 risk loci for 

PD (Nalls et al., 2014). Even though most forms of PD are sporadic, analysing the genetics 

of the familial cases helped to get important insight into the etiology of the disease. About 

11 % of all PD patients have a family history with one or more other PD mutation-carrying 

person in the family (Shino et al., 2010). The monogenic forms can be distinguished by 

inheritance between autosomal dominant (AD) and autosomal recessive (AR) forms (Ta-

ble 1). 

Mutations in SNCA, locus PARK1, are rare and include five point mutations which cause 

late onset PD and gene duplications and triplications which have been associated to an 

early onset of the disease (Corti et al., 2011). 

Mutations in the leucine-rich repeat kinase 2 (LRRK2), locus PARK8, are the most com-

mon cause for an AD inherited PD (Biskup and West, 2009, Zimprich et al., 2004a, 

Zimprich et al., 2004b). The most common mutation in the Caucasian population is the 

G2019S mutation (Goldwurm et al., 2005). LRRK2 is a large gene consisting of 51 exons. 

The protein contains a GTPase and a kinase domain as well as several protein-protein 

interaction domains (Gasser, 2009). 

Homozygous mutations of the autosomal recessively inherited forms of PD cause an early 

onset of the disease. 

The most common mutations in autosomal recessively inherited PD are in Parkin, locus 

PARK2, which was the second monogenic form identified (Lucking et al., 2000, Kitada, 

1998). Parkin encodes for an E3 ubiquitin ligase. 

Mutations in PINK1, PARK6 locus, are rare and account for 1 % to 8 % of the cases with 

early onset (Valente et al., 2004a). PINK1 stands for phosphatase and tensin homologue 
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(PTEN) - induced putative kinase 1. The protein is a ubiquitously expressed kinase with a 

mitochondrial targeting sequence, a serine-threonine kinase domain and an autoregula-

tion domain (Beilina et al., 2005, Sim et al., 2006, Valente et al., 2004b, Zhou et al., 2008). 

PINK1 plays a role in outer mitochondrial membrane (OMM) integrity as well as mitophagy 

[PINK1 function reviewed in (Bonifati et al., 2005, Li et al., 2005, Rogaeva et al., 2004)]. 

Table 1: Monogenic causes of PD. 

The table shows the chromosomal location of the disease gene, the name of the gene, the type of mutations 

that have been found for the respective gene as well as when and by whom the gene has first been described. 

The locus names of the genes stand for Parkinson (PARK) and are numbered in the order the respective loci 

have been identified. MIM stands for mendelian inheritance in man and the MIM No. is part of a database for 

all known genetically inherited diseases. 

(MIM No. = Mendelian Inheritance in Man; Chr. = Chromosome) 

Locus MIM No. Inheritance Chr. Gene Mutation First described by 

PARK1 601508 AD 4q21-23 α-Synuclein PM (Polymeropoulos, 1997) 

PARK2 600116 AR 6q25.2-27 Parkin 
Del/Ins/Dupl/ 
Tripl/PM 

(Kitada, 1998) 

PARK3 602404 AD 2p13 - - (Gasser et al., 1998) 

PARK4 605543 AD 4q21-23 α-Synuclein Dupl, Tripl (Singleton et al., 2003) 

PARK5 191342 AD 4p14 UCH-L1 PM (Leroy et al., 1998) 

PARK6 605909 AR 1p35-36 PINK-1 PM (Valente et al., 2004b) 

PARK7 606324 AR 1p36 DJ-1 Del, PM (Bonifati et al., 2002) 

PARK8 607060 AD 12cen LRRK2 PM (Zimprich et al., 2004a) 

PARK9 606693 AR 1p36 ATP13A2 PM (Ramirez et al., 2006) 

PARK10 606852 AD 1p32 - - (Hicks et al., 2002) 

PARK11 607688 AD 2q36-37 GIGYF2 PM (Lautier et al., 2008) 

PARK12 300557 nd Xq21-25 - - (Pankratz et al., 2002) 

PARK13 610297 AD 2p12 Omi/HtrA2 PM (Strauss et al., 2005) 

PARK14 610297 AR 22q13 PLA2G6 PM (Gregory et al., 1993) 

PARK15 610297 AR 22q12-13 FBXO7 PM (Di Fonzo et al., 2009) 

PARK16 613164 AR 1q32 - - (Satake et al., 2009) 

PARK17 614203 AD 16q13 VPS35 PM (Zimprich et al., 2011) 

PARK18 614251 AD 3q27.1 EIF4G1 PM (Chartier-Harlin et al., 2011) 

PARK19 615528 AR 1p31.3 DNAJC6 Del, PM (Edvardson et al., 2012) 

PARK20 615530 AR 21q22.11 SYNJ1 PM (Quadri et al., 2013) 

PARK21 614334 AD 3q22.1 DNAJC13 PM (Vilarino-Guell et al., 2014) 
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Mutations in ATP13A2, locus PARK9, PLA2G6, locus PARK14 and FBXO7, locus 

PARK15 encode even rarer forms of recessively inherited parkinsonism usually with an 

early onset of below 30 years and may be associated with atypical symptoms like spastic-

ity, early dementia and predominant dystonia (Di Fonzo et al., 2009, Paisan-Ruiz et al., 

2009, Ramirez et al., 2006). 

VPS35, eIF4G1, DNAJC6 and SYNJ1 are more recently identified genes. Before the iden-

tification of new PD genes was based on analysing large pedigrees with multiple affected, 

linkage analysis and subsequent sequencing of candidate genes in the identified region. 

The new genes defining PARK7 to PARK20 loci however were identified making use of 

the new technique of next-generation sequencing allowing to directly sequence whole ex-

omes in affected family members and controls (Singleton et al., 2013). 

Another recent publication aimed to find novel PD genes by whole-genome and exome 

sequencing of a Japanese family with PD. In this study, a potential new autosomal domi-

nantly inherited PD gene called CHCHD2 has been identified (Funayama et al., 2015). 

Further genetic studies in independent cohorts and populations are warranted in order to 

confirm the pathogenicity of this new gene. 

Genereally there is a fluent transition from monogenic forms, to risk factors and to common 

variants with a small effect size. 

Monogenic forms are rare, but have a high effect size and account for Mendelian diseases. 

Variants with lower frequencies and intermediate effect can be distinguished from common 

variants with a low effect size which are mainly identified by genome wide association. 

Rare variants with a low effect size are very hard to indetify by genetic means, in contrast 

to common variants with a high effect, but these cases are only very rare (Manolio et al., 

2009). 

Some of the PARK loci do not only carry mutations which cause monogenic forms of PD, 

but also carry additional mutations in the coding or non-coding regions, that are associated 

with a higher risk for developing PD. Such as the p.G2385R mutation in LRRK2 which has 

been found to cause an approximately 2-fold increase in risk for PD in the Asian population 

(Bonifati, 2007). 

One example for a common variant with a small effect size is a polymorphism in the pro-

moter region of SNCA, which was shown to increase the risk for developing PD and sub-

sequently confirmed by unbiased genome-wide association studies (Kruger et al., 1999, 

Simon-Sanchez et al., 2009). 
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An example for a rare variant with a substantial effect is glucocerebrosidase (GBA), which 

causes an approximately 5-fold increase for PD in the presence of a single GBA mutation 

(Sidransky et al., 2009). There are also other genes, todate there are 28 known, which are 

not PARK loci that have been associated with an increased risk for PD using GWAS, ex-

amples are MAPT, NAT2, INOS2A, GAK, HLA-DRA, and APOE (Nalls et al., 2014). 

1.1.5 Pathophysiological pathways of Parkinson’s disease 

PD is seen as a heterogenous disease and there is no common pathophysiological path-

way for all PARK loci, because there are too many gaps in our current knowledge. There 

are, however, several pathways shared by at least some PD genes (Hardy et al., 2006, 

Antony et al., 2013). These hallmark pathways include 

- synaptic dysfunction including exo- and endocytosis: 

PD includes motor and cognitive symptoms, which are known to be impaired due to 

the progressive loss of dopaminergic neurons. In order to work efficiently, motor and 

cognitive functions require the synapse to be modified based on the activity, such as 

long-term depression (LTD) and long-term potentiation (LTP). LTD and LTP are con-

trolled by the release of dopamine at the synaptic terminals (Picconi et al., 2012). Dif-

ferent PD genes play a role at the presynaptic site. For example, the release of dopa-

mine into the synaptic cleft depends amongst other things on the transport of the ves-

icle. 

SNCA seems to have a critical function by modulating neurotransmitter vesicle function 

(Bisaglia et al., 2005, Ulmer et al., 2005). But also LRRK2 regulates the release of 

vesicles as well as axonal polarity (Trinh and Farrer, 2013). 

- protein degradation including proteolytic degradation and autophagy as well as 

protein misfolding: 

A hallmark of PD is Lewy body pathology. These inclusion bodies are aggregates of 

mainly α-synuclein and if they are found in neurites they are referred to as Lewy neu-

rites. These abnormal aggregates are a sign of impaired degradation of either mis-

folded or altered proteins (Spillantini et al., 1997). The ubiquitin proteasome system 

(UPS) as well as the autophagy lysosomal pathway (ALP) are systems to remove 

these types of proteins. The PD gene ATP13A2 for example is known to play a role in 

the APL including impaired lysosomal acidification, decreased proteolytic processing 

of lysosomal enzymes, reduced degradation of lysosomal substrates and diminished 

lysosomal-mediated clearance of autophagosomes (Dehay et al., 2012). Α-synuclein 

is known to easily misfold and the UPS (largely under physiological conditions) and 
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ALP (upon increased/pathological conditions) contribute to the clearance of α-synu-

clein aggregates, fibrils and oligomers [reviewed in (Ebrahimi-Fakhari et al., 2012)].  

- mitochondrial dysfunction through oxidative stress (ROS and metals) and neuroin-

flammation as well as calcium homeostasis (see 1.1.6). 

1.1.6 Mitochondrial involvement in PD 

MPTP was the first environmental factor described in literature that was shown to cause 

PD symptoms (Langston et al., 1983). Unlike the typical slow and progressive disease 

development in typical sporadic PD, MPTP-induced PD occurs via an acute toxic insult. 

MPTP itself does not appear to be toxic, but its oxidised form MPP+. Both are able to cross 

the blood-brain barrier (BBB) and MPP+ is taken up by dopaminergic (DA) neurons (Nicklas 

et al., 1985). There, it inhibits mitochondrial respiration by reducing complex I, which is a 

NADH ubiquinone oxidoreductase of the electron transport chain (ETC) leading to dys-

functional mitochondria and increased oxidative stress (Dauer and Przedborski, 2003). 

Not only environmental toxins hinted at a mitochondrial involvement in neurodegeneration 

in PD, but also biochemical and pathoanatomical studies of PD brains showed an approx-

imately 30 % reduced complex I activity in the substantia nigra and frontal cortex of post 

mortem PD brains (Parker et al., 2008, Schapira et al., 1989, Janetzky et al., 1994, Mann 

et al., 1994, Schapira et al., 1990). 

Additionally, PD-associated genes such as PINK1 and Parkin encoding mitochondrial pro-

teins linked impaired mitochondrial function to neurodegeneration in PD (Schapira, 1999, 

Strauss et al., 2005, Valente et al., 2004b). 

Mitochondrial can be affected at different instances in neurodegeneration in PD (Figure 

1): 

1) Complex I activity, 

2) Oxidative stress, 

3) Bioenergetics, 

4) Quality control and clearance, 

5) Homeostasis, 

6) Dynamics and biogenesis and 

7) Transport 
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Figure 1: Hallmarks and aetiology of PD and possible links to mitochondrial features. 

PD is characterised by certain hallmarks and is characterised by different cellular dysfunctions which may be 

shared amongst the indicated hallmarks. Familial PD is caused by autosomal dominantly or autosomal reces-

sively inherited mutations in different PD genes. These mutations influence different mitochondrial features 

such as bioenergetics, quality control, dynamics and transport and homoeostasis. Sporadic PD is a complex 

disease, which is caused by an interplay of genetic risk factors and environmental factors like toxins but also 

aging. In this case, mitochondrial features are also affected. 

Figure modified from (Exner et al., 2012, Antony et al., 2013). 

1) Complex I activity: 

Beside MPTP, other toxins were used in animal models to define the impact of a complex 

I deficiency in PD. Rotenone for example not only inhibits complex I in the central nervous 

system (CNS) of mouse and rat models. Animal studies using rotenone showed that even 

a mild reduction of complex I activity can cause different hallmarks of PD in animal models 

such as the degeneration of the substantia nigra pars compacta and protein inclusions 

similar to Lewy bodies (Drolet et al., 2009). Another interesting finding linking mitochondrial 

ROS, mainly produced by complex I and III of the respiratory chain (Sugioka et al., 1988, 

Turrens and Boveris, 1980), to PD was the discovery that PD patients carry more muta-

tions in the mitochondrial DNA (mtDNA) compared to age-matched controls (Bender et al., 

2006). Thirteen genes encoding subunits of the respiratory chain are encoded by the 

mtDNA. The majority, seven, of them encode subunits of complex I, which makes this 

subunit particularly vulnerable to damage through point mutations and deletions [reviewed 
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in (Larsson, 2010, Reeve et al., 2008)]. Such mutations in the mtDNA can be inherited 

maternally or acquired over time through damage of the mtDNA by ROS or polymerase γ 

deficiency. The latter ones are more prone to occur in cells with a high-energy demand 

such as neurons and muscles. 

Mutations in the human POLG1 gene, encoding the DNA polymerase γ which exerts its 

functions in the mitochondria, co-segregate with parkinsonism [reviewed in (Orsucci et al., 

2011)]. In support, mice expressing a mutant polymerase γ accumulate mtDNA mutations 

and show phenotypes of premature aging (Kujoth et al., 2005, Trifunovic et al., 2004). 

2) Oxidative stress: 

Oxidative stress can be caused by reactive oxygen species (ROS) and by dopamine. ROS 

are mainly produced by complex I and III of the ETC and under normal conditions function 

as signal transducers (Fomenko et al., 2011). Once a certain amount of ROS is exceeded, 

it cannot be compensated anymore and oxidative stress occurs. This stress can lead to 

damage of lipids, proteins and DNA and such oxidatively damaged molecules have been 

found in brains of PD patients (Alam et al., 1997, Dexter et al., 1989, Floor and Wetzel, 

1998). 

Interestingly, the neurotransmitter dopamine itself can also mediate an increase in oxida-

tive stress and may explain part of the vulnerability of dopaminergic neurons in PD. Dopa-

mine is metabolised by monoamine oxidase or by auto-oxidation which can lead to cyto-

toxic ROS followed by neuromelanin formation (Sulzer et al., 2000). 

3) Bioenergetics: 

Mitochondria are dynamic organelles and largely devoted to nutrient metabolism and bio-

energetics. Different mitochondrial functions are regulated in response to different energy 

demands (Little et al., 2011) and bioenergetics dictate the response of mitochondria. Each 

cell type has a different bioenergetic status and it has been shown for example that fluc-

tuations in energy demands lead to altered fission and fusion of mitochondria (Ding et al., 

2010). By fission of mitochondria new mitochondria are created. During cell division this 

process makes sure that new cells have an adequate number of mitochondria. At the same 

time fission acts as quality control mechanism by which damaged mitochondria can be 

removed (Chen and Chan, 2010). Also fusion of mitochondria can help in case of not too 

severly damaged mitochondria by mixing contents of partially damaged mitochondria 

(Youle and van der Bliek, 2012). Both fission and fusion are important for mitochondrial 

quality control and need to be balanced. The bioenergetic status therefore is relevant for 

disease development (Van Laar and Berman, 2013). 
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4) Quality control and clearance: 

Mitochondrial quality control and clearance are controlled at different instances, e.g. chap-

erones for intramitochondrial molecular quality control, and by the PD genes PINK1, Parkin 

and DJ-1 for organellar quality control. Dysfunctional mitochondria are degraded by mi-

tophagy, a pathway of lysosome-mediated organellar degradation that was defined by 

studies on PINK1 and Parkin by (Narendra et al., 2008, Youle and van der Bliek, 2012). 

PINK1 accumulates at the outer mitochondrial membrane of impaired or dysfunctional mi-

tochondria (Narendra et al., 2010); this is followed by the recruitment and phosphorylation 

of Parkin (Narendra et al., 2008). Parkin ubiquitinates several outer mitochondrial mem-

brane proteins, e.g. VDAC, Mfn2 or Miro1 (Sarraf et al., 2013). This step is followed by the 

recruitment of p62 to the mitochondria, which initiates autophagy via engulfment of dys-

functional organelles by autophagosomes (Geisler et al., 2010). 

Loss of function of DJ-1 has been shown to lead to accumulation of dysfunctional mito-

chondria because of reduced lysosomal activity and impaired mitophagy (Krebiehl et al., 

2010). 

5) Homeostasis: 

Loss of function mutations in the PD-associated genes Parkin, PINK1, Omi/HtrA2 and DJ-

1 can lead to mitochondrial dysfunction in vivo and in vitro and the encoded proteins of 

these genes are therefore important to maintain the mitochondrial homoeostasis [reviewed 

in (Burbulla et al., 2010)]. 

Mitochondrial stressors can also induce an imbalance in calcium homoeostasis. Recent 

work indicated that homeostatic calcium stress could be a determinant of the selective 

vulnerability of the dopaminergic neurons of the substantia nigra pars compacta to PD 

(Chan et al., 2009). 

6) Dynamics and biogenesis: 

The fission and fusion process of mitochondria is indispensable for maintaining adequate 

metabolic function of mitochondria. It allows them to rapidly react to the requirements of 

the cell by renewing themselves, interact with each other and redistribute themselves 

(Knott and Bossy-Wetzel, 2008). Upon fusion, mitochondria form big interconnected net-

works whereas in case of fission, they change their size and shape to become more frag-

mented (Detmer and Chan, 2007). Again PD associated genes are involved in this pro-

cess. Loss of function of PINK1 leads to fragmented mitochondria in different cellular and 

animal models (Exner et al., 2007, Lutz et al., 2009). The same holds true for loss of Parkin 
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models (Lutz et al., 2009). In mice and human primary cells, the same effect of mitochon-

drial fragmentation was seen through the loss of DJ-1 (Blackinton et al., 2009, Krebiehl et 

al., 2010). An imbalance in either case can lead to the death of the cell. 

7) Transport: 

The mobility of mitochondria is extremely important and undergoes frequent changes de-

pending on the metabolic demand and physiological changes in the neurons. Mitochondria 

can change direction, move rapidly or stay at the same place. Depending on the direction 

of the transport, anterograde transport is defined by mitochondria, but also other orga-

nelles, being transported towards the synaptic terminal of the axon. This aims at delivering 

mitochondria to regions with a high energy demand. Retrograde transport denotes the 

transport back to the cell body (Chang et al., 2006, Hollenbeck and Saxton, 2005, Li et al., 

2004). In this way, aged or dysfunctional mitochondria can be degraded or recycled 

(Saxton and Hollenbeck, 2012). Loss of function mutations in PINK1 have been associated 

with disturbed mitochondrial dynamics in D. melanogaster (Poole et al., 2008). 

The mitochondrial contribution to sporadic as well as familial PD needs further investiga-

tion and better understanding of the underlying mechanism. This could serve for mitochon-

drial pathway-based therapeutic strategies that could intervene in disease progression. 

1.2 DJ-1, a multifunctional protein 

DJ-1 has a small 20kDa domain, which in solutions forms a dimer (Figure 2) to become 

active (Wilson et al., 2003). DJ-1 has multiple functions and is cytoprotective. The DJ-1 

gene was first described as an oncogene in 1997 (Nagakubo et al., 1997) and shortly 

thereafter DJ-1 was found to regulate male fertility (Welch et al., 1998). In 2003, Bonifati 

and colleagues described four PD patients in a Dutch and three PD patients in an Italian 

family with mutations in DJ-1 (Bonifati et al., 2003). DJ-1 thereafter defined the PD locus 

PARK7. 

1.2.1 Functions and structure of DJ-1 

DJ-1 is composed of seven exons with exon 1 not coding. DJ-1 consists of 189 amino 

acids and belongs to the Thj1/Pfp1 superfamily. It is highly conserved among different 

species, homologues are found in all aerobic species from prokaryotes to eukaryotes and 

the amino acid residues are highly conserved, including the presumably most important 

residues for PD, namely C106, located in a nucleophile elbow, shown as ball and stick 

(Figure 2) (Bandyopadhyay and Cookson, 2004, Lucas and Marin, 2007). The cysteine in 

position 106 of the peptide sequence is highly oxidisable and responds to oxidative 

stress/ROS by forming a sulfinic acid (Honbou et al., 2003, Huai et al., 2003, Lee et al., 
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2003, Wilson et al., 2003). DJ-1 with oxidised C106 is thought to be less stable and there-

fore becomes inactive (Hulleman et al., 2007, Zhou et al., 2006). Interestingly, when C106 

was replaced with other amino acids, DJ-1 lost its neuro protective activity (Meulener et 

al., 2006). Only oxidised DJ-1 gets transported to the mitochondria where it acts mitopro-

tective (Canet-Aviles et al., 2004). 

 

Figure 2: Crystal structure of the DJ-1 dimer. 

One homomer is blue and one homomer is red. The side chains of residues C106 and L166 are shown as ball 

and stick. The c.192G>C mutation is shown as balls in white. The molecular model were drawn with Chimera 

(www.cgl.ucsf.edu/chimera) using the DJ-1 crystal structure data with PDB accession code 1PDW (Tao and 

Tong, 2003). 

The precise biochemical functions of DJ-1 in PD, however, are unclear. One reason might 

be that no post mortem brain samples from PD patients with DJ-1 mutations reached au-

topsy to study the pathology in these cases. 

Another reason is the broad spectrum of publications describing different and partially 

quite vague functions of this small protein: 

- DJ-1 affects ras-dependent transformation (Nagakubo et al., 1997), 

- controls fertility (Wagenfeld et al., 1998), 

- modulates androgen-receptor signalling via sumoylation (Takahashi et al., 2001, 

Tillman et al., 2007) and possibly through histone deacetylation (Niki et al., 2003); 

- acts as a protein chaperone (Shendelman et al., 2004), 

- acts as a protease (Koide-Yoshida et al., 2007, Olzmann et al., 2004), 

- affects transcription (Taira et al., 2004a) including that of tyrosine hydroxylase (Xu 

et al., 2005), 
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- alters dopamine receptor signalling (Goldberg et al., 2005), 

- suppresses apoptosis via an interaction with kinases (Junn et al., 2005, Sekito et 

al., 2006) and/or suppression of the phosphatase PTEN (Kim et al., 2005a), 

- alters p53 signalling (Bretaud et al., 2007, Fan et al., 2008, Shinbo et al., 2005), 

- alters Akt1 function (Yang et al., 2005), 

- upregulates glutathione synthesis or heat shock proteins (Zhou and Freed, 2005), 

- stabilizes antioxidant transcription factors (Clements et al., 2006), 

- interacts with PINK1 (Tang et al., 2006) and Parkin (Moore et al., 2005), and 

- acts similar to a peroxiredoxin (Andres-Mateos et al., 2007). 

- It plays a role as well as glyoxalase (Lee et al., 2012b), as a metal sequestering 

protein (Bjorkblom et al., 2013) and 

- it has been suggested as a regulator of mitochondrial fusion (Krebiehl et al., 2010). 

DJ-1 is ubiquitously expressed. In the human brain, it is found in neurons and astrocytes. 

In sporadic PD patients, a strong expression is seen in reactive astrocytes, but it is not 

accumulating in the pathognomonic Lewy bodies (Bandopadhyay et al., 2004, Neumann 

et al., 2004, Rizzu et al., 2004). 

1.2.2 DJ-1 protects mitochondria and is a sensor for oxidative stress 

As described before, DJ-1 acts as a redox sensor through the C106 residue. DJ-1 itself 

contains no mitochondrial targeting sequences. Nevertheless, upon oxidation, DJ-1 trans-

locates to the OMM (Canet-Aviles et al., 2004) and it was found in cytosolic fractions as 

well as inside the mitochondria after exposure to mitochondrial toxins (Zhang et al., 2005). 

It is under discussion if inside the mitochondria, DJ-1 colocalises with complex I and this 

colocalisation could be increased by oxidative stress (Zhang et al., 2005). It was shown 

that DJ-1 directly binds to NDFU4 and ND1, both subunits of complex I, thereby maintain-

ing complex I activity (Hayashi et al., 2009). Interestingly, a reduction in mitochondrial 

complex I activity is also seen in PD patients (Mizuno et al., 1989, Schapira et al., 1990). 

Upon loss of DJ-1, an increase in ROS was consistently shown in different in vitro and in 

vivo models and include altered mitochondrial dynamics (Irrcher et al., 2010). We were the 

first ones to show, that in primary cells, upon loss of DJ-1, dysfunctional mitochondria 

accumulated because of impaired autophagy (Krebiehl et al., 2010). (Irrcher et al., 2010) 

also showed altered mitochondrial morphology in the absence of DJ-1. Furthermore, a 

group observed the accumulation of LC3 near mitochondria in DJ-1 deficient cells 

(Thomas et al., 2011). Another study showed impaired Ca2+ uptake of mitochondria in DJ-

1 deficient cells, an important factor to maintain proper cell physiology (Ottolini et al., 

2013). 
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By acting as a transcriptional regulator, DJ-1 also protects against oxidative stress. DJ-1 

sequesters kelch-like ECH-associated protein 1 (Keap1) in the event of oxidative stress. 

Sequestered Keap1 sets Nrf2 free, which subsequently translocates to the nucleus and 

regulates the transcription of genes, which protects the cell against ROS and detoxication 

(Clements et al., 2006). DJ-1 can also directly bind to the DNA binding domain of p53 to 

inhibit its transcriptional activity. This prevents p53 from inducing apoptosis under stress 

conditions (Fan et al., 2008, Kato et al., 2013). 

DJ-1 shares mitochondria-related functions with two other PD genes: PINK1 and Parkin. 

It has been shown that loss of DJ-1-related phenotypes can be partly reverted by introduc-

ing PINK1 or Parkin. DJ-1, however, cannot rescue loss of PINK1- or Parkin-related phe-

notypes (Exner et al., 2007, Irrcher et al., 2010, Krebiehl et al., 2010, Thomas et al., 2011). 

1.2.3 Mutations in DJ-1 are associated with PD 

The number of mutations in DJ-1 associated with PD is relatively low compared to the 

number of disease related mutations in PINK1 and Parkin, two other autosomal reces-

sively inherited PD genes. At present, there are 21 mutations published, see Table 2 for 

the type of mutation, the occurance, the population in which the mutation was found, the 

effect of the mutation if known as well as the reference. 

Mutations in DJ-1 cause approximately 1 % of all PD cases world-wide (Lockhart et al., 

2004). However, there is a variation seen in the frequency of DJ-1 mutations between 

different ethnic groups. Caucasians: 0.83 % in familial cases and 0.99 % in sporadic cases 

and 0.54 % copy number variations, Asians: 3.03 % in familial cases, Arabs: 0.74 % in 

sporadic cases and Ashkenazi Jews: 1.96 % in sporadic cases (Nuytemans et al., 2010). 

The mutations result in an early-onset with slow progression (except for the compound 

heterozygous c.317_322del:p.106_108del mutation (Jose M. Bras et al., 2014)) of the dis-

ease. For many of the mutations, the effect is still unknown including the previously de-

scribed p.E64D mutation (Hering et al., 2004). Others cause a decreased protein stability 

and the 14kb deletion even causes loss of DJ-1 protein (Bonifati, 2003). Some are also 

predicted to lead to an altered transcript (Table 1). 

The mutations can be found in a homozygous, a compound heterozygous and a hetero-

zygous state. Mutational mechanisms include missense mutations as well as copy number 

variations (Table 2). 

The p.E64D mutation was first found in a male Turkish patient. He developed PD symp-

toms at the age of 34. His sister who is also a homozygous carrier of the mutation, how-

ever, didn’t show any motor symptoms at the age of 42. The index patient showed slowing 
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of movement and left sided stiffness in the arm and leg as well as tremor and rigidity. He 

also suffered from non-motor symptoms like depression and sleep disturbances. Positron 

emission tomography showed an altered dopamine transporter binding in the striatum. The 

patient responds well to L-Dopa treatment (Hering et al., 2004). 

Table 2: List of PARK7 mutations. 

This is a list of all published PARK7 mutations linked to PD including for the type of mutation, the occurance, 

the population in which the mutation was found, the effect of the mutation if known and the reference. 

Mutation Occurance Population Predicted effect Reference 

L166P  Homozygous Italian  Protein instability (Bonifati, 2003) 

14-kb deletion Homozygous Dutch  Loss of protein (Bonifati, 2003) 

M26I  Homozygous Ashkenazi Jewish Protein instability (Abou-Sleiman et al., 2003) 

D149A  Heterozygous Afro Caribbean Unknown (Abou-Sleiman et al., 2003) 

IVS6-1 G-C Heterozygous Hispanic  Altered transcript (Hague et al., 2003) 

c.56delC  Heterozygous Hispanic  Frameshift  (Hague et al., 2003) 

g.168_185del Both   Global  Unrelated Polymorphism (Hague et al., 2003) 

R98Q  Heterozygous Global  No effect/polymorphism (Hague et al., 2003) 

A104T  Heterozygous Latino  Polymorphism (Hague et al., 2003) 

Ex5-7del Heterozygous Northern Italian Altered transcript (Hedrich et al., 2004) 

IVS5+2-12del Heterozygous Russian  Altered transcript (Hedrich et al., 2004) 

E64D  Homozygous Turkish  Unknown  (Hering et al., 2004) 

E163K  Homozygous Italian  Altered activity (Annesi et al., 2005) 

g.168_185dup Homozygous Italian  Unknown (Annesi et al., 2005) 

L10P Homozygous Chinese Decreased protein stability (Guo et al., 2008) 

P158del  Homozygous Dutch  Decreased protein stability (Macedo et al., 2009) 

A179T  Heterozygous Dutch  Unknown  (Macedo et al., 2009) 

Ex1–5dup  Heterozygous Dutch Altered transcript (Macedo et al., 2009) 

A107P Homozygous Iranian Unknown (Ghazavi et al., 2011) 

c.91-2AG Homozygous Iranian Splicing (Ghazavi et al., 2011) 

c.317_322del:
p.106_108del 

Homozygous Kurdish Unknown (Jose M. Bras et al., 2014) 

 

1.2.4 DJ-1 animal models are sensitive to mitochondrial toxins and oxidative 

stress 

As DJ-1 is an evolutionarily ancient protein. Homologues are found in many evolutionary 

distant organisms. This allows the study of DJ-1 function in these different organisms. 

E.coli: 

In E.coli there are two DJ-1-related proteins called YaiL (formerly known as ThiJ) and 

YhbO which is stress inducible. Interestingly, YhbO reacts in a C104-dependant manner 

upon environmental stress caused by hydrogen peroxide (H2O2), very similar to mamma-

lian DJ-1 (corresponding to the C106 residue in human DJ-1) (Abdallah et al., 2007, Wilson 

et al., 2005). These two bacterial proteins however showed no protease or chaperone 
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activity unlike mammalian DJ-1, suggesting DJ-1 having rather a cytoprotective responsi-

bility by sensing ROS (Abdallah et al., 2007, Fioravanti et al., 2008). 

Ceanorhabditis elegans: 

Knocking down the DJ-1 homologue B0432.2 in Ceanorhabditis elegans lines resulted in 

an increase in vulnerability to mitochondrial complex I inhibitors like rotenone. This sub-

stantiates the role of DJ-1 as a protector of mitochondrial function against oxidative stress 

(Ved et al., 2005). 

Zebrafish (Danio rerio): 

Danio rerio are also used to study the function of DJ-1. The zebrafish orthologue of DJ-1 

(zDJ-1) is present in the adult brain of the fishes (Bai et al., 2006). Also in this organism 

an increased sensitivity to oxidative stress was seen after knockdown of zDJ-1 (Bretaud 

et al., 2007). 

Drosophila melanogaster (D. melanogaster): 

The fruit fly D. melanogaster has two DJ-1 homologous: DJ-1a and DJ-1b, with DJ-1b 

being ubiquitously expressed like human DJ-1. As described for other animal models D. 

melanogaster DJ-1 null mutants are sensitive to oxidative stress and paraquat, which 

could be rescued by both D. melanogaster DJ-1b and human DJ-1 (Menzies et al., 2005, 

Meulener et al., 2005). Interestingly C104 DJ-1b (corresponding to the C106 residue in 

human DJ-1) mutants did not rescue the phenotype (Meulener et al., 2006). 

Fruit flies also showed comprised mitochondrial function and reduced ATP levels, together 

with a shortened life span, male sterility and reduced climbing ability in an DJ-1 mutant 

background (Hao et al., 2010). 

Mouse models: 

In contrast to findings in humans the knockout of DJ-1 homologues in D. melanogaster 

(Meulener et al., 2005, Park et al., 2005), zebrafish (Bretaud et al., 2007) and mice (Chen 

et al., 2005, Pham et al., 2010, Yamaguchi and Shen, 2007) doesn’t cause a degeneration 

of dopaminergic neurons under basal conditions with the exception of one DJ-1-/- mouse 

line which shows age dependent neurodegeneration as well as motor deficits (Rousseaux 

et al., 2012). 

The DJ-1-/- null mutant mice which were used for the generation of hippocampal primary 

neuron cultures in this work show a decrease in dopamine-producing neurons in the ven-

tral tegmental area (~6% reduction), but no reduction of dopaminergic neurons in the sub-
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stantia nigra. Interestingly enough they seem to compensate for the loss of DJ-1 by up-

regulating mitochondrial respiratory enzyme activities in order to protect the cells against 

oxidative stress (Pham et al., 2010). 

1.3 Patient-derived cellular models for PD 

A limitation for studies in the field of neurodegenerative disorders including PD is, that the 

diseased tissue is not directly accessible for studies based on well-understandable ethical 

reasons. Therefore affected neuronal populations are only accessible via post mortem 

brains, but at that stage most of the cells of interest, for PD these are the midbrain dopa-

minergic neurons, are already degenerated. Another issue is that even at disease onset 

most of the affected neurons (approximately 50 %) are already gone (Kirik et al., 2004). 

Although animal models enable to study the disease in an intact organism, modelling the 

effect of aging and the slow progression of the loss of dopaminergic neurons characteristic 

for PD is difficult in these models. Also animal models fail to display the full spectrum of 

symptoms seen in humans (Westerlund et al., 2010). 

The use of patient-derived models render the possibility of studying disease mechanisms 

as well as the search for biomarkers in cells from patients of known clinical disease history 

and genetic disease background. 

1.3.1 Patient derived fibroblasts 

In contrast to cancer cell lines with artificial overexpression of a certain gene of interest, 

patient- derived fibroblasts allow to study the effect of a certain PD mutation at an endog-

enous level. Furthermore, they permit to investigate the disease mechanisms in an in vitro 

system displaying the in vivo situation. 

As described before, mitochondria are involved in PD pathogenesis. Making use of patient-

derived fibroblasts, it is possible to investigate these organelles in an in vivo situation, 

making also mild defects detectable in contrast to studies where mitochondria are isolated 

before analysing them (Winkler-Stuck et al., 2004, Burbulla and Kruger, 2012). 

Several studies using patient-derived fibroblasts provided insight into mitochondrial phe-

notypes relevant for PD. Primary cells obtained from two different PINK1 PD mutation 

carriers showed altered mitochondrial morphology (Exner et al., 2007). In another study of 

control fibroblasts, it was shown that knocking down Parkin leads to a greater degree of 

mitochondrial branching in the studied fibroblasts (Mortiboys et al., 2008). 

These cells are not neuronal and hence, it is not possible to study the underlying and 

relevant disease mechanisms of PD - the loss of dopaminergic neurons - in the respective 
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cell type. However, they open up the possibility to get a first insight into mechanisms rele-

vant for the disease which can be further validated in other cellular models. 

Human fibroblasts also provide a source of cells which can be used to generate induced 

pluripotent stem cells (iPSCs). These cells can be used to generate different patient spe-

cific disease phenotypes, important to better understand the nature of PD. 

1.3.2 iPSCs and iPSC-derived neurons 

As mentioned before, the absence of appropriate neuronal models of the disease repre-

sents a major drawback for PD research. The protocol to generate human iPSCs from 

patient-derived somatic cells described by Yamanaka and colleagues eight years ago pro-

vides a new tool in this regard (Takahashi et al., 2007). It is now possible to study a disease 

in their endogenous genomic background with its transcriptional feedbacks largely intact. 

The year before, they introduced the concept of iPSC generation through introduction of a 

cocktail of genes which are normally expressed during embryogenesis, namely oct4, sox2, 

klf4 and c-myc (later named the four ‘Yamanaka factors’) into a differentiated/somatic cell. 

Thereby changing the potency state of the cell back to the pluripotent state (Takahashi 

and Yamanaka, 2006). 

Oct4: 

Oct4, also known as POU class 5 homeobox 1 (POU5F1), encodes a transcription factor 

containing a POU homeodomain. This transcription factor activates other transcription fac-

tors (Pesce and Scholer, 2001). Furthermore, by binding to its own regulatory region, it 

activates itself thus leading to the transcription of endogenous oct4. Oct4 has been shown 

to be a core regulator in embryonic stem cells (ESCs), which underlines its importance for 

pluripotency (Boyer et al., 2005). 

Sox2: 

Sox2 is an intronless gene encoding another transcription factor involved in the regulation 

of embryonic development and in the determination of cell fate (Avilion et al., 2003). It is 

important for stem cell maintenance and its expression is detected during early embryonal 

development (Niwa et al., 2000). 

Oct4 and Sox2 interact with each other by activating enhancers for both genes as well as 

for nanog and thereby maintaining the pluripotency state in ESCs (Masui et al., 2007). 

Klf4: 

Kruppel-like factor 4 (Klf4) and c-myc are related to cell proliferation and renewal. The 

proteins are found in tumours and therefore known as oncogenes (Huangfu et al., 2008). 



Introduction 1  
 

21 

C-myc: 

C-myc is also known to increase the ability of transcription factors to bind to their target 

sequences (Faiola et al., 2005, Takahashi and Yamanaka, 2006). Klf4 also regulates the 

expression of sox2 and oct4 thereby also regulating nanog (Wei et al., 2009). 

In the meantime, different reprogramming vector types such as protein, RNA and DNA 

based ones, but also different viral vectors (integrating and non-integrating) have been 

published. Moreover, new combinations of reprogramming factors are known [reviewed in 

(Rony et al., 2015). 

iPSCs have the ability to form cells from all three germ layers, allowing them to differentiate 

into various different cell types (such as skin, blood, nerve and muscle cells). Another 

positive feature is that they can be frozen down and thawed again, providing the ability of 

long- term storage. The cells can be used to study disease mechanisms, to test the effec-

tiveness of compounds or drugs and look for side effects. Importantly, they may also have 

a potential for regenerative medicine as the cells could be used as autologous transplants 

avoiding histocompatibility issues. Since in PD, a certain type of cells dies in the brain, cell 

replacement therapies are a possible leverage point for future therapies of the disease. 

However there are many obstacles to be overcome: current replacement strategies do not 

account for physiological connections, there are problems with the integration in neuronal 

circuits and there is no control of pluripotency, therefore tumorigenesis is an issue. 

After the classical reprogramming process with the ‘Yamanaka factors’, the generated 

lines have to undergo a quality control to proof transgene silencing, to validate stem cell 

characteristics, such as the ability to form cells from all three germ layers and the expres-

sion of stem cell markers, but also genotyping microarray analysis and karyotype analysis 

have to be performed. In spite of all these quality controls, the different clones from each 

source line (typically people work with two to three lines per donor cell line) vary a lot 

(Devine et al., 2011). This phenomenon is due to the different number and sites of inte-

gration of the retroviral vectors used for the reprogramming. Around twenty integrations 

per clone where described by Yamanaka and colleagues in the first lines (Takahashi et 

al., 2007, Takahashi and Yamanaka, 2006). 

The generation of iPSCs from patient-derived fibroblasts is a tool to model PD. The im-

portant step is to differentiate these iPSC lines and, if available, the isogenic pairs into the 

important cell types and maturate or treat them in a certain way to model the disease and 

aging. This concept has been termed the modelling of a ‘disease in a dish’ (Vogel, 2010). 

For PD, the loss of dopaminergic neurons of the substantia nigra pars compacta is char-

acteristic; therefore to model PD, iPSCs are differentiated to midbrain dopaminergic (mDA) 
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neurons. The above mentioned effect of different integration sites of the reprogramming 

factors amongst other things leads to a variability in the efficiency of these iPSC lines to 

be differentiated into neurons (Sanchez-Danes et al., 2012). 

iPSC-based studies on several PD genes and the respective mutations have been pub-

lished, including LRRK2, Parkin, PINK1, but also SNCA (Soldner et al., 2011) as well as 

GBA (Schondorf et al., 2014): 

LRRK2: 

Most of the studies in iPSC-derived neurons have been on the G2019S mutation in 

LRRK2. These studies revealed that G2019S carrying mDA neurons have more apoptotic 

markers like cleaved caspase 3 and they were more vulnerable to oxidative stress 

(Nguyen et al., 2011, Reinhardt et al., 2013b, Sanchez-Danes et al., 2012). 

Parkin: 

Loss of Parkin neurons showed an increase in oxidative stress, SNCA accumulation and 

defective mitophagy (Imaizumi et al., 2012). 

PINK1: 

mDA neurons carrying PINK1 mutations also hinted to impaired mitophagy, because they 

had more mitochondria which were not degraded upon depolarisation of the membrane 

potential possibly because of the impossibility of Parkin recruitment (Seibler et al., 2011). 

Some studies even include isogenic lines. These studies could support previous findings 

in other cell types, as they showed disruptions of autophagy and mitochondrial dysfunc-

tion. Newer approaches include the use of the cells in drug screens and tests (Lee et al., 

2012a). 

As stated before, mDA neurons are a great source for the study of the cause of degener-

ation of these neurons in the brain of PD patients, however they are still lacking some 

characteristics of the mDA neurons of the brain. Therefore, the protocols which are cur-

rently used to generate these cells need to be improved. Simulating aging of the cells is a 

big issue, also their networks are not as complex as the ones in the brain, studies with 

mixed populations of different neuronal subtypes as well as glia cells displaying the phys-

iological conditions including the high energy demand of the cells should be performed 

(Pissadaki and Bolam, 2013). 

So far, an important potential of iPSC-derived mDA neurons is seen in the field of drug 

screenings and dose tests for clinical trials of new compounds as this can be done for a 

certain genetic background in vitro [reviewed in (Beevers et al., 2013)]. 
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1.3.2.1 Gene editing 

Recent advances in generating isogenic lines have largely helped improve studies of dis-

eases such as PD, which can be genetically inherited. In the meantime, different tech-

niques have been successfully used such as zinc finger nucleases (ZFNs) [reviewed in 

(Collin and Lako, 2011)], transcription activator-like effector nucleases (TALENs) (Kim et 

al., 2013) and clustered regularly interspaced short palindromic repeat (CRISPR)/CAS9 

RNA-guided nucleases (Cho et al., 2013b, Jinek et al., 2013). 

By using isogenic lines, one can ensure that experiments are performed under genetically 

defined conditions, with the control and mutated or the mutant and corrected line carrying 

the same genetic background with the disease-causing mutation being the sole modified 

variable. It also allows to control for effects from genetic modifier loci. This is the ideal 

situation, however to date there is still the problem of off-target effects of all three systems, 

ZFNs, TALENs and CRISP/CAS9 [reviewed in (Li et al., 2014)]. 

1.4 Splicing and disease 

Taking into consideration that splicing occurs in nearly all human genes, it is evident that 

the splicing process can lead to diseases through inherited mutations or errors occuring 

during the splicing process. Furthermore, every gene that contains an intron needs to un-

dergo splicing and more than 90 % of all genes are alternatively spliced (Pan et al., 2008, 

Wang et al., 2008). Therefore, it is not surprising that approximately 10 % to 15 % of all 

pathogenic mutations are mutations found in splice sites (Baralle et al., 2009, Krawczak 

et al., 2007). An even higher amount of up to 50 % of all disease-causing mutations is 

reached when the number of mutations are counted that affect splicing in some way 

(Lopez-Bigas et al., 2005). Mutations leading to missplicing are found in various common 

diseases such as Duchenne muscular dystrophy, familial dysautonomia (FD), cystic fibro-

sis, spinal muscular atrophy, retinitis pigmentosa, but also breast cancer predisposition 

and blood disorders like thalassaemias and anaemias [reviewed in (Baralle et al., 2009)]. 

Splicing mutations can have different consequences for the splicing process. Most of them 

cause the skipping of one or more exons, second most common is the activation of aber-

rant 5’donor splice sites or 3’acceptor splice sites or full intron retention (Baralle and 

Baralle, 2005, Cooper, 1993, Nakai and Sakamoto, 1994). Another possibility is the acti-

vation of a cryptic splice site meaning a new splice site is created in an exon or intron 

(Roca et al., 2003). 

For future therapeutic approaches of diseases caused by missplicing of the mRNA, it is 

important to know whether the splicing defect is the direct cause of the disease. If this is 
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the case and the underlying mechanism is clear, the disease-causing mutation is a poten-

tial target for therapy where the missplicing is corrected to a physiological state [reviewed 

in (Rahman et al., 2015)]. Such potential therapeutic strategies could be: small molecules, 

antisense oligonucleotides, bifunctional oligonucleotides, spliceosome-mediated RNA 

trans-splicing and modified U1 snRNPs [reviewed in (Baralle et al., 2009)]. 

1.4.1 Basic precursor mRNA splicing process 

Before a protein-coding gene can be translated into a protein, several post-transcriptional 

modifications need to take place before the final mRNA can be translated. The initial 

mRNA transcript therefore is called precursor mRNA (pre-mRNA). The modifications in-

clude 5’capping, polyadenylation and the actual splicing process: the removal of the in-

trons and ligation of the exons. This last step is referred to as pre-mRNA splicing. 

The performance of correct splicing is a complicated process where the coding sequences, 

the exons, need to be selected from the non-coding sequences, the introns, which are 

much more frequent. The exons need to get ligated together afterwards. As described 

above, mutations in the exonic as well as in the intronic region can lead to aberrant splicing 

and could potentially be disease causing. 

The splicing reaction takes place in the spliceosome and includes hundreds of interactions 

between proteins, small nuclear RNAs (snRNAs) as well as interactions between the two 

and leads to a precise excision and ligation of the respective exons (Madhani and Guthrie, 

1994, Nilsen, 1994). 

The two catalytic steps of pre-mRNA splicing are shown (Figure 3B and C). Conserved 

motifs that are essential for splicing are the 5’ splice site, the 3’ splice site, the branche 

point as well as the polypyrimidin tract (Figure 3A). They are mainly in the intron and are 

called 5’ splice site and 3’ splice site (Shapiro and Senapathy, 1987). 

The 5‘ splice site, also called splice donor, is a short sequence of bases, with the first two 

bases of the intron (gu) being conserved in mammals. The surrounding sequence (partially 

in the exon) (MAGguragu) is important too, but not conserved (Aebi et al., 1987). 

The 3’ splice site consists of three elements which can lie up to one hundred base pairs in 

the intron: the branch point (yncurac), the polypyrimidin tract (yn) and the splice acceptor 

with the canonical sequence of (nyag). Looking at the sequences of the 3’ splice site and 

the 5’ splice site, it is surprising how few bases are responsible for the recognition of the 

splice site. Therefore, it seems obvious that there need to be more than just these few 

necessary bases or elements. Intriguingly, a study where the authors did an in silico anal-

ysis to find possible splice sites of the human hprt gene found the eight correct 5’ splice 
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sites, but also 100 other possible 5’ splice sites and 683 additional possible 3’ splice sites 

(Sun and Chasin, 2000). The question how the “real” splice site amongst these many pos-

sible splice sites, also called pseudo-splice sites is found cannot be answered to date. 

 

Figure 3: The basic pre-mRNA splicing process. 

Exons are shown as grey boxes and the intron as line. A) shows the conserved motifs essential for splicing. 

The splice donor includes the invariant (gu) at the 5‘ splice site and the splice acceptor the invariant (ag) at 

the 3‘ splice site. The branch point lies within one hundred bases after the 3‘ end of the intron. The polypyrim-

idin tract (yn) lies nearby the branch point (yncurac). B) shows the first catalytic step of the splicing reaction 

where exon 1 is seperated from exon 2 with the intron as lariat at the branch point. C) shows the end products 

of the pre-mRNA splicing: exon 1 and exon 2 spliced together and the intron lariat. These two products are 

created by a second trans-esterification step caused by exon 1 attacking the 3‘ splice site. 

The 5’ splice site and the 3’ splice site are the sites where the two catalytic trans-esterifi-

cations take place (Aebi et al., 1987, Lamond, 1993). The first trans-esterification step is 

shown (Figure 3B). Here, the adenosine residue in the branch point carries out a nucleo-

philic attack on the 5’ splice site. This results in a free exon 1 and an exon 2 with a lariat 

intron. The next trans-esterification happens when the free exon 1 attacks the 3’ splice 

site. This results in two splicing products, the ligated exons and the intron lariat (Figure 

3C) (Lamond, 1993). 
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1.4.2 Spliceosome assembly on the pre-mRNA 

As described before, the pre-mRNA splicing takes place in the spliceosome. This macro-

molecular complex consists of five different uridine-rich small nuclear ribonucleoproteins 

(U snRNPs) and over more than one hundred other splicing factors. The U snRNPs consist 

of one uridine-rich small nuclear RNA plus multiple proteins. 

The assembly of the spliceosome starts with the binding of U1 snRNP to the 5’ splice site 

(Figure 4A1), at the same time SF1/mBBP recognising the branch point and U2AF, which 

is a heterodimer consisting of U2AF35 and U2AF65, binding to the 3’ splice site and the 

polypyrimidin tract (Figure 4A2). The formation of this complex, called E complex, is ATP-

independent and has the purpose of bringing the splice sites together by bridging the in-

trons. In the next step the so-called A complex is built, here SF1/mBBP is replaced by the 

U2 snRNP at the branch point, this is ATP-dependant (Figure 4B). Subsequently the tri-

snRNP complex consisting of U4/U5-U6 snRNP binds to the precatalytic B complex (Fig-

ure 4C). This step is followed by the activation of the B complex now called active B* com-

plex. Here, the U1 snRNP and U4 snRNP destabilise while the Prp19/CDC5L complex 

associates with the B complex. This comes along with remodelling and conformation 

changes of the complex. Once U1 snRNP and U4 snRNP dissociated, the complex is 

termed C complex. The C complex is now able to catalyse splicing. 

In addition to the sequences important for the spliceosome to bind, there are other se-

quences that affect splicing. These sequences can be intronic or exonic elements depend-

ing on whether they lie in the intron or exon, respectively and they are much more variable 

than the above mentioned splice site sequences. Also these sequences can enhance the 

recognition of a splice site, in that case they are called enhancers, or decrease the recog-

nition of a splice site in that case they are called silencers. Enhancers and silencers can 

have and influence on each other by antagonising the activity of each other and their func-

tion can overlap. Figure 4 shows an exonic splice enhancer (ESE) and an exonic splice 

silencer (ESS) on the left and an intronic splice enhancer (ISE) as well as an intronic splice 

silencer (ISS) on the right. The ESE, ESS, ISE and ISS together with the other splicing 

sequences are called cis-acting sequence elements. All cis-acting sequence elements are 

possible targets for pathogenic mutations. The cis-acting sequence elements act by the 

binding of so called trans-acting factors to these sequences or by forming secondary struc-

tures. The trans-acting factors are regulated as well. Their expression can be tissue- and 

developmental stage- specific or depend on phosphorylation and posttranslational modifi-

cation [the spliceosome assembly has been recently reviewed in (De Conti et al., 2013, 

Baralle and Baralle, 2005, Mohammad Alinoor Rahman, 2015)]. 
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Figure 4: The steps of the spliceosome assembly. 

Exons are shown as boxes, introns as line, the cis-acting sequences are indicated by arrows and U snRNPs 

are depicted as circles. The assembly of the spliceosome happens in a stepwise and coordinated manner. 

A1) The assembly is initiated by the U1 snRNP binding to the 5‘ splice site. A2) At the same time one part of 

U2AF heterodimer binds to the polypyrimidin tract and the other part to the 3‘ splice site. The thus formed 

complex is called E complex. B) Next, the U2 snRNP binds to the branch point thereby replacing SF1/mBBP. 

Now the complex is called A complex. C) Binding of the U4/U5-U6 tri-snRNP leads to the formation of the so 

called B complex. The disassociation of U1 snRNP and U4 snRNP from the B complex includes remodelling 

and conformational changes of the B complex. The result is the catalytically active C complex which catalyses 

splicing. So called cis-acting sequences influence the splicing process as well. They can lie in the exon or in 

the intron. These elements can either have a positive, in that case they are called enhancers (shown in green), 

or a negative, in that case they are called silencers (shown in orange), influence on the splicing process. Their 

full name combines their location and their function: exonic splice enhancer (ESE) and exonic splice silencer 

(ESS), as well as intronic splice enhancer (ISE) and intronic splice silencer (ISS). 

The vast majority of mutations in cis-acting sequences lead to the skipping of an exon 

(Krawczak et al., 2007). This can be the exon carrying the mutation or a neighbouring exon 

(Baralle et al., 2006). 

ESE sequence elements are mainly bound by serine/arginine-rich (SR) proteins (Graveley, 

2000, Lin and Fu, 2007). Upon binding through their RNA binding domains, SR proteins 
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influence splicing by recruiting splicing components and interacting with them through pro-

tein-protein and protein-RNA interaction through the SR site (Shen and Green, 2004, Shen 

et al., 2004). 

ESS and ISS are mainly bound by trans-acting factors belonging to the group of hetero-

geneous nuclear ribonucleoproteins (hnRNPs), these factors act through protein-protein 

interaction (Krecic and Swanson, 1999, Martinez-Contreras et al., 2007). 

The ISE cis-acting sequences are less studied. Different hnRNPs might be candidates as 

well as GT repeats could be involved (Gabellini, 2001, Mauger et al., 2008, Ule et al., 2006, 

Wang et al., 2012a, Yeo et al., 2009). 

Another factor that comes into focus is that also the secondary structure of the RNA influ-

ences the splicing process (Buratti and Baralle, 2004). 

Looking at the complex interaction of factors and sequence elements described in this 

chapter, it becomes clear that any silent mutation or any other sequence variation lying in 

one of the cis-acting sequences might interfere with the splicing process and thus be dis-

ease causing. This aspect should therefore not be underestimated. 
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2 Material and Methods 

2.1 Tables of equipment, reagents and software 

2.1.1 Table of equipment 

Table 3: List of equipment used. Table shows equipment and manufacturer. 

Equipment Manufacturer 

Agarose gel chamber Peqlab (Erlangen, Germany) 

Amaxa nucleofector I Lonza Group Ltd (Basel, CH) 

Autoclave (VX-150) Systec (Wettenberg, Germany) 

AxioImager microscope with ApoTome Imaging system Carl Zeiss Microimaging GmbH (Jena, Germany) 

Bacterial incubator Binder (Multimed) (Tuttlingen, Germany) 

BD LSRFortessa 
Becton,Dickinson and Company.© (Erembodegem, 
Belgium) 

Biofuge pico and fresco Thermo Fisher Hereaus, (Hamburg, Germany) 

Cell incubator (Heracell 240) Thermo Fisher Hereaus (Hamburg, Germany) 

Centrifuge (Evolution Rc) Thermo Fisher Sorvall, (Hamburg, GERMANY) 

Centrifuge (Micro 22R) Hettich (Tuttlingen, Germany) 

Centrifuge 5810R Eppendorf (Hamburg, Germany) 

Chirurgical tools Carl Roth GmbH (Karslruhe, Germany) 

CyAn ADP Analyzer Beckman Coulter (California, USA) 

Developer Fujifilm (Düsseldorf, Germany) 

Electroporation cuvettes Bio-Rad laboratories GmbH (Munich, Germany) 

Electroporation device (MicroPulser) Bio-Rad laboratories GmbH (Munich, Germany) 

Amersham film cassettes GE Healthcare (Freiburg, Germany) 

iBlot® system Invitrogen GmbH (Karslruhe, Germany) 

Light cycler 480 II Roche Applied Science (Mannheim, Germany) 

Live Cell MicroscopeAxiovert 2000 plus Zeiss incubator XL 
with ApoTome, CO2 humidifier, plan-aprochromat objectives 
and AxioCam MRc 

Carl Zeiss Microimaging GmbH (Jena, Germany) 

Micro wave oven Panasonic (Hamburg, Germany) 

Microtiter plate reader Bio-Rad laboratories GmbH (Munich, Germany) 

Milli-Q Synthesis Millipore Corporation (Darmstadt , Germany) 

Mithras LB 940 
BERTHOLD Technologies GmbH & Co. KG (Bad 
Wildbad, Germany) 

Mulitfuge3 S-R Thermo Fisher Hereaus, (Hamburg, Germany) 

NanoDrop (ND1000) Peqlab (Erlangen, Germany) 

Pipetboy Integra Bioscience (Fernwald, Germany) 

Power supply Bio-Rad laboratories GmbH (Munich, Germany) 

Epson Perfection V700 Photo EPSON Deutschland GmbH (Meerbusch, Germany) 

ABI 3100 Genetic Analyzer Applied Biosystems/Ambio (Austin, Tx, USA) 

Spectrophotometer (Ultrospec 2100 Pro) Amersham Biosciences GmbH (Munich, Germany) 

Stereo microscope MZ7 Leica (Solms, Germany) 

Sterile bench (Herasafe) Thermo Fisher Heraeus (Hanau, Germany) 

Stirer (RH basic) IKA (Staufen, Germany) 

Synergy™ Mx Microplate Reader 
BioTek Instruments, Inc. (Bad Friedrichshall, Ger-
many) 

Thermocycler (2720) Applied Biosystems (Darmstadt, Germany) 
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Equipment Manufacturer 

Thermomixer (Comfort) Eppendorf (Hamburg, Germany) 

UV-table Vilber Lourmant Vilber Lourmant (Eberhardzell, DE) 

 

2.1.2 Table of chemicals 

Table 4: List of chemicals used. Table shows chemical and manufacturer. 

Chemical Manufacturer 

1,4-Dithiothreitol (DTT) Carl Roth GmbH (Karslruhe, Germany) 

2-propanol Merck KGaA (Darmstadt, Germany) 

40% Acrylamide/Bis solution 19:1 Bio-Rad laboratories GmbH (Munich, Germany) 

4xLDS sample buffer Expedeon Ltd (Cambridgeshire, UK) 

Accutase solution Merck KGaA (Darmstadt, Germany) 

Acetic acid (glacial) 100% Merck KGaA (Darmstadt, Germany) 

Agar Fluka Analytical (Munich, Germany) 

Agarose Biozym Scientific (Hessisch Oldendorf, Germany) 

Amaxa® Human Dermal Fibroblast Nucleofector® Kit Lonza Group Ltd (Basel, CH) 

Amersham ECL Western Blotting Detection Reagent GE Healthcare (Freiburg, Germany) 

Ammonium persulfate (APS) Sigma Aldrich Chemie GmbH (Munich, Germany) 

Ampicillin (sodium salt) Sigma Aldrich Chemie GmbH (Munich, Germany) 

Amplify™ GE Healthcare (Freiburg, Germany) 

Ascorbic acid Sigma Aldrich Chemie GmbH (Munich, Germany) 

Bafilomycin A1 Enzo Life Sciences BVBA (Antwerpen, Belgium) 

BDNF PeproTech Worldwide (New Jersey, USA) 

BigDye Terminator v3.1 Applied Biosystems (Darmstadt, Germany) 

Boric acid Sigma Aldrich Chemie GmbH (Munich, Germany) 

Bovine Serum Albumin (BSA) Carl Roth GmbH (Karslruhe, Germany) 

Bradford reagent Thermo Fisher Scientific (Braunschweig, Germany) 

Bromphenol blue (sodium salt) Merck KGaA (Darmstadt, Germany) 

Calcium chloride Merck KGaA (Darmstadt, Germany) 

CF-1 Mouse Embryonic Fibroblasts (MEF) feeder 
cells, irradiated 

GlobalStem (Maryland, USA) 

CHIR 99021 Axon Medchem BV (Groningen, Netherlands) 

Chloramphenicol sulfate Sigma Aldrich Chemie GmbH (Munich, Germany) 

cOmplete protease inhibitor Roche Applied Science (Mannheim, Germany) 

Coomassie Brilliant Blue G-250 Carl Roth GmbH (Karslruhe, Germany) 

DAPI (4',6-Diamidino-2-Phenylindole, Dihydrochlo-
ride) 

Thermo Fisher Scientific (Braunschweig, Germany) 

dbcAMP Sigma Aldrich Chemie GmbH (Munich, Germany) 

Dimethyl sulfoxide (DMSO) Sigma Aldrich Chemie GmbH (Munich, Germany) 

DirectPCR Lysis Reagent (Mouse Tail) Kit Viagen Biotech, Inc. (Los Angeles, USA) 

Dispase (1 U/mL) Stemcell Technologies, Inc. (Grenoble, France) 

DNA 1 kb ladder  Fermentas GmbH (St Leon-Rot, Germany) 

DNA loading dye (6x)  Thermo Fisher Scientific (Braunschweig, Germany) 

DNA T4 ligase (1U/μl)  New England Biolabs GmbH (Frankfurt, Germany) 

dNTPs Merck KGaA (Darmstadt, Germany) 

Dorsomorphin R&D Systems, Inc. (Oxfordshire, UK) 

Dulbecco’s minimal essential medium (DMEM) -high 
glucose 

Biochrom AG (Berlin, Germany) 
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Chemical Manufacturer 

Ethanol  Merck KGaA (Darmstadt, Germany) 

Ethidium bromide (1% in water) Merck KGaA (Darmstadt, Germany) 

Ethylenediaminetetraaceticacid (EDTA sodium salt) Sigma Aldrich Chemie GmbH (Munich, Germany) 

Fetal bovine serum (FCS) PAA Laboratories GmbH (Pasching, Austria) 

FuGENE 6 / X-tremeGENE 9 Roche Applied Science (Mannheim, Germany) 

GDNF PeproTech Worldwide (New Jersey, USA) 

Gelatin solution (Type B, 2% in H2O) Sigma Aldrich Chemie GmbH (Munich, Germany) 

GeneRulerTM 100 bp Plus DNA ladder Thermo Fisher Scientific (Braunschweig, Germany) 

GeneRulerTM 1 kp Plus DNA ladder Thermo Fisher Scientific (Braunschweig, Germany) 

Geneticin® Selective Antibiotic (G418 Sulfate) (50 
mg/mL) 

Thermo Fisher Scientific (Braunschweig, Germany) 

Gentamycin Invitrogen GmbH (Karslruhe, Germany) 

Glycerin VWR International (Pennsylvania, USA) 

Glycerol AppliChem GmbH (Darmstadt, Germany) 

Glycine  Carl Roth GmbH (Karslruhe, Germany) 

GoTaq Polymerase Kit  Promega (Mannheim, Germany) 

HBSS Thermo Fisher Scientific (Braunschweig, Germany) 

HEPES Sigma Aldrich Chemie GmbH (Munich, Germany) 

High pure RNA isolation Kit Roche Applied Science (Mannheim, Germany) 

Hoechst 33342, Trihydrochloride, Trihydrate Thermo Fisher Scientific (Braunschweig, Germany) 

human FGF8 PeproTech Worldwide (New Jersey, USA) 

Hydrochloric acid (HCl) Merck KGaA (Darmstadt, Germany) 

Hydrogen peroxide solution 30 % Sigma Aldrich Chemie GmbH (Munich, Germany) 

iBlot® 2 NC Regular Stacks Thermo Fisher Scientific (Braunschweig, Germany) 

Kanamycinsulfate Sigma Aldrich Chemie GmbH (Munich, Germany) 

KOD Hot Start DNA Polymerase Merck KGaA (Darmstadt, Germany) 

Lipofectamine® 2000 Transfection Reagent Thermo Fisher Scientific (Braunschweig, Germany) 

Magnesium chloride (MgCl2) Carl Roth GmbH (Karslruhe, Germany) 

Matrigel Corning Incorporated (New York, USA) 

Methanol Merck KGaA (Darmstadt, Germany) 

Midori Green Advance DNA Stain Biozym Scientific (Hessisch Oldendorf Germany) 

MitoSOX™ Red Mitochondrial Superoxide Indicator Thermo Fisher Scientific (Braunschweig, Germany) 

MitoTracker® Green FM Thermo Fisher Scientific (Braunschweig, Germany) 

Mowiol/DABCO Carl Roth GmbH (Karslruhe, Germany) 

N,N,N’,N’-Tetramethylethyldiamine (TEMED) Merck KGaA (Darmstadt, Germany) 

Non-fat milk powder Sucofin, (Zeven, Germany) 

Normal Goat serum Sigma Aldrich Chemie GmbH (Munich, Germany) 

NP40 VWR International (Pennsylvania, USA) 

Nuclease-Free Water Qiagen GmbH (Hilden, Germany) 

One Shot® TOP10 Chemically Competent E. coli Thermo Fisher Scientific (Braunschweig, Germany) 

OptiMEM Invitrogen GmbH (Karslruhe, Germany) 

PageRuler Plus Prestained Protein Ladder Thermo Fisher Scientific (Braunschweig, Germany) 

Paraformaldehyde Sigma Aldrich Chemie GmbH (Munich, Germany) 

PenicillinG/Streptomycin sulfate 100x Biochrom AG (Berlin, Germany) 

pLenti-III-SV40 
Applied Biological Materials – abm Biotechnology 
Company (Richmond, Canada) 

Polybrene® Thermo Fisher Scientific (Braunschweig, Germany) 

Poly-DL-ornithine hydrobromide (PORN) Sigma Aldrich Chemie GmbH (Munich, Germany) 
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Chemical Manufacturer 

Poly-L-lysine solution Sigma Aldrich Chemie GmbH (Munich, Germany) 

polyethylene glycol Sigma Aldrich Chemie GmbH (Munich, Germany) 

Potassium Chloride (KCl) Merck KGaA (Darmstadt, Germany) 

Potassium hydroxide Carl Roth GmbH (Karslruhe, Germany) 

Purmorphamine Sigma Aldrich Chemie GmbH (Munich, Germany) 

QIA blood and tissue DNA kit Qiagen GmbH (Hilden, Germany) 

Qiagen Plasmid Midi/Maxi Kit/Endotoxin free Maxi Kit Qiagen GmbH (Hilden, Germany) 

QIAprep spin MiniPrep Kit Qiagen GmbH (Hilden, Germany) 

QIAquick Gel Extraction Kit Qiagen GmbH (Hilden, Germany) 

QIAquick PCR Purification Kit Qiagen GmbH (Hilden, Germany) 

QuikChange® Site-Directed Mutagenesis Kit Agilent Technologies (Santa Clara, USA) 

Recombinant Human FGF basic R&D Systems, Inc. (Oxfordshire, UK) 

Restriction Enzymes and Buffer 
Fermentas GmbH (St Leon-Rot, Germany), New 
England Biolabs GmbH (Frankfurt, Germany) 

ROCK inhibitor Y-27632 Merck KGaA (Darmstadt, Germany) 

Rotenone Sigma Aldrich Chemie GmbH (Munich, Germany) 

SB432542 Sigma Aldrich Chemie GmbH (Munich, Germany) 

Shrimp alkaline phosphatase (SAP) Promega (Mannheim, Germany) 

Skim Milk Powder Sigma Aldrich Chemie GmbH (Munich, Germany) 

Sodium chloride (NaCl) Merck KGaA (Darmstadt, Germany) 

Sodium dodecyl sulfate (SDS) Sigma Aldrich Chemie GmbH (Munich, Germany) 

Sodium hydroxide (NaOH) Merck KGaA (Darmstadt, Germany) 

SYBR Green I mini kit Roche Applied Science (Mannheim, Germany) 

Tetramethylrhodamine, methyl ester (TMRE) Thermo Fisher Scientific (Braunschweig, Germany) 

TGF-β3 PeproTech Worldwide (New Jersey, USA) 

Thiazolyl blue tetrazolium bromide Sigma Aldrich Chemie GmbH (Munich, Germany) 

TOPO® TA Cloning® Kit for Subcloning Thermo Fisher Scientific (Braunschweig, Germany) 

Transcriptor High Fidelity cDNA Synthesis kit Roche Applied Science (Mannheim, Germany) 

Tris base Carl Roth GmbH (Karslruhe, Germany) 

Triton X-100 AppliChem GmbH (Darmstadt, Germany) 

Trizma hydrochloride Sigma Aldrich Chemie GmbH (Munich, Germany) 

Trypsin-EDTA (0.05%), phenol red Thermo Fisher Scientific (Braunschweig, Germany) 

Tween 20 Merck KGaA (Darmstadt, Germany) 

ViraPower™ Lentiviral Packaging Mix Thermo Fisher Scientific (Braunschweig, Germany) 

Zeocin Invivogen (La Jolla, CA, USA) 

Z-Leu-Leu-Leu-al (MG-132) Sigma Aldrich Chemie GmbH (Munich, Germany) 

β-Mercaptoethanol Carl Roth GmbH (Karslruhe, Germany) 

 

2.1.3 Compounds for treatment of eukaryotic cells 

For compound treatment of eukaryotic cells, cells were washed twice with PBS. Subse-

quently, medium containing compound was added. For concentration and length of treat-

ment see Table 5. Cells were kept under standard conditions until pellets were collected 

and processed. 
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Table 5: List of compounds used for treatment of eukaryotic cells. Table includes compound, treatment 

conditions and manufacturer. 

Compound Treatment Conditions Manufacturer 

2iP 10, 25 µM, 24h Sigma Aldrich Chemie GmbH (Munich, Germany) 

Aclarubicin 10, 25 µM, 24h Santa Cruz Biotechnology Inc (California, USA) 

Benzyladenine 10, 25, 50, 100, 500 µM, 1mM, 24h Sigma Aldrich Chemie GmbH (Munich, Germany) 

Cucurmin 10, 25 µM, 24h Sigma Aldrich Chemie GmbH (Munich, Germany) 

Dexamethasone 10, 25 µM, 24h Sigma Aldrich Chemie GmbH (Munich, Germany) 

Kinetin 10, 25 µM, 24h Sigma Aldrich Chemie GmbH (Munich, Germany) 

Resveratrol 10, 25 µM, 24h Sigma Aldrich Chemie GmbH (Munich, Germany) 

Sodium butyrate 10, 25 µM, 24h Sigma Aldrich Chemie GmbH (Munich, Germany) 

Valproic acid 10, 25 µM, 24h R&D Systems, Inc.(Oxfordshire, UK) 

Zeatin 10, 25 µM, 24h Sigma Aldrich Chemie GmbH (Munich, Germany) 

 

2.1.4 Table of software 

Table 6: List of software used. Table shows software, application software was used for and company or 

reference. 

Software Application Company/Reference 

AxioVision  Microscope  Carl Zeiss AG 

Chimera Drawing of molecular model freeware (www.cgl.ucsf.edu/chimera) 

EndNote X7 Reference Manager  EndNote 

ESEfinder (2001-2006, Cold Spring Harbor 
Laboratory) 

Prediction of ESE freeware 

Flowjo software Flow cytometry Flowjo LLC (Oregon, USA) 

Graph Pad Prism 5  Statistical analysis, graphs GraphPad Software Inc. 

HaploPainter1.043 Pedigree drawing freeware 

ImageJ  Image quantification  Wayne Rasband, NIH 

Light Cycler 480 1.5 Software qRT-PCR analysis  Idaho Technology Inc. 

Microsoft Excel 2010  Data analysis  Microsoft Corp. 

MutationTaster Evaluate pathogenic mutation (Schwarz et al., 2010) 

Primer3Plus Designing primers freeware 

Staden package Sequencing analysis freeware 

Summit 4.3.02b2451  Flow cytometry Beckman Coulter (California, USA) 

 

2.1.5 Table of consumables 

Table 7: List of consumables used. Table shows consumable and manufacturer. 

Consumables Manufacturer 

Amersham Hyperfilm ECL High 
performance chemiluminescence 

GE Healthcare (Freiburg, Germany) 

Cell culture consumables 
BD Biosciences (Heidelberg, Germany), Corning (Kaiserslautern, Germany), 
Greiner Bio-One GmbH (Frickenhausen, Germany), Thermo Fisher Scientific 
(Braunschweig, Germany) 

Coverslips Carl Roth GmbH (Karslruhe, Germany) 

Disposable pipettes Corning (Kaiserslautern, Germany) 

Glass slides Langenbrinck (Emmendingen, Germany) 

Light Cycler 384 well plates Roche Applied Science (Mannheim, Germany) 
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Consumables Manufacturer 

Microtiter plates  Greiner Bio-One GmbH (Frickenhausen, Germany) 

Nitrocellulose membrane GE Healthcare (Freiburg, Germany) 

Nunc™ Lab-Tek™ Chamber Slide Thermo Fisher Scientific (Braunschweig, Germany) 

PCR reaction tubes PeqLab (Erlangen, Germany) 

Pipette tips 
Sarstedt AG & Co (Nürnbrecht, Germany) 
Biozym Scientific (Hessisch Oldendorf, Germany) 

Reaction tubes  
Greiner Bio-One GmbH (Frickenhausen, Germany), Eppendorf AG 
(Hamburg, Germany) 

Scalpels, dissecting set 
Braun (Melsungen, Germany), Fine Science Tools GmbH (Heidelberg, 
Germany) 

Syringe filters (0.45 μm) Thermo Fisher Scientific (Hamburg, Germany) 

Whatman paper Schleicher und Scheull (Dassel, Germany) 

 

2.2 Deoxyribonucleic acid (DNA) analysis 

2.2.1 Quantification of deoxyribonucleic acid samples 

All quantifications of DNA were performed using NanoDrop (ND1000) (Peqlab Erlangen, 

Germany). 

2.2.2 Isolation of DNA from eukaryotic cells 

DNA isolation from eukaryotic cultured cells was performed using QIA blood and tissue 

DNA kit (Qiagen GmbH, Hilden, Germany) according to manufacturers’ instructions. 

2.2.3 Next generation sequencing (NGS) 

NGS of PARK7 locus of the homozygous c.192G>C DJ-1 mutation carrier was performed 

at the Institute for Ophthalmic Research (Tübingen, Germany) by the Molecular Genetics 

Laboratory of Prof. Bernd Wissinger using pooled long distance polymerase chain reaction 

(LD-PCR) fragments of genomic DNA. 

2.2.4 Sequencing of plasmid and genomic DNA 

Sequencing was performed using the sanger sequencing method (Sanger et al., 1977). 

Sequencing was done using BigDye Terminator v3.1 Kit (Applied Biosystems, Darmstadt, 

Germany) following manufacturers’ instructions on the ABI 3100 Genetic Analyzer (Ap-

plied Biosystems/Ambio, Austin, USA). Run module used is shown in Table 8. Primers and 

PCR programme used for sequencing are shown in Table 9 and Table 10. 
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Table 8: ABI 3100 Genetic Analyzer run module. Table shows settings of the run module. 

 

 

 

 

 

 

 

 

 

Table 9: Primers used for sequencing. These primers were used to verify correct and mutation free integra-

tion of an insert into a vector. Table shows label, type of sequencing primers were used for, sequences of 

primers and the company primers were ordered from. 

 

Table 10: Thermocycler programme used for sequencing PCR. 

cycles 1 29 1 

 temp. time temp. time temp. time 

 94 °C 1 min 94 °C 10 s   

   60 °C 4 min 12 °C hold 

 

All Lenti-viral constructs were sent to Seqlab - Sequence Laboratories Göttingen GmbH 

(Göttingen, Germany) for sequencing. 

All sequencing results were analysed using Staden package (freeware) software tool to 

exclude that mutations were introduced during the cloning procedure and to confirm the 

correct orientation and position of inserts or the correct genotype. 

Name Value Range 

oven_temperatuer 60 18...65 Deg. C 

Poly_Fill_Vol 6500 6500...38000steps 

Current_Stability 5.0 0...2000 uAmps 

PreRun_Time 15.0 0...15 KVolts 

PreRun_Voltage 180 1...1000 sec. 

Injection_Voltage 1.2 1...15 KVolts 

Injection_Time 18 1...600 sec. 

Voltage_Number_Of_Steps 30 1...100 nk 

Voltage_Step_Interval 15 1...60 sec. 

Data_Delay_Time 120 1...3600 sec. 

Run_Voltage 8.5 0...15KVolts 

Run_Time 2780 300...14000 sec. 

Label Product Sequence Company 

IRES rev plasmid 5‘- tatagacaaacgcacaccg -3‘ 

Metabion international AG 
(Steinkirchen, Germany) 

M13 for plasmid 5‘- tgtaaaacgacggccag -3‘ 

T7 for plasmid 5’- taatacgactcactatagg -3’ 

U6 for plasmid 5‘- gggcaggaagagggcctat -3‘ 

CAG forw plasmid 5’- catgccttcttctttttcc -3‘ Eurogentec (Liège, Belgium) 

DJ1_gen_seq_Exon3_fw genomic 5‘- acagtgttactctgaatttatgtttca -3‘ Metabion international AG 
(Steinkirchen, Germany) DJ1_gen_seq_Exon3_rev genomic 5‘- tgctaacaacactcttaagacatttca -3‘ 
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2.2.5 Mitochondrial DNA (mtDNA) damage and mtDNA copy number 

DNA was extracted from cell pellets using the QIA blood and tissue DNA kit (Qiagen 

GmbH, Hilden, Germany) following the manufacturers instructions. Elution step was per-

formed twice per column using 30 µl of Elution buffer. For analysis samples had to have a 

concentration of at least 10 ng/µl. Pellets were kept at – 20°C until analysis was performed. 

Measurement of mtDNA damage and mtDNA copy number was performed by the DNA 

Damage & Repair Service Unit Tübingen (Tübingen, Germany). DNA lesion rates were 

performed using LORD-Q real-time PCR (qPCR) method (Lehle et al., 2014). 

2.2.6 In vitro mutagenesis 

In vitro mutagenesis was performed to insert a C>G mutation in U1 snRNA cloned into the 

pGEM3 vector (Promega, Mannheim, Germany). Mutagenesis was performed using Quik-

Change® Site-Directed Mutagenesis Kit (Agilent Technologies, Santa Clara, USA) accord-

ing to manual instructions. Primers used to insert the mutation are shown in Table 11. Site 

of mutation is highlighted in red. 

Table 11: In vitro mutagenesis primers used for introducing the C>G mutation in the U1snRNA. Table 

shows label, PCR product of forward and reverse primer, sequence of primers and the company primers were 

ordered from. 

 

2.3 Ribonucleic acid (RNA) analysis 

2.3.1 Isolation and quantification of RNA from eukaryotic cells 

RNA was isolated from iPSCs for characterisation of generated stem cell lines. Expression 

level of stem cell markers and silencing of reprogramming factors was determined using 

qPCR. 

RNA was isolated from different eukaryotic cell types (fibroblasts, immortalised fibroblasts, 

iPSCs, iPSC derived mDA neurons and small molecule neural precursor cells (smNPCs)) 

to measure gene expression of DJ-1 semi-quantitatively by reverse transcription PCR 

(rtPCR) and quantitatively by qPCR. 

2.3.1.1 RNA isolation 

Eukaryotic cells were grown under standard conditions. Cells were collected by enzymatic 

detachment and washed twice with PBS. Dry pellets were stored at – 80°C until RNA was 

Label Product Sequence Company 

c402g U1snRNA 5‘- gcccaagatctcatacttacgtggcaggggagat -3‘ Metabion international AG 
(Steinkirchen, Germany) c402g_antisense U1snRNA 5’- atctcccctgccacgtaagtatgagatcttgggc -3’ 
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isolated using High pure RNA isolation Kit (Roche Applied Science, Mannheim, Germany). 

Isolation was performed following instructions of the manufacturer. Elution was carried out 

with 30 µl of RNAse-free water. RNA samples were stored at – 80°C until they were pro-

cessed further. 

2.3.1.2 Quantification of ribonucleic acid samples 

All quantifications of RNA were performed using NanoDrop (ND1000) (Peqlab Erlangen, 

Germany). 

2.3.1.3 Reverse transcription 

Reverse transcription of RNA was carried out using Transcriptor High Fidelity complimen-

tary deoxyribonucleic acid (cDNA) Synthesis kit (Roche Applied Science, Mannheim, Ger-

many). 50 ng – 200 ng of RNA were used for the reaction. The reaction was performed 

using anchored-oligo(dT) primers. A negative control was included where transcription 

was performed without reverse transcriptase. cDNA samples were stored at – 20°C until 

they were processed further. 

2.4 Polymerase chain reactions (PCRs) 

2.4.1 PCR amplification 

The PCR reaction was performed in order to amplify DNA for subsequent reactions. Am-

plification of DNA that was foreseen for cloning was amplified using KOD Hot Start DNA 

Polymerase Kit (Merck KGaA, Darmstadt, Germany) according to instruction manual. All 

other amplifications were performed using the amplification protocol shown in Table 13. 

Annealing temperature and primers used are shown in Table 12. All primers were de-

signed using Primer3Plus (freeware) software tool. The reaction mixture for PCR was com-

posed of 0.5 µM forward and 0.5 µM reverse primer (Metabion international AG, Steinkir-

chen, Germany), 0.5 mM dNTP mix (Merck KGaA, Darmstadt, Germany), 0.02 U/µl GoTaq 

polymerase (Promega, Mannheim, Germany), 5 x GoTaq Reaction Buffer (Promega, 

Mannheim, Germany) (final concentration 1 x), and approximately 100 ng DNA in Nucle-

ase-Free Water (Qiagen GmbH, Hilden, Germany). 

PCR products were run in a 1.5-2 % agarose gel (Biozym Scientific, Hessisch Oldendorf 

Germany) containing 7 µl/100 ml Midori Green Advance DNA Stain (Biozym Scientific, 

Hessisch Oldendorf Germany). The percentage of agarose depended on the size of am-

plification products. A DNA ladder was used to evaluate the size of bands (GeneRulerTM 

100 bp Plus DNA ladder or GeneRulerTM 1 kb Plus DNA ladder, Thermo Fisher Scientific, 

Hamburg, Germany). 
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Table 12: PCR primers used. Table shows label, PCR product of forward and reverse primer, sequence of 

primers, annealing temperature (Temp.) used and the company primers were ordered from. 

 

Table 13: Basic cycler programme. Annealing temperature depends on the G-C content of the primers used 

and is shown in Table 12 for each primer pair respectivly. 

cycles 1 29 1 

 temp. time temp. time temp. time 

denaturation 95 °C 2 min 95 °C 30 s   

annealing   X °C 30 s   

elongation   72 °C approx. 1 min/1kb 72 °C 6 min 

 

2.4.2 Semi-quantitative measurement of cDNA 

Semi-quantitative measurement of DJ-1 gene expression was performed by rtPCR. Pri-

mers and cycler programme used are shown in Table 14 and Table 15, respectively. Re-

sults were visualised by agarose gel electrophoresis (see 2.4.1). 

Table 14: Primers used for the detection of DJ-1 in semi-quantitative rtPCR. Table shows label, PCR 

product of forward and reverse primer and the company primers were ordered from. 

 

Table 15: Cycler programme used for detection of DJ-1 in the semi-quantitative rtPCR. 

cycles 1 29 1 

 temp. time temp. time temp. time 

denaturation 94 °C 2 min 95 °C 30 s   

annealing   54 °C 30 s   

elongation   72 °C 90 s 72 °C 6 min 

 

2.4.3 Quantitative measurement of cDNA 

Quantification of cDNA was performed using qPCR. cDNA samples and primers were di-

luted 1:10 in sterile water. Standards were prepared as mixtures of all control cDNAs in 

Label Product Sequence 
Annealing 
Temp. 

Company 

pCMV-EcoRI-DJ1-for2 

DJ-1 

5‘- acgaattcgaatggcttccaaaagagctctggt -3‘ 

54 °C 

Metabion 
international 
AG 
(Steinkirchen, 
Germany) 

pCMV-STOP-Not-rev 5’- agcggccgcctagtctttaagaacaagtggagcc -3’ 

DJ1_cDNA_NotI_fwd 
DJ-1 cDNA 

5´- atatagcggccgcatggcttccaaaagagc-3´ 
58 °C 

Eurogentec 
(Liège, 
Belgium) DJ1_cDNA_XhoI_rev 5´- cccccctcgagctagtctttaagaacaag -3´ 

DJ1_cDNA_BamHI_fwd 

DJ-1 cDNA 

5´- ctcggatccatggcttccaaaagagctctggtcatc -3´ 

58 °C 

Metabion 
international 
AG 
(Steinkirchen, 
Germany) 

DJ1_cDNA_EcoRI_rev 5´- gcagaattcctagtctttaagaacaagtggagccttc-3´ 

U1 in Lenti wt fwd 

U1 snRNA 

5‘- cccccggatccatacttacctggcagggg -3‘ 

62 °C 
Eurogentec 
(Liège, 
Belgium) 

U1 in Lenti mut fwd 5‘- cccccggatccatacttacgtggcagggg -3‘ 

U1 in Lenti rev 5‘- cccccctcgagcttagcgtacagtctac -3‘ 

Label Product Sequence Company 

pCMV-EcoRI-DJ1-
for2 

DJ-1 5‘- acgaattcgaatggcttccaaaagagctctggt -3‘ Metabion international AG 
(Steinkirchen, Germany) 

pCMV-STOP-Not-rev DJ-1 5’- agcggccgcctagtctttaagaacaagtggagcc -3’ 
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concentrations of 0.1, 0.02, 0.04, 0.008 and 0.0016 μg/μl. Master mixture for qPCR was 

composed of 5 μl SYBR Green (Roche Applied Science, Mannheim, Germany), 1 μl primer 

mixture, and 1.5 μl water. Master mixture was distributed into 384-well plates and 2.5 μl of 

cDNA were added, respectively. RT- and water control were also included as controls at 

the same concentrations as the cDNA. qPCR was performed with the Light cycler 480 II 

(Roche Applied Science, Mannheim, Germany). Exemplary amplification curve and stand-

ard curve are shown in (Figure 5A). Relative expression was calculated with Light Cycler 

480 1.5 Software (Idaho Technology Inc.) using housekeeping gene levels and the second 

derivative maximum method (Rasmussen R., 2001). Cycler programme is shown in Table 

16. 

Relative expression of stem cell markers and silencing of reprogramming factors was cal-

culated using housekeeping gene level of HMBS and the second derivative maximum 

method. Primers used are shown in Table 18. 

Relative expression of DJ-1 was calculated using housekeeping gene levels of TBP and 

β-actin and the second derivative maximum method. Primers used are shown in Table 17. 

Specificity of amplification products was verified by analysing the melting curve (example 

Figure 5B) and also by randomly doing an agarose gel electrophoresis of the qPCR prod-

ucts. Samples with two peaks in the melting curve were excluded from the analysis. 

Table 16: Light Cycler programme used for detection of DJ-1 in qPCR. 

 target temp. (°C) acquisition mode time ramp rate (°C/s) cycles 

pre incubation 95 none 9 min 4.8 1 

amplification 

95 none 15 s 4.8 

55 58 none 30 s 2.5 

72 single 20 s 4.8 

melting curve 

95 none 5 s 4.8 

1 65 none 1 min 2.5 

97 continuous  0.11 

cooling 40 none 15 s 2.5 1 

 

Table 17: Primers used for detection of DJ-1 in qPCR. 

 

 

Label Product Sequence Company 

RTPCR DJ1 fwd DJ-1 5‘- ggttctaccaggaggtaatctgg -3‘ 

Metabion international AG 
(Steinkirchen, Germany) 

RTPCR DJ1 rev DJ-1 5’- atttcatgagccaacagagc -3’ 

RTPCR Ex3 fwd DJ-1 with exon 3 5‘- cgagctgggattaaggtcac -3‘ 

RTPCR Ex3 rev DJ-1 with exon 3 5‘- atcttcaaggctggcatcag -3‘ 

RTPCR TBP fwd TBP 5‘- gaagttgggttttccagctaa -3‘ 

RTPCR TBP rev TBP 5‘- ggagaacaattctgggtttga -3‘ 

RT_ACTb_fwd β-actin 5‘- ctggaacggtgaaggtgaca -3‘ 
Eurogentec (Liège, Belgium) 

RT_ACTb_rev β-actin 5‘- aagggacttcctgtaacaatgca -3‘ 
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Table 18: Primers used for detection of stem cells markers and silencing of reprogramming factors in 

iPSCs by qPCR. 

 

Label Product Purpose Sequence Company 

endo_Klf4 fwd endogenous 
klf4 

stem cell marker 
expression 

5‘- acagtctgttatgcactgtggtttca -3‘ 

Metabion 
international AG 
(Steinkirchen, 
Germany) 

endo_Klf4 rev 5‘- catttgttctgcttaaggcatacttgg -3‘ 

endo_cMyc fwd endogenous 
cmyc 

stem cell marker 
expression 

5‘- ccagcagcgactctgagga -3‘ 

endo_cMyc rev 5‘- gagcctgcctcttttccacag -3‘ 

REX1 fwd 
rex1 

stem cell marker 
expression 

5‘- gcacactaggcaaacccacc -3‘ 

REX1 rev 5‘- catttgtttcagctcagcgatg -3‘ 

endo_OCT4 fwd endogenous 
oct4 

stem cell marker 
expression 

5‘- ggaaggaattgggaacacaaagg -3‘ 

endo_OCT4 rev 5‘- aacttcaccttccctccaacca -3‘ 

endo_SOX2 fwd endogenous 
sox2 

stem cell marker 
expression 

5‘- tggcgaaccatctctgtggt -3‘ 

endo_SOX2 rev 5‘- ccaacggtgtcaacctgcat -3‘ 

NANOG fwd 
nanog 

stem cell marker 
expression 

5‘- cctgtatttgtgggcctg -3‘ 

NANOG rev 5‘- gacagtctccgtgtgaggcat -3‘ 

TDGF1 fwd 
TDGF1 

stem cell marker 
expression 

5‘- ctgctgcctgaatgggggaacctgc -3‘ 

TDGF1 rev 5‘- gccacgaggtgctcatccatcacaagg -3‘ 

UPF1 fwd 
UPF1 

stem cell marker 
expression 

5‘- ccgtcgctgaacaccgccctgctg -3‘ 

UPF1 rev 5‘- cgcgctgcccagaatgaagcccac -3‘ 

DNMT3B fwd 
DNMT3B 

stem cell marker 
expression 

5‘- gctcacagggcccgatactt -3‘ 

DNMT3B rev 5‘- gcagtcctgcagctcgagttta -3‘ 

OCT4 viral fwd 
viral oct4 

silencing of 
reprogramming factors 

5‘- ggctctcccatgcattcaaac -3‘ 

OCT4 viral rev 5‘- catggcctgcccggttatta -3‘ 

SOX2 viral fwd 
viral sox2 

silencing of 
reprogramming factors 

5‘- gcacactgcccctctcacac -3‘ 

SOX2 viral rev 5‘- caccagaccaactggtaatggtagc -3‘ 

KLF4 viral fwd 
viral klf4 

silencing of 
reprogramming factors 

5‘- cctcgccttacacatgaagagaca -3‘ 

KLF4 viral rev 5‘- caccagaccaactggtaatggtagc -3‘ 

c-MYC viral fwd 
viral cmyc 

silencing of 
reprogramming factors 

5‘- gctacggaactcttgtgcgtga -3‘ 

c-MYC viral rev 5‘- caccagaccaactggtaatggtagc -3‘ 

HMBS fwd 
HMBS housekeeping level 

5‘- atgccctggagaagaatgaagt -3‘ 

HMBS rev 5‘- ttgggtgaaagacaacagcatc -3‘ 
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A) 

 

 

 

 

 

 

 

 

B) 

 

 

 

 

 

 

 

Figure 5: Exemplary amplification curve, standard curve, melting curve and melting preaks of LC 480 II 

run. 

A) shows amplifiaction curve of standards of mixtures of control cDNAs in concentrations of 0.1, 0.02, 0.04, 

0.008 and 0.0016 μg/μl as well as standard curve with an error of 0.0203 and an efficiency of 2.014. Brown 

lines represent the standard samples in duplicates and red lines represent RT- and water control. B) shows 

melting curve and corresponding peaks. Blue line represents water control. 

2.5 Cloning 

2.5.1 Plasmid purification 

Plasmid-bearing bacteria were kept at -80°C as glycerol stocks containing 850 μl of bac-

terial suspension mixed with 150 μl of sterilized glycerin (VWR International, Pennsylvania, 

USA) (100 %). To grow plasmids, a small amount of frozen stock was scraped off and put 

into autoclaved LB media with appropriate antibiotic stock solution. Plasmids were then 

purified by manufacturer’s protocol with QIAprep spin MiniPrep Kit if small amounts of DNA 
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were needed and Qiagen Plasmid Midi/Maxi Kit if larger amounts of DNA were needed or 

Endotoxin free Maxi Kit (Qiagen GmbH, Hilden, Germany) if DNA was subsequently used 

for transfection of eukaryotic cells. 

Plasmids were eluted in appropriate volume of elution buffer and concentration was meas-

ured using NanoDrop (ND1000) (Peqlab Erlangen, Germany). Prepared plasmids were 

stored at -20 °C. 

2.5.2 Transformation of bacteria 

Transformation of DNA into One Shot® TOP10 Chemically Competent E. coli (Thermo 

Fisher Scientific, Braunschweig, Germany) was performed following manual instruc-

tions. 

2.5.3 Cloning procedure 

wt U1 sn RNA and mutated U1 sn RNA were cloned into pRNAT-U6.2/Lenti (GenScript 

USA Inc., New Jersey, USA). 

For cloning of other DNA sequences of interest into different expression vectors tem-

plate DNAs were amplified using primers with a spacer (approximately 5 bp) sequence 

followed by a short restriction site sequence on the 5' end of PCR primer. Restriction site 

sequences used were chosen according to multiple cloning site of expression vector. PCR 

products were purified using 1-2 % agarose gels and QIAquick Gel Extraction Kit (Qi-

agen GmbH, Hilden, Germany). PCR products and expression vectors were incubated 

with respective restriction enzymes. Restriction reaction is shown in Table 19 and was 

performed for 1.5 h at 37 °C. After digestion vector was treated with 1 µl of shrimp 

alkaline phosphatase (SAP) for DNA amounts up to 1 µg in 1 x MULTI-CORETM buffer 

(Promega, Mannheim, Germany) for 15 min at 37 °C followed by heat-inactivation of SAP 

for 15 min at 74 °C. Reaction was stopped by adding 10 µl of 6 x DNA loading dye (Thermo 

Fisher Scientific, Braunschweig, Germany). Samples were purified as in previous step. 

PCR products were ligated for 2 h with vector using DNA T4 ligase (New England Bi-

olabs GmbH, Frankfurt, Germany) at room temperature. Ratio of vector to insert was 

calculated based on equation (1). For inserts, which have been difficult to transfect the 

calculated amount of insert was increased up to 5 x. 

𝑥 𝑏𝑝 𝑖𝑛𝑠𝑒𝑟𝑡 ×  50 𝑛𝑔 𝑣𝑒𝑐𝑡𝑜𝑟

𝑦 𝑏𝑝 𝑣𝑒𝑐𝑡𝑜𝑟
= 𝑥 𝑛𝑔 𝑖𝑛𝑠𝑒𝑟𝑡 (1) 
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One Shot® TOP10 Chemically Competent E. coli (Thermo Fisher Scientific, Braun-

schweig, Germany) were transformed with ligated products following manual instruc-

tions. Bacterial colonies were screened by colony PCR for correct transformation with 

ligated plasmid or grown in LB medium containing appropriate antibiotics to perform 

DNA isolation QIAprep spin MiniPrep Kit (Qiagen GmbH, Hilden, Germany) and test 

digest of ligated plasmid. Before using the generated constructs sequencing (see 

2.2.4) was performed to validate the cloning procedure. 

Table 19: Composition of restriction digest reaction. 

 Amount Chemical Supplier 

restriction 
digest reaction 

10 Units/µg DNA restriction enzyme New England Biolabs GmbH (Frankfurt, Germany) 

up to 1 µg DNA  

1 x CutSmartTM New England Biolabs GmbH (Frankfurt, Germany) 

add 50 µl Nuclease-Free Water Qiagen GmbH (Hilden, Germany) 

 

To clone expression vectors for wt DJ-1 and DJ-1 lacking exon 3 the TOPO® TA Cloning® 

Kit for Subcloning (Thermo Fisher Scientific, Braunschweig, Germany) was used accord-

ing to manual instructions. 

2.6 Transfection of eukaryotic cells 

Cells were transfected with various plasmids, which were purified from bacterial cultures. 

Before plating for transfection, cells were grown under standard conditions. Total cell num-

ber for plating was calculated by counting the cells on the Neubauer-chamber before seed-

ing and an appropriate number of cells for the different well formats was distributed into 

cell culture plates. 

2.6.1 Lipofection 

For lipofection, cells were transfected using Lipofectamine® 2000 Transfection Reagent 

(Thermo Fisher Scientific, Braunschweig, Germany) according to manual instructions. 

2.6.2 Calcium phosphate precipitation of HEK-293ft cells 

For Lentiviral vector production, human embryonic kidney (HEK)-293ft cells were trans-

fected using calcium phosphate precipitation. Cells were transfected in 10 cm culture 

dishes at a confluency of 50 %. 1-3 h before transfection, HEKft medium (Table 24) was 

replaced by 7 ml HEKft medium without antibiotics (Penicillin-Streptomycin, Geneticin® 

Selective Antibiotic). Transfection mixture was prepared: 12 µg DNA (see 2.7) per 10 cm 

dish was mixed with 50 µl 2,5 M CaCl2 and filled up with sterile water to 500 µl. Same 

volume of 2 x HBSS (Table 20) was added dropwise to this mix while vortexing. Final 
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mixture was subsequently added dropwise to cells and dishes were subsequently shaken 

forward and backward and side-to-side before placing them in the incubator. After 1 h, a 

sand-like precipitate was visible under the microscope. 

Table 20: Composition of 2 x HBSS. 

Medium Amount Chemical Supplier 

2 x HBSS 

3.2 g NaCl 
Merck KGaA (Darmstadt, Germany) 

0.14 g KCl 

0.08 g Na2HPO4-7H2O 

Sigma Aldrich Chemie GmbH (Munich, Germany) 0.54 g Dextrose 

2.0 g HEPES (free acid) 

pH to 7.12 with NaOH (Merck KGaA, Darmstadt, Germany) and bring up to 200 ml. 

2.6.3 Electroporation 

To yield higher transfection efficiencies of difficult to transfect immortalised fibroblasts, the 

Amaxa nucleofector I (Lonza Group Ltd, Basel, CH) was used. 

Cells were detached using trypsin and appropriate cell number was calculated by counting 

cells on Neubauer-chamber before nucleofection and an appropriate number of cells was 

used. Immortalised fibroblasts were nucleofected using the Amaxa® Human Dermal Fi-

broblast Nucleofector® Kit (Lonza Group Ltd, Basel, CH) according to manual instructions. 

2.7 Viral vector production 

Lentiviral vectors were produced to yield higher transfection efficiencies and to be able to 

transduce difficult-to-transfect cells. 

For Lentiviral vector production, HEK-293ft cells were used. For vector production, cells 

were grown in HEKft medium without antibiotics (Table 24). Cells were plated on Poly-L-

lysine-coated (2.8.1.3) plates and transfected using calcium phosphate precipitation 

(2.6.2) with ViraPower™ Lentiviral Packaging Mix (Thermo Fisher Scientific, Braun-

schweig, Germany) (VSV-G, pLP1, pLP2 (3 µg each per 10 cm culture dish)) together with 

3 µg per 10 cm culture dish of the respective plasmid DNA at a density of 40 %. Vi-

raPower™ Lentiviral Packaging Mix was kindly provided by the Metabolomics group, Lux-

embourg Centre for Systems Biomedicine, Université du Luxembourg. After 16 h, medium 

was changed. After 40 h, supernatant was collected and transferred to a 50 ml tube and 

fresh medium was added to plates. After 64 h, supernatant was collected again cooled to 

4 °C, mixed with supernatant from previous step. To remove cell debris, supernatant was 

centrifuged for 10 min, 3,000 rcf, 4 °C. Subsequently, supernatant was filtered (0.45 μm 

filter). Viral vectors were concentrated using polyethylene glycol (PEG)-concentration 24 h 

later 1/5 volume 40 % sterile PEG was added and mixed by inverting the tube and left at 
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4 °C over night. 24 h later, virus concentration was finished by centrifugation at 1.500 rcf, 

4 °C for 30 min followed by aspiration and second centrifugation at 1.500 rcf, 4 °C for 

5 min. Supernatant was removed completely. Virus pellet was resuspended in appropriate 

amount of PBS (Thermo Fisher Scientific, Braunschweig, Germany) and stored at -80 °C 

until it was used. 

In parallel, MOCK-controls were produced using only packaging plasmids for viral vector 

production. MOCK-controls served as negative control for all experiments. 

2.8 Cell culture 

All cells were grown in cell culture approved flasks and plates (BD Biosciences, Heidel-

berg, Germany, Corning, Kaiserslautern, Germany, Greiner Bio-One GmbH, Fricken-

hausen, Germany, Thermo Fisher Scientific, Braunschweig, Germany) at 37 °C and 5 % 

CO2. Other cell culture consumables were ordered from BD Biosciences, Heidelberg Ger-

many; Corning, Kaiserslautern, Germany; Greiner Bio-One GmbH, Frickenhausen, Ger-

many; and Thermo Fisher Scientific, Braunschweig, Germany. 

Cells were stored at -150 °C or liquid nitrogen in freezing medium (Table 21). Freezing 

medium for iPSCs was supplemented with with ROCK inhibitor Y-27632, 10 µM (Merck 

KGaA, Darmstadt, Germany). Cells were thawed in 10 ml of medium and centrifuged for 

5 min, 300 g to remove DMSO (Sigma Aldrich Chemie GmbH, Munich, Germany) and 

plated into appropriate cell culture flasks. 

Table 21: Composition of freezing medium. 

Medium  Amount Chemical 

Freezing medium 

50 % culture medium 

40 % FBS 

10 % DMSO 

 

Informed consent was obtained from all patients included in this study prior to skin biopsy 

collection and generation of iPSCs. The Ethics Committee of the Medical faculty and the 

University Hospital Tübingen approved the consent form. 

2.8.1 Coatings of cell culture plates 

Different types of cell lines or cells require different biological coatings or extracellular ma-

trices to promote optimal cell attachment on surfaces. 

2.8.1.1 Matrigel coating 

iPSCs for karyotyping, mDA neurons and smNPCs were grown on matrigel coated plates. 
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Matrigel coating was performed by adding matrigel (Corning Incorporated, New York, 

USA) 1:100 in DMEM/F12 (1:1) (1x) - L-Glutamine (Thermo Fisher Scientific, Braun-

schweig, Germany) for 1 h at 37 °C and 5 % CO2. Afterwards matrigel was removed and 

coated plates were used immediately. 

2.8.1.2 Gelatin coating 

MEF cells which were used as feeder cells for iPSCs were plated on gelatin-coated plates. 

Gelatin solution (Type B, 2% in H2O) (Sigma Aldrich Chemie GmbH, Munich, Germany) 

was diluted in water to obtain a 0.1 % solution. Plates were coated for 15 min at room 

temperature. Afterwards solution was aspirated and plates were used immediately. 

2.8.1.3 Poly-L-lysine coating 

HEKft cells for viral vector production were grown on Poly-L-lysine-coated plates. 

Sufficient amount of 0.01 % poly-L-lysine ready-to-use solution was added to cover the 

bottom of a culture dish. The solution was then collected again and used to coat the next 

culture dish. This procedure can be repeated up to 10 x. 

2.8.1.4 Poly-DL-ornithine hydrobromide (PORN) coating 

Murine primary neuron cultures were plated on PORN-coated plates. 

500 mg PORN (Sigma Aldrich Chemie GmbH, Munich, Germany) were dissolved in 10 ml 

0.15 M boric acid (Sigma Aldrich Chemie GmbH, Munich, Germany) in H2O (pH 8.35) and 

sterile filtered with a 0.22 µm filter. These 100 x stocks were stored at -20 °C. Before use, 

1 x PORN was prepared by adding 0.15 M boric acid in H2O (pH 8.35). 1 x PORN was 

added on coverslips and incubated at 4 °C over night. PORN was removed and coverslips 

were washed 3 x with HBSS (Thermo Fisher Scientific, Braunschweig, Germany) before 

use. 

2.8.2 Taking skin biopsy in culture 

Skin biopsy was collected in a sterile 50 ml falcon tube with 15 ml DMEM +/+ medium 

(Table 22) (room temperature). Fresh biopsies were processed immediately. Skin biopsy 

was washed 3x with PBS (Thermo Fisher Scientific, Braunschweig, Germany). Blood, hair 

and fatty tissue was removed. Biopsy was cut into approximately 8-12 pieces. PBS was 

removed and 3 pieces were put in a T25 cell culture flask with 1.5 ml DMEM +/+ medium 

(Table 22). Skin pieces were distributed evenly in flask; not to close to edges. Flasks were 

kept at 37 °C and 5 % CO2 for around one week without moving them. After one week, 

half of medium was replaced with fresh medium. Then, medium was changed twice per 

week. After flask with skin pieces was confluent, cells were detached by trypsinising and 
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frozen down or passaged on new culture flask. Flask with skin pieces was kept and pro-

cedure was repeated at least 3 times. 

2.8.3 Maintenance of primary fibroblasts, immortalised fibroblasts and HEK293 

cells 

Primary fibroblasts, immortalised fibroblasts and HEK293 cells were grown in 

DMEM +/+ medium shown in Table 22. For splitting, cells were washed once with PBS 

and Trypsin-EDTA (0.05%), phenol red (Thermo Fisher Scientific, Braunschweig, Ger-

many) was added for 10 min, 37 °C, 5 % CO2. After cells detached, medium was added to 

inactivate Trypsin-EDTA. Suspension was collected, afterwards required cell numbers 

were seeded in new cell culture dishes. 

Table 22: Composition of DMEM +/+ medium. 

Medium  Amount Chemical Supplier 

DMEM +/+ medium 

89 % 

DMEM (1x) 
+ 4.5 g/l D-Glucose 
+ L-Glutamine 
- Pyruvate 

Thermo Fisher Scientific (Braunschweig, 
Germany) 

10 % FBS 

1 % Penicillin-Streptomycin 

2.8.3.1 List of fibroblasts of healthy controls used 

Fibroblasts from healthy controls used in this study are shown in Table 23. 

Table 23: Fibroblasts from healthy controls. Table shows name, internal ID, gender and date of birth. 

 

 

 

 

 

2.8.4 Maintenance of HEK-293ft cells 

HEK-293ft cells were used for Lentiviral vector production. 

HEK-293ft cells were grown in HEKft medium shown in Table 18. For splitting, cells were 

washed once with PBS and Trypsin-EDTA (0.05%), phenol red (Thermo Fisher Scientific, 

Braunschweig, Germany) was added for 10 min, 37 °C, 5 % CO2. Detached cells were 

collected, triturated and required cell numbers were seeded in new cell culture dishes. 

 

 

Name Internal ID Gender Year of birth 

Female A 18156 female 1954 

Female B 18075 female 1939 

Female C BJ female 1958 

Female D 17956 female 1964 

Male a 18220 male 1943 

Male b 15243 male 1956 

Male c 17556 male 1969 
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Table 24: Composition of HEKft medium. 

Medium Amount Chemical Supplier 

HEKft medium 

87 % 

DMEM (1x) 
+ 4.5 g/l D-Glucose 
+ L-Glutamine 
- Pyruvate Thermo Fisher 

Scientific 
(Braunschweig, 
Germany) 

10 % FBS 

1 % Penicillin-Streptomycin 

1 % MEM NEAA (100x) 

1 % Geneticin® Selective Antibiotic (G418 Sulfate) (50 mg/mL) 

 

For Lentiviral vector production cells were cultivated in HEKft medium without antibi-

otics. 

2.8.5 Immortalisation of human dermal fibroblasts 

Human dermal fibroblasts were immortalised to be able to use them at higher passages 

for experiments and to have lines available as an unlimited source. 

For immortalisation, a lentiviral vector expressing SV40 was used: pLenti-III-SV40 (Applied 

Biological Materials – abm Biotechnology Company, Richmond, Canada). Lentiviral vector 

stocks were produced (2.7) and stored at -80 °C. Human dermal fibroblasts were trans-

duced with lentiviral vector in the presence of polycation Polybrene® (Thermo Fisher Sci-

entific, Braunschweig, Germany). Subsequently, cells were incubated for 14 h at 37 °C, 

5 % CO2. Medium was changed and DMEM +/+ medium (Table 22) was added. Each 6-

well was splitted onto a 10 cm dish 2 days after transduction. Immortalised fibroblasts were 

separated from non-immortalised fibroblasts based on morphology by serial passaging of 

1:10 until only immortalised fibroblasts were left. Cells were propagated further and stocks 

were frozen down (2.8). 

2.8.6 Maintenance of feeder cells for iPSCs 

As feeder cells, irradiated mouse embryonic fibroblasts (MEF) cells were used (Glob-

alStem, Maryland, USA). MEF cells were thawed and plated on Gelatin-coated plates 

(2.8.1.2) and fed with DMEM +/+ medium (Table 22). Approximately 4400 MEF cells were 

plated per cm2. The next day, iPSCs were plated on MEF cells. After one week, iPSCs 

were splitted onto fresh feeder cells. 

2.8.7 Reprogramming of human fibroblasts to iPSCs 

Human dermal fibroblast obtained from skin biopsies of patients with PD were repro-

grammed using an adapted protocol from (Takahashi et al., 2007). Fibroblasts were trans-

duced with a mix of retroviral vectors encoding oct4, sox2, klf4 and c-myc. Five days after 
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transduction, cells were split onto 10 cm dishes with irradiated MEF cells (GlobalStem, 

Maryland, USA) (2.8.6). Seven days after transduction medium was changed to hES me-

dium (Table 25). Once colonies were visible they were picked, propagated, stocks were 

frozen down (2.8) and clones were characterised. At least two clones per patient line were 

used for all experiments. 

2.8.8 Maintenance of iPSCs 

iPSCs were grown in hES medium (Table 25). For splitting, cells were washed once with 

PBS and 5 U/ml dispase (Stemcell Technologies, Inc., Grenoble, France) were added for 

5 min, 37 °C, 5 % CO2. Afterwards colonies were detached by pipetting and washed 3x 

with hES medium. Required colony numbers were seeded on new cell culture dishes with 

irradiated MEF cells (GlobalStem, Maryland, USA) (2.8.6). 

Table 25: Composition of hES medium. 

Medium Amount Chemical Supplier 

hES medium 

77 % 

KnockOut™DMEM (1x) 
+ 4.5 g/l D-Glucose 
- L-Glutamine 
+ Sodium pyruvate 

Thermo Fisher Scientific (Braunschweig, 
Germany) 

20 % Knockout serum replacement 

1 % MEM NEAA (100x) 

1 % GlutaMAX (100x) 

1 % Penicillin-Streptomycin 

50 µM β-mercaptoethanol Carl Roth GmbH (Karslruhe, Germany) 

10 ng/µl Recombinant Human FGF basic R&D Systems, Inc. (Oxfordshire, UK) 

 

2.8.9 Germ layer characterisation of iPSCs 

Germ layer characterisation of iPSCs is done by a cooperation partner at the Northwestern 

Universtiy (Chicago, IL, USA) at the Department of Neurology of Dimitri Kranic, MD, PhD. 

2.8.10 Genomic characterisation of iPSCs 

After correct reprogramming of fibroblasts with retroviral vectors generated iPSCs under-

went a genomic characterisation. Genomic aberrations were excluded by performing kar-

yotyping and a genotyping microarray. 

2.8.10.1 Karyotyping 

Karyotyping of newly reprogrammed iPSC lines is necessary to exclude major chromoso-

mal aberrations and show maintenance of an euploid karyotype over several passages in 

vitro. 
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iPSCs were grown under standard conditions. Cells were detached using dispase (Stem-

cell Technologies, Inc., Grenoble, France). 10 medium sized colonies were harvested and 

single cells were obtained by adding accutase solution (Merck KGaA, Darmstadt, Ger-

many) for 5 min at 37 °C. Cells were triturated and accutase solution was inactivated using 

serum containing medium. Cells were plated on a matrigel-coated (2.8.1.1) Nunc™ Lab-

Tek™ Chamber Slide (Thermo Fisher Scientific, Braunschweig, Germany) with hES me-

dium (Table 25). 

G-banding of iPSCs was performed at the Cytogenetics Research Group at the Institute 

for Medical Genetics and Applied Genomics of the University Hospital Tübingen. 

2.8.10.2 Genotyping microarray 

A genotyping microarray analysis of newly reprogrammed iPSCs was performed to ex-

clude mutations caused by/during the reprogramming process, e.g. by the retroviral vec-

tors. 

iPSCs were grown under standard conditions. Cells were detached using dispase (Stem-

cell Technologies, Inc., Grenoble, France). DNA was isolated using QIA blood and tissue 

DNA kit (Qiagen GmbH, Hilden, Germany) according to manufacturers’ instructions. Iso-

lated and nanodropped DNA was sent for genotyping. 

The genotyping was performed at the Microarray Genome Chip Facility at the Institute for 

Medical Genetics and Applied Genomics of the University Hospital Tübingen. The Illumina 

HumanCytoSNP-12 was used. Row data were analysed using the ‘cytogenetics report’ we 

received from the Microarray Genome Chip Facility. 

2.8.11 Differentiation of iPSCs to mDA neurons and maintenance of mDA neurons 

For differentiation an appropriate number of iPSC colonies was dissociated using accutase 

solution (Merck KGaA, Darmstadt, Germany) and seeded in hES medium (Table 25) with-

out Recombinant Human FGF basic with ROCK inhibitor Y-27632, 10 µM (Merck KGaA, 

Darmstadt, Germany) at a density of 3 x 105 cells per matrigel-coated (2.8.1.1) 6-well. A 

modified floor plate-based mDA neuron induction protocol (Kriks et al., 2011, Chambers 

et al., 2009, Nguyen et al., 2011, Reinhardt et al., 2013b) was followed for differentiation 

(Figure 6): 

Cells were kept in hES medium (Table 25) without Recombinant Human FGF basic from 

day 1-3. Then N2 medium (Table 26) was added sequentially (25 %, 50 %, 75 %) from 

day 3-6. Cells were kept in N2 medium from day 6-18 and splitted on new matrigel-coated 

plates on day 13. On day 18, a mixture of 50 % N2 and 50 % Maturation medium (Table 

27) was added. From day 19 onwards, they were kept in maturation medium until they 
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were analysed. Cells were splitted again on fresh matrigel-coated plates on day 21 and 

38. Differentiation was based on exposure to Purmorphamine (0.5 µM) (Sigma Aldrich 

Chemie GmbH, Munich, Germany), from day 0-19 and SB432542 (20 µM) (Sigma Aldrich 

Chemie GmbH, Munich, Germany) and Dorsomorphin (1 µM) (R&D Systems, Inc., Ox-

fordshire, UK) from day 0-6. From day 10-12 medium was supplemented with human 

FGF8 (PeproTech Worldwide, New Jersey, USA). Ascorbic acid (AA) (Sigma Aldrich 

Chemie GmbH, Munich, Germany) and BDNF (PeproTech Worldwide, New Jersey, USA) 

were added from day 10 onwards and GDNF (PeproTech Worldwide, New Jersey, USA), 

TGF-β3 (PeproTech Worldwide, New Jersey, USA) and dbcAMP (Sigma Aldrich Chemie 

GmbH, Munich, Germany) from day 12 onwards. 

Cells were kept in maturation medium with supplements (AA, BDNF, GDNF, TGF-β3 and 

dbcAMP) until they were processed further for measurements. 

 

Figure 6: Floor plate-based mDA neuron induction protocol. 

mDA neurons were differentiated from iPSCs using an adapted floor plate-based protocol from (Kriks et al., 

2011, Chambers et al., 2009, Nguyen et al., 2011, Reinhardt et al., 2013b). iPSCs were differentiated on 

matrigel-coated 6-well plates. Differentiation was started by supplementing hES medium with Purmorphamine 

(0.5 µM), SB432543 (20 µM) and Dorsomorphin (1 µM). By changing medium to N2 medium supplemented 

with Purmorphamine (0.5 µM), human FGF8 (100 ng/µl), AA (20 µM) and BDNF (20 ng/ml) mDA patterning 

was performed. Maturation was induced by supplementing N2 medium with AA (20 µM), BDNF (20 ng/ml), 

GDNF (10 ng/ml), TGF-β3 (1 ng/ml) and dbcAMP (500 µM) and medium was changed to maturation medium 

on day 19. On day 13, 21 and 38 cells were replated as single cells on fresh matrigel-coated culture plates. 

Table 26: Composition of N2 medium. 

Medium Amount Chemical Supplier 

N2 medium 

 
DMEM/F12 (1:1) (1x) 
- L-Glutamine 

Thermo Fisher Scientific (Braunschweig, Germany) 
1:200 N-2 supplment (100x) 

500 µl Penicillin-Streptomycin 
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Table 27: Composition of Maturation medium. 

Medium Amount Chemical Supplier 

maturation medium 

49 % Neurobasal® medium (1x) 

Thermo Fisher Scientific (Braunschweig, 
Germany) 

49 % 
DMEM/F12 (1:1) (1x) 
- L-Glutamine 

1 % Penicillin-Streptomycin 

1 % GlutaMAX (100x) 

1:100 B-27® Supplement (50X) 

1:200 N-2 supplment (100x) 

 

2.8.12 Electrophysiology of mDA neurons 

Electrophysiology of mDA neurons is done by a cooperation partner at the Northwestern 

Universtiy (Chicago, IL, USA) at the Department of Neurology of Dimitri Kranic, MD, PhD. 

2.8.13 Generation and Maintenance of small molecule neural precursor cells 

(smNPCs) 

smNPCs were generated following a smNPC derivation protocol (Reinhardt et al., 2013a). 

smNPCs were grown in Maturation medium (Table 27) supplemented with CHIR 99021, 

3 µM (Axon Medchem BV, Groningen, Netherlands), Purmorphamine, 0.5 µM (Sigma Al-

drich Chemie GmbH, Munich, Germany) and AA, 150 µM (Sigma Aldrich Chemie GmbH, 

Munich, Germany). For splitting, cells were washed once with PBS and accutase solution 

(Merck KGaA, Darmstadt, Germany) was added for 15 min, 37 °C, 5 % CO2. Afterwards 

cells were washed once with DMEM/F12 (1:1) (1x) - L-Glutamine (Thermo Fisher Scien-

tific, Braunschweig, Germany). Required cell numbers were seeded on new matrigel-

coated (2.8.1.1) cell culture dishes. 

2.9 Murine primary neuron cultures 

Mice were kept under standard conditions with free access to food and water in a cycle of 

12 h of light and 12 h of dark. The local animal welfare and ethics committee of the country 

commission Tübingen approved all experiments and procedures. Number of animals used 

and their suffering was kept to a minimum. DJ-1 -/- mice with a C57BL6/J background 

were compared to C57BL6/J wildtype (wt) mice. 

Table 28: Mouse lines used for the generation of primary neuron cultures and sequences of genotyping 

primers. 

Mouseline Information Genotyping Primers Reference 

C57BL6/J 
wt mouseline with 
black fur for breeding 
and backcrossing 

DJ-1ko-rv: 5’-CGGTACCAGACTCTCCCATC-3’ 
DJ-1wt-fwd: 5’-AGGCAGTGGAGAAGTCCATC-3’ 
DJ-1wt-rv: 5’-AACATACAGACCCGGGATGA-3’ 

Charles River Laboratories 
International, Inc., Wilming-
ton, US 

DJ-1 -/- 
Transgene: DJ-1, 
Vector: pGT1Lxf 

(Pham et al., 2010) 
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Genotype of mice was determined from a tip of the tail which was taken after mice were 

sacrificed. Whole genome DNA was isolated from tail biopsy using DirectPCR Lysis Rea-

gent (Mouse Tail) kit (Viagen Biotech, Inc., Los Angeles, USA). Genotyping was performed 

by PCR using primers shown in Table 28. For experiments only new born (P0) mice were 

used. 

The day before preparation, coverslips were coated with Poly-DL-ornithine hydrobromide 

(PORN) (2.8.1.4). Newborn pups were decapitated, and whole brains were removed. Brain 

from each pup was handled separately. Hippocampi were dissected in 6 cm dishes with 

HBSS (Thermo Fisher Scientific, Braunschweig, Germany). Both Hippocampi were put in 

a 1.5 ml reaction tube with 400 µl HBSS. HBSS was removed afterwards and 200 µl trypsin 

was added and incubated for 14 min at 37 °C. To remove trypsin completely, cultivation 

medium (composition Table 29) was added and all the liquid was aspirated afterwards. 

This was followed by 3 washing steps with cultivation medium, during the last step the 

tissue was triturated carefully by pipetting 8 x with a 100 µl pipet tip. Finally, cells were 

plated on the coverslips. After 4-6 h cultivation medium was replaced by plating medium 

(composition Table 30). Cells were used for measurements after 5-10 days. 

Table 29: Composition of cultivation medium. 

Medium Amount Chemical 

cultivation medium 
500 ml Neurobasal®-A Medium Minus Phenol Red 

5 ml Glutamax I 

 

Table 30: Composition of plating medium. 

Medium  Amount Chemical 

plating medium 

24,5 ml cultivation medium 

0,5 ml B27® Supplement GIBCO® 

5 ng/ml bFGF 

 

2.10 Microscopic imaging 

Microscopic imaging analysis was performed with fixed cells (2.10.1) and live cells 

(2.10.2). 

2.10.1 Immunofluorescence of cells 

After correct reprogramming of fibroblasts with retroviral vectors expressing the ‘Yama-

naka factors’, pluripotency marker expression was assessed using immunocytochemistry 

(ICC). 
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After differentiation of iPSCs to mDA neurons, neurons were tested for expression of dif-

ferent neuronal markers as well using ICC. 

iPSCs or mDA neurons, respectively were grown on coverslips pre-coated with matrigel 

(2.8.1.1) under standard conditions. For fixation, medium was removed and 4 % formal-

dehyde (FA) in PBS was added for 20 min at room temperature. FA was aspirated and 

ice-cold 100 % methanol was added for 5 min at -20 °C to permeabilise cells. Methanol 

was aspirated and cells were washed 2 x using PBS. Samples were blocked using 10 % 

FCS in PBS for 30 min at room temperature. Cells were incubated with primary antibody 

(Table 35) for 1-2 h at 37 °C or at 4 °C over night. Cover slips were washed 3 x with PBS 

before secondary antibody (Table 35) was added in 10 % FCS in PBS for 1 h at room 

temperature in the dark. Cover slips were washed 3 x with PBS and then stained with 10 μl 

of DAPI (4',6-Diamidino-2-Phenylindole, Dihydrochloride) (Thermo Fisher Scientific, 

Braunschweig, Germany) in 500 μl of PBS and incubated for 10 min at room temper-

ature. Afterwards, they were washed 2 x with PBS and mounted on glass slides using 

Mowiol/DABCO (Carl Roth GmbH, Karslruhe, Germany). 

2.10.2 Live cell imaging 

Cells (fibroblasts, mDA neurons or murine primary neuron cultures, respectively) were 

grown under standard conditions and plated into Nunc™ Lab-Tek™ Chamber Slides 

(Thermo Fisher Scientific, Braunschweig, Germany) for measurement. Live cell imaging 

experiments were performed using the Live Cell Microscope Axiovert 2000 (Carl Zeiss 

Microimaging GmbH, Jena, Germany). Measurements were performed in a humidified 5 % 

CO2 atmosphere at 37 °C.  

2.10.2.1 MitoTracker green staining 

To perform staining of mitochondria MitoTracker® Green FM (Thermo Fisher Scientific, 

Braunschweig, Germany) was used. This green fluorescent dye stains mitochondria re-

gardless of the mitochondrial membrane potential (MMP). 

Cells were stained with 0.1 nM MitoTracker® Green FM and 2 μg/ml Hoechst 33342, Tri-

hydrochloride, Trihydrate (Thermo Fisher Scientific, Braunschweig, Germany) in PBS for 

20 min at 37 °C and 5 % CO2.  

2.10.2.2 TMRE staining 

TMRE is sequestered by active mitochondria. The MMP was measured via the red fluo-

rescent intensity of the cell-permeant, cationic dye. 
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To measure MMP, cells were stained using Tetramethylrhodamine, methyl ester (TMRE) 

(Thermo Fisher Scientific, Braunschweig, Germany) per manufacturer’s instructions. Cells 

were stained with 100nM TMRE and 2 μg/ml Hoechst 33342, Trihydrochloride, Trihydrate 

(Thermo Fisher Scientific, Braunschweig, Germany) in PBS for 20 min at 37 °C and 

5 % CO2. 

2.10.2.3 Neurite outgrowth 

Neurite outgrowth of mature mDA neurons (between 80 and 100 days of differentiation) 

was measured. Neurons were splitted onto matrigel-coated (2.8.1.1) Nunc™ Lab-Tek™ 

Chamber Slides (Thermo Fisher Scientific, Braunschweig, Germany) and outgrowth was 

measured using the Live Cell Microscope Axiovert 2000 (Carl Zeiss Microimaging GmbH, 

Jena, Germany). Pictures were taken using the Carl Zeiss Plan-Apochromat 63x/1.40 oil 

objective every 5 min for 30 min. Images were analysed using AxioVision (Carl Zeiss AG) 

and ImageJ (Wayne Rasband, NIH) software with MTrackJ plugin. 

2.11 Flow cytometry 

Flow cytometry allows the analysis of cells using a laser-based detection method. Size 

and granularity as well as fluorescent dies can be detected at the same time allowing the 

characterisation of the cells. 

Flow cytometry measurements were performed using the BD LSRFortessa (Becton,Dick-

inson and Company.© Erembodegem, Belgium) or the CyAn ADP Analyzer (Beckman 

Coulter, California, USA). Analysis of flow cytometry was performed using Flowjo software 

(Flowjo LLC, Oregon, USA) or Summit 4.3.02b2451 software (Beckman Coulter, Califor-

nia, USA), respectively. 

2.11.1 MitoSOX staining 

To measure mitochondrial ROS, cells were stained using MitoSOX™ Red Mitochondrial 

Superoxide Indicator (Thermo Fisher Scientific, Braunschweig, Germany). 

MitoSOX™ Red reagent is a fluorogenic dye which gets oxidised by superoxide resulting 

in red fluorescence. MitoSOX™ Red selectively targets mitochondria in living cells. 

Cells were grown under standard conditions. Before staining, they were washed twice with 

HBSS (Thermo Fisher Scientific, Braunschweig, Germany). 2 µM MitoSOX™ Red-solution 

was added to cells and incubated for 20 min at 37 °C in a no-CO2 incubator. A negative 

control to determine autofluorescence and a positive control using MitoSOX™ Red-solu-

tion and 10 µM rotenone (Sigma Aldrich Chemie GmbH, Munich, Germany) were included. 

Afterwards, cells were washed once with HBSS and detached using accutase solution 
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(Merck KGaA, Darmstadt, Germany) for 15 min at 37 °C. Cells were centrifuged for 5 min 

with 200 g and medium was removed afterwards and cells were resuspended in 200 µl 

HBSS with 1 % BSA. Cells were measured using 582 nm filter. At least 30000 events in 

required area were measured. 

2.12 Protein biochemistry 

2.12.1 Western blot analysis 

Western blot analysis was done to measure the levels of DJ-1 in different eukaryotic cell 

types. 

Cells were collected and pelleted. Samples were stored at -80 °C until they were pro-

cessed. Pellets were lysed in Lysis buffer containing protease inhibitor (Roche Applied 

Science, Mannheim, Germany). Protein concentration was measured by Bradford assay 

(see chapter 2.12.1.1) and adjusted to required protein concentration using lysis buffer 

(Table 31). A 10 % SDS gel with a 4 % stacking gel was prepared and run in running buffer 

(Table 33). Samples were mixed with 5 x Laemmli buffer (Table 32) plus 100 µl of 1 M 

DTT per 2 ml Laemmli buffer. Denaturing of sample lysates was done by incubating at 

96 °C for 5 min, afterwards samples were snap cooled on ice, quickly centrifuged and 

directly loaded on the gel. As a size standard PageRuler Plus Prestained Protein Ladder 

(Thermo Fisher Scientific, Braunschweig, Germany) was loaded as well. Samples were 

resolved with a one-dimensional discontinuous sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE). While samples were running through the stacking gel, volt-

age was set to 80 V, when samples entered the running gel, voltage increased to 120 V 

to 150 V. Blotting of gel onto a nitrocellulose membrane (Thermo Fisher Scientific, Braun-

schweig, Germany) was done for 7 min, 20 V using the iBlot® device (Invitrogen GmbH, 

Karslruhe, Germany). Subsequently, membrane was blocked using 5 % skim milk powder 

(Sigma Aldrich Chemie GmbH, Munich, Germany) in TBS-T buffer (Table 34) for 1 h at 

room temperature. Primary antibody (Table 35) was added at 4 °C over night under agi-

tating conditions. Membranes were washed 6x for 5 min in TBS-T buffer and incubated 

with secondary antibody (Table 35) for 1 h in 5 % milk powder in TBS-T at room tempera-

ture. Blots were washed 6 x for 5 min with TBS-T buffer and labelled proteins were de-

tected after incubation with a 1:1 Amersham ECL Western Blotting Detection Reagent (GE 

Healthcare, Freiburg, Germany) mixture. X-ray films were exposed to blots and developed 

using an X-ray developer (Fujifilm, Düsseldorf, Germany). 
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Table 31: Composition of Lysis buffer. 

Buffer Amount Chemical Supplier 

Lysis buffer 
pH 7.4 

10 mM HEPES Sigma Aldrich Chemie GmbH (Munich, Germany) 

1.5 mM MgCl2 Carl Roth GmbH (Karslruhe, Germany) 

10 mM KCl Merck KGaA (Darmstadt, Germany) 

0.5 mM DTT Carl Roth GmbH (Karslruhe, Germany) 

0.05 % NP40 VWR International (Pennsylvania, USA) 

add fresh 1 % Triton X 100 AppliChem GmbH (Darmstadt, Germany) 

 

Table 32: Composition of Laemmli buffer. 

Buffer Amount Chemical Supplier 

5 x Laemmli buffer 

62.5 mM, pH 6.8 Trizma hydrochloride Sigma Aldrich Chemie GmbH (Munich, Germany) 

5 % β-mercaptoethanol Carl Roth GmbH (Karslruhe, Germany) 

10 % Glycerin VWR International (Pennsylvania, USA) 

2 % SDS Sigma Aldrich Chemie GmbH (Munich, Germany) 

1 spatula tip Bromphenol blue Merck KGaA (Darmstadt, Germany) 

 

Table 33: Composition of 5 x running buffer. 

Buffer Amount Chemical Supplier 

5 x running buffer 

45 g Tris Carl Roth GmbH (Karslruhe, Germany) 

216 g Glycine Carl Roth GmbH (Karslruhe, Germany) 

150 ml, 10 % SDS Sigma Aldrich Chemie GmbH (Munich, Germany) 

add to 3 l VE water  

 

Table 34: Composition of 10 x TBS and TBS-T. 

Buffer Amount Chemical Supplier 

10 x TBS 
pH 7.5 

50 mM Tris Carl Roth GmbH (Karslruhe, Germany) 

150 mM NaCl Merck KGaA (Darmstadt, Germany) 

For TBS-T buffer add 1 % Tween 20 to 1 x TBS in VE water. 

 

Table 35: List of antibodies used including species, company, dilution and use. 

Antibody Protein/Name Species Company Dilution Use 

Primary DJ-1 (D29E5) XP® mAB rabbit  
Cell Signaling Technology 
(Cambridge, UK) 

1:2000 WB 

Primary 
Anti-PARK7/DJ1 
ab169520 

rabbit Abcam (Cambridge, UK) 1:1000 WB 

Primary 
Mous anti-DJ-1 (37-8800) 
mAB 

mouse 
Invitrogen GmbH (Karslruhe, 
Germany) 

1:20 WB 

Primary 

Anti-Glyceraldehyde-3-
Phosphate 
Dehydrogenase Antibody 
MAB374 

mouse 
Merck KGaA (Darmstadt, 
Germany) 

1:5000 WB 

Primary 
GAPDH antibody 
GTX100118 

rabbit 
GeneTex International Corpora-
tion (Hsinchu City, Taiwan) 

1:80000 WB 

Primary 
Monoclonal Anti-β-Actin 
antibody A5441 

mouse 
Sigma Aldrich Chemie GmbH 
(Munich, Germany) 

1:3000 WB 
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2.12.1.1 Bradford Assay 

Bradford assay was used to measure and normalise total protein concentration for all 

Western blot samples. Protein concentrations were calculated using a standard protein 

ladder done for each independent experiment using 0, 1, 2, 4, 6, 8, 10 μg BSA (Carl Roth 

GmbH, Karslruhe, Germany) as standard. 1 μl of sample diluted with 49 μl of water and 

150 µl of Bradford reagent (Thermo Fisher Scientific, Braunschweig, Germany) were 

mixed. Absorbance was measured at 595 nm using plate reader: Mithras LB 940 

(BERTHOLD Technologies GmbH & Co. KG, Bad Wildbad, Germany) or the Synergy™ 

Mx Microplate Reader (BioTek Instruments, Inc., Bad Friedrichshall, Germany). 

2.12.1.2 Blocking of proteasomal and lysosomal degradation 

To block proteasomal degradation smNPCS were grown under standard conditions. Cells 

were treated with Z-Leu-Leu-Leu-al (MG-132) (Sigma Aldrich Chemie GmbH, Munich, 

Germany) for 24 h with different concentrations of: 0.5 µM, 1 µM, 5 µM, 10 µM, 25 µM, 

50 µM. DMSO treatment was included as control. 

To block lysosomal degradation smNPCS were grown under standard conditions. Cells 

were treated with Bafilomycin A1 (Enzo Life Sciences BVBA, Antwerpen, Belgium) for 24 h 

Primary 
Anti-Nanog antibody 
ab80892 

rabbit Abcam (Cambridge, UK) 1:1000 ICC 

Primary 
Anti-Oct4 antibody 
ab19857 

rabbit Abcam (Cambridge, UK) 1:300 ICC 

Primary 
Anti-Stage-Specific Em-
bryonic Antigen-4 Anti-
body MAB4304 

mouse 
Merck KGaA (Darmstadt, 
Germany) 

1:100 ICC 

Primary 
Anti-TRA-1-81 Antibody 
MAB4381 

mouse 
Merck KGaA (Darmstadt, 
Germany) 

1:50 ICC 

Primary 
Monoclonal Mouse anti-
TUBB3 antibody #MMS-
435P 

mouse 
Covance Research Products 
Inc (Pennsylvania, USA) 

1:500 ICC 

Primary 
Anit-Tyrosine Hydroxilase 
Antibody P40101-150 

rabbit 
Pel Freez Biologicals 
(Arkansas, USA) 

  

Primary 
HNF-3β Antibody (B-2) 
sc-271103 

mouse 
Santa Cruz Biotechnology, Inc 
(California, USA) 

1:100 ICC 

Primary Lmx1A rabbit 
Merck KGaA (Darmstadt, 
Germany) 

1:1000 ICC 

Secondary 
Amersham ECL Mouse 
IgG, HRP-linked whole Ab 
NA931-1ML 

mouse 
GE Healthcare (Freiburg, 
Germany) 

1:5000 WB 

Secondary 
Amersham ECL Rabbit 
IgG, HRP-linked whole Ab 
NA934-1ML 

rabbit 
GE Healthcare (Freiburg, 
Germany) 

1:5000 WB 

Secondary 

Goat anti-Mouse IgG 
(H+L) Secondary Anti-
body, Alexa Fluor® 488 
conjugate 

mouse 
Invitrogen GmbH (Karslruhe, 
Germany) 

1:1000 ICC 

Secondary 

Goat anti-Rabbit IgG 
(H+L) Secondary Anti-
body, Alexa Fluor® 568 
conjugate 

rabbit 
Invitrogen GmbH (Karslruhe, 
Germany) 

1:1000 ICC 
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with different concentrations: 25 nM, 50 nM, 100 nM, 150 nM, 200 nM. DMSO treatment 

was included as control. 

24 h after treatment cells were harvested and Western blot analysis (2.12.1) was per-

formed. 

2.13 Assessment of metabolic activity using Thiazolyl blue tetrazolium 

bromide (MTT) reduction assay 

MTT reduction assay was performed to determine metabolic activity of cells after treatment 

with compounds. 

Cells take up MTT substrate. It gets reduced by mitochondrial and endoplasmatic reticu-

lum dehydrogenase enzymes. Depending on cell integrity the reduced MTT purple forma-

zan accumulates (Cookson et al., 1995). 

Cells were seeded in a 96-well plate and grown to 80 % confluence in empty medium or 

medium supplemented with compound at concentration of interest (Table 5). Highest used 

solvent concentration was used as control. Medium was removed and 0.5 mg/ml MTT 

stock solution (Sigma Aldrich Chemie GmbH, Munich, Germany) in PBS (Thermo Fisher 

Scientific, Braunschweig, Germany) was added and incubated for 30 min at 37 °C, 5 % 

CO2. Afterwards medium was removed and 100 µl DMSO (Sigma Aldrich Chemie GmbH, 

Munich, Germany) was added to solubilise the crystals. Absorbance at 595 nm was meas-

ured using the Mithras LB 940 (BERTHOLD Technologies GmbH & Co. KG, Bad Wildbad, 

Germany) or the Synergy™ Mx Microplate Reader (BioTek Instruments, Inc., Bad Frie-

drichshall, Germany) plate reader. 

2.14 Splicing assay 

Splicing analysis was performed to ascertain differential splicing of the c.192G>C DJ-1 

mutation. 

2.14.1 Minigene assay 

Minigene assay is used to analyse splicing of an exon of interest by cloning it into a vector 

(pSPL3) between two given exons (Exon A and Exon B) and subsequent analysis of the 

cDNA by rtPCR and sequencing (Figure 7). 
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Figure 7: Schematic overview of Minigene assay. 

wt DJ-1 exon 3 or mutant DJ-1 exon 3 carrying the c.192G>C DJ-1 mutation respectively including flanking 

intronic sequences were cloned in a vector (pSPL3) (Invitrogen GmbH, Karslruhe, Germany) between two 

given exons (A and B). After transfection of the final plasmids splicing of wt or mutant exon 3 was analysed by 

rtPCR and subsequent sequencing of cDNA. It was analysed wether the c.192G>C DJ-1 mutation leads to 

physiological splicing or missplicing with skipping of exon 3. 

2.14.1.1 U1 cotransfection in minigene assay 

To assess the effect of U1 on c.192G>C DJ-1 splicing, U1 was cotransfected together with 

the minigene constructs to HEK293 cells. 

HEK293 cells (2.8.3) were transfected at 80 – 90 % confluence using Lipofectamine® 2000 

Transfection Reagent (Thermo Fisher Scientific, Braunschweig, Germany) according to 

manufacturers’ instructions. Cells were transfected with 4 µg minigene plasmid and 4 µg 

U1snRNA. RNA isolation, cDNA synthesis and Sanger sequencing were performed as 

described by (Weisschuh et al., 2012). Subcloning of rtPCR products into the pCR2.1 vec-

tor (Invitrogen GmbH, Karslruhe, Germany) was performed according to the manufac-

turer´s instructions. 

2.14.2 MutationTaster 

To perform an in silico analysis to evaluate the effect of the c.192G>C DJ-1 mutation Mu-

tationTaster (Schwarz et al., 2010) software was used. 

2.15 Statistical analyses 

Statistical analyses were performed using Graph Pad Prism 5 Software (GraphPad Soft-

ware Inc.). 
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2.16 Pedigree drawing 

The pedigree of the E64D family was drawn using the HaploPainter1.043 (access free 

software). 
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3 Results 

3.1 Clinical phenotype of the c.192G>C DJ-1 family 

The samples analysed in this study are derived from family members of the c.192G>C DJ-

1 family pedigree (Figure 8). Individual III.13 represents the index patient, a homozygous 

c.192G>C DJ-1 mutation carrier. Individual III.11 represents the sister of the index patient, 

who is also a homozygous carrier of the c.192G>C DJ-1 mutation. The two heterozygous 

family members included in this study are represented by individual III.7 (male) and indi-

vidual IV.9 (female). A pedigree with information to all individuals including individual II.1, 

II.2 (born 1934), III.3 (born 1955), III.6 (born 1956), III.7 (born 1958), III.11 (born 1961) and 

III.13 (born 1962) was previously published (Hering et al., 2004). 

The heterozygous brothers of the index patient, which were published in the above-men-

tioned study, did not show any symptoms at that time. Similarily, the mother of the index 

patient also did not display any PD symptoms at the age of 63. 

The homozygous mutation-carrying sister who was published in the same study did not 

have extrapyramidal symptoms at the time the samples were collected. In a follow-up ex-

amination in 2010 she still had no extrapyramidal signs, but meanwhile she has been suf-

fering from a severe depression even under medication. 

The index patient developed first PD symptoms, namely slowing of movements and 

akinetic-rigidic-sydrome of the left arm and leg, at the age of 34. Later he developed 

speech difficulties and depression. The index patient responds well to levodopa therapy 

and receives anti-depressive treatment. More detailed information on the clinical features 

of the patients can be found in the original study (Hering et al., 2004). In the follow-up 

examination in 2010 he showed further excellent response to levodopa therapy, the de-

pression was well controlled under antidepressant medication, no autonomous dysregula-

tion was seen as well as no relevant motor fluctuations. 
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Figure 8: Pedigree structure of the family with the c.192G>C DJ-1 mutation. 

Black symbols denote homozygous mutation carriers of the c.192G>C DJ-1 mutation. Grey symbols denote 

heterozygous c.192G>C DJ-1 mutation carriers. The arrow points to individual III.13 representing the index 

patient. 
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3.2 Mitochondrial phenotypes in carriers of the c.192G>C DJ-1 mutation 

To investigate the effect of the c.192G>C DJ-1 mutation on mitochondrial function, assays 

were performed in cells derived from the human mutation carriers and healthy controls. 

Analyses were performed in human dermal fibroblasts, iPSCs generated from the fibro-

blasts, mDA neurons differentiated from these iPSCs as well as smNPCs also generated 

from these iPSCs. 

3.2.1 The c.192G>C DJ-1 mutation leads to changes in mitochondrial morphology 

To detect the effect of the c.192G>C DJ-1 mutation on mitochondrial morphology, meas-

urements were performed using MitoTracker® Green FM to stain mitochondria in live hu-

man dermal fibroblasts from family members of the c.192G>C DJ-1 family carrying the 

c.192G>C DJ-1 mutation and an unrelated healthy control. Analysis of single mitochondria 

revealed significant changes in morphology in terms of length and branching of mitochon-

dria in carriers of the c.192G>C DJ-1 mutation (Figure 9). A significant reduction in the 

aspect ratio, indicating the length of a mitochondrion was seen in both homozygous 

c.192G>C DJ-1 mutation carriers when compared to an unrelated healthy control and to 

the brother who is a heterozygous carrier of the same mutation (Figure 9B). Analysis of 

form factor, measuring the degree of branching of mitochondria revealed a significant re-

duction in both homozygous c.192G>C DJ-1 mutation carriers in comparison to the heter-

ozygous mutation carrying brother. The comparsion to the unrelated healthy control 

showed a significant reduction in the degree of branching of the premotor diseased homo-

zygous c.192G>C DJ-1 mutation carrier and a significant increase in branching in the het-

erozygous c.192G>C DJ-1 mutation carrier (Figure 9C). 
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Figure 9: Effect of the c.192G>C DJ-1 mutation on mitochondrial morphology. 

Mitochondrial morphology in human dermal fibroblasts from carriers of the c.192G>C DJ-1 mutation and a 

healthy control were analysed by live cell imaging microscopy using ApoTome optical slices with 0.35-0.4 

z-stacks. Mitochondrial morphology measurements were performed using MitoTracker® Green FM to stain 

mitochondria. Nuclei were stained with Hoechst 33342. A) Representative microscopy image of a human 

dermal fibroblast of the control (left) and the index pateint (right) with mitochondria stained in green and 

nucleus in blue. (Scale bars, 20 µm) B) Aspect ratio indicates the length of a single mitochondrion. Aspect 

ratio is calculated as ratio between the major and the minor axes of the ellipse equivalent to the object. 

Aspect ratio was significantly reduced in fibroblasts from both homozygous c.192G>C DJ-1 mutation carri-

ers when compared to fibroblasts from a healthy control. Aspect ratio was not reduced when compairing 

the heterozygous c.192G>C DJ-1 mutation carrier to the healthy control. Comparison within the c.192G>C 

DJ-1 family members showed significant reduction in mitochondrial length of both homozygous c.192G>C 

DJ-1 mutation carriers when compared to the heterozygous mutation carrier. C) Form factor indicates mito-

chondrial branching. Form factor is calculated as: perimeter2/4π*area. Form factor was significantly reduced 

in fibroblasts from the heterozygous and the premotor diseased homozygous c.192G>C DJ-1 mutation car-

rier when compared to fibroblasts from a healthy control. A reduced degree of branching was observed of 

both homozygous c.192G>C DJ-1 mutation carriers when compairing them with the heterozygous mutation 

carrier of the same family. B) + C) Images from 36 individual cells of each proband were analysed by an 

investigator blinded to the experimental design. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001 by two-

way ANOVA followed by Tukey's multiple comparisons test. Values show mean + SEM. N=3. 



3 Results  
 

66 

3.2.2 The c.192G>C DJ-1 mutation causes a reduction of MMP in patient derived 

dermal fibroblasts 

Next, we investigated mitochondrial function by measuring MMP through TMRE fluores-

cence intensity in live human dermal fibroblasts from family members of the c.192G>C DJ-

1 family carrying the c.192G>C DJ-1 mutation and an unrelated healthy control. Analysis 

of c.192G>C DJ-1 mutation carriers revealed a reduction of the MMP of both homozygous 

mutation carriers when compared to the healthy control which could be resuced by rein-

troducing physiological wt DJ-1 in the fibroblasts of the index patient (Figure 10). These 

results in human carriers of DJ-1 mutations are in line with previous findings in MEFs from 

DJ-1 knockout mice, which had a reduced MMP when compared to wt controls (Krebiehl 

et al., 2010). Together, these results indicate once more the importance of DJ-1 loss of 

function for maintaining MMP and thus indicate the relevance of DJ-1 for mitochondrial 

function in general. 
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Figure 10: Effect of the c.192G>C DJ-1 mutation on MMP. 

MMP in human dermal fibroblasts from carriers of the c.192G>C DJ-1 mutation and a healthy control were 

analysed by live cell imaging microscopy. MMP measurements were performed by staining cells with the  

membrane potential-sensitive dyeTMRE to measure active mitochondria. Nuclei were stained with Hoechst 

33342. Cells were measured using a live cell microscope with 63x magnification and ApoTome technique 

to define single layers of cells. Exposure time was set to 200-300 ms. Pictures were analysed using Image 

J software by applying the “despeckle” function and the “Lookup Tables–Fire” condition, followed by “ana-

lyze particles” option. A) Exemplary microscopy image of a human dermal fibroblast of a healthy control 

(left) and the homozygous c.192G>C DJ-1 mutation carrier (right) with mitochondria in red and nucleus in 

blue. (Scale bars, 10 µm) B) TMRE fluorescence intensity depends on the activity of mitochondria. Both 

homozygous c.192G>C DJ-1 mutation carriers showed a decreased MMP when compared to an unrelated 

healthy control. Images from 36 individual cells of each proband were analysed by an investigator blinded 

to the experimental design. * p ≤ 0.05, ** p ≤ 0.01 by two-way ANOVA followed by Dunnett's multiple com-

parisons test. C) As shown in B) MMP is significantly reduced in the index patient when compared to an 

unrelated healthy control. MMP increases significantly when reintroducing wt DJ-1 in the c.192G>C DJ-1 

mutation carrier. Images from 36 individual cells of each proband were analysed by an investigator blinded 

to the experimental design. Values show mean + SEM. N=3. **** p ≤ 0.0001 by one-way ANOVA followed 

by Tukey's multiple comparisons test. 
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3.3 Mitochondrial analysis of murine primary hippocampal neuronal cul-

tures 

To be able to screen for neuron-specific mitochondrial phenotypes we investigated the 

influence of loss of DJ-1 protein on mitochondrial transport by looking at mitochondria us-

ing live cell imaging of murine primary hippocampal neuronal cultures. These experiments 

have been performed before human iPSC derived neuronal cultures were available. 

3.3.1 Velocity of mitochondrial transport 

An exemplary image of a movie of the primary neuronal cultures with mitochondria stained 

with MitoTracker® Green FM is shown (Figure 11). 

 

Figure 11: Exemplary image of mitochondria of a primary neuronal culture. 

Mitochondrial analysis in murine primary hippocampal neuronal cultures from wt and DJ-1 -/- mice were ana-

lysed by live cell imaging microscopy. Mitochondrial measurements were performed using MitoTracker® 

Green FM to stain mitochondria. Nuclei were stained with Hoechst 33342. Representative microscopy image 

of a movie with mitochondria stained in green and nucleus in blue. (Scale bar, 10 µm) 

When analysing the velocity of mitochondrial transport of wt mice in comparison to DJ-1   

-/- mice we measured an equal velocity of about 0.025 µm/s (Figure 12A). The maximum 

velocity of mitochondria from wt mice and DJ-1 -/- mice was about 0.1 µm/s and slightly 

higher for mitochondria from wt mice (Figure 12B). 
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Figure 12: Velocity of mitochondrial transport. 

Mitochondrial analsysis was performed using live cell imaging for 3 min, 5 s per time and analysed with ImageJ 

using the plugin "TrackMate" in Fiji. Two to three movies per mouse were taken from 6 wt and 5 DJ-1 -/- mice. 

Each dot/square represent mean of mitochondria of individual mouse. Error bars indicate +/- SEM. A) shows 

velocity of mitochondria. B) shows maxium (max.) velocity of mitochondria. 

3.3.2 Number of moving mitochondria 

We investigated the difference of mitochondria which move between wt and DJ-1 -/- mice. 

The mean of the percentage of moving mitochondria per mouse was higher in DJ-1 -/- 

mice both when analysing overall displacement as well as when analysing the displace-

ment only when it was further than 1 µm (Figure 13). 
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Figure 13: Percentage of moving mitochondria. 

Mitochondrial analsysis was performed using live cell imaging for 3 min, 5 s per time and analysed with ImageJ 

using the plugin "TrackMate" in Fiji. Two to three movies per mouse were taken from 6 wt and 5 DJ-1 -/- mice. 

Each dot/square represent mean of mitochondria of individual mouse. Error bars indicate +/- SEM. A) shows 

percentage of moving mitochondria. B) shows percentage of mitochondria moving further than 1 µm. 

3.3.3 Displacement of mitochondria 

Next, we investiged whether in DJ-1 -/- mice where more mitochondria moved, their dis-

placement was greater as well. When looking at the mean of the overall displacement of 

the mice indeed the mitochondria of the DJ-1 -/- mice moved a greater distance (Figure 

14A). When looking only at mitochondria with a displacement >1 µm however the mito-

chondria of the wt mice had a higer mean displacement (Figure 14B). 
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Fig-

ure 14: 

Mi-

to-

chondrial displacement. 

Mitochondrial analsysis was performed using live cell imaging for 3 min, 5 s per time and analysed with ImageJ 

using the plugin "TrackMate" in Fiji. Two to three movies per mouse were taken from 6 wt and 5 DJ-1 -/- mice. 

Each dot/square represent mean of mitochondria of individual mouse. Error bars indicate +/- SEM. A) shows 

mean displacement of mitochondria. B) shows mean displacement of mitochondria moving further than 1 µm. 

3.4 Establishment of an iPSC model from patient derived fibroblasts 

Being able to generate pluripotent stem cells from somatic cells was a milestone for many 

fields of research including neurodegeneration. It opens up the possibility to analyse dis-

ease specific phenotypes in the respective affected types of cells. Making use of the op-

portunity to study disease mechanisms in neurons and to control for tissue-specific effects, 

iPSCs were generated from the indicated patient derived dermal fibroblasts of the 

c.192G>C DJ-1 family. 

Reprogramming of both homozygous c.192G>C DJ-1 mutation carriers and the heterozy-

gous c.192G>C DJ-1 mutation carrier (individual III.7) was performed using retroviral vec-

tors expressing the classical four ‘Yamanaka factors’. A minimum of 20 clones per individ-

ual was picked, passaged and stocks were frozen down for subsequent characterisation 

of the clones. Characterisation included tests about pluripotency and stem cell character-

istics of the clones. Therefore, qPCR was performed to ensure silencing of the four exog-

enous viral factors and endogenous expression of pluripotency markers, ICC was used to 

show the expression of stem cell markers. Furthermore, the picked clones were tested for 

major chromosomal abberations and mutations via G-banding and a genotyping microar-

ray analysis. Additionally, the mutation carrying exon 3 of DJ-1 was sequenced in all clones 

to verify the correct genotype. Likewise, the ability of the clones to differentiate in cell types 

of all three germ layers was tested by ICC after differentiating the clones. At least two 
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different clones per one individual were correctly characterised and a sufficient number of 

stocks was frozen down. 

Table 36 shows a list of all generated iPSC clones from the respective fibroblasts of the 

c.192G>C DJ-1 family members. 

Table 36: List of reprogrammed human iPSC lines used in this study. Table shows number of individual 

of the c.192G>C DJ-1 family (Figure 8), diagnosis and genotype of the individual as well as iPSC clone ID and 

name used in this study. 

 

Both control iPSC lines included in this study were a kind gift from Christine Klein, MD of 

the Institute of Neurogenetics at the University of Lübeck (Germany). These lines were 

fully characterised already. Names of the control lines used in this study are ‘healthy con-

trol c2’ and ‘healthy control c5’. Heahlty control c5 has been published as L2135 (Cooper 

et al., 2012). 

3.4.1 Sucessful characterisation of reprogrammed iPSCs 

In a first step, silencing of retroviral transgenes of the newly reprogrammed iPSC clones 

was analysed by qPCR. Relative expression of exogenous oct4, sox2, klf4 and c-myc was 

calculated using housekeeping gene level of HMBS and normalised to fibroblasts 4 days 

post infection with the same retroviral vectors (Figure 15). 

Retroviral transgenes used for reprogramming are correctly silenced in established iPSC 

clones. 

Individual Diagnosis Genotype iPSC clone ID/Name in this study 

III.13 PD homozygous c.192G>C DJ-1 mutation 

c.192G>C hom affected c1 

c.192G>C hom affected c4 

c.192G>C hom affected c5 

III.11 PD homozygous c.192G>C DJ-1 mutation 

c.192G>C hom premotor diseased c1 

c.192G>C hom premotor diseased c4 

III.7 healthy heterozygous c.192G>C DJ-1 mutation 
c.192G>C het c1 

c.192G>C het c3 
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Figure 15: Silencing of retroviral transgenes (oct4, sox2, klf4 and c-myc) in established iPSC lines. 

Expression is normalised to fibroblasts 4 days post-infection and calculated using houskeeping gene levels of 

HMBS. N=1. 

Next, a qPCR was performed in order to show the expression of endogenous oct4, sox2, 

klf4 and c-myc as markers of pluripotency. In the same experiment, the expression of other 

pluripotency markers for the indicated genes were tested. A fibroblast sample (called fi-

broblasts in Figure 16) served as a negative control and a published iPSC sample (iPSC 

control) as positive control. qPCR shows induction of endogenous transcripts of oct4, 

sox2, klf4 and c-myc and the expression of the other pluripotency markers (Figure 16). 
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Figure 16: Pluripotency marker gene expression of established iPSC lines. 

qPCR shows expression of endogenous reprogramming markers oct4, sox2, klf4 and c-myc compared to a 

published iSPC control (Reinhardt et al., 2013b). Also other pluripotency markers (namely rex1, nanog, 

TDGF1, UPF1 and DNMT3B) are expressed. Expression is calculated using houskeeping gene levels of 

HMBS. N=1. 

In addition to the qPCR, the expression of stem cell markers of the established iPSC 

clones was tested by ICC. iPSC clones were stained for nanog, oct-4, SSEA4 and Tra-1-

81 along with nuclear counterstaining using DAPI. All clones show expression of the 

stained stem cell markers (Figure 17). 
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Figure 17: Stem cell marker expression of established iPSC clones. 

ICC of stem cell markers nanog, oct-4 (both shown in red) and SSEA4 and Tra-1-81 (both shown in green) 

counterstained with DAPI for nuclear staining (shown in blue) of iPSC clones. All established clones express 

indicated stem cell markers. (Scale bars, 20 µm). 

Another important characteristation step is to test for genomic aberrations. Major chromo-

somal aberrations selected during reprogramming were excluded in the established iPSC 

clones by karyotyping using G-banding (Figure 18). 
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Figure 18: G-banding of established iPSC clones. 

Exemplary G-banding of one clone per reprogrammed individual. Data shown kindly provided by the Cytoge-

netics Research Group at the Institute for Medical Genetics and Applied Genomics of the University Hospital 

Tübingen (Germany). All clones show normal karyotypes. 
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Genotyping microarray analysis of all iPSC clones was performed to exclude mutations 

caused by or during the reprogramming process. An Illumina HumanCytoSNP-12 analysis 

showed no mutations (except for the investigated c.192G>C DJ-1 mutation) in all estab-

lished iPSC clones. The genotyping was performed at the Microarray Genome Chip Facil-

ity at the Institute for Medical Genetics and Applied Genomics of the University Hospital 

Tübingen (Germany). CHIP data were analysed by ourselfes. Exemplary results of Illumina 

HumanCytoSNP-12 analysis of c.192G>C hom affected c4 are shown (Figure 19). As ex-

pected, because the index patient is male, the CHIP data show a loss for the X-chromo-

some (G/L loss) (exemplary region, Figure 19A). Interestingly, for chromosome 1, 2, 3, 4, 

6, 8, 12, 16, 22 and X a loss of heterozygousity (value 2) was detected in the CHIP analysis 

(example for chromosome 3, Figure 19B). The loss of heterozygousity of several loci was 

not only detected for the iPSC clones of the index patient, but also for both clones of the 

pre-motor diseased homozygous c.192G>C DJ-1 mutation carrier (c.192G>C hom premo-

tor diseased c1 and c.192G>C hom premotor diseased c4), as well as for both clones of 

the heterozygous mutation carrier (c.192G>C het c1 and c.192G>C het c3). The c.192G>C 

DJ-1 mutation which we investigate in this study could also be detected in the CHIP anal-

ysis as expected (shown on CHIP results as Micordeletion 1p36) (Figure 19C). 

To control the established iPSC clones for the correct genotype in terms of the inheritance 

c.192G>C DJ-1 mutation, sequencing of DJ-1 exon 3 was performed in all clones (Figure 

20). The black line in all sequencing segments marking homozygous cysteine are se-

quencing results from three iPSC clones from the index patient and two iPSC clones from 

the homozygous c.192G>C DJ-1 mutation carrying sister. The two sequencing segments 

showing heterozygousity of cysteine and guanine marked by the black line belong to the 

two clones from the heterozygous c.192G>C DJ-1 mutation carrier. The sequencing re-

sults show correct genotypes of all generated iPSC clones. 
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Figure 19: Exemplary results of Illumina HumanCytoSNP-12 analysis of c.192G>C hom affected c4. 

A) CHIP results show a male person by loss of loci of the X-chromosome. Indicated by G/L loss. B) CHIP 

detects loss of heterozygousity as here shown for chromosome 3 indicated by a value of 2 determining loss 

of heterozygousity (LOH). C) The c.192G>C DJ-1 mutation is detected by the CHIP assay (1p36 Microdele-

tion). 
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Figure 20: Sequences of DJ-1 exon 3 of all established iPSC clones. 

Sequencing of DNA of all established iPSC clones was performed. Clones were grown in feeder-free condi-

tions before cells were pelleted. DNA was isolated and sequencing reaction was performed using DJ-1 exon 3 

specific sequencing primers. Black line in each sequencing result marks the position of the c.192G>C DJ-1 

mutation. Clones from both homozygous c.192G>C DJ-1 mutation carriers show homozygous results and 

clones from heterozygous c.192G>C DJ-1 mutation carrier show heterozygous sequencing results. 
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3.5 Differentiation of iPSCs to mDA neurons 

Once the required number of iPSC clones from homozygous and heterozygous carriers of 

the c.192G>C DJ-1 mutation as well as iPSC clones from healthy controls were generated 

and enough stocks of these cells were frozen down a protocol was established in the lab 

to differentiate these iPSCs to mDA neurons. Differentiation to mDA neurons opens up the 

possibility to study PD related mechanisms in the affected cell type. 

3.5.1 Differentiated iPSCs express mDA neuronal markers 

Successful differentiation of iPSCs to mDA neurons was verified by ICC of a neuron-spe-

cific class III β-tubulin marker (Beta-III-Tubulin), a dopaminergic neuron-specific marker 

(TH), a midbrain marker (FoxA2) and counterstaining of nuclei with Hoechst 33342 or 

DAPI. Differentiated iPSCs include cells expressing Beta-III-Tubulin, TH and FoxA2 (Fig-

ure 21). 

 

Figure 21: mDA neuronal marker expression of differentiated iPSCs. 

Exemplary immunocytochemical analysis of neurons after 80 days of differentiation of iPSCs of homozygous 

c.192G>C DJ-1 mutation carrier c4 to mDA neurons. Cells were stained for Beta-III-Tubulin, a neuron-specific 

class III β-tubulin marker, shown in green and TH, a dopaminergic neuron-specific marker, shown in red and 

nuclei counterstained with Hoechst 33342 shown in blue (upper pictures) or FoxA2, a midbrain marker, shown 

in green and TH shown in red and nuclei counterstained with DAPI shown in blue (lower pictures). (Scale bars, 

20 µm). 

3.5.2 mDA neurons derived from affected patient show increased mtDNA damage 

after oxidative stress, but no compensatory increase in copy number 

As DJ-1 plays a role in mitochondrial function, the effect of the c.192G>C DJ-1 mutation 

on mtDNA copy number and damage was of particular interest. mtDNA copy number and 
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mtDNA damage cohere in terms that damaged (for example lesioned) mtDNA degrades 

depending on the damage and undamaged mtDNA gets replicated. 

To see the effect of the c.192G>C DJ-1 mutation in the cell type affected in PD, mtDNA 

copy number and damage, measured as detected lesions, where further analysed in neu-

rons differentiated applying the adapted floor plate-based protocol from iPSCs of the 

c.192G>C DJ-1 mutation carriers and unrelated healthy controls. Relative mtDNA copy 

number of mDA neurons of the index patient was reduced when compared to unrelated 

control c2 under basal conditions (Figure 22). 

 

Figure 22: Relative mtDNA copy number of mDA neurons of healthy controls and c.192G>C DJ-1 mu-

tation carriers. 

48 h before isolation of pellets, cells were grown in low glucose (1 g/l) maturation medium. Pellets were isolated 

from cells without treatment. Subsequently, DNA was isolated and stored at -20 °C until measurement was 

performed. Relative mtDNA copy number measurements were performed by the DNA Damage & Repair Ser-

vice Unit Tübingen (Germany). mtDNA copy number is calculated in relation to nuclear DNA. Figure shows 

relative mtDNA copy numbers of mDA neurons differentiated from iPSCs from patients from the c.192G>C 

DJ-1 family in comparison to healthy controls. Relative mtDNA copy number is significantly reduced in mDA 

neurons from the index patient when compared to healthy control c2. Relative mtDNA copy number is not 

significantly altered between mDA neurons from other individuals. Relative mtDNA copy number expression 

is normalised to healthy control c2. Values show mean + SD. ** p ≤ 0.01 by one-way ANOVA followed by 

Tukey's multiple comparisons test. N=3. 

Mitochondria produce ROS as a natural by-product of the electron transport chain activity. 

DJ-1 is a sensor for oxidative stress and translocates to mitochondria to quench ROS 

(Taira et al., 2004b). We wanted to investigate the effect of the c.192G>C DJ-1 mutation 
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on relative mtDNA copy number after treating mDA neurons with the mitochondrial com-

plex I inhibitor rotenone or by treating the cells directly with reactive oxygen species (H2O2), 

or both. An increase in relative mtDNA copy number was seen after treatment with rote-

none or H2O2. It is significant in all indicated mDA neurons after treating cells with both 

compounds together except for mDA neurons from the index patient (Figure 23). 

 

Figure 23: Relative mtDNAcopy number of mDA neurons after treatment with rotenone or H2O2 or both. 

48 h before isolation of pellets, cells were grown in low glucose (1 g/l) maturation medium. Pellets were isolated 

from cells without treatment, with rotenone or H2O2 treatment or both treatments together. Rotenone: 24 h 

before pellets were isolated, cells were treated with rotenone (10 µM). H2O2: H2O2 (5 mM, 5 min, 37 °C) 

treatment was applied directly before pellets were isolated. Subsequently, DNA was isolated and stored at -

20 °C until measurement was performed. Relative mtDNA copy number measurements were performed by 

the DNA Damage & Repair Service Unit Tübingen (Germany). mtDNA copy number is calculated in relation 

to nuclear DNA. A significant increase of relative mtDNA copy number was only seen after rotenone and 

subsequent H2O2 treatment in all individuals shown except for the homozygous c.192G>C DJ-1 mutation car-

rier. Generally, relative mtDNA copy number increases after treatment with rotenone or H2O2 or both in all 

individuals. Relative mtDNA copy number expression normalised to untreated condition of each indicated in-

dividual. Values show mean + SEM. * p ≤ 0.05, *** p ≤ 0.001 by two-way ANOVA. N=3. 

Using the same samples we also tested the effect of rotenone and H2O2 treatment or treat-

ment with both compounds on mtDNA damage in mDA neurons. Relative mtDNA copy 

number was increased in mtDNA damage indicated by detected lesions/10 kb after treat-

ment with rotenone or H2O2 or treatment with both compounds. A significant increase how-

ever was seen in mDA neurons from healthy control c2 and mDA neurons from the affected 

homozygous c.192G>C DJ-1 mutation carrier c4. No significant difference was seen when 

looking at basline mtDNA damage of mDA neurons from indicated individuals (Figure 24). 
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Figure 24: mtDNA damage of mDA neurons after treatment with rotenone or H2O2 or both. 

48 h before isolation of pellets, cells were grown in low glucose (1 g/l) maturation medium. Pellets were isolated 

from cells without treatment, with rotenone or H2O2 treatment or both treatments together. Rotenone: 24 h 

before pellets were isolated, cells were treated with rotenone (10 µM). H2O2: H2O2 (5 mM, 5 min, 37 °C) 

treatment was applied directly before pellets were isolated. Subsequently, DNA was isolated and stored at -

20 °C until measurement was performed. mtDNA damage measurements were performed by the DNA Dam-

age & Repair Service Unit Tübingen (Germany). mtDNA damage in mDA neurons is shown as detected le-

sions/10 kb. For relative mtDNA copy number mtDNA damage increases after treatment of the cells with rote-

none or H2O2 or both. A significant increase in detected lesion/10 kb was only seen in mDA neurons from 

healthy control c2 and mDA neurons from affected homozygous c.192G>C DJ-1 mutation carrier after treat-

ment of the cells with rotenone and H2O2 together. There was no significant difference in baseline level of 

detected lesion/10 kb in mDA neurons from indicated individuals. Values show mean + SEM. * p ≤ 0.05, ** p 

≤ 0.01 by two-way ANOVA followed by Tukey's multiple comparisons test. N=3. 

3.5.3 No changes in mitochondrial ROS level in mDA neurons of c.192G>C DJ-1 

mutation carriers 

Next, we measured mitochondrial ROS levels in mDA neurons from c.192G>C DJ-1 mu-

tation carriers and healthy controls to investigate if the c.192G>C DJ-1 mutation leads to 

changes in mitochondrial ROS levels in mDA neurons. Mitochondrial ROS production was 

measured by flow cytometry using MitoSOX™ Red (Thermo Fisher Scientific, Braun-

schweig, Germany). This dye is targeted to mitochondria and oxidised by superoxide. Mi-

tochondrial ROS measurement was performed under high (4.5 g/l) (Figure 25A) and low 

(1 g/l) glucose conditions (Figure 25B). Neither of the conditions led to significant changes 

in mitochondrial ROS levels in neurons of c.192G>C DJ-1 mutation carriers. 
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Figure 25: Mitochondrial ROS levels in neuorns of healthy controls and c.192G>C DJ-1 mutation carri-

ers. 

Neurons differentiated from iPSCs of healthy controls and c.192G>C DJ-1 mutation carriers were stained with 

2 µM MitoSOX™ Red-solution (Thermo Fisher Scientific, Braunschweig, Germany) for 20 min at 37 °C in a 

no-CO2 incubator. A) 48 h before staining, cells were kept in maturation medium. No significant changes in 

mitochondrial ROS were detected between neurons from healthy controls and neurons from c.192G>C DJ-1 

mutation carriers. B) 48 h before staining maturation medium was replaced by maturation medium with low 

(1 g/l) glucose. No significant changes in mitochondrial ROS were detected between neurons from healthy 

controls and neurons from homozygous c.192G>C DJ-1 mutation carriers. An increase in mitochondrial ROS 

was found in the heterozygous c.192G>C DJ-1 mutation carrier when compared to one of the healthy controls 

(c5). Ratios were normalised to healthy control c5. Values show mean + SEM. * p ≤ 0.05, by two-way ANOVA 

followed by Dunnett's multiple comparisons test. 

3.5.4 Increased neurite outgrowth in mDA neurons of premotor diseased homozy-

gous c.192G>C DJ-1 mutation carrier 

We sought to determine whether neurite outgrowth was altered in mDA neurons of 

c.192G>C DJ-1 mutation carriers. Outgrowth distance was measured using live cell imag-

ing by taking pictures every 5 min for 30 min. Outgrowth distance was increased in 

c.192G>C DJ-1 mutation carriers. Significantly longer distance was measured between 

healthy control and premotor diseased homozygous c.192G>C DJ-1 mutation carrier. Out-

growth distance of these mDA neurons was also significantly longer when compared to 

mDA neurons from index patient (Figure 26). 
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Figure 26: Increased neurite outgrowth in premotor diseased homozygous c.192G>C DJ-1 mutation 

carrier. 

Neurite outgrowth assays were performed using live cell imaging. 3-5 neuronal clusters were mechanically 

detached after differentiation and transfered on matrigel-coated chamber slides and incubated over night. 

Neurite outgrowth velocity was measured after 24 h. Pictures were taken every 5 min for 30 minutes and 

analysed with ImageJ plug-in MTrackJ. A) Sample picture from a neurite outgrowth experiment of mDA neu-

rons differentiated from premotor diseased c.192G>C DJ-1 mutation carrier c4. Colourful lines indicate out-

growth-length. Dots resemble different time points when picture was taken. B) Outgrowth distance of mDA 

neurons of c.192G>C DJ-1 mutation carriers is longer when compared with outgrowth distance of healthy 

control c2. Significant distance was calculated between healthy control c2 and premotor diseased c.192G>C 

DJ-1 mutation carrier and between this individual and affected c.192G>C DJ-1 mutation carrier, with latter one 

growing out less. Values show mean + SEM. * p ≤ 0.05, ** p ≤ 0.01 by two-way ANOVA followed by Tukey's 

multiple comparisons test. N=3. 

3.6 Analysis of the c.192G>C DJ-1 mutation 

The main part of this study was to analyse the effect of the c.192G>C DJ-1 mutation, 

previously reported as p.E64D mutation in DJ-1 in early onset PD (Hering et al., 2004). 

3.6.1 DJ-1 protein level varies between different human control fibroblasts and 

c.192G>C DJ-1 mutation carriers do not express DJ-1 protein 

Loss of DJ-1 function is a rare cause of familial PD. To calculate the steady state DJ-1 

protein levels in different healthy individuals in comparison to the c.192G>C DJ-1 mu-

tation carriers, samples from the respective individulas were analysed on a low per-

centage SDS-PAGE gel (4 % acrylamide). We took cell lysates from three different female 

human control individuals and from two different male human control individuals. Lysates 
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from fibroblasts of family members of the c.192G>C DJ-1 family were taken as well. Ly-

sates were taken from individual IV.9 who is a female heterozygous c.192G>C DJ-1 mu-

tation carrier, from individual III.7, who is a male heterozygous c.192G>C DJ-1 mutation 

carrier and from individual III.11 and III.13 who are both homozygous c.192G>C DJ-1 mu-

tation carriers; III.11 being female and premotor diseased and III.13 being the male index 

patient with motor symptoms (pedigree, Figure 8). 

DJ-1 proteins were examined by immunoblotting using a DJ-1 specific antibody (Figure 

27). Whereas DJ-1 protein levels vary between control fibroblasts and heterozygous 

c.192G>C DJ-1 mutation carriers, DJ-1 protein is not detectable in both homozygous 

c.192G>C DJ-1 mutation carriers. 

A) 
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Figure 27: A) Western blot and B) densitometry of Western blot of cell lysates prepared from human 

control fibroblasts and c.192G>C DJ-1 mutation carriers. 

Samples are separated in a 4 % acrylamide SDS-PAGE gel. Result shows a variation of DJ-1 level in con-

trols and heterozygous c.192G>C DJ-1 mutation carriers and results show the undetectability of DJ-1 protein 

in homozygous c.192G>C DJ-1 mutation carriers. N=1. 

After having seen different DJ-1 protein levels between different control fibroblasts we 

tested for inter-individual variations of DJ-1 protein. Therefore we took lysates from two 

male and three female human control fibroblasts, as well as lysates from the female het-

erozygous c.192G>C DJ-1 mutation carrier and the index patient at two timepoints. Sub-

sequently, samples were analysed on a low percentage SDS-PAGE gel (4 % acrylamide). 

The second lysate from the same fibroblasts was isolated after 8 hours. This Western blot 

again shows variations of DJ-1 protein level between different healthy individuals, but also 

variations can be seen between the two samples taken from the same individual, but after 

eight hours. DJ-1 protein level is lower in the heterozygous c.192G>C DJ-1 mutation car-

rier in comparison to most controls (except healthy control female D) and DJ-1 protein 

level of the index patient is under the detection level (Figure 28). 

Expression of DJ-1 protein was determined in different human cell types to exclude tissue 

specific effects and show that loss of protein occurred across all available cell types. DJ-1 

protein expression in human dermal fibroblasts of a control person and three E64D family 

members is shown (Figure 29). DJ-1 proteins were examined by immunoblotting using a 

DJ-1 specific antibody. Compared to the DJ-1 protein level of the healthy control the het-

erozygous c.192G>C DJ-1 mutation carrier shows approximately 80 % less expression in 

this case. DJ-1 protein is not detectable in both homozygous c.192G>C DJ-1 mutation 

carriers. 
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Figure 28: A) Western blot and B) densitometry of Western blot of cell lysates prepared from human 

control fibroblasts and one heterozygous and one homozygous c.192G>C DJ-1 mutation carrier. 

Samples are separated in a 4 % acrylamide SDS-PAGE gel. Result shows a fluctuation of DJ-1 level in controls 

and heterozygous c.192G>C DJ-1 mutation carrier when comparing the different individuals, but also interin-

dividual fluctuations in DJ-1 protein levels. DJ-1 protein in indicated homozygous c.192G>C DJ-1 mutation 

carrier is not detectable. (n.d. = not determined). N=1. 

Cell lysates were prepared from control fibroblasts and c.192G>C DJ-1 mutation carriers, 

in a 4 % acrylamide SDS-PAGE gel and detected with a DJ-1 specific antibody. Result 

shows a reduced level (approx. 20 %) of DJ-1 protein in a heterozygous c.192G>C DJ-1 

mutation carrier (individual III.7) and DJ-1 protein is not detectable homozygous c.192G>C 

DJ-1 mutation carriers (individual III.11 and III.13). Ratios were normalised to healthy con-

trol. N=1. 
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Figure 29: A) Western blot and B) densitometry of Western blot of DJ-1 protein level in human fibro-

blasts. 

Primary fibroblasts from patients are a useful tool but at the same time they only grow very 

slow and particularly from older people they become senescent after a certain times of 

passaging. To not loose the ability to work with fibroblasts from the c.192G>C DJ-1 family 

we immortalised fibroblasts using a lentiviral vector expressing SV40. This opened the 

opportunity to work with cells from patients that grow faster and can be used at higher 

passages. 

To test if the immortalisation had an effect on DJ-1 protein level and to see if the c.192G>C 

DJ-1 mutation still results in undetectable DJ-1 protein in immortal cells we repeated the 

Western blot for DJ-1 in this cell type which has a higher metabolic rate. Indeed DJ-1 

protein could not be detected in both homozygous c.192G>C DJ-1 mutation carriers. The 

DJ-1 protein level of the heterozygous c.192G>C DJ-1 mutation carrier was reduced to 

about 20 % of the amount seen in the healthy control (Figure 30). 
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Figure 30: A) Western blot and B) densitometry of Western blot of DJ-1 protein level in immortalised 

fibroblasts. 

Cell lysates prepared from immortalised fibroblasts of a healthy control and indicated c.192G>C DJ-1 mutation 

carriers were prepared and separated in a 4 % acrylamide SDS-PAGE gel and detected with a DJ-1 specific 

antibody. Result shows an appoximatly 65 % reduced level of DJ-1 protein in the heterozygous c.192G>C DJ-

1 mutation carrier and DJ-1 protein is not detectable homozygous c.192G>C DJ-1 mutation carriers. Ratios 

were normalised to healthy control female A. N=1. 

The generation of iPSCs from fibroblasts of the c.192G>C DJ-1 mutation carriers allowed 

us to also determine DJ-1 protein expression in pluripotent cells as well as cells differenti-

ated from the iPSCs, to give insight into whether loss of DJ-1 protein in mutation carriers 

is tissue specific or not. DJ-1 protein level in iPSCs was measured by Western blot similar 

to the Western blots performed before with a DJ-1 specific antibody. As seen in the fibro-

blasts both homozygous c.192G>C DJ-1 mutation carriers do not express DJ-1 protein. 

DJ-1 protein level is reduced in the heterozygous c.192G>C DJ-1 mutation carrier in com-

parison to DJ-1 protein levels in both healthy controls (Figure 31). 
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Figure 31: A) Western blot and B) densitometry of Western blot of DJ-1 protein level in iPSCs from 

c.192G>C DJ-1 mutation carriers and healthy controls. 

Cell lysates prepared from iPSCs of a healthy control and indicated c.192G>C DJ-1 mutation carriers were 

prepared and separated in a 4 % acrylamide SDS-PAGE gel and detected with a DJ-1 specific antibody. DJ-

1 protein expression is reduced in heterozygous c.192G>C DJ-1 mutation carrier when compared to healthy 

controls. DJ-1 protein is not detectable in both homozygous c.192G>C DJ-1 mutation carriers. Ratios were 

normalised to healthy control 2. N=1. 

Next, we were interested in determining DJ-1 protein level in mDA neurons, the cells that 

die in PD patients. Therefore, DJ-1 protein level in mDA neurons differentiated from iPSCs 

were assessed as previously shown (Figure 32). 

Once more DJ-1 protein level was not detectable in both indicated homozygous c.192G>C 

DJ-1 mutation carriers. DJ-1 protein level was slightly reduced in heterozygous c.192G>C 

DJ-1 mutation carrier when compared to healthy control (Figure 32). 



3 Results  
 

92 

A)                                                                B) 

 

 

 

 

 

 

 

 

 

Figure 32: A) Western blot and B) densitometry of Western blot of DJ-1 protein level in mDA neurons  

from c.192G>C DJ-1 mutation carriers and healthy controls. 

Cell lysates prepared from mDA neurons of a healthy control and indicated c.192G>C DJ-1 mutation carri-

ers were prepared and separated in a 4 % acrylamide SDS-PAGE gel and detected with a DJ-1 specific 

antibody. DJ-1 protein expression is approximately 10 % reduced in heterozygous c.192G>C DJ-1 mutation 

carrier when compared to healthy controls. DJ-1 protein is not detectable in both homozygous c.192G>C 

DJ-1 mutation carriers. Ratios were normalised to healthy control 2. N=1. 

iPSC clones were also used to generate smNPCs. Indicated clones of smNPCs were 

tested for DJ-1 protein levels as well. DJ-1 level varies between healthy controls and het-

erozygous c.192G>C DJ-1 mutation carrier with one control clone showing higher DJ-1 

protein levels compared to the other two. DJ-1 protein level is under the detection level in 

smNPCs generated from both iPSC clones of the index patient (Figure 33). 
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Figure 33: A) Western blot and B) densitometry of Western blot of DJ-1 protein level in smNPCs from 

c.192G>C DJ-1 mutation carriers and healthy controls. 

Cell lysates prepared from smNPCs of indicated healthy controls and indicated clones from c.192G>C DJ-1 

mutation carriers were prepared and separated in a 4 % acrylamide SDS-PAGE gel and detected with a DJ-1 

specific antibody. DJ-1 protein expression varies between the two different controls. DJ-1 level of heterozy-

gous c.192G>C DJ-1 mutation carrier is approximately the same as healthy control 5. DJ-1 protein is not 

detectable in both homozygous c.192G>C DJ-1 mutation carriers. Ratios were normalised to healthy control 

5. N=1. 

3.6.2 The c.192G>C DJ-1 mutation causes skipping of DJ-1 exon 3 

The findings on DJ-1 protein level in c.192G>C DJ-1 mutation carriers raised interest in 

the underlying effect of the mutation. As a first quick step, the in silico software Muta-

tionTaster (Schwarz et al., 2010) was used in order to evaluate the disease causing po-

tential of the c.192G>C DJ-1 mutation. The predicted effect of the analysed mutation was 

amino acid sequence changed, protein feature (might be) affected and interestingly splice 

site changes (Figure 34). The latter one being the most interesting one for us, as we do 

not see DJ-1 protein expression in any of the analysed cell types carrying the c.192G>C 

DJ-1 mutation homozygously. 
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Figure 34: In silico evaluation of the disease causing potential of c.192G>C DJ-1 mutation using Muta-

tionTaster software. 

DJ-1 ensembl transcript ENST00000493678 was used to evaltuate disease causing potential of the c.192G>C 

DJ-1 mutation via MutationTaster software (Schwarz et al., 2010). Software predicted: aminoacid sequence 

changed, known disease mutation, protein features (might be) affected and splice site changes. 

To determine the reason for the absence of DJ-1 protein in homozygous c.192G>C DJ-1 

mutation carriers and to test for predicted splice site changes, the RNA in c.192G>C DJ-1 

mutation carriers was in the focus. In a first experiment, RNA from patient derived fibro-

blasts was isolated, transcribed into cDNA and amplified DJ-1 by PCR. Agarose gel re-

vealed a reduced length of c.192G>C DJ-1 carrying cDNA and a normal size band as well 

as the short band in the heterozygous c.192G>C carrying cDNA. cDNA from a healthy 

control served as positive control for correct length (Figure 35). 
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Figure 35: DJ-1 amplification of cDNA of indicated patient derived fibroblasts of c.192G>C DJ-1 muta-

tion carriers and healthy control. 

Fibroblasts were pelleted, RNA was extracted from the cell pellet and cDNA was transcribed. DJ-1 was am-

plified by PCR and subsequently run on an agarose gel. DNA gel analysis showed reduced mRNA length in 

both homozygous c.192G>C DJ-1 mutation carriers. Bands corresponding to both reduced and normal length 

mRNA were visible in the heterozygous c.192G>C DJ-1 mutation carrier. 

Subsequently, these results led us to sequence the amplified cDNA to find out which se-

quence segment was missing in the cDNA of c.192G>C DJ-1 mutation carriers. Sequenc-

ing result shows that the end of DJ-1 exon 2 is directly followed by the beginning of exon 4. 

Complete sequence of DJ-1 exon 3 was missing or skipped (Figure 36). 

 

Figure 36: Sequencing result of cDNA from homozygous c.192G>C DJ-1 mutation carrier after DJ-1 

amplification. 

Fibroblasts were pelleted, RNA was extracted from the cell pellet and cDNA was transcribed. DJ-1 was am-

plified by PCR. Subsequently, sanger sequencing was performed. Results show absence of complete DJ-1 

exon 3 in cDNA from affected homozygous c.192G>C DJ-1 mutation carrier. 

After obtaining these results, we wanted to validate the finding of skipping of DJ-1 exon 3 

in c.192G>C DJ-1 mutation carrying cells. Therefore, DNA of the index patient and a 

healthy control was given to the Molecular Genetics Laboratory of Prof. Bernd Wissinger 

of the Institute for Ophthalmic Research (Tübingen, Germany). They designed and per-

formed a minigene assay to assess the effect of DJ-1 exon 3 on splicing: 

In the minigene assay we tested wt exon 3 of the control and mutant exon 3 (carrying the 

c.192G>C DJ-1 mutation) from the index patient. At the same time minigene constructs 

were tested where the wt exon 3 was mutated to carry the c.192G>C mutation and the 
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corrected exon from the index patient now carrying the wt allel. Agarose gel electrophore-

sis (Figure 37) revealed that cultures transfected with pSPL3 constructs with the mutant 

c.192 C-allele yielded rtPCR products that were clearly smaller than products from cultures 

transfected with the wildtype c.192 G-allele, indicating abnormal splicing/skipping of the 

mutant minigene construct. Subsequent sequencing showed that rtPCR products derived 

from the transfection with the mutant c.192 C-allele lacked exon 3 of the DJ1 gene. 

 

Figure 37: rtPCR result of minigene assay of wt and c.192G>C DJ-1 mutation carrying exon. 

Minigene transient transfection assay showing the effect of wt exon 3 and mutant DJ-1 exon 3 carrying the 

c.192G>C mutation. Two prominent products are seen on agarose gel, with the shorter band representing a 

PCR product lacking DJ-1 exon 3 (lane 3 and 4) and the longer band a product including DJ-1 exon 3 (lane 2 

and 5). No template control (NTC). Size standard: 100 bp ladder (Invitrogen GmbH, Karslruhe, Germany). 

The c.192G>C DJ-1 mutation in exon 3 which does not lead to a premature stop codon 

and which does not cause a frameshift in the RNA caused the skipping of exon 3 in the 

minigene assay. In addition to the correction of the mutation in the patient exon 3 and the 

mutating of exon 3 to carry the c.192G>C DJ-1 mutation from a healthy control in the 

minigene, sequencing of the entire DJ-1 locus of the patient’s DNA was performed. This 

was done in order to have a second confirmation that the c.192G>C DJ-1 mutation suffices 

to cause skipping of exon 3 in c.192G>C DJ-1 mutation carriers and other sequence vari-

ants can be excluded. The NGS of pooled long distance PCR products and gap closure at 

two GC-rich regions by Sanger sequencing was performed by the Molecular Genetics La-

boratory of Prof. Bernd Wissinger of the Institute for Ophthalmic Research (Tübingen, Ger-

many). All exons and introns plus additional upstream and downstream sequences of DJ-

1 from all individuals were sequenced with 99.8 % of the target region being covered 

>50 fold. Apart from the c.192G>C DJ-1 mutation which was called in the sample of the 



Results 3  
 
 

97 

index patient just three additional rare variants were found. None of these variants overlap 

with other known non-coding transcripts or putative regulatory sequences. 

The minigene assay showed, in an artificial system, that the c.192G>C DJ-1 mutation 

which lies at the end of exon 3 leads to skipping of the respective exon. Skipping of this 

exon does not lead to a frameshift (Figure 38) or a premature stop codon. 

Figure 38: Sequence of DJ-1 exon 3. 

End of sequence of exon 2 (blue and purple), followed sequence of DJ-1 exon 3 (red and black), followed by 

beginning of sequence of exon 4 (blue and purple). Triplets are highlighted in different colours to show that 

skipping of this exon does not cause a frameshift. 

To make sure that DJ-1 protein was not detectable in the patient dereived cells because it 

was absent and not because the antibody used binds to an aminoacid encoded in exon 3 

we tested another DJ-1 specific antibody. Exemplary Western blot experiment of immor-

talised fibroblasts where we used the two different DJ-1 antibodies (Figure 39). Scheme 

shows binding sites of the two different antibodies used showing that their binding sites 

are not in exon 3 (Figure 57). 

 

Figure 39: Western blot to test two different AB to detect DJ-1 protein in homozygous c.192G>C DJ-1 

mutation carriers. 

Cell lysates prepared from immortalised fibroblasts of a healthy control and indicated c.192G>C DJ-1 mutation 

carriers were prepared and separated in a 4 % acrylamide SDS-PAGE gel and detected with two different DJ-

1 specific antibodies. Left side shows blot probed with DJ-1 (D29E5) XP® mAB (Cell Signaling Technology, 

Cambridge, UK) outlined in green. Right side shows blot probed with Mous anti-DJ-1 (37-8800) mAB (Invitro-

gen GmbH, Karslruhe, Germany) outlined in blue. 

Next, we wanted to verify our minigene assay results in the different cell types available 

from the c.192G>C DJ-1 mutation carriers. Therefore, cells were grown under standard 

conditions, harvested, RNA was extracted and transcribed into cDNA. Quantitative qPCR 

was performed using cDNA and two different pairs of primers for amplification. One primer 

Sequence of DJ-1 exon 3: 

GCTGGG/ATTAAGGTCACCGTTGCAGGCCTGGCTGGAAAAGACCCAGTACAGTGTAGC

CGTGATGTGGTCATTTGTCCTGATGCCAGCCTTGAAGATGCAAAAAAAGAG/GGACCA 
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pair to detect correctly spliced DJ-1 as well as cDNA lacking exon 3 and another primerpair 

where one primer is complementary with exon 2 and exon 3, leading to only correctly 

spliced (with exon 3) DJ-1 cDNA detected by qPCR. qPCR was performed with cDNA from 

immortalised fibroblasts (Figure 40), iPSCs, mDA neurons and smNPCs. 

qPCR results generated with primers that detect normal and misspliced DJ-1 cDNA show 

a reduction which is not significant of DJ-1 RNA expression in all c.192G>C DJ-1 mutation 

carriers (Figure 40A). Reduction is even higher when looking at normal spliced RNA where 

we see a significant reduction of DJ-1 RNA expression between the healthy control and 

the heterozygous c.192G>C DJ-1 mutation carrier. Even lower levels in both indicated 

homozygous c.192G>C DJ-1 mutation carriers were seen. RNA expression of DJ-1 is sig-

nificantly reduced in both homozygous c.192G>C DJ-1 mutation carriers when compared 

to healthy control or heterozygous carrier of the same mutation (Figure 40B). 

 

A)                                                                 B) 

 

 

 

 

 

 

 

 

Figure 40: qPCR of DJ-1 RNA expression level with and without exon 3 in immortalised fibroblasts. 

Cell pellets were collected, RNA was isolated and transcribed into cDNA. cDNA was amplified by qPCR using 

one primerpair that amplifies DJ-1 cDNA with and without exon 3 (A) and one primerpair amplifying DJ-1 cDNA 

only in the presence of exon 3 (B). A) DJ-1 RNA expression is about 40 % reduced in c.192G>C DJ-1 mutation 

carriers. B) Correctly spliced full length DJ-1 mRNA is around 30 % reduced in heterozygous c.192G>C DJ-1 

mutation carrier and about 80 % in homozygous c.192G>C DJ-1 mutation carriers. Ratios were normalised to 

healthy control. Values show mean + SEM. ** p ≤ 0.01, **** p ≤ 0.0001 by one-way ANOVA followed by Tukey's 

multiple comparisons test. N=3. 

When looking at the qPCR results in iPSCs derived from these fibroblasts one sees a 

reduction in RNA expression of DJ-1 with and without skipping of exon 3 of the c.192G>C 
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DJ-1 mutation carriers. With two clones (homozygous premotor diseased c4 and homozy-

gous affected c4) being particularly low (Figure 41A). The results generated with primers 

that only detect DJ-1 cDNA when exon 3 is present all cDNAs from homozygous carriers 

are practically not detectable. The two indicated heterozygous clones vary with one show-

ing the same RNA expression level as the healthy control and the other one showing a 

50 % decrease in correctly spliced DJ-1 RNA (Figure 41B). 

A)                                                              B) 

 

 

 

 

 

 

 

 

Figure 41: qPCR of DJ-1 RNA expression level with and without exon 3 in iPSCs. 

Cell pellets of indicated iPSC clones were collected, RNA was isolated and transcribed into cDNA. cDNA was 

amplified by qPCR using one primerpair that amplifies DJ-1 cDNA with and without exon 3 (A) and one pri-

merpair amplifying DJ-1 cDNA only in the presence of exon 3 (B). A) DJ-1 RNA expression is reduced in two 

indicated homozygous c.192G>C DJ-1 mutation carrying clones from affected and premotor diseased individ-

uals. B) Correctly spliced full length DJ-1 gene expression is reduced to 50 % in one heterozygous c.192G>C 

DJ-1 mutation carrying clone in comparison to healthy control and strongly reduced in all homozygous 

c.192G>C DJ-1 mutation carriers. Ratios were normalised to healthy control 2. N=1  

The qPCR results of DJ-1 RNA expression of mDA neurons in terms of skipping of exon 3 

were of particular interest as mDA neurons are most vulnerable to degeneration in PD. 

Looking at the DJ-1 RNA expression results of qPCR done with pellets from mDA neurons 

of healthy control and indicated c.192G>C DJ-1 mutation carriers using primers that detect 

DJ-1 cDNA with and without exon 3 shows no differences between analysed individuals. 

Results of qPCR using primers that only detect DJ-1 RNA expression when exon 3 is 

present show a significant reduction of DJ-1 RNA expression in all c.192G>C DJ-1 muta-

tion carriers in comparison to healthy control. RNA is also significantly reduced in both 

homozygous mutation carriers when compared to expression in heterozygous c.192G>C 

DJ-1 mutation carrier (Figure 42). 
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Figure 42: qPCR of DJ-1 RNA expression level with and without exon 3 in mDA neurons. 

Cell pellets of indicated mDA neurons differentiated from indicated iPSC clones were collected, RNA was 

isolated and transcribed into cDNA. cDNA was amplified by qPCR using one primer pair that amplifies DJ-1 

cDNA with and without exon 3 (A) and one primer pair amplifying DJ-1 cDNA only in the presence of exon 3 

(B). A) No significant changes in total DJ-1 gene expression of correctly and misspliced DJ-1 RNA. B) gene 

expression of DJ-1 mRNA with exon 3 is nearly absent in heterozygous c.192G>C DJ-1 mutation carries to 

about 45 % in comparison to indicated healthy control. DJ-1 gene expression of both indicated homozygous 

c.192G>C DJ-1 mutation carriers is significantly reduced to healthy control as well as to heterozygous 

c.192G>C DJ-1 mutation carrier as well and virtually not detectable. Ratios were normalised to healthy control 

2. Values show mean + SEM. * p ≤ 0.05, ** p ≤ 0.01, **** p ≤ 0.0001 by one-way ANOVA followed by Tukey's 

multiple comparisons test. N=3. 

Next, we calculated the RNA expression of smNPCs generated from the iPSC clones to 

have a second neuronal model to detect c.192G>C DJ-1 RNA expression. When looking 

at the results of the qPCR where a primer pair was used that detects DJ-1 cDNA with and 

without exon 3, levels in all indicated smNPCs was the same except for healthy control 2 

where we saw a reduced RNA expression (Figure 43A). When primers were used that only 

detect DJ-1 cDNA when exon 3 is integrated a reduction is shown in both clones from the 

index patient as well as in healthy control 2. smNPCs from the heterozygous c.192G>C 

DJ-1 mutation carrier showed a reduction of approximately 70 % when compared to 

healthy control 5 (Figure 43B). 
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Figure 43: qPCR of DJ-1 RNA level with and without exon 3 in smNPCs. 

Cell pellets of indicated smNPCs generated from indicated iPSC clones were collected, RNA was isolated and 

transcribed into cDNA. cDNA was amplified by qPCR using one primer pair that amplifies DJ-1 cDNA with and 

without exon 3 (A) and one primer pair amplifying DJ-1 cDNA only in the presence of exon 3 (B). A) gene 

expression is about the same in all indicated smNPCs except for healthy control 2 where DJ-1 gene expression 

is reduced in comparison to other indicated lines. B) gene expression of DJ-1 with exon 3 is reduced in 

smNPCs from both homozygous c.192G>C DJ-1 mutation carrying clones as well as in healthy control 2 when 

compared to healthy control 5 and heterozygous c.192G>C DJ-1 mutation carrier. Ratios were normalised to 

healthy control 5. N=1.  

The expression analysis by qPCR showed that expression of correctly spliced DJ-1 RNA 

was reduced or even absent in analysed cell types of c.192G>C DJ-1 mutation carriers 

when compared to controls. Missplicing occurs in the allel carrying the c.192G>C DJ-1 

mutation. Missplicing leads to complete exclusion of DJ-1 exon 3 and shorter mRNA. 

Western blot analysis showed absence of DJ-1 protein in homozygous c.192G>C DJ-1 

mutation carriers. 

3.6.3 Genetically modified U1 rescues skipping of exon 3 

Further experiments aimed at analysing why the c.192G>C base exchange leads to mis-

splicing of DJ-1 pre-mRNA and skipping of exon 3 during the splicing process. Hypothe-

sised mechanism of splicing of pre-mRNA carrying the c.192G>C DJ-1 mutation is shown 

(Figure 44). The c.192G>C DJ-1 mutation lies at the end of exon 3 and hence in the splice 

donor recognition site. If the splice donor sequence does not get recognised as such due 

to the mutation, the splice acceptor site will also not be recognised. During the splicing 

process, U1 snRNP and U2 snRNP will recognise the splice donor sequence of exon 2 

and the splice acceptor sequence of exon 4 respectively, surrounding exon 3, but not 

exon 3 itself. This will finally lead to skipping of DJ-1 exon 3 and a shortened DJ-1 mRNA 

(Figure 44). 
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Figure 44: Scheme of splicing of c.192G>C DJ-1 mutation carrying pre-mRNA. 

Upper lane shows DJ-1 exon 3 carrying the c.192G>C mutation, which is the last base of exon 3 (red) and 

therefore lies in the splice donor site. During the splicing process of the pre-mRNA, exon 3 does not get 

recognised as exon as the c.192G>C DJ-1 mutation changes the splice donor site which, no longer gets 

recognised as such. Due to that, the splice acceptor does not get recognised either. Finally, this leads to 

skipping of exon 3. 

This hypothesis was strengthened by findings from Carmel and colleagues (2004) (Carmel 

et al., 2004) showing the frequency and conservation of human splice sites by analysing 

nearly 50,000 sequences. Frequencies of bases in splice donor sites were analysed in 

that study. A modified figure from that study and shows the frequencies of the individual 

bases in the situation when the first two bases of the intron are ‘GT’ (Figure 45). The size 

of the letter indicates the frequency of the respective base. The bigger the letter the more 

frequent. A vertical bar also shows a highly frequent base in the respective position and a 

colon less common ones. According to this figure the last base of the analysed exons is a 

guanine, whereas cytosine is found least often. For the c>192G>C DJ-1 mutation that 

means that in the wt situation, DJ-1 exon 3 ends by the most common base: guanine, 

whereas in mutation carriers the exon ends with the most unusual base: cytosine. 

As the c.192G>C DJ-1 mutation lies in the splice donor site normally it would get recog-

nised by the U1 snRNP which is initiating the formation of the spliceosome. U1 snRNP 

recognises the 5' splice site through base pairing at the 5’ end. Of note, a hundred percent 

match is not necessary. In case of DJ-1 exon 3 in the wt situation there are already four 

mismatches between U1 snRNA and the splice donor site (Figure 46A). The presence of 

the c.192G>C DJ-1 mutation leads to five mismatches between U1 and the splice donor 

site (Figure 46B). The aim of this part of the project was to test whether this additional 
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mismatch causes U1 snRNP to not recognise the splice donor site hence leading to skip-

ping of exon 3 (Figure 44). 

 

Figure 45: Frequencies of potential basepairs of U1 snRNA in human. 

Potential base pairs of U1 snRNA and 5’ splice site in human. In the study they used 49,778 human U2-

dependent 5’ sequences, which were used with the canonical ‘GT’ nucleotides as first bases of the intron. 

Potential base pairs with the appropriate nucleotide of U1 snRNA are marked either by a vertical bar for highly 

frequent basepairs (>0.7) or by a colon for less common ones (<0.7). Size of the letters indicates frequencies. 

Guanine as last base of an exon therefore is very frequent whereas cytosine is the least often one. Wt DJ-1 

exon 3 ends with a guanine, in carriers of the c.192G>C mutation DJ-1 exon 3 ends with a cytosine. 

Figure modified from (Carmel et al., 2004). 

A)                                                                   B) 

 

Figure 46: Binding of U1 snRNP to wt DJ-1 exon 3 and c.192G>C mutant DJ-1 exon 3. 

U1 snRNP binds to the pre-mRNA by base pairing to initiate the formation of the spliceosome. A) Binding of 

U1 snRNP to wt DJ-1 exon 3. Binding takes place in the presence of 4 mismatches. B) Not binding of 

U1 snRNP to c.192G>C mutant DJ-1 exon 3. The c.192G>C DJ-1 mutation leads to the fifth mismatch between 

U1 snRNA and the pre-mRNA therefore U1 snRNP does not bind to c.192G>C mutant DJ-1 exon 3. 

To test this hypothesis, one base of the U1 snRNA was modified in the sense that it 

matches the c.192G>C mutation in DJ-1 exon 3, namely C>G were exchanged as indi-

cated in cyan (Figure 47). A vector containing the U1 snRNA was a kind gift from Prof. 

Francisco E. Baralle and Marco Baralle, PhD of the International Centre for Genetic Engi-

neering and Biotechnology (ICGEB) in Trieste, Italy. 
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Figure 47: Binding of C>G mutant U1 snRNP to c.192G>C mutant DJ-1 exon 3. 

By mutagenesis, a C>G base exchange (indicated in cyan) was introduced in the U1 snRNA so that it matches 

the c.192G>C DJ-1 mutation and hence binds to c.192G>C mutant DJ-1 exon 3. 

In a splicing reaction where C>G mutant U1 snRNP is present and recognises the splice 

donor sequence of c.192G>C mutant DJ-1 exon 3 skipping of this exon does not take 

place. 

 

Figure 48: Scheme of splicing of c.192G>C DJ-1 mutation carrying DJ-1 exon 3 pre-mRNA in the pres-

ence of c.192G>C U1 snRNP. 

Upper lane shows DJ-1 exon 3 carrying the c.192G>C mutation indicated in red as last base of DJ-1 exon 3 

in the splice donor sequence. In a splicing reaction where c.192G>C U1 snRNP is present, shown in pink in 

the second lane, c.192G>C mutant DJ-1 exon 3 gets recognised. U1 snRNP binds to the splice donor se-

quence and U2 snRNP (purple) to the splice acceptor sequence surrounding c.192G>C mutant DJ-1 exon 3. 

Consequently, splicing leads to the inclusion of c.192G>C mutation carrying DJ-1 exon 3 (third lane). mRNA 

will presumably be translated to c.192G>C DJ-1 protein (fourth lane). 

In order to test the hypothesis, the previously performed minigene experiment was re-

peated and a plasmid expressing c.192G>C U1 snRNA was contransfected. This experi-

ment was carried out by the Molecular Genetics Laboratory of Prof. Bernd Wissinger of 

the Institute for Ophthalmic Research (Tübingen, Germany). 
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The minigene construct expressing wt exon 3 resulted in the inclusion of the exon 3 when 

the minigene assay was performed with the minigene construct alone, when wt U1 snRNP 

was cotransfected and when c.192G>C U1 snRNA was cotransfected, this is shown by 

the long prominent bands on the agarose gel picture in Figure 49 lane 2 – 4. When the 

experiment was performed with a minigene construct with the c.192G>C mutation carrying 

DJ-1 exon 3 alone or cotransfected with wt U1 snRNA, a short prominent band can be 

seen on lane 5 and 6 of the agarose gel as rtPCR result. This means that in these cases 

mutant exon 3 was skipped. When this minigene construct was cotransfected together 

with c.192G>C U1 snRNA in the minigene assay, however, two products were amplified 

by rtPCR, displayed by the short band, indicating skipping of exon 3, and the long band 

indicating the presence of exon 3. This is shown in lane 7 on the agarose gel picture in 

(Figure 49). 
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Figure 49: rtPCR result of minigene assay of wt and c.192G>C DJ-1 mutation carrying exon cotrans-

fected with wt U1 snRNA or c.192G>C U1 snRNA. 

Minigene transient transfection assay showing the effect of wt exon 3 and mutant DJ-1 exon 3 carrying the 

c.192G>C mutation cotransfected with wt U1 snRNA or c.192G>C U1 snRNA. Wt exon 3 in all three indicated 

and tested conditions leads to the inclusion of exon 3, resulting in a long band in the rtPCR (lane 2, 3 and 4). 

rtPCR results of c.192G>C mutation carrying exon 3 mingene without cotransfection and after cotransfection 

with wt U1 snRNA lead to a short band, representing skipping of exon 3 (lane 5 and 6). Two prominent prod-

ucts, the short and the long band, are seen on agarose gel, when c.192G>C exon 3 minigene was cotrans-

fected with c.192G>C U1 snRNA (lane 7). No template control (NTC). Size standard: 100 bp ladder (Invitrogen 

GmbH, Karslruhe, Germany). 

As c.192G>C U1 snRNA was able to rescue skipping of c.192G>C DJ-1 mutation carrying 

exon 3 in the minigene assay in HEK cells, the next step was to test the effect of c.192G>C 

U1 snRNA in patient-derived cells. 

Immortalised fibroblasts of the index patient carrying the c.192G>C DJ-1 mutation were 

electroporated with empty vector, wt U1 snRNA or c.192G>C U1 snRNA, respectively. 

Electroporation with wt U1 snRNA caused a significant increase in DJ-1 RNA expression 

of normal RNA and RNA lacking DJ-1 exon 3 in comparision to electroporation with empty 

vector or c.192G>C U1 snRNA. c.192G>C U1 snRNA also caused higher RNA levels in 

comparison to empty vector (Figure 50A). When only looking at correctly spliced DJ-1 RNA 

(including exon 3), more RNA expression was seen after electroporation with wt U1 snRNA 



Results 3  
 
 

107 

and even more expression after electroporation with c.192G>C U1 snRNA, compared to 

electroporation with empty vector (Figure 50B). 

A)                                                                    B) 

 

 

 

 

 

 

C) 

 

 

 

 

 

 

Figure 50: Transient transfection of wt and c.192G>C U1 snRNA in immortalised fibroblasts of the index 

patient. 

6 µg of empty vector, wt U1 snRNA or c.192G>C U1 snRNA respectively were electroporated into immortalised 

fibroblasts of the index patient carrying the c.192G>C DJ-1 mutation using the Amaxa nucleofector I (Lonza 

Group Ltd, Basel, CH). 24 h after electroporation cell pellets were collected, RNA was isolated and transcribed 

into cDNA. cDNA was amplified by qPCR using one primer pair that amplifies DJ-1 cDNA with and without 

exon 3 (A) and one primer pair amplifying DJ-1 cDNA only in the presence of exon 3 (B). A) A significantly 

higher RNA expression was measured after electroporation of wt U1 snRNA. Expression was significantly 

higher in comparison to RNA expression after electroporation with empty vector and c.192G>C U1 snRNA. B) 

An increase in RNA expression of DJ-1 RNA including exon 3 was measured after electroporation with wt 

U1 snRNA in comparsion to electroporation with empty vector. The increase was even higher after electro-

poration with c.192G>C U1 snRNA. Ratios were normalised to empty vector treatment. Values show mean + 

SEM. * p ≤ 0.05, ** p ≤ 0.01 by one-way ANOVA followed by Tukey's multiple comparisons test. N=3. C) DJ-

1 was amplified by rtPCR from cDNA from homozygous c.192G>C DJ-1 mutation carrier after transient elec-

troporation with empty vector control (lane 2), wt U1 snRNA (lane 3) or c.192G>C U1 snRNA (lane 4). Lane 1 

shows marker and lane 5 NTC. Rescue of splicing of DJ-1 exon 3 indicated by longer band can only be seen 

after electroporation with c.192G>C U1 snRNA. 
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3.6.3.1 The c.192G>C DJ-1 mutation leads to a change in predicted SR protein bind-

ing 

The strength of a splice site also depends on splicing enhancers and silencers. To assess 

if the c.192G>C DJ-1 mutation leads to a change of these cis-acting elements we used an 

in silico approach to predict ESE with the ESEfinder (2001-2006, Cold Spring Harbor La-

boratory) (Cartegni et al., 2003, Smith et al., 2006). 

Another program that looks for splicing enhancers is the RESCUE-ESE Web Serve 

(http://genes.mit.edu/burgelab/rescue-ese/) which however resulted in nothing in the area 

of the splice site. 

ESEfinder prediction showed an increase of the SRSF1 and a loss of SRSF2 binding with 

the mutation (Figure 51). 

A)                                                                   B) 

 

 

 

 

Figure 51: ESE sequence prediction for binding of SR proteins. 

ESE sequence prediction was performed using the wt or the c.192G>C mutant sequence of DJ-1 and the 

software ESEfinder (2001-2006, Cold Spring Harbor Laboratory) (Cartegni et al., 2003, Smith et al., 2006). 

Binding to SRSF1 (SF2/ASF) is shown in red, to SRSF1 (IgM-BRCA1) in pink, to SRSF2 in blue, to SRSF5 in 

green and to SRSF6 in yellow. A) Shows predicted binding of SR proteins to the wt seqeunce and B) predicted 

binding of SR proteins to the c.192G>C mutant sequence. 

3.6.4 Pharmacological rescue of skipping of c.192G>C mutant DJ-1 exon 3 

After having identified the effect of the c.192G>C DJ-1 mutation and being able to genet-

ically correct skipping of DJ-1 exon 3 by introducing c.192G>C U1 snRNP, the main aim 

is to find a pharmacological substance that is able to correct splicing of c.192G>C mutant 

DJ-1 pre-mRNA. Two individuals of the c.192G>C DJ-1 family are carrying the c.192G>C 

DJ-1 mutation. The index patient suffers from PD and his sister did not display motor 

symptoms at the last examination. Hence a major aim is to find a substance that could be 

given to homozygous c.192G>C DJ-1 mutation carriers as a treatment. 

A similar effect of exon skipping is described for FD where a homozygous mutation in 

intron 20 leads to skipping of exon 20. The mutation in intron 20 lies in the splice donor 

site analogically to the c.192G>C DJ-1 mutation. Studies about this IVS20+6T>C mutation 
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in the IKBKAP gene in FD showed that a compound called kinetin improved splicing and 

wt IKBKAP gene expression in patients with this mutation (Axelrod et al., 2011). The chem-

ical name of kinetin is 6-furfurylaminopurin, it is a plant cytokinin. 

To test whether kinetin was able to improve splicing of the c.192G>C DJ-1 mutation, a 

compound treatment in immortalised fibroblasts and smNPCs of the index patient carrying 

the c.192G>C DJ-1 mutation was performed. Cells were treated with 100 µM kinetin for 

24 h. As it has been shown that for splicing correction of the IKAPKB that after 1 h correct 

splicing was seen, it was maximal after 8 h and maintained for at least 72 h without kinetin 

replenishment. To be in that range and at the maximum we choose 24 h for our experi-

ments. In the same study they showed the highest splicing correction at 200 µM kinetin 

(Slaugenhaupt et al., 2004). As results from the MTT reduction assay as an indicator for 

toxicity showed a decrease in the MTT reduction ability at 200 µM we decided to test our 

cells using 100 µM kinetin. 

Subsequently, cells were harvested and RNA was isolated. Afterwards, cDNA was tran-

scribed and qPCR perfomed with a primer pair that detects DJ-1 cDNA with and without 

exon 3 and a primer pair which only detects DJ-1 cDNA in the presence of exon 3. 

To determine the metabolic activity of cells after treatment with compounds a MTT reduc-

tion assay was performed using different concentrations of kinetin as an indirect evidence 

for potential toxicity. As an example the results of a reduction assay was performed with 

immortalised fibroblasts (Figure 52). Using this data we choose a treatment with kinetin of 

100 µM for 24 h for the immortalised fibroblasts. 

Treatment with kinetin did not lead to changes in RNA expression of DJ-1 mRNA with and 

without exon 3. RNA expression was reduced in c.192G>C mutation carrier in comparison 

to the healthy control (Figure 53A). Also RNA expression of correctly spliced DJ-1 RNA 

did not increase upon kinetin treatment both in the healthy control and in the index patient. 

Again, RNA expression was strongly reduced in cells from the c.192G>C DJ-1 mutation 

carrier (Figure 53B). 
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Figure 52: MTT reduction ability after treatment with different concentrations of kinetin. 

MTT reduction ability was measured using absorbance after treatment with indicated concentrations of kinetin. 

Test was performed for immortalised fibroblasts of healthy control and homozygous c.192G>C DJ-1 mutation 

carrying index patient. Absorbance was measured after A) 24 h of treatment with kinetin and after B) 48 h of 

compound treatment. 
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Figure 53: Kinetin treatment in immortalised fibroblasts. 

Cells were kept under standard conditions. Medium was aspirated and fresh medium was added which was 

supplemented with 100 µM kinetin. After 24 h cells were collected and RNA was isolated and transcribed into 

cDNA. cDNA was amplified by qPCR using one primer pair that amplifies DJ-1 cDNA with and without exon 3 

(A) and one primer pair amplifying DJ-1 cDNA only in the presence of exon 3 (B). A) No significant changes 

in the amount of gene expression after kinetin treatment were seen. Gene expression is lower in c.192G>C 

DJ-1 mutation carrier when compared to healthy control. B) No significant changes in the amount of gene 

expression after kinetin treatment were seen. Gene expression is much lower in c.192G>C DJ-1 mutation 

carrier when compared to healthy control. Values show mean + SEM. N=3. 

Gene expression in smNPCs of DJ-1 mRNA with and without exon 3 did not increase after 

24 h of kinetin treatment. In healthy control 2, gene expression declined upon kinetin treat-

ment (Figure 54A). When looking at gene expression of DJ-1 mRNA which is correctly 

spliced and carries exon 3, gene expression was reduced in both indicated healthy con-

trols and increased in smNPCs of the homozygous c.192G>C DJ-1 mutation carrier. Both, 

increase and decrease were, however, not significant (Figure 54B). 
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Figure 54: Kinetin treatment in smNPCs. 

Cells were kept under standard conditions. Medium was aspirated and fresh medium was added which was 

supplemented with 100 µM kinetin. After 24 h cells were collected and RNA was isolated and transcribed into 

cDNA. cDNA was amplified by qPCR using one primer pair that amplifies DJ-1 cDNA with and without exon 3 

(A) and one primer pair amplifying DJ-1 cDNA only in the presence of exon 3 (B). A) No significant changes 

in the amount of gene expression after kinetin treatment were seen. Gene expression of DJ-1 is reduced in 

healthy control 2 upon kinetin treatment. B) No significant changes in the amount of gene expression after 

kinetin treatment were seen. Gene expression is reduced in c.192G>C DJ-1 mutation carrier when compared 

to indicated healthy controls. A reduction of gene expression is seen after kinetin treatment in healthy control 

2. Values show mean + SEM. N=3. 

In contrast to IVS20+6T>C IKBKAP mutation carriers, kinetin treatment in cells from 

c.192G>C DJ-1 mutation carriers did not increase correct splicing without skipping of an 

exon and therefore, other compounds that were in any way involved with splicing were 

tested. Compounds together with references are listed in Table 37. 
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Table 37: List of compounds used for exon skipping rescue. Table includes compound, gene tested, 

diesease and reference where it was applied. 

Compound Gene tested Disease Reference 

2iP IKBKAP FD (Slaugenhaupt et al., 2004) 

Aclarubicin 
SMN2 
NF1 

Spinal muscular atropy 
Neurofibromatosis type 1 

(Andreassi et al., 2001) 
(Pros et al., 2010) 

Benzyladenine IKBKAP FD (Slaugenhaupt et al., 2004) 

Cucurmin SMN2 Spinal muscular atropy (Sakla and Lorson, 2008) 

Dexamethasone ATM Ataxia telangiectasia (Menotta et al., 2012) 

Kinetin 
IKBKAP 
NF1 

FD 
Neurofibromatosis type 1 

(Slaugenhaupt et al., 2004) 
(Pros et al., 2010) 

Resveratrol GAA Glycogen storage disease type II (Dardis et al., 2014) 

Sodium butyrate 
SMN2 
NF1 

Spinal muscular atropy 
Neurofibromatosis type 1 

(Chang et al., 2001) 
(Pros et al., 2010) 

Valproic acid 
SMN2 
NF1 

Spinal muscular atropy 
Neurofibromatosis type 1 

(Sumner et al., 2003) 
(Pros et al., 2010) 

Zeatin IKBKAP FD (Slaugenhaupt et al., 2004) 

 

Compounds tested at two different concentrations (10 µM and 25 µM) (Figure 55). qPCR 

results of gene expression of DJ-1 including and excluding exon 3 are shown (Figure 55A). 

Gene expression increased upon treatment with the solvent of the compounds, DMSO. 

Treatment with both concentrations of aclarubicin increased gene expression further. DJ-

1 gene expression in immortalised fibroblasts of the healthy control was in the same range 

as indicated. When looking at gene expression of correctly spliced DJ-1 pre-mRNA, mean-

ing mRNA including exon 3, DMSO treatment did not increase mRNA expression. Gene 

expression of indicated baseline and treated cells of homozygous c.192G>C DJ-1 muta-

tion carrier was reduced when compared to gene expression in healthy control. 25 µM 

benzyladenine treatment more than doubled the expression of the gene including DJ-1 

exon 3. All other indicated compounds did not alter gene expression (Figure 55B). 
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Figure 55: Compound treatment in immortalised fibroblasts. 

Cells were kept under standard conditions. Medium was aspirated and fresh medium was added which was 

supplemented with 10 µM of the indicated compound or 25 µM of the indicated compound. DMSO treatment 

was used to control for the effect of the solvent. After 24 h cells were collected and RNA was isolated and 

transcribed into cDNA. cDNA was amplified by qPCR using one primer pair that amplifies DJ-1 cDNA with and 

without exon 3 (A) and one primer pair amplifying DJ-1 cDNA only in the presence of exon 3 (B). A) DJ-1 gene  

expression increases slightly upon DMSO treatment. Treatment with aclarubicin leads to 4-fold increase in 

gene expression of DJ-1 gene with and without exon 3. Gene expression level is in the range of gene expres-

sion of cells treated with indicated compounds. B) DJ-1 gene expression of mRNA including exon 3 does not 

vary after DMSO treatment. mRNA level is much lower in cells from homozygous c.192G>C DJ-1 mutation 

carrier with and without indicated treatments when compared to healthy control. mRNA more than doubles 

though upon treatment with 25 µM benzyladenine. 
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4 Discussion and Perspectives 

PD is a chronic, degenerative neurological disorder of the substantia nigra pars compacta 

in the CNS. The definite cause of PD is unknown, although it is assumed that a combina-

tion of genetic and environmental factors cause PD. The single only yet established risk 

factor for the disease is advancing age and as people get older thanks to medical ad-

vances, the overall worldwide prevalence of PD is increasing (Reeve et al., 2014). Cur-

rently, there is no cure for PD and the underlying pathological mechanism by which neu-

rons die is not known. Familial PD cases open up the opportunity to identify genes involved 

in neurodegeneration. Studying these genes allows to shed light on pathways leading to 

dysfunction and subsequent cell death of nigrostriatal neurons which thereby enables to 

identify or develop novel neuroprotective therapeutic approaches. Here, iPSCs allow for 

the first time to study the in the living patients affected cell type in vitro. Furthermore, iPSCs 

have the potential to support the development of patient-based disease-modifying treat-

ments for PD as they can serve as progressive, predictive models of PD for drug screens. 

Moreover iPSCs can help to study the underlying biological mechanisms associated with 

PD directly in the affected cell type. We made use of patient derived cells of family mem-

bers of the c.192G>C DJ-1 family to further investigate the role of the DJ-1 gene (PARK7) 

for PD. Homozygous loss-of-function mutations in DJ-1 are a rare cause of familial early-

onset PD. Also DJ-1 provides a mechanistic link between PD and mitochondrial dysfunc-

tion as mechanisms involved in neurodegeneration include oxidative stress, dysfunctional 

mitochondria and impaired autophagy and they all depend on proper DJ-1 function or have 

been shown to be altered by dysfunction or absence of DJ-1 protein (Abbott et al., 2003, 

Blackinton et al., 2009, Krebiehl et al., 2010, Meulener et al., 2006). 

4.1 Generation of iPSCs from c.192G>C DJ-1 mutation carrying fibro-

blasts and successful differentiation to neurons 

The work of Yamanka and colleagues (Takahashi and Yamanaka, 2006) on the generation 

of iPSCs that was awarded with the Nobel Prize in 2012, allowed a new type of biomedical 

research of human diseases with patient derived cells. It allows to generate an unlimited 

source of patient- and at the same time disease-specific pluripotent cells to study a human 

disease, but is also a promising new tool for replacement therapy. Since their publication 

on how human somatic cells can be reprogrammed into iPSCs using retroviruses 

(Takahashi et al., 2007), this method has been applied successfully by many different labs 

to model diseases in the disease relevant cell types. Some of the first ones are named 

here (Dimos et al., 2008, Ebert et al., 2009, Park et al., 2008, Soldner et al., 2009). To 

study neurological disorders protocols have been established and applied to differentiate 
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the respective types of neurons as effectively as possible. Amongst these first studies are 

also some of the above-mentioned ones. The studies were on amyotrophic lateral sclero-

sis (Dimos et al., 2008) spinal muscular atropy (Ebert et al., 2009) and FD (Lee et al., 

2009) with the latter ones showing first neuronal phenotypes. The first study on PD was 

from (Soldner et al., 2009) where mDA neurons were generated from iPSCs of sporadic 

PD patients. No phenotypes, however, were found in this study. The first genetic forms of 

PD were studied in iPSCs generated from fibroblasts of PINK1, LRRK2 and SNCA muta-

tion carriers which were subsequently differentiated to mDA neurons (Seibler et al., 2011, 

Devine et al., 2011, Nguyen et al., 2011). In these studies, the phenotypes were compared 

to normal subjects. 

In the present study, we measured mitochondrial ROS levels in mDA neurons of the 

c.192G>C DJ-1 mutation carriers. Unlike our findings in MEF cells of DJ-1 knockout mice, 

where we saw a significant increase in mitochondrial ROS formation (Krebiehl et al., 2010), 

mitochondrial ROS formation was not altered in iPSC derived mDA neurons. This might 

be due to subtle effects that we do not see an increase. One crucial limitation for research 

of especially late onset human diseases is to detect subtle phenotypes. This issue, how-

ever, can be solved using iPSCs as well. Studies can be performed under genetically de-

fined conditions using isogenic pairs. Different approaches have already been published 

making use of different strategies to perform gene corrections and generate isogenic pairs 

of iPSCs for PD research. These include ZFNs for SNCA and LRRK2 (Reinhardt et al., 

2013b, Soldner et al., 2011) or TALEN established by (Boch et al., 2009, Moscou and 

Bogdanove, 2009) and used in iPSCs by (Hockemeyer et al., 2011). The most recent ap-

proch is to use the CRISPR/CAS9 system to correct disease-causing mutations (Ding et 

al., 2013, Mali et al., 2013). 

In the present study, we were successful in generating iPSCs from the index patient, the 

premotor diseased sister of the index patient, who is also a carrier of the c.192G>C DJ-1 

mutation and a brother of the two who is a heterozygous carrier of the same mutation. 

Generated lines are shown in Table 36. Reprogramming was performed using the four 

‘Yamanaka factors’ with a retroviral delivery system. Using this system leads to an inte-

gration of the reprogramming factors which can be a disadvantgage for projects that are 

aimed at cellular replacement therapy. In the meantime systems have been established 

effectively to overcome the integration by excising integrated reprogramming factors with 

loxP sites that serve as substrates for Cre-mediated excision or by using non-integrating 

reprogramming strategies such as episomal vectors, Sendai virus, adenovirus or miRNA 

for example [reviewed in (Rao and Malik, 2012)]. For the present study, however, a system 

without integration is not mandatory. All genertated iPSC clones from skin fibroblasts of 
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the three c.192G>C DJ-1 mutation carriers were characterised to assess their pluripotent 

status and to make sure that the harsh reprogramming procedure using retroviral vectors 

did not lead to chromosomal aberrations or mutations. 

Silencing of all four reprogramming factors indicating that the generated iPSCs are effi-

ciently reprogrammed and do not depend on the continuous expression of the transgenes 

for self-renewal was analysed (Figure 15). The change from dermal fibroblasts to iPSCs 

having upregulated ‘stemness’ genes was tested by RNA expression of undifferentiated 

ESC markers (Figure 16) as well as the actual expression of the stem cell markers nanog, 

oct-4, SSEA4 and Tra-1-81 on protein level (Figure 17). To make sure that chromosomal 

integrity was retained and not altered by the retroviral vectors G-banding was performed. 

iPSCs showed a normal karyotype of 46XY or 46XX (Figure 18). Smaller mutations that 

are under the detection level of G-banding could be excluded by genotyping with the Illu-

mina HumanCytoSNP-12 (example, Figure 19). Interestingly, for all generated lines of in-

dividuals of the same family a loss of heterozygousity was detected in the CHIP analysis 

on several different chormosomes. These results could be tied back to the consanguinuity 

of the family. 

To double-check the generated clones in terms of the c.192G>C DJ-1 mutation to be in-

vestigated in the present study DNA sequencing of the respective region was performed. 

All clones show the respective homozygous or heterozygous genotype at position c.192 

of the DJ-1 gene (Figure 20). 

Germ layer differentiation is done in collaboration with the Northwestern University (Chi-

cago, IL, USA) at the Department of Neurology of Dimitri Kranic, MD, PhD. 

iPSC are pluripotent and that allows to differentiate them into any cell type of interest. To 

study PD, the cell type of interest are neurons, in particular mDA neurons. To investigate 

the effect of the c.192G>C DJ-1 mutation we applied two different protocols to differentiate 

neurons: 

1) mDA neurons were differentiated using an adapted floor plate-based protocol from 

(Kriks et al., 2011, Chambers et al., 2009, Nguyen et al., 2011, Reinhardt et al., 

2013b) 

2) smNPCs were differentiated following the smNPC derivation protocol (Reinhardt et 

al., 2013a). 

Both protocols have their advantages and disadvantages depending on the issue to be 

addressed one can be more useful or the other. 
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To address and analyse the functional effects of loss of DJ-1 protein in different patient-

derived cells carrying the c.192G>C DJ-1 mutation, we applied the floor plate-based pro-

tocol. The floor plate-based strategy to differentiate human mDA neurons from iPSCs is a 

robust and well established protocol to model neuronal phenotypes in PD, showed for 

example for the LRRK2 G2019S mutation in (Reinhardt et al., 2013b). It gives rise to func-

tionally active neurons with a high efficiency to engraft in vivo (Kriks et al., 2011). However, 

applying this protocol is time intensive as it starts with the differentiation to neurons fol-

lowed by subsequent maturation, also involves intense hands-on time for frequent splitting 

events. Moreover, it is rather costly due to the big amount of recombinant growth factors 

that are needed. Finally, for this protocol it is very important to stick to a precise timing and 

keep the same concentrations of supplements in each differentiation to have efficient and 

comparable, reproducible differentiations and less variability between different rounds of 

differentiations. 

Because of the previously mentioned downsides of the floor plate-based protocol, for con-

tinuing the compound screen in a patient-derived ex vivo neuronal model future studies 

will be performed applying a newer protocol by (Reinhardt et al., 2013a) which describes 

the generation of neural progenitor cells using only small molecules. smNPCs are immortal 

and therefore can be expanded easily and further differentiated into all of the neuronal 

subtypes. It is a faster and less expensive (e.g. fewer amounts of expensive growth factors 

needed) protocol and can be very useful for example for high throughput screens where 

large amounts of cells are needed. On the contrary, these cells are less established and 

the efficiency to derive mDA from these precursors needs still to be determined. 

For this study, we applied the first strategy of the adapted floor plate-based protocol, to 

determine effects in mDA neurons, but also the second one using small molecules to as-

certain effects of the c.192G>C DJ-1 mutation in smNPCs. 

To characterise the cell population after applying the adapted floor plate-based protocol 

differentiated cells were stained by ICC using a Beta-III-Tubulin antibody, which is a neu-

ron-specific class III β-tubulin marker, a TH antibody, which is a dopaminergic neuron-

specific marker and a FoxA2 antibody, which is a midbrain marker (Figure 21). The com-

bination of these markers showed approximately 20 % mDA neurons after differentiation 

and at least 20 days of maturation. 
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4.2 The c.192G>C DJ-1 mutation leads to mitochondrial phenotypes in 

patient derived cells 

4.2.1 Reduced mitochondrial branching and length in fibroblasts of the homozy-

gous c.192G>C DJ-1 mutation carriers 

In the first study showing data of fibroblasts of the index patient and a heterozygous 

c.192G>C DJ-1 mutation carrier mitochondrial morphology was analysed and reduced 

form factor and aspect ratio were found in the mutation carriers (Krebiehl et al., 2010). In 

the present study, we did the same analysis, but looking at the sister of the index patient 

who is a homozygous c.192G>C DJ-1 mutation carrier as well. The only symptom appar-

ent in the sister is depression, but so far, she has not been suffering from motor symptoms. 

This analysis helps to obtain additional information about the prodromal stage of PD. In-

cluding primary fibroblasts from the sister may aid to define, whether mitochondrial mor-

phology may serve as an early biomarker - even before symptoms occur, to identify indi-

viduals at risk. 

We could confirm the previous results. We saw a reduced length of mitochondria indicated 

by a reduced aspect ratio as well as less branching of mitochondria, indicated by a reduc-

tion of the form factor in both homozygous DJ-1 mutation carriers (Figure 9B and C). See-

ing the same effect in a second homozygous c.192G>C DJ-1 mutation carrier and taken 

together with our findings that we saw a loss of DJ-1 protein in both homozygous 

c.192G>C DJ-1 mutation carriers we suggest that DJ-1 plays a role in fission and fusion 

events. Particularily, the significant morphological changes within the c.192G>C DJ-1 fam-

ily between the heterozygous and both homozygous c.192G>C DJ-1 mutation carriers im-

ply the requirement of a certain level of wt DJ-1 protein for proper mitochondrial morphol-

ogy. 

As an abnormal function of the mitochondria can result in an imbalance of mitochondrial 

fission and fusion processes we furthermore investigated mitochondrial function by meas-

uring MMP which is an important parameter for mitochondrial function. These results could 

help to futher decipher the more precise effect of the c.192G>C DJ-1 mutation and DJ-1 

itself on disease specific mitochondrial phenotypes. 

4.2.2 The c.192G>C DJ-1 mutation leads to a reduced MMP in fibroblasts of the 

homozygous mutation carrier 

To better understand the morphological findings of mitochondria in the patient derived cells 

we had a look at mitochondrial function as well. In the above-mentioned study by (Krebiehl 
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et al., 2010). MEF cells from DJ-1 knockout mice revealed a reduced MMP when com-

pared to wt littermates. In the present study, we measured the MMP through reduced 

TMRE fluorescence intensity by live microscopy of the patient derived fibroblasts. In line 

with the findings in MEFs from knockout mice, we found a reduced MMP in both homozy-

gous c.192G>C DJ-1 mutation carriers when compared to a healthy control (Figure 10). 

Although, we did not achieve the fluorescence intensity of the healthy control, which can 

be explained by a reduced efficiency of the transfection, the reduction could be restored 

significantly when reintroducing wt DJ-1 protein in the patient’s fibroblasts by transfection 

in comparison to untransfected patient derived fibroblasts even though the transfection 

efficiency is reduced in fibroblasts (30 %). This allows the assumption that indeed the lack 

of wt DJ-1 was causative for the decreased MMP (Figure 10B and C). Under normal con-

ditions, DJ-1 protects cells against oxidative stress-related death by translocating to the 

mitochondria and maintaining mitochondrial complex I activity (Bonifati, 2003, Hayashi et 

al., 2009, Yokota et al., 2003, Zhang et al., 2005). We suggest that in our cells mitochon-

drial function is impaired due to the loss of the oxidative stress sensor DJ-1 and therefore 

the MMP is reduced. Over time, this could have an impact on the viability of the cells and 

lead to death of nigral dopaminergic neurons in PD, because these cells have a high load 

of ROS due to dopamine itself and its metabolism and therefore are more prone to suffer 

from oxidative stress in the situation of lacking a sensor for this type of stress (Dias et al., 

2013, Lotharius and Brundin, 2002, Sayre et al., 2008). Moreover, dopaminergic neurons 

of the substantia nigra may be particularly susceptible as in mice they were shown to have 

a reduced mitochondrial mass (Liang et al., 2007). 

To understand the exact influence of DJ-1 on these mechanisms and functions, however, 

needs further investigation. Our patient derived cells including the iPSCs that we gener-

ated together with the established protocols for different neuronal cultures constitute ex-

cellent knockout model systems to further dissect the role of DJ-1 function through rein-

troducing DJ-1 and even offer the opportunity to perform isogenic control experiments. 

4.2.3 Consequences of oxidative stress in mDA neurons derived from affected 

c.192G>C DJ-1 mutation carriers 

We used the adapted floor plate-based protocol to differentiate iPSCs and further analyse 

the effect of the c.192G>C DJ-1 mutation on mtDNA damage and copy number as well as 

mitochondrial ROS levels. 

We also aimed to address mtDNA changes in neurons of c.192G>C DJ-1 mutation carri-

ers. Mitochondria bare high concentrations of ROS because of the oxidative phosphoryla-

tion. Therefore, mtDNA is exposed to high levels of ROS which can lead to alterations of 
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mtDNA (Wei, 1998). The fact that mtDNA is less condensed than nuclear DNA makes 

mtDNA more vulnerable (Valko et al., 2004, Yakes and Van Houten, 1997). mtDNA dam-

age can be causative for mitochondrial dysfunction as reviewed for PD by (Schapira, 

2008). Also the copy number of mtDNA was shown to compensate for increases in energy 

demand or reduced mitochondrial function, therefore we also had a look at the copy num-

ber (Sahin and Depinho, 2010). 

It has previously been described that after the progress of reprogramming of hiPSCs the 

mitochondria display hESC-like features (Prigione and Cortopassi, 2007). During the re-

programming process the metabolism of the cells changes from somatic oxidative phos-

phorylation to glycolysis. This happens at one time with the upregulation of glycolytic 

genes and downregulation of mitochondrial respiratory chain complexes, consequently 

leading to a reduced mtDNA copy number (Facucho-Oliveira et al., 2007, Folmes et al., 

2011, Prigione et al., 2010, Suhr et al., 2010, Varum et al., 2011). After differentiation to 

mDA neurons, we expected higher mtDNA copy numbers, due to the above-mentioned 

effect that neurons should change to more mitochondrial respiration again, thus leading to 

higher mtDNA copy numbers. Previous findings also show that high levels of mtDNA de-

letions are found in cells with high energy demands like the brain (Corral-Debrinski et al., 

1992, Cortopassi and Arnheim, 1992, Cortopassi and Wong, 1999). 

To analyse differences between mutation carriers and controls, we performed experiments 

with iPSC, which were differentiated to mDA neurons following the floor plate-based pro-

tocol. To increase mitochondrial stress to challenge mild phenotypes, we measured the 

mtDNA under basal conditions, after rotenone treatment, after H2O2 treatment and after 

treatment with both stressors. The LORD-Q method we applied, uses a rapid high-fidelity 

DNA polymerase and a second-generation fluorescent DNA dye, therefore it is a sensitive 

method to detect DNA-damage and to quantify DNA lesions in mitochondrial and nuclear 

probes of up to 4-kb length. 

We saw a significantly reduced mtDNA copy number in the index patient when compared 

to one of the indicated healthy controls even under baseline conditions (Figure 22). Fur-

thermore, when looking at the effect of different mitochondrial stressors in the analysed 

individuals we saw a significant increase of mtDNA copy number in all individuals except 

for the index patient after treatment with the stressors (Figure 23). Interestingly, the index 

patient showed the biggest increase in detected mtDNA lesions after applying both stress-

ors (rotenone and H2O2) (Figure 24). This is in line with findings in human post mortem 

brains of idiopathic PD patients (and aged individuals) where an increased number of 

mtDNA deletions has been observed in dopaminergic neurons of the substatia nigra pars 

compacta (Bender et al., 2006). Taken together, these results suggest that, as described 
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before in mutant mice carrying mtDNA deletions, human neurons compensate for the high 

levels of mtDNA deletions by increasing their mtDNA copy number (Perier et al., 2013). 

The same has been shown for PINK1 mutant cells, where unlike in the DJ-1-cells of the 

index patient, the neurons react to the mitochondrial dysfunction by compensating through 

increasing the mtDNA copy number (Seibler et al., 2011). Healthy individuals as well as 

the homozygous c.192G>C DJ-1 mutation carrier without motor symptoms apply the pre-

viously discussed compensation mechanism whereas the neurons of the index patient do 

not show a significant increase of mtDNA copies. 

As mentioned before, one reason for mtDNA damage are mitochondrial ROS this fact and 

previous findings by our group that in MEF cells of DJ-1 knockout mice mitochondrial ROS 

formation is significantly increased (Krebiehl et al., 2010) led us to the idea that mitochon-

drial ROS could be increased in patient-derived neurons. To test if this holds true in human 

iPSCs after floor plate-based neuronal differentiation from c.192G>C DJ-1 mutation carri-

ers, we stained the differentiated cells with MitoSOX™ Red-solution and subsequently 

measured them by flow cytometry. We kept the cells under basal conditions with normal 

high glucose medium when we measured mitochondrial ROS for the first time, as changes 

in mitochondrial ROS have been seen under basal conditions in mice before. As the results 

in mice could not be confirmed, we decided to challenge the neurons and grow them under 

low glucose conditions. The low glucose condition should force cells to produce ATP more 

through mitochondrial respiration and as mitochondrial respiration (mainly complex I and 

III) is the major source of mitochondrial ROS (Sugioka et al., 1988, Turrens and Boveris, 

1980), we expected to be able to have better conditions to detect subtle changes in mito-

chondrial ROS levels in the cells carrying the c.192G>C DJ-1 mutation. It has to be men-

tioned, however, that in general the main metabolism of neurons to produce ATP, due to 

the high energy demand of the brain, is respiration, because mitochondrial respiration pro-

duces much more ATP than glycolysis (Sokoloff et al., 1977). Higher glucose levels make 

the glycolysis more possible than lower glucose levels. Generally speaking, the more res-

piration, the more mitochondrial ROS are produced and this makes cells more prone to 

cell death in conditions of lack of compensatory mechanisms. 

We did not see significant changes in mitochondrial ROS levels when comparing homo-

zygous c.192G>C DJ-1 mutation carrying cells to healthy individuals either under high or 

low glucose conditions. Under low glucose conditions the heterozygous c.192G>C DJ-1 

mutation carrying cells showed an increase in mitochondrial ROS in comparison to one of 

the healthy controls (Figure 25). The measurement could be repeated applying even 

harsher treatment to further challenge the cells. Another aspect could be that even though 

neurons were maturated until day 100, the age of the neurons was not advanced enough, 
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there one could apply artificial ageing e.g. using progerin to see age-related phenotypes 

as described by (Miller et al., 2013). Measurements were performed with around 100 days 

old differentiations and therefore neuronal cultures were already sticky and clumpy and 

we observed differences between independent differentiations. Therefore, flow cytometry 

should be repeated with more uniform cultures. For this reason, mitochondrial ROS meas-

urement using the same technique in smNPCs is currently underway. Our current findings, 

however, did not show any alterations in mitochondrial ROS levels in homozygous 

c.192G>C DJ-1 mutation carriers when compared to controls. This is unexpected due to 

the fact that DJ-1 is a sensor for oxidative stress and plays a crucial role in this regard 

(Canet-Aviles et al., 2004). To exclude inter-individuel variation experiments can be per-

formed making use isogenic lines, which are currently being produced. 

4.2.4 Increased outgrowth in mDA neurons derived from premotor diseased fe-

male c.192G>C DJ-1 mutation carrier 

We saw a significant increase of outgrowth velocity in the neurons derived from the pre-

motor diseased homozygous c.192G>C DJ-1 mutation carrier when compared to the indi-

cated healthy control. Neurons from the index patient, however, showed no changes in the 

outgrowth properties (Figure 26). 

The LRRK2 G2019S mutation is associated with neurite shortening (MacLeod et al., 2006, 

Reinhardt et al., 2013b, Sanchez-Danes et al., 2012) and also in DJ-1-deficient mice a 

declined dendritic complexity has been observed (Sheng et al., 2013). Therefore, we an-

alysed neurite outgrowth in neurons from c.192G>C DJ-1 mutation carriers differentiated 

with the adapted floor plate-based protocol. However, our results were opposed to the 

observed phenotypes of declined dendritic complexity in DJ-1-deficient mice. 

To be able to see the real DJ-1-dependent effect, the experiment has to be repeated with 

isogenic pairs, thereby excluding possible inter-individual differences and looking at the 

c.192G>C DJ-1 mutation as a sole modifying genetic factor. 

4.3 Analysis of mitochondrial transport in primary hippocampal neu-

ronal cultures of DJ-1 -/- mice 

The DJ-1 -/- null mutant mice (Pham et al., 2010) which were used for the generation of 

hippocampal primary neuron cultures in this work show a decrease in dopamine-producing 

neurons in the ventral tegmental area (~6% reduction), but no reduction of dopaminergic 

neurons in the substantia nigra. DJ-1 -/- mice do not show an age-related neuropathology 

like it is seen in humans, suggesting a compensatory or protective mechanism in these 

animals (Andres-Mateos et al., 2007, Chandran et al., 2008, Goldberg et al., 2005, Kim et 
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al., 2005b, Pham et al., 2010). Interestingly enough, they seem to compensate for the loss 

of DJ-1 by upregulating mitochondrial respiratory enzyme activities in order to protect the 

cells against oxidative stress (Pham et al., 2010). Under basal conditions, DJ-1 is required 

for cytoprotection, it localises to mitochondria under oxidative stress conditions thereby 

maintaining complex I activity (Hayashi et al., 2009, Blackinton et al., 2009, Canet-Aviles 

et al., 2004, Junn et al., 2009, Kim et al., 2005b, Lev et al., 2008, Mullett and Hinkle, 2011).  

We were interested in seeing whether there is an effect of loss of DJ-1 on mitochondrial 

transport, which we analysed in DJ-1 -/- mice (Pham et al., 2010) in comparison to wt 

controls, to further shed light on the relation between mitochondrial dynamics and synaptic 

function and transport and also to mitophagy. 

We found that in DJ-1 -/- mice, more mitochondria displaced compared to mitochondria in 

neurons of the wt mice. Interestingly, when analysing the number of mitochondria that 

displaced over distances over 1 µm (to exclude stationary flickering of mitochondria in the 

calcultation of the displacement), the mitochondria of the wt mice displaced further dis-

taces. 

Loss of DJ-1 did not lead to changes of mitochondrial transport velocity in the DJ-1 -/- 

mice. 

Defective mitochondrial transport has been shown for PD, including rodent models (Kim-

Han et al., 2011, Sterky et al., 2011). Another PD gene, PINK1, is associated with correct 

axonal tansport of mitochondria. As in rat primary hippocampal neuronal cultures the lat-

eral movement of mitochondria was inhibited by PINK1 overexpression (Yu et al., 2011). 

We suggest for our results that upon loss of DJ-1 function, the individual mitochondrial 

transport could be less efficient in terms of distances that mitochondria are transported 

along an axon. Neurons could try to compensate this by displacing more mitochondria. 

Another option is that the mitochondria of the DJ-1 -/- mice are dysfunctional and therefore 

undergo local mitophagy instead of being transported to the soma by retrograde transport. 

This has been shown for ROS-induced depolarisation of neuronal mitochondria, with the 

suggestion that this effect prevents from further spreading oxidative damage (Ashrafi et 

al., 2014, Wang et al., 2012b). 

However, one limitation of our analysis is that the direction of mitochondrial movement is 

not analysed. By distinguishing anterograde and retrograde transport one can obtain func-

tional information on mitochodnria.  
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4.4 Splicing defect leads to loss of DJ-1 protein in patient derived cells 

4.4.1 No DJ-1 protein in different cell types derived from c.192G>C DJ-1 mutation 

carrying patients 

The major result of this study was the elucidation of the underlying mechanism of the single 

base exchange of G to C at chromosomal position 192 in the DJ-1 gene (PARK7). The 

effect of this PD associated mutation has not been known until today. Other PD causing 

mutations in DJ-1 lead to protein instability, loss of protein, frameshift, splicing defect, al-

tered activity or an altered transcript (Table 2). The c.192G>C DJ-1 mutation has as yet 

been described to cause a p.E64D amino acid exchange in the DJ-1 protein and that this 

might cause an impairment of binding of DJ-1 to other proteins (Hering et al., 2004). The 

analysis of two mutant fibroblasts of carriers of this mutation allowed us to show a loss of 

DJ-1 protein in different cell types generated from the patient derived fibroblasts. The first 

observation of loss of DJ-1 protein was made in fibroblasts of both homozygous c.192G>C 

DJ-1 mutation carriers, interestingly, cells from the heterozygous brother showed a reduc-

tion of the DJ-1 protein level when compared to a not related control (Figure 29). As ex-

pected, immortalisation of these patient derived fibroblasts did not change the absence of 

DJ-1 protein in the homozygous c.192G>C DJ-1 mutation carriers and the reduced level 

of protein in the cells of the heterozygous carrier of this mutation (Figure 30). Tissue-spe-

cific differences of protein expression of mutant c.192G>C DJ-1 were excluded by detect-

ing the protein level in iPSCs generated from the patient derived fibroblasts (Figure 31). 

Again, a reduction of DJ-1 protein is seen in iPSCs of the heterozygous c.192G>C DJ-1 

mutation carrier when compared to two different control lines. DJ-1 protein levels were 

also analysed in the in PD affected cell type. Like before, in neuronal precursor cells as 

well as neurons differentiated with the adapted floor plate-based protocol no DJ-1 protein 

could be detected in both homozygous c.192G>C DJ-1 mutation carriers (Figure 32 and 

Figure 33). 

To find out the minimal amount of DJ-1 protein needed for healthy functioning, we ana-

lysed DJ-1 protein level of fibroblast controls of our biobank. We addressed the question 

whether levels of heterozygous mutation carriers are the same as the ones in controls to 

see how much protein is sufficient to not be affected. At the same time, we got a better 

understanding of average DJ-1 levels in different individuals by analysing inter- and intra-

individual variations of DJ-1 protein expression of fibroblasts from healthy controls stored 

in our biobank. When compared to control subjects, both heterozygous c.192G>C DJ-1 

mutation carriers showed DJ-1 protein levels in the range of levels seen in healthy controls 
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(Figure 27). This led us to the hypothesis that interventions leading to incomplete restora-

tion of DJ-1 levels (compared to high expressing controls) could be sufficient in the homo-

zygous c.192G>C DJ-1 mutation carriers to have a detectable phenotypic improvement. 

Except for one control, no intra-individual variation was observed militating for different 

protein levels in different individuals, but rather constant levels of single individuals when 

looking at a time frame of eight hours (Figure 28). 

4.4.2 The c.192G>C DJ-1 mutation causes skipping of exon 3 

Next, we sought to determine the reason for the absence of protein in homozygous 

c.192G>C DJ-1 mutation carriers. An in silico analysis using the MutationTaster software 

predicted splice site changes caused by the c.192G>C DJ-1 mutation (Figure 34). Follow-

ing on, in the course of literature mining we found a publication where another in silico tool 

was used to predict mutations causing missplicing. Two PD mutations, including the 

c.192G>C DJ-1 mutation, were predicted to cause exon skipping by the software. Further-

more, through literature mining we found a publication looking at frequencies of potential 

bases in human genomes at the exon-intron boarder (Carmel et al., 2004). This study 

reports that guanine, which is the base present at the end of exon 3 in wt DJ-1, is the most 

common base at the end of an exon with a frequency of over 70 %. Whereas cytosine, 

which is the base in case of the c.192G>C DJ-1 mutation, is the least frequent one of all 

four bases at the end of an exon (Figure 45). 

Therefore, we decided to repeat the minigene assay, using patient DNA for the generation 

of the minigene constructs. Furthermore, we generated isogenic pairs for the minigene 

assay to be sure that it is the c.192G>C DJ-1 mutation that causes the exon skipping and 

not any other unknown variant in the patients DNA. Therefore, the c.192G>C DJ-1 muta-

tion in the exon 3 from the patient was corrected by IVM and the c.192G>C DJ-1 mutation 

was introduced in the DJ-1 exon 3 of a healthy control by the same method. We could 

show that in both cases where exon 3 carried the c.192G>C DJ-1 mutation the complete 

mutation carrying exon was skipped in the minigene (Figure 37). Based on this we could 

confirm the previous results from (Sahashi et al., 2007). 

Indeed, a literature mining revealed an in silico study suggesting a missplicing due to the 

c.192G>C DJ-1 mutation (Sahashi et al., 2007). However, the analysis in this study was 

performed with a mutated exon of a healthy individual and not with patient derived material. 

To double check that the index patient does not carry another variant that could affect 

splicing in any way, we applied NGS of the entire sequence of the PARK7 locus. No puta-

tive functional/disease relevant variants were found. 
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Sequencing DJ-1 of the cDNA from the index patient approved in in vivo material, the 

results of the artificial minigene assay, which was performed in HEK cells, that the 

c.192G>C DJ-1 mutation causes skipping of complete exon 3. The respective sequencing 

segment showing the transition of exon 2 to exon 4 is shown (Figure 36). Subsequently, 

we examined whether the skipping of exon 3 leads to a frameshift or even a premature 

stop codon, which is not the case. Exon 2 ends with a triplet, similarly to exon 3, which 

also ends with a triplet (Figure 38) therefore, the c.192G>C DJ-1 mutation does not lead 

to a frameshift nor to a premature stop codon. 

The agarose gel, where DJ-1 was amplified from cDNA from fibroblasts of both indicated 

homozygous and the heterozygous c.192G>C DJ-1 mutation carrier shows the skipping 

of exon 3 in the presence of the c.192G>C DJ-1 mutation (Figure 35). 

By qPCR, using primers binding in exon 2 and exon 3, we could show that the c.192G>C 

DJ-1 mutation leads to skipping of exon 3 in all analysed patient derived cell types: immor-

talised fibroblasts (Figure 40), iPSCs (Figure 41), mDA neurons (Figure 42) and smNPCs 

(Figure 43). 

When measuring gene expression by qPCR small amounts of full length DJ-1 mRNA were 

detected in homozygous c.192G>C DJ-1 mutation carriers. A possible explanation for this 

finding is that the U1 snRNP in very rare cases binds to the c.192G>C mutation carrying 

exon 3. This is possible because wt and mutant exon 3 only differ in the last base of the 

exon. 

A summarising scheme of the splicing pattern of wt DJ-1 mRNA, as well as of homozygous 

c.192G>C DJ-1 mutation carrying mRNA and heterozygous c.192G>C DJ-1 mutation car-

rying mRNA is shown in (Figure 56). 
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Figure 56: Schematic overview of c.192G>C DJ-1 mutation and its effect on splicing. 

The c.192G>C DJ-1 mutation lies at the end of DJ-1 exon 3. Splicing of pre-mRNA of the heterozygous DJ-1 

mutation leads to a correctly spliced mRNA transcript and a transcript lacking exon 3. Homozygous carriers of 

this mutation express misspliced mRNA without exon 3. 

4.4.3 Specific U1 snRNP (SpeU1) rescues skipping of exon 3 

It has been published that approximately 10 % of all human disease causing splicing de-

fects are due to genetic mutations (Stenson et al., 2003). Furthermore, skipping of a com-

plete exon is also known to be causative for other diseases, such as the skipping of 

exon 20 causing FD in c.2204+6T>C mutation carriers (Anderson et al., 2001, 

Slaugenhaupt et al., 2001), or skipping of exon 7 in the SMN2 gene leading to spinal mus-

cular atrophy (Lorson et al., 1999, Monani et al., 1999), or skipping of exon 3 by an exon 

3+5 G>C mutation in neurofibromatosis type 1 (Baralle et al., 2003), as well as skipping of 

exon 9 in the CFTR gene causing cystic fibrosis (Pagani et al., 2000). The skipping of an 

exon happens during the splicing process. Each exon is defined by a splice donor (5' end 

of the intron) and a splice acceptor (3' end of the intron) site. The c.192G>C DJ-1 mutation 

changes one base of the splice donor site, particularly the last base of the exon. We could 

show that this single base exchange is the reason for the skipping of exon 3, because it 

leads to an additional mismatch between the pre-mRNA and the U1 snRNA which pre-

vents U1 snRNP from binding to the mutated exon. In the case of the presence of the 

mutation, the potential number of mismatching base pairs between U1 snRNA and the 

5’splice site is increased from four to five (Figure 46). This number of mismatches is only 

present in less than 5 % of normal 5’splice sites (Carmel et al., 2004). 
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We show that through generating a specific U1 snRNP (SpeU1) by mutating the U1 snRNA 

at the respective base only, exon skipping was rescued (Figure 47). Making use of the 

SpeU1, correct splicing of c.192G>C mutant DJ-1 exon 3 was achieved in the artificial 

minigene assay (Figure 49) as well as in an in vivo experiment with immortalised fibro-

blasts (Figure 50). 

4.4.4 Potential reasons for the absence of DJ-1 protein in the presence of mRNA 

lacking exon 3 

4.4.4.1 Not being able to detect short DJ-1 protein with the antibody we use is not 

the case 

Knowing that the c.192G>C DJ-1 mutation causes skipping of complete exon 3 lead us to 

immediately look at the binding site of the DJ-1 antibody we used for our Western blot 

experiments. To make sure that we have not been able to detect DJ-1 protein in the pa-

tient-derived cells because it was not there and not because the antibody used binds to 

an amino acid encoded in exon 3, we had a look at the binding site of the DJ-1 antibody 

used in the respective experiments: Binding site of the DJ-1 (D29E5) XP® mAB (Cell Sig-

naling Technology, Cambridge, UK) is shown in green. Amino acids encoded by exon 3 

are highlighted in yellow. Further, we tested whether we would be able to detect DJ-1 in 

homozygous c.192G>C D-1 mutation carrying cells with another antibody which recog-

nises the N-terminal region of DJ-1 (shown in blue) (Figure 57). Independently from our 

own experiments two collaboration partners who used different DJ-1 antibodies also could 

not detect DJ-1 protein in homozygous mutation carriers of the c.192G>C DJ-1 mutation: 

The group of Dr. Daniela Vogt-Weissenhorn at the Institute of Developmental Genetics of 

the Helmholtz Zentrum München used the Human Park7/DJ-1 Affinity Purified Polyclonal 

Ab (AF3995) from R&D Systems, Inc. (Oxfordshire, UK). The group of Dimitri Kranic, MD, 

PhD of the Department of Neurology at the Northwestern Universtiy (Chicago, IL, USA) 

used the Anti-PARK7/DJ1 antibody [malphaDJ-1/E2.19] from Abcam (Cambridge, UK). 
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Figure 57: Binding site of DJ-1 antibodies used. 

Figure shows amino acid (AA) sequence of DJ-1 with AA encoded by exon 3 in yellow. DJ-1 (D29E5) XP® 

mAB (Cell Signaling Technology, Cambridge, UK) monoclonal antibody (mAB) is produced against a peptide 

corresponding to residues surrounding Lys148 (K) highlighted in green. Mouse anti-DJ-1 (37-8800) mAB (Invi-

trogen GmbH, Karslruhe, Germany) is produced against the N-terminal region of recombinant human DJ-1. 

4.4.4.2 Enhanced proteasomal or lysosomal degradation is not the cause for re-

duced DJ-1 protein levels in c.192G>C DJ-1 mutation carriers 

To test whether similar to the L166P mutation, the c.192G>C mutation enhances DJ-1 

degradation by the 20S/26S proteasome (Moore et al., 2003), we blocked proteasomal 

degradation in smNPCs from homozygous c.192G>C DJ-1 mutation carriers. Further-

more, as this was not the cause for the absence of DJ-1 protein in c.192G>C DJ-1 mutation 

carriers we blocked lysosomal degradation to determine if this might be the cause of the 

absence of the protein. Again, Western blot results showed that c.192G>C mutant DJ-1 

does not get degraded by the proteasomal nor by the lysosomal pathway. 

4.4.4.3 Mislocalisation of RNA 

Through defining the subcellular location of the mRNA, it can be tested whether the mRNA 

is only in the nucleus, due for example to conformational changes and therefore no trans-

lation can occur, because there is no mRNA in the cytosol. This would open up further 

therapeutic strategies, which could be the improvement of the translocation of the mRNA 

to the cytosol. 

Defining the subcellular localisation of the mRNA will be performed by Northern blot anal-

ysis. 

4.4.4.4 Splicing defects can lead to mRNA instability or decay 

By using our Light cycler approach were we are able to detect full length DJ-1 mRNA as 

well as mRNA without DJ-1 exon 3 we show that in the homozygous c.192G>C DJ-1 mu-

tation carriers mRNA lacking exon 3 is present, in some cases the level is even higher 
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than the healthy control (Figure 43). Therefore, we assume that the mRNA is neither de-

graded by a decay mechanism nor instable due to the missplicing. 

4.4.5 Pharmacological rescue of the c.192G>C DJ-1 mutation 

Mutations causing partial exon skipping through a mutation in the splice donor site impair-

ing U1 snRNP binding could already be successfully corrected. One example is the above-

mentioned c.2204+6T>C in the IKBKAP gene accounting for more than 99.5 % of all fa-

milial dystonia cases (Slaugenhaupt et al., 2004). In a first study it was demonstrated that 

the plant cytokinin kinetin (6-furfurylaminopurine) rescued splicing in a minigene experi-

ment (Slaugenhaupt et al., 2004). In the meantime, it could be shown that kinetin improved 

normal splicing of IKBKAP pre-mRNA in vivo in FD patients (Axelrod et al., 2011). Kinetin 

is a small cytokinin that is able to cross the BBB (Sitek study No. 0849-M208; SITEK Re-

search Laboratories, Rockville, MD, 2005). The effect on how kinetin improves correct 

splicing in this case is, however, not known. Due to its anti-ageing effect and anti-oxidant 

ability, it is an ingredient for skin treatments (Olsen et al., 1999, Rattan and Clark, 1994, 

Sharma et al., 1995). In a first attempt to address potential pharmacological agents that 

can correct splicing of mutant exon 3 in patient cells carrying the c.192G>C DJ-1 mutation, 

we treated patient derived immortalised fibroblasts as well as smNPCs with kinetin due to 

its promising features (crosses BBB, can be applied in patients, rescues splicing in similar 

conditions). A slight increase in correctly spliced mRNA was seen after treatment however 

it was not as high as the effects seen for exon 20 inclusion in FD (Figure 53 and Figure 

54). To achieve a splicing correction effect that could be sufficient for a potential therapeu-

tic effect in vivo in patients or has a more promising correction effect we tested other com-

pounds known to alter splicing for example as well in FD or in spinal muscular atrophy 

(Table 37). Benzyladenine which was also found to alter splicing in the c.2204+6T>C in 

the IKBKAP gene in FD had a positive effect (more than 100 % increase of correctly spliced 

mRNA) on splicing of the c.192G>C DJ-1 mutation. The other tested compounds, how-

ever, did not increase correctly spliced exon 3 after 24 h of treatment. The experiment 

could only be carried out once so far and has to be repeated. Also different conditions will 

be applied in case of hit compounds to be able to test whether more promising results can 

be achieved. 

4.5 Perspectives 

Different aspects of this project are still ongoing and will be continued beyond the scope 

of this thesis. 
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4.5.1 Mechanism of the c.192G>C DJ-1 mutation leading to loss of DJ-1 protein 

One focus will be on further understanding how the skipping of mutant exon 3 leads to the 

absence of DJ-1 protein in homozygous c.192G>C DJ-1 mutation carriers. 

A Northern blot of a nuclear and a cytosolic fraction can help to understand two aspects in 

this context: 

1) It will confirm with another method besides qPCR whether there is mRNA in the 

cells and 

2) It will show where the mRNA is located. 

If the Northern blot, like the qPCR result, shows mRNA, the qPCR experiments can be 

confirmed by another methodology that the mRNA is not degraded or unstable because 

of the mutation. 

If no mRNA can be seen on the Northern blot, further experiments will focus on nonsense 

mediated decay pathways that might degrade the mutant mRNA. 

Apart from that, computational tools allow to model and predict changes in mRNA folding 

and to predict possible secondary structures caused by the skipping of complete exon 3. 

Furthermore, we try to express DJ-1 mRNA lacking exon 3 and if it can be expressed, it 

will be tested if a short DJ-1 protein lacking the amino acids encoded by exon 3 will be 

able to rescue the phenotypes we already saw in our knockout models. For this purpose, 

we already cloned lentiviral expression plasmids expressing either full-length DJ-1 or DJ-

1 lacking exon 3. These constructs will be used to transduce the knockout cell models we 

have available and subsequently test if DJ-1 protein can be expressed and to which 

amount using the construct expressing DJ-1 lacking exon 3. If it can be expressed, these 

constructs can be used to further assess the function of this short DJ-1 protein in case we 

find a compound, which leads to the presence of short DJ-1 protein in patient derived cells. 

We will first try to rescue phenotypes we saw in our knockout model systems. 

4.5.2 Knockout model systems to further dissect the role of DJ-1 in neurodegen-

eration in PD 

As stated before, having generated iPSCs from the patient derived fibroblasts of c.192G>C 

DJ-1 mutation carriers opens up the opportunity to further analyse the role of DJ-1 function 

in the neurodegeneration process of PD. 

The iPSCs and the cell types that can be differentiated from them provide a valuable 

source and tool to perform further analyses. The establishment of the protocol for classical 

neuronal differentiation and smNPC generation allow to carry out further measurements 
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to validate existing data in these cell types as well as to assess neuron specific disease 

related phenotypes. 

Experiments validating the morphological and functional mitochondrial data in smNPC de-

rived neurons we described in the patient derived fibroblasts in this study are currently 

ongoing. Also neurons will be used in near future to look at mitochondrial transport to 

compare these data with the ones we generated with the murine primary knockout cul-

tures. 

These human DJ-1 knockout models also offer an opportunity to generate isogenic control 

experiments with restituted endogenous DJ-1 background which is currently underway for 

the iPSCs of the index patient as well as a control line which will be mutated homozygously 

for the c.192G>C DJ-1 mutation. A heterozygous gene correction in the immortalised fi-

broblasts of the index patient has already successfully been generated by our collaboration 

partners in the group of Dr. Daniela Vogt-Weissenhorn at the Institute of Developmental 

Genetics of the Helmholtz Zentrum München and can already be used for comparative 

experiments under a defined genetic background. In this isogenic fibroblast line of the 

index patient, now with a heterozygous c.192G>C DJ-1 mutation, DJ-1 protein was de-

tected by Western blot analysis. The genetic correction of the mutation successfully re-

stored DJ-1 protein expression. 

Furthermore, to be able to even detect subtle PD related phenotypes of this late-onset 

disorders, which are age-dependent and therefore might not be detectable in iPSCs due 

to their identity back to an embryonic age, challenges by artificial ageing can be applied to 

induce ageing-related features (Miller et al., 2013). 

Another aspect that can be addressed using isogenic controls is why the homozygous 

c.192G>C DJ-1 mutation carrying sister has not displayed any motor symptoms so far, 

although in the meantime she is older than the index patient was at disease onset when 

he displayed first motor symptoms. Studies in these regards could reveal modifiers that 

attenuate loss of DJ-1 function in the pre-motor diseased sister. 

During this work we generated: 

- patient derived fibroblasts of c.192G>C DJ-1 mutation carriers 

- which we successfully immortalised 

- and reprogrammed into iPSCs 

- which can be differentiated to mDA neurons following the classical floor plate-

based protocol, which was already successfully applied 

- also, we provide smNPCs, as neuronal precursor cells which can be expanded fast 

and efficiently and can be differentiated further into neuronal subtypes. 
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- But also hippocampal primary neuron cultures from DJ-1 knockout mice were suc-

cessfully generated for experiments. 

4.5.3 Opportunity of discovering potential therapeutic agents for PD patients 

Having deciphered the mechanism of the c.192G>C DJ-1 mutation opens up the oppor-

tunity to screen for pharmacological intervention as already initiated in this study. To test 

for correct splicing, as done in this study, provides a reliable and straight forward readout 

to test for rescuing the effect of the c.192G>C DJ-1 mutation. Identifying compounds that 

lead to an increase of correct splicing of DJ-1 exon 3 in homozygous c.192G>C mutation 

carriers could yield novel therapies for these patients. 

Furthermore, potential drug candidates identified with our model have a high potential to 

also have a positive effect in other diseases caused by a mutation with the same genetic 

mechanism. 

Not only does this study provide the underlying mechanism of the mutation, which can be 

used to screen for compounds that tackle the disease-causing mechanism at its starting 

point, but also with the models generated we provide excellent tools for large-scale drug 

discovery screenings. 

We generated iPSCs from patient derived fibroblasts and differentiated smNPCs from 

these cells. Both models provide a source of cells allowing to test for large sets of candi-

date drugs. 

Small sets of compounds have been tested, making use of various disease specific pa-

tient-derived iPSCs which were further differentiated into the relevant cell types of interest 

for the screen. Amongst the first ones were screens for the treatment of diseases like FD 

(Lee et al., 2009), spinal muscular atrophy (Ebert et al., 2009), Rett syndrome (Marchetto 

et al., 2010), long-QT syndrome (Itzhaki et al., 2011, Moretti et al., 2010), schizophrenia 

(Brennand et al., 2011), Timothy syndrome (Yazawa et al., 2011) and Alzheimers Disease 

(Yahata et al., 2011). (Lee et al., 2012a) showed that a large compound screen in a 384-

well format could be performed and suggest further studies of that kind to come closer to 

the era of personalised medicine. Screening for compounds in the cell type they are sup-

posed to work in, particularly if it is a neuronal cell type assures the specificity and ame-

liorates further specificity tests for their clinical efficacy, as shown for glioblastoma tumors 

(Cho et al., 2013a). Also, using these cells for screens allows to ascertain neurotoxicity of 

the compounds at the same time, as shown in a big compound screen unsing neural stem 

cells (Malik et al., 2014). 
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Mitochondrial phenotypes caused by stressors in iPSC-derived neuronal cells could be 

improved using drugs in a study by (Cooper et al., 2012). This is particularly interesting in 

this context as we saw different mitochondrial phenotypes in our patient derived cells. 

Another aspect could be to block splice silencer sequences or enhance splice enhancer 

sequences surrounding the mutant exon to increase the inclusion of exon 3 using com-

pounds or even by using antisense oligonucleotides. A first bioinformatical analysis pre-

dicted an increase of the splicing factor SRSF1 together with a loss of SRSF2 binding with 

the mutation (Figure 51). It needs further investigation on whether the aberrant splicing 

occurs because aside the weakening of the splice site from consensus also eliminating a 

SR protein binding influences 5’ splice site recognition. An example for a mutation that 

abolishes a binding site for an SR protein and at the same time creates an ESS is the 

c.840C>T transition at position +6 in exon 7 of SMN2 (Cartegni et al., 2006, Kashima et 

al., 2007). 

Discovering a drug to rescue skipping of DJ-1 exon 3 in c.192G>C mutation carriers could 

be the first causative treatment for PD patients as until today only symptomatic treatment 

of the disease exists. 
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