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1 Introduction  

1.1 Renal transplantation (RTx)  

Renal transplantation (RTx) is the treatment of choice for many patients with end-stage 

renal disease since it provides lower mortality rates and better quality of life compared 

to the conventional hemodialysis (Tonelli et al., 2011). The first successful RTx was 

carried out in 1954 in Brigham hospital in Boston, USA by Murray and donor and 

recipient of the renal graft were identical twins (Merrill et al., 1956).  

Advanced surgical techniques, tissue typing and most importantly various 

immunosuppressive strategies over the past decades has led to increase in the number of 

transplants and improvement in transplantation outcomes. Nowadays, transplantation 

medicine is recognized to be part of the standard professional practice in developed 

countries (Neipp et al., 2009). According to the German Foundation for Organ 

Transplantation (Deutsche Stiftung Organtransplantation – DSO), an average of ten 

organs are transplanted every day in Germany.  

 

Figure 1: Dynamics of the Eurotransplant kidney transplant waiting list and transplants between 1969 and 

2014 (statistics of Eurotransplant Organization) 

1.2 Immunosuppressive drugs  

Transplantation of unrelated organs triggers immunological defense reaction, potentially 

resulting in rejection of the transplanted organ. Consequently, balanced suppression of 

the alloimmune response through the use of effective immunosuppressive protocols is 

an essential pre-requisite for successful organ transplantation.  
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Managing the host‟s immune response after organ transplantation has passed through 

many stages. Total body irradiation, corticosteroids and azathioprine were among the 

earliest immunosuppressive strategies used. However their use was complicated by 

considerable toxicity and high rejection rates. The first immunosuppressive protocol 

which showed reasonable results was a combination of azathioprine and steroids. This 

regimen resulted in a 1-year graft survival rate of around 50% and it was the dominant 

protocol for over 20 years. The introduction of cyclosporine A (CsA) in the early 1980s 

has opened a new avenue in the field of transplantation medicine with a 1-year graft 

survival of > 90% (Taylor et al., 2005).    

The discovery of CsA was followed by introduction of other efficacious agents and the 

number of immunosuppressive drugs increased rapidly over the last few decades. 

Currently, there are four main groups of drugs used as maintenance therapy after 

transplantation:  calcineurin inhibitors (CNIs) (CsA and tacrolimus [Tac]), mammalian 

target of rapamycin inhibitors (sirolimus (Sir) and everolimus (Evr)), antiproliferative 

agents (azathioprine [AZA] and mycophenolic acid [MPA]) and corticosteroids. 

Furthermore, there are several biologic agents available for the initial induction of 

immunosuppression; two of them are used widely, anti-thymocyte globulin or 

interleukin-2 receptor antibody (Kalluri and Hardinger, 2012).  

Modern immunosuppressive protocols after organ transplantation are based on the 

combination of drugs which target the immune response at different levels. The aim of 

such combinations is to increase the overall efficacy and decrease the toxicity of the 

individual agents. Whereas different centers adopt different strategies, the most widely 

accepted regimen comprises a combination of a CNI (CsA or Tac), and anti-

proliferative agent (MPA) or a mTOR inhibitor (Sir or Evr) with or without antibody 

induction and steroids (Halloran, 2004). 

1.2.1 Calcineurin inhibitors  

CNIs include CsA and Tac. Both drugs are used extensively in transplantation medicine 

and most immunosuppressive protocols contain one of these CNI.  

Despite the difference in chemical structure, both CsA and Tac target the same pathway 

(Figure 2) After entering the cell, they are complexed with an immunophilin. CsA binds 
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to cyclophilin while Tac forms a complex with the immunophilin known as FK binding 

protein-12 (FKBP-12). The drug-immunophilin complex binds to calcineurin inhibiting 

its phosphatase activity which in turn prevents the dephosphorylation of the 

transcription factor nuclear factor of activated T-cells (NFAT) impeding its 

translocation to the nucleus and subsequent down-regulation of critical cytokine genes 

(Ho et al., 1996). Three genes were found to be mainly down-regulated, namely IL-2, 

IFN-γ and GM-CSF. The end-result is decreased activation of T-lymphocytes (Giese et 

al., 2004). 

 

 
 

Figure 2: Mechanism of action of CNIs; CsA = cyclosporine A; CyP = cyclophilin; FKBP= FK506 

binding protein; GM-CSF = granulocyte macrophage colony-stimulating factor; IFN- γ =interferon 

gamma; IL-2 = interleukin 2; NFAT = nuclear factor of activated T-cells; Tac = tacrolimus 

 

 

The prolonged use of CNIs is associated with chronic suppression of the immune 

system with an increased risk for malignancy and infections. In addition, CNIs have a 

wide range of drug-specific adverse effects; many of them are dose-dependent. The 

most important adverse effect of both Tac and CsA is nephrotoxicity. Furthermore, CsA 

therapy is associated with increased incidence of hypertension, hyperlipidemia, 

hirsutism and gingival hyperplasia, while Tac therapy is associated more with the 

incidence of neurotoxicity, post-transplant diabetes mellitus and alopecia. However, the 

toxic profile of both drugs is overlapping (Taylor et al., 2005).  

   

CNIs are characterized by a highly variable pharmacokinetic (PK) profile among 

individuals. The oral bioavailability of CsA and Tac is irregular and difficult to predict. 

The peak level in the blood is reached during the first 2 to 3 hours after the dose which 

is the time of maximal calcineurin inhibition. CNIs are metabolized by the cytochrome 
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P450 isoenzymes (mainly CYP3A4 and CYP3A5) in the gut and liver. They are also 

substrate for P-glycoprotein which acts as an efflux pump transporting the drug out of 

the intestinal or hepatic cells (Kapturczak et al., 2004). 

 

1.2.2 mTOR inhibitors 

The mammalian target of rapamycin inhibitors (mTORIs) include Sir (known also as 

rapamycin) and Evr. These agents are used as alternative to CNIs in some patients 

particularly to decrease the risk of CNI-associated nephrotoxicity. They act by 

inhibiting the downstream signaling effects of the protein kinase mTOR which is a key 

regulator of cell growth and proliferation. After entering the cell, Sir and Evr bind to the 

FKBP-12 which acts as the drug receptor. The resulting complex binds to mTOR 

causing inhibition of its kinase activity with subsequent inhibition of cell proliferation. 

Their favorable effect as immunosuppressant comes from their ability to block 

cytokine-mediated T-cell proliferation (Dowling et al. 2010). 

 

The toxic profile of both Sir and Evr is similar and the adverse effects mostly comprise 

skin-, blood- and metabolism-related side effects. Anemia, leucopenia, 

thrombocytopenia, hyperlipidemia, skin rashes and mouth ulcers are among the most 

common adverse effects of both drugs (Taylor et al., 2005).  

 

Similar to the CNIs, the PK profile of mTORIs is also variable among individuals. 

While Sir is a naturally occurring compound, Evr was produced as a chemical 

modification of Sir by adding a hydoxyethyl group at position 40 of Sir. This 

modification resulted in differences in the PK properties. Evr is much more polar than 

Sir with a subsequent difference in tissue distribution. The elimination half life of Evr is 

also considerably lower than that of Sir (mean 28 h vs. 62 h in mean). Both drugs are 

metabolized by the CYP3A enzyme system (Klawitter et al., 2015). 



Introduction 

 

5 

 

1.3 Monitoring of therapy with immunosuppressive drugs 

1.3.1 The pharmacokinetic approach 

The immunosuppressive drugs are characterized by having a narrow therapeutic 

window. Thus monitoring of the therapy is mandatory to keep the delicate balance 

between over-immunosuppression with increased risk of infection or malignancy and 

under-immunosuppression with increased the risk of rejection. The therapy with 

immunosuppressive drugs is further complicated by the great interindividual variability 

of pharmacokinetics which makes the “one dose fits all” strategy unsuitable for these 

drugs.  

 

These facts constitute the rational of the traditional therapeutic drug monitoring (TDM) 

which is the currently used approach to guide dosing of the immunosuppressive drugs. 

TDM entails the use of the level of the drug in the blood or plasma, mostly the pre-dose 

level to adjust the dose of drug with the aim of keeping the drug level within a 

predefined therapeutic range (Cattaneo et al., 2004). 

 

The use of TDM as a tool to adjust therapy with immunosuppressive drugs allowed 

reducing the PK component of variability of drug response. This approach has, 

however, several shortcomings: a) TDM is applied only when therapy has been started 

so it cannot be used to predict the initial dose, b) It does not account for the inter-

individual variability in the immune response i.e. the PD component, and c) It is of less 

value to predict the response in case of multiple drug therapy with possible interaction 

(Budde and Glander, 2005). 

 

All these limitations reveal the need to search for new approaches to help a better 

optimization of the therapy with the immunosuppressive drugs. 

1.3.2 Pharmacodynamic Biomarkers 

Owing to the great variability in response of patients to immunosuppressive drugs and 

the incompetence of the conventional approaches to account for such variability, the 

trend in the field of transplantation medicine is moving toward a more tailored approach 

or “individualized therapy”. This approach is strongly linked to the development of 
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“biomarkers” which could reflect the individual response of the patients to the drug 

therapy (Ashton-Chess et al., 2009). 

 

According to the Biomarkers Definitions Working Group of the NIH, a biological 

biomarker can be defined as: “a characteristic that is objectively measured and 

evaluated as an indicator of normal biological processes, pathogenic processes, or 

pharmacologic responses to a therapeutic intervention” (Strimbu and Tavel, 2010). 

There are different kinds of biomarkers which could be employed as predictors of the 

patient‟s response to treatment; pharmacodynamic (PD) and pharmacogenetic (PGx) 

biomarkers are among the most notable biomarker categories. While PD biomarkers are 

concerned with measurement of the physiologic effect of the immunosuppressive drugs 

on their targets, the PGx biomarkers investigate the effect of genetic variation on 

response to drugs including adverse drug reactions. 

 

A wide range of PD biomarkers for immunosuppressive drugs have been proposed in 

the last decade indicating the general effect of the drug on the immune cells or more 

specific indicating the direct effect of the drug on specific drug targets (Wieland et al., 

2010). However, only a very limited number of these biomarkers are currently accepted 

in clinical practice. This is because most of the biomarkers are neither analytically 

validated according to international guidelines nor suitable due to their complicated 

nature for routine use. From this perspective more efforts need to be spent to test the 

“fitness for purpose” of the candidate biomarker assays which has the potential to be 

implemented clinically.  

 

Therefore, the analytical performance of two PD assays was tested in the current thesis: 

the first assay is related to the monitoring of CNI therapy and is based on the 

determination of variable expression levels of certain cytokine genes under the 

influence of CNIs (NFAT-regulated gene expression assay). The second assay monitors 

mTORI therapy and is based on measuring the various level of phosphorylation of a 

ribosomal protein that is decreased under the influence of mTORIs therapy 

(measurement of S6RP using phosphoflow).  
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A) NFAT-regulated gene expression assay  

As stated before (section 1.2.1.), CNIs impede the action of the transcription factor 

NFAT and consequently down-regulate certain target genes (IL2-, IFN-γ and GM-CSF). 

Giese and colleagues (Giese et al., 2004) have established a method to estimate the 

residual transcriptional activity of NFAT through measuring the level of gene 

expression of IL-2, INF-γ and GM-CSF in mitogen stimulated whole blood at two 

different time points (before and after drug intake) using reverse transcription–qPCR 

(RT-qPCR). The extent to which the expression of these genes is inhibited after intake 

of CsA or Tac reflects the degree of immunosuppression exerted by these agents. This 

method could be used in addition to TDM to monitor CNI therapy particularly in long-

term renal allograft recipients. The assay protocol has been established in the Institute of 

Immunology at the University of Heidelberg and a primer set for the amplification of 

the target genes is commercially available (Search-LC, Heidelberg).  

 

The NFAT-regulated gene expression assay which utilizes RT-qPCR provides several 

advantages: a) The results are available within 24 hours; b) No sophisticated cell 

isolation and incubation steps are needed; c) A primer set for the amplification of the 

target genes is commercially available; d) The assay protocol is clearly described; and 

e) There are promising data from clinical trials including de novo and stable transplant 

patients (Sommerer et al., 2012). 

 

These data indicate that the NFAT-regulated gene expression assay is a promising PD 

biomarker assay that has the potential to be implemented clinically. However, data 

about the performance of this assay in an independent laboratory as well as data about 

inter-laboratory performance are, so far, lacking. In this work, the analytical 

performance of the NFAT-regulated gene expression assay was tested in the clinical 

laboratory of the Klinikum Stuttgart, Germany utilizing the commercially-available kit 

(Cyclosporine Immune Monitoring; Search-LC, Heidelberg). Furthermore an 

interlaboratory comparison with University Hospital Heidelberg was performed to 

ensure agreement of the results.  
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B) Measuring the level of S6RP through phosphoflow  

mTOR is a serine/threonine kinase, which operates through phosphorylation of serine 

and threonine residues at downstream target molecules (Figure 3). One of its most 

notable targets is p70 ribosomal protein S6 kinase 1 (p70S6K), leading to its activation. 

The p70S6 kinase is in turn another protein kinase which, upon activation by mTOR, 

phosphorylates also downstream targets as the 40S ribosomal protein S6 (S6RP) that is 

involved in regulation of protein translation (Asnaghi et al., 2004). Inhibition of mTOR 

through the action of mTORIs leads to decreased level of phosphorylation of its 

downstream targets whether direct or indirect (Dowling et al., 2010). Therefore 

measurement of the level of phosphorylation of these molecules could be used as a 

biomarker of therapy with mTORIs. 

 

Figure 3: The mTOR pathway; the main upstream effector of mTOR is the PI3K-Akt pathway which 

responds to wide variety of signals including growth factors. mTOR is a protein kinase which 

phosphorylates p70S6K1which in turn phosphorylates S6RP.. mTOR inhibitors decrease the level of 

phosphorylation of p70S6K1 as well as S6RP through inhibiting mTOR. Akt = protein kinase B; GF = 

growth factor; mTOR = mammalian target of rapamycin p70S6K1 = 70kDa ribosomal protein S6 

Kinase1; PI3K = phosphoinositide 3-kinase; S6RP = S6 ribosomal protein 

 

Several research groups have addressed the use of the phosphorylation status of p70S6 

kinase and its substrate S6RP as biomarkers of mTORI therapy. Different approaches 

have been attempted: western blot assay (Hartmann et al., 2005) and ELISA (Dekter 
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et al., 2010; Hartmann et al., 2013). However, these protocols are not suitable for 

routine clinical use since they entail the use of peripheral blood mononuclear cells 

(PBMCs) as a sample matrix which requires a long preparation time and the use of large 

sample volume in addition to the complicated nature of the assay protocol. 

The use of flow cytometry provides many advantages over the other traditional 

analytical techniques since it is rapid, sensitive and high throughput. Therefore, the use 

of flow cytometry in the clinical laboratory showed remarkable increase in the last 

decade. The advent of antibodies against phosphoproteins turned the phosphoflow 

technique into a powerful tool for analysis of cell signaling events (phosphoflow 

technique).  

Previous work showed the possibility to measure the level of p70S6K in the context of 

PBMCs with satisfactory analytical performance using phosphoflow technique 

(Hoerning et al., 2015; Wang and Fan, 2015). Despite the promising results of the use 

of phosphoflow as a measure of phosphorylation status of mTOR targets, these 

protocols employ the use of PBMCs as well, which render them not appropriate for the 

clinical setting   

The use of whole blood samples would, therefore, represents a better alternative when it 

comes to the routine clinical practice. Previously, this would be confronted with the 

artifactual changes that occur during sample processing since protein phosphorylation is 

highly dynamic. This hurdle has been overcome by the introduction of a protocol that 

entails fixation of the leucocytes in whole blood samples before lysis of red blood cells 

(RBCs) (Chow et al., 2005). This concept was first addressed by Dieterlen et al. who 

established a phosphoflow protocol to measure the level of phosphorylation of S6RP 

using whole blood as a sample matrix. The assay showed satisfactory analytical 

performance in vitro (Dieterlen et al., 2012). However, there are so far no published 

data regarding the performance of the assay using clinical patient samples. Furthermore, 

the fixation-permeabilization steps were conducted employing an in-house established 

protocol. Replication of the results in absence of an optimized commercial kit is 

difficult.  
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In this work, the technique of phosphoflow was used to measure the level of 

phosphorylation of S6RP using whole blood samples as a biomarker for mTOR 

inhibitors‟ activity. The assay protocol was set up in the Central Institute for Clinical 

Chemistry and Laboratory Medicine, Klinikum Stuttgart and entails the use of a 

commercial kit (PerFix-p Kit, Beckman Coulter) to fix and permeabilize white blood 

cells (WBCs) in whole blood samples before lysis of RBCs and anti-human p-S6RP 

(S235/S236) as a phosphoantibody. The analytical performance of the assay protocol 

was then tested both in vitro using blood samples spiked with different 

immunosuppressive drugs and ex vivo with residual clinical samples of different patient 

groups and three volunteers who took a single dose of Evr. In a separate set of 

experiments and to verify the measured values with a conventional method, the results 

of phosphoflow cytometry were compared with western blot technique.  

1.3.3 Pharmacogenetic biomarkers 

The variability of response to drugs among individuals is multifactorial. One important 

factor is the difference in the genetic make-up of the patients. It has been shown that 

genetic variation can be responsible for up to 60% of interindividual variability of drug 

response including genes coding for drug targets, drug metabolizing enzymes and drug 

transporters (Godman et al., 2013).  

Pharmacogenetics and pharmacogenomics aim to elucidate underlying mechanisms for 

inter-individual variability in drug response with specific focus on genetic variation. 

While pharmacogenetics refers to the effect of a single gene on the response to a drug, 

pharmacogenomics is a broader term which refers to the impact of the genome as a 

whole on the response of a drug. Nevertheless, the two terms are used interchangeably 

(Yagil and Yagil, 2002).     

Genetic variants which are found in > 1% of a population are termed genetic 

polymorphisms. The most common type of polymorphisms is the single nucleotide 

polymorphism (SNP) which refers to a single nucleotide alteration in a certain DNA 

sequence. The impact of genetic polymorphisms on immunosuppressive drug therapy 

can be well illustrated by azathioprine which is among the earliest immunosuppressive 

drugs used after organ transplantation. Azathioprine is a purine analogue which is 
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inactivated by methylation through the action of the enzyme thiopurine 

methyltransferase (TPMT). Patients who carry a variant allele of TPMT (with 

consequent impaired ability to deactivate the drug) may be at increased risk of severe 

drug toxicity if a prior dose adjustment was not performed (de Jonge and Kuypers, 

2008). 

Genetic variation can also contribute significantly to the inter-individual variability in 

disposition and response to other immunosuppressive drugs like the widely used CNIs. 

Several SNPs in drug metabolizing enzymes and transporting proteins of CNIs have 

been described to date and which could impact CNI pharmacokinetics (Hasselink et al., 

2014).  In this work, the pharmacogenetic part focused on Tac since it is the standard 

CNI used after renal transplantation in the Klinikum Stuttgart.  

As Tac is metabolized by CYP3A4 and CYP3A5 isoenzymes and is substrate for P-

glycoprotein, genetic variations in these genes could be a significant determinant of 

inter-individual variability in PK of Tac. Except for the CYP3A5*3 polymorphism, the 

effects of other SNPs were inconsistent (Table 1 and 2). A special concern is the newly 

discovered CYP3A4*22 polymorphism which was found to have a minor allele 

frequency of 5-7% in Caucasians and to impact the PK of CNIs (Elens et al., 2013b). 

However, more evidence needs to be accumulated to validate the role of this SNP 

related to Tac PK . Similarly, numerous SNPs have been described for the ABCB1 gene 

encoding for P-glycoprotein, however only three of them were particularly of interest 

regarding Tac PK namely the variants 3435T>C, 2677T>G/A and 1236T>C SNPs. 

Many studies have addressed the influence of these individual SNPs or the specific 

haplotype T-T-T on the PK of CNIs (Table 3) 

In the PGx part of this thesis, the influence of seven SNPs in CYP3A4/5 and ABCB1 on 

Tac pharmacokinetics were investigated in a cohort of 121 renal transplant patients in 

the early period after transplantation. The investigated alleles are CYP3A5*3, 

CYP3A4*22, CYP3A4*1B, and four SNPs in the ABCB1 gene (3435T>C, 2677T>G/A 

and 1236T>C). 
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Table 1: Effect of CYP3A4*22 single nucleotide polymorphism on Tac pharmacokinetics after organ transplantation  

SNP 

Cohort 

Pharmacokinetic 

Parameter(s) 

Time point Outcome Ref. 

Patients 
Place of 

study 
n 

CYP3A4*22 RTx France  186 Tac trough level (C0) 

Dose-adjusted C0 

Tac dose- 

requirement 

 

Days 10, 14, 30, 60 and 90 

post-transplantation.  

 

N.B. Day 10 postoperative 

is  equivalent to day 3 after 

initial dose of Tac which is 

started at day 7 

postoperative 

Tac C0 was higher in carriers of CYP3A4*22 

compared to homozygous wild type at day 10 

postoperative (P< 0.001). 

 

Compared to the homozygous wild type, carriers of 

CYP3A4*22 showed higher dose-adjusted C0 of Tac 

as well as lower Tac dose requirement (by about 

30%) over time in the first 3 months after surgery  

Pallet et al., 

2015 

CYP3A4*22 RTx Belgium 96 Tac C0 

Dose-adjusted C0 

Tac dose- 

requirement 

First 2 weeks post-

operative  

During the first 2 weeks after transplantation, carriers 

of CYP3A4*22 showed higher Tac C0 (significant at 

days 2 and 10), higher dose-adjusted C0 (significant 

at days 2,3 and 10) and lower Tac doses (significant 

at days 3,4 and 14) 

Elens et al., 

2013a 

CYP3A4*22 

 

 

 

RTx Netherlands  

Belgium  

185 Tac C0 

Tac dose- 

requirement 

Day 3, day 10 and month1, 

3, 6 and 12 after 

transplantation  

 

N.B. Tac was administered 

2 days before surgery  

At day 3, Tac C0 was significantly higher in carriers 

of CYP3A4*22. This difference was not translated to 

a clinical relevance regarding the incidence of DGF   

From day 10 to month 6, the Tac dose requirement 

was found to be 33% lower in carriers of CYP3A4*22   

Elens et al., 

2011a 

CYP3A4*22 

 

RTx Netherlands  

 

49 Tac C0 

Dose-adjusted C0 

Tac dose- 

requirement 

 Patients in the stable 

phase (> 1 year after 

transplantation) 

CYP3A4*22 was associated with a significant 

increase in dose-adjusted C0 as well as a significant 

decrease in dose requirements 

Elens et al., 

2011b 
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CYP3A4*22 

 

RTx Poland 241 Tac C0  

Dose-adjusted C0 

Tac dose- 

requirement 

Day 7 and at month 1, 3, 6 

and 12 after transplantation 

Carriers of CYP3A4*22 showed a trend to exhibit 

higher Tac C0 and dose-adjusted C0, however the 

difference was significant only at month 3 (dose-

adjusted C0) and month 6 (C0) after transplantation 

Kurzawski et 

al., 2014 

CYP3A4*22 

 

RTx Norway 123 Dose-adjusted C0 

 

2 to 7 weeks after 

transplantation  

No difference was noticed regarding the dose-

adjusted C0 between carriers CYP3A4*22 and the 

wild type homozygote  

Lunde et al., 

2014 

CYP3A4*22 

 

RTx Netherlands  

 

101 Population PK 

analysis 

 CYP3A4*22 was associated with 16% lower 

clearance of Tac , however this effect was regarded to 

be clinically insignificant 

Moes et al., 

2014 

CYP3A4*22 

 

RTx Spain 206 Tac C0 

Dose-adjusted C0 

Tac dose- 

requirement 

1 Week 

6 Months 

Carriers of CYP3A4*22 did NOT show significance 

difference compared to the wild type homozygote 

regarding the Tac C0, dose-adjusted C0 and dose 

requirements at the selected time points 

Tavira et al., 

2013 

CYP3A4*22 

 

RTx Brazil  140 Dose-adjusted C0 

 

3 months after 

transplantation   

CYP3A4*22 was found to have No association with 

the dose-adjusted Tac  blood concentration at the 

examined time point   

Santoro et al., 

2013 

CYP3A4*22 

 

Pediatric 

heart Tx 

Netherlands 

(cohort form 

Canada) 

 

60  Tac C0  

Dose-adjusted C0 

Tac dose- 

requirement 

First 2 weeks after 

transplantation  

Tac dose requirements were 30% lower in carriers of 

CYP3A4*22 during the first 2 weeks after surgery, 

however No significant difference was seen 

regarding Tac trough level or dose-adjusted 

concentration in the same period.  

Gijsen et al., 

2013 
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Table 2: Effect of CYP3A5* single nucleotide polymorphism on Tac pharmacokinetics after renal transplantation  

Cohort 

Time point after 

transplantation  

Findings  

 

Described as the change in pharmacokinetics 

parameter between the expressers (who express at least 

allele; *1) and non-expressers (CYP3A5*3/*3)  

Ref.  
Type  

of Tx 

Place of 

study 

Number of 

study 

population 

Percentage of non-

expressers 

(CYP3A5*3/*3) within 

the study population 

RTx Netherlands 64 70% Months 3, 12 
↓ dose-adjusted C0 of Tac 

↑ Tac dose requirements to reach target concentration 

Hesselink et al., 

2003 

RTx France  80 84% Month 1 
↓ dose-adjusted C0 of Tac 

↑ Tac dose requirements to reach target concentration  

Thervet et al., 

2003 

RTx Belgium  50 78% Stable phase 
↓ dose-adjusted C0 of Tac 

↑ Tac dose requirements to reach target concentration  

Haufroid et al., 

2004 

RTx Japan  30 57% Day 28 

↓ dose-adjusted C0 of Tac 

↓ dose-adjusted AUC0-12 of Tac 

↑ Tac dose requirements to reach target concentration 

Tsuchiya et al., 

2004 

RTx UK 180 69% Month 3 
↓ dose-adjusted C0 of Tac 

Longer time to reach target concentration  

Macphee et al., 

2005 

RTx China  118 59% 
Week 1 

Month 1, 3 
↓ dose-adjusted C0 of Tac 

Zhang et al., 

2005 

RTx China  30 63% Month 3,6, 12 ↓ dose-adjusted C0 of Tac Zhao et al., 2005 

RTx Canada 44 84% 
Week 1 

Month 3 

↓ dose-adjusted C0 of Tac 

Longer time to reach target concentration 
Roy et al., 2006  

RTx Germany 134 87% 

Stable phase   

(> one year post-

transplantation) 

↓ dose-adjusted C0 of Tac 

↑ Tac dose requirements to reach target concentration 

Renders et al., 

2007 

RTx China 63 57% Day 28 
↑ Tac clearance 

↓ dose-adjusted AUC0-12 of Tac 
Rong et al., 2010 

RTx Brazil  151 61% 
Week 1 

Month 1, 2 and 3 
↓ dose-adjusted C0 of Tac 

Santoro et al., 

2011 

RTx France  209 82% 
Days 15, 30, 90  

Years 1, 2  

↓ dose-adjusted C0 of Tac 

↑ Tac dose requirements to reach target concentration 

Glowacki et al., 

2011 

RTx Spain  103 90% Week 1 ↓ dose-adjusted C0 of Tac Gervasini et al., 
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Months 1, 5 

Year 1 

↑ Tac dose requirements to reach target concentration 2012 

RTx Morocco  10 60% 
First 3 month after 

transplantation  
↑ Tac dose requirements to reach target concentration 

Elmachad et al., 

2012 

RTx Mexico  

291 

124 adults 

167 pediatric 

52% Month 6 ↑ Tac dose requirements to reach target concentration 
García-Roca et 

al., 2012 

RTx Japan 39 56% Day 28 

↑ Tac clearance 

↓ dose-adjusted AUC0-12 of Tac 

↑ Tac dose requirements to reach target concentration 

Tada et al., 2005 

RTx Belgium  59 83% After first Tac dose 
↓ dose-adjusted C0 of Tac  

↓ weight-adjusted C0 of Tac 

Mourad et al., 

2006 

RTx Korea 70 63% Months 1, 3, 6, 12 
↓ dose-adjusted C0 of Tac 

↑ Tac dose requirements to reach target concentration 
Cho et al., 2012 
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Table 3: Effect of ABCB1 SNPS and haplotypes on Tac pharmacokinetics after organ transplantation  

Cohort 
SNPs investigated Time point Findings 

Ref. 

Transplant  Place  n 

RTx France  81 1236C>T, 2677G>T/A, 

3435C>T and haplotypes 

Month 1 2677GG:  C0/D 

C-G-C haplotype:  C0/D 

Anglicheau et al., 2003 

Liver Tx France  42 3435C>T 1-3 days post-

transplantation  
3435TT:  C0/D Bonhomme-Faivre et 

al., 2009 

Liver Tx Belgium 150  1236C>T, 2677G>T/A, 

3435C>T 

Day 7 1236CC, 2677GG:  Tac hepatic conc.  Elens et al., 2007  

RTx UK 206 1236C>T, 2677G>T/A, 

3435C>T and haplotypes 

Month 3 2677GG, 3435CC:  C0/D Fredericks et al., 2006 

Liver Tx 

Paediatric   

UK 51  1236C>T, 2677G>T/A, 

3435C>T and haplotypes  

Month 6  

Year 1,2,3,4,5  
Carriers of 2677G>T or 3435C>T:  C0/D only 3 

years post-transplantation  

T-T-T haplotype:  C0/D  

Hawwa et al., 2009 

RTx Spain  35 2677G>T/A, 3435C>T First 6 weeks after 

transplantation 
3435CC:  C0/D López-Montenegro et 

al., 2010 

RTx UK 180  3435C>T Month 3 3435CC:  C0/D MacPhee et al., 2002 

Liver/Renal  

Tx 

Italy 101  

Liver 50 

Renal 51 

2677G>T/A, 3435C>T Month 1,3,6 Carriers of 2677T/A:  dose requirements only in 

RTx recipients   

Provenzani et al., 2010 

RTx Canada 44 2677G>T/A, 3435C>T, T-

129C 

Week 1 

Month 3 
Less than three copies of T-129C, 2677T, 3435T:  

C0/D 

Roy et al., 2006 

Lung Tx USA 91 1236C>T, 2677G>T/A, 

3435C>T and haplotypes 

Month 1,3,6,9,12 1236TT/2677TT/3435TT:  C0/D Wang et al., 2006 

Liver Tx China  50 Tx 

50 donors 

3435C>T First month after 

transplantation  
3435CC:  Tac dose requirements  Wei-lin et al., 2006 

RTx Korea 70 1236C>T, 2677G>T/A, 

3435C>T and haplotypes 

Month 1,3,6,12 No association between ABCB1 polymorphisms and 

Tac concentrations 

Cho et al., 2012 

RTx Spain  103  1236C>T, 2677G>T/A, 

3435C>T and haplotypes 

Week 1 

Month 1,5,12 

No association between ABCB1 polymorphisms and 

Tac concentrations or dose requirements.  

Gervasini et al., 2012 

Liver/Renal  

Tx and liver 

donors 

Korea 506 Tx  

62 donors 

2677G>T/A, 3435C>T when conc. of Tac 

in blood level 

reached steady state 

No association between ABCB1 polymorphisms and 

Tac concentrations 

Jun et al., 2009 
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RTx Belgium 304 2677G>T/A, 3435C>T Month 3,12 No association between ABCB1 polymorphisms and 

Tac concentrations or dose requirements. 

Kuypers et al., 2010b 

RTx 

candidates 

Belgium  19 1236C>T, 2677G>T/A, 

3435C>T 

After the first dose 

of Tac  

No association between ABCB1 polymorphisms and 

Tac PK parameters 

Haufroid et al., 2006 

RTx Belgium  59  1236C>T, 2677G>T/A, 

3435C>T 

After the first dose 

of Tac ? 

No association between ABCB1 polymorphisms and 

Tac concentrations 

Mourad et al., 2006 

RTx Japan  39  3435C>T Day 28  No association between ABCB1 polymorphisms and 

Tac PK parameters 

Tada et al., 2005 
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2 Aims of the thesis: 

The aim of this thesis was to investigate PD and PGx biomarkers which may have the 

potential to be implemented in the clinical practice for better individualization of 

immunosuppressive therapy after renal transplantation. The following work is to be 

performed:  

1. Validation of the “NFTA-regulated gene expression assay” as a pharmacodynamic 

biomarker to monitor therapy with CNIs in an independent laboratory as well as 

testing its inter-laboratory performance  

2. Testing the analytical suitability of a phosphoflow assay protocol based on a 

commercial kit to measure the level of p-S6RP as a biomarker of therapy with 

mTORIs  

3. Investigating the frequency and influence of seven relevant SNPs on Tac 

pharmacokinetics early after transplantation in a cohort of 121 renal transplant 

recipients.  
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3 Materials, patients and methods 

3.1 Materials 

3.1.1 Reagents  

Reagent  Supplier  

Phorbol 12-Myristate 13-Acetate (PMA) Sigma-Aldrich, Munich, Germany 

Ionomycin AppliChem GmbH, Darmstadt, Germany 

Cyclosporine A Sigma-Aldrich, Munich, Germany 

Tacrolimus Sigma-Aldrich, Munich, Germany 

Everolimus  Sigma-Aldrich, Munich, Germany 

Mycophenolic acid Sigma-Aldrich, Munich, Germany 

2 Mercapto-ethanol Merck, Darmstadt, Germany 

Dimethyl sulfoxide (DMSO) Sigma-Aldrich, Munich, Germany 

Fetal Calf Serum (FCS) PAN Biotech GmbH, Aidenbach, Germany  

Penicillin/Streptomycin(10,000 U/mL) Life Technologies, Paisley, UK 

Hepes buffer Life Technologies, Paisley, UK 

L- glutamine Life Technologies, Paisley, UK 

Bovine serum albumin (BSA) VWR International GmbH, Darmstadt, Germany  

Phosphate-Buffered Saline (PBS) Life Technologies, Paisley, UK 

RPMI 1640 medium Life Technologies, Paisley, UK 

ACK (Ammonium-Chloride-Potassium) lysing 

buffer 

Life Technologies, Paisley, UK 

RNaseOUT Invitrogen, Darmstadt, Germany 

High Pure RNA Isolation Kit Roche Diagnostics GmbH, Mannheim-Germany 

1st Strand cDNA Kit for RT-PCR (AMV) Roche Diagnostics GmbH, Mannheim-Germany 

LightCycler FastStart DNA Master SGI  Roche Diagnostics GmbH, Mannheim-Germany 

Primer set (Cyclosporine Immunemonitoring)  Search-LC, Heidelberg, Germany 

PerFix-p Kit Beckman Coulter, Marseille, France 

CD3-PC7  Beckman Coulter, Brea, CA, USA 

CD4-ECD Beckman Coulter, Brea, CA, USA 

CD8-PC5 Beckman Coulter, Brea, CA, USA 

Rabbit IgG Isotype Control Alexa Fluor® 488 

Conjugate 

Beckman Coulter, Brea, CA, USA 

Phospho-S6 Ribosomal Protein (Ser235/236) 

Alexa Fluor® 488 

Beckman Coulter, Brea, CA, USA 

QIAamp DNA Blood Mini Kit Qiagen, Hilden, Germany 

TaqMan Genotyping Assay Mix Thermo Fischer Scientific, Darmstadt, Germany 

TaqMan Universal PCR Master Mix Thermo Fischer Scientific, Darmstadt, Germany 
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3.1.2 Buffers and solutions  

Name Constituents Concentration 

Culture medium RPMI 1640 Medium 

Inactivated FCS  

Penicillin / Streptomycin  

Hepes buffer 1 M 

L Glutamine 200 mM 

β-mercaptoethanol (BME) in medium: : 50 ml of RPMI 

Medium + 35 µl BME 

500 ml 

50 ml 

5 ml 

5 ml  

5 ml 

2.5 ml 

Wash buffer 2% Phosphate-buffered saline  

Bovine serum albumin 

500 ml 

10 g 

3.1.3 Equipment 

Instrument  Supplier  

PP  tubes natur 12 ml 16/100 mm Hain Lifescience GmbH, Nehren, Germany 

PS Tubes 5 ml Greiner Bio-One GmbH, Kremsmünster, Austria 

Tube 50ml, 115x28mm, PP Sarstedt AG & Co, Nümbrecht, Germany 

Safe-lock tubes 1.5ml Eppendorf AG, Hamburg, Germany 

Multiply-Pro cup 0.2ml, PP Sarstedt AG & Co, Nümbrecht, Germany 

Pipettes (2µl, 10 µl, 100µl, 200µl, 1000µl)  Mettler-Toledo GmbH, Gießen, Germany 

Multichannel Pipette  Mettler-Toledo GmbH, Gießen, Germany 

Pipettes (10 µl, 100 µl, 1000 µl) Eppendorf AG, Hamburg, Germany 

Biosphere Filter Tips 10 µl  Sarstedt AG & Co, Nümbrecht, Germany 

SafeSeal-Tips (100 µl, 1 ml) Biozym Scientific GmbH, Oldendorf, Germany 

Serological pipettes 5ml, 10ml Greiner Bio-One GmbH, Kremsmünster, Austria 

Rubber pipette filler  Sigma-Aldrich, Munich, Germany 

Eppendorf 5417C Centrifuge  Eppendorf, Hamburg, Germany 

Universal 320 R benchtop centrifuge Hettich GmbH & Co. KG, Tuttlingen, Germany 

Hettich MIKRO 20 centrifuge Hettich GmbH & Co. KG, Tuttlingen, Germany 

Universal 16R centrifuge Hettich GmbH & Co. KG, Tuttlingen, Germany 

REAX 2000 vortex Heidolph GmbH & Co. KG, Schwabach, Germany 

Julabo R5 water bath   Julabo GmbH, Seelbach, Germany 

Mini galaxy A CO2 incubator RS Biotech Inc., Irvine, UK 

96-well Plate, Thermo-Fast®  Abgene, Hamburg, Germany 

384-well plate, Thermo-Fast® Abgene, Hamburg, Germany 

Veriti 384-well Thermal Cycler Thermo Fischer Scientific, Darmstadt, Germany 

ABI PRISM 7900HT Real-Time PCR System 

(TaqMan) 

Thermo Fischer Scientific, Darmstadt, Germany 

Nanodrop 2000c Peqlab Biotechnology GmbH, Erlangen, Germany 

LightCycler Capillaries (20 µl) Roche Diagnostics GmbH, Mannheim-Germany 

Primus 25 advanced thermal cycler peQlab, Erlangen, Germany 

LightCycler 2.0 instrument  Roche Diagnostics GmbH, Mannheim-Germany 
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Cytomics FC 500 Flow cytometer  Beckman Coulter GmbH, Krefeld, Germany 

 

3.1.4 Software and web servers 

Name Supplier  

ABI 7900HT v 2.4 Applied Biosystems (California, USA) 

R-3.2.3  www.r-project.org 

GraphPad Prism version 5.00 GraphPad Software, San Diego California, USA 

MedCalc Version 14.12.0. MedCalc Software, Ostend, Belgium 

Microsoft Excel Worksheet (2007) Microsoft Corp., Redmond, USA 

PubMed  http://www.ncbi.nlm.nih.gov/pubmed 
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3.2 Patients and methods  

3.2.1 NFAT-regulated gene expression assay 

A protocol for the analysis of the expression of the NFAT-regulated genes has been 

established in Heidelberg by Giese et al. (Giese et al., 2004) and a primer set for 

amplification of the target genes is commercially available (Search-LC, Heidelberg). The 

analytical performance of the assay was tested at the laboratory of Klinikum Stuttgart and an 

interlaboratory comparison with the renal transplant center in Heidelberg was conducted. The 

readout of the assay is the residual gene expression (RGE) which is the ratio of the expression 

level before and after drug intake.  

3.2.1.1 Patients 

Experiments were approved by the ethics committee of the Eberhard-Karls-University 

Tübingen. The analytical verification of the assay at the laboratory of Klinikum Stuttgart was 

done in vitro with anonymized drug-free left over whole blood samples which were spiked 

with Tac. For the inter-laboratory comparison of the assay, heparinized blood samples from 

10 patients under CsA therapy were compared. The samples were collected and analyzed in 

Heidelberg and then sent to the laboratory of Klinikum Stuttgart to be re-analyzed within 24 

hours.  

3.2.1.2 Methods 

3.2.1.2.1 Sample processing  

Sample processing was performed essentially according to the previously published protocol. 

A stimulation solution was prepared consisting of PMA (100 ng/ml) and ionomycin (5 µg/ml) 

in complete culture medium (RPMI-1640). To activate lymphocytes, 1 ml heparinized whole 

blood was pipetted into polypropylene plastic tubes and was incubated with 1ml stimulation 

solution at 37°C in a CO2 incubator (with 7% CO2) for 3 hours. RBCs were then lysed using 

Ammonium-Chloride-Potassium (ACK) lysing buffer. Total RNA was extracted with High 

Pure RNA Isolation Kit (Roche Diagnostics GmbH, Mannheim-Germany) according to the 

manufacturer‟s instructions. The elution volume was 50 µl, to which 1µl RNaseOUT 

(InvitrogenTM) was added. RNA samples were frozen at -80° C until further processing. At 

the time of reverse transcription, RNA samples were allowed to thaw and from each sample a 

volume of 8.2 µl was used to synthesize cDNA using First Strand cDNA Synthesis Kit for 
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RT-PCR (Roche Diagnostics GmbH, Mannheim-Germany) utilizing avian myeloblastosis 

virus (AMV) reverse transcriptase and oligo-(dT) primer according to the protocol provided. 

Reverse transcription was done on Primus 25 advanced thermal cycler (peQlab, Erlangen, 

Germany). The generated cDNA was diluted with ultra-pure H2O to a final volume of 500ml 

and stored at -20° C until PCR analysis. Real-time PCR was carried out on the LightCycler 

2.0 instrument (Roche Diagnostics GmbH, Mannheim-Germany) using LightCycler FastStart 

DNA Master SYBR Green I (Roche Diagnostics GmbH, Mannheim-Germany) and the 

LightCycler - Primer Set; Cyclosporine Immune Monitoring (Search-LC, Heidelberg). 

Quantification cycle (Cq) values were determined by the Fit-Points Method and a baseline at -

0.6. 

In the original protocol, Giese et al. used MagNA Pure lysis buffer to lyse leucocytes and a 

MagNA Pure-LC device to isolate mRNA, and they did not add RNase out to the eluted RNA.  

For in vitro experiments, blood was spiked with the desired concentration of Tac prior to the 

stimulation step. Spiking of samples with the drug was done at 37° C and 7% CO2 for 30 min 

3.2.1.2.2 Testing the analytical performance 

The analytical performance of the NFAT-regulated gene expression assay has been tested in 

terms of concentration-effect relationship, precision (within- and between-run), limit of 

quantification and stability. An inter-laboratory comparison with the University Hospital 

Heidelberg has been also performed.  

i. Concentration-effect relationship: The effect of different concentrations of Tac on the 

expression of NFAT-regulated genes was determined. Heparin anti-coagulated drug 

free whole blood (5 ml) was used. The blood was divided into 5 plastic tubes (1 ml 

each) and each tube was spiked with a specific concentration of Tac while one tube 

was left untreated. The concentrations tested were 50µg/L, 25µg/L, 12.5µg/L and 

6.25µg/L of Tac. 

ii. Within-run precision: The within-run precision of the NFAT-regulated gene 

expression assay was tested at three different concentrations of Tac (50 µg/L, 25 µg/L, 

and 12.5 µg/L) using 3 blood samples from 3 different individuals. The blood was 

processed in a way that allowed 6 independent measurements of RGE of each blood 
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sample. Whole blood was divided into 12 plastic tubes. Six of the samples were spiked 

with Tac while the other 6 were left untreated. At the end of the stimulation step RNA 

was isolated from all samples in parallel and stored at -80°C. The next day, cDNA was 

synthesized and stored at -20° C. Finally, 6 consecutive runs of PCR (treated versus 

non-treated) were performed and RGE was determined. Mean, standard deviation and 

coefficient of variation were calculated (n=6). 

iii. Between-run precision: Evaluation of the between-run precision by investigating the 

same blood sample on six different days is inapplicable due to sample instability over 

this period of time. Thus the between-run precision was tested starting from the step of 

the isolated RNA. The between-run precision was also tested at 3 different Tac 

concentrations (50 µg/L, 25 µg/L, and 12.5 µg/L) using remaining RNA samples of 

previously processed blood stored at -80°C. RNA samples were allowed to thaw and 

were pooled. One pool formed from RNA of Tac treated blood (50 µg/L, 25 µg/L, or 

12.5 µg/L) and another pool from RNA of non-treated blood. These 2 pools of RNA 

were reverse transcribed 6 times on 6 different days and 6 PCR runs were done on 6 

different days in parallel to calculate RGE. The mean, standard deviation and 

coefficient of variation were calculated (n=6). 

iv. Limit of quantification (LOQ): To determine LOQ of the NFAT-regulated gene 

expression assay, blank cDNA samples were spiked with known concentrations of IL-

2, INF-γ and GM-CSF cDNA standards (LightCycler Primer Set kit, Search-LC). The 

number of cDNA copies in each sample was determined using qPCR. Serial dilutions 

of the standards were applied until reaching a number of copies that could not be 

detected anymore. The lowest number of copies that showed a CV ≤ 20% (n=6) was 

set to be the LOQ (Armbruster and Pry, 2008). 

v. Stability: To assess the stability of the samples, 3 anonymized left over blood samples 

from routine diagnostics free of Tac or CsA were used. Each sample was divided into 

2 aliquots. One aliquot was analyzed at the day of blood collection, where it was 

incubated with Tac in a concentration of 25 µg/L and further processed as previously 

described. The other portion was stored at room temperature and processed after 24 

hours like the first day and by applying the same concentration of Tac. The results 
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were then compared and the % differences between the measurements in both days 

were calculated. 

vi. Inter-laboratory comparison: For the inter-laboratory comparison of the NFAT-

regulated gene expression assay, heparinized blood samples from 10 patients under 

CsA therapy were compared. For each patient 2 whole blood samples were collected 

at the University Hospital Heidelberg, one sample before and another sample 2 hours 

after CsA intake. Patient samples were analyzed at the University Hospital Heidelberg 

for NFAT-regulated gene expression using the validated protocol of Giese et al. 

(Giese et al., 2004) and then the whole blood samples were sent to the laboratory of 

the Klinikum Stuttgart to be re-analyzed within 24 hours. Patients gave their informed 

consent to this biomarker study in Heidelberg. 

3.2.1.2.3 Calculation of mean residual gene expression (RGE)  

A calculation sheet provided by Search-LC GmbH was used to calculate the residual 

expression of the NFAT-regulated target genes after drug intake. This calculation included a 

beta actin standard and normalization to 2 reference genes (β-actin and cyclophilin B). Mean 

RGE of IL-2, INF-γ and GM-CSF represents the ratio between the expression level before 

and 2 hours after CsA intake (in case of patient samples) or the ratio between the expression 

levels in treated versus non-treated blood samples (in case of in vitro experiments).  

3.2.1.2.4 Statistical analysis 

Statistical analyses were done using Microsoft Excel Worksheet 2007 and MedCalc Version 

14.12.0. (MedCalc, Oostende, Belgium) The Spearman rank correlation coefficient test was 

utilized to determine the correlation between the measurements in the two laboratories. 

Passing-Bablok regression analysis was applied to calculate the agreement between the 

measurements in both laboratories. Method bias was also investigated using a Bland-Altman 

difference plot based on expression of differences as percentages. 

3.2.2 Phosphoflow assay of S6RP 

To measure the level of phosphorylation S6RP by flow cytometry, a commercial kit for 

fixation and permeabilization of the cells in the context of whole blood samples and anti-



Materials, patients and methods 

 

26 

 

phospho Ser 235/236 antibody were employed. The following protocol is part of published 

work by our group (Abdel-Kahaar et al., 2016). 

3.2.2.1 Patients 

Anonymized left over immunosuppressant drug-free EDTA whole blood samples and residual 

EDTA whole blood samples containing immunosuppressive drugs were from the routine 

laboratory at the Klinikum Stuttgart. In addition, three volunteers took a single dose of 

everolimus (0.5 mg tablet) and blood was collected 1 and 3 hours afterwards. Approval from 

the local ethics committee of the Ärztekammer Stuttgart was obtained. Complete blood count 

and measurement of blood concentrations of immunosuppressive drugs were done as a part of 

the routine tests in our department. Immunosuppressants were determined by a validated LC-

MS/MS procedure (Valbuena et al, 2015). 

3.2.2.2 Methods 

3.2.2.2.1 Sample processing  

Aliquots of 100 µl whole blood were pipetted into round-bottomed test tubes (4 tubes for each 

patient) and placed in a 37ºC water bath for 10 min. The PMA and the blank solution, which 

served as negative control, were freshly prepared. To decrease assay imprecision, aliquots that 

received PMA were performed as a duplicate where the mean of p-S6RP from both 

measurement is to be finally used. Stimulation was performed for exactly 6 min with 150 

µg/L PMA before samples were fixed with 65 µl of the fixation buffer. After adding the 

fixation buffer, the tubes were vortex mixed and further incubated for 10 min. Then 1 ml lysis 

buffer was added, the tubes were vortexed again and placed again in the water bath at 37ºC 

for 15 min. After complete lysis of RBCs, the samples were washed twice through adding 

cold (4°C) wash buffer (2% BSA in PBS), centrifugation at 500 g for 4 min and discarding 

the supernatant. Then antibodies were added as an antibody mix containing PC7-conjugated 

anti CD3, ECD-conjugated anti CD4, PC5-conjugated anti CD8 and Alexa Fluor® 488 

conjugated anti p-S6RP (S235/S236). To one set of tubes anti p-S6RP was replaced with 

Rabbit IgG Isotype Control Alexa Fluor® 488. The tubes were incubated in the dark for 30 

min at room temperature then washed with 2 ml cold wash buffer and then resuspended in 

350 µl resuspension buffer. Fixation and permeabilization of the cells were done using a 

PerFix-p Kit according to the manufacturer‟s protocol. 
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3.2.2.2.2 Testing the analytical performance  

The following experiments have been performed:  

i. Concentration-effect relationship: anonymized left-over drug-free whole blood 

samples (n=2) were supplemented with varying concentrations of Evr and incubated 

for 30 min in a CO2 incubator with 7% CO2 at 37°C. The clinically relevant 

concentrations of 2.7 µg/L, 9.1 µg/L and 27.4 µg/L were tested. 

 

ii. Verification of the effect of Evr on p-S6RP in vivo: three healthy volunteers took a 

single dose of Evr (0.5 mg tablet) and blood was collected 1 h and 3 h afterwards for 

assessment of the p-S6RP.  

 

iii. Specificity: specificity of the assay was investigated in vitro and ex vivo  

In vitro: anonymized left-over drug-free blood samples (n=4) were supplemented with 

different immunosuppressive agents (other than mTORIs) at high concentrations. 

Therefore, blood was spiked with Tac (25 µg/L), CsA (500 µg/L) or MPA (25 mg/L) 

in separate aliquots, while one aliquot was left untreated to serve as a control.   

Ex vivo: To determine the specificity of S6RP phosphorylation as a biomarker of 

mTORIs PD effects in vivo, we examined phosphorylation of S6RP in left-over 

samples from kidney transplant recipients receiving Evr (n=20), Sir (n=12), Tac 

(n=12) or CsA (n=12); dialysis patients but not receiving immunosuppressants (n=5); 

and patients with inflammatory conditions indicated by an elevated C-reactive protein 

(CRP) concentration of >10 mg/L (n=5). The levels of p-S6RP in these groups were 

compared to the levels in a control group (n=10) that did not belong to one of the 

patient groups mentioned above or show any abnormalities in their laboratory results. 

 

iv. Within-run precision: To test within-run precision, 4 blood samples (2 drug free and 2 

containing Evr) were processed 5-6 times in parallel.  

 

v. Stability of the analyte p-S6RP: stability was tested using blood samples without 

immunosuppressive drugs (n=3), blood samples with Sir (n=2) and one blood sample 

with CsA (n=1). The samples were processed on the day of blood collection, and 
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aliquots from these samples were stored at room temperature for repeated analysis 

after 24 h 

 

vi. Method comparison: in a separate set of experiments, a method comparison between 

phosphoflow assay for p-S6RP and an established state-of-the-art western blot 

protocol for PD monitoring of mTORIs based on the determination of p-p70S6K was 

performed (Hartmann et al., 2005). For this comparison, anonymized left-over blood 

samples from RTx patients receiving Evr (n=7), Sir (n=2) or CsA (n=1) and healthy 

volunteers (n=5) were used. Blood samples were divided into two aliquots; one aliquot 

was used to measure the level of p-S6RP by phosphoflow cytometry, while PBMCs 

isolated from the second aliquot were stimulated with PMA for 30 min and stored at -

20°C before sending to a reference laboratory for western blot analysis. 

3.2.2.2.3 Flow cytometric analysis 

Samples were analyzed on a Cytomics FC500 flow cytometer (Beckman Coulter). 

Phosphorylation of S6RP was examined separately in CD3+CD4+ and CD3+CD8+ cells. We 

used the median S6RP phosphorylation (from the histogram of the flow cytometer) as a 

measure of fluorescence intensity and an index of median S6RP phosphorylation in stimulated 

cells versus median S6RP phosphorylation in unstimulated cells as a read out of the net effect 

of the drug on the phosphorylation status of S6RP in the cells of interest.  

3.2.2.2.4 Western blot analysis  

In a separate set of experiments and to verify the measured values with a conventional 

method, we compared the results of phosphoflow cytometry with western blot technique. 

Blood samples of subjects receiving mTORIs (n=15) were divided into 2 aliquots; one aliquot 

was used to measure the level of p-S6RP by phosphoflow cytometry in our laboratory while 

PBMC were isolated from the second aliquot and stimulated with PMA for 30 minutes and 

stored at - 20° C before they were sent to the University Hospital Ulm to be analyzed by 

Western blot. While we used anti p-S6RP (S235/S236) in the phosphoflow protocol, an anti-

phospho-p70S6 kinase (Thr389) antibody was employed in the western blot protocol. Western 

blot analysis was performed as previously described (Hartmann et al., 2005). 
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3.2.2.2.5 Statistical analysis 

Statistical analyses were done using Microsoft Excel Worksheet 2007 and MedCalc statistical 

software (Ostende, Belgium). Comparisons of blood samples from different patient groups 

were made using the Mann-Whitney U test. For method comparison Passing & Bablok 

regression was employed. A p value <0.05 was considered significant. 

3.2.3 Genotyping methods for pharmacogenetics   

Single nucleotide polymorphisms (SNPs) in the genes of CYP3A4, CYP3A5 and ABCB1 were 

investigated to be correlated with the Tac pharmacokinetics.  

3.2.3.1 Patients  

A cohort of 121 renal transplant patients who underwent transplantation between 2009 and 

2015 at Klinikum Stuttgart were invited to participate in this study. The study was approved 

by ethics committee of the Eberhard-Karls-University Tübingen and all participants gave 

written informed consent. The standard maintenance therapy after renal transplantation at 

Klinikum Stuttgart is a triple therapy of Tac, MPA and a corticosteroid. Tac therapy is started 

at the day of renal transplantation using a dosage of 0.1mg/kg/day and subsequently adjusted 

to achieve a pre-defined target trough blood Tac concentration of 6-8 µg/L in the first three 

months after transplantation and 4-6 µg/L thereafter. Drug concentrations and administered 

doses were retrospectively collected from patients‟ records at Klinikum Stuttgart at the first 2 

weeks after transplantation. Dose-adjusted trough concentrations per body weight were 

calculated for the C0 (µg/L) level. Tac blood concentrations were routinely measured by a 

validated LC-MS/MS procedure. Tac measurements were not always available for all patients 

at all time points. Delayed graft function was defined as the need for dialysis therapy within 

the first postoperative week.  

3.2.3.2 Methods 

3.2.3.2.1 Sample processing  

For preparation of the samples for genotyping, DNA was isolated from the whole blood 

samples using QIAamp DNA Blood Mini Kit (Qiagen, Hilden, Germany) according to the 

manufacturer‟s protocol. In summary, 200µl whole blood is mixed with 20µl QIAGEN 

protease and 200µl buffer AL in 1.5 ml microcentrifuge tube and incubated at 56°C for 10 
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min to allow for lysis of the cells. Then 200µl ethanol is added to the previous mixture and 

the whole volume is transferred to the QIAamp Mini spin column supported by 2ml collection 

tubes. Ethanol is added to ensure optimal binding of DNA to the QIAamp membrane.  The 

spin columns with the supporting tubes are centrifuged at 8000rpm for 1min. At this step the 

DNA will be adsorbed onto the QIAamp silica membrane while the rest will pass through. 

The collection tube containing the filtrate is discarded and the spin column is placed in a clean 

2ml collection tube. This is followed by 2 wash steps; the first with adding 500µl buffer AW1 

followed by centrifugation at 8000rpm for 1 min and the second wash step with adding 500µl 

buffer AW2 and centrifugation at 14.000 rpm for 3 min. DNA is then eluted in a clean 1.5ml 

microcentrifuge tube using 200 µl buffer AE. The spin column loaded with buffer AE is 

incubated for 5 min at room temperature to increase the DNA yield. The last step is to 

centrifuge the spin columns with the collecting tubes at 8000rpm for 1 min. to receive the 

eluted DNA in the clean collection tubes.  

Concentrations of nucleic acid samples were assessed using Nanodrop 2000c (Peqlab 

Biotechnology GmbH, Erlangen, Germany) 

3.2.3.2.2 Selection of polymorphisms for genotyping 

A literature search regarding relevant candidate genes which may explain interindividual 

variability of calcineurin pharmacokinetics resulted in three genes which are CYP3A4, 

CYP3A5 and ABCB1. The samples were genotyped for seven selected known SNPs in these 

genes for which previously functional consequences have been reported. Predesigned 

TaqMan allelic discrimination assays (ThermoFischer Scientific, Darmstadt, Germany) were 

used for genotyping of these variants  

Gene SNP rs Nr. Assay ID 

CYP3A4 CYP3A4*22 rs35599367 C__59013445_10 

CYP3A4 CYP3A4*1B rs2740574 C___1837671_50 

CYP3A5 CYP3A5*3 rs776746 C__26201809_30 

ABCB1 3435T>C rs1045642 C___7586657_20 

ABCB1 2677T>G rs2032582 C_11711720D_40 

ABCB1 2677T>A rs2032582 C_11711720C_30 

ABCB1 1236T>C rs1128503 C___7586662_10 

 

 



Materials, patients and methods 

 

31 

 

3.2.3.2.3 Taqman genotyping 

The seven selected SNPs were genotyped using TaqMan allelic discrimination assays 

(Applied Biosystems, Darmstadt, Germany) as follows: Genomic DNA was placed in a 384-

well plate (Thermo-Fast® Abgene, Hamburg, Germany) so that the final amount of genomic 

DNA in each well was 10ng. The samples were allowed to completely dry down by 

evaporation at room temperature in a dark, amplicon-free location. Amplification was 

performed on Veriti®384-well Thermal Cycler (Applied Biosystems) in a final volume of 5µl 

containing 10ng dried genomic DNA, 2.5µl of 2X TaqMan® Universal PCR Master Mix 

(Applied Biosystems), 0.25µl of 20X TaqMan® Genotyping Assay Mix (Applied 

Biosystems) and 2.5µl of DNase-free water. After PCR amplification, an endpoint plate read 

was performed on ABI PRISM 7900HT Real-Time PCR System (Applied Biosystems).  

3.2.3.2.4 Statistical analysis 

All statistical analyses were performed with R-3.2.3 software (www.r-project.org). The 

differences in quantitative variables (Area under the curve; AUC, of dose-adjusted Tac levels 

and Tac dose) among individuals with different genotypes were investigated using Kruskal-

Wallis tests or Wilcoxon-Mann-Whitney tests as appropriate. Associations between each of 

the seven SNPs and delayed graft function or acute rejection were investigated by Fisher‟s 

exact test. Linear modeling was used to investigate the association between ABCB1 

haplotypes (based on rs1128503, rs2032582, rs1045642) and log-transformed AUC of dose 

adjusted as well as dose and weight adjusted Tac levels.  A P-value of less than 0.05 was 

considered statistically significant. 

 

 



Results 

 

32 

 

4 Results 

4.1 NFAT-regulated gene expression assay 

4.1.1 Concentration-effect relationship 

Tac decreased the expression of NFAT-regulated genes in a concentration-dependent manner. 

The measured RGE values were of 15%, 47%, 71%, and 89% when the spiked Tac 

concentrations were 50 µg/L, 25 µg/L, 12.5 µg/L, and 6.25 µg/L, respectively (Figure 4).  

15

47

71

89

0

10

20

30

40

50

60

70

80

90

100

50µg/L Tac 25µg/L Tac 12.5µg/L Tac 6.25µg/L Tac

M
e

an
 r

e
si

d
u

al
 g

e
n

e
 e

xp
re

ss
io

n
 %

 

Figure 4: Effect of different concentrations of Tac on the expression of NFAT-regulated genes, in vitro (Single 

determinations). Tac= tarolimus 

4.1.2 Precision  

The results are illustrated in Table 4.  

Table 4: The within- and between-run imprecision expressed as coefficient of variation 

of the NFAT-regulated gene expression assay at 3 different concentrations of Tac. 

 Within-run precision Between-run precision 

 Tac concentration Tac concentration 

 50 µg/L 25 µg/L 12.5 µg/L 50 µg/L 25 µg/L 12.5 µg/L 

Mean RGE (n=6) 15.9 36.1 82.6 16.5 34.0 87.5 

SD 2.6 5.0 2.3 2.3 1.7 6.0 

CV (%) 16.3% 13.9% 2.8% 13.7% 4.9% 6.8% 

CV = coefficient of variation; RGE= residual gene expression; SD= standard deviation; Tac = tacrolimus  
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The within-run coefficient of variation tested at 3 different concentrations was < 17%. The 

within-run CVs represent the imprecision of the whole assay and not only the PCR step. The 

between-run coefficient of variation at 3 different concentrations was < 14%. The between-

run CVs reflect the imprecision of the reverse transcription and PCR steps. 

4.1.3 Limit of quantification (LOQ) 

The LOQ of the NFAT-regulated genes was below 200 copies per reaction (Table 5). 

Table 5: The Limit of quantification (LOQ) of NFAT-regulated genes 

cDNA Mean (n=6) SD CV (%) 

IL-2 194 22.1 11.4 

IFN-γ 154 23.5 15.2 

GM-CSF 131 17.5 13.4 

CV = coefficient of variation; GM-CSF = granulocyte macrophage colony stimulating factor; IFN-γ = interferon 

gamma; IL-2 = interleukin 2; SD= standard deviation  

4.1.4 Stability  

Regarding stability of the samples, the difference between RGE of the same samples (n=3) 

measured twice within 24 hours was in mean 6% (range -15% - +19%). Figure 5 shows the 

RGE after 24 hours as a % of the measurement at the first day.   
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Figure 5: Stability of the NFAT-regulated gene expression assay: the residual gene expression measured after 24 

h was expressed as % in relation to the RGE measured at the day of blood collection which was set to be 100% 

(n=3). 

4.1.5 Inter-laboratory comparison 

The agreement between the RGE for the 10 patients measured in the two laboratories is 

shown in Figure 6. The Passing-Bablok regression analysis showed no significant deviation 
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from linearity. However, the regression line was tilted and no constant bias was observed over 

the measuring range. Low RGE values were higher in the Stuttgart lab and higher RGE values 

were lower in the Stuttgart lab compared to Heidelberg lab. However, this lead to an 

acceptable mean difference of 4.5 % when data from both laboratories were analyzed using a 

Bland-Altman method comparison plot. Spearman‟s rank correlation analysis revealed an 

excellent and highly significant overall correlation (r=0.951; p<0.0001, n=10). 
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Figure 6: Passing-Bablok regression analysis of residual gene expression (RGE) measured in Heidelberg and 

RGE measured in Stuttgart. Regression line (solid line), the confidence interval for the regression line (dashed 

lines) and identity line (x=y, dotted line) are displayed 

4.2 Phosphoflow assay of S6RP 

4.2.1 Concentration effect relationship 

Evr decreased the level of phosphorylation of S6RP in both CD3+CD4+ and CD3+CD8+ 

cells in vitro in a concentration-dependent manner as indicated in Figure 7. 
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Figure 7: Effect of different everolimus (Evr) concentrations on p-S6RP in CD3+CD4+ cells (A) and 

CD3+CD8+ cells (B). The level of p-S6RP at each concentration of Evr was expressed as % of the p-S6RP at 

control sample (drug-free) which was set to be 100%. This Figure was obtained from the published work of our 

group (Abdel-Kahaar et al., 2016) 

4.2.2 Verification of the in vivo effect of a single dose of Evr on p-S6RP 

Figure 8 indicates the changes in the level of S6RP phosphorylation in CD3+CD4+ and 

CD3+CD8+ cells at 1 and 3 h after a single dose of Evr (0.5 mg) in 3 healthy individuals. It 

can be seen that S6RP showed the greatest suppression at a time point that corresponds to the 

highest Evr concentration. 
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Figure 8: Time course of the effect of a single dose of everolimus (Evr) on the level of phosphorylation of S6RP 

in CD4+ and CD8+ cells and the concentration of Evr in blood. This Figure was obtained from the published 

work of our group (Abdel-Kahaar et al., 2016) 

4.2.3 Specificity 

Specificity of the assay was investigated using samples spiked with different 

immunosuppressants and using samples from various patient groups, including RTx patients 

treated with Evr and Sir. 
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 In vitro 

High concentrations of non-mTORI immunosuppressants fail to elicit a significant effect on 

the level of p-S6RP in vitro when compared to the controls, except for CsA in CD3+CD8+ 

cells (Figure 9) 

%
 p

-S
6

R
P

 in
 r

e
la

ti
o

n
to

c
o

n
tr

o
l

0

50

100

150

200

250

300

0

50

100

150

200

250

300

Control Tac 25 

µg/L

CsA 500

µg/L

MPA

25 mg/L

CD3+CD4+ cells

Control Tac 25 

µg/L

CsA 500

µg/L

MPA

25 mg/L

CD3+CD8+ cells

*

 

Figure 9: In vitro effect of tacrolimus (Tac), cyclosporine A (CsA) and mycophenolic acid (MPA) on inhibition 

of S6RP phosphorylation in CD3+CD4+ cells and CD3+CD8+ cells. Controls did not contain 

immunosuppressants. Columns show median, and bars show 25th and 75th percentiles (n=4). Median of control 

= 100%, *=p<0.05. This Figure was obtained from the published work of our group (Abdel-Kahaar et al., 2016) 

 Ex vivo 

The results are illustrated in Figure 10.  
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Figure 10: Level of phosphorylation of S6RP (ratio of stimulated versus unstimulated) in CD3+CD4+ cells and 

CD3+CD8+ cells in different patient groups (horizontal lines show median and inter-quartile range). C = 

controls; Sir = sirolimus; CsA = cyclosporine A; Evr = everolimus; Infl. = Inflammation (CRP>10mg/L); Tac = 

tacrolimus; p-S6RP = phosphorylated S6 ribosomal protein. This Figure was obtained from the published work 

of our group (Abdel-Kahaar et al., 2016) 
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In comparison to the control group, the median p-S6RP was lower in both cell subsets in 

trough samples from patients who were under therapy with Evr or Sir. Statistical analyses 

showed a significant decrease in phosphorylation of S6RP only in CD3+CD8+ cells in the 

samples with Sir when compared to the control group (p=0.02). The differences between the 

other patient groups and the control group in both cell subsets were not significant (p>0.05).  

4.2.4 Within-run im precision 

The assay imprecision was ≤17% in 2 blood samples containing Evr in both CD3+CD4+ and 

CD3+CD8+ cells. Using 2 blood samples from healthy controls without use of 

immunosuppressant, the imprecision was ≤27% in both cell subsets (Table 6). The level of 

phosphorylation of p-S6RP is represented as the ratio of stimulated versus non-stimulated)  

Table 6: Within-run precision of the phosphoflow assay of S6RP in CD4+ (a) and CD8+ 

(b) cells. 

a) Imprecision of phosphoflow assay of p-S6RP in CD3+CD4+ cells 

 P-S6RP (mean)  SD CV%  

Healthy control (n=6) 73  19.3 26,4 

Healthy control (n=6) 63  14.1 22,2 

Patient sample (Evr treated) (n=6)  59  9,5 16,0 

Patient sample (Evr treated) (n=5) 75  9,4 12,5 

 

b) Imprecision of the phosphoflow assay of p-S6RP in CD3+CD8+ cells 

 P-S6RP (mean)  SD CV%  

Healthy control (n=6) 82 21,8 26,7 

Healthy control (n=6) 83 15,2 18,4 

Patient sample (Evr treated) (n=6)  73 12,7 17,4 

Patient sample (Evr treated) (n=5) 98  15,8 16,2 
CV = coefficient of variation; p-S6RP = phosphorylated S6 ribosomal protein; SD = standard deviation  

4.2.5 Stability 

Although some samples were stable after storage at room temperature for 24 h, other samples 

showed a steep fall in the level of p-S6RP phosphorylation (Figure 11). The difference 

between S6RP phosphorylation measured within 24 h after storage of the samples at room 

temperature (n=7) showed significant differences with (e.g. decrease of 67% or increase of 

32%). Based on these results, all other experiments were performed within 4 h of blood 

collection. 
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Figure 11: Change in p-S6RP phosphorylation in CD3+CD4+ cells and CD3+CD8+ cells after storage of the 

samples for 24 hours at room temperature. HC= healthy control; Sir = sirolimus-treated patient; CsA = 

cyclosporine A-treated patient; p-S6RP = phosphorylated S6 ribosomal protein. This figure was obtained from 

the published work of our group (Abdel-Kahaar et al., 2016) 

4.2.6 Method comparison  
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Figure 12: Comparison of western blot (p-p70S6K) and phosphoflow (p-S6RP) results in CD3+CD4+ cells (A) 

and CD3+CD8+ cells (B). Scatter diagram with regression line, confidence interval for the regression line and 

the identity line. The phosphoflow assay and the western blot were performed as given in Material and Methods. 

This Figure was obtained from the published work of our group (Abdel-Kahaar et al., 2016) 

There was no significant correlation (p<0.05) between the level of p-S6RP measured by 

phosphoflow and the level of p-p70S6K measured by western blot in both cell subsets. 

Passing & Bablok regression analysis showed no agreement between the two different 

methods to assess the PD effect of mTORIs (Figure 12). 
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4.3 Effect of pharmacogenetics on Tac pharmacokinetics in the early 

period after renal transplantation 

4.3.1 Demographic characteristics of the study cohort 

A total of 121 renal transplant recipients were enrolled in this retrospective study. The 

demographic data of the study population are described in Table 7.  

Table 7: Demographic characteristics of the study cohort: 

N 121 

Sex of patients (male/female) 77 (64%)/44(36%) 

Age of patients (years, median/range) 55 (15 – 77) 

Weight (kg, median/range) 76 (42 – 118) 

Transplantation before dialysis (pre-emptive) 10 (8%) 

Re-transplantation 22 (18%) 

Living/deceased donor 52(43%)/69(57%) 

Induction therapy  

 Basiliximab 104 (86%) 

 Thymoglobulin 17 (14%) 

Age of donors (years, median/range) 56 (19 – 88) 

ABO incompatibility 15 (12%) 

HLA mismatches (A, B, DR, median/range) 3 (0 – 6) 

Panel reactive antibodies > 50% 20 (17%) 

Cold ischemia time (min, median/range) 467 (39 – 2113) 

Warm ischemia time (min, median/range) 45 (21 – 86) 

Underlying disease  

– Glomerulonephritis 27 (22%) 

– Polycystic kidneys, adult type 

(dominant) 

24 (20%) 

– Interstitial nephritis/pyelonephritis 7 (6%) 

– Etiology uncertain 36 (30%) 

– Others 27 (22%) 

 

4.3.2 Frequency of the studied SNPs in the study cohort  

The frequencies of the different alleles of the SNPs are shown in Table 8. Most of patients 

who carry the CYP3A4*22 allele were also CYP3A5 non-expressers, however there was no 

linkage disequilibrium between the two SNPs observed (D‟ =1, r
2
=0.004). In a similar way, 

most of the patients who carry the CYP3A4*1B were CYP3A5 expressers but they show high 
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degree of LD (D‟ =0.92, r
2
=0.69). The clustering of CYP3A4*1B and CYP3A4*22 carriers 

according to CYP3A5 status is shown in Table 9.  

Table 8: Genotype and allele frequencies of the studied SNPs in the study cohort: 

SNP Allele frequency (%) Genotype frequency (n, %) 

ABCB1 1236 C>T 

rs1128503 

C 57.4% CC 43 (35.5) 

T 42.6% CT 53 (43.8) 

  TT 25 (20.7) 

ABCB1 2677 G>T/A 

rs2032582 

G 57.85% GG 41 (33.9) 

T 40.5% GT/GA 58 (47.9) 

A 1.65% TT/TA  22 (18.2) 

ABCB1 3435 C>T 

rs1045642 

C 51.4% CC 35 (28.9) 

T 48.6% TC 54 (44.6) 

  TT  32 (26.4) 

CYP3A5*3 

rs776746 

C 91.1% CC 103 (85.1) 

T 8.9% TC 17 (14.1) 

  TT  1 (0.8) 

CYP3A4*1B 

rs2740574 

T 95.5% TT  110 (90.9) 

C 4.5% CT 11 (9.1) 

CYP3A4*22 

rs35599367 

G 95% GG  109 (90.1) 

A 5% GA 12 (9.9) 

 

Table 9: Clustering of CYP3A4*1B and CYP3A4*22 carriers according to CYP3A5 

status:  

CYP3A5 
CYP3A4*1B CYP3A4*22 

*1/*1 *1/*1B *1/*1 *1/*22 

Non-expressers 102 1 92 11 

Expressers 8 10 17 1 

4.3.3 Effect of genotypes on the dose-adjusted concentration of Tac  

As the Tac trough levels (C0) were not available every day for all patients, we could not 

assess the C0/dosage ratio for the different genotypes on a daily basis. Instead, we used the 

available trough levels to measure the area under the time-concentration curve (AUC) as a 

rough estimation of the exposure to Tac. In addition, we compared the firstly-measured Tac 

C0 levels between the various genotypes. The daily dosage of Tac was available for almost all 

patients in our cohort until the patient discharged from the hospital or until the 16
th

 day after 

transplantation. Table 10 indicates the number of patients with available Tac dosages at each 

day until day 16 after transplantation. 
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Table 10: Number of patients with available Tac dosages at each day of the follow-up 

period: 

Day N Day N 

Day1 121 Day 9 120 

Day2 121 Day 10 112 

Day3 121 Day 11 104 

Day4 121 Day 12 93 

Day5 121 Day 13 88 

Day6 121 Day 14 80 

Day7 120 Day 15 64 

Day8 120 Day 16 56 

 

The AUC of dosage and weight-adjusted Tac concentrations was significantly higher in 

patients who are homozygous for the variant allele CYP3A5*3.   This effect was persistent in 

the first two weeks after transplantation. Patients who carry the CYP3A4*22 variant allele 

showed also a significantly higher AUC of dosage and weight-adjusted Tac concentrations 

when considering the two week period (days 1-16) as well as the second week (days 8-14) but 

not the first week (days 1-7) after transplantation. SNPs of the ABCB1 genes (individual SNPs 

and the T-T-T haplotype) and the CYP3A4*1B allele did not show a significant effect on the 

AUC of dosage and weight-adjusted Tac concentrations in this period (Table 11; Figures 13, 

14, 15, 16). 

Table 11: Statistical significance of the correlation between genetic variants and the 

AUC of Tac levels (dosage and weight adjusted) 

Genetic variant 

 

Statistical Test 

 

Unadjusted p-value  

AUC of Tac level/dosage/weight 

Day 1-16 Day 1-7 Day 8-14 

ABCB1 1236 C>T  Kruskal-Wallis 0.65 0.516 0.432 

ABCB1 2677 T>G/A  
Mann–Whitney U test  

(A carriers vs others) 
0.138 0.574 0.0601 

ABCB1 3435 C>T  Kruskal-Wallis 0.488 0.85 0.172 

ABCB1 haplotype 

T-T-T versus non T-T-T  

Mann–Whitney U test  

 
0.823 0.605 0.933 

CYP3A5*3  
Mann–Whitney U test  

(CC vs CT&TT) 
0.0014 0.0018 0.0025 

CYP3A4*1B  Mann–Whitney U test 0.167 0.105 0.386 

CYP3A4*22   Mann–Whitney U test 0.045 0.284 0.008 
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Figure 13: Beanplots illustrating the AUC of dosage&weight-adjusted Tac levels versus time in the first week 

after transplantation (AUC1-7) for each of the investigated genetic variants. The individual measurements are 

shown as lines. The median for each group is shown by a thick black line; the overall median in a plot is shown 

as a dotted line. 
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Figure 14: Beanplots illustrating the AUC of dose&weight-adjusted Tac levels versus time in the second week 

after transplantation (AUC8-14) for each of the investigated genetic variations. The individual measurements are 

shown as lines. The median for each group is shown by a thick black line; the overall median in a plot is shown 

as a dotted line. 
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Figure 15: Beanplots illustrating the AUC of dose&weight-adjusted Tac levels versus time at days 0-16 after 

transplantation (AUC1-16) for each of the investigated genetic variations. The individual measurements are shown 

as lines. The median for each group is shown by a thick black line; the overall median in a plot is shown as a 

dotted line. 
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Figure 16: Beanplots illustrating the AUC of dose&weight-adjusted Tac levels versus time as well as the AUC 

of Tac dosage versus time during the first week, second week and at days 0-16 after transplantation (AUC1-7, 

AUC8-14, AUC1-16) for the ABCB1 haplotype (T-T-T) compared to the other genotypes. The individual 

measurements are shown as lines. The median for each group is shown by a thick black line; the overall median 

in a plot is shown as a dotted line. 
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4.3.4 Effect of genotypes on Tac-dose requirements  

The results are illustrated in figure 17. None of the selected ABCB1 SNPs showed a 

significant effect on the Tac dosage requirement in the first 2 weeks after transplantation. 

Patients who carry the CYP3A5*3/*3 genotype showed a significantly lower dose requirement 

(mg/kg/day) compared to those who carry at least one functional allele (CYP3A5*1) 

considering a 2 week period after transplantation. There was also a trend of significance 

toward a decreased dose requirement in patients who carry CYP3A4*22, again considering a 2 

week period after transplantation; the difference reached statistical significance only at day 10 

(p= 0.0258). A similar trend in the opposite direction was shown for patients who carry the 

CYP3A4*1B requiring higher dosages of Tac; only at day 12, 15 and 16 data reached 

statistical significance keeping in mind that Tac dosages were missing for some patients at 

day 15 and 16 who already were discharged from hospital.  
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Figure 17: Tac dose per body-weight (mg/kg/day) at days 0-16 after transplantation for all investigated genetic 

variants. The different genotype groups are marked by different colors. Diamonds represent medians of Tac 

dose/weight at the different days; shaded areas are defined by 25% and 75% quantiles. Tac= tacrolimus 
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4.3.5 Association between the different SNPs and clinical outcomes 

Delayed graft function (DGF; defined as the need for dialysis in the first week after surgery) 

was observed in 30 patients (25%). Acute rejection was observed in 21 patients (17%) of the 

study population. ABCB1 3435 C>T polymorphism was found to be associated with increased 

risk of DGF (P = 0.02). No other significant associations between the investigated SNPs and 

acute rejection or DGF were found. The estimated glomerular filtration rate (eGFR) measured 

at discharge of patients was not significantly different between the genotypes studied (Table 

12).  

Table 12: Association between the studied SNPs und clinical events in the early post-

transplant period  

Genetic variant 

Unadjusted p-value  

eGFR MDRD at 

discharge (ml/min) 

Delayed graft 

function (DGF) 

Acute 

rejection 

ABCB1 1236  0.811 0.707 0.905 

ABCB1 2677 T >G/A  0.907 0.571 0.538 

ABCB1 3435 C>T  0.198 0.023 0.533 

CYP3A5*3  0.076 0.147 0.515 

CYP3A4*1B  0.891 0.463 1 

CYP3A4*22   0.384 0.728 1 

eGFR MDRD = estimated glomerular filtration rate by The Modification of Diet in Renal Disease study equation  
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5 Discussion 

 

“If it were not for the great variability among individuals, medicine might as well be a 

science, not an art” Sir William Osler, 1892 

 

5.1 The use of biomarkers to complement therapeutic drug monitoring of 

immunosuppressive therapy  

The field of transplantation medicine has witnessed a great success in the last few decades. 

This success is attributed in large part to the use of highly efficient immunosuppressive 

protocols (Lechler et al., 2005). CNIs and mTORIs represent important components of all 

immunosuppressive protocols. The use of these agents requires careful monitoring because of 

their narrow therapeutic window (i.e. having little difference between toxic and therapeutic 

doses) and their unpredictable pharmacokinetics (Halloran, 2004). 

Currently, the PK monitoring (conventional TDM) is used to guide the therapy with these 

drugs where the concentration of the drug in the blood is used to adjust the dose. This 

approach is very valuable to prevent acute fluctuation of the drug level in the blood and 

consequently may contribute to avoid acute toxicity and/or rejection (Budde and Glander, 

2005). However, this approach is highly limited to determine the optimal starting dosage for 

each individual patient since it can be applied only after the drug therapy has been started. 

Moreover, the PK approach is of less value to optimize the dosage of immunosuppressants in 

the stable phase after renal transplantation. The ultimate goal of the conventional TDM is to 

achieve a blood concentration of the drug within a pre-defined therapeutic range. This range, 

however, has not been established yet for the stable phase after transplantation where the risk 

of rejection varies among individuals and is decreasing over time (Olbricht, 2012). 

It became increasingly clear in recent years that the success in the early phase of renal 

transplantation does not continue regarding long-term function and patient survival. Two 

factors are in particular responsible for this. Firstly, chronic rejection is so far uncontrollable 

and secondly long term side effects of immunosuppression cannot be predicted, such as 

nephrotoxicity, development of diabetes mellitus and cardiovascular diseases and the 

incidence of opportunistic infections & malignant neoplasms (Lechler et al., 2005). In order 
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to improve the long-term results in the future, many transplant centers adopt a new strategy 

through tapering the dosage of the immunosuppressive drug to minimize the toxicity profile 

without increasing the risk for short-term graft survival. However, this strategy requires an 

individual approach since different patients have a different risk profile. At present time, there 

is a lack of indicators which allow a reliable assessment of the immune status of the 

individual patients (Olbricht, 2012). 

In line with this background, optimization of immunosuppressive drug therapy through the 

PK approach alone is insufficient and should be complemented with a PD and PGx 

approaches by the use of appropriate and validated biomarkers (Wieland et al., 2012). In 

general, biomarkers that can be used to manage the immunosuppressive therapy after 

transplantation fall into 2 categories: a) drug specific biomarkers which reflect the specific 

pharmacological effect of an immunosuppressive agent and b) drug non-specific biomarkers 

which reflect the overall effect of drugs influencing the immune function (Shipkova, 2016) 

(Figure 18).  

 

Biomarkers to manage 

immunosuppression in 
transplant patients 

Drug specific 

biomarkers

Pharmacokinetic 

biomarkers 

Drug concentration 

AUCs

Pharmacodynamic 

biomarkers

Target enzyme activity

Target gene expression 

Pharmacogenetic 

biomarkers 

Drug metabolizing enzymes 

Drug transporters

Drug targets

Drug non-specific 

biomarkers 

Biomarkers of 
organ damage 

Biomarkers of 
immune response 

 

Figure 18: Types of biomarkers to manage therapy with immunosuppressive drugs after transplantation (Adapted 

from Shipkova, 2016) 

Several biomarkers have been proposed to track the general effect of immunosuppressive 

therapy on immune cells (drug non-specific biomarkers). The activation and proliferation of T 

lymphocytes (which play a central role in the rejection reaction and in the defense against 

infection) are frequently monitored in ex vivo models in which the cells are stimulated by 
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mitogens. T cell activation may be monitored by e.g. the expression of surface molecules on 

CD3+, CD4+ or CD8+ cells, measuring intracellular ATP concentration in CD4+ cells, 

tracking cytokine production by activated T-cells (ELISPOT assay; enzyme-linked 

immunosorbent spot assay) or through measuring the level of soluble CD30 (sCD30) which is 

produced and released in blood by activated T lymphocytes. Lymphocyte proliferation may 

be traced by monitoring DNA synthesis or the expression of genes which play a role in the 

regulation of the cell cycle such as PCNA (proliferating cell nuclear antigen) (Shipkova and 

Wieland, 2012). Another approach to assess the status of the immune system comprises the 

determination whether tolerance has been developed, which would allow minimization of 

immunosuppression. An indicator of a possible tolerance are regulatory T-cells (Tregs), 

which can be identified by typical surface markers using flow cytometry (CD4+ CD25+ 

CD127low/–) or by means of demethylated transcription factor FOXP3 protein (Su et al., 

2012). Only two of these biomarkers were approved to be used clinically and include 

Immuknow™ which is a functional immune assay to measures the increase in ATP 

production by activated T-lymphocytes and the AlloMap® which measure specific gene 

expression patterns to determine the risk of acute rejection in heart transplant recipients 

(Wieland et al., 2012). 

This work focused on drug-specific biomarkers (PD and PGx) which will complement the 

classical PK approach for the individualization of immunosuppressive therapy. Specific PD 

biomarkers include measuring target enzyme activity or target gene expression while PGx 

biomarkers comprise genetic variants of candidate genes which could impact drug disposition 

or response.  

Different biomarkers could have different roles in optimizing immunosuppressive therapy 

after transplantation. The potential of each biomarker category can be seen in Figure 19. The 

PGx profile of the patient would be helpful in drug selection and in determining the starting 

dose of the drug. PD biomarkers, on the other hand, would help to select for the right dose 

over time (Urtasun et al., 2008).  
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Figure 19: The potential roles of different biomarkers to individualize immunosuppressive drug therapy 

5.2 Validation of biomarker assays  

For a biomarker to be appropriate to be implemented into routine clinical practice, certain 

criteria must be fulfilled. The biomarker a) should be non-invasive, easily measurable and 

cost-effective; b) a short turn-around time should exist (the result should be available within 

24 h); c) a reliable assay with data from clinical trials should be available and d) the assay 

should demonstrate satisfactory analytical performance. The availability of an optimized 

assay kit that is commercially supplied is also of a great advantage when it comes to the 

routine diagnostics, as it prevents the impairment of the assay performance by confounding 

factors (Shipkova et al., 2016).  

Despite the great number of biomarker studies that have been published in recent years, most 

of these biomarker assays did not find their way into clinical practice because they are, with 

few exceptions, neither analytically validated according to international guidelines nor 

suitable due to their complicated nature for routine use. Furthermore many laboratory-
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developed techniques have not been cross validated between laboratories and the 

reproducibility of results between laboratories is questionable (Shipkova et al., 2016). 

In the era of personalized medicine and with the expected increase in the use of biomarkers as 

a crucial component of the strategy of personalized medicine, the health authorities start to 

provide guidelines and regulations for validation of biomarkers. According to the FDA, a 

valid biomarker assay is „a biomarker measured in an analytical test system with well-

established performance characteristics and for which there is an established scientific 

framework or body of evidence that elucidates the physiologic, toxicologic, pharmacologic, or 

clinical significance of the test results‟ (FDA: Guidance for Industry Pharmacogenomic 

Data Submissions, 2005). 

To foster the implementation of new biomarkers into routine practice, more effort needs to be 

exerted for the analytical validation of promising candidate biomarkers according to 

international guidelines. The validation of biomarker assays must include the entire path 

starting with selecting the proper sample matrix, pre-analytical aspects and analytical 

performance. However, the level of validation depends on the intended use of the assay and 

also on the assay characteristics and this is called “fit-for-purpose” validation. In general, the 

performance characteristics that should be covered through validation of biomarker assays 

include one or more of the following parameters: linearity, specificity, precision, accuracy, 

analytical sensitivity (limit of detection (LOD) or LOQ) robustness and stability (Landeck et 

al., 2016). 

A next step after the validation of the assay in one center is the harmonization and 

standardization of the results across laboratories. Different laboratories adopt different 

approaches for sample processing and data analyses of biomarker assays. This results in 

discrepancies of the generated results which consequently raises the question about the 

clinical validity of such assays. Consequently, harmonization of the results of biomarker 

assays across laboratories is an essential pre-requisite before their clinical implementation on 

a wide scale (Britten et al., 2008). 

The discrepancy of results generated from different laboratories is also a major challenge in 

case of PGx biomarkers. While some laboratories report significant effects of a certain SNP 

or haplotype on the pharmacokinetics or pharmacodynamics of drugs, other laboratories 
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report non-significant or sometimes contradictory results. To overcome such a problem, large 

multicenter trials are needed where uniform phenotypic conditions have to be applied in all 

participating centers (study population, treatment strategy , …etc) (de Jonge and Kuypers, 

2008). 

For a more effective approach toward the implementation of the PGx biomarker in the clinical 

settings, the dynamic relationship between the individual‟s genotype and phenotype should be 

also considered. The effect of genetic variation on the drug‟s response is changing and 

depends on several factors. From this perspective, the development of algorithms to 

incorporate the PGx data with other covariates together would have a higher predictive value 

than the mere consideration of a single marker (Schwab and Schaeffeler, 2012). A 

successful implementation of this approach can be seen by the anticoagulant drug warfarin 

where genotyping data of CYP2C9/VKORC1 were combined with other factors e.g. age, sex, 

body mass index … etc. to generate an equation which can be used for dose calculation in 

clinical routine (Schwab and Schaeffeler, 2011).  

In this work, two PD biomarker assays were analytically evaluated; 1) NFAT-regulated gene 

expression assay which is developed to monitor the therapy with CNIs. This assay was 

developed in Heidelberg by Giese et al (Giese et al., 2004). However, data about the 

performance of this assay in an independent laboratory as well as data about interlaboratory 

performance were lacking. Thus this assay was validated in the laboratory of Klinikum 

Stuttgart and a small harmonization trial with kidney center in Heidelberg was conducted as 

well; 2) Phosphoflow assay of S6RP: a protocol to measure the level of phosphorylation of 

S6RP using the new technique of phosphoflow was set up and the analytical performance of 

the assay was investigated. This assay was intended to be used as a PD biomarker of the 

mTORIs.  

In addition to these two PD assays, a retrospective PGx study was also conducted to assess 

the prevalence of seven SNPs in functional relevant candidate genes (CYPs and ABCB1) 

using a cohort of 121 renal transplant recipients in Stuttgart and to elucidate the impact of the 

selected SNPs  on Tac pharmacokinetics in the early period after transplantation. 
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5.3 NFAT-regulated gene expression assay 

Consistent with their extensive use as immunosuppressive agents after organ transplantation, 

the effectiveness of CNIs on immune functions has been thoroughly studied to find out 

suitable PD biomarkers of their response. The change in the expression of cytokine genes 

under the influence of CNI is a potentially useful PD biomarker and the quantitative analysis 

of this change using RT-PCR has proposed as a tool for this purpose (Giese, 2001).  

Through their inhibitory effect on the transcription factor NFAT, three genes were found to be 

chiefly downregulated by CNIs; IL-2, INF-γ and GM-CSF. An assay protocol to measure the 

level of transcription of these genes before and after CsA or Tac intake was set up based on 

RT-PCR. The ratio between expression before and after drug intake expressed as RGE can be 

used as readout of the effect of CNI.  

The correlation between the RGE and clinical events after transplantation, particularly 

infection and malignancy, has been demonstrated in different patient cohorts. Sommerer et al. 

have also proved the ability to taper the dosage of CsA in stable transplant patients without 

risking the graft function based on RGE (Sommerer et al., 2008). Data on the analytical 

performance of this assay in two independent laboratories were, however, lacking.  

In this study, the guidelines and recommendations for validation of methods that depend on 

quantitative Real-Time PCR (Bustin et al., 2009; Broeders et al., 2014; Sanders et al., 

2014) were applied to test the performance characteristics of a PD assay based on analysis of 

gene expression to monitor therapy with CNI. To test the analytical performance of the assay, 

drug free blood samples which were supplemented with Tac in vitro were used. To assess the 

comparability of the NFAT-regulated gene expression assay between laboratories, samples of 

transplant patients under CsA therapy were collected and analyzed in Heidelberg where the 

assay has been established and set up for many years and sent to Stuttgart to be re-analyzed 

within 24 hours. Results of the in vitro experiments showed that the NFAT-regulated gene 

expression assay is reproducible at acceptable limits both within-series as well as between-

series after supplementation with Tac. Previously published results showed that using RT-

PCR to measure cytokine gene expression is sensitive and precise with a between-run 

precision <20% as reported by Giese et al. (Giese, 2001; 2003), which was confirmed when 
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using this assay in the Stuttgart lab. The performance data have agreed also with published 

guidelines for validation of qualitative real-time PCR methods (Broeders et al., 2014). 

The samples were stable after 24h of storage at room temperature which is valuable in clinical 

situations. Inter-laboratory comparison using blood samples from kidney graft recipients 

showed an acceptable bias between both labs. Using a Bland-Altman plot to investigate 

method agreement the mean difference between both laboratories was only 4.5 %. However a 

trend for a difference has been noted which was not constant over the observed range of RGE. 

As it can be seen from the Passing-Bablok regression analysis at lower RGE the results were 

higher in Stuttgart, whereas at higher RGE results were lower compared to Heidelberg. 

According to the experiences in Heidelberg, 10 copies/µl can be easily achieved on the 

LightCycler instrument for all three genes (T. Giese, personal communication) whereas in 

Stuttgart the LOQ was between 100-200 copies per reaction which corresponds to 20-40 

copies/µl in our qPCR protocol. This may explain the discrepant results particularly at the low 

end of the RGE observed in the inter-laboratory comparison experiment. This trend could not 

be further verified or ruled out in this small comparison study due to the limited number of 

samples. Although this shift between low and high RGE had no major impact on the overall 

satisfactory method congruence, this emphasizes the requirement to carefully validate or 

verify the performance of sophisticated biomarker assays before implementing them in a 

clinical setting. 

Taken together the data shows for the first time that the relatively complex assay can be 

applied in different laboratories leading to comparable results. These results were obtained 

despite the modification of a critical step of the assay protocol which is RNA isolation. The 

laboratory in Stuttgart used another approach to isolate RNA to accommodate the assay 

procedures to its own instruments. An important factor for this positive result is certainly a 

centralized primer production and a well-developed and described assay procedure which is 

provided to the customers in the package insert of the primers. The comparability of results 

between laboratories could be further improved by manufacturing standards and stable quality 

control material for the intra-laboratory control of accuracy and precision as well as for 

providing samples for a proficiency testing scheme which can be used for external quality 

control. 
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The possibility of obtaining comparable results of biomarker assays among different 

laboratories by adoption of uniform procedures in the field of transplantation medicine has 

been proven by Ashoor et al. They have cross-validated an IFN-γ Elispot assay for measuring 

the T-cell alloreactivity in renal transplant recipients and showed that the implementation of 

standard operating procedure (SOP) regarding sample processing and data analyses has 

remarkably improved the reproducibility of the assay with an interlaboratory CV of about 

30% (Ashoor et al., 2013). This activity was done under the umbrella of the CTOT (Clinical 

Trials in Organ Transplantation) consortium which is an association of multiple transplant 

centers in North America deeply engaged in transplant-related biomarker development and 

standardization. Other successful examples of biomarker assay harmonization by the CTOT 

consortium are the establishment of a SOP for gene expression profiling (Keslar et., 2013) 

and the standardization of solid phase multiplex-bead arrays for detection of HLA-antibodies 

(Reed et al., 2013).  

As a further extension of the efforts to promote the harmonization of biomarker immune-

monitoring, the transplantation community launched recently a project called “Global Virtual 

Laboratory (GVL)”. The objective of this project is the establishment and the universal 

dissemination of assay protocols which allow reliable monitoring of the alloimmune response 

(Geissler et al., 2015). 

In a future perspective, the NFAT-regulated gene expression assay has a potential to be used 

in multicenter trials involving local laboratories. Under these conditions it is feasible that in 

an acceptable time frame clinical data from multicenter trials with different grafts and 

immunosuppressive regimens will be available to estimate the true diagnostic sensitivity and 

specificity of the assay as well as the specific cut off values for CsA and Tac to predict 

clinical events. In addition, the NFAT-regulated RGE assay fulfills criteria which make it 

likely that the assay may reach routine application. However, one drawback is the requirement 

to collect two samples per patient one before and one after drug intake. This procedure may 

be suitable for an in-patient application but is inconvenient for an outpatient setting. 

5.4 Phosphoflow assay of S6RP 

The response to mTORIs entails many changes at the molecular level. The p70 ribosomal 

protein S6 kinase (p70S6K) and its target the S6 ribosomal protein (S6RP) are consecutive 
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molecules in the signaling cascade downstream to mTOR (Figure 3). Inhibition of the kinase 

activity of mTOR by the mTORIs resulted in decreased level of phosphorylation of these 

molecules which suggest the level of phosphorylation as a potential biomarker for mTOR 

inhibiting drugs.  

Hartmann et al. were able to measure the level of phosphorylation of p70S6K by western blot 

and they observed a significant decrease in the level of phosphorylation of p70S6K in patients 

treated with Sir when compared with patients under non-mTORI immunosuppression or with 

healthy controls. The level of phosphorylation was also correlated with the incidence of acute 

rejection (Hartmann et al., 2005). The use of Western blot is, however, suitable for research 

purposes but not for routine use.  

Flow cytometry is a powerful analytical platform and it is superior to many of the 

conventional methods since it is sensitive, rapid and high-throughput (Krutzik et al., 2004). 

The development of antibodies against phosphoproteins together with protocols for fixation 

and permeabilization of the cells has enabled the utilization of flow cytometry for detection of 

phosphoproteins inside the cells; this is called phosphoflow (Krutzik and Nolan, 2003).  

In this work, the level of phosphorylation of S6RP was measured through a phosphoflow 

protocol employing a commercial kit for fixation and permeabilization of leucocytes in whole 

blood samples (PerFix-p Kit, Beckman Coulter, Inc.) and anti-human p-S6RP (S235/S236) as 

a phosphoantibody. The assay performance was tested both in vitro where blood samples 

were spiked with different immunosuppressive agents as well as with clinical patient samples. 

In addition three volunteers took a single dose of Evr and the level of p-S6RP and the drug 

concentration in blood were measured 1h and 3h thereafter. A method comparison with 

western blot assay employing an anti p-p70S6K was also conducted 

In vitro experiments showed that p-S6RP reflects the effect of Evr in CD4+ as well as CD8+ 

cells. This effect has been verified in vivo with 3 healthy volunteers took a single dose of Evr. 

It was shown that the lowest level of p-S6RP correspond to the peak concentration of Evr in 

blood (Figure 8). However, on testing the specificity of the assay in vitro through spiking 

blood samples with large concentrations of non-mTORI immunosuppressants, a significant 

effect of CsA to decrease S6RP in CD8+ cells has been observed (Figure 9). A similar 

observation has been also reported by other research groups (Hoerning et al., 2015; Wang 
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and Fan, 2015). This observation may reflect the complexity of the signaling network that 

involves activation of mTOR which could be modulated by several other signaling pathways 

(Abdel-Kahaar et al., 2016).   

Applying the assay to measure S6RP in blood samples from different patient groups showed 

that the level of phosphorylation of S6RP is decreased in both CD4+ and CD8+ cells in Sir 

and Evr treated patients groups. However, this effect was statistically significant only with Sir 

in CD8+ cells. This effect may be attributed to the differences in the physiochemical 

properties between Sir and Evr (which may lead to differences in their pharmacokinetics or 

pharmacodynamics) on one side and differences between CD4+ and CD8+ cells regarding 

their different profiles of signaling cascades on the other side (Abdel-Kahaar et al., 2016).   

While Sir is a naturally occurring macrolide, Evr was produced by adding a hydroxyethyl 

group at position 40 of Sir. Owing to this chemical modification, the PK properties of the 2 

drugs vary considerably. Compared to Sir, Evr is more polar and has a much shorter 

elimination half life (28 h compared to 62 h in mean) (Klawitter et al., 2015).  

“The role of mTOR signaling in regulation of proliferation and differentiation of T cells 

varies between CD4+ and CD8+ cells and may entail diverse mechanisms. Likewise, 

pharmacological inhibition of mTOR signaling may induce different responses in both cell 

subsets. High dose of rapamycin inhibits both complexes of mTOR (mTORC1 and mTORC2) 

in CD4+ cells but not in effector CD8+ cells where mTORC1 only is inhibited. Analysis of 

the functional markers of PBMC in liver transplant patients who receive Evr by 

polychromatic flow cytometry showed that CD4+ and CD8+ cells express different panels of 

markers upon activation with a superantigen which is another evidence on the differential 

response of CD4+ and CD8+ cells to mTOR inhibition” (Abdel-Kahaar et al., 2016).   

While the assay concept was verified both in vitro and in vivo, the results of inter-method 

comparison of the same samples were disappointing. Parallel measurements of the same 

samples with western blot revealed lack of agreement between results from both methods. 

However, it should be noted that western blot analysis was performed with anti-p-S6K 

(Thr389) phosphoantibody while our phosphoflow protocol employs an anti-p-S6RP 

(Ser235/236). 
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In summary, the phosphoflow assay of p-S6RP as a PD biomarker of mTORIs provides 

several advantages including the possibility to work with whole blood samples and its 

satisfactory analytical performance. However the assay turns to be non-specific to the effect 

of mTORIs which questions its fitness for purpose. Whether further optimization of the assay 

protocol would improve the diagnostic utility, still needs to be determined. 

5.5 Effect of pharmacogenetics on Tac pharmacokinetics in the early 

period after renal transplantation 

The early period post-transplant is very critical since it is associated with the highest 

incidence of graft dysfunction or rejection which was found to be attributed to non-optimal 

exposure to Tac (Staatz et al., 2001; Kuypers et al., 2010a).  There is also no role for TDM 

to determine the initial dosing of Tac. Therefore, the presence of indicators of patient‟s 

response to drugs would be of major help in dose optimization regarding this critical time 

(Abboudi and MacPhee, 2012). It is well known that for some examples genetic variation 

can account for up 95% of interindividual variability in drug effects and disposition. Most of 

these variations are related to drug metabolizing enzymes or transporting proteins (Evans and 

McLeod, 2003). In this study, the influences of seven SNPs in CYP3A4/5 and ABCB1 on Tac 

PK in the early period after transplantation were investigated. The studied SNPs include: 

CYP3A5*3, CYP3A4*22, CYP3A4*1B, and four SNPs in the ABCB1 gene (3435T>C, 

2677T>G/A and 1236T>C).  

The significant role of the CYP3A5*3 on the PK of Tac in the early period post-

transplantation was confirmed. The frequency of *3/*3 genotype (non-expressers) in the study 

cohort was about 85%; these patients showed an increased AUC compared to CYP3A5 

expressers. This effect was persistent when considering the first week (AUC1-7 days), the 

second week (AUC8-14 days) or the whole follow-up period (AUC1-16 days). In addition, non-

expressers required lower doses of Tac compared to expressers and the difference was 

statistically significant at all time points. After exclusion of re-transplant patients and patients 

who were on Tac therapy before the transplantation for any reason, the firstly-measured C0 of 

Tac in de novo renal transplant recipients (n=77) was significantly lower in expressers versus 

non-expressers (P = 0.00045). These results were in line with previously published results 

(Zhang X et al., 2005; Roy JN et al., 2006 and Gervasini G et al., 2012). 
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Recently, a newly discovered SNP in intron 6 of the CYP3A4 gene (CYP3A4*22, rs35599367) 

was found to be associated with a higher Tac C0 and a lower Tac dose requirement compared 

to homozygous wild type subjects early after transplantation (Elens et al., 2013a and Pallet 

et al., 2015). However, the effect of this SNP was not unequivocal. Some research groups 

reported an effect of this SNP on Tac dose requirement (Gijsen et al., 2013) while others did 

not find any effect of this SNP (Tavira et al., 2013).  

In our study cohort of 121 renal transplant recipients, the frequency of the CYP3A4*22 

carriers was about 10%. Patients who carry this allele required lower weight-adjusted doses of 

Tac than non-carriers, whereas the difference reached statistical significance only at day 10 

post transplantation. The firstly-measured Tac C0 level in de novo transplant recipients 

(n=77) was higher in CYP3A4*22 carriers (ranging from 4.6 to 24.4, median 9.7mg) versus 

non-carriers (ranging from 2.5 to 28, median 7.6mg), however the difference was not 

statistically significant. Although we observed a statistically-significant difference between 

the 2 genotypes regarding the AUC in the second week post-transplant (AUC8-14 days, p= 

0.0078), this result should be interpreted with caution because many patients were discharged 

from the hospital after the 10
th

 day post-operative (see Table 10) and only limited every day 

Tac C0 levels were available for patients who stayed longer.  

The CYP3A4*1B was described to be an increased-in-function allele as its presence has been 

linked to increased gene expression (Amirimani et al., 2003). The results of the study cohort 

support this hypothesis as patients who carry this polymorphism required higher dosages of 

Tac during the first two weeks post-transplant. However almost all patients who carry 

CYP3A4*1B (10 out of 11) were also CYP3A5 expressers and a high degree of LD was 

observed between the two SNPs. A similar finding has been reported by Gervasini et al. in a 

cohort of 103 renal transplant recipients (Gervasini et al., 2012).  

The majority of the previous studies failed to find an independent effect of ABCB1 individual 

SNPs or haplotypes on Tac PK. Still, there were few studies which showed differences in PK 

of Tac among different ABCB1 genotypes; however these results were not conclusive and 

could not be replicated (see Table 3, reviewed in Wolking et al., 2015). In line with these 

studies, no effect of ABCB1 individual SNPs or haplotypes on Tac PK in the present study 

cohort was found.  
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The incidence of DGF was higher among patients who carry the ABCB1 3435 C>T 

polymorphism and the difference was statistically significant (P= 0.02). This correlation was 

noticed despite the lack of a significant effect of this polymorphism on Tac exposure or dose 

requirements in the study cohort which may reflect a toxic effect of increased intracellular 

Tac rather than the whole Tac blood level. Similar results have been reported by Cattaneo et 

al. where they found that carriers of the T variant allele of either the ABCB1 3435 C>T or the 

2677 G>T/A polymorphisms had a three-fold risk for DGF in a cohort of CsA-treated renal 

transplant recipients (Cattaneo et al., 2009).  

This study is among the relatively few studies to investigate the impact of genetic variation 

especially the new CYP3A4*22 SNP on the PK of Tac early after transplantation. The most 

consistent effect in the cohort under study seems to be attributed to CYP3A5*3 and to a lesser 

extent to CYP3A34*22 while the impact of other SNPs  is uncertain. Yet this study has some 

limitations. The most significant limitation of this study is the missing Tac C0 at each time 

point which precluded the analysis of the differences between various genotypes in PK 

parameters on a daily basis. A second limitation is the sample size which is relatively small. 

This small sample size implies difficulties in analyzing SNPs with low frequencies. For 

instance we identified only 12 patients who carry the CYP3A4*22 polymorphism and almost 

all of them are CYP3A5 non-expressers, thus we were unable to investigate the impact of 

CYP3A4*22 among the CYP3A5 expressers.  
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6 Summary  

The development of pharmacodynamic and pharmacogenetic biomarkers to complement the 

currently used pharmacokinetic approach to optimize immunosuppressive therapy after organ 

transplantation remains an ongoing need in the field of transplantation medicine. Several 

biomarker studies have been published in the last few years however, only few biomarker 

assays found their way to clinical practice. This is due to lack of validation, cross validation 

and standardization of potential biomarker assays.   

This work entailed the analytical validation of two pharmacodynamic (PD) biomarker assays. 

These include “NFAT-regulated gene expression assay” to monitor therapy with calcineurin 

inhibitors and “phosphoflow assay of S6RP” to monitor therapy with mTOR inhibitors. 

Additionally, a retrospective pharmacogenetic study to investigate the frequency and the 

impact of seven SNPs in the genes of CYP450 and ABAB1 on tacrolimus pharmacokinetics 

early after transplantation in a cohort of 121 renal transplant recipients was also conducted.  

It was proven that the “NFAT regulated gene expression assay” can be set up with 

satisfactory analytical performance in a routine molecular biology laboratory. In a small inter-

laboratory comparison, it was noted that the results generated from both laboratories are well 

correlated (r=0.951) but showed an inconsistent bias depending on the magnitude of residual 

gene expression (RGE, the readout of the assay).This observation denotes the need for careful 

validation of the biomarker assays as well as the harmonization of their results across 

laboratories before their clinical implementation.  

Measurement of phosphorylation status of S6RP through a phosphoflow protocol based on a 

commercial kit and utilizing whole blood as sample matrix has been proved to be non-

sophisticated and performs analytically well. However, specificity and stability of the assay as 

well as the disagreement with western blot (based on anti-phospho p70S6 kinase) questions 

its fitness for purpose as a PD biomarker of therapy with mTORIs.  

In a retrospective pharmacogenetic study, the effect of the CYP3A5*3 polymorphism on Tac 

pharmacokinetics early after transplantation was validated in a cohort of 121 renal transplant 

recipients in Stuttgart. Most of the individuals in the study cohort (85%) were CYP3A5 non-

expressers (*3/*3) and showed increased exposure to Tac as well as decreased dose 

requirements in the first two weeks after transplantation. The frequency of the newly 
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discovered CYP3A4*22 SNP was about 10% in the study cohort which coincides with 

previously published results. Patients who carry this variant allele showed increased exposure 

as well as decreased dosage requirement of Tac.  

In conclusion, this work proved the possibility to establish biomarker assays for 

individualizing immunosuppression with a satisfactory analytical performance in routine 

clinical laboratory especially when optimized assay protocols are applied and particularly 

when these are in the form of test kits. The reproducibility of the results across laboratories 

requires, however, careful harmonization/standardization of the assay conditions. The 

determination of the CYP3A5*3 as well as CYP3A4*22 polymorphisms may help to optimize 

the initial Tac dose,. 

Future perspectives:  

To facilitate the implementation of biomarker assays in the routine diagnostics in the future, 

standardization of the pre-analytical aspects as well as the analytical procedures are required. 

The clinical usefulness of the assay should be then assessed in prospective clinical trials 

involving many centers.  
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7 Zusammenfassung  

Die Nierentransplantation (NTx) ist eine Standardtherapie für viele Patienten im Endstadium 

einer Nierenerkrankung, da sie zu einer niedrigeren Sterblichkeitsrate sowie verbesserter 

Lebensqualität im Vergleich zu Dialyseverfahren führt. Das Gebiet der 

Transplantationsmedizin  hat große Fortschritte in den letzten Jahrzehnten gemacht. Dieser 

Erfolg ist zu einem großen Teil auf die Anwendung effektiver immunsuppressiver Therapien 

zurückzuführen. Die Calcineurin-Inhibitoren (Ciclosporin und Tacrolimus) und mTOR-

Inhibitoren (Sirolimus und Everolimus) sind wichtige Komponenten der immunsuppressiven 

Therapie. Die Verwendung dieser Medikamente erfordert jedoch eine sorgfältige 

Überwachung der Patienten aufgrund ihres engen therapeutischen Bereichs und ihrer schlecht 

vorhersagbaren Pharmakokinetik.  

Augenblicklich wird die Therapie mit diesen Medikamenten durch ein pharmakokinetisches 

Therapeutisches Drug Monitoring (TDM) gesteuert, bei dem die Dosis anhand der 

Konzentration des Medikaments im Blut eingestellt wird. Dies ist sehr gut geeignet um akute 

Schwankung der Medikamentenkonzentration im Blut zu kontrollieren und folglich eine akute 

Toxizität oder Abstoßungsreaktion zu vermeiden. Das TDM kann jedoch nicht dazu 

verwendet werden,  um die optimale Anfangsdosis für jeden einzelnen Patienten zu 

bestimmen, da es erst nach Beginn der Arzneimitteltherapie erfolgt. Es ist auch weniger gut 

für die Anpassung der Dosis der Immunsuppressiva in der stabile Phase nach der 

Transplantation geeignet, um Langzeitnebenwirkungen zu minimieren.  

Vor diesem Hintergrund wird deutlich, dass eine Optimierung der immunsuppressiven 

Therapien allein durch den pharmakokinetischen Ansatz nicht ausreichend ist, sondern dies 

mit pharmakodynamischen und/oder pharmakogenetischen Ansätzen unter Verwendung 

geeigneter Biomarker ergänzt werden sollte. Während pharmakodynamische Biomarker mit 

pharmakologischen Effekten der Medikamente auf Zielmoleküle assoziiert sind, 

konzentrieren sich pharmakogenetische Untersuchungen hauptsächlich auf 

arzneimittelmetabolisierende Enzyme (z.B. Cytochrom P-450 Polymorphismen) und 

Arzneimitteltransporterproteine (z.B. Mutationen in Genen der Familie der ATP-Bindungs-

Kassetten-Transporter) und damit in der Folge auf pharmakokinetische Parameter. 
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Trotz der großen Anzahl von Biomarker-Studien, die in den letzten Jahren veröffentlicht 

wurden, fanden die meisten Biomarker-Assays ihren Weg in die klinische Praxis nicht, weil 

sie, mit wenigen Ausnahmen, weder nach internationalen Leitlinien analytisch validiert noch 

wegen ihres komplizierten Aufbaus für den Routineeinsatz geeignet sind. Außerdem wurde 

die Reproduzierbarkeit der Assays zwischen unterschiedlichen Labors meistens nicht getestet. 

Weitere Studien sind daher erforderlich, um die Routinetauglichkeit der Biomarker-Assays 

mit dem Potential für eine klinische Anwendung zu testen. 

Diese Arbeit umfasst die analytische Validierung von zwei pharmakodynamischen 

Biomarker-Assays: die „NFAT-regulierte Genexpression“ zur Überwachung der Therapie mit 

Calcineurin-Inhibitoren und den „Phosphoflow Assay von S6RP“ zur Überwachung der 

Therapie mit mTOR-Inhibitoren. Zusätzlich wurde eine retrospektive pharmakogenetische 

Studie durchgeführt, in der die Häufigkeit und die Auswirkungen von sieben Einzelnukleotid-

Polymorphismen (SNPs) in Kandidatengenen (CYP450 Enzyme und P-Glykoprotein) für 

Tacrolimus (Tac) in der ersten Phase nach der Transplantation in einer Kohorte von 121 

Patienten nach Nierentransplantation untersucht wurden.  

Bestimmung der NFAT-regulierten Gen-Expression: Eine quantitative Analyse der 

NFAT-regulierten Gene (IL-2, INF-γ und GM-CSF) wurde als neuer pharmakodynamischer 

Biomarker für die Überwachung der Therapie mit Calcineurininhibitoren untersucht. Die 

Verfügbarkeit eines kommerziellen Kits (Search LC, Heidelberg) und ein gut etabliertes 

Testprotokoll machen diesen Biomarker-Assay zum vielversprechenden Kandidaten für die 

klinische Routinediagnostik. Voraussetzungen für die Umsetzung des Assays in der 

Routinepraxis sind allerdings die analytische Robustheit und vergleichbare Ergebnisse 

zwischen verschiedenen Laboratorien. Daher wurde das ursprüngliche Protokoll vom Institut 

für Immunologie in Heidelberg im Institut für Laboratoriumsmedizin des Klinikum Stuttgarts 

etabliert und verifiziert und eine Vergleichsstudie zwischen beiden Laboren durchgeführt.  

Für die analytische Validierung des Assays wurden Vollblutproben von gesunden Probanden 

mit Tac in vitro inkubiert. Linearität, Präzision, die Bestimmungsgrenze sowie die Stabilität 

der Proben wurden untersucht. Für den Interlaborvergleich wurden Proben von Patienten 

unter Ciclosporintherapie zuerst in Heidelberg analysiert und dann in Stuttgart innerhalb von 

24 Stunden re-analysiert.  
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Tac verringerte die Expression der NFAT-regulierter Gene in vitro in einer 

konzentrationsabhängigen Weise mit einer „Residual Gene Expression“ (RGE, verbleibende 

Genexpression) von 15%, 47%, 71% und 89% jeweils für die Konzentrationen von 50 ug/L, 

25 ug/L, 12.5 ug/L und 6.25 ug/L Tac. Die Intra- und Inter-Assay-Variationskoeffizienten 

(CV%) bei drei verschiedenen Tac Konzentrationen (jeweils n = 6) lagen bei <17%. Die 

Bestimmungsgrenze lag jeweils bei 100 cDNA-Kopien per Reaktion für die IL-2-, INF-γ- und 

GM-CSF-Genexpression. Wiederholungsmessungen derselben Probe nach 24 Stunden 

(Stabilität) ergaben einen Unterschied in der RGE von ≤ 19% (n = 3). Obwohl der Interlabor-

Vergleich von Patientenproben gut (r = 0.951) korrelierte, zeigte die statistische Analyse 

einen inkonsistenten Unterschied in Abhängigkeit von der Größe der RGE. 

Daraus kann geschlossen werden, dass die Bestimmung der NFAT-regulierten Gen-

Expression mit einer zufriedenstellenden analytischen Zuverlässigkeit in einem 

molekularbiologischen Routinelabor etabliert werden kann und vergleichbare Ergebnisse 

zwischen den Laboratorien zeigt. Jedoch erfordert die klinische Anwendung dieses Assays in 

der Routinediagnostik als pharmakodynamischen Biomarker für die Therapie mit CNIs eine 

Harmonisierung zwischen Laboratorien. 

Messung der Phosphorylierung des S6RP durch Phospho-Flow: Das S6 ribosomal Protein 

(S6RP) wird als nachgelagerter Effekt der mTOR-Aktivierung phosphoryliert. Die mTOR-

Inhibitoren Sirolimus und Everolimus unterdrücken die Phosphorylierung des S6RP in 

Lymphozyten. Daher kann der Phosphorylierungszustand von S6RP (p-S6RP) als Biomarker 

für die mTOR Hemmung durch Sirolimus und Everolimus verwendet werden. In dieser 

Arbeit wurde die Anwendbarkeit eines durchflusszytometrischen Phospho-Flow-Assays für 

die Messung des p-S6RP getestet.  

Ein kommerzieller Kit (PerFix-p, Beckman-Coulter) wurde für die Fixierung und 

Permeabilisierung der Zellen in Vollblutproben nach initialer  Stimulation mit PMA (150 

µg/L, 6 min, 37°C) eingesetzt. p-S6RP wurde separat in CD3+ CD4+ und CD3+ CD8+ T-

Zellen unter Verwendung eines anti-Phospho-Ser 235/236 Antikörpers mit Hilfe der 

Durchflusszytometrie untersucht. Der Assay wurde sowohl in vivo als auch in vitro getestet. 

Spezifizität, Linearität, Unpräzision in der Serie und Stabilität wurden untersucht. Das 

Ausmaß der S6RP-Phophsporyliserung  wurde in Proben verschiedener Patientengruppen  
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gemessen und mit einer Kontrollgruppe verglichen. Ein Vergleich mit einer Western-Blot-

Analyse der phospho-p70S6 Kinase (Thr389), die als Referenzmethode angesehen werden 

kann, wurde darüber hinaus durchgeführt. 

Everolimus verringerte p-S6RP in vitro konzentrationsabhängig (bis 27.4 µg/L). Dieser Effekt 

wurde auch in vivo nach einer Einzeldosis von Everolimus bei gesunden Probanden bestätigt 

(n = 3). Allerdings wurde die Phosphorylierung des S6RP auch gehemmt, wenn das Vollblut 

in vitro mit 500 µg/L Ciclosporin versetzt wurde. Der Variationskoeffizient in der Serie des 

Assays betrug <18% bei Transplantationspatienten  und <27% bei gesunden Kontrollen für 

beide T-Zell-Populationen. Phospho-S6RP war von begrenzter Stabilität (<24 Stunden). 

Patienten, die mit mTOR-Inhibitoren behandelt wurden, zeigten niedrigere p-S6RP in beiden 

T-Zellpopulationen. Dies war jedoch nur für CD3+ CD8+ T-Zellen von Sirolimus-

behandelten Patienten statistisch signifkant (p = 0.02). Es wurde keine signifikante 

Korrelation zwischen dem Phosphoflow und der Western-Blot-Analyse  festgestellt. 

Aus diesen Ergebnissen lässt sich schließen, dass der Phosphoflow Assay von p-S6RP zwar 

mehrere Vorteile bietet, wie z.B. die Verwendung von Vollblut und eine befriedigende 

analytische Leistung. Allerdings deuten die Ergebnisse bezüglich Probenstabilität, Spezifität 

und Vergleichbarkeit zur Referenzmethode darauf hin, dass eine Verwendung für klinische 

Zwecke als pharmakodynamischer Biomarker für die bessere Steuerung der Therapie mit 

mTORIs zweifelhaft ist. Ob sich dies durch eine Weiterentwicklung und Optimierung des 

Assays verbessern lässt, bleibt zu prüfen.  

Effekt der Pharmakogenetik auf die Pharmakokinetik von Tac in der frühen Phase nach 

der Nierentransplantation: Genetische Varianten können in einem hohen Ausmaß eine 

große interindividuelle  Variabilität der Arzneimittelkonzentrationen in vivo bedingen mit 

Konsequenzen für die Arzneimittelwirkung. Die meisten dieser genetischen Varianten 

betreffen arzneimittelmetabolisierende oder -transportierende Proteine. In dieser Arbeit wurde 

der Einfluss von sieben SNPs in den Kandidatengenen CYP3A4 und CYP3A5 sowie dem 

ABCB1 Gen (kodiert für P-Glykoprotein) auf die Pharmakokinetik von Tac in der frühen 

Phase nach der Transplantation untersucht. Die untersuchten Allele sind CYP3A5*3, 

CYP3A4*22, CYP3A4 *1B sowie die genetischen Varianten in ABCB1 (3435T> C, 2677T> 

G/A und 1236T> C). 



Zusammenfassung 

 

69 

 

Insgesamt wurden 121 nierentransplantierte Patienten im Klinikum-Stuttgart in diese 

retrospektive Studie eingeschlossen. Ein entsprechendes  Ethikvotum für die Studie lag vor. 

Die Genotypisierung wurde mittels Alleldiskriminierung mit etablierten und validierten Real-

time PCR (TaqMan)-Assays am Dr. Margarete Fischer-Bosch-Institut für Klinische 

Pharmakologie in Stuttgart durchgeführt. Bei den Untersuchungen eines möglichen  Effektes 

des CYP3A5*3-Polymorphismus auf die Pharmakokinetik von Tac zeigte sich zuerst, dass die 

meisten der Individuen in der Studienkohorte  (85%) CYP3A5 homozygote “Non-Expresser“ 

(*3/*3) waren, die in Übereinstimmung mit der Hypothese eine erhöhte systemische 

Exposition von Tac sowie einen verringerten Dosisbedarf von Tac in den ersten beiden 

Wochen nach der Transplantation zeigten. Die Häufigkeit des kürzlich beschriebenen 

funktionell bedeutsamen CYP3A4*22 Allels betrug etwa 10% in der Studiengruppe, was 

veröffentlichten Ergebnissen übereinstimmt. Patienten, die diese Variante Allel tragen zeigten 

erhöhte Exposition sowie einen verringerten Dosisbedarf von Tac. Die untersuchten  

genetischen Varianten in ABCB1 zeigten keinen signifikanten Effekt auf die Pharmakokinetik 

von Tac.  

Zusammenfassend konnte basierend auf den Daten der vorliegenden Arbeit gezeigt werden, 

dass pharmakodynamische Biomarker-Assays zur Individualisierung der Immunsuppression  

mit einer zufriedenstellenden analytischen Leistungsfähigkeit im klinischen Routinelabor 

etabliert werden können, vor allem, wenn optimierte Testprotokolle verwendet werden und 

insbesondere, wenn die Assays in Form von Testkits verfügbar sind. Insgesamt erfordert die 

Reproduzierbarkeit der Ergebnisse zwischen unterschiedlichen Laboratorien jedoch eine 

sorgfältige Harmonisierung bzw.  Standardisierung der Testbedingungen. Die Bestimmung 

der CYP3A5*3- sowie CYP3A4*22 Polymorphismus kann helfen die initiale Tac-Dosis zu 

optimieren. 
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