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Abstract—Antibiotics are widely used in all sorts of the medical
procedures. Without them, modern medical practice is not
possible. As much as they are inevitable, they have severe adverse
effects in promoting the antibiotic resistance. Each antibiotic
therapy has a profound impact on the human gut. Firstly
antibiotics select resistant bacteria what results in rapid changes
of the taxonomical composition of the human gut. Secondly,
the antibiotic pressure prompts the horizontal gene transfer
including transduction that is intermediated by the phages, what
advances spread of the resistance. Although the taxonomical
composition restores after a month from the therapy, the bacteria
get enriched with the genes conferring resistance to antibiotics.
We have analyzed changes in the microbiome and phageome of
the two people throughout the antibiotic therapy and subsequent
recovery time. Analysis of the phage genomes is bioinformatically
tricky as phages have complex genomic structures and there
are no reliable reference databases. Therefore, we developed
a novel comprehensive pipeline for the time-series analysis of
the metagenomic datasets focusing on the function and changes
in the phage sequences. We observed the phages respond to
the antibiotic therapy, and are enriched with antibiotic-resistant
genes.

I. INTRODUCTION

Antibiotics are amongst the most successful drugs in saving
human life. They have been used in medicine since their dis-
covery in 1928. Those 90 years of extensive antibiotics usage
caused the emergence of antibiotic resistance [1] - i.e., there
are more and more bacterial strains, including pathogenic, that
cannot be eradicated from the patient’s organism. In 2014
WHO classified antibiotic resistance as a severe threat to the
human life [2].

No antibiotic is ideally specific towards the pathogen.
Therefore, an antibiotic therapy affects a substantial portion
of the person’s gut bacteria and causes rapid changes in the
composition of the gut microbiome. Although the taxonomical
structure of the healthy microbiome can restore in a month,
the therapy causes enrichment of the antibiotic-resistant genes
within the genomes of the gut bacteria [3], [4]. Consequently,
with each antibiotic therapy it is easier for the pathogenic

bacteria to become resistant and it is harder for the microbiome
to restore its taxonomic structure [5].

The antibiotic-resistant genes can pass between bacterial
cells via means of the horizontal gene transfer (HGT), that
includes the three mechanisms: natural transformation, conju-
gation involving plasmids and transduction involving bacterial
viruses [6], [7].

The bacterial viruses (phages) infect bacteria and integrate
their genomes into the bacterial chromosomes. Prompted by
stress, phages can steer bacteria into the production of the
phage particles loaded with the nucleic acid molecule of the
phage genome [8]. The phages are often enriched with the
bacterial genes located near to their integration side on the
genome. This process is influenced by antibiotics as they
select for resistant bacteria and consequently phages carrying
resistant genes [9].

The human gut works as a bioreactor enabling faster HGT
causing emergence and spread of the resistance. Therefore,
analysis of the HGT is necessary to obtain a full picture of the
dynamics within the gut microbiome and perhaps to control
the emergence of the resistance in the future. This project aims
to analyze in detail changes of the human gut phageome and
genes transferred by phages during the antibiotic therapy and
to lie down work for the comprehensive pipeline for analysis
of the HGT within microbiomes.

II. STUDY

Two healthy volunteers took ciprofloxacin twice a day
orally. Ciprofloxacin is a broad-spectrum fluoroquinolone an-
tibiotic that inhibits DNA separation during the cell division
via inhibiting the gyrases and topoisomerases [10]. The stool
samples were collected six times: before the therapy, on the
Ist, 3rd, and the last day of the therapy (6th), and on the
subsequent +2 and +28 days after the therapy [11]. For each of
the twelve samples (two participants and the six time-points),
two types of sequencing protocols were carried out. First
sequencing was a standard deep whole-genome sequencing of
entire metagenome (MiSeq at GATC Biotech AG Constance,
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Figure 1: Data analysis pipeline. Blue elements denote inputs and results, black programs and violet the databases.

Germany). Second sequencing regarded only the viral-like
particles as described in the [12]. It was performed on the
NextSeq 500 System (mid-output kit, 2x150). Therefore, for
each of the samples, two sequencing datasets are available:
whole-metagenomic sequencing encapsulating both bacteria
and phages (Microbiome set), and bacteriophage sequencing
(Phage set).

III. METHODS

Metagenomic sequencing generates large numbers of the
short reads belonging to a wide range of the micro-organisms.
The classical metagenome analysis pipeline relies on the align-
ment of the reads against the most suitable sequence database.
Based on those alignments the taxonomic or functional profiles
are computed. Therefore, the analysis is only as reliable as the
reference databases.

In the case of the Phage set, the classical approach is not
possible. There are only ~2,000 complete phage genomes in
the NCBI database what is an order of magnitude smaller than
the number of the bacterial genomes ( ~35,000 January 2018).
Additionally, the phage genomes are believed to be much more
versatile and variable. Therefore, rather than using the classical
approach the reads were assembled and annotated. To ensure
comparability, the samples of the Microbiome set underwent
the same analysis pipeline.

The assembly and the subsequent annotation is a complex
pipeline involving ten different databases and total of sixteen
computational tools (Fig. 1). It is not only expensive in terms
of the computational time, but also a complicated procedure
regarding the installation of the programs with all their de-
pendencies, and storage. The entire pipeline was deployed on
the computational cluster. A bioinformatician’s job besides
the design and execution of the analysis pipeline includes
visualization of the results. That is yet another complex
computational task performed on the cluster. The plotting was
done with python Matplotlib package [13].

A. Basic analysis

The analysis pipeline consists of two paths: read-based and
assembly based analysis (Fig. 1). The first path provides a
contamination assessment and outlook of the global changes in
the microbiome and phageome. The second path enables high-
resolution gene-specific analysis of the feature behaviors over
the course of the antibiotic therapy and following recovery.

First, the reads were preprocessed with Cutadapt [14]. Next,
based on the number of k-mer count vectors extracted from
the preprocessed reads the correlation heatmaps (Jellyfish [15])
and PCA plots were computed. The alignment of reads against
the 16S rRNA NCBI database was used to determine possible
bacterial contaminations in the Phage samples (MALT [16]).
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Figure 2: Correlation matrices for both datasets and both participants. Green color denotes days of the antibiotic therapy.

The assembled scaffolds were aligned against the multiple
databases: CARD [17] to check if they carry the antibiotic-
resistant genes, PHASTER [18] to find viral proteins, nu-
cleotide database to enable MEGAN taxonomic annotation
[19] and against the previously collected CRISPR-spacer
database to identify phages [20], [21]. Next, genes were pre-
dicted, and the protein sequences were aligned with HMMER3
against the HMM profiles of the antibiotic resistance genes to
enable sensitive detection of the antibiotic resistance. Finally,
myRAST [22] was used for functional annotation of the
extracted protein sequences.

Based on the reads mapping (Bowtie2 [23]), the cover-
age was computed, and then each scaffold was assigned an
abundance value. That enables the abundance values of the
scaffolds sharing particular annotations to be summed up.
If we do it separately per each time-point, the result is an
abundance trajectory. Therefore, abundance trajectories for
different features in a context of the antibiotic therapy could
be analyzed.

B. Phage detection

The Microbiome set comprises of the bacterial, plasmid and
the phage scaffolds. We employed numerous strategies for the
phage detection, e.g., based on the presence of CRISPR spacer,
or of the phage protein. The methods pointed at disjoined
sets of the scaffolds. Therefore, the Random Forest (RF)
classifier was trained and used to enrich the selections. We
used VirFinder [24] results (p-value < 0.05) as the positive
labeling, and training based on the other features such as GC
content, gene density and a number of overlapping ORFs. In
total, there were fourteen features used for the RF training.

IV. RESULTS AND DISCUSSION

K-mer based correlation plots (Fig. 2) show that both the
phageome and the microbiome for both participants change
as a result of the antibiotic pressure. In all variants, the
0 and 1Ist days are positively correlated with each other
suggesting there is no change on the 1st day of therapy; and

negatively correlated with the following three days. Hence the
structure of phageome and microbiome changes as a result
of the therapy, starting on the 3rd day. In the case of the
Microbiome set, participant A 3rd to +2 days correlate with
each other, however, in both of the Phage sets, the 6 and +2
days are correlated. That means the gut microbiomes reach
other stable states under the antibiotic pressure. Finally, for
the Microbiome and Phage sets of the participant A, the last
day correlates with the 0 and 1st days, i.e., microbiome and
phageome structures restore after the therapy. That is not a case
for the participant B, suggesting that only the A participant’s
microbiome is healthy.

As predicted, we observed the antibiotic influences foremost
bacteria. Abundance of the both bacterial genomic and the
plasmid scaffolds carrying antibiotics-resistant genes increase
as a result of the therapy. We observed an increase of the
abundance of the scaffolds with an alignment to the antibiotic-
resistant HMM profile, suggesting phages pick up fragments
of the unspecific resistant genes (Fig. 3). As showed by the
k-mer profiles, the levels do return to the starting values in the
case of the participant A but not B. Ovearll trajectory patterns
for the phage sets are weaker. What is probably caused by a
lower quality and depth of the sequencing of this dataset in a
comparison to the Microbiome set.

V. CONCLUSION

The study has a pilot character, aimed at developing and
testing of the pipeline as the two participants do not consti-
tute a representative biological sample, the strong biological
conclusions cannot be drawn. However, we have shown that
the pipeline enables extensive analysis of the multiple aspects
of such combined time series data. It is easily adaptable
for analysis of other HGT mechanisms such as conjugation
involving plasmids. Nevertheless, it is a complicated pipeline
suitable for deployment only on the sizeable computational
cluster such as BiNAC.
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