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1 INTRODUCTION 

 

1.1 OVERVIEW 
 

Only about half of the patients affected by locally advanced head and neck 

squamous cell carcinoma (HNSCC) and treated with post-operative RT-CT are 

alive after five years, indicating a substantial unmet medical need for 

improvement. In addition to the already known HPV16 status, new biomarkers 

are currently investigated in order to personalize treatment options and improve 

patients’ outcome. Evidence suggests that the chemokine pathway SDF-

1/CXCR4 play a key role in tumour development, progression and therapies 

resistance. The present study explores the prognostic value of these two 

biomarkers in a cohort of more than two hundred HNSCC patients treated with 

post-operative RT-CT. The results of the present study have been published 

and the full text publication is attached to the thesis [1].  

 

1.2 HEAD AND NECK CANCER 
 

1.2.1 Epidemiology 
 

Approximately 4% of the newly worldwide diagnosed malignant tumours are 

represented by head and neck cancers, with a large majority of squamous cell 

carcinomas [2]. Incidence of HNSCC varies geographically, even within the 

European Union, with countries showing higher incidence (e.g. Hungary, 

23/100.000) and others much lower (e.g. Greece or Cyprus, 3/100.000). In 

Germany in 2012, HNSCC incidence was 14,4/100.000 and mortality 

4,2/100.000 [3]. Almost 2/3 of the head and neck cancer patients are men, often 

with a history of alcohol and/or tobacco abuse. For this reason, patients with 

HNSCC have also a higher risk to develop other tumours, e.g. lung or 

oesophageal cancers. Even though tobacco and alcohol are the most common 
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risk factors, the incidence of HPV positive tumours especially in non-

smoker/drinker population is arising. The human papilloma virus, mostly the 

HPV-16 type, through the interaction of the viral oncoproteins E6 and E7 with 

tumour suppressor genes Rb and p53, can lead to development of cancer 

lesions. HPV-related tumours are more often located in the oropharynx, 

respond better to radio-chemotherapy and have a more favourable prognosis.  

 

1.2.2 Natural history and pattern of spread 

 

The local spread of the primary tumour depends mostly on the anatomical site, 

with more common muscle invasion and spread along muscle of facial planes, 

while bone structures represent a barrier and are infiltrated only in the most 

advanced stages of disease. The presence of perineural or vascular invasion 

(PNI, VI) is recognised as risk factor for a poorer outcome. Predicting the risk 

and the pattern of lymph node metastasis are crucial for the therapy choice and 

planning. The lymph node spread depends on different factors, among them 

tumour localisation, histology, T stage, PNI and VI. Generally, lateralized 

lesions have higher probability to spread to the ipsilateral lymph nodes, while 

tumours closed to or crossing the middle line are more likely to spread ipsi- and 

contralaterally. The CUP syndrome (carcinoma of unknown primary), 

characterized by initial presentation of disease with pathologic lymph nodes 

without evidence of primary lesion, is not uncommon among HNSCC patients 

(ca. 2-9%). Distant spread represents a late event which is more related to the 

N stage (circa 20-30% probability by N2-N3 tumours) than to the T stage and 

with the lung being the most commonly involved organ [4, 5]. 

 

1.2.3 Diagnostic work-up 

 

Initial signs and symptoms can vary, being dysphagia, weight loss, local pain 

and clinically visible lesions and adenopathies the most common. The local 

extent of disease is determined by the clinical examination with fibroscopy and 
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radiologically through computed tomography (CT) and magnetic resonance 

(MR). The MR, especially with contrast, allows high anatomical resolution: it 

defines the size of the primary tumour, its relationship with adjacent structures 

and gives information about the regional extent of disease. The CT-PET, 

through functional imaging, is able to identify with high sensitivity eventual nodal 

metastasis and has become a widely used tool for pre-treatment staging. Its key 

role has been demonstrated not only in the diagnostic work-up, but also to 

evaluate the response to the treatment [6]. Moreover, together with a chest-CT, 

PET-CT may detect distant metastasis. Before start of treatment, histology 

verification through biopsy is mandatory. Patients with CUP syndrome, 

additionally to the fine needle aspiration (FNA) or less frequent to the excisional 

biopsy, receive a complete endoscopic examination with multiple biopsies 

performance. Standard of care is also the HPV-DNA/p16 status. To decide the 

adequate treatment strategy a multidisciplinary team, formed by head and neck 

surgeons, radiation oncologists, medical oncologists, pathologists, radiologists, 

dentists, plastic surgeons and speech and swallowing therapists has to be 

involved. 

 

1.2.4 Staging 

 

The tumour stage helps in defining the therapeutic approach and predicting 

outcomes. It differs according to the involved site, but generally the T stage is 

based on the tumour size and the N stage on the size, number and localisation 

(ipsi- or also controlateral) of the pathologic lymph nodes. Stages I and II 

usually identify relatively small lesions without regional spread, while stages III 

and IV indicate loco-regionally advanced tumours or a metastatic disease. The 

present study was performed on the basis of the 7th TNM edition, that presents 

some differences respect to the latest 8th edition. Particularly, the new edition 

takes into account for the T staging of the oral cavity tumours, not only the 

tumour size, but also how deep the tumour infiltration is. For the pharynx 

cancers, the 8th edition distinguishes the oropharynx carcinomas HPV positive 

and HPV negative, reflecting the better outcomes of HPV positive tumour. 
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Regarding the N staging, the new edition separates the lymph nodes status in 

clinical (cN) and pathological (pN), considering not only the size and the 

laterality of the metastatic lymph nodes but also the presence of extranodal 

spread [7]. 

 

 

1.2.5 Treatment 

 

1.2.5.1 General principles 

 

HNSCC, excluding metastatic disease, can be treated with curative intent 

through surgery and/or radiotherapy. Chemotherapy alone is a palliative 

treatment, but it can be used as part of a curative strategy together with 

radiotherapy to increase the response rate and survival. Being the head and 

neck a region containing many structures for key functions as swallowing, 

breathing and speaking, the treatment choice should be based on the 

probability to achieve the highest tumour cure rate with the lowest morbidity 

rate, trying to avoid long-term functional (and cosmetic) deficits. Thus, patient’s 

will and a multidisciplinary discussion play an essential role in defining the 

treatment strategy. 

A surgical approach allows a pathological staging, a shorter treatment time, a 

limited non-tumoural tissue exposure to treatment and, by definition, a tumour 

resection (sometimes psychologically preferred by patients), but it can lead to 

permanent important dysfunctions. In cases where the oncological outcomes 

are assumed to be similar and surgery could inflict permanent functional 

defects, a radio (chemo) therapy is to be preferred. This is usually characterized 

by acute toxicities, but the late effects are often minimal if compared to a major 

surgery and functions as swallowing, breathing and speaking can be better 

preserved [5, 8]. While the management of the primary tumour lesion is relative 

straight forward (curative RT-dosis, i.e., according to a standard fractionation 

schedule, 66-70 Gy, or tumour excision in case of surgery), the management of 
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the neck is more complex. Different types of neck dissection as part of the 

surgical management can be performed. It includes radical neck dissection, 

modified neck dissection or selective neck dissection, according to the clinical 

initial disease presentation. Similarly, the radiation treatment of the neck, doses 

and volumes definition, is performed considering the macroscopic disease and 

the probability of the different lymph nodes levels to host microscopic 

metastasis, with the definition of usually two or three different target volumes.  

 

1.2.5.2 Surgery 

 

A head and neck surgeon with expertise in the field of oncology should perform 

the operation, planning the surgical procedure (tumour resection and 

reconstruction) to achieve tumour-free margins and the best possible functional 

and cosmetic outcomes. Usually, a surgical approach should be avoided when 

the tumour infiltrates structures like M. pterygoideus, base of skull, carotid 

arteries, skin, prevertebral fascia and nasopharynx [5]. En-block tumour 

resection with clear margins, defined as > 5 mm between the tumour and the 

resection margin, is the goal. Close margins (< 5 mm) and positive margins 

correlate with higher risk of relapse and should be avoided. In case of positive 

margins an adjuvant treatment with radio (chemo) therapy must be considered. 

Cranial nerves, if not macroscopically infiltrated and if preoperative functioning, 

should be preserved. As mentioned before, different types of neck dissection 

can be performed. A radical neck dissection removes the superficial and deep 

cervical fascia with all the lymph nodes from level I to level V, the 

sternocleidomastoid muscle, the omohyoid muscle, internal and external jugular 

veins, XI cranial nerve and submandibular gland. To avoid such a major surgery 

with subsequent important deficit and high risk of complications, when possible 

a modified neck dissection is performed, that spares the XI cranial nerve (type 

1), the cranial nerve and the internal jugular vein (type 2), the cranial nerve, the 

jugular vein and the sternocleidomastoid muscle (Type 3 or functional neck 

dissection). In both the radical and the modified (inclusive the functional) neck 

dissection lymph nodes of level I to V are removed. A selective neck dissection 
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is characterized by the removal of the high-risk lymph nodes, usually level II and 

III always, sparing, according to the disease presentation, level I and/or IV and 

/or V. For lateralized lesions, only an ipsilateral neck dissection, sparing the 

contralateral neck, can be considered, while for more central tumours a bilateral 

dissection is indicated. Even by clinically N0 tumours, an elective nodal 

dissection has to be evaluated, being the estimated risk of microscopic 

metastasis less than 20% by T1 tumours, but between 20 and 30% by T2 

tumours and more than 30% by T3-4 tumours [9]. By clinically N0 tumours, a 

selective neck dissection (levels I-III for oral cavity, levels II-IV for oropharynx, 

levels II-IV and eventually V) may be performed. By N1-N2 a selective or a 

comprehensive (modified or radical) dissection should be evaluated and by N3 

tumours a comprehensive neck dissection is the surgical standard [10]. Relative 

new frontiers of the surgical management of the neck concern the use of the 

sentinel lymph node biopsy for early stage (T1-2) oral cavity tumours [5]. Neck 

dissection is also indicated by a rest tumour after curative RT (CT) therapy, 

assessed by CT or PET-CT [11]. 

 

1.2.5.3 Radiotherapy 
 

Radiotherapy has been established for a long time as a curative treatment for 

HNSCC. During the last decades, advancements in treatment planning and 

delivery, together with the addition of chemotherapy and modified fractionation 

schedules, led to significant improvements of the oncological outcomes and 

minimization of late toxicity.  Target volumes definition became (and is 

becoming) more and more precise through the incorporation of functional (PET-

CT) and high resolution anatomical (MRI) information [12]. Intensity modulated 

RT (IMRT) techniques allow a better sparing of normal tissues and relatively 

new image guided RT (IGRT) methods, as cone beam CT, allow narrower 

margins for the definition of the target volumes. Together, IMRT and IGRT 

approaches led to a reduction of treatment-related toxicities. In the treatment 

planning phase, the gross tumour volume (GTV), when present, must be 

delineated for the tumour and for the nodal disease. A clinical target volume 
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(CTV) is then defined taking into account the risk of microscopic disease. 

Finally, the planning target volume (PTV) is determined considering the 

uncertainties due to patient’s positioning and (even though in H&N region is 

limited) organ motion. According to standard fractionation schedules, a radical 

RT treatment is performed with 66-70 Gy to the macroscopic disease, 60-66 Gy 

to the high-risk volume (lymph nodes clinically negative but at high risk of 

microscopic metastasis) and 50-54 Gy to the low risk volume. In the adjuvant 

setting, usually RT doses range between 60-66 Gy to the high risk volume and 

50-54 Gy to the low risk volume. A dose-volume histogram is carefully 

evaluated before treatment, to check the coverage of target volumes and the 

dose to organs at risks. Being the head and neck a region with many organs at 

risk, the final treatment plan is often a compromise between the optimal 

therapeutic doses and volumes and the probability of, especially late, toxicities 

(Figure 1.1).  
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Figure 1.1. Example of an IMRT treatment plan for a HNSCC patient treated 
with adjuvant radiotherapy. Below, the dose-volume histogram. Different 
planning target volumes, with the relative prescribed dose, are defined, 
according to the risk of regional involvement (here, 54 Gy, 60 Gy and 64 Gy, 
respectively PTV54, PTV60 and PTV64). Organ at risk, such as the left parotid 
and the spinal cord are spared.  
 

Chemotherapy applied concomitantly to radiation led, through a radiosensitizing 

effect, to significant improvements of loco-regional tumour control and survival 

of HNSCC patients and is now the standard of care for locally advanced 

tumours treated with primary RT and finds indications in different adjuvant 

scenarios. Since the present study was conducted on patients treated with 

adjuvant RT-CT, the next paragraph is focused on this combined approached 

without further description of primary RT-CT, palliative CT and target therapies. 
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1.2.5.4 Combined modalities: surgery and post-operative radio (chemo) 

therapy 

 

For patients treated with surgery and present with high risk (more than 20%, i.e. 

extranodal spread, positive margins and/or multiple involved lymph nodes) for 

locoregional relapse after surgery alone, adjuvant RT must be considered. In 

this setting, two significant even though not randomized studies provided 

evidence in favour of a postoperative radiation treatment. In the study 

conducted by Huang end colleagues 441 HNSCC resected patients were 

retrospectively analysed. 125 of them were found to have extranodal spread 

(ECE) and/or positive resection margins. 71 patients were treated with surgery 

alone and 54 with surgery and adjuvant RT. The univariate and multivariate 

analysis showed a significant difference in locoregional control (at 5 years 59% 

vs 31%, p=0.0001) and adjusted survival (72% vs 41%, p=0.001) in favour of 

the adjuvant treatment [13]. In a second significant study, Lundal et al. 

retrospectively analysed a cohort of 95 HNSCC patients treated with surgery 

and adjuvant RT and, through a matched pair analysis with HNSCC patients 

treated with surgery alone, found significant differences in terms of recurrence 

in the dissected neck (RR=5.82; P=0.0002), recurrence in any side of the neck 

(RR=4,72), cancer-related death (RR=2.21; P=0.0052) and death from any 

cause (RR=1.67; P=0.0182) in favour of adjuvant RT [14]. Thus, adjuvant RT 

improves locoregional tumour control and survival and is therefore the standard 

treatment in HNSCC patients treated with surgery and at high risk of relapse.  

The addition of CT to RT for patient with high-risk resected HNSCC was 

established later, though with higher level of evidence. Two randomized trials, 

EORTC [15] and RTOG [16], were published in 2004 in the New England 

Journal of Medicine and both showed a better loco-regional control and survival 

among patients treated with adjuvant RT-CT if compared with adjuvant RT 

alone. In the EORTC study, 334 patients were randomized between adjuvant 

RT alone (66 Gy standard fractionation) or RT-CT (66 Gy RT parallel to cisplatin 

100 mg/m2 every 21 days). With a median follow up of 5 years, fewer local and 

loco-regional relapses (31% after RT vs 18% after RT-CT, p=0.007), a better 



  

14 

 

progression-free survival (36% vs 47%, p=0.04) and overall survival (40% vs 

53%, p=0.02) were shown in patients treated with adjuvant RT-CT. Acute 

toxicity was higher in the RT-CT group, but without significant differences in 

terms of severe late toxicity. In the RTOG study, a total of 459 were randomly 

treated with adjuvant RT or RT-CT, with the same RT and CT schedules as in 

the EORTC study. With a shorter follow-up (circa 46 months) similar results, 

especially for locoregional control and disease-free survival, could be shown, 

even though no difference in terms of overall survival was detected. A German 

trial, where 440 patients were randomly assigned to receive adjuvant RT (66 Gy 

standard fractionation) or RT-CT (additionally to RT Cisplatin 20 mg/m2 and 5 

FU 600 mg/m2 on day 1-5 and 29-33) confirmed at 5 years a better loco 

regional tumour control (72% vs 89%, p=0,003) and progression free survival 

(50% vs 62%, p=0,024) for patients receiving the combined postoperative 

treatment, while no statistically significant differences where seen in terms of 

overall survival (49% vs 58%, p=0.1) [17]. Based on this evidence, high risk 

resected HNSCC are nowadays commonly treated with adjuvant RT-CT. 

 

1.3 CHEMOKINE SIGNALING AND CANCER 
 

1.3.1 Chemokines and their physiological role 

 

Chemotactic cytokines (chemokines) are small secreted molecules that bind to 

seven-transmembrane-domain of G-protein-coupled receptors. On the basis of 

the position of the first two cysteine residues, they are classified into four 

groups: CC, CXC, CX3C and XC, and their receptors are named accordingly. 

More than 50 ligands and 18 receptors have been so far described [18]. One of 

the most conserved chemokine pathways is represented by CXCL12 (also 

known as stromal derived factor 1, SDF-1) and his receptors CXCR4-CXCR7, 

that was found even in simple vertebrates like jawless fishes [19]. The reason of 

such a high evolutionary conservation is the key role that SDF-1/CXCR4-

CXCR7 and chemokines in general play in immune response and development. 
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Chemokines are produced by leucocytes, fibroblasts, endothelial cells and 

epithelial cells. They regulate both the innate (mediated by neutrophils, natural 

killer, dendritic cells and monocytes) and the adaptive (mainly T cells and B 

cells) immune response [20]. Through the so-called chemokine gradient, they 

attract immune cells to the site of inflammation. During embryogenesis, they are 

responsible for the migration of neurons, neural crest cells, germ cells, 

cardiomyocytes and hematopoietic stem cells. In addition, also in the adult, they 

play a crucial role in the angiogenesis process and their expression can be 

regulated by microenvironmental factors, like hypoxia. In fact, if in the 

embryonal development the axis SDF-1/CXCR4 is essential for the formation of 

the vascular system, inclusive big vessels like Aorta, in the adult SDF-1/CXCR4 

expression is induced by hypoxia inducible factor 1α (HIF-1α) and vascular 

endothelial grow factor (VEGF) in hypoxic areas, leading to migration of the 

endothelial precursor cells to the hypoxic site [19]. The ligand binding 

determines the phosphorylation of the receptor and the activation of several 

intracellular pathways, ending up in the nucleus with the transcriptions of genes 

regulating the interaction cell-extracellular matrix, cell motility, invasion, 

proliferation and survival [21]. While CXCR7 can bind also to other ligands, 

CXCR4 is one of the very few receptors that bind only to one chemokine, SDF-

1. Main pathways activated by SDF-1/CXCR4 are represented by PI3K/AKT 

and RAS/RAF/ERK. These are also ones of the most important pathways 

involved in cancer development and metastasis. 

 

1.3.2 Chemokines network in cancer 

 

CXCR4 expression has been observed in many haematological malignancies, 

such as AML, CML, B-ALL, C-ALL, follicular and non-Hodgkin lymphomas and 

multiple myeloma, as well as in solid tumours, like breast, prostate, thyroid, 

oesophageal, pancreatic, colo-rectal, ovarian, cervical, HNSCC, kidney, 

bladder, gliomas, sarcomas, melanoma and lung cancers [20, 22, 23]. The 

presence of chemokines in tumours has been described to regulate at least the 
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following key factors: infiltration of leucocytes and tumour immune response, 

angiogenesis, induction of proliferation and survival signals, tumour cell motility 

and migration [24]. 

 

1.3.2.1 Infiltration of leucocytes and tumour immune response 

 

Immune system is crucial in preventing tumour development. Even in cancer 

patients, the presence of tumour infiltrating lymphocytes has been shown to 

correlate with better prognosis [25]. On the other hand, chronic inflammation 

may lead to tumour development. In chronic inflammatory processes, the 

prolonged presence of high chemokine concentrations activates macrophages 

releasing immunosuppressive factors like IL-10 and TGF-β [24]. In fact, if type I 

macrophages are activated in response to microbes and parasites and have 

also antitumoral activity through the production of reactive oxygen species, an 

aberrant expression of chemokines and their receptors causes the activation of 

type II macrophages, owing immunosuppressing properties, in particular 

through TGF-β mediated suppression of the T-cell related antitumoral activity 

[20]. Additionally, chemokine signalling promotes migration of myeloid-derived 

suppressor cells from the bone marrow and the spleen to the tumour. These 

cells contribute to suppress the antitumoral T-cell activity [20]. Moreover, T cell 

function is dependent on the antigen presentation by dendritic cells. SDF-

1/CXCR4 signalling has been seen to downregulate dendritic cells motility and 

activity [24]. In addition to this “extrinsic pathway”, activated as a consequence 

of chronic inflammatory processes, tumour cells themselves are responsible of 

an “intrinsic pathway”, namely, due to different mutations and other types of 

genetic alterations, aberrant cells are able to produce chemokines and 

chemokines receptors creating an inflammatory tumour microenvironment that, 

as a loop, sustains itself independently of infectious conditions [26]. 
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1.3.2.2 Angiogenesis 

 

Different CXC chemokines promote angiogenesis, in an autocrine as well as 

paracrine manner. SDF-1 has been shown to be upregulated by HIF-1α, 

determining the recruitment of endothelial precursor cells to the hypoxic areas 

[19, 27]. VEGF is able to induce CXCR4 expression on endothelial cells 

precursors, rendering endothelial cells sensible to the chemokine gradients and 

therefore migrate and form new vascular structures [28]. Interestingly, in renal 

cell carcinomas with inactivating mutation of the von Hippel Lindau gene 

(tumour suppression gene inducing HIF-1α degradation under normal oxygen 

supply) HIF-1α is overexpressed and upregulates CXCR4 expression, that was 

seen to correlate with worse survival [29].  

1.3.2.3 Induction of proliferation and survival signals 

 

SDF-1/CXCR4 signal is mainly mediated by four intracellular pathways (Figure 

2.1). The phosphorylated receptor activates the way of RAS/RAF and MAP 

kinases as well as of PI3K and AKT. These pathways are also stimulated by 

many grow factors and are often altered in cancers. After being activated by 

RAS/RAF, ERK translocates to the nucleus, where it promotes the transcription 

of genes responsible for cell survival, proliferation and migration [30]. Similarly, 

after the interaction with PI3K generated phospholipids, AKT brings the signal to 

the nucleus, where it is phosphorylated by PDK1/2 and determines the 

transcriptions of genes involved in cellular growth, survival and cell cycle 

progression [31]. Interestingly, hyperactivation of PI3K/AKT is also involved in 

mechanisms of resistance to radio and chemotherapy [32]. A third pathway 

activated by SDF-1/CXCR4 is mediated by IP3, that increases the intracellular 

calcium concentration. Calcium signalling has been shown to play a role in cell 

proliferation, death, and invasion [33], as well as interfering with the response of 

cancer cells to radiation [34]. Finally, β arrestin can be responsible of the 

internalization of CXCR4.  
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Figure 2.1 SDF-1/CXCR4 intracellular activated pathways. 

1.3.2.4 Tumour cell motility and migration 

 

Chemotaxis occurs when cells move from a low level of chemokines 

concentration to a higher one (chemokine gradient). In response to extracellular 

chemotactic molecules, cells with proper receptors are chemosensitized, 

namely, they generate podia (membrane cell extensions) in the direction of the 

movement. This asymmetric organization of the actin and myosin filaments 

renders the cells polarized, with a “front” towards the higher chemokines’ 

concentration and a “back”. The cell then detaches and trails through integrin 

mediated adhesion and contraction of the actin/myosin filaments (locomotion). 

Within tumour tissues, four different types of chemotaxis have been described. 

In the amoeboid migration, a single cell squeezes through gaps in the 

extracellular matrix (ECM). The mesenchymal migration is typical of cells 

undergoing epithelial-mesenchymal transition and is characterized by elongated 

cells that exploits the lysis of the ECM through metalloproteinases (MMP). 

Migration of multiple cells can occur through the so-called chain migration, in 

which the movement is led by elongated cells being at front and driving other 

cells that remain attached to the leader ones through cell-cell junctions. Another 
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possibility of group migration is the streaming modality, in which each cell 

moves actively but following each other through cell-cell junctions. Interestingly, 

it has been shown that the leader cell is not always a tumour cell, rather often a 

stromal cell of the tumour microenvironment able to degrade the ECM (e.g. 

macrophages) [35]. The main chemokine axis regulating chemotaxis in cancer 

is SDF-1/CXCR4. Tumour cells that, through gene mutations or in response to 

microenvironmental factors like hypoxia, overexpress CXCR4 respond to 

chemokine gradients and acquire the ability to migrate (Figure 2.2). Studying 

cancer cell lines and mouse models of different tumour types, such as ovarian, 

breast, prostate, renal, lung cancer and melanoma, cells modified to express 

high levels of CXCR4 have been shown to own a higher metastatic potential 

[18].  

 

A last notably remark concerns the link between SDF-1/CXCR4 and cancer 

stem cells (CSCs). This chemokine axis is activated in CSCs of different tumour 

types and play a key role in clonogenicity and invasion potential as well as in 

resistance to treatment strategies as RT [36]. Self-renewal capacity of lung 

cancer stem cells has been shown in vitro and in vivo to be sustained by 

CXCR4, that, when blocked by the antagonist AMD3100, reduces the ability of 

lung cancer stem cells to form spheroid [37]. In vitro and in vivo studies showed 

also that prostate cancer cells CD133+/CD44+ (markers of CSC) adhere to the 

extracellular fibronectin under stimulation by SDF-1 and that prostate cancer 

stem cells proliferation is decreased when CXCR4 is inhibit by AMD3100 [38]. 

Similarly, SDF-1 has been seen to stimulate the formation of podia and 

migration in CD44+/CXCR4 positive HNSCC lines [39, 40]. 

 

1.3.3 SDF-1 and CXCR4 in head and neck cancer 

 

1.3.3.1 Preclinical evidence 

 

In vitro and in vivo studies have investigated SDF-1/CXCR4 mechanisms of 

actions in HNSCC. Under SDF-1 stimulation, CXCR4 positive oral squamous 



  

20 

 

cell carcinoma (OSCC) cell lines showed increased motility and invasion 

potential [41]. In different HNSCC cell lines, PI3K/AKT pathway was activated 

by SDF-1 in CXCR4 positive cells and migration and proliferation were shown to 

be enhanced; conversely, they were inhibited when CXCR4 was not functioning 

[42]. Invasion and metastasis mediated by NF-kB were enhanced by SDF-

1/CXCR4 in OSCC cell lines [43]. Tumour cell invasion and migration through 

modulation of MMP expression induced by SDF-1/CXCR4 have been shown in 

different HNSCC cell lines [44-46]. Hints concerning the involvement of SDF-

1/CXCR in the EMT through the activation of PI3K/AKT come from studies in 

OSCC [47] and xenograft mouse models [48]. In OSCC cell lines and in nude 

mice SDF-1 and CXCR4 were shown to be involved in development of lymph 

nodes metastasis through ERK1/2 or PI3K/AKT [49]. The same authors 

demonstrated SDF-1/CXCR4 involvement in the development of distant 

metastasis, through a paracrine action, which weas in contrast inhibited, with 

also a gain in survival of the mice, when AMD3100 was applied [50]. CXCR4 

knockdown was seen to induce cell cycle arrest and apoptosis in OSCC with 

anti-proliferative and anti-invasive effect [51, 52]. 

 

 

1.3.3.2 Clinical studies 

 

SDF-1/CXCR4 expression on tumour tissues derived from HNSCC patients has 

been described. Data indicate that this chemokine pathway correlates with 

enhanced metastatic potential and worse oncological outcomes [53]. Delilbasi 

et al. described CXCR4 expression in squamous cell carcinomas of the tongue 

from 23 patients, with higher expression in tumour cells of metastatic lymph 

nodes than in the primary tumour, while no expression was found in normal 

tongue tissue [54]. A significant correlation between CXCR4 expression and 

lymph node metastasis was found by Ishikawa and coll. among 90 patients 

affected by OSCC, 30% of those were CXCR4+ [41]. Katayama et al. showed 

that CXCR4 expression, which was identified in 29% of 56 OSCC patients, was 

stronger in patients with lymph node or distant metastasis and was a predictive 
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factor for worse cancer-specific survival (55% CXCR4 positive vs 85% CXCR4 

negative patients at 5 years) [42]. Tan and coll. detected SDF-1 and CXCR4 in, 

respectively, 54% and 40% of 30 patients affected by carcinomas of the larynx/ 

hypopharynx and found a significant correlation between CXCR4 high 

expression and lymph node and distant metastasis [44]. Among 30 patients 

affected by OSCC Uchida and coll. saw a higher SDF-1 expression in the 

metastatic lymph node cells than in the primary tumour and showed that SDF-1 

and CXCR4 were correlating with worse cancer-specific survival (25% SDF-1 

positive vs. 71% SDF-1 negative patients and 39% CXCR4 positive vs. 71% 

CXCR4 negative patients) [50]. Lymph node and distant metastasis were found 

to correlate with CXCR4 expression also in 25 HNSCC patients by Ueda et al. 

[55]. More aggressive features (e.g. lymph node metastasis and more advanced 

TNM stage) were described by Yin and coll. in patients affected by OSCC [56] 

and by Tao and coll. in patients affected by nasopharyngeal carcinoma [57]. 

CXCR4 but not SDF-1 expression was found to be a predictive factor for overall 

survival among 47 patients with carcinoma of the tongue (24% for CXCR4 

positive patients vs. 81% for CXCR4 negative patients at 5 years) [58]. Within 

233 HNSCC patients analysed by Rave-Fränk et al. high CXCR4 expression 

was found predictive for reduced distant metastasis-free survival and disease-

free survival but, in contrast, high SDF-1 expression was predictive for a better 

overall survival [59]. Clatot and coll. found among 71 HNSCC patients no 

correlation between CXCR4 and recurrence or survival and a poorer 

metastasis-free, disease-free and overall specific survival in patients with lower 

SDF-1 expression [60]. Leon et al., analysing 111 HNSCC patients, described a 

more complex pattern, with patients expressing high CXCR4 and low SDF-1 

values having a significantly worse regional recurrence-free survival rates [61].  

 

1.4 AIM OF THE STUDY 
 

Though advancement in RT planning and delivery and melioration of the 

oncological outcomes through modified fractionation schedules and addition of 
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concomitant CT, overall survival (OS) after adjuvant RT-CT in HNSCC patients 

remains unsatisfactory. One reason might be represented by the fact that the 

treatment choice is nowadays mostly determined by clinico-histopathological 

factors, which are apparently not enough to predict patients’ treatment 

response. New biomarkers are required for treatment individualization and the 

existing preclinical and clinical evidence suggest that SDF-1/CXCR4 axis is 

crucial for cancer development and progression. Moreover, this chemokine 

pathway may be involved in mechanisms that regulate tumour resistance to 

treatments, e.g. radiotherapy. Nevertheless, the published literature regarding 

the role of SDF-1 and CXCR4 in HNSCC patients is not conclusive, partially 

due to the small number of patients, the diversities in SDF-1/CXCR4 detection 

methods and because of the heterogeneity of patient and tumour 

characteristics, treatments and outcome parameters. Therefore, the goal of the 

present study was to explore the prognostic role of SDF-1/CXCR4 in a 

homogenous and large cohort of patients affected by locally advanced high-risk 

HNSCC treated with surgery and adjuvant CT-RT. The study was conducted 

retrospectively as part of a multicentre biomarker trial of the German Cancer 

Consortium Radiation Oncology Group (DKTK-ROG). The results of the study 

have been published [1]. 
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2 MATERIAL AND METHODS 

 

2.1 PATIENTS AND TREATMENT 
 

The ethical committees of all the DKTK-ROG centres (Berlin, Dresden, Essen, 

Frankfurt, Freiburg, Heidelberg, Tübingen, Munich- Technische Universität and 

Ludwig-Maximilians-Universität) approved the study. Patients with locally 

advanced squamous cell carcinoma of the oral cavity, oropharynx or 

hypopharynx treated between 2004 and 2012 with surgery and adjuvant RT-CT 

were retrospectively reviewed. The postoperative treatment was administered 

because of the presence of one or more of the following risk factors: stage pT4, 

>3 positive lymph nodes, positive microscopic resection margins, extracapsular 

extension. According to standard guidelines, all patients received platinum-

based CT and radiation treatment of the former primary tumour region and of 

the neck lymph nodes at risk regions. CT schemes, RT plans, formalin-fixed 

paraffin embedded (FFPE) tumour specimens as well as follow up data 

inclusive CT, MRI and/or PET images of the relapse, when present, had to be 

available. These data were collected centrally in the DKTK RadPlanBio Platform 

in Dresden. A period of 24 months was considered as minimum follow up. 

Finally, 221 patients were found to be eligible for inclusion. 

 

2.2 TISSUE SAMPLES, DETERMINATION OF HPV 16 DNA AND P16 
 

FFPE tumour materials retrieved after surgery were centrally (DKTK partner site 

Dresden) stained with haematoxylin and eosin for histology verification. Tissue 

microarrays (TMAs) were generated, having each core a diameter of 1-mm, and 

tumour content in each core was verified by expert pathologists. TMAs were 

sent to the DKTK partner centres for multibiomarker analyses.  

For the analysis of HPV16 DNA and p16, samples with <10% squamous cell 

carcinoma content were excluded. 214 patients were analysed. According to the 
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manufacturer’s instruction, HPV DNA was extracted from FFPE-sections, 

amplified by PCR and detected by hybridisation using QIAamp DNA FFPE 

tissue kit (Qiagen GmbH, Hilden, Germany), HotStarTaq Plus Master Mix 

(Qiagen GmbH) and LCD-Array HPV 3.5 kit (CHIPRON GmbH, Berlin, 

Germany), respectively. p16 expression was evaluated by 

immunohistochemistry and the staining was performed using the the CINtec 

Histology Kit (Roche mtm laboratories AG, Basel, CH), according to the 

manufacturer’s instruction. Overexpression, criterium of positivity, was 

considered when the staining was positive in more than 70% of the tumour 

sample. 

 

2.3 STAINING, IMAGING AND SCORING SYSTEM 
 

Immunofluorescence staining was used to evaluate SDF-1 and CXCR4 

expression. The staining was established under supervision of an experienced 

pathologist, using positive (tonsil tissue) and negative controls (PBS instead of 

primary antibody and anti-IgG from the same specie). TMAs staining was 

performed following deparaffinization, through Xilol, rehydration, through graded 

series of ethanol, and epitope-retrieval technique, by application of citrate buffer 

retrivial solution for 30 minutes at 600 Watts. According to the manufactures 

instructions, TSATM Kit T20912 (containing goat anti-mouse IgG and tyramide 

labelled with Alexa 488, Life Technologies GmbH, Molecular probes, Invitrogen, 

Darmstadt, Germany) was used to detect SDF-1 and TSATM Kit T20922 

(containing goat anti-rabbit IgG and tyramide labelled with Alexa 488, Life 

Technologies GmbH, Molecular probes, Invitrogen, Darmstadt, Germany) to 

detect CXCR4. Antibody dilutions were 1:100 for SDF-1 (mouse monoclonal, 

Clone 79018, R&D Systems, Minneapolis, USA) and 1:200 for CXCR4 (rabbit 

monoclonal [UMB2], Clone ab124824, Abcam, Cambridge Science Park Milton 

Rd, Milton, Cambridge, United Kingdom). Zeiss Axio Imager MI fluorescence 

microscope controlled by AxioVision 4.8 software (Carl Zeiss, Jena, Germany) 

was used to visualize the staining and obtain images of the TMAs. Whole TMA 

scans were performed using a motorised scanning stage and a monochrome 
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digital camera (AxioCam MRm, Carl Zeiss, Jena, Germany; Maerzhaeuser, 

Wetzlar, Germany, 400x (EC Plan Neofluar)). Different subcellular staining 

patterns, i.e. membrane and intracellular (including cytoplasmic and nuclear), 

could be identified and were confirmed by an expert pathologist. Criteria of 

positivity were the staining extent and intensity, evaluated only in the tumour 

areas. A staining intensity score with arbitrary thresholds was evaluated per 

each core as follow: negative (0), low (1), intermediate (2) and high (3). The 

score per each pattern type (membrane and intracellular) was calculated as the 

mean score of all the cores of the tumour specimen derived from each patient. 

At least one core having a score ≥2 (meaning a mean patient score >1) was 

considered as positive. This semi-quantitative analysis of the tissue staining 

was performed jointly by two observers blinded to the clinical characteristics 

and oncological outcome of the patients. In case of disagreement between the 

two observers a consensus was found. 

 

2.4 STATISTICAL ANALYSIS 
 

Events (relapse, metastasis and death) were calculated from the date of RT-CT 

start. Kaplan-Meier curves for loco-regional tumour control (LRC), distant 

metastasis free survival (DMFS) and OS were generated. Comparisons 

between staining results and clinico-pathological patients and tumours 

characteristics were performed using the Fisher’s exact test. Prognostic 

parameters were evaluated using univariate and multivariate analysis (Cox 

model). Hazard ratios and 95% confidence intervals were calculated. P-values 

<0.05 were considered statistically significant and between 0.05 and 0.1 as a 

trend. No correction for multiple testing was performed. To test whether the 

results were affected by the fact that the tumour material was coming from 

different institutions, we performed an additional univariate analysis for LRC and 

calculated the hazard ration (HR) for the different DKTK partner centres. The 

results were then tested for heterogeneity using ² test. The open-source 

software R (www.r-project.org, 3.2.3.) was used for statistical analyses, while 

http://www.r-project.org/
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GraphPad Prism version 7 for Windows (GraphPad Software, La Jolla California 

USA, www.graphpad.com) was used for graphical representation. 
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3 RESULTS 

 

The median follow-up of the 221 patients included in the study was 47.3 months 

(range, 2.5-100 months). CT was administered with a median dose of 200 

mg/m2 and RT was consisting of a median dose of 50.4 Gy to the neck with a 

boost up to a median dose of 64 Gy to the former tumour region. The details for 

the entire population as well as the prognostic role of HPV16 have been 

reported by Lohaus and colleagues [62]. For the present study, some patients 

had to be excluded because of lack of tumour material. Finally, 201 patients 

were analysed for SDF-1 and 190 for CXCR4. For each patient, one to five 

cores were available. Patients and tumour characteristics as well as treatment 

details are reported in Table 3.1.  
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Table 3.1. Patients characteristics, SDF-1/ CXCR4 expression and treatment 
details for the 201 patients included in the present study [1]. 
 

Age (years) 57 (median) 24 (min) 76 (max) 

Gender Male 161 80,1% 

 

Female 40 19,9% 

Site Oral cavity 56 27,9% 

 

Oropharynx 116 57,7% 

 

Hypopharynx 29 14,4% 

pT stage T1 34 16,9% 

 

T2 92 45,8% 

 

T3 45 22,4% 

 

T4 30 14,9% 

R status Negative 113 56,2% 

 

Positive 87 43,3% 

 

Unknown 1 0,5% 

ECE Negative 95 47,3% 

 

Positive 106 52,7% 

p16 Negative 121 60,2% 

 

Positive 75 37,3% 

 

Unknown 5 2,5% 

HPV16 DNA Negative 134 66,7% 

 

Positive 67 33,3% 

icSDF1 Negative 148 73,6% 

 

Positive 53 26,4% 

icCXCR4 Negative 135 67,2% 

 

Positive 55 27,4% 

 

Missing 11 5,5% 

mSDF1 Negative 177 88,1% 

 

Positive 24 11,9% 

mCXCR4 Negative 176 87,6% 

 

Positive 14 7,0% 

 

Missing 11 5,5% 
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  Median Percentiles Range 

  

10% 25% 75% 90% Min Max 

Cisplatin dose (mg/m²) 200 100 200 200 240 100 300 

RT dose (Gy) Boost volume 64,0 60,0 63,8 66,0 66,0 56,0 68,4 

 

Per fraction 2,0 1,8 2,0 2,0 2,1 1,8 2,2 

 

Adjuvant volume 50,4 50,0 50,0 55,8 60,0 46,8 66 

 

Per fraction 2,0 1,8 1,8 2,0 2,0 1,8 2,1 

Time between surg. and RCT 

(weeks) 6,0 4,6 5,1 7,6 9,6 0,6 22,9 

Overall treatment time of RCT 

(days) 44,0 41,0 43,0 47,0 51,0 31,0 57,0 

Follow-up time (months) 46,2 9,7 30,1 60,5 70,4 2,5 100,1 

 

 
 
Different staining intensity and subcellular staining patterns, namely membrane 

and intracellular, were observed (Figure 3.1).  

Membranous SDF-1 (mSDF-1) positive staining was found in 24 (11.9%) 

tumours and membranous CXCR4 (mCXCR4) in 14 (7%). Intracellular SDF-1 

(icSDF-1) positive staining was detected in 53 (26.4%) tumours and intracellular 

CXCR4 (icCXCR4) in 55 (27.4%) (Table 3.1). The relationship between icSDF-1 

and icCXCR4 expression and clinic-pathological tumour characteristics are 

summarized in Table 3.2.  

A higher icSDF-1 expression was present within grade 2 (G2), HPV16 DNA and 

p16 positive tumours, while icCXCR4 positive staining was associated with G2 

tumours and lower pT-stages. 

No significant correlations between mSDF-1 or mCXCR4 with LRC, DMFS or 

OS were found (Table 3.3). High icSDF-1 expression was associated with 

significantly lower LRC, among all patients and within the HPV16 DNA negative 

subgroup (HR 2.67, 95% CI 1.29-5.54 and HR 2.54, 1.19-5.4, respectively) 

(Table 3.3 and Figure 3.2). A trend towards lower LCR rates in icCXCR4 

positive tumours was found (Table 3.3 and Figure 3.3). No correlation between 

icSDF-1 or icCXCR4 expression and DMFS or OS was found (Table 3.3). The 
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combined icSDF-1 and icCXCR4 expression showed a strong correlation with 

lower LRC (Table 3.3 and Figure 3.4). 

 

A)     

B)  

C)  

Figure 3.1. Representative images of SDF-1 immunofluorescent stained tumour 

sections. A) Intracellular staining (score 2). B) Membrane staining (score 3). C) 

Negative staining (score 0). SDF-1 is shown in green, DAPI in blue. Similar 

staining patterns and intensities were observed for CXCR4. Original image 

magnification: 400x [1]. 
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Table 3.2. Clinico-pathological characteristics and icSDF-1/icCXCR4 
expression. P-values for comparisons using the Fischer’s exact test, significant 
p-values in bold [1]. 
 

 

icSDF-1+ 

 

icSDF-1 - 

 

p icCXCR4+ 

 

icCXCR4- 

 

p 

Age 

          < Median (57 y) 23 43% 75 51% 0,42 30 55% 65 48% 0,52 

≥ Median 30 57% 73 49% 

 

25 45% 70 52% 

 Gender 

          M 43 81% 118 80% 1,00 42 76% 110 81% 0,43 

F 10 19% 30 20% 

 

13 24% 25 19% 

 Site 

          Oral cavity 18 34% 38 26% 0,31 19 35% 34 25% 0,41 

Oropharynx 26 49% 90 61% 

 

29 53% 82 61% 

 Hypopharynx 9 17% 20 14% 

 

7 13% 19 14% 

 pT stage 

          pT1-2 33 62% 93 63% 1,00 27 49% 89 66% 0,03 

pT3-4 20 38% 55 37% 

 

28 51% 46 34% 

 pN stage 

          pN0-1 12 23% 38 26% 0,71 12 22% 36 27% 0,58 

pN2-3 41 77% 110 74% 

 

43 78% 99 73% 

 Grading (3 missing) 

         G1 0 0% 5 3% 0,01 2 4% 3 2% 0,08 

G2 38 73% 75 51% 

 

37 69% 71 53% 

 G3 14 27% 66 45% 

 

15 28% 59 44% 

 Resection margin (1 missing) 

        R0 32 62% 81 55% 0,42 32 59% 73 54% 0,63 

R1 20 38% 67 45% 

 

22 41% 62 46% 

 ECE 

          No 25 47% 70 47% 1,00 22 40% 66 49% 0,34 

Yes 28 53% 78 53% 

 

33 60% 69 51% 

 HPV16 DNA 

          Negative 41 77% 93 63% 0,06 40 73% 88 65% 0,39 

Positive 12 23% 55 37% 

 

15 27% 47 35% 

 p16 (5/4 missing) 

         Negative 39 76% 82 57% 0,01 37 69% 78 59% 0,25 

Positive 12 24% 63 43% 

 

17 31% 54 41% 

 Smoking (69/67 missing) 

         Yes 27 84% 90 90% 0,36 29 85% 80 90% 0,53 

No (never) 5 16% 10 10% 

 

5 15% 9 10% 
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Figure 3.2: Kaplan-Meier curves for locoregional tumour control in all patients 
(A) and patients with HPV16 DNA negative tumours only (B), according to the 
SDF-1 intracellular expression [1]. 
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Figure 3.3: Kaplan-Meier curves for locoregional tumour control in all patients 
(A) and patients with HPV16 DNA negative tumours only (B), according to the 
CXCR4 intracellular expression [1]. 
 

A 

B 
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Figure 3.4: Kaplan-Meier curves for locoregional tumour control in all patients 
(A) and patients with HPV16 DNA negative tumours only (B) according to the 
SDF-1 and CXCR4 intracellular coexpression (double positive patients). 
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Table 3.3. Univariate analysis in all patients and patients with HPV16 DNA 

negative tumours only. Significant results in bold [1]. 
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In the multivariate analysis icSDF-1 was confirmed as strong negative 

independent prognostic factor for LCR among all patients and within the 

subgroup of HPV16 negative patients (Table 3.4). CXCR4 was not significantly 

correlated with LCR at the multivariate analysis and the combined expression, 

even though statistically significant, did not outperformed SDF-1 expression 

alone. 

 

Table 3.4. Multivariate analysis in all the patients and patients with HPV16 DNA 

negative tumours only. Significant results in bold [1]. 
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No significant heterogeneity of the effect of icSDF-1 and icCXCR4 expression 

on LRC was observed between the different DKTK institutions (p-value of 0.25 

and 0.33, respectively; Table 3.5). 

 

Table 3.5. Analysis of the effect of icSDF-1 and icCXCR4 expression on 

locoregional control and relative HR values for the different DKTK centres. The 

results were tested for heterogeneity using ² test and revealed a p-value of 

0.25 and 0.33 for icSDF-1 and icCXCR4 respectively, i.e. the null hypothesis 

that the HR are identically distributed over the centres is not to be rejected. 

    
icSDF1 pos icSDF1 neg 

 Center HR CI 
 

Events Total Events Total 
 1 Cox PH model did not converge 2 4 0 15 
 2 3,119 0,437 22,27 2 9 2 22 

2=6.5787
, p=0.25 

3 6,502 0,5826 72,57 2 5 1 22 

4 1,9094 0,5384 6,772 4 10 6 29 

5 1,7321 0,09752 30,76 1 4 1 12 

6 4,706 0,4229 52,37 1 4 2 24 

7 1,1962 0,1243 11,52 1 6 3 21 

8 Cox PH model did not converge 1 11 0 3 
 Overall 2,6733 1,29 5,54 14 53 15 148 
   

 
   

icCXCR4 pos icCXCR4 neg 
 Center HR CI 

 
Events Total Events Total 

 1 Cox PH model did not converge 2 4 0 15 
 2 3,46 0,49 24,59 2 7 2 22 

2=3.438
, 

p=0.3289 

3 Cox PH model did not converge 3 9 0 14 

4 0,66 0,14 3,11 2 9 8 27 

5 Cox PH model did not converge 0 3 2 12 

6 0,63 0,06 6,90 1 12 2 16 

7 2,87 0,40 20,41 2 7 2 20 

8 Cox PH model did not converge 1 4 0 9 
 Overal

l 2,02 0,97 4,21 13 55 16 135 
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4 DISCUSSION 

 

4.1 SDF-1/ CXCR4 EXPRESSION AS NEGATIVE PROGNOSTIC FACTOR  
 

In the present study, we investigated the prognostic value of the expression of 

the chemokine SDF-1 and his receptor CXCR4 in, to our knowledge, the largest 

and most homogeneous cohort of patients affected by locally advanced HNSCC 

treated with surgery and adjuvant RT-CT. The results have been published [1]. 

Our analysis indicates that patients with SDF-1 positive tumours have poorer 

LRC rates, while the impact of CXCR4 was not confirmed at the multivariate 

analysis. Interestingly, the prognostic value of SDF-1 on LCR was shown also 

within HPV negative tumours, suggesting SDF-1 as potential biomarker for 

future treatment modification in a known higher risk population, as HPV 

negative patients in comparison to HPV positive patients are. These results 

suggest that SDF-1 might play a role in conferring to the tumour cells resistance 

to postoperative RT-CT.  

We observed a membrane and an intracellular (cytoplasmic and nuclear) 

expression on SDF-1 and CXCR4, in linear with other studies. In HNSCC 

tumour specimens, Faber and colleagues noticed that CXCR4 and SDF-1 were 

expressed in the membrane and in the cytoplasm of the tumour cells [39]. 

Interestingly, in our study, the membrane expression had no prognostic value, 

while the intracellular expression in SDF-1 and, even though not confirmed in 

the multivariate analysis, of CXCR4 were negatively correlating with LCR. This 

might open to the speculation that SDF-1/CXCR4 play a significative role after 

their internalisation in the cytoplasm and translocation to the nucleus. 

Nevertheless, the value of the subcellular location of SDF-1/CXCR4 remains a 

matter of discussion. Some authors could detect SDF-1 and CXCR4 in the 

nucleus of tumour cells in patients-derived colorectal tumour tissues and found 

that their nuclear expression was a negative factor for patients’ survival [63-65]. 

On the other hand, studies conducted on lung cancer patients showed a 

positive correlation between the nuclear SDF-1/CXCR4 expression and the 
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clinical outcome, while the cytomembrane staining had a negative prognostic 

role [66, 67]. 

The prognostic value of SDF-1 and CRCXR4 in cancer patients has been 

described in different studies. In a meta-analysis comprising more than five 

thousand patients with different tumour histologies, Zhao and colleagues found 

that patients with CXCR4-positive tumours had a shorter progression free 

survival and overall survival in comparison with CXCR4 negative tumours [68]. 

Specifically regarding HNSCC, some authors have already investigating the role 

of SDF-1/CXCR4. Leon and coll. collected evidence from more than one 

hundred patients, including laryngeal cancers, treated with surgery and adjuvant 

RT or RT-CT or primary RT or RT-CT [61]. Low SDF-1 was found a negative 

prognostic factor for LRC, DMFS and OS and low SDF-1 and high CXCR4 was 

prognostic for more regional failures. Similarly, Clatot et al. identified low SDF-1 

expression as a negative prognostic factor for LRC, DMFS and OS analysing 71 

patients affected by tumour of the oral cavity, pharynx and larynx and treated 

with adjuvant RT or RT-CT, while they didn’t find any prognostic role of CXCR4 

[60]. A study with a large cohort of 233 patients treated with primary RT or RT-

CT, published by Rave-Fraenk and coll., showed that patients with high SDF-1 

expressing tumours had better OS while CXCR4 expression was prognostic for 

worse DMFS. No correlation with LRC was found [59]. Albert and coll. found 

that among 47 patients treated with surgery for a tumour of the mobile tongue, 

CXCR4 correlated with high-grade tumours, lymph node metastases, and 

microscopic nerve invasion and was predictive for worse OS, but this result was 

not confirmed in the multivariate analysis. No correlation between SDF-1 

expression and OS was found [58]. Among 30 patients affected by oral 

squamous cell carcinomas, Uchida et al. found that SDF-1/CXCR4 

overexpression in lymph node metastases was predictive for poor OS [50]. 

Katayama and coll. evaluated 56 patients affected by oral cavity tumours and 

treated with neoadjuvant RT-CT, surgery or RT alone and observed that 

CXCR4 positive tumours was prognostic for poor OS and cancer specific 

survival [42]. Altogether, these studies offer a conflicting evidence regarding the 

prognostic role of SDF-1 and CXCR4 in HNSCC. Some of them are based on 
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relatively small patients’ cohort [42, 50, 58] or include patients with tumour 

stage from I to IV and treated with different approaches (surgery alone, RT or 

RT-CT alone, surgery and adjuvant or neoadjuvant RT or RT-CT). SDF-

1/CXCR4 expression was sometimes assessed through RT-PCR and 

sometimes through immunohistochemistry. In some studies HPV status was not 

determined [42, 50, 58] or was reported only for some patients and no 

correlation with SDF-1/CXCR4 expression was described [60, 61]. In the study 

published by Rave-Frank and coll. p16 positive tumours showed on average a 

higher SDF-1/CXCR4 expression in comparison with p16 negative tumours, 

while in our study SDF-1 was on average lower in p16 positive tumours [59]. 

The differences between these studies and our results might have different 

explanations, such as different patients’ cohorts and methodological aspects, as 

follow. Many of the mentioned studies were conducted on patients affected by 

tumours of the oral cavity, that is less than one third of our cohort; moreover, 

some of them included laryngeal cancers, that we in contrast excluded. 

Differences in stage distribution and therapeutic management might also 

contribute to explain some discrepancies. Additionally, we used 

immunofluorescence and not immunohistochemistry or RT-PCR to detect SDF-

1 and CXCR4. In contrast with these studies, our results are based on a large 

and homogeneous cohort of patients enrolled in different german centres with 

well-defined inclusion and exclusion criteria and centrally revised clinical and 

follow up data. This might overcome potential bias, e.g. cohort effects, 

methodological problems and differences in treatment modalities. Besides these 

strength points, the current study presents some weaknesses. In particular, 

patients were collected retrospectively and the staining analysis was performed 

with arbitrary-defined thresholds. Additionally, even though the staining analysis 

was performed by two observers who were blinded to patients’ characteristics 

and outcomes, results might be affected by intrinsic errors of a subjective and 

not computational analysis. 
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4.2 MECHANISMS OF TUMOUR AGGRESSIVENESS AND RADIOTHERAPY 

RESISTANCE IN SDF-1/ CXCR4 POSITIVE TUMOURS 
 

The chemokine pathway represented by SDF-1/CXCR4 have been described in 

tumours of different type [20, 22, 23], inclusive HNSCC [53]. Many of the 

biological mechanisms underlying these clinical observations have been 

described. In general, SDF-1/CXCR4 axis is involved in stimulating tumour cell 

survival, proliferation and chemotaxis [69] and the evidence that not only tumour 

cells, but also cells of the tumour microenvironment such as fibroblasts, 

endothelial and tumour infiltrating leucocytes can produce chemokines and 

express their receptors, triggers the idea of the tumour tissue as a complex 

system that self-promotes growth, local invasion and metastasis [18]. More 

specifically, proliferation signals mediated by MAPK and AKT, increased 

integrin and TNF-α expression, enhanced MMP activity, induced angiogenesis 

and modulation of immune cells have been described as mechanisms 

underlying the actions of SDF-1/CXCR4 in tumours [24]. These factors might 

explain the more aggressive features of SDF-1/CXCR4 positive tumours per se. 

On the other hand, the poorer LRC rates that we observed among SDF-

1/CXCR4 positive patients after post-operative RT-CT might also be explained 

by a higher radiation resistance of these tumours. SDF-1/CXCR4 induced 

radiation resistance may be supported by different factors, i.e. AKT mediated 

signaling, ion channels modification, bone-marrow derived immune cells and 

mesenchymal cells migration, regulation of focal adhesion kinases and CD8 

positive T cells activity, as the following evidence has shown. One of the 

intracellular pathways activated by SDF-1/CXCR4 is represented by PI3K/AKT. 

In vitro and in in vivo studies have shown that constitutively activated AKT 

favours a quicker repair of the DNA double strand breaks induced by radiation, 

conferring to the tumour cells radiation resistance properties [32]. Another 

possible mechanism underlying radiation resistance in SDF-1/CXCR4 positive 

tumours is the modification, through IP3, of ion channels activity, which has 

been found to regulate the formation of free radicals in the radiation induced 

DNA damage process [34]. As observed in human squamous cell carcinoma 

xenografts, after radiation, the chemokine gradient created by SDF-1/CXCR4 
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induces migration of bone-marrow derived immune cells such as CD11b 

positive myelomonocytes to the tumour, contributing to radio-resistance [70]. 

The presence of CD11b positive myeloid-derived suppressor cells under high 

SDF-1 concentration was associated with faster tumour growth in p53null mice 

[71] and a reduced p53 activity has been shown to stimulate the migration of 

mesenchymal stromal cells from the bone marrow to the tumour through higher 

SDF-1 level [72]. SDF-1/CXCR4 might influence the treatment response 

through regulation of the expression of focal adhesion kinases (FAK), as 

suggested by studies conducted on breast cancer cells [73] and on three-

dimensional grown human HNSCC, where FAK overexpression induced by 

SDF-1 was responsible for radiation resistance through activation of ERK and 

AKT [74]. Additionally, in squamous cell carcinomas, FAK, under high 

chemokines concentrations, was responsible for inhibition of the anti-tumoural 

CD8 positive T cell activity [75]. CD8+ T cells proliferation and actions are 

enhanced by anti-programmed death-ligand 1 (PD-L1) drugs and some studies 

suggested a synergistic effect of anti-PD-L1 immunotherapy and anti-SDF-

1/CXCR4 target therapies [76, 77]. 

Different factors are known to regulate the tumour response to fractionated RT, 

i.e. tumour cells repopulation, reoxigenation, redistribution, repair of the 

radiation induced-DNA damage and intrinsic radiation sensitivity. Even though 

during RT the tumour volume may change, these variations depends mainly by 

cells that do not have clonogenic properties, which are the majority of the 

tumour cells. The goal of RT is to avoid the repopulation of the few tumour cells 

that might be responsible for a recurrence, namely cancer stem cells (CSCs) 

[78]. If the quantitative transplantation assay remains the goal to prove if cells 

are CSCs or not, some proteins expressed on the cell surface have been 

described and are now commonly accepted as CSCs markers, e.g. CD133, 

CD44, CD29 [79]. Interestingly, evidence indicates CXCR4 as a potential 

biomarker for radioresistant cancer stem cells [36]. It has been found 

overexpressed in glioma stem cells and, together with SDF-1, in perihypoxic 

gliomas areas, contributing to tumour cells aggressiveness and resistance to 

RT-CT induced cell death [80]. Faber et al. observed that high SDF-1 
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concentrations stimulated the formation of podia in CD44 and CXCR4 positive 

HNSCC cells, indicating that SDF-1/CXCR4 axis might play a key role in the 

interaction between CSCs and their supportive cells in the CSC niche [40]. 

Additionally, oxygen availability is required for tumour growth and relapse. After 

irradiation, sprouting angiogenesis from adjacent vessels is inhibited and the 

formation of new vascular structures is dependent on circulating bone marrow 

derived cells (BMDCs). Experimental gliomas and prostate tumour models have 

shown that in a post RT-hypoxic tumour, HIF-1α stimulates SDF-1 production, 

which in turn promotes, as already mentioned, the migration of BMDCs to the 

tumour, contributing to reoxigenation and tumour growth [81, 82]. Moreover, 

through pro-proliferation signals such as those transcripted by NFkB under the 

stimulation of SDF-1/CXCR4 [43], after RT, quiescent tumour cells might be 

triggered to re-entering in the cell cycle and proliferate. Besides playing a role in 

tumour cell repopulation, reoxigenation and maybe redistribution, we have 

already seen how SDF-1/CXCR4 can interfere with the ability of the tumour cell 

to repair the DNA DSBs induced by RT though AKT [32], another crucial factor 

for the tumour response to radiation. 

 

4.3 SDF-1/ CXCR4 AS TARGETABLE PATHWAY 
 

Given the crucial role that SDF1 and CXCR4 play in cancers, multiple agents 

targeting this pathway have been developed [83]. The most studied is 

AMD3100, a pharmacological antagonist of CXCR4 (pubchem CID 65015; also 

known as Plerixafor, Mozobil; Sanofi SA, Paris, France). Preclinical studies, 

including in HNSCC models, showed a decreased cell proliferation, motility, 

invasion and a reduced metastatic potential under treatment with AMD3100 [48, 

69, 84, 85]. Importantly, an increase in response to RT was observed after 

administration of CXCR4 antagonist in xenograft breast, lung and glioblastoma 

tumours [86-88]. In clinical studies, some CXCR4 antagonists were used as 

bone marrow stem cells mobilizers and were employed either alone or in 

combination with other systemic therapies for diseases like lymphoma, 
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leukaemia and myeloma [89, 90]. In vitro and in vivo studies suggest that 

treatment with CXCR4 antagonists favours the response to chemotherapeutic 

agents also in solid tumours, i.e. prostate cancer and glioblastoma [91, 92]. A 

phase I trial investigating the effect of a CXCR4 peptide antagonist 

(LY2510924) in combination with the anti-PD-L1 antibody Durvalumab 

(MEDI4736) in in advanced refractory solid tumours is ongoing 

(ClinicalTrials.gov identifier: NCT02737072). Another phase 1/2 study 

employing the CXCR4 inhibitor USL311 alone or in combination with Lomustin 

in patients affected by advanced solid tumours or relapse/recurrent 

glioblastoma is currently ongoing (ClinicalTrials.gov identifier: NCT02765165). 

Altogether, evidence supports the design of future studies, in which CXCR4 

antagonists might be investigated as radiosensitisers in patients affected by 

solid tumours, inclusive HNSCC, and treated with RT or RT-CT. 

 

4.4 SDF-1/ CXCR4 AND BIOLOGY-DRIVEN INDIVIDUALIZED 

RADIOTHERAPY 
 

Tumour stage is the main factor determining treatment choice in HNSCC 

patients. Many biomarkers have been identified and tested, but haven’t reached 

a clinical application yet. Since biological interpatient, but also intrapatient, 

differences are responsible for treatment resistance and recurrence, to 

incorporate biological information into treatment strategies is crucial to improve 

patients’ outcome. Importance and efficacy of biology-driven RT were shown 

among HNSCC patients in the last decades, by applying accelerated 

fractionated RT schedules, using hypoxia modifiers and adding concomitant CT 

to RT. Historically, standard fractionated RT alone was known as curative 

treatment for HNSCC, but with survival rates of approximately 30% at five years 

[93]. Alternative fractionations, i.e. accelerated and accelerated 

hyperfractionated schedules, with or without concomitant boost, reduce the 

overall treatment time and compensate the tumour (stem) cells repopulation. 

Applied to patients in clinical studies, they have been seen to correlate with 
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better oncological outcomes, by higher acute but similar late toxicity [94-96] and 

became the standard of care in many institutions worldwide. Hypoxic tumour 

cells are known to be more radioresistant and the presence of hypoxic tumour 

regions is crucial for RT response and tumour control, especially in HNSCC 

[97]. Efforts to reduce the hypoxic tumour content have been made, e.g. 

through the addition of hypoxia-modifying drugs as Nimorazole. A better 

response was observed, but their use is still limited [98]. Approaches of dose-

escalation on the hypoxic areas have been tested and appear promising [99]. 

Among, HNSCC, the significance of finding new biomarkers is exemplified by 

HPV16. Since its importance as prognostic factor was established, new trials 

have been opened to investigate the possibility of a de-escalation of the RT 

dose (e.g. De-escalation of adjuvant radio (chemo) therapy for HPV-

positive head and neck squamous cell carcinomas: a phase I study to reduce 

late toxicity, ClinicalTrials.gov identifier: NCT03396718). Patients’ stratification 

on the basis of prognostic and predictive biomarkers may lead in the future to 

individualized-biology driven RT.  

The DKTK-ROG aims to identify the most significant biomarkers as basis for RT 

interventions and, within this project, we conducted the present hypothesis-

generating study, investigating the prognostic potential of SDF-1/CXCR4 in 

HNSCC patients. Our exploratory results needed validation, which we 

performed in a cohort of HNSCC patients treated with primary RT-CT [100]. 

With the same methods of the present study, we could confirm the negative 

prognostic role of SDF-1 but also of CXCR4 for LRC. Additionally, we observed 

that these two biomarkers were correlating with a poor OS. Analysing the 

tumour material of the HNSCC patients included in the retrospective 

postoperative and primary cohorts, other partner groups within the DKTK-ROG 

showed the prognostic role of HPV16 DNA, p16 expression, CD8+ tumour-

infiltrating lymphocytes, expression of cancer stem cells markers, PD-1/PD-L1 

expression, Heat shock protein 70, tumour-infiltrating NK cells, hypoxia-

associated gene signatures and genetic alterations [62, 101-108]. The DKTK-

ROG is currently running the HNprädBio study, where the prognostic value of 

SDF-1/CXCR4 and other biomarkers might be validated in prospectively 
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enrolled HNSCC patients. Moreover, an analysis of all these promising 

biomarkers is currently ongoing, aiming to reveal the most promising ones and 

design future biology-driven interventional trials. 

 

4.5 CONCLUSION 
 

In our study, we demonstrated the negative prognostic role of the chemokine 

pathway SDF-1/CXCR4 in patients affected by locally advanced HNSCC 

treated with surgery and adjuvant RT-CT. Our data are still exploratory and 

need to be validated in a prospectively collected patients’ cohort. Nevertheless, 

they appear promising and support further investigations of the SDF-1/ CXCR4 

axis in HNSCC patients, aiming to stratify patients on the basis of biomarkers 

expression, for a biologically individualized RT-CT. Moreover, it represents a 

potential therapeutic target to overcome treatment resistance.  

 

 

 

 

 

 

 

 

 

 

 



  

47 

 

5 SUMMARY 

 

Outcomes of patients affected by locally advanced head and neck squamous 

cell carcinomas (HNSCC) and treated with surgery and adjuvant radio-

chemotherapy are still unsatisfactory, being the overall survival (OS) still settled 

around 50% at five years, with poor outcomes especially among HPV negative 

patients. Therefore, patients’ stratification based on biomarker profiles is 

required for personalised therapies. SDF-1/CXCR4 is known as the most 

important chemokine pathway involved in tumour development, progression and 

metastasis. Nevertheless, no clear data exist regarding the role of SDF-

1/CXCR4 among HNSCC patients. The present study aims to investigate the 

prognostic value of SDF-1 and CXCR4 in a large and homogeneous cohort of 

HNSCC patients treated with post-operative RT-CT, as part of a multicentre 

biomarker study within the German Cancer Consortium Radiation Oncology 

Group. The results of the study have been published [1]. 

221 patients affected by stage III and IVA HNSCC of the oral cavity, oropharynx 

and hypopharynx were treated with surgery and adjuvant RT-CT. Tumour 

microarrays with the post-surgical tumour material were generated and stained 

for SDF-1 and CXCR4 using immunofluorescence. 201 patients were analysed 

for SDF-1 and 190 for CXCR4.  

The univariate and multivariate analyses showed that higher SDF-1 intracellular 

expression significantly correlated with poor locoregional control (LRC) in the 

whole patients’ cohort as well as in the HPV16 negative patients. Higher 

CXCR4 intracellular expression correlated with poor LRC in the univariate 

analysis, but this trend was not confirmed in the multivariate analysis. Not high 

SDF-1 nor high CXCR4 expression correlated with distant metastasis free 

survival or OS. 

In summary, we could show for the first time in a large and homogeneous 

cohort of HNSCC patients treated with adjuvant RT-CT that SDF-1 correlates 

with worse LRC. These results are exploratory and need to be validated 
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prospectively, but support further investigation of SDF-1/CXCR4 as potential 

biomarker for treatment individualization and as a target to overcome resistance 

to RT.  
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6 ZUSAMMENFASSUNG 

 

Die Prognose von Patienten mit lokal fortgeschrittenen 

Plattenepithelkarzinomen im Kopf-Hals-Bereich, die mit einer chirurgischen 

Intervention und einer adjuvanten kombinierten Radiochemotherapie behandelt 

werden, ist mit einer 5-Jahres-Überlebensrate von 50% noch nicht 

zufriedenstellend. Dies gilt insbesondere für HPV negative Patienten. Der 

Stratifizierung von Patienten mit Hilfe von Biomarker-Profilen kommt daher eine 

besondere Bedeutung für personalisierte Therapien zu. SDF-1/CXCR4 ist dabei 

der wichtigste Chemokin-Pathway in der Tumorgenese, Tumorprogression und 

Metastasierung. Nichtsdestotrotz liegt keine klare Datenlage zur Rolle des SDF-

1/CXCR4-Pathways bei Plattenepithelkarzinom-Patienten im Kopf-Hals-Bereich 

vor. Die vorgelegte Studie untersucht den prognostischen Wert von SDF-1 und 

CXCR4 in einer großen und homogenen Kohorte von Plattenepithel-

Karzinomen im Kopf-Hals-Bereich, die mit einer postoperativen kombinierten 

Radiochemotherapie im Rahmen einer multizentrischen Biomarker-Studie der 

Deutsches Konsortium für Translationale Krebsforschung- RadioOncology 

Group (DKTK-ROG) behandelt wurden. Die Ergebnisse wurden publiziert [1]. 

Insgesamt 221 Patienten mit Mundhöhlen-, Oro- und Hypopharyxkarzinomen im 

Stadium III und IVa wurden mit einer chirurgischen Intervention und einer 

adjuvanten Radiochemotherapie behandelt. Tumor-Microarrays vom 

Resektionsmaterial wurden untersucht und eine Immunfluoreszenz-Färbung 

spezifisch für SDF-1 und CXCR4 durchgeführt. 201 Patienten wurden für SDF-1 

und 190 für CXCR4 untersucht.  

Univariate und multivariate Analysen zeigten, dass eine höhere intrazelluläre 

Expression von SDF-1 signifikant mit einer schlechteren lokoregionären 

Kontrolle (LRC) sowohl in der gesamten Kohorte als auch in der Gruppe der 

HPV-negativen Patienten korreliert war. Eine höhere intrazelluläre Expression 

von CXCR4 korrelierte mit einer schlechteren lokoregionären Kontrolle in der 

univariaten Analyse; dieser Trend konnte in der multivariaten Analyse jedoch 

nicht bestätigt werden. Weder eine hohe SDF-1- noch eine hohe CXCR4-

Expression korrelierten mit Metastasen-freiem Überleben oder 

Gesamtüberleben. 
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In der vorliegenden Studie konnten wir zum ersten Mal in einer großen und 

homogenen Kohorte von Patienten mit Plattenepithelkarzinomen im Kopf-Hals-

Bereich, die mit Operation und postoperativer Radiochemotherapie behandelt 

wurden, zeigen, dass SDF-1 mit einer schlechteren lokoregionären Kontrolle 

korreliert. Diese Ergebnisse sind explorativ und sollten im Verlauf weiter 

validiert werden. Dennoch sind SDF-1 und CXCR4 vielversprechende 

Kandidaten als potentielle Biomarker für die Individualisierung von Therapien 

und als Ansatzpunkt zur Überwindung von Strahlenresistenz. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

51 

 

7 BIBLIOGRAPHY 

 

[1] De-Colle C, Mönnich D, Welz S, Boeke S, Sipos B, Fend F, et al. SDF-
1/CXCR4 expression in head and neck cancer and outcome after postoperative 
radiochemotherapy. Clinical and Translational Radiation Oncology. 2017;5:28-
36. 
[2] Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin. 
2017;67:7-30. 
[3] http://eco.iarc.fr/EUCAN/Cancer.aspx?Cancer=1 Estimated incidence & 
mortality from cancer of lip, oral cavityand pharynx in men. 2012. 
[4] Vincent T. DeVita J, Lawrence TS, Rosenberg SA. PART EIGHT: Practice of 
Oncology, Section 1:  Cancer of the Head and Neck. Chapter 71: Molecular 
Biology of Head and Neck Cancers. In: Wolters Kluwer Health/ Lippincott WW, 
editor. DeVita, Hellman, and Rosenberg's Cancer: Principles and Practice of 
Oncology. 9th ed2011. 
[5] https://www.nccn.org head and neck guidelines. 2017. 
[6] Cacicedo J, Navarro A, Del Hoyo O, Gomez-Iturriaga A, Alongi F, Medina 
JA, et al. Role of fluorine-18 fluorodeoxyglucose PET/CT in head and neck 
oncology: the point of view of the radiation oncologist. Br J Radiol. 
2016;89:20160217. 
[7] UICC. TNM Classification of malignant tumours. 8th ed. 
[8] Vincent T. DeVita J, Lawrence TS, Rosenberg SA. PART EIGHT: Practice of 
Oncology, Section 1:  Cancer of the Head and Neck. Chapter 72: Treatment of 
Head and Neck Cancer. In: Wolters Kluwer Health/ Lippincott WW, editor. 
DeVita, Hellman, and Rosenberg's Cancer: Principles and Practice of 
Oncology2011. 
[9] Mendenhall WM, Million RR. Elective neck irradiation for squamous cell 
carcinoma of the head and neck: analysis of time-dose factors and causes of 
failure. Int J Radiat Oncol Biol Phys. 1986;12:741-6. 
[10] D'Cruz AK, Vaish R, Kapre N, Dandekar M, Gupta S, Hawaldar R, et al. 
Elective versus Therapeutic Neck Dissection in Node-Negative Oral Cancer. N 
Engl J Med. 2015;373:521-9. 
[11] Mehanna H, Wong WL, McConkey CC, Rahman JK, Robinson M, Hartley 
AG, et al. PET-CT Surveillance versus Neck Dissection in Advanced Head and 
Neck Cancer. N Engl J Med. 2016;374:1444-54. 
[12] Gregoire V, Thorwarth D, Lee JA. Molecular Imaging-Guided Radiotherapy 
for the Treatment of Head-and-Neck Squamous Cell Carcinoma: Does it Fulfill 
the Promises? Semin Radiat Oncol. 2018;28:35-45. 
[13] Huang DT, Johnson CR, Schmidt-Ullrich R, Grimes M. Postoperative 
radiotherapy in head and neck carcinoma with extracapsular lymph node 
extension and/or positive resection margins: a comparative study. Int J Radiat 
Oncol Biol Phys. 1992;23:737-42. 
[14] Lundahl RE, Foote RL, Bonner JA, Suman VJ, Lewis JE, Kasperbauer JL, 
et al. Combined neck dissection and postoperative radiation therapy in the 
management of the high-risk neck: a matched-pair analysis. Int J Radiat Oncol 
Biol Phys. 1998;40:529-34. 

http://eco.iarc.fr/EUCAN/Cancer.aspx?Cancer=1
https://www.nccn.org/


  

52 

 

[15] Bernier J, Domenge C, Ozsahin M, Matuszewska K, Lefebvre JL, Greiner 
RH, et al. Postoperative irradiation with or without concomitant chemotherapy 
for locally advanced head and neck cancer. N Engl J Med. 2004;350:1945-52. 
[16] Cooper JS, Pajak TF, Forastiere AA, Jacobs J, Campbell BH, Saxman SB, 
et al. Postoperative concurrent radiotherapy and chemotherapy for high-risk 
squamous-cell carcinoma of the head and neck. N Engl J Med. 2004;350:1937-
44. 
[17] Fietkau R, Lautenschlager C, Sauer R, Dunst J, Becker A, Baumann M, et 
al. Postoperative concurrent radiochemotherapy versus radiotherapy in high-
risk SCCA of the head and neck: Results of the German phase III trial ARO 96-
3. J Clin Oncol. 2006;24:5507. 
[18] Balkwill F. Cancer and the chemokine network. Nat Rev Cancer. 
2004;4:540-50. 
[19] Wang J, Knaut H. Chemokine signaling in development and disease. 
Development. 2014;141:4199-205. 
[20] Raman D, Sobolik-Delmaire T, Richmond A. Chemokines in health and 
disease. Exp Cell Res. 2011;317:575-89. 
[21] Dorsam RT, Gutkind JS. G-protein-coupled receptors and cancer. Nat Rev 
Cancer. 2007;7:79-94. 
[22] Chatterjee S, Behnam Azad B, Nimmagadda S. The intricate role of 
CXCR4 in cancer. Adv Cancer Res. 2014;124:31-82. 
[23] Balkwill F. The significance of cancer cell expression of the chemokine 
receptor CXCR4. Semin Cancer Biol. 2004;14:171-9. 
[24] Balkwill F. Chemokine biology in cancer. Semin Immunol. 2003;15:49-55. 
[25] Gooden MJ, de Bock GH, Leffers N, Daemen T, Nijman HW. The 
prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic 
review with meta-analysis. Br J Cancer. 2011;105:93-103. 
[26] Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. 
Nature. 2008;454:436-44. 
[27] Burger JA, Kipps TJ. CXCR4: a key receptor in the crosstalk between 
tumor cells and their microenvironment. Blood. 2006;107:1761-7. 
[28] Kulbe H, Levinson NR, Balkwill F, Wilson JL. The chemokine network in 
cancer--much more than directing cell movement. Int J Dev Biol. 2004;48:489-
96. 
[29] Zagzag D, Krishnamachary B, Yee H, Okuyama H, Chiriboga L, Ali MA, et 
al. Stromal cell-derived factor-1alpha and CXCR4 expression in 
hemangioblastoma and clear cell-renal cell carcinoma: von Hippel-Lindau loss-
of-function induces expression of a ligand and its receptor. Cancer Res. 
2005;65:6178-88. 
[30] Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein 
kinase cascade for the treatment of cancer. Oncogene. 2007;26:3291-310. 
[31] Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C, 
Gonzalez-Baron M. PI3K/Akt signalling pathway and cancer. Cancer Treat Rev. 
2004;30:193-204. 
[32] Toulany M, Rodemann HP. Phosphatidylinositol 3-kinase/Akt signaling as a 
key mediator of tumor cell responsiveness to radiation. Semin Cancer Biol. 
2015;35:180-90. 



  

53 

 

[33] Herve JC. Membrane channels and transporters in cancers. Biochim 
Biophys Acta. 2015;1848:2473-6. 
[34] Huber SM, Butz L, Stegen B, Klumpp L, Klumpp D, Eckert F. Role of ion 
channels in ionizing radiation-induced cell death. Biochim Biophys Acta. 
2015;1848:2657-64. 
[35] Roussos ET, Condeelis JS, Patsialou A. Chemotaxis in cancer. Nat Rev 
Cancer. 2011;11:573-87. 
[36] Trautmann F, Cojoc M, Kurth I, Melin N, Bouchez LC, Dubrovska A, et al. 
CXCR4 as biomarker for radioresistant cancer stem cells. Int J Radiat Biol. 
2014;90:687-99. 
[37] Jung MJ, Rho JK, Kim YM, Jung JE, Jin YB, Ko YG, et al. Upregulation of 
CXCR4 is functionally crucial for maintenance of stemness in drug-resistant 
non-small cell lung cancer cells. Oncogene. 2013;32:209-21. 
[38] Dubrovska A, Elliott J, Salamone RJ, Telegeev GD, Stakhovsky AE, 
Schepotin IB, et al. CXCR4 expression in prostate cancer progenitor cells. 
PLoS One. 2012;7:e31226. 
[39] Faber A, Goessler UR, Hoermann K, Schultz JD, Umbreit C, Stern-Straeter 
J. SDF-1-CXCR4 axis: cell trafficking in the cancer stem cell niche of head and 
neck squamous cell carcinoma. Oncol Rep. 2013;29:2325-31. 
[40] Faber A, Hoermann K, Stern-Straeter J, Schultz DJ, Goessler UR. 
Functional effects of SDF-1alpha on a CD44(+) CXCR4(+) squamous cell 
carcinoma cell line as a model for interactions in the cancer stem cell niche. 
Oncol Rep. 2013;29:579-84. 
[41] Ishikawa T, Nakashiro K, Hara S, Klosek SK, Li C, Shintani S, et al. CXCR4 
expression is associated with lymph-node metastasis of oral squamous cell 
carcinoma. Int J Oncol. 2006;28:61-6. 
[42] Katayama A, Ogino T, Bandoh N, Nonaka S, Harabuchi Y. Expression of 
CXCR4 and its down-regulation by IFN-gamma in head and neck squamous 
cell carcinoma. Clin Cancer Res. 2005;11:2937-46. 
[43] Rehman AO, Wang CY. CXCL12/SDF-1 alpha activates NF-kappaB and 
promotes oral cancer invasion through the Carma3/Bcl10/Malt1 complex. Int J 
Oral Sci. 2009;1:105-18. 
[44] Tan CT, Chu CY, Lu YC, Chang CC, Lin BR, Wu HH, et al. 
CXCL12/CXCR4 promotes laryngeal and hypopharyngeal squamous cell 
carcinoma metastasis through MMP-13-dependent invasion via the ERK1/2/AP-
1 pathway. Carcinogenesis. 2008;29:1519-27. 
[45] Samara GJ, Lawrence DM, Chiarelli CJ, Valentino MD, Lyubsky S, Zucker 
S, et al. CXCR4-mediated adhesion and MMP-9 secretion in head and neck 
squamous cell carcinoma. Cancer Lett. 2004;214:231-41. 
[46] Yu T, Wu Y, Helman JI, Wen Y, Wang C, Li L. CXCR4 promotes oral 
squamous cell carcinoma migration and invasion through inducing expression 
of MMP-9 and MMP-13 via the ERK signaling pathway. Mol Cancer Res. 
2011;9:161-72. 
[47] Onoue T, Uchida D, Begum NM, Tomizuka Y, Yoshida H, Sato M. 
Epithelial-mesenchymal transition induced by the stromal cell-derived factor-
1/CXCR4 system in oral squamous cell carcinoma cells. Int J Oncol. 
2006;29:1133-8. 



  

54 

 

[48] Yoon Y, Liang Z, Zhang X, Choe M, Zhu A, Cho HT, et al. CXC chemokine 
receptor-4 antagonist blocks both growth of primary tumor and metastasis of 
head and neck cancer in xenograft mouse models. Cancer Res. 2007;67:7518-
24. 
[49] Uchida D, Begum NM, Tomizuka Y, Bando T, Almofti A, Yoshida H, et al. 
Acquisition of lymph node, but not distant metastatic potentials, by the 
overexpression of CXCR4 in human oral squamous cell carcinoma. Lab Invest. 
2004;84:1538-46. 
[50] Uchida D, Onoue T, Tomizuka Y, Begum NM, Miwa Y, Yoshida H, et al. 
Involvement of an autocrine stromal cell derived factor-1/CXCR4 system on the 
distant metastasis of human oral squamous cell carcinoma. Mol Cancer Res. 
2007;5:685-94. 
[51] Hong JS, Pai HK, Hong KO, Kim MA, Kim JH, Lee JI, et al. CXCR-4 
knockdown by small interfering RNA inhibits cell proliferation and invasion of 
oral squamous cell carcinoma cells. J Oral Pathol Med. 2009;38:214-9. 
[52] Yu T, Wu Y, Huang Y, Yan C, Liu Y, Wang Z, et al. RNAi targeting CXCR4 
inhibits tumor growth through inducing cell cycle arrest and apoptosis. Mol Ther. 
2012;20:398-407. 
[53] Albert S, Riveiro ME, Halimi C, Hourseau M, Couvelard A, Serova M, et al. 
Focus on the role of the CXCL12/CXCR4 chemokine axis in head and neck 
squamous cell carcinoma. Head Neck. 2013;35:1819-28. 
[54] Delilbasi CB, Okura M, Iida S, Kogo M. Investigation of CXCR4 in 
squamous cell carcinoma of the tongue. Oral Oncol. 2004;40:154-7. 
[55] Ueda M, Shimada T, Goto Y, Tei K, Nakai S, Hisa Y, et al. Expression of 
CC-chemokine receptor 7 (CCR7) and CXC-chemokine receptor 4 (CXCR4) in 
head and neck squamous cell carcinoma. Auris Nasus Larynx. 2010;37:488-95. 
[56] Yin D, Gao Z. [Expression and clinical significance of chemokine receptor 4 
in oral squamous cell carcinoma]. Hua Xi Kou Qiang Yi Xue Za Zhi. 
2007;25:392-5. 
[57] Tao H, Wei Y, Wang C, Yang K, Huang W, Liu H, et al. Expression of 
chemokine receptor CXCR4 is closely correlated with clinical outcome in human 
nasopharyngeal carcinoma. Tumour Biol. 2016;37:6099-105. 
[58] Albert S, Hourseau M, Halimi C, Serova M, Descatoire V, Barry B, et al. 
Prognostic value of the chemokine receptor CXCR4 and epithelial-to-
mesenchymal transition in patients with squamous cell carcinoma of the mobile 
tongue. Oral Oncol. 2012;48:1263-71. 
[59] Rave-Frank M, Tehrany N, Kitz J, Leu M, Weber HE, Burfeind P, et al. 
Prognostic value of CXCL12 and CXCR4 in inoperable head and neck 
squamous cell carcinoma. Strahlenther Onkol. 2016;192:47-54. 
[60] Clatot F, Picquenot JM, Choussy O, Gouerant S, Moldovan C, Schultheis 
D, et al. Intratumoural level of SDF-1 correlates with survival in head and neck 
squamous cell carcinoma. Oral Oncol. 2011;47:1062-8. 
[61] Leon X, Diez S, Garcia J, Lop J, Sumarroca A, Quer M, et al. Expression of 
the CXCL12/CXCR4 chemokine axis predicts regional control in head and neck 
squamous cell carcinoma. Eur Arch Otorhinolaryngol. 2016;273:4525-33. 
[62] Lohaus F, Linge A, Tinhofer I, Budach V, Gkika E, Stuschke M, et al. 
HPV16 DNA status is a strong prognosticator of loco-regional control after 
postoperative radiochemotherapy of locally advanced oropharyngeal 



  

55 

 

carcinoma: results from a multicentre explorative study of the German Cancer 
Consortium Radiation Oncology Group (DKTK-ROG). Radiother Oncol. 
2014;113:317-23. 
[63] Speetjens FM, Liefers GJ, Korbee CJ, Mesker WE, van de Velde CJ, van 
Vlierberghe RL, et al. Nuclear localization of CXCR4 determines prognosis for 
colorectal cancer patients. Cancer Microenviron. 2009;2:1-7. 
[64] Yoshitake N, Fukui H, Yamagishi H, Sekikawa A, Fujii S, Tomita S, et al. 
Expression of SDF-1 alpha and nuclear CXCR4 predicts lymph node metastasis 
in colorectal cancer. Br J Cancer. 2008;98:1682-9. 
[65] Wang SC, Lin JK, Wang HS, Yang SH, Li AF, Chang SC. Nuclear 
expression of CXCR4 is associated with advanced colorectal cancer. Int J 
Colorectal Dis. 2010;25:1185-91. 
[66] Wagner PL, Hyjek E, Vazquez MF, Meherally D, Liu YF, Chadwick PA, et 
al. CXCL12 and CXCR4 in adenocarcinoma of the lung: association with 
metastasis and survival. J Thorac Cardiovasc Surg. 2009;137:615-21. 
[67] Otsuka S, Klimowicz AC, Kopciuk K, Petrillo SK, Konno M, Hao D, et al. 
CXCR4 overexpression is associated with poor outcome in females diagnosed 
with stage IV non-small cell lung cancer. J Thorac Oncol. 2011;6:1169-78. 
[68] Zhao H, Guo L, Zhao H, Zhao J, Weng H, Zhao B. CXCR4 over-expression 
and survival in cancer: a system review and meta-analysis. Oncotarget. 
2015;6:5022-40. 
[69] Duda DG, Kozin SV, Kirkpatrick ND, Xu L, Fukumura D, Jain RK. CXCL12 
(SDF1alpha)-CXCR4/CXCR7 pathway inhibition: an emerging sensitizer for 
anticancer therapies? Clin Cancer Res. 2011;17:2074-80. 
[70] Zaleska K, Bruechner K, Baumann M, Zips D, Yaromina A. Tumour-
infiltrating CD11b+ myelomonocytes and response to fractionated irradiation of 
human squamous cell carcinoma (hSCC) xenografts. Radiother Oncol. 
2011;101:80-5. 
[71] Guo G, Marrero L, Rodriguez P, Del Valle L, Ochoa A, Cui Y. Trp53 
inactivation in the tumor microenvironment promotes tumor progression by 
expanding the immunosuppressive lymphoid-like stromal network. Cancer Res. 
2013;73:1668-75. 
[72] Lin SY, Dolfi SC, Amiri S, Li J, Budak-Alpdogan T, Lee KC, et al. P53 
regulates the migration of mesenchymal stromal cells in response to the tumor 
microenvironment through both CXCL12-dependent and -independent 
mechanisms. Int J Oncol. 2013;43:1817-23. 
[73] Ben-Baruch A. Site-specific metastasis formation: chemokines as 
regulators of tumor cell adhesion, motility and invasion. Cell Adh Migr. 
2009;3:328-33. 
[74] Hehlgans S, Eke I, Cordes N. Targeting FAK radiosensitizes 3-dimensional 
grown human HNSCC cells through reduced Akt1 and MEK1/2 signaling. Int J 
Radiat Oncol Biol Phys. 2012;83:e669-76. 
[75] Serrels A, Lund T, Serrels B, Byron A, McPherson RC, von Kriegsheim A, 
et al. Nuclear FAK controls chemokine transcription, Tregs, and evasion of anti-
tumor immunity. Cell. 2015;163:160-73. 
[76] Semaan A, Dietrich D, Bergheim D, Dietrich J, Kalff JC, Branchi V, et al. 
CXCL12 expression and PD-L1 expression serve as prognostic biomarkers in 
HCC and are induced by hypoxia. Virchows Arch. 2017;470:185-96. 



  

56 

 

[77] Feig C, Jones JO, Kraman M, Wells RJ, Deonarine A, Chan DS, et al. 
Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts 
synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl 
Acad Sci U S A. 2013;110:20212-7. 
[78] Baumann M, Krause M, Hill R. Exploring the role of cancer stem cells in 
radioresistance. Nat Rev Cancer. 2008;8:545-54. 
[79] Baumann M, Krause M, Thames H, Trott K, Zips D. Cancer stem cells and 
radiotherapy. Int J Radiat Biol. 2009;85:391-402. 
[80] Wurth R, Bajetto A, Harrison JK, Barbieri F, Florio T. CXCL12 modulation 
of CXCR4 and CXCR7 activity in human glioblastoma stem-like cells and 
regulation of the tumor microenvironment. Front Cell Neurosci. 2014;8:144. 
[81] Tseng D, Vasquez-Medrano DA, Brown JM. Targeting SDF-1/CXCR4 to 
inhibit tumour vasculature for treatment of glioblastomas. Br J Cancer. 
2011;104:1805-9. 
[82] Chen FH, Fu SY, Yang YC, Wang CC, Chiang CS, Hong JH. Combination 
of vessel-targeting agents and fractionated radiation therapy: the role of the 
SDF-1/CXCR4 pathway. Int J Radiat Oncol Biol Phys. 2013;86:777-84. 
[83] Walenkamp AME, Lapa C, Herrmann K, Wester HJ. CXCR4 Ligands: The 
Next Big Hit? J Nucl Med. 2017;58:77S-82S. 
[84] Cojoc M, Peitzsch C, Trautmann F, Polishchuk L, Telegeev GD, Dubrovska 
A. Emerging targets in cancer management: role of the CXCL12/CXCR4 axis. 
Onco Targets Ther. 2013;6:1347-61. 
[85] Scala S. Molecular Pathways: Targeting the CXCR4-CXCL12 Axis--
Untapped Potential in the Tumor Microenvironment. Clin Cancer Res. 
2015;21:4278-85. 
[86] Kioi M, Vogel H, Schultz G, Hoffman RM, Harsh GR, Brown JM. Inhibition 
of vasculogenesis, but not angiogenesis, prevents the recurrence of 
glioblastoma after irradiation in mice. J Clin Invest. 2010;120:694-705. 
[87] Kozin SV, Kamoun WS, Huang Y, Dawson MR, Jain RK, Duda DG. 
Recruitment of myeloid but not endothelial precursor cells facilitates tumor 
regrowth after local irradiation. Cancer Res. 2010;70:5679-85. 
[88] Tabatabai G, Frank B, Mohle R, Weller M, Wick W. Irradiation and hypoxia 
promote homing of haematopoietic progenitor cells towards gliomas by TGF-
beta-dependent HIF-1alpha-mediated induction of CXCL12. Brain. 
2006;129:2426-35. 
[89] Liu T, Li X, You S, Bhuyan SS, Dong L. Effectiveness of AMD3100 in 
treatment of leukemia and solid tumors: from original discovery to use in current 
clinical practice. Exp Hematol Oncol. 2015;5:19. 
[90] Uy GL, Rettig MP, Motabi IH, McFarland K, Trinkaus KM, Hladnik LM, et al. 
A phase 1/2 study of chemosensitization with the CXCR4 antagonist plerixafor 
in relapsed or refractory acute myeloid leukemia. Blood. 2012;119:3917-24. 
[91] Domanska UM, Timmer-Bosscha H, Nagengast WB, Oude Munnink TH, 
Kruizinga RC, Ananias HJ, et al. CXCR4 inhibition with AMD3100 sensitizes 
prostate cancer to docetaxel chemotherapy. Neoplasia. 2012;14:709-18. 
[92] Barone A, Sengupta R, Warrington NM, Smith E, Wen PY, Brekken RA, et 
al. Combined VEGF and CXCR4 antagonism targets the GBM stem cell 
population and synergistically improves survival in an intracranial mouse model 
of glioblastoma. Oncotarget. 2014;5:9811-22. 



  

57 

 

[93] Baumann M, Krause M, Overgaard J, Debus J, Bentzen SM, Daartz J, et 
al. Radiation oncology in the era of precision medicine. Nat Rev Cancer. 
2016;16:234-49. 
[94] Overgaard J, Hansen HS, Specht L, Overgaard M, Grau C, Andersen E, et 
al. Five compared with six fractions per week of conventional radiotherapy of 
squamous-cell carcinoma of head and neck: DAHANCA 6 and 7 randomised 
controlled trial. Lancet. 2003;362:933-40. 
[95] Horiot JC, Le Fur R, N'Guyen T, Chenal C, Schraub S, Alfonsi S, et al. 
Hyperfractionation versus conventional fractionation in oropharyngeal 
carcinoma: final analysis of a randomized trial of the EORTC cooperative group 
of radiotherapy. Radiother Oncol. 1992;25:231-41. 
[96] Horiot JC, Bontemps P, van den Bogaert W, Le Fur R, van den Weijngaert 
D, Bolla M, et al. Accelerated fractionation (AF) compared to conventional 
fractionation (CF) improves loco-regional control in the radiotherapy of 
advanced head and neck cancers: results of the EORTC 22851 randomized 
trial. Radiother Oncol. 1997;44:111-21. 
[97] Zips D, Zophel K, Abolmaali N, Perrin R, Abramyuk A, Haase R, et al. 
Exploratory prospective trial of hypoxia-specific PET imaging during 
radiochemotherapy in patients with locally advanced head-and-neck cancer. 
Radiother Oncol. 2012;105:21-8. 
[98] Bentzen J, Toustrup K, Eriksen JG, Primdahl H, Andersen LJ, Overgaard J. 
Locally advanced head and neck cancer treated with accelerated radiotherapy, 
the hypoxic modifier nimorazole and weekly cisplatin. Results from the 
DAHANCA 18 phase II study. Acta Oncol. 2015;54:1001-7. 
[99] Welz S, Monnich D, Pfannenberg C, Nikolaou K, Reimold M, La Fougere C, 
et al. Prognostic value of dynamic hypoxia PET in head and neck cancer: 
Results from a planned interim analysis of a randomized phase II hypoxia-
image guided dose escalation trial. Radiother Oncol. 2017;124:526-32. 
[100] De-Colle C, Menegakis A, Monnich D, Welz S, Boeke S, Sipos B, et al. 
SDF-1/CXCR4 expression is an independent negative prognostic biomarker in 
patients with head and neck cancer after primary radiochemotherapy. Radiother 
Oncol. 2017. 
[101] Linge A, Lohaus F, Lock S, Nowak A, Gudziol V, Valentini C, et al. HPV 
status, cancer stem cell marker expression, hypoxia gene signatures and 
tumour volume identify good prognosis subgroups in patients with HNSCC after 
primary radiochemotherapy: A multicentre retrospective study of the German 
Cancer Consortium Radiation Oncology Group (DKTK-ROG). Radiother Oncol. 
2016;121:364-73. 
[102] Linge A, Lock S, Gudziol V, Nowak A, Lohaus F, von Neubeck C, et al. 
Low Cancer Stem Cell Marker Expression and Low Hypoxia Identify Good 
Prognosis Subgroups in HPV(-) HNSCC after Postoperative 
Radiochemotherapy: A Multicenter Study of the DKTK-ROG. Clin Cancer Res. 
2016;22:2639-49. 
[103] Linge A, Löck S, Krenn C, Appold S, Lohaus F, Nowak A, et al. 
Independent validation of the prognostic value of cancer stem cell marker 
expression and hypoxia-induced gene expression for patients with locally 
advanced HNSCC after postoperative radiotherapy. Clinical and Translational 
Radiation Oncology.1:19-26. 



  

58 

 

[104] Tinhofer I, Budach V, Saki M, Konschak R, Niehr F, Johrens K, et al. 
Targeted next-generation sequencing of locally advanced squamous cell 
carcinomas of the head and neck reveals druggable targets for improving 
adjuvant chemoradiation. Eur J Cancer. 2016;57:78-86. 
[105] Balermpas P, Rodel F, Rodel C, Krause M, Linge A, Lohaus F, et al. 
CD8+ tumour-infiltrating lymphocytes in relation to HPV status and clinical 
outcome in patients with head and neck cancer after postoperative 
chemoradiotherapy: A multicentre study of the German cancer consortium 
radiation oncology group (DKTK-ROG). Int J Cancer. 2016;138:171-81. 
[106] Balermpas P, Rodel F, Krause M, Linge A, Lohaus F, Baumann M, et al. 
The PD-1/PD-L1 axis and human papilloma virus in patients with head and neck 
cancer after adjuvant chemoradiotherapy: A multicentre study of the German 
Cancer Consortium Radiation Oncology Group (DKTK-ROG). Int J Cancer. 
2017. 
[107] Linge A, Schotz U, Lock S, Lohaus F, Neubeck CV, Gudziol V, et al. 
Comparison of detection methods for HPV status as a prognostic marker for 
loco-regional control after radiochemotherapy in patients with HNSCC. 
Radiother Oncol. 2017. 
[108] Stangl S, Tontcheva N, Sievert W, Shevtsov M, Niu M, Schmid TE, et al. 
Heat shock protein 70 and tumor-infiltrating NK cells as prognostic indicators for 
patients with squamous cell carcinoma of the head and neck after 
radiochemotherapy: A multicentre retrospective study of the German Cancer 
Consortium Radiation Oncology Group (DKTK-ROG). Int J Cancer. 2017. 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

59 

 

8 ERKLÄRUNG ZUM EIGENANTEIL DER 

DISSERTATIONSSCHRIFT 

 

Die Arbeit wurde in der Klinik für Radioonkologie am Uniklinikum Tübingen 

unter Betreuung von Prof. Dr. D. Zips und Dr. A. Menegakis durchgeführt.  

Die Konzeption der Studie erfolgte durch Prof. Dr. D. Zips und Dr. A. 

Menegakis.  

Die Versuche wurden nach Einarbeitung durch Dr. A. Menegakis von mir 

eigenständig durchgeführt.  

Die statistische Auswertung erfolgte nach Anleitung durch Dr. D. Mönnich durch 

mich. 

Ich versichere, das Manuskript selbständig verfasst zu haben und keine 

weiteren als die von mir angegebenen Quellen verwendet zu haben. 

Diese Arbeit wurde im Rahmen einer multizentrischen Biomarker-Studie des 

Deutsches Konsortium für Translationale Krebsforschung- RadioOncology 

Group (DKTK-ROG) durchgeführt. Der Material, den in Tübingen von mir 

analysiert wurde, wurde in acht DTKT-ROG partner Institutionen, die in diesem 

Manuskript aufgelistet sind, gesammelt. 

Die Publikation [1], welche auf den Daten dieser Doktorarbeit basiert, wurde 

von mir unter Anleitung von Herrn Prof. Dr. Zips und Dr. A. Menegakis 

selbständig verfasst. Die Korrektur des Manuskripts erfolgte durch Herrn Prof. 

Dr. Zips, Dr. A. Menegakis, Dr. D. Mönnich und die anderen Autoren, die in der 

Publikation und in diesem Manuskript aufgelistet sind.  

 

 

 

 

 

Tübingen, den 08.03.2018      Chiara De-Colle 



  

60 

 

9 PUBLICATION 

 

The results of the present study have been published this year in the following 

original article: 

 

Authors: C. De-Colle, D. Mönnich, S. Welz, S. Boeke, B. Sipos, F. Fend, P.S. 
Mauz, I. Tinhofer, V. Budach, J.A. Jawad, M. Stuschke, P. Balermpas, C. 
Rödel, A.L. Grosu, A. Abdollahi, J. Debus, C. Bayer, C. Belka, S. Pigorsch, S.E. 
Combs, F. Lohaus, A. Linge, M. Krause, M. Baumann, D. Zips and A. 
Menegakis 
 
Title: SDF-1/CXCR4 expression in head and neck cancer and outcome after 
postoperative radiochemotherapy 
 
Journal: Clinical and Translational Radiation Oncology 
 
Year: 2017 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

61 

 

10 AKNOWLEDGMENTS 

 

I would like to thank Prof. D. Zips for the time and passion he dedicated to this 

project. A huge thank goes to Dr. A. Menegakis, whose experience and brilliant 

ideas could solve problems and finalize this work. Together, Prof. D. Zips and 

Dr. Menegakis taught me radiobiology and opened my mind to translational 

research.  

Thanks to Dr. D. Mönnich, for helping me with the statistical analysis. 

I would like to thank the laboratory of Prof. H.P. Rodemann, where I performed 

the experiments during the first months. Another special thanks to the group of 

research of the Centre for Ophthalmology, for allowing me to use their 

microscope. 

Last but not least, thanks to my family and friends, for their support during these 

years of research work.  

 

 

 

 

 

 

 

 

 

 

 

 

 



  

62 

 

11 CURRICULUM VITAE 

 

ANGABEN ZUR PERSON  
 
Name: Chiara De-Colle  
Geburtsdatum: 16.12.1985 
Geburtsort: Ivrea (Italien) 
Wohnort: Albrecht-Dürer-Straße 3, 72076 Tübingen 
Tel.: 0049 162 6273814   
E-Mail: chiara.de-colle@med.uni-tuebingen.de  
 
 
 
BERUFSERFAHRUNG    
 
09.01.2017–Heute  Fachärztin Radioonkologie, Universtität Tübingen 
01.09.2016–31.12.2016 Gastwissenschaftlerin Radioonkologie, Universtität 

Tübingen 
 
 
 
SCHUL- UND BERUFSBILDUNG    
 
28.06.2011–05.07.2016 Facharztausbildung Strahlentherapie, Universität 

Turin  (Italien). Abschlussarbeit: ex vivo γH2AX 
assay as a predictive biomarker of radiation 
sensitivity in prostate cancer patients. Betreuer: Prof. 
Dr. U. Ricardi.  

14.09.2014–15.12.2015 Forschungsaufenthalt an der Universitätsklinik für 
Radioonkologie Tübingen. 

09.2004–10.2010  Studienabschluss Medizin und Chirurgie, Universität 
Turin (Italien). Abschlussarbeit: The use of Four 
Dimensional Computed Tomography (4D-CT) in the 
treatment planning of stereobody radiation therapy 
for lung tumors: clinical results and future 
perspective. Betreuer: Prof. Dr. U. Ricardi 

09.1999–07.2004  Abitur, Gymnasium A. Gramsci, Ivrea (Italien)  
 
 
 
SPRACHKENNTNISSE    
 
Muttersprache   Italienisch  
Weitere Sprache(n)  Englisch und Deutsch, C1 Niveau 
 
 



  

63 

 

 
PUBLIKATIONEN 
 

 "SDF-1/CXCR4 expression is an independent negative prognostic biomarker 
in patients with head and neck cancer after primary radiochemotherapy". C. 
De-Colle, A. Menegakis, D. Mönnich et al. Radiotherapy and Oncology 
(2017) article in press 

 "Ex vivo γH2AX radiation sensitivity assay in prostate cancer: Inter-patient 
and intra-patient heterogeneity". C. De-Colle, A. Yaromina, J. Hennenlotter 
et al. Radiotherapy and Oncology (2017) 3, 386-394 

 "SDF-1/CXCR4 expression in head and neck cancer and outcome after 
postoperative radiochemotherapy". C. De-Colle, D. Mönnich, S. Welz et al. 
Clinical and Translational Radiation Oncology (2017) 5, 28-36 

 "Insufficiency bone fracture after pelvic radiotherapy: retrospective 
evaluation of risk factors and dose-volume relationship analysis". A. 
Ruggieri, C. Airaldi, B. Baiotto, E. Gino, L. Bianco, M. Stasi, C. De-Colle and 
M.G. Ruo Redda. European Journal of pharmaceutical and medical 
research (2017) 4(1), 172-178 

 "Hypofractionation with no boost after breast conservation in early stage 
breast cancer patients". F. Arcadipane, P. Franco, C. De-Colle et al. Medical 
Oncology (2016) 33:108 

 "Residual γH2AX foci after ex vivo irradiation of patient samples with known 
tumour-type specific differences in radio-responsiveness". A. Menegakis, C. 
De-Colle, A. Yaromina et al. Radiotherapy and Oncology 116 (2015) 480-
485 

 "Once-weekly hypofractionated whole breast radiotherapy after breast 
conserving surgery in older patients: a potential alternative treatment 
schedule to daily 3-week hypofractionation". P. Rovea, A. Fozza, P. Franco, 
C. De-Colle et al. Clinical Breast Cancer, Vol. 15 (2015), No. 4, 270-6 
 
 

 
PRAESENTATIONEN 
 

 "Ex vivo γH2AX radiosensitivity assay in prostate cancer patient tumour 
samples. Evaluation of inter-patient and intra-patient heterogeneity". C. De-
Colle, A. Yaromina, H. Thames et al. 26° Symposium experimentelle 
Strahlentherapie und klinische Strahlenbiologie. Tübingen, 09-11 Februar 
2017 

 "Factor 2.5 radiosensitivity difference determined by ex vivo γH2AX assay in 
prostate cancer patients". C. De-Colle, A. Menegakis, A-C. Müller et al. 
ESTRO 35 Congress. Turin, 29 April - 3 Mai 2016 

 "Ex vivo γH2AX assay in prostate cancer samples reveals substantial 
differences in intrinsic radiation sensitivity". C. De-Colle, A. Menegakis, A-C. 
Müller et al. 25° Symposium experimentelle Strahlentherapie und klinische 
Strahlenbiologie. Dresden, 11-13 Februar 2016  

 "The volume effect in radiotherapy". C. De Colle, invited lecture on the 1st 
advanced AIRB course on radiobiology, Brescia, 13 Oktober 2015  



  

64 

 

 "γH2AX as a biomarker of radiation sensitivity in ex vivo irradiated samples 
from tumour patients" C. De Colle, J. Hennenlotter, M. Scharpf et al. 24° 
Symposium experimentelle Strahlentherapie und klinische 
Strahlenbiologie.Hamburg, 26-28 Februar 2015 

 "Accelerated Partial Breast Irradiation (APBI) with High Dose Rate 
Brachitherapy (HDR-BT): the Turin experience". C. De Colle, S. Gribaudo, 
P. Rovea et al. XXIV National AIRO Congress. Padova, 8-11 November 
2014 

 "Surgical resection versus radiotherapy after CDDP/ Docetaxel induction 
chemotherapy in locally advanced Non Small Cell Lung Cancer (NSCLC)". 
C. De Colle, P. Bironzo, M. Levis et al. XXII AIRO Congress. Rom, 17-20 
November 2012 

 "Impact of Four Dimensional Computed Tomography (4D-CT) in the 
treatment planning of Stage IA and IB NSCLC patients treated with SBRT: 
University of Turin experience". C. De Colle, S. Badellino, C. Piva et al. IV 
AIRO Young National Congress. Rom, 25 Juni 2011 

 

 

 


