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4. Abstract 

Innate immunity is one of our first lines of defense of the organism against invading 

pathogens. One cell type of the innate immune system consists of macrophages, which 

recognize a highly conserved set of structures on pathogens by specific receptors and 

initialize the unspecific and specific immune response by secreting signaling molecules with 

pro-inflammatory and chemotactic effects. A key signaling mediator of the primary immune 

response is the transcription factor NF-κB. NF-κB proteins are sequestered by classical IκB 

proteins in the cytoplasm of resting cells, but are released after cellular activation and 

degradation of the IκB. NF-κB is also regulated by atypical IκB proteins that can only be 

found in the nucleus of activated cells. One member of this atypical IκB protein family is 

IκBNS, which is the main focus here.  

This project aimed to elucidate the effect of IκBNS on the differentiation and activation of 

human macrophages, on macrophages infected with HIV and on DLBCL. Since two isoforms 

of IκBNS exist, the effect of overexpression of each isoform was analyzed to uncover specific 

functions of these isoforms.  

The analyses showed a conserved function of IκBNS in murine and human cells. Moreover, 

IκBNS isoform 1 and 2 showed marked different effects on macrophage activation. While 

IκBNS isoform 1 mainly showed a suppressing effect, isoform 2 showed suppressing as well as 

activating effects on the expression of pro-inflammatory factors.  

Overexpression of IκBNS isoforms 1 and 2 resulted in a shift from macrophage to dendritic 

cell phenotype. During HIV expression, overexpression of IκBNS isoform 1 resulted in 

reduced expression of antiviral factors, while overexpression of IκBNS isoform 2 showed no 

significant effects.  

In ABC DLBCL, no IκBNS-deficient cell line could be established, suggesting a crucial effect 

of IκBNS on DLBCL survival and growth. This was confirmed in on the transcriptional level 

for IκBNS isoform 1. 

In summary, IκBNS isoforms 1 showed no activating effect or even a suppressive effect on 

target gene expression, while IκBNS isoform 2 overexpression showed a strong activation of 

chemotactic chemokines and type I interferons in macrophages. In DLBCL, IκBNS isoform 1 

overexpression resulted in a marked activation of chemotactic and angiogenetic chemokines 

and growth-promoting transcription factors, showing its importance in the development of 

negative prognostic factors.  
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5. Zusammenfassung 

Das angeborene Immunsystem ist eine der ersten Verteidungslinien unseres Organismus 

gegen eindringende Pathogene. Ein Zelltyp des angeborenen Immunsystems sind die 

Makrophagen, die über spezifische Rezeptoren hochkonservierte Bestandteile von 

Pathogenen erkennen und anschließend über die Sezernierung von chemotaktischen und 

entzündungsinduzierenden Zytokinen und Chemokinen die unspezifische und spezifische 

Immunantwort einleiten können. Ein zentraler Mediator der primären Immunantwort ist der 

Transkriptionsfaktor NF-κB. In ruhenden Zellen sind die Proteine der NF-κB-Familie im 

Zytoplasma an klassische IκB-Proteine gebunden. Nach Aktivierung der Zelle werden die 

IκB-Proteine abgebaut, wodurch die NF-κB-Proteine in den Kern wandern und dort ihre 

transkriptionelle Aktivität ausführen können. Ein weiterer Regulationsmechanismus von NF-

κB besteht aus atypischen IκB-Proteinen, die nur im Zellkern aktivierter Zellen gefunden 

werden können. Ein Mitglied der Familie der atypischen IκB-Proteine und Hauptfokus dieser 

Arbeit ist IκBNS. 

Ziel dieses Projekts ist die Aufklärung des Effekts von IκBNS auf die Differenzierung und 

Aktivierung von humanen Makrophagen, auf die Infektion von Makrophagen mit HIV und 

auf DLBCL. Da zwei verschiedene Isoformen von IκBNS beschrieben sind, wird hier der 

Effekt beider einzelner Formen untersucht, um mögliche spezifische Funktionen der 

einzelnen Formen aufzudecken.  

Unsere Experimente zeigten eine Konservierung der Funktion von IκBNS in humanen und 

murinen Zellen. Isoform 1 und 2 von IκBNS zeigten klare Unterschiede in ihrem Effekt auf die 

Aktivierung von Makrophagen: Während Isoform 1 einen indifferenten oder supprimierenden 

Effekt hatte, zeigte Isoform 2 abhängig vom untersuchten pro-inflammatorischen Faktor 

sowohl supprimierende als auch aktivierende Effekte. 

Die Überexpression von IκBNS Isoform 1 und 2 sorgte für eine Verlagerung der 

Differenzierung von Makrophagen weg hin zu dendritischen Zellen. Im Setting der Infektion 

mit HIV zeigten Zellen mit Überexpression von IκBNS Isoform 1 eine Reduktion der 

exprimierten antiviralen Faktoren, während die Überexpression von IκBNS Isoform 2 keine 

Reduktion der untersuchten Faktoren zeigte. 

In den ABC DLBCL konnten wir keine IκBNS-defiziente Zellinie etablieren, was eine zentrale 

Rolle von IκBNS auf das Überleben und das Wachstum der DLBCL suggeriert. Dies konnte in 

der Überexpression von IκBNS Isoform 1 auf dem transkriptionellen Level bestätigt werden.  
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Zusammengefasst zeigte IκBNS Isoform 1  in Makrophagen keinen aktivierenden, sondern bei 

einigen Zielen auch suppressiven Effekt auf die Expressionslevel, während IκBNS isoform 2 

hier eine ausgeprägte Aktivierung von chemotaktischen Chemokinen und Typ I Interferonen 

bewirkte. In den Lyphomzellen zeigte IκBNS isoform 1 eine starke Aktivierung von 

chemotaktischen und angiogenetischen Chemokinen sowie von wachstumsfördernden 

Transkriptionsfaktoren, was seine Schlüsselrolle in der Pathogenese und der Entwicklung 

negativ prognostischer Faktoren zeigt. 
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6. Introduction 

6.1. Innate immune system 

The bulk of invading pathogens expresses a stereotypical, conserved set of surface molecules 

and can thus be recognized and neutralized by an innate response system. Our innate immune 

system consists of humoral and cellular components such as dendritic cells, the different types 

of granulocytes, natural killer cells and macrophages (Delves and Roitt, 2000).  

 

6.1.1. Macrophages in innate and adaptive immunity 

Macrophages are a heterogeneous group of myeloid cells with multiple purposes that are part 

of the innate immune system. Their progenitors circulate in the blood stream, capable of 

recruitment to sites of inflammation and subsequent differentiation. However, macrophages 

are also scattered in the extravascular space as sentinels (Geissmann et al., 2003). Here, they 

recognize pathogens via a highly conserved set of receptors and neutralize them, attract 

additional cells of the immune response and activate the adaptive immune response.  

The role as sentinel consists of the attraction and activation of the immune response, as well 

as a more direct reaction to the pathogens. This reaction covers the secretion of effector 

molecules, such as antimicrobial peptides, protease inhibitors and extracellular matrix 

degrading proteins. Additionally, the recognition of pathogen-associated molecular patterns 

(PAMPs) triggers phagocytosis of these molecules and structures connected to them, enabling 

macrophages to clear the organism from pathogens and cell debris (Yamasaki et al., 2008, 

Auffray et al., 2007). Following phagocytosis, fragments of the foreign molecule are mounted 

on MHCII complexes and presented on the cell surface of the macrophages. T-lymphocytes 

recognize these epitopes via their TCR and become activated, thus linking the macrophage 

function as part of innate immunity with the adaptive immune system (Armstrong and Hart, 

1971, Flannagan et al., 2012, Soudja et al., 2014). 

After the inflammatory response is triggered, macrophages remain key players of the 

regulation of the processes. Resident macrophages recognize the pathogens and secrete 

several chemotactic factors, which recruits neutrophilic granulocytes and monocytes from the 

blood into the tissue. The monocytes then differentiate to pro-inflammatory macrophages and 

dendritic cells (DCs). After neutralization of the pathogens, the neutrophilic granulocytes 

undergo apoptosis. This results in the abrogation of further influx of neutrophilic granulocytes 

and re-polarizes the macrophages from their pro-inflammatory classically activated (M1) to 

the anti-inflammatory alternatively activated state (M2). This shifts the immune response 

from an aggressive pro-inflammatory to an anti-inflammatory state with restoration of tissue 

homeostasis. The secretome of these M2-macrophages is dominated by anti-inflammatory 

factors (Levy et al., 2001, Freire-de-Lima et al., 2006, Bellingan et al., 1996). 
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The processes described above show three central aspects of the properties of macrophages:  

(I) The secretome of macrophages has a strong impact on the local microenvironment, 

enabling them to precisely regulate subsequent immune reactions. 

(II) Macrophages can adopt different polarization states, depending on the context of their 

activation. This enables them to initiate several reactions that differ fundamentally, for 

example the initiation of inflammation and wound healing. Thereby, macrophages are 

capable of triggering multiple highly differentiated reactions, depending of the kind of 

threat and progression of the response.  

(III) Other than differentiated T lymphocytes, polarized macrophages retain their plasticity, 

which allows a reaction depending on changes in the local microenvironment. 

Since activated macrophages are the main focus of this project, the next chapters concentrate 

on macrophage activation and the receptors and two major pathways involved in macrophage 

activation. 

 

6.1.2. Macrophage activation 

The ability of macrophages to respond to different exogenous activating and quenching 

stimuli was first delineated by (Mackaness, 1962). He described a macrophage population 

showing enhanced antimicrobial and anti-tumoral properties as a response to listeria-induced 

monocytogenesis (Mackaness, 1962). Subsequent studies could elucidate that certain 

treatments can lead to different modes of activation:  

(I)  Classical activation/M1 state: Induced by treatment with IFNβ, IFNγ or LPS 

(lipopolysaccharide) in vitro. Classically activated macrophages are pro-inflammatory, 

associated with a reduction of pathogens and show anti-tumoral effects. They display an 

enhanced response to pro-inflammatory agents.  

(II)  Alternative activation/M2 state: Commonly induced by IL4. Alternatively activated 

macrophages are anti-inflammatory and associated with wound healing and tumor 

growth. They exhibit a reduced response to pro-inflammatory stimuli.  

(III) Innate activation: After contact with PAMPs, specific receptors like TLRs are ligated, 

leading to the production of pro-inflammatory cytokines, interferons and antimicrobial 

peptides.  

(IV) Deactivation: Mostly induced by IL10. It is characterized by an anti-inflammatory 

cytokine profile and a reduced expression of MHC-class II proteins (Gordon and Taylor, 

2005). 
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Figure 6.1: Mechanisms of macrophage activation. 

The major regulatory pathways of macrophage polarization are shown in this figure. Macrophage 

polarization and activation status are tightly regulated by the balance of STAT1 and STAT3/6 levels. 

Predominant induction of activating NF-κB members and STAT1 induce an inflammatory phenotype, 

whereas predomination of STAT3, STAT6 and suppressive NF-κB members result in an anti-

inflammatory phenotype. Downstream of STAT6, KLF4 suppresses NF-κB-dependent transcription. 

IL4 stimulation induces STAT6 and cMyc, which controls M2-associated genes together with IRF4 

transcription, which inhibits IRF5 and thus reduces M1 polarization. IL10 stimulation promotes the 

M2 phenotype via induction of p50 NF-κB homodimers, cMaf, and STAT3. Modified after (Wang et 

al., 2014). 

 

One of the best-known and best-characterized set is the Toll-like receptor (TLR) family. 

These extra- and intracellular receptors are activated by pathogen-associated molecular 

patterns (PAMPs) and are the subject of the next chapter. 
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6.1.3. The Toll-like receptor family 

Macrophages are an essential part of the innate immune system and heavily rely on TLR 

signaling for their activation. The TLR/interleukin 1 receptor family consists of a conserved 

intracellular domain of roughly 200 amino acids (Toll/IL1R domain TIR) (Slack et al., 2000), 

a membrane-spanning domain and an immunoglobulin-like (IL1R) or a leucine-rich-repeat-

motif (LRR) of 24-29 amino acids (Bell et al., 2003), classifying them as type I receptors. 

There are several different extra- and intracellular TLRs which are activated upon contact 

with different PAMPs. Some of the molecules recognized as PAMPs are lipopolysaccharide 

(LPS), bacterial flagellin, lipoteichoic acid, peptidoglycane and several foreign variations of 

nucleic acids, such as double-stranded RNA or unmethylated CpG-motifs (Kumar et al., 

2011). Despite their highly conserved LRR, different TLR are capable of binding different 

substance classes as their ligands (Akira et al., 2001).  

 

Table 6.1: TLR and their stimuli in humans 

Modified after (Akira and Takeda, 2004). 

 

Receptor Ligands (excerpt) Source of ligand Production 

TLR1 Triacyl lipopeptides Bacteria, mycobacteria IC 

TLR2 Lipoprotein 

Lipoteichoic acid 

Viral capsid proteins 

Various pathogens 

Gram-positive bacteria 

Viruses (e.g. influenza) 

IC 

TLR3 dsRNA Viruses (e.g. HSV-1) IC, IFN type I 

TLR4 Lipopolysaccharide Gram-negative bacteria IC, IFN type I 

TLR5 Flagellin Bacteria IC 

TLR6 Lipoteichoic acid Gram-positive bacteria IC 

TLR7 ssRNA Viruses (e.g. HIV) IC, IFN type I 

TLR8 ssRNA Viruses IC, IFN type I 

TLR9 CpG-containing DNA 

dsDNA 

Bacteria and viruses 

Viruses (e.g. CMV) 

IC, IFN type I 

 

Some of these receptors, especially those recognizing nucleic acids (TLR3, TLR7, TLR8, 

TLR9) are expressed in the endosomes or lysosomes (Ahmad-Nejad et al., 2002, Latz et al., 

2004). The other receptors can mostly be localized on the cell surface.  

Multiple signaling pathways are activated after binding of PAMPs to TLRs, resulting in the 

activation of NF-κB and in turn mediating an inflammatory response. LPS, an endotoxin 

which can be found in bacterial cell membranes, is a classical PAMP and a potent activator of 

the Toll-like receptor 4, resulting in a robust induction of NF-κB. 

In this project, macrophages were stimulated with LPS and infected with HIV, thus TLR4 and 

TLR7 are introduced in more detail.  
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Figure 6.2: TLR4 and TLR7 signaling 

TLR signaling can be divided in the MyD88 and the TRIF pathway. Both pathways converge in 

TRAF6 activation and subsequent NF-κB and AP-1-mediated expression of pro-inflammatory 

cytokines and AP-1 and STAT1-mediated expression of type I interferons. In addition, the TRIF 

dependent pathway mediates interferon type I expression by induction of NF-κB and IRF3, while the 

MyD88 dependent pathway induces cytokine expression mediated by IRF5. Modified after (Lu et al., 

2008, Uematsu and Akira, 2007, Luu et al., 2014). 

 

TLR4 is a cell surface receptor that is activated upon contact with LPS. It is the only TLR that 

is capable of recruiting all adaptor proteins. The signaling pathways induced by TLR4 are 

divided into MyD88-dependent and TRIF-dependent pathways. The MyD88-dependent 

pathway is described below for the TLR7 receptor.  

Upon TLR4 stimulation, TIR-domain-containing adapter-inducing interferon-β (TRIF) is 

activated via the TRIF-related adaptor molecule (TRAM) and binds to tumor necrosis factor 

receptor-associated factor 3 (TRAF3), ultimately resulting in interferon-responsive factor 3 

(IRF3) activation and expression of type I interferons. In addition, TRIF activates 

serine/threonine kinase receptor-interacting protein 1 (RIP1), which in turn phosphorylates 
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Inhibitor of kappa B-protein kinase IκK, releasing NF-κB proteins from their inhibitory IκB 

proteins and inducing type I interferon expression and pro-inflammatory cytokines. Another 

target of RIP1 is the MAP-kinase (MAPK), which phosphorylates activator protein I and thus 

induces the expression of type I interferons and of pro-inflammatory cytokines. Another 

target of TRIF is TNF receptor associated factor 6 (TRAF6) (Gohda et al., 2004, Lomaga et 

al., 1999), which is also part of the MyD88-dependent pathway and in turn activates NF-κB, 

MAPK and IRF7, thus inducing the expression of type I interferons and pro-inflammatory 

cytokines (Uematsu and Akira, 2007).  

TLR7 is an endosomal receptor that is activated upon contact with single-stranded RNA 

(ssRNA). TLR7 can only recruit MyD88 via the Toll-interleukin 1 receptor (TIR) domain 

containing adaptor protein (TIRAP) and is thus restricted to the MyD88-dependent pathway. 

MyD88 activates IL1-receptor associated kinase 4 (IRAK4), which in turn phosphorylates 

IRAK1. Both activate TRAF6, thus converging with the TRIF-dependent pathway and 

inducing the expression of pro-inflammatory cytokines and type I interferons via NF-κB, 

MAPK and IRF7. MyD88 also activates IRF5 directly and upregulates IκBζ expression, 

subsequently again activating NF-κB  (Uematsu and Akira, 2007). 

NF-κB is a pivotal transcription factor in TLR signaling. In addition, IκBNS is a protein 

strongly induced by NF-κB signaling. Thus, a more detailed introduction of NF-κB signaling 

is required here. 

 

6.2. NF-κB, a crucial transcription factor 

Gene expression is guided by general transcription factors, such as TATA binding protein. To 

respond to different external and internal stimuli, specific transcription factors, such as       

NF-κB, bind to their binding sequences to subsets of target genes, which thereby customize 

the cellular response to certain stimuli. A rapid and temporary adaption is often mediated by 

inducible transcription factors, such as the NF-κB protein family. NF-κB has been first 

discovered as a regulator of expression of the κ light chain gene in B-lymphocytes (Sen and 

Baltimore, 1986), where it plays a key role in the class switch during B-lymphocyte 

maturation. In the following years, NF-κB was discovered to be expressed in almost all 

animal cells and to be involved in many cellular responses to a large number of different 

stimuli, such as cellular stress, cytokines, irradiation, foreign antigens and growth signals 

(Hayden and Ghosh, 2012). These homo- or heterodimers regulate a wide range of genes 

responsible for cell proliferation and survival, which are essential for the proper function of 

the immune system via the regulation of cytokine production (Goudeau et al., 2003, Hayden 

and Ghosh, 2011, Samson et al., 2004).  
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The NF-κB protein family consists of five transcription factors: p50, p52, p65/RelA, RelB and 

c-Rel. These proteins share a nuclear localization sequence (NLS), enabling their transport 

from the cytosol to the nucleus, and a Rel-homology domain (RHD), enabling them to form 

homo- and heterodimers and to directly bind to certain binding motifs in the enhancer and 

promoter region of target genes. In addition, RelA, RelB and c-Rel contain a transactivation 

domain (TAD) which recruits proteins of the transcriptional machinery, such as Transcription 

factor IID and subsequently RNA polymerase II, which results in transcriptional activation of 

target genes after DNA binding (Dynlacht et al.). Consequently, NF-κB-DNA complexes 

containing a TAD trigger gene expression, while complexes lacking a TAD suppress the 

transcription probably by competitive inhibition. 

NF-κB subunits are expressed constitutively and almost ubiquitously. In unstimulated cells, 

NF-κB dimers are inactive, as they form complexes with so called classical inhibitors of κB 

(IκB proteins) in the cytosol (Baeuerle and Baltimore, 1988, Beg and Baldwin, 1993). After 

activation, NF-κB activity is fine-tuned by posttranslational modifications of Rel-proteins 

such as sumoylations, phosphorylations, acetylations and ubiquitinylations and by expression 

of secondary response genes (Mankan et al., 2009, Chen and Greene, 2004). 

NF-κB signaling can only work because of its rapid induction of gene expression. This is only 

possible due to the functional neutralization of NF-κB proteins by their inhibitors, the IκB 

proteins that are rapidly removed upon activation of certain receptors. Hence, NF-κB 

signaling and IκB proteins are heavily intertwined and require a more detailed introduction of 

IκB proteins. 

 

6.2.1. IκB proteins 

The IκB family consists of at least eight different proteins defined by their common ankyrin 

repeat sequence which allows protein-protein interactions. 

The classical IκB proteins IκBα, IκBβ and IκBε are constitutively expressed and bind to    

NF-κB homo and heterodimers, thereby masking their NLS and inhibiting their nuclear 

translocation. Classical NF-κB activation, e.g. through TLR4 stimulation by 

lipopolysaccharide, triggers phosphorylation of IκBα or IκBβ that leads to a dissociation of 

the NF-κB-IκB complex, followed by polyubiquitylation and a rapid proteasomal degradation 

of the IκBα and nuclear translocation of NF-κB (Shirakawa and Mizel, 1989). Thereafter,   

NF-κB is shut off by NF-κB-dependent re-expression of IκBα, leading to new complex 

formation of NF-κB and IκB and nuclear export.  



16 

 

An alternative mode of NF-κB activation is mediated by p100 and p105. These proteins 

contain the ankyrin repeat domain and an additional RHD. Both proteins can act as NF-κB-

inhibiting IκB proteins. However upon activation, p100 and p105 can also be cleaved into p50 

and p52 monomers that relocalize to the nucleus (Meyer et al., 1991). 

Besides the classical IκBs, atypical IκB proteins, called Bcl3, IκBζ, IκBNS, IκBη and IκBL 

exist. These proteins contain the similar ankyrin repeat domains, but show some features 

distinct from classical IκBs. They are expressed at low levels in resting cells, but are rapidly 

induced after specific stimuli in an NF-κB dependent manner (Kitamura et al., 2000, Fiorini et 

al., 2002, Ohno et al., 1990). In addition, atypical IκBs are mainly located in the nucleus. 

Here, they modulate the expression of the secondary response genes in a NF-κB-dependent 

manner via various means, such as dimer exchange, recruitment of histone-modifying 

enzymes, stabilization of NF-κB dimers on the DNA and by forming nuclear complexes with 

NF-κB subunits. Atypical IκB proteins are capable of activating transcription of TAD-

deficient NF-κB dimers via their own TAD. In addition, they can repress the formation of 

TAD-containing NF-κB dimers, such as p50/p65, thereby fine-tuning the NF-κB response 

(Chen and Greene, 2004, Mankan et al., 2009, Hayden and Ghosh, 2012). 
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Figure 6.3: Structure of NF-κB and IκB proteins family. 

The proteins shown above are the key proteins of the NF-κB pathway. Important protein structures are 

marked in the legend. NF-κB proteins are defined by their RHD that enable them to bind to certain 

DNA sequences, depending on post-translational modifications in that region. c-Rel, RelB and p65 

also contain TADs. p100 and p105 can be cleaved in the glycine-rich repeat region, liberating the 

functional NF-κB protein p52 and p50, respectively. These NF-κB proteins do not contain a TAD. 

They can inhibit binding of TAD-containing NF-κB members and thus repress transcription. IκB 

proteins mainly consist of multiple ankyrin repeats mediating their interaction with NF-κB proteins. In 

addition, most IκBs contain a PEST sequence for proteasomal degradation. IκBζ and BCL3 contain 

TADs, enabling them to activate gene expression. As they lack a RHD, they are unable to bind to DNA 

alone, but are dependent on NF-κB dimers to initiate transcription of a target gene. Modified after 

(Hayden and Ghosh, 2012, Schuster et al., 2013). 
 

Classical IκB proteins form a cytosolic complex with NF-κB proteins, thus inhibiting their 

action. Atypical IκB proteins, however, further fine-tune NF-κB signaling after their induction 

by NF-κB. One of these atypical IκBs, namely IκBNS, is the main focus of this project, thus 

requiring a more detailed introduction. 

 

6.2.2. NF-κB regulator IκBNS 

The atypical IκB protein IκBNS (encoded by NFKBID) was first described as an inducible IκB 

protein involved in the negative selection of T-cells (Fiorini et al., 2002). It consists of six 

ankyrin repeats, but lacks a TAD. Its mode of function is similar to the related IκBζ: It forms 

complexes with nuclear p50 homodimers, but not p50/p65 heterodimers, and destabilizes 

p50/RelA heterodimers (Yamazaki et al., 2001, Manavalan et al., 2010). Since it lacks a TAD, 

it may work as a repressor of transcription by competitive inhibition of binding of TAD 

containing atypical IκB proteins. After induction, IκBNS is rapidly degraded in a PEST-

mediated manner (Park et al., 2014). 
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Figure 6.4: Effects of IκBNS on macrophages, B- and T-lymphocytes. 

Stimulation of TLRs, B cell receptor (BCR) or T cell receptor (TCR) induces NF-κB activity, which 

leads to expression of IκBNS and IκBζ (Fiorini et al., 2002, Kitamura et al., 2000). STAT3-mediated 

IκBNS expression in macrophages can be triggered by IL10 (Hutchins et al., 2013). IκBNS and IκBζ 

destabilize p50/RelA heterodimers and stabilize and bind to p50 homodimers, regulating gene 

expression of NF-κB target genes (Yamazaki et al., 2001, Manavalan et al., 2010). IκBNS is 

indispensable for downregulation of IL6 levels after LPS stimulation of macrophages (Hirotani et al., 

2005, Kuwata et al., 2006) 

IκBNS is involved in B cell differentiation: Knockout of IκBNS results in the absence of B1 lymphocytes 

and IgM as well as marginal zone B cells (Pedersen et al., 2014, Arnold et al., 2012, Pedersen et al., 

2016). Differentiation from plasmablasts to plasma cells and IgG levels are decreased (Touma et al., 

2011). IκBNS up-regulates IL2 and IFNγ expression in T-lymphocytes during maturation, driving cell 

proliferation and Th17 differentiation (Schuster et al., 2012). It also upregulates FoxP3 expression, 

which downregulates IκBNS expression, resulting in a negative feedback loop (Marson et al., 2007, 

Schuster et al., 2012).  
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IκBNS was first discovered because of its regulatory function in the negative selection of T-

cells (Fiorini et al., 2002). However, subsequent studies revealed that it is dispensable for it, 

since CD4+ and CD8+ T-cell counts were identical between IκBNS-deficient and wild type 

mice (Touma et al., 2007). The reactivity against TCR-activating antigens was not impaired 

as well, although IκBNS is induced by TCR stimulation in adult CD4 T-cells (Schuster et al., 

2012). T-cell proliferation is slightly impaired due to reduced expression of IL2 and IFNγ 

after stimulation with anti-CD3 and anti-CD28 antibodies in IκBNS-deficient animals. This 

impairment can be overcome by PMA and ionomycin stimulation or by addition of exogenous 

IL2 (Kuwata et al., 2006, Touma et al., 2007). In addition, IκBNS is involved in T-lymphocyte 

polarization: IκBNS regulates the expression of FoxP3, a crucial factor for the development of 

regulatory T-lymphocytes (Treg). IκBNS-deficient mice have markedly decreased counts of 

Treg cells, but show no signs of autoimmune disease. This is due to the fact that IκBNS is also 

crucial for Th17 differentiation, with strongly reduced levels of Th17 cells in IκBNS-deficient 

mice. However, Th1 helper cells are not affected by IκBNS deficiency, resulting in severe 

inflammation in a DSS-induced colitis model (Annemann et al., 2015). Consequently, IκBNS-

deficient mice are more resistant against Th17-mediated encephalomyelitis (Kobayashi et al., 

2014) 

In B cells, IκBNS regulates B1a and B1b differentiation, as these subpopulations are missing 

in IκBNS-deficient mice (Pedersen et al., 2014). IgM levels are reduced, even in mice with a 

heterozygous mutation of IκBNS (Pedersen et al., 2016). Moreover, the marginal zone B cells 

are decimated (Touma et al., 2011, Arnold et al., 2012). Similar to the impaired T-cell 

proliferation after TCR stimulation, the B cell proliferation and Ig class switch following LPS 

and anti-CD40 stimulation are reduced in IκBNS-deficient cells, as well as IL10 expression 

(Miura et al., 2016). The germinal center B cell population is reduced in young mice, but 

reaches wild type levels after 6 weeks. Additionally, the differentiation of plasma cells is 

impaired in IκBNS-deficient cells (Touma et al., 2011). Consistently, serum IgM and IgG3 

levels are strongly decreased in IκBNS-deficient mice after influenza infection and the increase 

of antigen-specific IgG1 levels is delayed (Touma et al., 2011). 

In macrophages, IκBNS is induced by LPS and IL10 in a comparable manner (Hutchins et al., 

2013, Kuwata et al., 2006). Loss of IκBNS results in a prolonged and enhanced expression of 

IL6 and IL12p40 after LPS stimulation (Kuwata et al., 2006, Hirotani et al., 2005). However, 

IL2 expression is impaired in IκBNS-deficient thymocytes (Touma et al., 2007). This dual 

effect as an activator and as a repressor of the expression of different genes is a cardinal 

feature of the atypical IκB protein family. In addition, RelA/p50 dimers show a prolonged 
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binding to promoter sequences in IκBNS-deficient macrophages, suggesting a quenching effect 

of IκBNS on NF-κB-mediated late response cytokine expression (Kuwata et al., 2006). In sum, 

IκBNS deficiency results in an increased susceptibility to LPS-induced endotoxin shock likely 

due to its function in inhibiting pro-inflammatory cytokine production. In line, IκBNS deficient 

mice are higher susceptible to DSS-induced colitis (Annemann et al., 2015). In addition, 

atherosclerosis is accelerated by prolonged IL6 secretion in LDL-receptor deficient mice 

(Akita et al., 2016). Thus, IκBNS constitutes an inhibitor of pro-inflammatory NF-κB gene 

expression in macrophages. On the other hand, IκBNS represents an important factor for the 

balance of pro- and anti-inflammatory T-lymphocyte subpopulations and a crucial factor for 

the differentiation of B-lymphocytes and B-lymphocyte subpopulations. 

NF-κB signaling can be detected in almost every cell type. However, it has a greater 

significance and distinct functions only observable in some cell types. Thus, a more detailed 

introduction of NF-κB signaling in macrophages is needed for this project. Additionally,     

NF-κB signaling is not only important in the physiological setting, but also in disease. As 

HIV infection and diffuse large B cell lymphomas are also part of this project and NF-κB 

signaling has a central role in both pathological settings, a short introduction of the role of 

NF-κB in macrophages, HIV infection and diffuse large B cell lymphomas (DLBCL) is 

necessary. 

 

6.2.3. NF-κB in macrophages 

The NF-κB signaling pathway is pivotal for macrophage differentiation, activation and 

polarization. Common myeloid progenitor cells differentiate to granulocyte/macrophage 

progenitor cells following stimulation with GM-CSF and, subsequently, to monocytes 

following stimulation with M-CSF (Rosenbauer and Tenen, 2007). Both processes are 

regulated by NF-κB, as shown by an increase of colony-forming units of the myeloid 

hematopoietic line isolated from mice deficient for IκBα (Gerondakis et al., 1999). In 

addition, the GM-CSF receptor interacts with the IKK2 during ligand binding, resulting in its 

activation and subsequent NF-κB signaling (Ebner et al., 2003). GM-CSF also mediates the 

final differentiation step from circulating monocytes without detectable NF-κB activity to 

macrophages with high NF-κB activity. During these differentiation processes, NF-κB 

activation is essential due to its anti-apoptotic effect. This has also been shown by Gerondakis 

et al., who found a high susceptibility of p65-deficient macrophages to apoptosis (Gerondakis 

et al., 1999).  



21 

 

After the differentiation process has been completed, resting macrophages again downregulate 

NF-κB activity. Upon exposure to PAMPs or cytokines, TLR or cytokine receptors are 

ligated, respectively. As described above, all TLR signaling pathways eventually converge on 

activation of NF-κB with subsequent expression of cytokines and secondary response 

molecules, resulting in a distinct polarization of the macrophage. However, depending on    

co-stimulation by more than one factor, the precise cytokine profile upregulated underlies 

great variation (Gerondakis et al., 1999). 

 

6.3. NF-κB in disease 

NF-κB is a master regulator of various cellular programs that are important for cell survival 

and growth, but in other circumstances also for cell death and inflammation. As these 

programs are fundamental for virus proliferation and spread as well as cancer development 

and progression, the NF-κB pathway is often hijacked as a driving force of these diseases 

(Hayden and Ghosh, 2012). 

One pathogen successfully hijacking the NF-κB pathway is the human immunodeficiency 

virus HIV. 

 

6.3.1. NF-κB in acute and chronic HIV infection 

The NF-κB pathway is crucial to the response to viral infection as it activates transcription 

and secretion of antiviral factors, such as interferon beta, and thus initiates the antiviral 

response (Hiscott et al., 1989), and induces apoptosis. Some virus types use the apoptosis 

program to spread hidden from the humoral immune system within apoptotic bodies and to 

home towards and infect macrophages (Stewart et al., 2000). However, NF-κB activation can 

also render the cell less susceptible to infection- or immunity-induced apoptosis (Stewart et 

al., 2000), and promote cell cycle progression to the G1/S phase in some cell types directly or 

by induction of growth factors (Schuitemaker et al., 1994). Thus, it is not surprising that 

several viruses exploit this pathway to enhance their replication and the survival of their host 

cell.  
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Figure 6.5: The life cycle of HIV 

Simplified visualization of the different steps in the life cycle of HIV. Viral particles adhere to CD4 

and a chemokine co-receptor. After attachment, the lipid bilayers of the host cell and the virus merge. 

As the virus penetrates the cell, the capsid and matrix proteins are degraded, releasing virus RNA and 

enzymes into the cytoplasm via endocytosis (Daecke et al., 2005). The error-prone viral enzyme 

reverse transcriptase converts the viral RNA into ssDNA and dsDNA. This dsDNA is joined by 

integrase and transferred into the nucleus, where it is spliced into the host’s DNA (Engelman et al., 

1991). The host’s transcriptional machinery is used to produce viral RNA and mRNA for virus protein 

construction. The mRNA undergoes translation and the resulting multiprotein chains are transferred 

to the cell membrane. Here, the proteins form clusters for the production of new viral particles. The 

clusters form a bud in the cell membrane, within which the virus matures by cleavage of the 

multiprotein chains by the HIV protease to their proper size (Kohl et al., 1988). After detachment of 

the bud, the new viral particle is ready to infect another cell of the immune system (Moss, 2013). 

Modified after (Maartens et al., 2014). 
 

One of these viruses is HIV. It inhibits myelocyte apoptosis by constitutive NF-κB activation 

(DeLuca et al., 1998). In addition, two NF-κB-binding sites are located in the promoter-

proximal region of the HIV long terminal repeat (LTR), rendering the expression of HIV 

RNA highly NF-κB-dependent (Kwon et al., 1998).  

HIV enters the cell by binding to CD4, a surface marker found on T lymphocytes, monocytes 

and macrophages. Although T lymphocytes are the main target of HIV and their depletion 

leads to the AIDS phenotype, macrophages are recognized as an important earlier target of 

HIV. In addition, infected macrophages survive and produce viral particles for longer periods 

than T lymphocytes (Sharova et al., 2005).  
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The NF-κB pathway is activated as soon as HIV binds to CD4, resulting in the fusion of the viral 

and cellular membranes. After integration of the viral DNA into the host genome, NF-κB is 

downregulated, stopping transcription of HIV RNA. However, activation of NF-κB in infected 

macrophages triggers HIV transcription and production of viral particles. After this initial step, 

several pathways that converge in NF-κB activation are continuously stimulated by HIV: 

Envelope protein gp120 engages the CD4 receptor pathway, stimulating NF-κB via Ras/Raf and 

PI-3K (Flory et al., 1998); the viral protein Tat phosphorylates IKK, leading to rapid induction of 

NF-κB via the canonical pathway (Manna and Aggarwal, 2000); TLR7 is stimulated by viral 

RNA; and via autocrine stimulation with IL1β and TNFα (Asin et al., 1999). While NF-κB 

activation is sufficient for expression of TNFα and pro-IL1β, the latter requires activation by 

cleavage by the inflammasome. The inflammasome is induced by the TLR7 stimulation of a 

productive HIV infection (Guo et al., 2014).  

The constitutive activation of NF-κB and inflammasome causing constant inflammation is the 

main cause of the pathological processes leading to AIDS (Doitsh et al., 2010).  

In summary, the progression of a chronic HIV infection to AIDS is NF-κB-dependent, making it 

an interesting target for future HIV treatments.  

As mentioned before, viral infection is not the only setting in which the NF-κB pathway is 

activated and hijacked. Also several cancer entities, such as diffuse large B cell lymphomas, 

display constitutive activation of NF-κB signaling. 

 

6.4. Diffuse large B cell lymphomas 

NF-κB is a major mediator of inflammation. However, while acute inflammation results in an 

effective clearance of cancer cells, chronic inflammation promotes carcinogenesis (Karin, 2009). 

In addition, proliferation of immune cells is tightly regulated by NF-κB (Gerondakis and 

Siebenlist, 2010). Thus, NF-κB is actively involved in the progression of many neoplastic 

diseases, such as lymphomas. 

 

6.4.1. Molecular subtypes 

B lymphocytes pass through many differentiation steps during their life. During differentiation, 

several double-strand breaks and ligations occur to create antibody diversity. However, this also 

leads to a high incidence of malignant transformation, resulting in leukemia and lymphomas (Jung 

et al., 2006).  

Thirty to forty percent of newly diagnosed lymphomas can be histologically classified as diffuse 

large B cell lymphomas (DLBCL). However, this group can be further divided into three different 

subtypes, namely germinal-center B cell-like (GCB), activated B cell-like (ABC), and primary 

mediastinal B cell-like (PMBL) DLBCL. They differ greatly in their gene expression profiles, 

suggesting different stages of differentiation in their cells of origin (Lenz and Staudt, 2010).  
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Figure 6.6: Different lymphomas and B cell development 

Scheme of the different B cell lymphoma-subtypes and multiple myeloma in association with the B cell 

differentiation process. Lymphomas, although similar in appearance microscopically, show distinct 

gene expression patterns that resemble those of different stages of the B cell development. 

Malignancies derived from germinal center cells still carry the genetic signature of their physiological 

equivalent, with oncogenic mutations subverting the normal differentiation program. Thus, mantle cell 

lymphomas resemble naïve mature B cells, Burkitt’s lymphomas and GCB DLBCL resemble 

centroblasts, follicular lymphomas resemble centrocytes, marginal-zone lymphomas resemble 

marginal zone B cells, ABC DLBCL resemble plasmablasts, and multiple myelomas resemble plasma 

cells on the transcriptional level. Lymphomas have acquired additional mutations circumventing 

apoptosis (e.g. BCL2 translocation), gaining independence of growth signals (NF-κB translocation) 

and disabling the differentiation program (interference with Blimp-1), thereby leading to 

uncontrollable growth (Alizadeh et al., 2000, Klein et al., 2006, Basso et al., 2004, Ci et al., 2009). 

Modified after (Lenz and Staudt, 2010) 
   

GCB lymphomas show the expression signature of germinal center B cells. In addition, 

apoptosis is circumvented by several mutations. Common mutations are the t(14;18) 

translocation, p53 mutations and loss of the tumor suppressor PTEN (Saito et al., 2007, 

Rosenwald et al., 2002). 

ABC lymphomas can be matched to B lymphocytes that have entered the plasma cell 

differentiation program. They constitutively express NF-κB due to constitutively active 

MyD88 or amplification of NF-κB and, consequently, also IRF4 (Care et al., 2014). However, 



25 

 

the final differentiation step is blocked due to interference with Blimp-1 expression, a 

transcription factor essential for plasma cell differentiation (Shaffer et al., 2002, Pasqualucci 

et al., 2006). NF-κB activation also upregulates IL6 and IL10 production, which in turn acts 

as an autocrine signal towards the cells upregulating STAT3 and JAK proteins (Ding et al., 

2008, Lam et al., 2008). In addition, most ABC lymphomas overexpress BCL2, thereby 

suppressing apoptosis (Iqbal et al., 2006). The INK4-ARF locus is often deleted, leading to 

genomic instability and inability to enter the senescence program (Lenz et al., 2008). In 

concert, these factors lead to an increased resistance to chemotherapy, resulting in a poor 

clinical prognosis. 

The third subtype, called PMBL, shows an expression pattern similar to the rare thymic B cell 

and a clinical presentation corresponding to Hodgkin’s lymphomas. Key mutations are the 

amplification of JAK2 and the deletion of suppressors of JAK2, leading to an increased 

expression of STAT6 and repression of BCL6 (Ritz et al., 2013, Guiter et al., 2004). In 

addition, amplification of PDL1 and PDL2 suppress the T cell response, thus enabling the 

lymphoma to survive in the thymus (Green et al., 2010). However, in contrast to Hodgkin’s 

lymphoma, it also expresses genes characteristic for mature B cells (Savage et al., 2003).  

These subtypes vary a lot in the overall survival rates after chemotherapy and responsiveness 

to targeted therapy, showing the clinical value of this subgroup classification. GCB and 

PMBL are associated with a favorable outcome, whereas the prognosis of patients with ABC 

lymphomas are generally not very favorable (Wright et al., 2003, Rosenwald et al., 2002, 

Rosenwald et al., 2003, Lossos et al., 2004) 

 

6.4.2. NF-κB in diffuse large B cell lymphomas 

NF-κB is overexpressed in several lymphoma subtypes, namely the ABC subtype, PMBL, 

Hodgkin’s lymphoma and marginal-zone lymphoma. Intriguingly, inhibition of NF-κB 

proved to be fatal to the tumor cells in vitro, showing an addiction to NF-κB signaling and 

downstream cytokine expression (Compagno et al., 2009, Hailfinger et al., 2009, Ferch et al., 

2009). The expression of secondary response genes of NF-κB is also elevated, with 

constitutively high levels of the atypical IκBs proteins BCL3, IκBζ and IκBNS. Knockdown of 

BCL3 and IκBζ proved to be lethal for lymphoma cell lines with high NF-κB activity, but not 

for GCB DLBCL (Nogai et al., 2013, Ibrahim et al., 2011a). This addiction to atypical IκBs is 

not surprising, as they regulate gene expression of several cytokines that are crucial for 

DLBCL survival and growth, such as IL6 and IL10 (Yamamoto et al., 2004, Chang and 

Vancurova, 2014), and thus indirectly regulate levels of the JAK/STAT3 axis. 
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6.5. Research goals 

NF-κB is a key transcription factor involved in the regulation of many different target genes 

and cellular fates. Therefore, understanding the molecular mechanism of how NF-κB 

functions in different cell types is crucial to manipulate this signaling pathway in autoimmune 

diseases, during infection or during tumor progression. One layer of NF-κB regulation 

involves the atypical IκBs that fine-tune NF-κB-mediated gene expression and ultimately cell 

fate. One of these cofactors constitutes IκBNS. IκBNS as well as other family members, such as 

IκBζ and Bcl3, can regulate T- and B-lymphocyte differentiation and activation, but little is 

known about the role of IκBNS in macrophages and tumor cells. Previous research hinted at an 

inhibitory role of IκBNS on IL6 and IL12 expression, but a global transcriptome analysis of 

IκBNS deregulated cells is still missing. Moreover, the functional role of IκBNS in 

macrophages as well as cancer cell lines has not been sufficiently elucidated.  

To define conserved IκBNS target genes, target gene expression will be analyzed in the human 

macrophage like cell line THP-1 as well as in ABC DLBCLs. In ABC DLBCLs our lab 

revealed a remarkably constitutive overexpression of IκBNS. Moreover, we already elucidated 

the existence of two IκBNS isoforms that might have specialized functions. 

With this project we aim to elucidate the target genes of the IκBNS isoform 1 and isoform 2 

overexpression in human macrophages in response to the TLR4 stimulating agent LPS. Basis 

for the selection of putative target genes represents a transcriptome analysis of LPS-

stimulated murine IκBNS knockout macrophages. Similar target genes will be validated in 

IκBNS-overexpressing DLBCL cell lines. 
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7. Materials and methods 

7.1. Materials 

7.1.1. Technical devices 

Table 7.1: Technical devices 

Device Company 

Autoclave Systec, Linden, Germany 

Block heater Kleinfeld Labortechnik, Gehrden, Germany 

Blotting chamber Biozym, Hessische Oldendorf, Germany 

Cell counting chamber Neubauer Improved Marienfeld, Lauda-Königshofen, Germany 

Centrifuge 5417R  Eppendorf, Hamburg, Germany 

Centrifuge Avanti J-30I Beckman Coulter, Brea, California, USA 

Centrifuge Multifuge 3 S-R Heraeus, Hanau, Germany 

Electrophoresis system Mini Format 1D, for 

SDS-Page 

Bio-Rad Laboratories, Hercules, CA, United 

States 

Epgradient Mastercycler Eppendorf, Hamburg, Germany 

Freezer -20°C Bosch, Gerlingen, Germany 

Freezer -80°C Thermo, Waltham, Massachusetts, USA 

Fusion-FX7 SPECTRA Vilber, Eberhardzell, Germany 

Incubator Hera Cell 240 Heraeus, Hanau, Germany 

Kryo chamber Nalgene, Thermo,  

Waltham, Massachusetts, USA 

Laminar flow cabinet Hera Safe Heraeus, Hanau, Germany 

Light Cycler 480 II Roche, Mannheim, Germany 

Liquid nitrogen tank LS 4800 Taylor-Wharton, Theodore, AL, USA 

Magnetic stirrer MR Hei-Standard Heidolph, Schwabach, Germany 

NanoDrop 1000 Peqlab, Erlangen, Germany 

pH-meter  Mettler Toledo, Columbus, Ohio, USA 

Pipettes Eppendorf Research Series 2100 (0.1-

2.5µl; 2-20µl; 20-200µl; 100-1000µl)  

Eppendorf, Hamburg, Germany 

Power Pac HC 

(SDS-PAGE + Western Blot) 

Biorad, Vienna, Austria 

QuBit 2.0 Fluorometer Thermo, Waltham, Massachusetts, USA 

Refrigerator 4°C Bosch, Gerlingen, Germany 

Roller mixer SRT9 Bibby scientific, Stone, Staffordshire, USA 

Sonication device Bioruptor OCD 200 Diagenode, Liège, Belgium  

Timer Roth, Karlsruhe, Germany 

Vacuum pump Vacuubrand BVC21 Vacuubrand, Wertheim, Germany 

Vortex Genie 2 Heidolph, Schwabach, Germany 

Waage CP423S-0CE Sartorius, Göttingen, Germany 

Water bath Aqualine AL25 Lauda, Lauda-Königshofen, Germany 

Zeiss Axiovert 135 Zeiss, Jena, Germany 

Zeiss Axiovert 40C Zeiss, Jena, Germany 

Zeiss HXP 120 Fluorescence Illuminator Zeiss, Jena, Germany 

Flow cytometer BD LSR II  BD, New Jersey, USA 

Multiwell reader Mithras LB 940  Berthold Technologies, Bad Wildbad, Germany 
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7.1.2. Consumables 

Table 7.2: Consumables 

Product Company 

Bacteria culture dishes Sarstedt, Mümbrecht, Germany  

Bacteria culture vials (14ml) BD, New Jersey, USA 

Cell culture dishes (5 cm, 10 cm) Greiner, Frickenhausen, Germany 

Cell culture plates (6-well) Greiner, Frickenhausen, Germany 

Cryo tubes Cryoline Thermo Scientific, Massachusetts, USA 

Cell scraper (25 cm) Sarstedt, Nümbrecht, Germany 

Filter tips (10µl, 20µl, 200µl, 1,000µl) StarLab, Ahrensburg, Germany 

Sterile filter (0.2µm and 0.45µm) Merck, Darmstadt, Germany 

Syringe, 10ml, 50ml  Henke-Sass, Wolf, Tuttlingen, Germany 

Parafilm Brand, Frankfurt am Main, Germany 

Whatman paper Whatman, Dassel, Germany 

Safe-lock reaction tube (1.5ml and 2.0ml) Eppendorf, Hamburg, Germany 

Falcon reaction tube (15ml, 50ml) Greiner, Frickenhausen, Germany 

Pipet tips (10µl, 200µl, 1,000µl) Greiner, Frickenhausen, Germany 

Protran nitrocellulose transfer membrane  GE Healthcare, Munich, Germany 

Gloves NitraTex, Staffordshire, United Kingdom 

96-well plates for qPCR 

384-well plates for qPCR 

Roche, Mannheim, Germany 

Transparent sealing foil for 96-well plate 

Transparent sealing foil for 384-well plate 

Roche, Mannheim, Germany 

 

7.1.3. Chemicals and reagents 

Table 7.3: Chemicals and reagents 

Substance Article No. Company 

Ampicillin K029.1 Roth 

Acrylamide Rotiphorese (40%) A515.1 Sigma 

Ammonium persulfate (APS) p.a. 9502.2 Roth 

Ammonium sulfate ((NH4)2SO4) >99.5%, p.a. A4418-1KG Sigma 

Bromophenol blue A512.1 Roth 

Calcium chloride dihydrate (CaCl2 x 2H2O) >99%, 

p.a., ACS 

C7902-500G Sigma 

Chloroform, Rotipuran p.a. C2432-500ML Sigma 

Complete Protease Inhibitor EDTA free 04693116001 Roche 

Dimethyl Sulfoxide (DMSO) 4380.0500 NeoLab Migge 

Dithiotreitol (DTT) 6908.3 Roth 

Deoxynucleotide triphosphates (dNTPs) DNTP100-1KT Sigma 

Ethanol 99.9% p.a. (EtOH) 20821.330 VWR 

Sodium Ethylene diamine tetraacetatic acid (Na-

EDTA) 

8043.2 Roth 

Ethylene glycol tetraacetic acid (EGTA) 3054.2 Roth 

Formaldehyde, 37% solution A0823.1000 AppliChem 

Glycerol, >99% p.a. A1123.1000 AppliChem 

Glycerophosphate (β-) disodium salt hydrate G5422 Sigma 

Glycine, >99%, p.a. A1067.5000 AppliChem 

HEPES Pufferan >99%, p.a. A3724.0250 AppliChem 

LB medium powder L3522-1KG Sigma 

LB agar powder L3147-1KG Sigma 

Hydrogen chloride (HCl) 4625.2 Roth 
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Agarose 2267.4 Roth 

Nonidet P-40 substitute (NP-40) 74385 Fluka 

Isopropanol 100% 20842.330 VWR 

Magnesium chloride hexahydrate (MgCl2 x 6H2O) M2393-100G Sigma 

Methanol >99% (MetOH) 20847.307 VWR 

Milk powder, blotting grade A0830.1000 AppliChem 

Phenol solution (pH 4.3) for RNA P4682-100ML Sigma 

SPECTRA prestained protein ladder 26634 Thermo 

6x DNA loading dye R0611 Thermo 

GeneRuler 1kb Plus DNA ladder SM1331 Thermo 

Phorbol 12-myristate 13-acetate (PMA) P8139-1MG Sigma 

Puromycin P9620 Sigma 

Ionomycin I0634-1MG Sigma 

G418 04727878001 Roche 

Kanamycin K1377-1G Sigma 

Random hexamer primer (0.2µg/µl) SO142 Thermo 

Sodium acetate (NaAc) 1.06267.1000 Merck 

Sodium hydrogen carbonate (NaHCO3), >99.5%, 

p.a., ACS, ISO 

6885.1 Roth 

Sodium chloride (NaCl) 27810.295 VWR 

Sodium duodecyl sulfate (SDS) CN30.3 Roth 

Sodium hydrogenphosphate monohydrate (NaHPO4 

x H2O), p.a. 

1.06346.1000 Merck 

Sodium (di-) hydrogenphosphate dihydrate 

(Na2HPO4 x 2H2O) >99%, p.a. 

T879.2 Roth 

Sodium hydroxide (NaOH), pellets 6771.1 Roth 

SYBR green S9430-1ML Sigma 

Tetramethylethylenediamine (TEMED) 2367.3 Roth 

Trisamine (Tris) Base, >99%, p.a. T1503-1KG Sigma 

Trehalose dehydrate 22515 Usb corporation, 

Cleveland 

Triton X-100, molecular biology grade 6683.1 Roth 

Acetic Acid glacial (100%) 20104.298 VWR 

Trizol QIAzol lysis reagent 79306 Qiagen 

Tryptone 8952.2 Roth 

Tween-20 8.22184.2500 Merck 

Midori Green Advance 617004 Biozym 

Urea U5378-100G Sigma 
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7.1.3.1. Buffers and solutions 

Table 7.4: Buffers and solutions 

Solution/buffer Compounds and handling 

WB running buffer 3 g/l Tris 

18.5 g/l glycine 

0.1% (w/v) SDS 

WB transfer buffer 3 g/l Tris 

18.5 g/l glycine 

20 % (v/v) ethanol 

WB blocking buffer 1x PBS 

5% (w/v) milk powder 

Cell lysis buffer 20 mM Tris-HCl pH 7.5  

150 mM NaCl 

1 mM Na2EDTA 

1 mM EGTA 

1% Triton X-100 

1 mM β-glycerophosphate 

2 M Urea 

1x Protease Inhibitor Cocktail (PIC) 

5x SDS loading buffer (Laemmli-buffer) 0.35 M Tris pH 6.8  

9.3 % Dithiotreitol 

30 % Glycerin 

10 % SDS 

0.02 % Bromophenol blue 

1x TAE 40 mM Tris base 

20 mM acetic acid 

1 mM EDTA 

1x PBS-T 1x Dulbecco’s PBS (Sigma) 

1 ml/L Tween-20 

PI 20 µg/ml PMA 

1 mg/ml Ionomycin 

HBS buffer 274 mM NaCl  

10 mM KCl 

1.4 mM Na2HPO4*7H2O 

15 mM glucose 

42 mM HEPES 

Adjust to pH 7.05 ± 0.05 with NaOH. Buffer was 

stored at 4°C. 

Tris-HCl (1.5 M, pH 8.8) 1.5 M Tris base 

Adjust pH to 8.8 with hydrochloric acid 

Tris-HCl (0.5 M, pH 6.8) 0.5 M Tris base 

adjust pH to 6.8 with hydrochloric acid 

SDS 10 % 100g/L sodium dodecyl sulfate 

LB agar/ampicillin 4% LB agar (Luria/Miller), autoclaved and 

cooled to 60°C 

100 µg/ml ampicillin added, cast in petri dishes 

and stored at 4°C 

LB medium/ampicillin 4% LB medium (Luria/Miller), autoclaved and 

cooled to 60°C 

100 µg/ml ampicillin added and stored at 4°C 
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LB agar/kanamycin 4% LB agar (Luria/Miller), autoclaved and 

cooled to 60°C 

50 µg/ml kanamycin added, cast in petri dishes 

and stored at 4°C 

LB medium/kanamycin 4% LB medium (Luria/Miller), autoclaved and 

cooled to 60°C 

50 µg/ml kanamycin added and stored at 4°C 

 

7.1.3.2. Enzymes and kits 

Table 7.5: Enzymes 

Reagent Company 

DNase I (50U/µl) Thermo Fisher Scientific 

DNase I buffer Thermo Fisher Scientific 

RT Buffer, 5x Thermo Fisher Scientific 

Revert Aid Reverse Transcriptase (RT)  

200 U/µl 

Thermo Fisher Scientific 

RiboLock RNase Inhibitor (40U/µl) Thermo Fisher Scientific 

RNase A (100mg/ml) Qiagen 

Taq polymerase Primetech 

pENTR/D-TOPO cloning kit Thermo Fisher Scientific 

FastDigest BsmBI Fermentas 

FastAP Fermentas 

T4 PNK New England Biolabs 

Green MasterMix (2x) - No Rox Genaxxon 

 

Table 7.6: Kits 

Name Company 

QuBit Protein Assay Kit Thermo Fisher Scientific 

GeneJet plasmid miniprep kit Thermo Fisher Scientific 

GeneJet plasmid maxiprep kit Thermo Fisher Scientific 

Gateway cloning kit Thermo Fisher Scientific 

Pierce ECL Western Blotting Substrate Thermo Fisher Scientific 

SuperSignal West Femto Maximum Sensitivity 

Substrate 

Thermo Fisher Scientific 

Quick blunting kit New England Biolabs 

Quick Ligase kit New England Biolabs 

Dual luciferase reporter assay system Promega 
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7.1.3.3. Antibodies 

Table 7.7: Primary antibodies 

Antibody target Clone, ID Source organism Dilution for immunoblotting Company 

Actin (β-) 2920 Mouse 1/5000 Cell 

signaling 

IκBNS ab182633 Rabbit 1/500 abcam 

IκBζ 9244 Rabbit 1/1000 Cell 

signaling 

BCL3 sc-185 Rabbit 1/1000 Santa Cruz 

NF-κB p65 8242 Rabbit 1/500 Cell 

signaling 

NF-κB p65  

phospho-Ser536 

3033 Rabbit  1/500 Cell 

signaling 

STAT1 9172 Rabbit 1/1000 Cell 

signaling 

STAT1 

phospho-Tyr701 

9167 Rabbit 1/1000 Cell 

signaling 

STAT3 9139 Mouse 1/1000 Cell 

signaling 

STAT3 

phospho-Tyr705 

9131 Rabbit 1/1000 Cell 

signaling 

 

Table 7.8: Secondary antibodies 

Antibody Cat. number Dilution Company 

Donkey anti-goat IgG HRP sc-2020 1:10 000 Santa Cruz 

Goat anti-mouse IgG HRP 31430 1:10 000 Thermo Scientific 

Goat anti-rabbit IgG HRP 65-6120 1:10 000 Thermo Scientific 

 

Table 7.9: FACS antibodies 

Antibody Cat. number Company 

APC mouse anti-human CD81 561958 BD Pharmingen 

APC anti-human CD11c 301613 BioLegend 

PE anti-human CD14 367103 BioLegend 

IgG2b control APC 22225036 ImmunoTools 

IgG2b control PE 22225034 ImmunoTools 

 

7.1.4. Eukaryotic cell culture 

Table 7.10: Materials for eukaryotic cell culture 

Reagent Company 

1x  (RPMI)-1640 Sigma Aldrich 

1x Dulbecco’s Modified Eagle Medium 

(DMEM) 

Sigma Aldrich 

Penicillin 10 000 U/ml  

Streptomycin 10 mg/ml (Pen/Strep) 

Sigma Aldrich 

Trypsin/EDTA Sigma Aldrich 

Fetal Calf Serum (FCS) Sigma Aldrich 

1x Dulbecco’s phosphate buffered saline (PBS) Sigma Aldrich 

Glutamine 200 mM Sigma Aldrich 



33 

 

Table 7.11: Cell culture media 

Medium Compounds 

Full RPMI 1x RPMI 

10% (v/v) FCS 

1% (v/v) Pen/Strep 

ABC medium 1x RPMI 

20% (v/v) FCS 

1% (v/v) Pen/Strep 

Full DMEM 1x DMEM 

10% (v/v) FCS 

1% (v/v) Pen/Strep 

 

Table 7.12: Cell lines 

Cell lines Origin Medium 

BJAB GCB DLBCL Full RPMI 

SuDHL-4 GCB DLBCL Full RPMI 

HBL-1 ABC DLBCL ABC medium 

OCI-Ly3  ABC DLBCL ABC medium 

THP-1 Acute monocytic leukemia Full RPMI 

HEK293FT Human embryonic kidney cells, 

harbouring SV40 large T antigen 

Full DMEM 

 

7.1.5. Prokaryotic cell culture 

Table 7.13: Bacteria strain 

Strain Description Company 

NEB 5α Competent E.coli New England Biolabs 

 

Table 7.14: Bacteria medium and agar 

Solution/buffer Compounds and handling 

LB Medium 20 g/l LB-Medium powder 

Antibiotic as needed 

LB Agar 35 g/l LB agar powder 

Antibiotic as needed 
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7.1.6. Oligonucleotides and plasmids 

7.1.6.1. Oligonucleotides 

Table 7.15: qPCR primers 

Primer Sequence 5’-3’ Target gene 

BCL3_forward GCCTCAGCTCCAATGGTC BCL3 

BCL3_reverse GAGGAGCCATGGGGAATC BCL3 

IκBζ_forward GCATTTGGTTCCCGATGGC IκBζ 

IκBζ_reverse TTCCCTTCAGGATACGTCGG IκBζ 

STAT1_forward AGGTTAACGTTCGCACTCTG STAT1 

STAT1_reverse GCTGCTGAAGTTCGTACCAC STAT1 

STAT3_forward GACTCTCAATCCAAGGGGC STAT3 

STAT3_reverse CCTCTGCCGGAGAAACAG STAT3 

DUSP1_forward ACCACCACCGTGTTCAACTTC DUSP1 

DUSP1_reverse TGGGAGAGGTCGTAATGGGG DUSP1 

DUSP2_forward GACTCCAGGGCTCCTGTCTAC DUSP2 

DUSP2_reverse GCAGGTCTGACGAGTGACTG DUSP2 

IRF4_forward GCGGTGCGCTTTGAACAAG IRF4 

IRF4_reverse ACACTTTGTACGGGTCTGAGA IRF4 

BCL2_forward AGTACCTGAACCGGCACCT BCL2 

BCL2_reverse GCCGTACAGTTCCACAAAGG BCL2 

IL1b_forward ATGATGGCTTATTACAGTGGCAA IL1β 

IL1b_reverse GTCGGAGATTCGTAGCTGGA IL1β 

IL8_forward TTTTGCCAAGGAGTGCTAAAGA IL8 

IL8_reverse AACCCTCTGCACCCAGTTTTC IL8 

IL1RA_forward AAGGCAGTGGAAGACCTTGTG IL1RA 

IL1RA_reverse AGCAATGAGCTGGTTGTTTCTC IL1RA 

CXCL1_forward TCAATCCTGCATCCCCCATAG CXCL1 

CXCL1_reverse CAGGAACAGCCACCAGTGAG CXCL1 

CXCL10_forward TGCAAGCCAATTTTGTCCACG CXCL10 

CXCL10_reverse CTGCATCGATTTTGCTCCCC CXCL10 

TNFa_forward CAAGGACAGCAGAGGACCAG TNFa 

TNFa_reverse CCGGATCATGCTTTCAGTGC TNFa 

SpiB_forward CCAGCAGGAACTGGTACAGG SpiB 

SpiB_reverse ACTTACCGTTGGACAGCCCT SpiB 

Fas_forward GTGGACCCGCTCAGTACG Fas 

Fas_reverse TCTAGCAACAGACGTAAGAACCA Fas 

CCL2_forward ATAGCAGCCACCTTCATTCCC CCL2 

CCL2_reverse AGATCTCCTTGGCCACAATGG CCL2 

CCL8_forward TCACGTTAAAGCAGCAGGTG CCL8 

CCL8_reverse GCCCTCCAAGATGAAGGTTT CCL8 

VEGFa_forward TTCCAAGATGCCCAGGAGG VEGFα 

VEGFa_reverse AGTGGTTTCAATGGTCTGAGGAC VEGFα 

bActin_forward CGACAGGCTGCAGAAGGAG β-Actin 

bActin_reverse GTACTTGCGCTCAAGAGGAG β-Actin 

RPL37a_forward AGATGAAGAGACGAGCTGTGG RPL37a 

RPL37a_reverse CTTTACCGTGACAGCGGAAG RPL37a 

MX1_forward TGGCATAACCAGAGTGGCTG MX1 

MX1_reverse GGCTGATTGTCTCCTGCCTC MX1 

CCL3_forward AGTTCTCTGCATCACTTGCTG CCL3 

CCL3_reverse CGGCTTCGCTTGGTTAGGAA CCL3 

CCL4_forward CTGTGCTGATCCCAGTGAATC CCL4 

CCL4_reverse TCAGTTCAGTTCCAGGTCATACA CCL4 
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CCL5_forward CCAGCAGTCGTCTTTGTCAC CCL5 

CCL5_reverse CTCTGGGTTGGCACACACTT CCL5 

IFNb_forward TCTCCTGTTGTGCTTCTCCAC IFNβ 

IFNb_reverse GCAGTATTCAAGCCTCCCATTC IFNβ 

 

Table 7.16: CRISPR guide RNA oligos 

Target Source Orientation Sequence 

IκBNS Shalem et al., 2013 Sense caccgGCTCACGAATGTCAAGACGC 

  Antisense aaacGCGTCTTGACATTCGTGAGCc 
 

7.1.6.2. Plasmids 

Table 7.17: Plasmids 

Plasmid Source Description 

pInducer 20 Addgene plasmid 

#44012 

Vector containing an open reading frame under the control of 

an UbC promoter encoding for rtTA3 and a neomycin 

resistance cassette for selection. Another open reading frame 

is surrounded by attR1 and attR2 sites for GATEWAY 

cloning. Here, the promoter consists of a minimal CMV 

promoter with a TetO sequence upstream. In the presence of 

doxycycline, the rtTA3 binds to the TetO sequence, leading 

to strong expression of the sequence in the ORF. Harbors an 

ampicillin resistance cassette for amplification in E.coli. 

pMD2.G 

(VSV-G) 

Trono Lab Vector encoding for viral envelop protein under the control 

of a CMV promoter. Harbors an ampicillin resistance cassette 

for amplification in E.coli. 

M420 AG Dietrich, GSH 

Frankfurt 

Vector encoding for eGFP under the control of a CMV 

promoter. Contains a RNA packaging signal, LTR sequences 

for genomic insertion of the target sequence and a 

3’SIN/LTR for generation of replication deficient lentivirus. 

Harbors an ampicillin resistance cassette for amplification in 

E.coli. 

pCMVΔR 

8.91 (8.91) 

Trono Lab Vector encoding for gag, pol and rev genes under the control 

of a CMV promoter. Harbors an ampicillin resistance cassette 

for amplification in E.coli. 

pRDI_292 Trono Lab Vector containing an open reading frame under the control of 

a CMV promoter with adjacent puromycin resistance 

cassette. Contains LTR sequences for genomic insertion of 

the target sequence, a RNA packaging signal and a 

3’SIN/LTR for generation of replication deficient lentivirus. 

Harbors an ampicillin resistance cassette for amplification in 

E.coli. 

pENTR Thermo Fisher 

Scientific 

Part of the pENTR/D-TOPO kit. Contains cDNA of genes 

surrounded by attL1 and attL2 sites for GATEWAY cloning 

without a promoter. Harbors a kanamycin resistance cassette 

for amplification in E.coli.  

pX330 Zhang Lab Vector containing an open reading frame under the control of 

an EFS promoter encoding for Cas9-IRES-puromycin 

resistance gene. Additionally, it contains an RNA expression 

cassette under the control of an U6 promoter with a 2 kb 

spacer between two different BsmBI cutting sites for 

oligonucleotide insertion to yield a guide RNA. Harbors an 

ampicillin resistance cassette for amplification in E.coli.  
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7.1.7. Software 

Table 7.18: Software 

Name Company 

Excel, Powerpoint, Word Microsoft, Redmond, WA, United States 

NanoDrop Software PeqLab 

Fusion CAPT Vilmer 

GraphPad Prism Graphpad Software Inc. 

ImageJ NIH 

LC480 II Software Roche 

FlowJo FlowJo LLC 

MicroWin2000 mikrotek 
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7.2. Methods 

All methods were performed at room temperature, unless otherwise indicated. 

 

7.2.1. Experimental methods in molecular biology 

7.2.1.1. Polymerase chain reaction 

Polymerase chain reaction was performed using the Platinum Pfx DNA Polymerase 

(Invitrogen) following the manufacturer’s instructions, using 100 ng template DNA and 

adding 5 µl 10x PCRX enhancer solution to the reaction. 

 

Table 7.19: Platinum Pfx thermocycler program 

Temperature Time  

94°C 5 min  

94°C 15 sec  

55°C 30 sec     35 cycles 

68°C 2 min      

68°C 2 min  

 

 

7.2.1.2. Restriction digest of plasmids 

Required restriction enzymes were obtained from Fermentas. The digests were performed 

following the manufacturer’s instructions. 2 U of the restriction enzyme were added to 2 µg 

plasmid in 1x FastDigest buffer and incubated for 15 min at 37°C.  

 

7.2.1.3. Plasmid dephosphorylation 

To avoid self-ligation of the cut CRISPR/Cas9 plasmid, the sticky ends were 

dephosphorylated using the FastAP (Fermentas). As the plasmid was cut using FastDigest 

BsmBI, only 2 U FastAP had to added to the reaction mix of 6.2.1.2 prior to the restriction 

reaction.  

 

7.2.1.4. Agarose gel electrophoresis of DNA 

DNA fragments were separated by size using agarose gel electrophoresis. For that purpose, 

1% GenAgarose LE (Roth) was dissolved in 1x TAE buffer using a microwave. 

Subsequently, 4 µl Midori Green Advance (Biozym Diagnostic), a nucleic acid stain, was 

added per 100 ml of agarose. The liquid agarose was transferred into a gel casting system 

(PerfectBlue Gelsystem Midi S, Peqlab) and cooled to RT for polymerization.  
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Next, an appropriate amount of 5x DNA loading dye was combined with the DNA samples 

and transferred into the gel pockets. For DNA size quantification one additional pocket was 

loaded with 5 µl of GeneRuler 1 kb Plus DNA Ladder (Fermentas). Hereafter, separation was 

performed in gel chambers filled with 1x TAE, applying a voltage of 4 V/cm until appropriate 

separation was achieved. Separated DNA fragments were visualized for analysis with 

FUSION FX and for subsequent use with UV light illuminator. 

 

7.2.1.5. Extraction and ligation of DNA fragments 

DNA bands were cut out under UV light visualization. The DNA fragments were extracted 

using the DNA Gel Extraction kit (Fermentas) and ligated using the Quick Ligase (NEB) 

following the respective manufacturer’s instructions. 

The DNA bands were cut out and transferred to a 2 ml Eppendorf cup. Binding buffer was 

added 1:1 (w/v). Next, the mix was incubated at 60°C for 10 min. The dissolved agarose was 

then transferred to the purification column, centrifuged for 1 min, 12000 rpm, RT. The flow-

through was discarded. The column was washed once by adding 700 µl washing buffer and 

centrifuged as before. The flow-through was again discarded and the empty column 

centrifuged once more to remove residual ethanol. Next, the column was transferred into a   

1.5 ml Eppendorf cup. 20 µl nuclease-free water was added and incubated for 2 min. The cup 

was again centrifuged for 2 min. DNA concentrations were measured using the NanoDrop 

1000. 

 

7.2.1.6. CRISPR-Cas9 mediated genomic knock-out 

The most precise method to assess the function of a protein is to eliminate said protein from 

the cell and compare it to wild-type cells. A new method to remove a protein on the genomic 

level is the CRISPR-Cas9 (clustered regular interspaced palindromic repeats/CRISPR 

associated protein 9) mediated knock-out. This method is derived from the adaptive bacterial 

defense system against phages and foreign plasmids and consists of a endonuclease capable of 

binding RNA at certain repetitive sequences and cutting DNA (Cas9) as well as a short RNA 

sequence consisting of said repetitive sequence and a guide sequence targeting a certain part 

of the genome (guide RNA) (Jinek et al., 2012). During expression of both Cas9 and guide 

RNA in a cell, the genomic DNA is specifically cut at the binding site of the guide RNA, 

resulting in a non-sticky double strand break. The broken strand activates DNA repair 

mechanisms, namely the error-prone non-homologous end joining. The re-joined DNA 

fragments now contain indel-mutations, resulting in a frame shift mutation of the downstream 

gene and thus deleting the functional protein derived from the gene (Lieber, 2010).  
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In this project, the plasmid developed by the Zhang lab (Shalem et al., 2014) was used. Here, 

both the Cas9 and the guide RNA are expressed from one lentiviral vector, along with a 

puromycin resistance cassette. The specific targeting sequence targeting the first exon of 

IκBNS was inserted using the restriction digest and ligation method and subsequently 

transduced into the cells using the lentiviral transfer. 

 

7.2.1.7. Annealing and insertion of gRNA-oligonucleotides 

Guide RNA sequences for IkBNS knockout by CRISPR were obtained from (Shalem et al., 

2014). Corresponding forward and reverse DNA oligonucleotides forming a double strand 

with a 5’ CACC and a 5’ AAAC overhang were ordered from Sigma Aldrich. The 

oligonucleotides were annealed and phosphorylated in single reactions composed as seen in 

table 6.20. 

 

Table 7.20: Reaction mix for oligo annealing 

1 µl Oligo 1 (100 µM) 

1 µl Oligo 2 (100 µM) 

5 µl Quick Ligase Buffer (NEB) 

2.5 µl ddH2O 

0.5 µl T4 PNK (NEB) 

10 µl total 
 

Reactions were carried out in an Epgradient Mastercycler (Eppendorf) using the following 

two step protocol: 

 

Table 7.21: Annealing and phosphorylation thermocycler program 

Action Temperature Time 

Phosphorylation 37°C 30 min 

Annealing 95°C 5 min 

 95°C-25°C at 5°C/min 15 min 
 

The annealed, phosphorylated oligonucleotides were ligated into the cut, dephosphorylated 

plasmid backbone using the QuickLigase kit following manufacturer’s instructions.  

 

Table 7.22: Reaction mix for oligo insertion 

X µl BsmBI digested plasmid (50 ng) 

1 µl Diluted annealed oligo 

5 µl Quick Ligase Buffer (NEB) 

To 10 µl ddH2O 

1 µl Quick Ligase (NEB) 

11 µl total 

 

The mix was incubated for 15 min at RT and transformed into competent NEB5α. 
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7.2.1.8. TOPO-cloning 

Amplified DNA fragments were purified using agarose gel electrophoresis. The extracted 

fragment was inserted into the pENTR/D-TOPO vector (Invitrogen) following the 

manufacturer’s instructions.  

The DNA sequence for the insertion was produced via PCR using primers with a 5’ CACC 

overhang and added in a 1:1 molar ratio to the pENTR/D-TOPO vector. 

 

Table 7.23: Reaction mix for pENTR/D-TOPO reaction 

3 µl PCR product 

1 µl Salt solution 

1 µl Sterile water 

1 µl TOPO vector 

6 µl total 

 

The mix was incubated for 5 min at RT and transformed into competent NEB5α. 

 

7.2.1.9. Gateway cloning 

After confirmation of the insertion of the desired DNA sequence, the insert in the pENTR 

backbone was transferred to the pInd20 expression plasmid (Meerbrey et al., 2011) using the 

Gateway system (Invitrogen) following the manufacturer’s instructions. The template plasmid 

contains a ccdB (suicide gene) in its open reading frame, stopping bacteria with 

untransformed plasmids from growth. 

Table 7.24: Reaction mix for the Gateway reaction 

5 µl pENTR vector (300 ng) 

2 µl Destination vector (300 ng) 

4 µl 5x LR clonase buffer 

5 µl TE buffer 

4 µl LR clonase mix 

20 µl total 

 

The mix was briefly vortexed and incubated for 1 h at RT. The reaction was stopped by 

adding 2 µl proteinase K, and the mix was transformed into competent NEB5α. 
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Figure 7.1: Workflow for pInd20 IκBNS expression vector generation. 

IκBNS isoform 1 cDNA was amplified with PCR primers containing overhangs required for the TOPO 

reaction. The DNA was purified via agarose gel electrophoresis. The cDNA was inserted into the 

pENTR backbone using the TOPO reaction. Resulting plasmids were sequence analyzed. Plasmids 

containing the desired insert were used for the LR-recombination reaction to transfer the IκBNS 

isoform 1 cDNA into the pInd20 plasmid backbone. The plasmids derived from this reaction were 

sequence tested and expanded for further use.  

T1/2: T1 and T2 transcriptional termination sites; attL1/2: Bacteriophage ʎ-derived recombination 

site for Gateway reaction; attR1/2: Bacteriophage ʎ-derived recombination site before Gateway 

reaction; attB1/2: Bacteriophage ʎ-derived recombination site after Gateway reaction;TRE2: Tet-

responsible element for doxycycline-induced gene expression; Ubc: Ubc promoter for constant protein 

expression; rtTA3: reverse tetracycline transactivator protein of TetOn-system; IRES: Internal 

ribosomal entry site for expression of two genes in one open reading frame; ccdB: Bacterial suicide 

gene (gyrase-inhibitor); pBR322 ori: pBR322 origin of replication for plasmid replication; pUC ori: 

pUC origin of replication for plasmid replication. Modified after (Meerbrey et al., 2011) 
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The reaction products were transfected into NEB5α via heat-shock transformation and spread 

on agar plates containing kanamycin. Single clones were picked the next day, expanded in 

liquid culture and a mini prep was performed. The pENTR plasmids were then sent to 

Eurofins for sequencing. The sequencing results of the final plasmid are shown in the 

appendix 12. 

 

7.2.1.10. Transformation of competent E.coli bacteria 

The plasmids for the production of lentivirus particles were generated by transforming them 

into competent NEB5α bacteria (NEB) for amplification.  

0.5 µg plasmid DNA was added to 50 µl competent NEB5α and incubated on ice for 15 min. 

Next, the cells were heated to 42°C for 30 sec for heat-shock transformation, followed by       

2 min cooling on ice. 500 µl pre-warmed SOC medium (NEB) was added and the bacteria 

were incubated for another 30 min on a shaker at 37°C. Thereafter, the cells were spread on a 

LB plates containing 100 µg/ml ampicillin or 100 µg/ml kanamycin and incubated overnight.  

 

7.2.1.11. Plasmid preparation 

Three colonies were picked from each plate and transferred into 5 ml LB medium containing 

the selection antibiotic and incubated overnight. Plasmids were extracted from 4 ml bacteria 

suspension and purified using the MiniPrep Kit (Fermentas) following the manufacturer’s 

instructions. The remaining 1 ml was stored at 4°C for further use. Nucleotide concentrations 

were measured photometrically using the NanoDrop 1000.  

To verify the insertion and correct orientation of insert, 100 ng DNA in 15 µl ddH2O were 

sent to Eurofins for sequencing. 

For higher plasmid amounts, the 1 ml bacteria solution of colonies containing the desired 

plasmid are added to 200 ml antibiotic-containing LB medium and incubated overnight. The 

plasmids were extracted using the Maxi/Midiprep Kit (Fermentas) following the 

manufacturer’s instructions. The DNA pellet was reconstituted with 200 µl nuclease-free 

water. Nucleotide concentrations were measured photometrically using the NanoDrop 1000, 

diluted to 1 µg/ml and stored at -20°C.  
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7.2.1.12. Isolation of total cellular RNA  

Total RNA isolation from THP-1 and DLBCL cells was performed using phenol-chloroform-

extraction method.  

The cells were harvested by removing the medium completely and adding 1 ml TRIZOL 

reagent directly to the cells (adherent cells) or by pelleting the cells for 5 min, 1000 rpm at 

RT, removing the supernatant and resuspending the pellet in 1 ml TRIZOL reagent. The 

reagent was transferred to a 1.5 ml tube and either frozen at -80°C or used directly.  

For extraction, 200 µl Chloroform was added and the samples were vortexed for 15 sec to 

degrade proteins and separate RNA from DNA. The sample was incubated for 2 min at RT 

and subsequently centrifuged for 5 min, 13000 rpm at 4°C. The upper, clear phase, containing 

the RNA, was added to 0.5 ml Isopropanol in a new 1.5 ml Eppendorf tube and vortexed. 

Samples were incubated again for 10 min on ice to ensure sufficient RNA precipitation. 

Following that, the sample was centrifuged for 30 min, 13000 rpm at 4 °C. The supernatant 

was discarded and the pellet was washed once by adding 150 µl 70% ethanol, vortexing it and 

lastly pelleting it again by centrifugation for 1 min at 13000 rpm, 4°C. The supernatant was 

discarded and the RNA pellet was shortly air-dried. Finally, the pellet was dissolved in 100 µl 

nuclease-free water.  

 

7.2.1.13. DNase I digest of RNA samples 

To remove any residual genomic DNA, a DNase I digest of the RNA samples was performed 

before reverse transcription of the RNA into cDNA. 20 µl DNase I mix was added to the 

samples and incubated for 30 min at 37°C.  

Table 7.25: Composition of DNase I mix per one reaction 

12 µl 10x DNase I buffer 

0.25 µl DNase I, hc 

1 µl RNase I inhibitor 

6.75 µl Nuclease-free water 

20 µl total 

 

After incubation, the enzyme mix was removed using phenol-chloroform extraction. For this 

purpose, 150 µL phenol-chloroform mix (5:1, pH 4.3) was added to the samples and vortexed. 

Subsequently, samples were centrifuged for 1 min at 13000 rpm at 4 °C. The clear, upper 

phase was mixed with 375 µl 96% ethanol and 17 µl NaAc in a new 1.5 ml Eppendorf cup. 

The samples were thoroughly vortexed and incubated for at least 1h at -80°C to ensure 

sufficient RNA precipitation. For final purification, the samples were centrifuged for 30 min, 

13000 rpm at 4°C. The supernatant was discarded and the pellet washed once again by adding 

150 µl 70% ethanol, short vortexing and centrifuging it for 1 min, 13000 rpm at 4°C. The 

RNA was shortly air-dried and dissolved in 10-30 µl nuclease-free water.  

The RNA solution was stored at -80°C or used directly for cDNA synthesis.  
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7.2.1.14. Photometric detection of nucleic acid concentrations 

Nucleic acid concentrations were quantified using the NanoDrop 1000 (PeqLab). 2 µl sample 

was measured at a wavelength of 260 nm. RNA was subsequently diluted to 400 ng RNA/µl, 

DNA was diluted to 1000 ng DNA/µl. 

 

7.2.1.15. cDNA synthesis 

The total cellular RNA was reverse transcribed by following the manual of the MMuIV 

reverse transcription kit (Thermo Fisher Scientific). First, 1 µg RNA was diluted to 10 µl and 

added to 2 µl random hexamer primers (Thermo Fisher Scientific). The mix was incubated for 

5 min at 70°C. Next, the mix was spun down shortly and 8 µl of master mix was added. 

Reverse transcription was conducted by incubation of the sample for 1 h at 42°C. The enzyme 

was inactivated by heating the sample up to 65°C for 10 min.  

After synthesis, the cDNA was diluted 1:20 with nuclease-free water and stored at -20°C. 

Table 7.26: Master mix for cDNA synthesis 

4 µl 5x RT buffer 
1 µl 20 mM dNTPs 

1 µl RNase inhibitor (40 u/µl) 
1 µl MMuIV RT enzyme 

1 µl Nuclease free water 
8 µl total 

 

7.2.1.16. Primer design 

For qPCR primer design, the Primer blast program of the NCBI website was used 

(www.ncbi.nlm.nih.gov/tools/primer-blast/).  

The criteria for primer design are listed below: 

 

Template size: 50-200 bp, Primer size: 18-24, GC content: 40-60%, Melting temperature tm: 

58.0-62.0°C, Max. Poly X: 5.00, Max. self-complimentary: 3.00, GC clamp: 1 

 

The primers were designed to include at least one intron to reduce the likelihood of 

contaminating genomic DNA being amplified.  

The calculated oligonucleotides were ordered at Sigma-Aldrich (www.sigmaaldrich.com) and 

Metabion (www.metabion.com). Upon arrival, the lyophilized oligonucleotides were 

reconstituted to 100 µM with nuclease-free water and stored at -20°C. For real-time PCR 

analysis, a working solution was prepared by mixing forward and reverse primer together at a 

concentration of 10 µM, which was stored at -20°C.  
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7.2.1.17. Quality control of primers 

Before their use, the primers’ efficiency and specificity had to be validated. Thus, a dilution 

series of cDNA (1:20, 1:40 and 1:80) was prepared as a test template and a test qPCR was 

performed for each newly designed primer pair. The compounds used in the qPCR samples 

are listed in table 6.27. For testing of the primers and analysis of the samples a 384-well plate 

was used. The PCR program is depicted below (table 6.28). 

Table 7.27: Compounds of qPCR reaction mixes 

6.25 µl SYBR green mix 

0.5 µl Primer working solution 

3.25 µl Nuclease free water 

2.5 µl cDNA sample (1:20 diluted) 

12.5 µl total 

 

Table 7.28: Standard thermocycler program for real-time PCR 

Temperature Time  

95°C 15 min  

95°C 15 sec  

60°C 45 sec     45 cycles 

95 °C 1 min  

Melting curve 

65.0 -95.0°C 

 

0.5°C/10sec 

 

 

The primer specificity and efficiency were calculated from the Ct values resulting from the 

qPCR. In theory, the non-diluted sample should yield a Ct value of 1.00 lower than the 2-fold 

diluted and 2.00 lower than the 4-fold diluted test sample.  
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Figure 7.2: Ct values at different template dilutions 

Shown above are theoretical Ct values from a primer validation using undiluted, 2-fold and 4-fold 

diluted template cDNA plotted against the Log2 of the respective dilution. The light grey graph shows 

an efficient primer with a slope of 1, while the dark grey graph shows an inefficient primer with a 

slope of 0.35.  

Hence, primer efficiency was evaluated by generating a plot depicting the log2 of the cDNA input on 

the x-axis against the Ct-values on the y-axis. The plot of a good primer pair should show a linear 

correlation between Ct values and dilution factor which has a slope of 1.00 and a regression of higher 

that 0.95. As a high specificity means that only one sequence is amplified by the primer pair, the 

resulting product should have a distinct melting temperature. The melting temperature yielded by the 

product of specific primers results in a distinct peak in the melting curve, whereas multiple peaks or 

an astringent curve without peaks shows a lack of specificity of the primer pair. Non-specific or 

inefficient primers were re-designed and replaced. 

 

7.2.1.18. Quantification of relative gene expression 

Relative gene expression was assessed by qPCR analysis using the LightCycler 480 II 

(Roche). For each experiment, biological triplicates were generated by using three 

independently extracted RNA/cDNA samples. Reaction mixes were composed as shown in 

table 6.27. After pipetting of the samples and reaction mixes, the plates were sealed with 

optical foil, shortly vortexed and centrifuged (1 min, 1200 rpm, RT) to gather all fluid in the 

bottoms of the wells. Real-time PCR using the protocol shown in table 6.28 was always 

directly performed following the preparation of the plates. 

Two independent reference genes (beta actin and RPL37a) were analyzed in parallel to 

normalize the samples to possible variations of the cDNA concentration.  

For calculation of the relative mRNA levels the ΔΔCt method was applied. The Ct values of 

the reference genes were subtracted from the Ct values of the target gene for the first 

normalization step to generate the ΔCt value. Next, the ΔCt value from the control sample 

(untreated, transfected with the empty backbone) was subtracted from the ΔCt value of every 

other sample, yielding the ΔΔCt value. ΔΔCt value of control samples was therefore set to 0.  
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Each qPCR cycle resembles the doubling of the DNA template; thus, Ct values represent 

logarithmic values to the basis of 2. Consequently, the mean expression ratio was calculated 

using the following formula: 2(-ΔΔCt). This results in a control or untreated cells set as 1, a 

mean expression ratio of >1 showing up-regulation and a mean expression ratio between 0 

and 1 showing down-regulation of a gene.   

Statistical significance was calculated using the paired student’s t-test. 

 

7.2.2. Immunobiological methods 

7.2.2.1. Protein harvest 

For protein analysis, total cell lysates were prepared. Thus, adherent cells were scraped with 

medium and suspension cells were shaken up. Cells and medium were transferred to a 15 ml 

Falcon tube (Eppendorf) and pelleted (5 min, 1200 rpm at RT). Subsequently, the pellet was 

resuspended in 1 ml PBS, centrifuged again (5 min, 1200 rpm at RT) and dissolved in an 

appropriate amount of cell lysis buffer. Cells from a 6-well were taken up in 150 µl lysis 

buffer and cells from a 10 cm cell culture dish in 400 µl lysis buffer. The cell lysates were put 

on ice for further processing. In addition to the chemical breakup, the cells were also 

disrupted physically by thorough pipetting, short vortexing and sonication to fracture bulky 

genomic DNA (10 min, 30 sec on/off, Bioruptor Diagenode). Protein concentration of the cell 

lysates was determined using the QuBit Protein assay kit.  

 

7.2.2.2. Determination of the protein concentration (Qubit) 

Protein concentrations were assessed using the Qubit assay kit (Thermo Fisher Scientific). 

Each sample was diluted 1:10 with water and 1 µl of the diluted sample was added to 199 µl 

Qubit working solution. After thorough vortexing, the relative protein concentrations were 

assessed using the Qubit 2.0 fluorometer (Thermo Fisher Scientific). For calculation of the 

protein concentration, standard solutions were measured in parallel. For subsequent SDS-

PAGE and the following immunoblotting, protein samples were denatured by boiling them 

with ¼ Laemmli buffer for 5 min at 95°C. For the protein analysis, 40-100 µg protein was 

loaded on acrylamide gels and SDS-PAGE was performed. 

 

 

 

 

 

 



48 

 

7.2.2.3. SDS-PAGE 

The proteins were separated according to their size using the SDS-PAGE method. SDS adds 

numerous negative charges to proteins, making the original charge irrelevant and resulting in 

a constant relation of charge and molecular weight. This leads to a separation of the proteins 

solely by their mass. SDS-PAGE is performed with a stacking gel that concentrates the 

samples and a subsequent running gel that separates the proteins according to their mass. The 

pre-cast gels were mounted in a tank containing 1x running buffer and samples were 

transferred into pre-formed gel pockets next to a pre-stained protein ladder. Next, a low 

voltage of 100 Volt was applied until the samples reached the intersection between the 

stacking and running gel. Finally, the higher power of 140 Volt was applied leading to the 

separation of the samples by migration of the proteins from the cathode to the anode. 

 

Table 7.29: Composition of gels for SDS-PAGE 

Compound Stacking gel (5%) Running gel (12%) 

Water 14.24 ml 15 ml 

Tris-HCl, pH 6.8 (0.5 M) 2.4 ml - 

Tris-HCl, pH 8.8 (1.5 M) - 12 ml 

SDS (10%) 300 µl 480 µl 

APS (10%) 200 µl 225 µl 

Glycerol - 4.8 ml 

TEMED 20 µl 20 µl 

Acrylamide-bisacrylamide (40%) 1.9 ml 15 ml 
 

7.2.2.4. Immunoblotting 

Since proteins in polyacrylamide gels are inaccessible to antibodies, they were transferred to a 

nitrocellulose membrane before detection. Upon incubation with a primary antibody directed 

against the target, HRP-tagged secondary antibodies were used for signal amplification and 

subsequent chemoluminescence detection (Renart et al., 1979; Towbin et al, 1979).  

For protein transfer from gel to membrane, the gel and membrane were put between sponges 

and two layers of Whatman-papers forming a moist chamber around the gel and the 

membrane. This stack was fastened in a cassette that was now transferred into a tank 

containing blotting buffer. The anode was placed on the side of the membrane and the cathode 

on the side of the gel. Transfer of the proteins took place at a constant voltage (2 h 100 V or 

25 V overnight). The electrical field works against a considerable resistance, resulting in a 

great amount of heat development during the blotting. To avoid the destruction of the protein 

samples, the tank containing the blots and transfer buffer was put on ice and transferred into 

the cold room for the duration of the transfer. 
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To avoid unspecific binding of the primary antibody, the membrane was blocked in                 

5 % milk/PBS for 1 h at RT before the primary antibody was administered. Next, the primary 

antibody diluted in 5% milk/PBS was added to the membrane and incubated overnight while 

rotating. The next day, the blot was washed thoroughly (3 times for 10 min with PBS-T) and 

the secondary antibody diluted in 5% milk/PBS was added. After 1 h of incubation at RT, 

rotating, the blots were again thoroughly washed 3 times for 10 min with PBS-T.               

ECL Western blotting substrate was prepared by mixing equal volumes of luminol reagent 

(Luminol Enhancer Solution, Promega) and the Oxidizing Reagent (Peroxide Solution, 

Promega) and was kept on ice. The membrane was placed between the covers of a propylene 

sheet protector. The ECL Western blotting substrate was added and air pockets were gently 

smoothed out. The insert plate was inserted into the Fusion FX7 Spectra and exposed for an 

appropriate time. To assay low protein expression levels, Femto staining solution was 

prepared by adding equal volumes of SuperSignal Western Femto Luminol Enhancer Solution 

(Thermo Fisher Scientific) and SuperSignal Western Femto Stable Peroxide Buffer (Thermo 

Fisher Scientific) and used instead of ECL Western blotting substrate. 

 

7.2.2.5. Cytokine Array 

Cytokines in the supernatant of cell cultures can be measured using the ELISA system. The 

proteome profiler assay is based on the same principles as an ELISA. Here, the antibodies are 

already bound to a membrane in double spots, allowing the testing of the supernatant for the 

concentrations of several cytokines at once.  

The assay was performed following the manufacturer’s protocol, using 500 µl supernatant 

from stimulated cells seeded at a density of 150 000 in 2 ml medium. The membranes were 

blocked for 1 h at RT to reduce unspecific binding of cytokines. During the blocking, the 

samples were adjusted in their volume according to the number of cells on the plate. The 

detection antibody cocktail was added directly to the samples and incubated for 1 h at RT. 

After the incubation, the samples were transferred to the membranes and incubated overnight.  

The next day, the membranes were washed three times for 10 min at RT in washing buffer. 

The HRP-streptavidin was added and incubated for 30 min at RT. After another washing, the 

membranes were placed between the covers of a propylene sheet protector. ECL Western 

blotting substrate was prepared and added as described in 6.2.3.6and air pockets were gently 

smoothed out. The insert plate was inserted into the Fusion FX7 Spectra and exposed for an 

appropriate time. Data evaluation was performed using ImageJ. 
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7.2.2.6. Fluorescence-assisted cell sorting 

Cell surface proteins are accessible to antibodies without lysis of the cells, allowing us to 

measure their expression on single cells. In the fluorescence-assisted cell sorting (FACS) 

method, these antibodies are coupled with fluorophores that are capable of emitting light of 

specific wavelength after excitation with a certain, different wavelength by a laser, allowing a 

specific readout of surface marker expression levels.  

2*105 THP-1 cells were seeded per sample (2 Mio/ 20 ml) and treated as described in 7.2.3.8. 

The cells were scraped off in 10 ml PBS and pelleted for 5 min at 12000 rpm, RT. Next, 2 

million cells were resuspended in 100 µl FACS buffer and incubated for 10 min at RT. 20 µl 

of that cell suspension were transferred to a fresh FACS tube containing 80 µl FACS buffer 

and the FACS antibodies in a final dilution of 1:50. For each fluorophore, an isotype control 

was created analogous to the regular stain. The solutions were incubated for 30 min at RT. 

After that, 900 µl FACS buffer were added, the tubes were flicked and centrifuged for 5 min 

at 12000 rpm, RT. The supernatant was discarded, the pellet was resuspended in 900 µl FACS 

buffer and centrifuged for 5 min at 12000 rpm, RT. The supernatant was discarded, and the 

pellet was resuspended in 400 µl FACS buffer for subsequent measurement. Data analysis 

was performed using FlowJo FACS data evaluation software.  

 

7.2.3. Cell-biological methods 

7.2.3.1. Determination of cell numbers 

Cell numbers were determined using the Improved Neubauer Chamber slides (Hausser 

Scientific) as per manufacturer’s instructions. 10 µl cell suspension were pipetted into the 

chamber and cells within the four 4x4 squares were counted under the Zeiss Axiovert 135 

microscope. The resulting number was divided by 4 and multiplied with 104, yielding the 

number of cells per ml suspension.  

 

7.2.3.2. Cell culture of suspension cells  

Cells were cultured at a humidified atmosphere with 5% CO2 at 37°C. 

THP-1 and GCB DLBCL cells were cultured in full RPMI medium. ABC DLBCL cells were 

cultured in ABC medium. For stably transfected cell lines, full RPMI medium was freshly 

supplemented with 1 µg/ml puromycin. 

Cells were regularly split for 2-3 times per week. Hence, the medium containing the cells was 

transferred into a 50 ml Falcon tube (Eppendorf) and centrifuged (5 min, 1000 rpm at RT). 

The supernatant was aspirated and the pellet was resuspended in 10 ml fresh medium. 1 ml 

cell suspension was transferred into a new 75 cm2 cell culture flask containing 9 ml fresh cell 

culture medium. 
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7.2.3.3. Cell culture of adherent cells 

Adherent cells were cultured in an incubator with a humidified atmosphere with 5% CO2 at 

37°C. HEK293FT cells were cultured in full DMEM. Cells were passaged when they were 

confluent in a cell culture flask. First, cells were incubated in Trypsin-EDTA (5 ml per 75 cm2 

flask, PAA) for 5 min at 37°C. Afterwards 5 ml culture medium were added and the cells 

were pelleted (5 min, 1000 rpm at RT). The supernatant was removed and cells were 

resuspended in 10 ml full DMEM. 1ml of the suspension was added to 15 ml culture medium 

in a new 75 cm2 flask. 

 

7.2.3.4. Freezing of cells 

To maintain a low passage number of the cell lines cultured, cells were regularly frozen and 

stored in liquid nitrogen. The cells were trypsinized, if necessary, centrifuged (5 min,       

1000 rpm at RT) and resuspended in an adequate amount of medium yielding a density of 

2·106 cells/ml. 500 µl cell suspension were added to 500 µl freezing buffer and transferred 

into cryo vials. The cryo vials were first placed in freezing units containing isopropanol and 

placed at -80°C for 24 h. After one day, they were transferred to a tank containing liquid 

nitrogen for long time storage.  

 

7.2.3.5. Thawing of cells 

Frozen cells were rapidly thawed in a water bath at 37°C and immediately transferred into    

10 ml of appropriate medium. This solution was centrifuged for 5 min, 1000 rpm at RT. The 

supernatant was aspirated to remove the toxic DMSO and the pellet was resuspended in         

5-10 ml of cell line-specific medium for cultivation. 

 

7.2.3.6. Transfection of HEK293FT via calcium-phosphate-precipitation 

The transfection of HEK293FT cells for the production of lentivirus was performed using 

calcium phosphate (Graham and van der Eb, 1973). 1x106 HEK293FT cells were seeded in a 

10 cm dish and transfected with 2.5 µg overexpression construct, 1.6 µg 8.91 plasmid and      

1 µg VSV-G plasmid 18 to 24 h after seeding (Naldini et al., 1996, Stewart et al., 2003). 

Plasmid DNA was mixed with 500 µl HeBS buffer and 440 µl sterile water. Subsequently,      

60 µl 2 M CaCl2 solution was quickly added to the mix, followed by thorough vortexing and 

incubation for 30 min at 37°C. Next, the transfection mix was added drop-wise to the cells 

and incubated with the cells overnight at 37°C. The following day, the medium of the 

transfected cells was exchanged and kept on the HEK293FT cells for 48 h for maximum virus 

concentration. As a control, a virus containing the empty backbone of the overexpression 

construct and a virus expressing eGFP were generated in parallel.   
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7.2.3.7. Viral transfection of THP-1 and DLBCL cells 

Stable overexpression cell lines were generated using lentivirus-mediated transduction, since 

lentivirus are capable of stably integrating long DNA sequences with a high efficiency into 

host cells. The lentivirus was produced by transiently transfecting HEK293FT cells with the 

respective overexpression construct and the lentiviral packaging plasmids using the calcium-

phosphate precipitation method. As a control, the empty backbone of the overexpression 

construct and a lentiviral plasmid containing an eGFP overexpression cassette were generated 

and transfected in parallel dishes. 48 h post transfection, the medium containing lentiviral 

particles was transferred from the HEK293FT cells to the target cells after passing it through 

a 0.45 µm filter. Polybrene (8 mg/ml) was added to the supernatant in a dilution of 1:1000. 

The virus and target cells were incubated for 24 h in the incubator at 37°C. Virus incubation 

was stopped by pelleting the cells, washing them three times with PBS and reconstituting 

them in full RPMI medium in a fresh cell culture flask. 48 h post-transduction, transfection 

efficiency was assessed by detecting the green fluorescence of GFP-expressing control cells 

using the Zeiss fluorescence microscope. 

As the overexpression constructs contain an open reading frame with a puromycin or 

neomycin resistance gene sequence, stably transduced cells were selected by cultivation with 

a medium containing an appropriate concentration of puromycin or G418. After the selection, 

dead cells were removed by centrifugation at 500 rpm for 5 min. The surviving cells were 

subsequently cultured in medium containing puromycin or G418 to maintain the 

overexpression. 

Since lentiviruses are categorized as safety class 2 (S2) organisms, all work described here 

was performed under S2 safety rules. 
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7.2.3.8. Differentiation and stimulation of THP-1 cells 

Originally, THP-1 cells were derived from a 1 year-old boy suffering from acute monocytic 

leukemia (Tsuchiya et al., 1980). Cells stably display the phenotype of blood monocytes 

while at the same time sustain their ability to divide. After treatment with phorbol 12-

myristate 13-acetate (PMA), however, they stop dividing and differentiate into macrophages, 

thus being an excellent tool to examine human macrophages in vitro (Auwerx, 1991).  

For the experiments, THP-1 cells were differentiated to macrophages and activated by LPS. 

For this purpose, cells from the sustained culture were centrifuged (5 min, 1200 rpm at RT), 

reconstituted in complete RPMI medium and counted using a Neubauer counting chamber. 

Depending on the planned experiment, cells were seeded into 6-well plates (1.5x105 cells in     

2 ml full RPMI), 10-cm culture dishes (5x105 cells in 10 ml full RPMI) or 20-cm culture 

dishes (1x106 cells in 20 ml full RPMI). 10 mg/ml PMA was added 1:10 000 and the cells 

were incubated for 3 days. Next, the medium was aspirated and replaced with fresh medium. 

The cells were left to rest for 4 days. 1 mg/ml LPS was added 1:1000 for another 1 h and 2 h 

(RNA extraction) or 4 h (protein extraction) or 8 h (FACS), with an equal amount of carrier 

solution added to the controls. 

 

7.2.3.9. Stimulation of DLBCL pInd20 IκBNS isoform 1 

The DLBCL cell lines used are derived from cells extracted from samples from different 

patients suffering from DLBCL. The cells were transfected with a lentivirus containing a 

doxycycline-inducible IκBNS isoform 1 expression cassette. Prior to experiments, IκBNS 

isoform 1 expression had to be induced by adding 1 µg/ml Doxycycline for 24 h (protein 

extraction and RNA extraction). The late time point for RNA extraction was chosen since the 

effects were mediated by the overexpressed protein on the transcriptional level (secondary 

response). Thus, enough time for the cells to produce IκBNS isoform 1 and generate the RNA 

response to it was needed.  

Depending on the planned experiment, cells were seeded into 6-well plates (5x105 cells in       

2 ml full RPMI) or 10-cm culture dishes (2x106 cells in 10 ml full RPMI).  
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8. Results 

8.1. Identification of IκBNS target genes 

Since IκBNS belongs to the protein family of atypical inhibitors of kappa B proteins, it should 

have comparable functions like the other family members such as BCL3 or IκBζ. The main 

feature of these inhibitor proteins is the regulation of so-called “secondary response genes” 

that are induced by NF-κB activation. This leads to an arranged expression of cytokines and 

other transcription factors, which finally ends in activation of a negative feedback loop.  

 

8.1.1. Overexpression and genomic knockout of IκBNS in THP-1 

The stable acute monoblastic leukemia cell line THP-1 can be differentiated in vitro to cells 

that closely resemble macrophages. To examine the effect of IκBNS in macrophages, a knock-

out system was established. In addition, the two most highly expressed isoforms of IκBNS 

were overexpressed to assess differences in their regulatory function on macrophage biology. 

For that purpose, THP-1 cells were lentivirally transduced with silencing and overexpression 

constructs for the specific human IκBNS sequences. Also a lentiviral overexpression GFP-

harboring cell line was generated as a control for infection efficiency. After expansion of 

transduced THP-1 cells with a positive visible eGFP, cells were selected by puromycin 

treatment. After one week of selection, the surviving cells were tested for depletion and 

overexpression of the target protein.  

To examine the effect of IκBNS in macrophages, THP-1 cells needed to be differentiated to 

macrophages. As IκBNS expression is strictly NF-κB-dependent, NF-κB activity had to be 

induced to properly examine the effect of IκBNS overexpression in macrophages in a state 

when it is expressed physiologically.  

Before any further experiments were performed, the presence of IκBNS overexpression was 

confirmed via immunoblotting.  
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Figure 8.1: Overexpression of IκBNS isoforms 1 and 2 and knock-out of IκBNS in THP-1 cells.  

Cells were transduced with overexpression constructs containing IκBNS isoform 1 and 2 and the empty 

vector as control for the overexpression (upper blots) as well as with the CRISPR/Cas9 lacking a 

guide RNA as a control and the CRISPR/Cas9 targeted against IκBNS for the knockout (lower blots). 

Subsequently, they were differentiated to macrophages using 1 µg/ml PMA for 3 days, followed by 4 

days of further incubation in fresh medium. The cells were then stimulated with 1 µg/ml LPS for 4 

hours (+LPS) or an equal volume of carrier solution was added as control (-LPS). Following 

stimulation, the cells were harvested for protein extraction and immunoblot analysis using antibodies 

targeting IκBNS isoforms 1 and 2 and an antibody targeting β-actin as a loading control. In each lane, 

40 µg of protein lysate was loaded.  
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The analysis showed an LPS-induced expression of IκBNS isoform 1 and 2 in all cells 

containing the overexpression constructs. In the cells overexpressing isoform 1 and 2, 

additional bands slightly larger than the respective overexpressed IκBNS isoform appeared, 

possibly due to posttranslational modifications of the proteins.  

Bands representing IκBNS isoform 1 and 2 were detectable in the CRISPR control after LPS 

stimulation. In the cells with CRISPR targeting IκBNS, no induction of IκBNS was visible after 

LPS stimulation.  

In conclusion, the generated cell lines appeared suitable for the analysis of the effect of IκBNS 

overexpression and depletion in macrophages.  

 

8.1.2. IκBNS is involved in the regulation of NF-κB proteins  

Preliminary data from our lab have shown a reciprocal between atypical inhibitors of kappa B 

proteins in murine macrophages (unpublished data). Hence, the effects of IκBNS isoforms on 

BCL3 and IκBζ mRNA and protein levels were examined in a human macrophage cell 

system.  

As IκBNS mRNA expression is directly regulated by the NF-κB unit p65, protein levels of p65 

were examined. NFκB activity is mainly regulated via post-translational modifications, thus 

we also examined the levels of phosphorylated p65. 
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Figure 8.2: Altered BCL3 and IκBζ protein levels and p65 phosphorylation in THP-1 

overexpressing IκBNS isoforms 1 and 2 and with IκBNS knocked out.     

A. BCL3 and IκBζ RNA levels were downregulated in THP-1 cells overexpressing IκBNS isoform 1    

and 2. Knock-out of IκBNS resulted in enhanced expression of BCL3 and IκBζ mRNA after 1 h 

stimulation, while RNA levels converged after 2 h. THP-1 cells were treated as described in Figure 

8.1. Following stimulation for 1 h and 2 h, the cells were harvested for subsequent RNA extraction and 

qPCR using primer pairs targeting BCL3 or IκBζ cDNA for analysis and a primer pair targeting β-

actin cDNA as a house keeper for normalization. Standard deviations derive from biological 

triplicates and two experiments. Asterisks show statistical significance calculated using the student’s 

t-test. * p ≤ 0.05 and ** p ≤ 0.005. 

B. IκBNS overexpression resulted in reduced expression of BCL3 and IκBζ as well as lower levels of 

phosphorylated p65. Knock-out of IκBNS resulted in increased levels of phosphorylated p65 and IκBζ 

and BCL3 proteins after LPS stimulation. THP-1 cells were treated as described in Figure 8.1. 

Following stimulation, the cells were harvested for protein extraction and analysis via the 

immunoblotting method, using antibodies targeting BCL3, IκBζ, p65 and phospho-p65 (p-p65) for 

analysis, respectively, and an antibody targeting β-actin as a loading control. In each lane, 40 µg of 

protein lysate was loaded.  
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IκBNS isoform 1 overexpression suppressed BCL3 and IκBζ expression on the transcriptional 

level while not interfering with post-translational p65 activation, while IκBNS isoform 2 

affected BCL3 and IκBζ gene expression as well as post-translational p65 activation. 

Conversely, knock out of IκBNS resulted in enhanced expression of BCL3 and IκBζ as well as 

an enhanced activation of p65, confirming the results of the analysis of IκBNS overexpression. 

 

8.1.3. Effect of IκBNS on STAT signaling 

As described above, atypical inhibitors of kappa protein family members BCL3 and IκBζ have 

already been shown to regulate expression and activation of proteins of the inflammasome, 

namely STAT1 and STAT3. Consequently, the effect of IκBNS overexpression and knockout 

on the transcription and posttranslational activation by phosphorylation of these factors was 

examined. 
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Figure 8.3: Effect of IκBNS overexpression and knock-out on STAT signaling 

A. STAT1 and STAT3 mRNA levels were decreased in cells overexpressing IκBNS isoform 2, while 

overexpression of isoform 1 had no significant effect on STAT1 and STAT3 mRNA levels. STAT1 and 

STAT3 mRNA levels were unchanged by the knockout of IκBNS. THP-1 cells were treated as described 

in Figure 8.1. Following stimulation for 1 h and 2 h, the cells were harvested for subsequent RNA 

extraction and qPCR using primer pairs targeting STAT1 or STAT3 cDNA for analysis and a primer 

pair targeting β-actin cDNA as a house keeper for normalization. Standard deviations derive from 

biological triplicates and two experiments. Asterisks show statistical significance calculated using the 

student’s t-test. * p ≤ 0.05. 

B. STAT1 and STAT3 protein levels were diminished in cells overexpressing IκBNS isoform 2. 

Consequently, p-STAT1 was depleted during IκBNS isoform 2 overexpression. STAT1 and STAT3 

protein levels were unchanged by the knockout of IκBNS. p-STAT1 levels were slightly decreased, while 

p-STAT3 levels were highly elevated. THP-1 cells were treated as described in Figure 8.1. Following 

stimulation, the cells were harvested for protein extraction and analysis via the immunoblotting 

method, using antibodies targeting STAT1, phospho-STAT1 (p-STAT1), STAT3 and phospho-STAT3 

(p-STAT3) for analysis, respectively, and an antibody targeting β-actin as a loading control. In each 

lane, 40 µg of protein lysate was loaded.  
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IκBNS overexpression or knock-out had little effect on STAT1 and STAT3 gene expression. 

Since STAT signaling is mainly regulated on the post-translational level, the phosphorylation 

level of STAT1 and STAT3 proteins were also analyzed. IκBNS isoform 1 overexpression 

showed little effect on the STAT protein phosphorylation, cells overexpressing IκBNS isoform 

2 showed reduced levels of phosphorylated STAT1 proteins. Conversely, cells with both 

IκBNS isoforms knocked out showed reduced levels of phosphorylated STAT1 and strongly 

increased levels of phosphorylated STAT3 protein.  

 

8.1.4. Regulation of secreted factors in activated macrophages by IκBNS 

Upon activation macrophages start secreting large quantities of different cytokines, 

chemokines and acute phase proteins to attract and stimulate T-cells, B cells and other 

immune cells. Since NF-κB has already been shown to strongly regulate the expression of 

inflammatory cytokines, it is suggestive that IκBNS may be involved in the fine-regulation of 

these processes. 

To examine this regulation, mRNA levels of several secreted factors of macrophages were 

analyzed after 1 h and 2 h of LPS stimulation. 
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Figure 8.4: Overexpression (A) and knockout (B) of IκBNS resulted in differing expression levels 

of cytokines and chemokines.  

THP-1 cells were differentiated to macrophages using 1 µg/ml PMA for 3 days, followed by 4 days 

rest in fresh medium. The cells were then stimulated with 1 µg/ml LPS for 1 hour and 2 hours or an 

equal volume of carrier solution was added as control. Following stimulation, the cells were harvested 

for subsequent RNA extraction and qPCR using primer pairs targeting CCL2, CCL3, CCL4, CCL5, 

IL1β, IL8, CXCL1, CXCL10, interferon-β (IFNβ), MIF1α or interleukin 1 receptor-antagonist (IL1RA) 

cDNA for analysis and a primer pair targeting β-actin cDNA as a house keeper for normalization. 

This was performed with cells transduced with the empty vector as a control and with the cells 

transduced with the overexpression constructs containing IκBNS isoform 1 and 2 for the overexpression 

(A) as well as with cells transfected with the CRISPR/Cas9 lacking a guide RNA as a control and the 

CRISPR targeted against IκBNS for the knockout (B), respectively. Standard deviations derive from 

biological triplicates. Asterisks show statistical significance calculated using the student’s t-test.          

* p ≤ 0.05 and ** p ≤ 0.005. 
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Overexpression of IκBNS isoform 1 resulted in upregulation of IL1RA and downregulation of 

CXCL1 and CXCL10 mRNA levels, while overexpression of IκBNS isoform 2 resulted in 

upregulation of CCL2, CCL4, CCL5, IFNβ and IL1RA and downregulation of CXCL1 and 

CXCL10 mRNA levels. Cells with IκBNS knocked out showed an upregulation of IFNβ, 

CCL4, IL1β and IL8. 

As the physiological effect of cytokines is mediated by proteins and protein levels are not 

only regulated at the transcriptional level, the levels of secreted cytokines in the culture 

medium were also directly assayed. To this means, THP-1 were differentiated to macrophages 

and stimulated with LPS for 24 h, thus giving the cells time to express, synthesize and secrete 

cytokines to the culture medium. Following this stimulation, the supernatant was harvested, 

normalized to the cell number and directly analyzed by means of the Human cytokine array 

panel A (R&D). As differences in the transcriptional activity were only sustained in the cells 

overexpressing IκBNS isoform 1 and 2, only the supernatants of the cells containing the 

overexpression constructs were examined.  



64 

 

 

 



65 

 

Figure 8.5: Secretion of cytokines and chemokines by LPS-treated macrophages is altered 

during overexpression of IκBNS isoforms 1 and 2.  

THP-1 cells were treated as described in Figure 8.1  and stimulated for 24 h with LPS. Following 

stimulation, the supernatant was harvested for subsequent protein analysis using the Human cytokine 

array panel A (R&D). The adherent cells were scraped off in 5 ml PBS and counted for adequate 

normalization of the cell density. This was performed with cells transduced with the empty vector as a 

control and with the cells transduced with the overexpression constructs containing IκBNS isoform 1 

and 2 for the overexpression, respectively. The duplicate dots shown in (A) represent the amount of 

cytokines in the supernatant and were quantified using the program ImageJ. The results of the 

quantification were averaged and are shown in (B) (all) and (C) (low intensity, for better 

visualization). Asterisks show statistical significance calculated using the student’s t-test. * p ≤ 0.05 

and ** p ≤ 0.005. 

 

Overexpression of IκBNS isoform 1 resulted in a downregulation of CXCL1 and CXCL10 

protein secretion on the transcriptional level and an upregulation of IL1RA mRNA expression 

that was not reproducible on the protein level. Conversely, CCL3/4 levels were elevated and 

MIF1α levels were decreased on the protein level while there were no changes of mRNA 

levels.  

Cells overexpressing IκBNS isoform 2 showed an upregulation of CCL2, CCL3/4 and CCL5 

protein secretion and a downregulation of CXCL10 protein secretion on the transcriptional 

level. CXCL1 was downregulated and IL1RA was upregulated on the mRNA level while not 

being deregulated on the protein level. IFNβ was upregulated on the mRNA level. As it was 

not part of the cytokine array, no protein data of it are available. Conversely, MIF1α was 

downregulated on the protein level while not being deregulated on the mRNA level. 

Cells with IκBNS knocked out only showed an upregulation of CCL4, IFNβ and IL8 on the 

mRNA level. 

 

8.1.5. Effect of IκBNS on monocyte differentiation 

NF-κB and STAT signaling play a pivotal role in the differentiation process of monocytes and 

in the determination of the cell type they differentiate to. As IκBNS overexpression and    

knock-out showed a marked effect on NF-κB and STAT signaling, it is highly suggestive that 

IκBNS has an impact on the fate of monocytes triggered to differentiate. Thus, following 

differentiation and stimulation of THP-1 cells, surface markers determining the differentiation 

path the monocytic cell has chosen were analyzed using fluorescence-assisted cell sorting 

(FACS). 
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Figure 8.6: Effect of IκBNS overexpression and knock-out on macrophage- and dendritic cell-

specific surface markers on THP-1 cells.  

THP-1 cells were differentiated to macrophages using 1 µg/ml PMA for 3 days, followed by 4 days 

rest in fresh medium. The cells were then stimulated with 1 µg/ml LPS for 8 hours (+LPS) or an equal 

volume of carrier solution was added as control (-LPS). Following stimulation, the cells were 

harvested for FACS staining and analysis using fluorescent protein-coupled antibodies targeting 

CD11c, CD14 and CD81. Single cells were analyzed to a count of 10,000 cells was reached. This was 

performed with cells transduced with the empty vector as a control and with the cells transduced with 

the overexpression constructs containing IκBNS isoform 1 and 2 for the overexpression (sections A and 

C) as well as with cells transfected with the CRISPR/Cas9 lacking a guide RNA as a control and the 

CRISPR targeted against IκBNS for the knockout (sections B and D), respectively. 

 

Overexpression of IκBNS isoforms 1 and 2 result in a shift in the balance from macrophages to 

dendritic cells in the differentiation process of THP-1, shown by a shift from CD14 high cells 

in the control to CD11c high cells during overexpression of IκBNS, while not significantly 

influencing the activation of the cells after LPS stimulation. Knock-out of IκBNS did not show 

any effect on the balance between macrophages and dendritic cells or cell activation after LPS 

stimulation. Overexpression or knock-out of IκBNS did not show a significant effect on cell 

viability characterized by the respective population in the FSC/SSC plot.  

 

8.1.6. IκBNS in HIV infection 

The life cycle of HIV heavily relies on NF-κB signaling in both T lymphocytes as well as in 

macrophages (DeLuca et al., 1998), which form a major virus reservoir. In addition, STAT 

signaling is essential for host defense against viral infection (Chaudhuri et al., 2008) and 

appears to be regulated by IκBNS. Thus, overexpression of IκBNS isoforms is highly likely to 

have an effect on the expression of pro-inflammatory cytokines after contact to viable viral 

particles. The part of the experiments requiring a biosafety level 3 laboratory were performed 

by Ramona Businger in the laboratory of Prof. Dr. Michael Schindler, following the protocol 

described by (Koppensteiner et al., 2012).  

The viral particles were produced using HEK293FT cells. The virus concentration was 

determined using an ELISA targeting p24. The virus-containing supernatant was then 

transferred to the differentiated THP-1 with a concentration of 50 pg p24 per 200,000 cells. 

The cells were harvested 48 h later for RNA isolation and qPCR. 
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Figure 8.7: Effect of overexpression of IκBNS isoform 1 and 2 on the expression of intracellular 

(A) and secreted (B) factors after infection with HIV.  

THP-1 cells were differentiated to macrophages using 1 µg/ml PMA for 3 days, followed by 4 days 

rest in fresh medium. The cells were then exposed to viral particles generated in HEK293FT cells for 

48 hours and subsequently harvested for RNA extraction and qPCR  using primer pairs targeting 

IκBζ, MX1, IL1β, IL8, TNFα, CXCL1 and CCL2 cDNA for analysis and a primer pair targeting β-

actin cDNA as a house keeper for normalization. This was performed with cells transduced with the 

empty vector as a control and with the cells transduced with the overexpression constructs for IκBNS 

isoform 1 and 2, respectively. Standard deviations derive from biological triplicates. Asterisks show 

statistical significance. * p ≤ 0.05 and ** p ≤ 0.005. 
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Overexpression of IκBNS isoform 1 resulted in generally lower mRNA levels of all examined 

genes, namely IκBζ, MX1, IL1β, IL8, TNFα, CXCL1 and CCL2, after contact with HIV. 

However, this deregulation was partially visible in cells with mock treatment. Overexpression 

of IκBNS isoform 2 overexpression had no significant effects on the expression levels of the 

targets evaluated here. 

 

8.2. Regulation of gene expression by IκBNS in DLBCL 

8.2.1. Effect of IκBNS isoform 1 overexpression in DLBCL 

The NF-κB pathway is highly active in many types of lymphoma and appears to be a key 

element of the survival and proliferation of lymphoma cells (Davis et al., 2001), making it an 

essential part of tumor progression in vivo. Hence, the analysis of downstream elements of the 

NF-κB pathway is crucial for a proper understanding of the disease and, subsequently, may be 

helpful in the development of new treatment options. As the other members of the atypical 

IκB protein family BCL3 and IκBζ have already been shown to be indispensable for DLBCL 

survival and pathogenesis, IκBNS may also be involved in these processes (Nogai et al., 2013, 

Ibrahim et al., 2011b). Here, the effect of IκBNS isoform 1 overexpression was examined in 

two of the most common diffuse large B cell lymphoma (DLBCL) subtypes, the germinal cell 

B cell-like (GCB) and the activated B cell-like (ABC) DLBCL, respectively. 

In order to analyze the effect of IκBNS on gene expression in these cell lines, two GCB and 

two ABC DLBCL cell lines were generated with doxycycline-inducible overexpression of 

IκBNS isoform 1, using the pInd20 toolkit (Meerbrey et al., 2011). 

 

After expansion, the inducibility of IκBNS isoform 1 had to be confirmed and a permanent 

overexpression had to be ruled out.  

Hence, 1 µg/ml doxycycline was added to the culture medium for 24 h. Subsequently, the 

IκBNS expression was confirmed via the immunoblotting method. Figure 8.8 shows the control 

for effective induction of IκBNS isoform 1 overexpression in the DLBCL cell lines. 
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Figure 8.8: IκBNS isoform 1 overexpression in DLBCL after 24 h of doxycycline stimulation.  

DLBCL cells were transduced and selected for 7 days with 1 µg/ml G418. The cells were then treated 

with 1 µg/ml doxycycline or carrier solution. Following stimulation, the cells were harvested for 

protein extraction and analysis via the immunoblotting method, using an antibody targeting IκBNS 

isoforms 1 and 2 for analysis and an antibody targeting β-actin as a loading control. In each lane,     

40 µg of protein lysate was loaded. This was performed with BJAB and SuDHL-4 cells representing 

GCB DLBCL and HBL-1 and OCILy3 representing ABC DLBCL. Of each transfected cell line, 

unstimulated cells were used as a control and doxycycline-treated cells were used for the 

overexpression of IκBNS isoform 1, respectively.  

 

The analysis showed a new strong band with a size of 38 kDa after 24 h of doxycycline 

treatment, matching to an inducibly overexpressed IκBNS isoform 1, which was only faintly 

visible in untreated HBL-1 and OCILy3. As ABC-DLBCL cells constitutively overexpress 

NF-κB, and IκBNS represents a primary response NF-κB target gene, it was not surprising that 

the cells contained detectable amounts of IκBNS isoform 1 even without additional stimulation 

and showed a constitutive expression of IκBNS isoform 2.  

In conclusion, these cell lines appeared suitable for the analysis of the effect of IκBNS isoform 

1 overexpression on DLBCL. 
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8.2.2.  Expression of atypical IκB proteins is altered in DLBCL cells overexpressing 

IκBNS isoform 1 

As mentioned above, preliminary data from our lab have already shown a reciprocal 

regulation of atypical inhibitors of kappa B proteins in murine macrophages, and BCL3 and 

IκBζ appeared to be deregulated due to overexpression of IκBNS isoform 1 in THP-1 cells as 

well. Since BCL3 and IκBζ have been shown to be essential for ABC DLBCL (Massoumi et 

al., 2006, Nogai et al., 2013), an effect of IκBNS isoform 1 on DLBCL survival may be 

mediated by these proteins.  

 

Figure 8.9: BCL3 and IκBζ RNA levels during IκBNS isoform 1 overexpression.  

DLBCL cells were treated with 1 µg/ml doxycycline or carrier solution for 24 h. Following 

stimulation, the cells were harvested for subsequent RNA extraction and qPCR using primer pairs 

targeting BCL3 or IκBζ cDNA for analysis and a primer pair targeting β-actin cDNA as a house 

keeper. This was performed with BJAB and SuDHL-4 cells representing GCB DLBCL and HBL-1 and 

OCILy3 representing ABC DLBCL. Of each transfected cell line, unstimulated cells were used as a 

control and doxycycline-treated cells were used for the overexpression of IκBNS isoform 1, 

respectively. The relative expressions were normalized onto the mRNA levels in BJAB. Standard 

deviations derive from biological triplicates and two experiments. Asterisks show statistical 

significance. * p ≤ 0.05 and ** p ≤ 0.005. 

 

BCL3 mRNA expression was elevated in SuDHL-4 and in both ABC cell lines during 

overexpression of IκBNS isoform 1. IκBζ mRNA levels, on the other hand, were only 

upregulated in SuDHL-4.  
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8.2.3. IκBNS isoform 1 and suppressors of MAPK Dusp1 and Dusp2 

The MAPK/ERK pathway directly regulates cellular growth and, consequently, is involved in 

formation of hematological malignancies. The MAPK/ERK pathway in turn is regulated by 

dual specific protein phosphatase 1 and 2 (DUSP1 and DUSP2), thus making them interesting 

targets in DLBCL (Jeffrey et al., 2006, Koivula et al., 2011). 

 

Figure 8.10: DUSP1 and DUSP2 mRNA levels in DLBCL cells upon IκBNS isoform 1 

overexpression.  

DLBCL cells were treated as described in Figure 8.9. Dusp1 and Dusp2 mRNA levels were analyzed 

using qPCR. Standard deviations derive from biological triplicates and two experiments. Asterisks 

show statistical significance. * p ≤ 0.05 and ** p ≤ 0.005. 

 

DUSP1 mRNA levels were upregulated during overexpression of IκBNS isoform 1 in BJAB, 

SuDHL-4 and in OCILy3. DUSP2 mRNA levels were only upregulated in BJAB.  
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8.2.4. IκBNS overexpression leads to changes in the expression levels of the transcription 

factors IRF4 and SpiB 

High expression levels of interferon regulatory factor 4 (IRF4) in combination with its 

essential cofactor SpiB are hallmarks of activated B cell-like (ABC) DLBCL and is secondary 

due to high NF-κB activity. IRF4 in concert with SpiB directly upregulates NF-κB protein 

expression and directly suppresses Interferon beta production. Consequently, a knockdown of 

IRF4 results in a suppression of NF-κB activity and augmented interferon-β expression, 

effectively inducing apoptosis (Yang et al., 2012, Care et al., 2014). 

 

Figure 8.11: Deregulation of IRF4 and SpiB RNA levels due to IκBNS isoform 1 

overexpression.  

DLBCL cells were treated as described in Figure 8.9. IRF4 and SpiB mRNA levels were analyzed 

using qPCR. Standard deviations derive from biological triplicates and two experiments. Asterisks 

show statistical significance. * p ≤ 0.05 and ** p ≤ 0.005. 

 

IRF4 mRNA levels were upregulated during overexpression of IκBNS isoform 1 in BJAB, 

SuDHL-4 and in OCILy3. SpiB mRNA levels were only upregulated in OCILy3.  
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8.2.5. IκBNS isoform 1 influences the expression of anti- and pro-apoptotic factors  

Although many cells acquire potentially oncogenic mutations, only few tumors manage to 

grow and become clinically visible. This happens due to oncogene-induced apoptosis, which 

neutralizes the transformed cells before any damage can be done. However, this mechanism 

can be avoided by an elevated expression of anti-apoptotic factors such as BCL2.  

On the other hand, Fas is a receptor whose activation induces apoptosis quite efficiently via 

the Fas-associated death-domain (FADD) signaling pathway, thus improving the prognosis of 

the disease (Hu et al., 2013, Kojima et al., 2006, Scandurra et al., 2010).  

 

Figure 8.12: BCL2 and Fas were deregulated during IκBNS isoform 1 overexpression.  

DLBCL cells were treated as described in Figure 8.9. BCL2 and Fas mRNA levels were analyzed 

using qPCR. Standard deviations derive from biological triplicates and two experiments. Asterisks 

show statistical significance. * p ≤ 0.05 and ** p ≤ 0.005. 

 

BCL2 mRNA levels were not significantly deregulated during overexpression of IκBNS 

isoform 1. Fas mRNA levels were upregulated during overexpression of IκBNS isoform 1 in 

SuDHL-4, HBL-1 and in OCILy3.  
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8.2.6. IκBNS isoform 1 overexpression regulates cytokine and chemokine secretion in 

DLBCL cells 

Several lymphomas secrete CCL2 and CCL8, thus recruiting monocytes that differentiate into 

a tumor-promoting M2 macrophages (Guilloton et al., 2012). As the prevalence of tumor-

associated macrophages constitutes a negative prognostic marker for DLBCL, especially for 

the ABC subtype, it may be interesting to examine the effect of IκBNS isoform 1 

overexpression on the expression levels of said chemokines. Furthermore, tumor 

vascularization is a crucial step in tumorigenesis, making VEGFα another interesting target 

(Kim et al., 2011). 

 

Figure 8.13: CCL2, CCL8 and VEGFα were deregulated during IκBNS isoform 1 overexpression 

in DLBCL.  

DLBCL cells were treated as described in Figure 8.9. CCL2, CCL8 and VEGFα mRNA levels were 

analyzed using qPCR. Standard deviations derive from biological triplicates and two experiments. 

Asterisks show statistical significance. * p ≤ 0.05 and ** p ≤ 0.005. 
 

CCL2 mRNA levels were upregulated during overexpression of IκBNS isoform 1 in SuDHL-4 

and OCILy3, while being downregulated in HBL-1. CCL8 mRNA levels were downregulated 

in the GCB DLBCL cell lines BJAB and SuDHL-4, while being upregulated in the ABC 

DLBCL cell lines HBL-1 and OCILy3. VEGFα levels were upregulated in BJAB, SuDHL-4 

and HBL-1. 
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9. Discussion 

This project aimed to elucidate the role of the atypical inhibitor of NF-κB protein IκBNS in 

macrophages and lymphomas. As NF-κB is a pivotal signaling pathway and involved in many 

biological processes, such as immune responses or carcinogenesis, a larger knowledge about 

its regulation processes of NF-κB is crucial for a better understanding of these processes and 

the ability to predict or treat them.  

NF-κB signaling can be activated by more than 200 different stimuli and induces the 

expression and activation of more than 200 target genes involved e. g. in inflammation, cell 

proliferation, cell survival and tumor progression. Thus, NF-κB activity needs to be tightly 

regulated to provide an adequately selective and specific response to certain stimuli without 

causing auto-inflammatory diseases, such as CIAS1-related auto-inflammatory syndrome 

(CAPS) or Sjögren syndrome. A more detailed understanding of the fine-regulation in NF-κB 

signaling may help to understand human diseases and to develop specific treatments for them.  

A pivotal role in NF-κB regulation is assigned to the inhibitor of NF-κB (IκB) protein family. 

In resting cells, classical IκB proteins bind to NF-κB protein dimers and mask their nuclear 

localization sequence (NLS), thus retaining them in the cytoplasm of the cell. Following an 

adequate stimulus, the IκB proteins are phosphorylated, ubiquitinylated and degraded in the 

proteasome, unleash the NF-κB dimers which proceed into the nucleus and initiate the 

expression of target genes.  

In contrast to classical IκB proteins, which are constitutively expressed in the cytoplasm, 

atypical IκB proteins are only inducible produced in the nucleus of activated cells. Currently, 

this protein family consists of five proteins: BCL3, IκBζ, IκBNS, IκBη and IκBL. Despite their 

name, these proteins do not only inhibit NF-κB activity, but exert a regulatory function on 

NF-κB signaling by fine-regulating the transcriptional activity of NF-κB. BCL3, the          

best-characterized member of this protein family, mainly regulated the transcriptional activity 

of inhibitory p50 and p52 NF-κB homo- and heterodimers: It is capable of forming stable 

inhibitory complexes with p50 homodimers on the DNA, removing inhibitory p50/p52 

heterodimers from the DNA or forming transcriptionally active complexes with them. Thus, 

BCL3 up- and downregulates the transcriptional activity of NF-κB target genes by interacting 

with coactivators, with corepressors or by direct regulation (Chiba et al., 2013, Schuster et al., 

2013). Another member of the atypical IκB protein family, IκBζ also regulates the 

transcriptional activity of NF-κB target genes. IκBζ is capable of binding to p50 homodimers 

and activating transcription of downstream genes directly and by chromatin remodeling 

(Trinh et al., 2008). The third member of the atypical IκB protein family, namely IκBNS, is 
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only poorly characterized in human macrophages, lymphoid malignancies and its general role 

in NF-κB signaling. In addition, the existing data mainly describe a short isoform of IκBNS 

(IκBNS isoform 1), however, another isoform (IκBNS isoform 2) with 152 additional amino-

acids at its N-terminus has been described (Mao et al., 2004). This project aims to define the 

effects of this second isoform and to compare it to the first isoform.  

To this means, macrophages derived from the human monocytic leukemia cell line THP-1 

were used. For the role of IκBNS in lymphoid malignancies, germinal B cell-like (GCB) 

diffuse large B cell lymphoma (DLBCL) cell lines BJAB and SuDHL-4 and activated B cell-

like (ABC) DLBCL cell lines HBL-1 and OciLy3 were used. Transcriptional targets of IκBNS 

in macrophages were derived from the RNASeq microarray performed by Sebastian 

Lorscheid in our lab using LPS-stimulated peritoneal macrophages derived from IκBNS wild-

type and IκBNS knock-out mice, respectively. For overexpression of IκBNS isoforms 1 and 2, 

THP-1 cells were lentivirally transduced with overexpression constructs containing IκBNS 

isoform 1 and isoform 2 cDNA in their expression cassettes, respectively. For the knock-out, 

THP-1 cells were transduced with the lentiviral CRISPR/Cas9 toolkit with a guide RNA 

targeting the first exon of genomic IκBNS (Shalem et al., 2014). 

 

9.1. IκBNS in macrophages after TLR4 stimulation 

After generation of THP-1 cell lines stably overexpressing IκBNS or with IκBNS knocked out, 

the cells were differentiated to macrophages using PMA using the method first described by 

Auwerx (Auwerx, 1991). Cells were subsequently treated with LPS, a conserved component 

of bacterial cell walls, thus simulating bacterial infection. LPS stimulation results in a strong 

activation of by stimulation of NF-κB-signaling via the pattern recognition receptor TLR4 

(Kumar et al., 2011). Among other activators of NF-κB-signaling via pattern recognition 

receptors, LPS was chosen for our experiments, as it activates NF-κB signaling via two 

distinct pathways, resulting in strong and robust activation of NF-κB (Akira et al., 2001) and, 

subsequently, expression of the secondary response gene IκBNS. To distinguish transcriptional 

and translational regulation of NF-κB targets by IκBNS, gene expression was analyzed on the 

RNA level using qPCR and on the protein level using immunoblotting or a cytokine array.  

The effect of knock-out of IκBNS on NF-κB target gene expression in murine macrophages 

after LPS stimulation has been previously analyzed by (Kuwata et al., 2006). This project 

therefore specifically explored the role of IκBNS isoform 1 and 2 in human macrophages after 

LPS stimulation. Expression of both endogenous IκBNS isoforms was strongly induced 

following LPS stimulation on the protein level, while it was not detectable on the protein level 
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in the cells CRISPR/Cas9 constructs targeting IκBNS in its first exon (Jinek et al., 2012). The 

macrophages with lentivirally induced overexpression of IκBNS isoform 1 and isoform 2 

showed a strong expression of the respective protein, which was not significantly changed 

during LPS stimulation. Thus, we progressed to the examination of defined targets of IκBNS in 

human macrophages. As not all of the target genes identified by (Kuwata et al., 2006) were 

expressed in differentiated THP-1 cells, other relevant NF-κB target genes were analyzed, 

resulting in a distinct target panel.  

Unfortunately, the most highly deregulated genes found by (Kuwata et al., 2006), namely IL6, 

IL10, IL12p40 and IL18, were not expressed by the differentiated THP-1 cells after 1, 2 or 4 h 

of LPS stimulation. However, THP-1-derived macrophages were used as model cell system, 

as they have a reasonably high resemblance to primary macrophages and can be derived from 

a stable cell line, which was essential for this project.  

The analysis of other NF-κB target genes examined by their group showed a similar 

regulation pattern during knock-out of IκBNS for IκBζ, CCL2, CCL5, CXCL10 and MIF1α, as 

no significant deregulation was detectable. In contrast, IL1β showed a slight but significant 

upregulation in the cells with IκBNS knocked out. With no significant effect on the 

transcription of target genes after knock-out of a gene encoding one signaling protein, no 

transcriptional deregulation of these target genes should be expected during overexpression of 

said protein. However, genomic IκBNS encodes two distinct isoforms that may have distinct 

effects on NF-κB signaling, making a more detailed analysis necessary. The analysis of IκBζ 

and CXCL10 showed a downregulation of these targets by overexpression of IκBNS isoforms 

1 and 2. CCL2 and CCL5 were upregulated during overexpression of IκBNS isoform 2, while 

showing no deregulation during overexpression of IκBNS isoform 1. IL1β and MIF1α were not 

deregulated during IκBNS overexpression.  

Following these examinations, more pro-inflammatory and anti-inflammatory NF-κB target 

genes identified in murine macrophages in our lab by Sebastian Lorscheid (unpublished data) 

and suggested by scientific literature were analyzed. As data from our lab suggest a reciprocal 

regulation of atypical IκB protein family members and data showed a deregulation of IκBζ 

during overexpression of IκBNS, the effect of IκBNS on BCL3 was analyzed. In addition, since 

IκBNS sequesters NF-κB proteins in the cytosol (Tao et al., 2014), the effect of IκBNS on p65 

phosphorylation and activation was analyzed. These analyses showed a suppressive effect of 

IκBNS isoform 1 and 2 overexpression on BCL3 expression and a suppressive effect of IκBNS 

isoform 2 overexpression on p65 phosphorylation, while knock-out of IκBNS resulted in 

elevated levels of BCL3 and phosphorylated p65, suggesting a suppressive effect of IκBNS on 
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NF-κB signaling. The overall levels of p65 were not deregulated, which is consistent with the 

fact that NF-κB activity is mainly regulated by post-translational modifications and not 

transcriptional or translational changes. 

IκBNS and IκBζ have been suggested to have reciprocal effects on some NF-κB targets, thus 

working as antagonists in NF-κB signaling (Hirotani et al., 2005, Yamamoto et al., 2004). 

Hence, target genes of IκBζ were added to the panel. The pro-inflammatory factors CXCL1 

(Kayama et al., 2008) and IL8 (Goransson et al., 2009) are targets of IκBζ, making them 

likely targets of IκBNS. Knock-out of IκBNS showed no effect on CXCL1 expression but 

enhanced expression of IL8. Overexpression of IκBNS isoforms 1 and 2 led to repressed 

CXCL1 activity in parallel to CXCL10. This regulation is reciprocal to the effect of IκBζ, in 

line with the model of IκBNS acting as antagonist to IκBζ.  

Atypical IκB proteins do not only influence NF-κB proteins, but also directly interact with 

other important signaling pathways involved in inflammation, such as the JAK/STAT 

signaling (Squarize et al., 2006). Overexpression of IκBNS isoform 1 as well as knock-out of 

IκBNS showed no effect on STAT1 or STAT3 mRNA levels, while overexpression of IκBNS 

isoform 2 resulted in reduced STAT1 and STAT3 expression. However, since                 

STAT-activation is mainly regulated by post-translational modifications, levels of 

phosphorylated STAT1 and STAT3 were examined. Here, our analyses showed reduced 

levels of p-STAT1 during overexpression and knock-out of IκBNS and no effect of 

overexpression of IκBNS isoform 1 or 2 on p-STAT3 levels, while knock-out of IκBNS resulted 

in high levels of p-STAT3. This shows a shift from STAT1 to STAT3 activity during knock-

out of IκBNS. However, (Wu et al., 2009) have shown that IκBζ suppresses STAT3 activity. 

This suggests a similar effect of IκBNS and IκBζ and opposes the idea of IκBNS and IκBζ as 

antagonists. Pro-inflammatory CCL3 and 4 (Widmer et al., 1993), IFNβ (Hiscott et al., 1989) 

and anti-inflammatory IL1RA (Smith et al., 1994) are NF-κB target genes. Here, 

overexpression of IκBNS isoform 1 showed no effect on the expression levels, while 

overexpression of IκBNS isoform 2 led to higher expression levels of CCL4, IFNβ and IL1RA. 

Knock-out of IκBNS resulted in enhanced expression of CCL4 and IFNβ.  
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Figure 9.1: Simplified representation of the effect of IκBNS overexpression in macrophages after 

LPS stimulation.  

Following TLR4 activation, several intracellular signaling cascades are initiated, shown here by 

STAT3 and p50/p65 representing the NF-κB family. These proteins initiate the expression of IκBNS 

isoforms 1 and 2, which in turn inhibit the activity of the former proteins. IκBNS isoforms 1 and 2 

inhibit the expression of the other members of the atypical IκB family, IκBζ and BCL3, and inhibit the 

activation of STAT1. This, in turn, results in suppression of the pro-inflammatory factors CXCL1 and 

CXCL10 and the activation of chemotactic CCL2 by both isoforms of IκBNS, while IκBNS isoform 2 

appears to activate pro-inflammatory IFNβ, chemotactic CCL3/4 and CCL5 and anti-inflammatory 

IL1RA, either directly or via another intermediate factor not examined here.  

In summary, IκBNS isoform 1 overexpression shows an indifferent or repressing effect on NF-

κB target gene expression, consistent with (Schuster et al., 2013)’s review. Overexpression of 

IκBNS isoform 2 showed a marked deregulation of most of the examined target genes and 

proteins, resulting in downregulation or upregulation of several transcription factors and pro-

inflammatory secreted factors. This shows once again that IκBNS as a member of the atypical 
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IκB protein family is not only an inhibitor, but a modulator of NF-κB signaling. The effect of 

the knock-out of IκBNS was not always reciprocal to the effects of the overexpression of IκBNS 

isoforms 1 and 2, suggesting an additive effect of these isoforms in the physiological context 

or another isoform accountable for these deregulations. Another possible cause may be an off-

target effect of the CRISPR-Cas9 despite careful selection of the guide RNA and no 

microscopic change of phenotype of the THP-1. These questions can be elucidated by a full 

genome sequencing of the THP-1 with IκBNS knocked out to rule out off-target effects, by 

generating THP-1 with only IκBNS isoform 2 knocked out and by generating THP-1 cells 

overexpressing both IκBNS isoform 1 and 2 in parallel.  

Most analyses of the effect of IκBNS on NF-κB signaling in macrophages have so far been 

performed in knock-out cells. Here, the data derived from murine knock-out cells (Kuwata et 

al., 2006) could be reproduced and expanded, suggesting a conserved effect of IκBNS on NF-

κB signaling. Overexpression of IκBNS, however, yielded data that could not be derived from 

the knock-out analysis. This shows the importance of a combined analysis of knock-out and 

overexpression to elucidate the effects of a signaling protein. However, the overexpression of 

proteins creates an unnatural state in the cell by flooding it with one protein, making the data 

derived from overexpression studies artificial. For a sound analysis of the effect of IκBNS 

isoform 2, an isolated knock-out or knock-down of isoform 2 needs to be performed. IκBNS 

isoform 1 cannot be knocked out without eliminating isoform 2, as only isoform 2 has a 

sequence that is not shared by the other isoform. 

Finally, it is important to remember that THP-1 derived macrophages closely resemble 

primary macrophages, but have been developed from a cell line derived from an acute 

myeloid leukemia. Thus, they may not resemble human macrophages in every detail. Since 

the generation of IκBNS knock-out macrophages from primary human monocytes using the 

CRISPR-Cas9 system is intricate and expensive and yields only few cells to perform the 

experiments with, THP-1 is an acceptable approximation. 
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9.2. Effect of IκBNS on macrophage differentiation 

As NF-κB is also involved in the differentiation process of myeloid cells, IκBNS may have an 

effect on the differentiation process on THP-1. Thus, the precise cell type derived from THP-

1 by PMA-driven differentiation has to be determined. Since the differentiation and activation 

status can be assayed via cell surface markers, a FACS analysis of differentiated and activated 

THP-1 was performed. CD11c was chosen as a marker for DC differentiation, CD14 as a 

marker for macrophage differentiation and CD81 as marker for activation (Murray and Wynn, 

2011). Overexpression of IκBNS isoform 1 showed no significant effect on cell size and 

granularity, most importantly no new subpopulation in the plot. Cells overexpressing IκBNS 

isoform 2 showed a reduced population of viable cells. This suggests that overexpression of 

IκBNS isoform 1 does not impact cell viability, while IκBNS isoform 2 overexpression may 

cause minor cytotoxicity.  

The population of viable cells in differentiated THP-1 expressing the CRISPR/Cas9 with 

guide RNA targeting IκBNS was greatly reduced in comparison with the cells expressing 

CRISPR/Cas9 alone. Overexpression of the Cas9 has already been shown to have cytotoxic 

effects (Jinek et al., 2012, Gasiunas et al., 2012), as it has a minor unspecific endonuclease 

activity. However, the marked greater toxicity of CRISPR/Cas9 with guide RNA targeting 

IκBNS suggests a cytoprotective role of IκBNS, consistent with its suggested role as suppressor 

of inflammation (Kuwata et al., 2006), or off-target effects of the guide RNA. Analysis of the 

cellular surface markers revealed a marked increase of CD11c in cells overexpressing IκBNS 

isoform 1 and 2, while knock-out of IκBNS showed no effect. Consistently, overexpression of 

IκBNS isoform 1 and 2 resulted in a reduced intensity of CD14 on differentiated THP-1, while 

knock-out of IκBNS showed no effect again. CD81 levels remained unchanged in cells 

overexpressing IκBNS isoform 1 and 2 as well as in cells with IκBNS knocked out.  

In summary, this suggests a shift from activated macrophages (CD11c low CD14 high CD81 

high) to activated dendritic cells (CD11c high CD14 low CD81 high) in differentiated THP-1 

cells overexpressing IκBNS isoform 1 and 2, while knock-out of IκBNS showed no effect on 

cell differentiation. However, since the differentiation state of a cell cannot be determined by 

using only 2 surface markers, more experiments will be necessary to validate these results.  
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9.3. IκBNS in macrophages during HIV infection  

NF-κB signaling is pivotal for the infection and replication of HIV and commonly activated in 

infected cells via TLR7/8 stimulation (Chang and Altfeld, 2009). However, the effect of the 

atypical IκB protein family on HIV infection and progression has not been addressed at all. 

Since NF-κB is a central factor for the antiviral response (Mogensen and Paludan, 2001), but 

on the other hand is utilized by HIV for its replication (Hiscott et al., 2001), a delicate balance 

has to be found and maintained for viral activity. Atypical IκBs have already been shown to 

regulate the expression of antiviral genes, thus the effect of IκBNS isoform 1 and 2 

overexpression on the expression of antiviral genes in macrophages infected with HIV were 

analyzed. Hence, macrophages were differentiated as described above and infected with HIV 

by Ramona Businger in the laboratory of Prof. Dr. Michael Schindler.  

We have already shown an effect of IκBNS overexpression on IκBζ expression after TLR4 

stimulation. Another important antiviral factor is interferon-induced GTP-binding protein 

MX1, which is also regulated by NF-κB (Gérardin et al., 2004). Here, our analyses showed a 

marked reduction of IκBζ and MX1 expression during overexpression of IκBNS isoform 1, 

while overexpression of IκBNS isoform 2 showed no effect.  

Since the antiviral response is highly dependent on inflammatory cytokines and chemokines, 

the expression levels of several secreted factors were analyzed after HIV infection. Important 

factors in the antiviral response are IL1β, IL8, TNFα, CXCL1 and CCL2, most of which have 

been discussed in chapter 9.1. TNFα has been shown to be positively regulated by IκBζ 

(Kayama et al., 2008), suggesting a regulation of IκBNS. Here, overexpression of IκBNS 

isoform 1 resulted in downregulation of expression of all five target genes, while 

overexpression of IκBNS isoform 2 showed no significant effect. This differs from the data 

collected from the cells stimulated with LPS: There, IκBζ and CXCL1 levels were reduced 

during overexpression of both isoforms of IκBNS, while in viral infection mRNA levels were 

unchanged during overexpression of IκBNS isoform 2. IL1β and IL8 levels differ from the 

levels during LPS stimulation: There, they showed no deregulation, while overexpression of 

IκBNS isoform 1 during HIV infection resulted in decreased expression levels. CCL2 levels 

also differed: While the levels were unchanged during overexpression of IκBNS isoform 1 and 

elevated during overexpression of IκBNS isoform 2 in the LPS-stimulated cells, while here, 

IκBNS isoform 1 overexpression resulted in reduction of CCL2 mRNA levels and 

overexpression of IκBNS isoform 2 resulted in unchanged levels. TNFα expression levels were 

reduced during overexpression of IκBNS isoform 1, showing an antagonistic effect of IκBNS to 

IκBζ once again. 
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Figure 9.2: Simplified representation of the effect of IκBNS overexpression in macrophages after 

HIV infection. 

Following TLR7 and TLR8 activation, several intracellular signaling cascades are initiated, which 

culminate in the activation of NF-κB, represented by the p50/p65 dimer here. These proteins initiate 

the expression of IκBNS isoforms 1 and 2. IκBNS isoform 1 shows a repressing effect on MX1 and, 

subsequently, the pro-inflammatory CXCL1. IκBNS isoform 1 appears to suppress the expression of 

chemotactic CCL2 and pro-inflammatory IL1β and TNFα either directly or via an intermediate factor 

not examined here. This results in a reduced induction of IκBζ and, subsequently, reduced pro-

inflammatory IL8. 

 

In summary, the analysis showed a marked suppressive effect of IκBNS isoform 1 on the 

expression of antiviral response genes, while overexpression of IκBNS isoform 2 showed no 

significant effect, differing from the data derived from the THP-1 stimulated with LPS. This 

may result in a greater production of viral particles in cells overexpressing IκBNS isoform 1. 

These data greatly differ from the expression data from the TLR4 stimulation, which is not 

surprising as bacterial infection simulated by TLR4 stimulation and viral infection require 

highly different immune responses. This difference may be explained by the activation of 

different signaling pathways following TLR stimulation, as TLR4 activates both the MyD88 
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and TRIF-dependent pathways, while TLR7/8 only activate the MyD88-dependent pathway. 

HIV also modulates the cellular response not only by TLR7/8 stimulation, but also expression 

of signaling proteins. In addition, the mRNA data from the THP-1 cells stimulated with LPS 

were collected after 4 hours of stimulation, while the THP-1 cells were incubated with viral 

particles for 48 hours. This is due to the fact that LPS stimulates an extracellular receptor, alas 

induces a reaction much faster than a virus stimulating an intracellular receptor. In addition, 

HIV stimulates the receptors not only upon entering the cell, but also after it has stably 

integrated into the cellular genome (Chang et al., 2012). After integration, however, HIV 

induces a relatively stable TLR stimulation (Chang and Altfeld, 2009). Hence, to acquire 

quality data that can be reliably correlated with the data from the experiments with LPS 

stimulation, a kinetic after HIV infection has to be performed.  

However, since the deregulation shows an equal trend in all targets analyzed, there exists the 

possibility of these results being an artifact. This is highly unlikely, as each data set is the 

average of the results of three independent experiments, but it still has to be ruled out by 

addition of a negative control and by further experiments to show whether overexpression of 

IκBNS isoform 1 has indeed an effect on HIV infection efficiency and production of viral 

particles.  

 

9.4. IκBNS in diffuse large B cell lymphomas 

As mentioned before, NF-κB signaling is not only important in macrophages, but among 

others also in lymphocytes and in lymphocyte-derived malignancies. Most importantly, IκBζ 

as another member of the atypical IκB protein family, has already been shown to be essential 

for survival and growth of the ABC subtype of DLBCL (Nogai et al., 2013). Unfortunately, 

no ABC DLBCL cells with a CRISPR/Cas9 and a guide RNA targeting IκBNS could be 

generated, while cells could be transfected and expanded with a vector containing the 

CRISPR/Cas9 alone. GCB DLBCL cells could easily be transfected and expanded with the 

CRISPR/Cas9 alone and with a guide RNA targeting IκBNS. However, the latter was not 

surprising, as GCB DLBCL do not express IκBNS without external stimulation.  

The target genes examined were chosen from the data from (Nogai et al., 2013), who showed 

a critical role of IκBζ in ABC DLBCL. Here, the other atypical IκB protein BCL3 was 

upregulated in GCB and ABC cell lines. In contrast, IκBζ levels remained unchanged in ABC, 

but were upregulated in one GCB cell line. This highly differs from the data from LPS-

stimulated macrophages, which may be explained by the different cell types macrophage and 

lymphoma and by the fact that high NF-κB levels in ABC DLBCL derive from aberrant B cell 
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receptor signaling, alas alternative activation of NF-κB, while TLR4 signaling in 

macrophages induces the classical NF-κB pathway. The chemoattractant CCL2 was not 

deregulated, also differing from the data from macrophage experiments. DUSP1 and IRF4 

expression were upregulated during IκBNS overexpression in GCB and ABC, while DUSP2 

was not deregulated. As SpiB signaling is closely entangled with IRF4 in activated B cells 

and ABC DLBCL, SpiB expression levels were analyzed during IκBNS overexpression, but 

only showed an upregulation in ABC cell line. In concert, this suggests a role for IκBNS in 

DLBCL proliferation, as DUSP1 and IRF4 are potent activators of B cell proliferation. Anti-

apoptotic and pro-apoptotic gene expressions were examined using the surrogate markers 

BCL2 and Fas. Here, overexpression of IκBNS showed no effect on BCL2 expression levels, 

but increased Fas expression in all cell lines except for BJAB. However, since relative mRNA 

levels were still far below BJAB levels after upregulation, the physiological effect of this 

upregulation is a matter for discussion. In concert, overexpression of IκBNS resulted in no 

upregulation of anti-apoptotic genes, but on the contrary in upregulation of a pro-apoptotic 

receptor, although probably not in a physiologically relevant manner.  CCL8 and VEGFα 

were examined, as lymphomas heavily rely on the infiltration of monocytes and vessel 

growth. Here, analysis of the expression levels showed a downregulation of CCL8 levels in 

GCB and an upregulation ABC DLBCL during IκBNS overexpression. This is consistent with 

data suggesting CCL8 expression as a negative prognostic marker for DLBCL, as it shows a 

shift from the GCB to the ABC subtype (Rosenwald et al., 2002).  VEGFα levels were 

increased in all cell lines during overexpression of IκBNS, suggesting a conserved role for 

IκBNS in vascularization. 
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Figure 9.3: Simplified representation of the effect of IκBNS isoform 1 overexpression in GCB and 

ABC DLBCL.  

In ABC DLBCL, a mutation of the B cell receptor BCR or a downstream signaling protein results in 

constitutive activation of the alternative NF-κB pathway, represented by the p52/RelB heterodimer. In turn, 
this heterodimer induces expression of IκBNS. IκBNS isoform 1 induces the expression of growth promoting 

DUSP1 and IRF4 in both GCB and ABC, while also inducing SpiB, an important factor for IRF4 function, 

in ABC only. The death receptor Fas is induced in both GCB and ABC. The atypical IκB protein BCL3 is 
induced in both GCB and ABC, while IκBζ is only induced in GCB. Finally, secreted factors CCL8 and 

VEGFα, which induce leukocyte infiltration and angiogenesis, are induced by IκBNS in ABC, but are 
suppressed in GCB DLBCL. In total, IκBNS isoform 1 appears to have a greater growth-promoting effect as 

well as an effect on the negative prognostic markers, angiogenesis and leukocyte infiltration, in ABC than 

in GCB. 

In summary, IκBNS appears to be involved in the regulation of the other members of the 

atypical IκB protein family, of cellular growth and of some secreted factors. Its effects appear 

to be conserved, as they do not differ greatly between GCB and ABC DLBCL, except for its 

effect on CCL8. However, the data discussed here was obtained from IκBNS overexpression in 

a cell system that does not naturally express IκBNS at all (GCB) or by additional 

overexpression in a system which already overexpresses IκBNS, adding a protein that was 

available in abundance in the first place. Thus, a reliable statement concerning the effect of 

IκBNS in ABC DLBCL can only be made after generation of a knock-out cell line.  

The data discussed here suggests a lack of growth signals after knock-out of IκBNS. This 

limitation may be avoided by using an inducible knock-down or knock-out system, allowing 

gene expression analysis directly subsequent to the removal of IκBNS from the cells.  
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10. Outlook 

This project provides a first insight into target genes of IκBNS in human macrophages, 

showing a high level of conservation between its effects in the murine and the human cell 

system concerning immunomodulatory cytokines, other atypical IκB proteins and a small 

selection of intracellular transcription factors. IκBNS isoform 1 and isoform 2 showed different 

effects on the analyzed target genes. However, the effects of overexpression of IκBNS isoform 

1 and isoform 2 were not reciprocal to the effects of knock-out of IκBNS, suggesting additional 

relevant isoforms of IκBNS that have not been subject to analysis yet.  

In this project, mRNA and protein levels have been analyzed in macrophages. However, the 

exact mode of regulation by IκBNS is still to be examined. As it appears to be on the 

transcriptional level, this may be addressed using promoter studies, CHIP analysis and CoIPs.  

Another mode of activation is the autocrine stimulation with cytokines, leading to the 

activation of STAT signaling. As the most prominent activator of STAT signaling was not 

expressed in THP-1 derived macrophages, there appears to be another activator of STAT 

signaling involved. The analysis of the effect of IκBNS on macrophage differentiation showed 

great promise, however the experiments performed here were only preliminary. Additional 

surface proteins will be needed for a sufficient statement concerning the effect of IκBNS on 

macrophage differentiation. Overexpression of IκBNS showed a marked effect on target gene 

expression after infection of THP-1 cells with HIV. Here, analysis of additional targets needs 

to be performed and to be confirmed on the protein level. Further experiments will also 

address the infection efficiency of HIV during overexpression and knock-out of IκBNS as well 

as the viral load produced by the infected cells to quantify the functional effect of IκBNS on 

HIV infection and spread. The experiments performed in DLBCL suggested an important role 

for IκBNS in ABC DLBCL, as no viable knock-out cell line could be generated and 

overexpression analysis of isoform 1 showed an effect of IκBNS on growth factors in DLBCL. 

An inducible knock-out system may enable the analysis of ABC directly subsequent to 

removal of IκBNS. In addition, the effect of IκBNS isoform 2 needs to be addressed, as well as 

whether the regulation of targets shown to be deregulated in macrophages is conserved in 

lymphoma cells as well.   

In summary, this project showed a marked effect of IκBNS on inflammation, cell 

differentiation, antiviral defense and lymphoma growth and survival. Thus, targeting IκBNS 

may prove valuable in treatments of chronic inflammatory diseases, infectious diseases and 

cancer. 
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12. Appendix 

 

Figure 12.1: Alignment of a reference sequence of IκBNS isoform 1 and the sequencing result of 

the pInd20 IκBNS isoform 1 clone later used for our experiment.  

The sequence starts 31 bases upstream from the start codon of IκBNS isoform 1. From the start codon, 

it is 100 % identical to the IκBNS isoform 1 reference sequence until base 936 of the plasmid sequence. 

Since this sequencing method is only reliable until approximately 900 bp from the start of the 

sequencing, we can assume that the sequence inserted into the plasmid is indeed IκBNS isoform 1. 
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