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Abstract

It is often said that the eyes are the window to the soul. While science might never be able
to prove or disprove the mere existence of a soul, it has nonetheless found strong evidence
that gaze is the window to the mind. Not only has eye tracking played a key part in these
findings, it also holds immeasurable potential to further advance our understanding of the
human mind and revolutionize the way we interact with our devices. However, to fully
realize this potential, it is imperative to bring eye tracking out of the laboratory and into
the wild. Towards enabling ubiquitous wearable eye tracking, this thesis deals with the
challenges involved in this transference, focusing on head-mounted video-based devices.

At the feature extraction level, this work introduces novel methods to reliably and robustly
detect and track the pupil in real-time, proposing advanced metrics for their evaluation, as
well as exploring the influence of such methods on the resulting estimated gaze signal.
At the gaze estimation level, the thesis deals with two of the main factors hindering a
wider eye tracking adoption: Calibration and Slippage. To improve calibration usability, a
innovative approach is proposed, which enables the collection of plentiful calibration points
quickly and unsupervisedly virtually anywhere. Slippage is tackled by a novel hybrid
method combining a geometrical slippage-robust feature and traditional regression-based
gaze-mapping functions. At the eye movement detection level, a probabilistic approach is
proposed to identify fixations, saccades, and smooth pursuits at lower sampling rates.

The methods herein introduced form the basis of a complete state-of-the-art eye-tracking
platform competitive with expensive commercial eye-tracking systems. Unlike these com-
mercial systems, the platform is open-source, able to track participants outdoors and with
glasses, and requires no additional hardware such as stereo eye cameras or multi-glint pat-
terns. The effectiveness of the resulting system is shown through a large-scale, pervasive,
and unconstrained eye-tracking study.
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Zusammenfassung

Es wird oft gesagt, dass die Augen das Fenster zur Seele sind. Während die Wissenschaft
vielleicht nie in der Lage sein wird, die Existenz der Seele zu beweisen oder zu widerlegen,
hat die Forschung dennoch etliche Beweise dafür geliefert, dass unsere Augen das Fenster
zum Gehirn sind. Die Aufzeichnung der Augenbewegungen, sog. Eye-Tracking, spielt
nicht nur eine Schlüsselrolle bei der Erforschung vieler kognitiver Prozesse, sondern birgt
darüber hinaus enormes Potenzial zur Entwicklung intelligenter Interaktionsschnittstellen.
Um dieses Potenzial jedoch ausschöpfen zu können, ist es unabdingbar, die Eye-Tracking-
Technologie aus dem Labor in alltäglichen Anwendungen zu bringen. Diese Dissertation
stellt sich den Herausforderungen auf dem Weg zum allgegenwärtigen, tragbaren Eye-
Tracking und erforscht Methoden für eine robuste Blickerfassungstechnologie mit Fokus
auf kopfgetragenen videobasierten Geräten.

Auf der Ebene der Merkmalsextraktion stellt diese Arbeit neue Verfahren zur zuverläs-
sigen und robusten Erkennung und Verfolgung der Pupille in Augenbildern vor und führt
zudem fortgeschrittene Metriken für ihre Bewertung und zur Untersuchung des Einflusses
solcher Methoden auf das resultierende, geschätzte Blicksignal ein. In Bezug auf die
Blickschätzung beschäftigt sich diese Dissertation mit zwei der wichtigsten Faktoren, die
aktuell eine breitere Akzeptanz der Eye-Tracking-Technologie erschweren: Kalibrierung
und Verschiebung des kopfgetragenen Geräts. Um die Handhabung der Kalibrierung zu
verbessern, wurde ein innovativer Ansatz erforscht, der es ermöglicht, zahlreiche Kalib-
rierpunkte schnell und unbeaufsichtigt praktisch überall zu sammeln. Zur Vermeidung
von Blickschätzungsungenauigkeiten, die durch das Verrutschen des Eye-Tracking-Geräts
entstehen können, wurde eine neue Hybridmethode erforscht, die einen geometrischen
Ansatz mit traditionellen regressionsbasierten Blickabbildungsfunktionen kombiniert. Auf
der Ebene der Augenbewegungserkennung wird ein probabilistischer Ansatz vorgeschla-
gen, um Fixationen, Sakkaden und Folgebewegungen bei geringen Abtastraten robust zu
erkennen.

Die hierin erforschten Methoden bilden die Grundlage für eine komplette, state-of-the-art
Eye-Tracking-Plattform, die mit teuren kommerziellen Eye-Tracking-Systemen konkurren-
zfähig ist. Im Gegensatz zu kommerziellen Systemen steht die Plattform jedoch als Open-
Source-Lösung zur Verfügung, sie ermöglicht eine robuste Blickerfassung in freien Settings
und Außenstudien, und erfordert keine zusätzliche Hardware wie Stereo-Augenkameras
oder Multi-Glint-Muster. Die Effektivität des resultierenden Systems wird durch eine groß
angelegte, umfassende und uneingeschränkte Eye-Tracking-Studie demonstriert.
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1 Introduction

“What the eyes see and the ears hear,
the mind believes.”

—Harry Houdini

It is often said that the eyes are the window to the soul. While science might never be
able to prove or disprove the mere existence of a soul, it has nonetheless found strong
evidence that gaze is the window to the mind. For instance, it has been shown that through
an individual’s gaze (i.e., overt attention), it is possible to infer information regarding
the individual’s cognitive and affective states, activities, as well as intentions [11]–[20].
Not only has eye tracking played a key part in these findings, it also holds immeasurable
potential to further advance our understanding of the human mind and revolutionize the
way we interact with our devices. However, to fully realize this potential, it is imperative
to bring eye tracking out of the laboratory and into the wild.

The individual head-mounted eye-tracking paradigm [21]–[23] is an ideal wearable can-
didate to enable ubiquitous in-the-wild eye tracking given its unobtrusiveness, flexibility,
and mobility [24]. State-of-the-art head-mounted eye trackers are video-based glasses-like
frames with at least one camera capturing images of the user’s eye and one capturing part
of the user’s Field of View (FOV). Through a calibration step, the relationship between
pupil1 and gaze can be learned, after which the eye tracker is able to infer future gaze esti-
mates w.r.t. the field camera by tracking the pupil. Given the current pace of head-mounted
eye-tracking system modularization and miniaturization (e.g., see Fig. 1.1), these devices
availability as inconspicuous wearable devices or integrated into head-worn hardware – e.g.,
smart, augmented-reality, and prescription glasses – seems evident.

(a) 2014 (b) 2014 (c) 2017 (d) 2018

Figure 1.1: State-of-the-art head-mounted eye-tracking hardware evolution. SMI ETG2 (1.1a)
and Tobii Glasses Pro 2 (1.1b): cannot be used with glasses. Pupil (1.1c): fitting over glasses is
cumbersome and sometimes even impossible. Inconspicuous and modular eye tracker proposed
by Eivazi et al. [25] (1.1d): these modules can easily be attached to any glasses or 3D-printed
frames [26].

1Other eye features such as corneal reflections can also be used instead or in combination with the pupil.
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As illustrated in Fig. 1.2, we envision a future in which individuals wear miniaturized
versions of these eye-tracking devices on a daily basis not only for digitally intermediated
interaction with all kinds of devices [27]–[34], but also for other added benefits such as pre-
ventive health monitoring [35], [36], self quantization [37], [38], daily and life logging [39],
[40], advanced driving assistance [41], work aid [42], training [43], [44], and alternative
forms of veillance [45].

Gaze-based interaction
Gaze-aware warning system Gaze-contingent display

Figure 1.2: Envisioned ubiquitous wearable eye tracking examples. On the left, a distracted user
interacts with his map application through his gaze while crossing the street. Meanwhile, a driver
checks his dashboard and does not notice the distracted pedestrian; through eye tracking, the ADAS
understands the pedestrian has not been perceived and emits a warning before any take over action
is necessary. On the right, another pedestrian checks a gaze-contingent display [46] while waiting to
cross the street. This user’s eye tracker transmit the user-selected public profile, allowing the display
to customize advertisements to the users’ preferences.

The overarching objective of this work is to technologically enable this vision by pro-
viding robust real-time-capable methods able to continuously track subjects gaze even in
challenging scenarios. We strive for high-usability, openness, hardware agnosticity, and
wide coverage of participants without requiring parameter adjustments. The methods herein
introduced form the basis of a complete state-of-the-art eye-tracking platform competitive
with expensive commercial eye-tracking systems. Unlike these commercial systems, the
platform is open-source, able to track participants outdoors and with glasses, and requires
no additional hardware such as stereo eye cameras or multi-glint patterns.

1.1 Challenges

Many decades of research have lead to accurate and precise spatio-temporal eye-tracking
methods in well-controlled setups [47]–[49]. Whereas these methods have significantly
contributed to Human-Computer Interaction (HCI) research, as well as our understanding
of the human oculomotor and visual system in laboratorial scenarios, they are not applicable
in an ubiquitous sense because of the remarkably distinct requirements for pervasive eye
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tracking:

Robust eye feature detection – particularly of the pupil and glints – form the basis for
modern video-based eye tracking. In laboratorial conditions, the setup can be care-
fully adjusted to produce high-contrast uniformly-illuminated eye images for most
users, from which the pupil and glints can be easily identified through simple meth-
ods (e.g., thresholding). With the shift from laboratorial to ubiquitous eye tracking, a
whole plethora of noise sources surface, such as reflections, occlusions, blur, off-axial
images, as well as uneven and erratic illumination [50]. As a result, not only image
quality is diminished, but eye features can be partially or wholly occluded. Thus,
extracting eye features from images captured in natural environments pose a consid-
erably more challenging task. Moreover, if we expect users to adopt eye tracking on
a daily basis, tracking these features should just work pervasively, without requiring
the user to manually adjust parameters.

Calibration has been described as one of the main factors hindering a wider adoption of
eye tracking technologies [51]. In laboratorial conditions, the user typically fixates
through a series of reference points with the assistance of a supervising researcher:
A slow, tedious, and error-prone procedure. In fact, even in this supervised scenario,
eye-tracking user studies generally report calibration problems [52]. Naturally, su-
pervision is unfeasible when ubiquitous eye tracking is considered. Moreover, the
nature of this process presents very poor usability. Therefore a fast and unsupervised
alternative that can be performed virtually anywhere is required in order to provide a
user-friendly system usable on a daily basis.

Slippage is characterized by changes in eye tracker pose (translations or rotations) w.r.t.
the calibration pose, thus corrupting the learned mapping function from the eye-
camera feature space to gaze in field camera coordinates: A phenomenon also known
as calibration drift [21], [22], [49]. Very few eye-tracking systems are robust to
device slippage, and, in the laboratory, this issue is traditionally addressed by having
the user gaze at a reference point between experiment trials. If a calibration drift
is visible in the form of an offset between reference and gaze point, the system is
recalibrated. In pervasive scenarios, known reference gaze points are rarely available,
and periodically recalibrating the eye tracker also results in very poor usability. Con-
sequently, a form of robustness to slippage is key in delivering a smooth and pleasing
ubiquitous eye-tracking experience.

Additionally to the aforementioned challenges, ubiquitous wearable eye tracking also
imposes extra constraints in the form of mobile, low-latency, and real-time operation – e.g.,
for HCI. Thus, solutions to these challenges must be attainable using modern embedded
systems, in which no high-end desktop Graphic Processing Units (GPUs) can be assumed
to exist. Furthermore, these solutions’ computational requirements are also constrained as
they must be applicable in conjunction with each other (e.g., in a binocular system, images
from both cameras must be processed in parallel) and with other required tasks (such as
capturing and storing video streams).
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1.2 Structure and Contributions

This thesis is organized as follows: Chapter 2 introduces the reader to state-of-the-art
head-mounted eye tracking technology and methodology. Novel methods for real-time
robust pupil detection and tracking are presented in Chapter 3; additionally, this chapter
also investigates the effect of pupil detection and tracking algorithms choice on gaze signal
properties. Chapter 4 explores the eye-tracker calibration and gaze estimation design space.
On a first moment, a innovative calibration approach is proposed, which enables the col-
lection of plentiful calibration points quickly and unsupervisedly virtually anywhere, thus
significantly improving calibration usability. On a second moment, we tackle eye tracker
sllipage through a novel hybrid method combining a geometrical slippage-robust feature
and traditional regression-based gaze-mapping functions. Chapter 5 introduces a proba-
bilistic approach to identify fixations, saccades, and smooth pursuits at the lower sampling
rates found in some head-mounted eye trackers. Chapter 6 ties together existing and pro-
posed methods with other functionalities required to construct a complete state-of-the-art
open-source eye-tracking platform, introducing the resulting platform’s architecture and
interfaces. The methods’ and platform’s capability and effectiveness are shown through a
large-scale, pervasive, and unconstrained eye-tracking study described in Chapter 7.

Research pertaining to this thesis as well as related work developed during the course
of its progress were presented in a series of renowed peer-reviewed conferences. These
research works are published in these conferences’ proceedings as well as renowed peer-
reviewed scientific journals. Contributions to eye tracking hardware advancement were
published in the

• Proceedings of the 2018 ACM Symposium on Eye Tracking Research and Applica-
tions [25]

and to applied eye tracking were published in the

• Proceedings of the 2018 Workshop on Pervasive Eye Tracking and Mobile Eye-Based
Interaction [53],
• Proceedings of the 2017 Eye Tracking Enhanced Learning Workshop [54], and
• Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot In-

teraction [55],

as well as (non-peer-reviewed) at https://arXiv.org [56]. Methods to automatically
extract features from eye images were published at

• Proceedings of the 2019 ACM Symposium on Eye Tracking Research and Applica-
tions [57].
• Proceedings of the 2018 ACM Symposium on Eye Tracking Research and Applica-

tions [7], [58],
• Elsevier Computer Vision and Image Understanding Journal [6],
• Proceedings of the 2017 IEEE Winter Conference on Applications of Computer Vi-

sion [59],
• Elsevier Computers in Biology and Medicine [60],
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• Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiq-
uitous Computing [61]–[63], and

• Proceedings of the 2016 ACM Symposium on Eye Tracking Research and Applica-
tions [1],

as well as (non-peer-reviewed) at https://arXiv.org [64], [65]. The slippage-robust
gaze estimation, high-usability calibration, and eye movement identification methods con-
tributions were respectively published in the

• Proceedings of the 2019 ACM Symposium on Eye Tracking Research and Applica-
tions [26].

• Proceedings of the 2017 ACM Conference on Human Factors in Computing Sys-
tems [24], and

• Proceedings of the 2016 ACM Symposium on Eye Tracking Research and Applica-
tions [66].

Additionally, multiple eye-tracking-related softwares were published in the

• Proceedings of the 2017 International Joint Conference on Computer Vision, Imaging
and Computer Graphics Theory and Applications [67]–[69], and

• Proceedings of the 2016 Joint Conference on Computer Vision, Imaging and Com-
puter Graphics Theory and Applications [70].
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2 Background

“We are stuck with technology when
what we really want is just stuff that
works.”

—Douglas Adams

To date, the term eye tracking has been employed as a catch-all term for two distinct
but closely related technologies: 1) oculography, the measurement of horizontal, vertical
or torsional movements of the eye, and 2) gaze tracking, the estimation of a user’s visual
axis w.r.t. a known frame of reference. Nevertheless, tracking the eye first started without
techonology at all but through mere observational methods and qualitative descriptions. As
far back as the ancient times, philosophers and mathematicians like Aristotle and Ptolemy
already inquired about characteristics of binocular vision [71], [72] despite the lack of
eye-tracking technology. This remained the case for many centuries; for instance, the
retinal afterimage technique was in use to investigate nystagmus [73] around the late 18th
century, as well as ocular torsion [74] and saccades [75] around the mid 19th century. Other
rudimentary techniques involved using a finger or a rubber tube to count movements of the
corneal bulge [75], [76]. The first instances of mechanical systems to actually track eye
movements appear to be that of Ahrens [77], which consisted of a bristle attached to an
ivory cup placed on the cornea1, which was later adopted by Delabarre [79] and Huey [80]
to investigate eye movements during reading. These methods were, however, exceedingly
invasive and disrupted eye motion [81].

Since then, eye-tracking technology has proliferated. Throughout the years, various phys-
ical characteristics of the eye have been employed to track its movements, such as retina,
corneo-retinal potential, intercanthi impedance, corneal bulge, corneal reflections, Purkinje
images, limbus, pupil, scleral blood vessels, and patterns on the iris [82]. By exploiting
these physical characteristics, numerous technologies are able to track eye movements to
different extends, each with their own advantages and disadvantages. For instance, these
technologies include the corneal reflection method [83], Electrooculography (EOG) [84],
Photooculography (POG) [85], scleral search coil [86], and Videooculography (VOG) [87].
The corneal reflection and scleral search coil are seldom still employed; EOG is still the
technology of choice for studying eye movements during sleep [21], and there is a revived
interest in POG in the context of virtual-reality headsets [88], in which light conditions can
be controlled. Nevertheless, in practice, video-based methods have mostly superseded other
approaches for a multitude of reasons such as flexibility, practicality, and unobtrusiveness,

1A similar idea of attaching a bristle through the middle of the cornea is present in Rählmann’s work [78] but
seems to be only a thought experiment.
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while achieving comparable accuracy and precision for most practical use cases. Moreover,
video-based methods have been continuously enjoying improvements both in terms of hard-
ware – e.g., smaller, cheaper and higher-frame-rate cameras – and of software / algorithms
– e.g., advancements in the field of computer vision are usually applicable to video-based
eye-tracking.

2.1 Video-Based Head-Mounted Eye Tracking

In this work, we are mainly interested in tracking users’ gaze pervasively, for which video-
based head-mounted eye trackers are ideal candidates. These eye trackers typically consist
of a wearable device with at least a) one camera capturing one of the user’s eyes (henceforth
the eye camera) and b) one camera capturing part of the user’s FOV (henceforth the field
camera). For this particular device class, the eye-tracking objective consists of estimating
a gaze point in the field camera image plane, which corresponds to the projection onto
the camera image plane of the Point of Regard (POR) – i.e., the intercept between visual
axis and gazed object. This gaze estimation objective is achieved by tracking eye features
automatically detected in the eye camera (e.g., the pupil center), and mapping these features
to a point in the field camera image using a mapping function established a priori, as
illustrated in Fig. 2.1. This mapping function can be derived from the eye tracker geometry
or learned through a calibration step.

Eye Tracker Left Eye Cam

Field CamExternal Observer's View Right Eye Cam

 Virtual Image
PlaneGaze Point

a

b

e d

c

Figure 2.1: Video-based head-mounted eye tracking in a glance. (a) shows the perspective from an
external viewer. (b) details how the gaze point is projected onto the field camera’s virtual image
plane. The eye tracker employs automatically detected eye features (in this case the pupils) from
the left (c) and right (d) eye cameras’ images to estimate the gaze point in the field camera’s image
(e), giving us insights into how users perceive the world from their own perspective.
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The first such system is likely the head-mounted Eye-Marker from Mackworth and
Thomas [89] – an extension of the original Eye-Marker [90]. In this system, the eye
marker (a corneal reflection generated by a system light source) is captured by the eye cam-
era, which is then superimposed on the images captured by the scene (field) camera; during
calibration, the system is adjusted so that, when the user gazes at known points, the eye
marker lies over them. Whereas the Eye-Marker employed the corneal reflection technique,
numerous other eye-tracking techniques are applicable to video-based head-mounted eye
trackers by tracking distinct eye features – or even inferring gaze from appearance alone.

2.1.1 Eye Features

As previously mentioned, the eye has many features that can theoretically be used to track
its movements. A few of these features can only be properly tracked in high-resolution and
well-illuminated images – e.g., blood vessels and iris patterns. Others, like the limbus, are
often too occluded by eyelashes and eyelids to be of general applicability, being particularly
unreliable for users with epicanthic folds or droopy eyelids. The pupil and limbus are
the most general eye features as these can be tracked under natural illumination without
requiring additional light sources (i.e., under passive illumination). Under this kind of
illumination, the limbus is usually easier to track due to higher contrast between iris and
sclera than that of the iris and pupil, specially for dark eyes. Nonetheless, the pupil has its
own advantages: It is less often occluded by eyelids due to its smaller size, and the pupil-
iris boundary is usually sharper than the iris-sclera boundary [82]. Whereas the limbus
can be tracked alone or in combination with the pupil [91], predominantly only the pupil
is tracked. In practice, eye trackers often track the pupil in the near-infrared spectrum
using active illumination. This is achieved by irradiating the eye with at least one near-
infrared LEDs around the 700 nm to 900 nm band, which yields several benefits without
perturbing natural vision – this band is invisible to the human eye and does not evoke any
pupillary response. For instance: 1) the pupil-iris contrast is significantly improved, 2)
tracking can be done in the absence of natural illumination, and 3) a large part of modern
cameras are sensitive in this spectrum, thus allowing eye tracking with Commercial-of-the-
Shelf (COTS) components. These infrared illuminators can also be used to achieve a bright
pupil effect by placing a collimated illuminator close to the camera optical axis such that
the light reflects on the retina and back to the camera – e.g., see Fig. 2.2.

Figure 2.2: Pupil appearance under near-infrared illumination. When the illuminator is off-axis
w.r.t. the camera, the pupil appears dark (left side); in contrast, if the illuminator is on-axis, the pupil
appears bright (right side).
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It is also possible to combine bright and dark pupil effects. For instance, if on- and
off-axis illuminators and the camera are synchronized, one can time-multiplex bright and
dark pupil images and track consecutive image differences [92], [93]. Alternatively, some
modern systems can switch between bright and dark pupil modes automatically based on
which one provides better tracking accuracy for the current user [94]. In the particular case
of pervasive eye tracking, the bright pupil effect is discouraged as it is not reliable in the
presence of extraneous infrared light sources such as the sun.

Aside from improving the tracking of natural eye characteristics, infrared illuminators
radiating the eye also create artificial landmarks that can be used for eye tracking. These
landmarks are generated by light reflecting on the optics of the eye, in particular the cornea
and the lens, and are called Purkinje images [95]. Although both the first and fourth Purkinje
images can be discerned, in most cases only the first image is reliable with the fourth image
being weak and requiring well controlled illumination to be tracked [23]. The first Purkinje
image is more commonly referred to as the corneal reflection or glint. These reflections are
exemplified in Fig. 2.3 together with other eye features. In practice the great majority of
video-based eye trackers tend to rely on the pupil (outline or center), corneal reflection, or
a combination thereof for gaze estimation.

1st 
Purkinje Images

4th

 Limbus

 Pupil

 Iris

Also glint or
corneal reflection

Figure 2.3: Eye features under illumination of a single near-infrared LED, resulting in two artificial
landmarks (the first and fourth Purkinje images).

2.1.2 Gaze Estimation

Gaze estimation methods can be roughly divided into two classes – regression-based and
model-based (or geometrical) – depending on whether they derive gaze estimates from input
features based on a regressed function or geometrical constraints, both of which require
some kind of calibration to determine required parameters.

The main eye-tracking-related calibrations are: 1) Camera calibration, which is used to
determine camera intrinsic parameters, 2) Extrinsic calibration, which is used to determine
the pose – i.e., extrinsic parameters – of system components (e.g., cameras, illuminators)
relative to one another, 3) Individual calibration, which is used to determine physiological
characteristics such as cornea curvature and visual-to-optical axes offset, and 4) Gaze-
Mapping calibration, which is used to determine the coefficients of the function mapping
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the input parameters to a gaze position. Despite the existence of multiple calibrations,
geometrical approaches typically require only the first three, whereas regression-based
approaches require just the fourth one. Counter intuitively, geometrical methods tend to
have better usability despite requiring three distinct calibrations. This is true for rigid-body
eye trackers – i.e., eye trackers in which components are fixed w.r.t. to each other – because
the camera and extrinsic calibration are required only once per device. Thus, the only
user-required calibration is the individual one, which is needed only once per user and
can be achieved with a single point calibration. In contrast, the gaze-mapping calibration
typically required by regression-based approaches involves the user looking through a series
of distinct locations w.r.t. the eye tracker.

Regression-based gaze estimation methods are a data-driven approach to gaze estimation.
In other words, these methods construct a mathematical model based on a data set con-
taining relationships between the input feature space and the desired POR. Typically, such
data sets are collected per user-session during a gaze-mapping calibration, with the most
common input feature spaces being the pupil center and pupil-corneal-reflection vector.
Many distinct machine-learning methods have been applied successfully to this task, in-
cluding polynomial regressions [96]–[100], Gaussian processes [101], [102], and artificial
neural networks [103], [104]. Moreover, there is a particular subclass of regression-based
methods that does not rely on tracked eye features as input, instead employing feature-
vector representations or the eye image as input to estimate the POR: appearance-based
methods [105]–[107]. These feature vectors can either be manually crafted or learned from
existing data, such as public annotated data sets or artificially created ones (e.g., by render-
ing eye images [108], [109]), thus possibly allowing for calibration-free gaze estimation.

Model-based gaze estimation methods take advantage of knowledge regarding the eye
tracker geometry. These can be as simple as disregarding eye curvature and only approxi-
mating the eye and field cameras using the pin-hole camera model. In this manner, the pupil
center in the eye camera image plane can be mapped to a gaze point in the field camera im-
age plane using a planar homography [110], which can be estimated during a gaze-mapping
calibration with as few as four data points. If the cameras have non-negligible distortions,
the homography method also requires camera calibration, and the images to be undistorted.
More complex approaches also model the eyes to estimate its parameters, such as center
and optical axis direction, but require multiple observations from different eye poses or
additional hardware. Temporal approaches such as the ones proposed by Świrski and Dog-
son [111] and Tsukada and Kanade [112] time-integrate distinct observations of the pupil
and iris, respectively, to derive eye parameters such as center and optical axis. By using
a calibrated stereo-setup, Kohlbecher et al. [113] presented a method to reconstruct the
pupil in 3D space and, thus, the optical axis. Based on the pupil center and glint center,
Shih et al. [114] showed that a single-camera single-glint does not suffice to achieve eye-
camera pose invariance, thus requiring additional components. Guestrian and Eizenman
formalized the geometry required to determine the eye visual axis for a series of distinct
fuilly-calibrated cameras-glints configurations, concluding that at least one camera and two
glints are required to achieve eye-camera pose invariance when using glints’ and pupil’
center information. Villanueva and Cabeza [115] later showed that by also exploiting pupil
shape (in contrast to only its center), a single glint suffices. Nevertheless, in practice a
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larger amount of glints are employed because a) these methods are significantly sensitive
to glint position estimate innacuracies, requiring averaging over multiple glints to alleviate
this sensitivity [116], b) glints are only specularly reflected and usable if they fall on the
cornea [117], and c) glints are easily occluded by eyelids, eyelashes, and reflections [118],
[119]. Nevertheless, glints can also introduce several artifacts to the gaze data [120], [121].
Moreover, these glint-based approaches do not handle well glasses nor extraneous illu-
minations (e.g., in outdoor environments) [23], making them unsuitable candidates for
ubiquitous eye tracking.

In general, VOG only allows one to probe the optical axis or Line of Gaze (LOG) –
i.e., the line passing through the pupil, cornea, and eye centers. However, this axis differ
from our actual visual axis or Line of Sight (LOS) – i.e., the line passing through the fovea,
cornea center, and POR in which we have sharpest vision. The deviation between these axes
(known as kappa angle) is user-dependent and can be as large as 5◦ [122], requiring at least
a one-point individual calibration to estimate [123]. The aforementioned optical and visual
axes estimates are in eye camera coordinates. Thus, for head-mounted eye trackers, it is
also necessary to transform these to field camera coordinates. This transformation consists
of applying the rotation and translation that align the eye camera to the field camera. If
the eye tracker has a rigid-body and extrinsic calibration is available, this rotation and
translation are known; alternatively, they can be estimated through a multi-point gaze-
mapping calibration as proposed by Mansouryar et al. [97].
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“There is nothing like looking, if you
want to find something. You certainly
usually find something, if you look, but
it is not always quite the something you
were after.”

—J.R.R. Tolkien

Head-mounted video-based eye trackers are becoming increasingly more accessible and
prevalent. For instance, such eye trackers are now available as low-cost devices (e.g.,
[124]) or integrated into wearables such as Google Glasses, Microsoft Hololens, and the
Oculus Rift [125]–[127]. As a consequence, eye trackers are no longer constrained to
their origins as research instruments but are developing into fully fledged pervasive devices.
Therefore, guaranteeing that these devices are able to seamlessly operate in out-of-the-
lab scenarios is not only pertinent to the research of human perception, but also to enable
further applications such as pervasive gaze-based HCI [22], health monitoring [36], foveated
rendering [128], and conditionally ADAS [13].

Pupil detection is the fundamental layer in the eye-tracking stack as virtually all sub-
sequent layers rely on the signal generated by this layer – e.g., for gaze estimation [51],
model construction [111], and automatic identification of eye movements [66]. Thus, er-
rors in the pupil detection layer propagate to other layers, systematically degrading eye-
tracking performance. Unfortunately, robust real-time pupil detection in natural environ-
ments has remained an elusive challenge. An elusiveness that is evidenced by several
reports of difficulties and low pupil detection rates in natural environments such as driv-
ing [129]–[134], museum visit [53], shopping [135], walking [136], [137], in an operating
room [138], and during human-robot interaction [55]. These difficulties in pupil detection
stems from multiple factors; for instance, reflections (Fig. 3.1a), occlusions (Fig. 3.1b),
complex illuminations (Fig. 3.1c), physiological irregularities (Fig. 3.1d), and even camera
noise (Fig. 3.1e) [50], [139]–[141].

In this chapter we introduce, describe and evaluate two separate methods: 1) Pupil
Reconstructor [6] (PuRe), a method for robust and real-time pupil detection (Section 3.1),
and 2) Pupil Reconstructor and Subsequent Tracking [7] (PuReST), a method for robust
and real-time pupil tracking (Section 3.2). Before going further, it is worth clarifying the
distinction we make between a pupil detector and a pupil tracker: Although both aim at
locating the pupil in an image, detectors use the information of a single frame, whereas
trackers use information from the current and previous frames. In this thesis, we treat
these as separate – albeit related – tasks, and, thus, each method is described in a distinct
self-contained section including the appropriate related work for its algorithm class. Both
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(a) Reflections (b) Occlusions (c) Illuminations (d) Irregularities (e) HW Noise

Figure 3.1: Representative images of pupil detection challenges in real-world scenarios: (a) reflec-
tions in the glasses, cornea, or contact lenses, (b) occlusions from eyelids, eyelashes, hair, contact
lenses, glasses frames, (c) complex illuminations, such as low contrast or illumination gradients,
(d) physiological variances, such as non-circular pupils, additional dark blobs in the iris, and (e)
hardware noise from analog (Dikablis) and digital (Pupil Labs) cameras.

of these can be used for pupil tracking: The first as a form of tracking-by-detection, and
the second as a form of detection-by-tracking. Complementarily to the two introduced
algorithms, Section 3.3 investigates the influence of pupil tracking algorithm choice in the
resulting gaze signal.

3.1 Pupil Detection

3.1.1 Related Work

While there is a plethora of previous work for pupil detection, most methods are not suitable
for out-of-the-lab scenarios. For an extensive appraisal of state-of-the-art pupil detection
methods, we refer the reader to the works by Fuhl et al. [50] and Tonsen et al. [4] for
head-mounted eye trackers as well as Fuhl et al. [62] for remote eye trackers. In this work,
we focus solely on methods that have been shown to be robust enough for deployment
in pervasive scenarios, namely Ellipse Selector [1] (ElSe), Exclusive Curve Selector [3]
(ExCuSe), and Świrski’s pupil detection method [142] (Świrski). These are described in
the sequence:

ElSe consists of two approaches. First, a Canny edge detector [143] is applied, and the
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resulting edges are filtered through morphological operations1. Afterwards, ellipses
are fit to the remaining edges, edges are removed based on empirically defined heuris-
tics, and one ellipse is selected as pupil based on its roundness and enclosed intensity
value. If this method fails to produce a pupil, a second approach that combines a
mean and a center surround filter to find a coarse pupil estimate is employed; an area
around this coarse estimate is then thresholded with an adaptive parameter, and the
center of mass of pixels below the threshold is returned as pupil center estimate [1].

ExCuSe first analyzes the input images w.r.t. reflections based on peaks in the intensity his-
togram. If the image is determined to be reflection free, the image is thresholded with
an adaptive parameter, and a coarse pupil position is estimated through an angular
integral projection function [144]; this position is then refined based on surrounding
intensity values. If a reflection is detected, a Canny edge detector is applied, and
the resulting edges are filtered with morphological operations; ellipses are fit to the
remaining edges, and the pupil is then selected as the ellipse with the darkest enclosed
intensity [3].

Świrski starts with a coarse positioning using Haar-like features [145]. The intensity
histogram of an area around the coarse position is clustered using k-means cluster-
ing [146], followed by a modified Random Sample Consensus [8] (RANSAC)-based
ellipse fit [142].

From these algorithms, ElSe has shown a significantly better performance over multiple
data sets [50]. Moreover, it is worth noticing that these algorithms employ multiple param-
eters that were empirically defined, albeit there is usually no need to tune these parameters.

It is worth dedicating part of this section to discuss machine-learning approaches in
contrast to the algorithmic ones, particularly Convolutional Neural Networks (CNNs). Sim-
ilarly to other computer vision problems, from a solely pupil detection stand point, deep
CNNs will likely outperform human-crafted pupil detection approaches given enough train-
ing data – with incremental improvements appearing as more data becomes available and
finer network tuning. Besides labeled data availability, which might be alleviated with devel-
opments of unsupervised learning methods, there are other impediments to the use of CNNs
in pervasive scenarios since these scenarios typically require the use of embedded systems.
For instance, computation time and power consumption. While these impediments might
be lessened with specialized hardware – e.g., cuDNN [147], Tensilica Vision DSP [148],
such hardware might not always be available or may incur prohibitive additional production
costs. Finally, CNN-based approaches might be an interesting solution from an engineering
point of view but remain a black box from the scientific one. To date, we are aware of two
previous works that employ CNNs for pupil detections: 1) PupilNet [65] (PupilNet), which
aims at a computationally inexpensive solution in the absence of hardware support, and 2)
Vera-Olmos [149] (Vera-Olmos), which consists of two very deep CNNs – a coarse estima-
tion stage (with 35 convolution plus 7 max-pooling layers for encoding and 10 convolution

1[1] also describe an algorithmic approach to edge filtering producing similar results; however the morpho-
logical approach is preferred because it requires less computing power.
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plus 7 deconvolution layers for decoding), and a fine estimation stage (with 14 convolution
plus 5 max-pooling layers for encoding and 7 convolution plus 5 deconvolution layers).

3.1.2 Pupil Reconstructor [6] (PuRe)

Similarly to related work, the proposed method was designed for near-infrared2 eye im-
ages acquired by head-mounted eye trackers. Our method only makes two uncomplicated
assumptions to constrain the valid pupil dimension space without requiring empirically
defined values: 1) the eye canthi lie within the image, and 2) the eye canthi cover at least
two-thirds of the image diagonal. It is worth noticing that these are soft assumptions – i.e.,
the proposed method still operates satisfactorily if the assumptions are not significantly vio-
lated. Fig. 3.2 illustrates these concepts. Furthermore, these assumptions are in accordance
to eye tracker placement typically suggested by eye tracker vendor’s guidelines to capture
the full range of eye movements.

(a) (b) (c) (d) (e)

Figure 3.2: PuRe assumptions visualized. (a) illustrates the maximal intercanthal distance, yielding
the maximal pupil diameter (pdmax), whereas (b) illustrates the lower bound – i.e., minimal pupil
diameter (pdmin). (c) shows realistic data that respects both assumptions. In contrast, the maximal
intercanthal distance assumption is violated in (d) and (e). In the former, the pupil does not approach
maximal dilation, and PuRe is still able to detect the pupil. In the latter, the pupil is significantly
dilated, and the resulting diameter exceeds pdmax; PuRe does not detect such pupils [6].

PuRe works purely based on edges, selecting curved edge segments that are likely to
be significant parts of the pupil outline. These selected segments are then conditionally
combined to construct further candidates that may represent a reconstructed pupil outline.
An ellipse is fit to each candidate, and the candidate is evaluated based on its ellipse aspect
ratio, the angular spread of its edges relative to the ellipse, and the ratio of ellipse outline
points that support the hypothesis of it being a pupil. This evaluation yields a confidence
measure for each candidate to be the pupil, and the candidate with the highest confidence
measure is then selected as pupil. The remainder of this section describes the proposed
method in detail.

3.1.2.1 Preprocessing

Prior to processing, if required, the input image is downscaled to the working size Sw =
(Ww×Hw) through bilinear interpolation, where Ww and Hw are the working width and

2This is the standard image format for head-mounted eye trackers and can be compactly represented as a
grayscale image.
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height, respectively. The original aspect ratio is respected during downscaling. Afterwards,
the resulting image is linearly normalized using a Min-Max approach.

3.1.2.2 Edge Detection and Morphological Manipulation

PuRe’s first step is to perform edge detection using a Canny edge operator [143]. The result-
ing edge image is then manipulated with a morphological approach to thin and straighten
edges as well as to break up orthogonal connections following the procedure described by
[1]. The result of this step is an image with unconnected and thinned edge segments, as
illustrated in Fig. 3.3.

Figure 3.3: Input image (left), resulting Canny edge detection (middle), and edges after morpholog-
ical manipulation. Notice how the edges are thinned and orthogonal connections are broken [6].

3.1.2.3 Edge Segment Selection

Each edge segment is first approximated by a set of dominant points D following the k-
cosine chain approximation method described by [150]. This approximation reduces the
computational requirements for our approach and typically results in a better ellipse fit in
cases where a pupil segment has not been properly separated from surrounding edges. After
approximation, multiple heuristics are applied to discard edge segments that are not likely
to be part of the pupil outline:

1. Given the general conic equation ax2+by2+cxy+dx+ey+ f = 0, at least five points
are required to fit an ellipse in a least-squares sense. Therefore, we exclude segments
in which D’s cardinality is smaller than five. This heuristic discards plain shapes
such as small segments and substantially straight lines.

2. Based on the assumptions highlighted in the beginning of this section, it is possible
to establish the maximal and minimal distance between the lateral and medial eye
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canthus in pixels when frontally imaged as

ecmax =

√
Ww

2 +Hw
2 and ecmin =

2
3
∗ ecmax. (3.1)

These estimates can then be used to infer rough values for the maximal (Fig. 3.2a)
and minimal (Fig. 3.2b) pupil diameter bounds (pdmax and pdmin) based on the human
physiology. We approximate the eye canthi distance through the palpebral fissure
width as 27.6 mm [151]; similarly, the maximal and minimal pupil diameter are
approximated as 8 mm and 2 mm, respectively [152]. Therefore,

pdmax ≈ 0.29∗ ecmax and pdmin ≈ 0.07∗ ecmin. (3.2)

Note that whereas maximal values hold independent of camera rotation and trans-
lation w.r.t. the eye, minimal values might not hold due to perspective projection
distortions and corneal refractions. Nonetheless, pdmin already represents a minute
part (≈ 4.8%) of the image diagonal, and we opted to retain this lower bound – for
reference, see Fig. 3.2b. For each candidate, we approximate the segment’s diameter
by the largest gap between two of its points. Candidates with a diameter outside of
the range [pdmin, pdmax] violate bounds and are thus discarded.

3. To estimate a segment’s curvature, first the minimum rectangle containing D is calcu-
lated using the rotating calipers method [153]. The curvature is then estimated based
on the ratio between this rectangle’s smallest and largest sides. The straighter the
candidate is, the smaller the ratio. The cut-off threshold for this ratio is based on the
ratio between the minor and major axes of an ellipsis with axes extremities inscribed
in 45◦ of a circle, which evaluates to Rth = (1− cos(22.5◦))/sin(22.5◦)≈ 0.2. This
heuristic servers to discard relatively linear candidates.

4. At this stage, an ellipse E is fit to the points in D following the least-squares method
described in [154]. A segment is discarded if: I) E’s center lies outside of the image
boundaries, which violates PuRe’s assumptions, or II) the ratio between E’s minor
and major axes is smaller than Rth, which assumes that the camera pose relative to
the eye can only distort the pupil round shape to a certain extend.

5. Seldom, the ellipse fitting procedure will not produce a proper fit. We identify and
discard most such cases inexpensively if the mean point from D does not lie within
the polygon defined by the extremities of E’s axes.

As a result from this elimination process, the edge segment search space is significantly
reduce, as illustrated by Fig. 3.4.

3.1.2.4 Confidence Measure

For each remaining candidate, PuRe takes into account three distinct metrics to determine
a confidence measure ψ that the candidate is a pupil:
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Edge selection

Figure 3.4: Edges after morphological processing (left) and the resulting selected segments that
are candidates for the pupil outline (right). Each segment is represented by its k-cosine chain
approximation and illustrated with a distinct color [6].

Ellipse Aspect Ratio (ρ): measures the roundness of E. This metric favors rounder el-
lipses (that typically result due to the eye camera placement w.r.t. the eye) and is
evaluated as the ratio between E’s minor and major axis.

Angular Edge Spread (θ): measures the angular spread of the points in D relative to E,
assuming that the better distributed the edges are, the more likely it is that the edges
originated from a clearly defined elliptical shape (i.e., a pupil’s shape). This metric is
roughly approximated as the ratio of E centered quadrants that contain a point from
D.

Ellipse Outline Contrast (γ): measures the ratio of the E’s outline that supports the hypoth-
esis of a darker region surrounded by a brighter region (i.e., a pupil’s appearance).
This metric is approximated by selecting E’s outline points with a stride of ten de-
grees. For each point, the linear equation passing through the point and the E’s
center is calculated, which is used to define a line segment with length proportional
to E’s minor axis and centered at the outline point. If the mean intensity of the inner
segment is lower than the mean intensity of the outer one, the point supports the
pupil-appearance hypothesis3.

If the candidate’s ellipse outline is invalid – i.e., violates PuRe’s size assumptions or less
than half of the outline contrast γ supports the candidate – the confidence metric is set to
zero. Otherwise, the aforementioned metrics are averaged when determining the resulting

3If a bright pupil eye tracker is used, the inverse holds
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3 Pupil Detection and Tracking

confidence. In other words,

ψ =

{
0 if the outline is invalid;
ρ+θ+γ

3 otherwise.
(3.3)

It is worth noticing that the range of all three metrics (and consequently ψ) is [0,1].

3.1.2.5 Conditional Segment Combination

The segments that remain as candidates are combined pairwise to generate additional can-
didates. This procedure attempts to reconstruct the pupil outline based on nearby segment
pairs since the pupil outline is often broken up due to occlusions from, for example, reflec-
tions or eye lashes. Let D1 and D2 be the set of dominant points for two segments and S1
and S2 the set of points contained by the up-right squares bounding D1 and D2, respectively.
The segments are combined if these bounding squares intersect but are not fully contained
within one another – i.e., S1∩S2 6=∅ 6= S1 6= S2. For instance, see Fig. 3.5. The resulting
merged segment is then validated according to Section 3.1.2.3, and its confidence measure
evaluated according to Section 3.1.2.4. Since this procedure is likely to produce candidates
with high aspect ratio ρ and angular spread θ values, the new candidate is only added to the
candidate list if its outline contrast γ improves on the γ from the original segments. After
conditional combination, the candidate with highest confidence ψ is selected as the initial
pupil, as shown in Fig. 3.6.

Figure 3.5: Illustration of the conditional segment combination. The highlighted blue and cyan seg-
ments meet the intersection requirements and are combined to generate and additional pupil outline
segment. The other pairs do not intersect and, therefore, generate no additional candidates [6].

Note that the inner intensities relative to other candidates do not contribute to the pupil
selection. Thus, the iris might be selected since it exhibits properties similar to the pupil
– e.g., roundness, inner-outer contrast, and size range. For this reason, the inside of the
initial pupil is searched for a roughly cocentered candidate with adequate size and strong
inner-outer outline contrast. This is done by searching a circular area centered at the center
of the initial pupil with radius equal to the initial semi-major axis – i.e., representing a
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3.1 Pupil Detection

Figure 3.6: Illustration for the confidence measure evaluation using the segments from Fig. 3.5.
Segments with confidence smaller than 0.5 are omitted. The first row shows the segment points
and resulting ellipse. Second row shows the lines contributing to the ellipse outline contrast (γ);
green lines support the pupil-appearance hypothesis, whereas red lines do not. Notice how the cyan
segment results in an incorrect outline estimation due to the ellipse fit even though the segment is
part of the pupil outline. The blue segment results in an acceptable outline estimate even though
the left side of the outline is slightly shifted. In contrast, the combined segment reconstructs the
whole range of the pupil outline and yields a higher confidence (ψ), thus being selected as pupil
estimate [6].

circular iris. Candidates 1) lying inside this area, 2) with major axis smaller than the search
radius, and 3) with at least three thirds of the outline contrast (γ) valid are collected. The
collected candidate with highest confidence is then chosen as new the pupil estimate. If no
candidate is collected in this procedure, the initial pupil remains as the pupil estimate. As
output, PuRe returns not only a pupil center, but also its outline and a confidence metric.

3.1.3 Experimental Evaluation

As previously mentioned, we evaluate PuRe only against robust state-of-the-art pupil detec-
tion methods, namely ElSe4, ExCuSe, and Świrski. All algorithms were evaluated using
their open-source C++ implementations; default parameters were employed unless specified
otherwise. For ExCuSe, the input images were downscaled to 240p (i.e., 320×240 px) as
there is evidence that this is a favorable input size detection-rate-wise [4]. Similarly, the
working size for PuRe (Sw, Section 3.1.2.1) was set to 240p as well to keep run time com-

4With morphological split and validity threshold.
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patible with state-of-the-art head-mounted eye trackers (see Section 3.1.7). ElSe provides
an embedded downscaling and border cropping mechanism, effectively operating with a
resolution of 346×260 px. Notice that whenever the input images are downscaled, the
results must be upscaled to be compared with the ground truth. No preprocessing down-
scaling was performed for Świrski since evidence suggests it degrades performance for this
method [4]. Additionally, we juxtapose our results with the ones from PupilNet [65] and
Vera-Olmos [149] whenever possible.

In this work, we use the term use case to refer to each individual eye video. For in-
stance, the Labelled Pupils in the Wild [4] (LPW) data set contains 22 subjects with three
recordings per subject in distinct conditions (e.g., indoors, outdoors), resulting in 66 distinct
use cases. Furthermore, we often compare PuRe with the rival, meaning the best perfor-
mant from the other algorithms for the metric in question. For instance, for the aggregated
detection rate, ElSe performs better than ExCuSe and Świrski and is, therefore, the rival.

3.1.4 Pupil Detection Rate

A pupil is considered detected if the algorithm’s pupil center estimate lies within a radius
of n pixels from the ground-truth pupil center. Similar to previous work, we focus on an
error up to five pixels to account for small deviations in the ground-truth labeling process
– e.g., human inaccuracy [1], [3], [4], [149]. This error magnitude is illustrated in Fig. 3.7.
For this evaluation, we employed five data sets totaling 266,786 realistic and challenging
images acquired with three distinct head-mounted eye tracking devices, namely, the Świrski
[142], ExCuSe [3], ElSe [1], LPW [4], and PupilNet [65] data sets. In total, these data sets
encompass 99 distinct use cases. It is worth noticing that we corrected5 a disparity of one
frame in the ground truth for five use cases of the ElSe data set and for the whole PupilNet
data set, which increased the detection rate of all algorithms (by ≈ 3.5% on average).

Figure 3.7: Five pixels validity range (in yellow) around the ground-truth pupil center for the pupil
estimate to be considered correct and, thus, the pupil detected. Reference range relative to the data
from the Świrski (left), ExCuSe/ElSe/PupilNet (center), and LPW (right) data sets [6].

Fig. 3.8 shows the cumulative detection rate per pixel error of the evaluated algorithms
for the aggregated 266,786 images as well as the detection rate distribution per use case
at five pixels. As can be seen, PuRe outperforms all algorithmic competitors for all pixel
errors. In particular, PuRe achieved a detection rate of 72.02% at the five pixel error

5All ground truth data employed in this work are available at www.ti.uni-tuebingen.de/perception
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3.1 Pupil Detection

mark, further advancing the state-of-the-art detection rate by a significant margin of 6.46
percentage points when compared to the rival. Moreover, the proposed method estimated
the pupil center correctly 80% of the time for the majority of use cases, attesting for PuRe’s
comprehensive applicability in realistic scenarios.
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Figure 3.8: On the left, the cumulative detection rate for the aggregated 266,786 images from all
data sets. On the right, the distribution of the detection rate per use case as a Tukey boxplot [155] [6].

It is worth noticing that the aggregated detection rate does not account for differences
in data set sizes. As a consequence, this metric is dominated by the ExCuSe and LPW
datasets, which together represent 63.44% of the data. Since these two data sets are not
the most challenging ones6, the algorithms tend to perform better on them, and differences
between the algorithms are less pronounced. Inspecting the detection rates per data set in
Fig. 3.9 gives a better overview of the real differences between the algorithms and data
sets, revealing that PuRe improves the detection rate by more than 10 percentage points
w.r.t. the rival for the most challenging data sets (i.e., ElSe and PupilNet). To allow for a
more fine-grained appreciation of the method’s performance relative to the other algorithms,
Fig. 3.10 presents PuRe’s detection rate at five pixels relative to the rival for each use case.
In 71.72% of all use cases, PuRe outperformed all contenders. In particular, for the two
most challenging data sets, PuRe surpassed the competition in 100% of the use cases. In
contrast, the rivals noticeably outperformed PuRe in five use cases: Swirski/p1-right,
ExCuSe/data-set-II, LPW/4/12, LPW/9/17, and LPW/10/11, from which representative
frames are shown in Fig. 3.11. These five use cases also highlight some of PuRe’s im-
perfections. For instance, Swirski/p1-right and ExCuSe/data-set-II have weak and
broken pupil edges due to inferior illumination and occlusions due to eye lashes/corneal
reflections; ElSe compensates this lack of edges with its second step. LPW/4/12 contains
large pupils that violate PuRe’s assumptions; in fact, relaxing the maximum pupil size by
only ten percent increases PuRe’s detection rate from 44.2% to 65.5% (or +6.55% w.r.t.

6As evidenced by higher detection rates for all algorithms in Fig. 3.9
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3 Pupil Detection and Tracking

the rival). LPW/9/17 often has parts of the pupil outline occluded by eye lashes and reflec-
tions, whereas LPW/10/11 contains pupils in extremely off-axial positions combined with
occlusions caused by reflections. However, visually inspecting the latter two use cases, we
did not find any particular reason for Świrski to outperform the other algorithms.
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Figure 3.9: Detection rate per data set plotted against PuRe’s performance relative to the rival. The
lower the points, the harder the data set; the further right the points, the larger PuRe’s performance
w.r.t. the rival is. Notice that as the data sets become more difficult (i.e., the detection rate decreases
for all algorithms), the gap between PuRe and the other algorithms increases [6].

Regarding CNN-based approaches7: 1) For PupilNet, [65] report a detection rate of
65.88% at the five pixel error range when trained in half of the data from the ExCuSe
and PupilNet data sets and evaluated on the remaining data. In contrast, PuRe reached
71.11% on all images from these data sets – i.e., +5.23%. 2) For Vera-Olmos, [149]
report an unweighted8 detection rate of 82.17% at the five pixel error range averaged over
a leave-one-out cross validation in the ExCuSe and ElSe data sets. In contrast, PuRe
reached 76.71% on all images from these data sets – i.e., −5.46%. Nevertheless, these
results indicate that PuRe is able to compete with state-of-the-art CNN-based approaches
while requiring only a small fraction of CNN computational requirements. In fact, PuRe
outperformed Vera-Olmos for 37.5% of use cases. Furthermore, it is worth noticing that the
training data is relatively similar to the evaluation data (same eye tracker, similar conditions
and positioning) in both cases, which might bias the results in favor of the CNN approaches.

7These approaches used the uncorrected ElSe and PupilNet data sets, which might slightly affect the detection
rate.

8Averaged over the use cases.
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Figure 3.10: PuRe’s performance relative to the rival for each use case. PuRe is the best algorithm
in 71.72% of cases, ElSe in 14.14%, Świrski in 12.12%, and ExCuSe in 1.01% [6].
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Figure 3.11: Representative frames for use cases in which the rival outperforms PuRe. Each column
contains frames from one use case. From left to right: Swirski/p1-right, ExCuSe/data-set-II,
LPW/4/12, LPW/9/17, and LPW/10/11 [6].

3.1.5 Beyond Pupil Detection Rate: Improving Precision, and Specificity
Through the Confidence Measure

One aspect that is often overlooked when developing pupil detection algorithms is the rate
of incorrect pupil estimates returned by the algorithm. For instance, the aforementioned
CNN-based approaches always return a pupil estimate, regardless of one actually existing
in the image. Intuitively, one can relax pupil appearance constraints in order to increase
the detection rate, leading to an increase in the amount of incorrect pupils returned. How-
ever, these incorrect pupil estimates later appear as noise and can significantly degrade
gaze-estimation calibration [24], automatic eye movement detection [156], glanced-area
ratio estimations [157], eye model construction [111], or even lead to wrong medical di-
agnosis [158]. Therefore, it is imperative to also analyse algorithms in terms of incorrect
detected pupils. The pupil detection task can be formulated as a classification problem –
similar to the approach by [159] for frame-based tracking metrics – such that:

True Positive (TP) represents cases in which the algorithm and ground truth agree on
the presence of a pupil. We further specialize this class into Correct True Positive
(CTP) and Incorrect True Positive (ITP) following the detection definition from Sec-
tion 3.1.4.

False Positive (FP) represents cases in which the algorithm finds a pupil although no pupil
is annotated in the ground truth.

True Negative (TN) represents cases in which the algorithm and ground truth agree on the
absence of a pupil.

False Negative (FN) represents cases in which the algorithm fails to find the pupil anno-
tated in the ground truth.
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3.1 Pupil Detection

Note that this is not a proper binary classification problem, and the relevant class is given
only by CTP. Therefore, we redefine sensitivity and precision in terms of this class as

sensitivity =
CTP

TP+FN
(3.4)

and
precision =

CTP
TP+FP

(3.5)

respectively, such that sensitivity reflects the (correct) pupil detection rate and precision
the rate of pupils that the algorithm found that are correct. Thus, these metrics allows us
to evaluate 1) the trade-off between detection of correct and incorrect pupils, and 2) the
meaningfulness of PuRe’s confidence measure.

Unfortunately, the eye image corpus employed to evaluate pupil detection rates (in Sec-
tion 3.1.4) do not include negative samples – i.e., eye images in which a pupil is not visible,
such as during a blink. Therefore, the capability of the algorithm to identify frames without
a pupil as such cannot be evaluated since specificity

( T N
T N+FP

)
remains undefined without

negative samples. To evaluate this aspect of the algorithms, we have recorded a new data
set (henceforth referred to as Closed-Eyes [6] (Closed-Eyes)) containing in its majority
(99.49%) negative samples. This data set consists of 83 use cases and contains 49,790 im-
ages with a resolution of 384×288 px. These images were collected from eleven subjects
using a Dikablis Professional eye tracker [160] with varying illumination conditions and
camera positions. A larger appearance variation was achieved by asking the subjects to
perform certain eye movement patterns9 while their palpebrae remained shut in two condi-
tions: 1) with the palpebrae softly shut, and 2) with the palpebrae strongly shut as to create
additional skin folds. In ≈ 56% of use cases, participants wore glasses. Challenges in the
images include reflections, black eyewear frames, prominent eye lashes, makeup, and skin
folds, all of which can generate edge responses that the algorithms might identify as parts
of the pupil outline. Fig. 3.12 shows representative images from the data set.

Figure 3.12: Samples from the Closed-Eyes data set. First row shows samples from softly shut
palpebrae, and the second one shows samples from strongly shut palpebrae [6].

9Although the eye is hidden underneath the palpebrae, eye globe movement results in changes in the folds
and light reflections in the skin.
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We evaluated the four aforementioned algorithms using all images from the data sets
from Section 3.1.4 and the Closed-Eyes data set, totaling 316,576 images. We assessed
PuRe’s confidence measure using a threshold within [0:0.99] with strides of 0.01 units. A
pupil estimate was considered correct only if its confidence measure was above the thresh-
old. Similarly, ElSe offers a validity threshold (default=10) to diminish incorrect pupil
rates, which we evaluated within the range [0:110] with strides of 10 units. ExCuSe and
Świrski do not offer any incorrect pupil prevention mechanisms and, therefore, result only
in a single evaluation point. The results from this evaluation are presented in Fig. 3.13
and Fig. 3.14. As can be seen in these figures, PuRe dominates over the other algorithms,
and PuRe’s confidence metric is remarkably meaningful, allowing to significantly reduce
incorrect pupil detections while preserving the correct pupil detection rate and increasing
identification of pupil-less frames. In fact, when compared to threshold 0, the threshold that
maximizes the F2 score (0.66) increased precision and specificity by 20.78% and 89.47%,
respectively, whereas sensitivity was decreased by a negligible 0.49%. In contrast, ElSe ex-
hibited negligible (< 1%) changes for sensitivity and precision when varying the threshold
from 0 to 10, with a small gain of 2.69% in specificity; subsequent threshold increments
increase specificity at the cost of significantly deteriorating ElSe’s performance for the
other two metrics. Compared to the rival for each metric, PuReth=0.66 improved sensitivity,
precision, and specificity by 5.96, 25.05, and 10.94 percentage points, respectively.
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Figure 3.13: Trade-off between sensitivity and precision for different pupil validation thresholds for
PuRe and ElSe. Algorithms were evaluated over all images from the Świrski, ExCuSe, ElSe, LPW,
PupilNet, and Closed-Eyes data sets. For the sake of visibility, points are only plotted when there’s
a significant (> 0.05) change in one of the metrics. The Z2 score is maximized at thresholds 0.66
(for PuRe) and 10 (for ElSe) [6].
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Figure 3.14: Trade-off between sensitivity and specificity for different pupil validation thresholds
for PuRe and ElSe. Algorithms were evaluated over all images from the Świrski, ExCuSe, ElSe,
LPW, PupilNet, and Closed-Eyes data sets. For the sake of visibility, points are only plotted when
there’s a significant (> 0.05) change in one of the metrics. The Z2 score is maximized at thresholds
0.66 (for PuRe) and 10 (for ElSe) [6].

3.1.6 Pupil Signal Quality

From the point of view of the image processing layer in the eye-tracking stack, the (cor-
rect/incorrect) detection rates stand as a meaningful metric to measure the quality of pupil
detection algorithms. However, the remaining layers (e.g., gaze estimation, eye movement
identification) often see the output of this layer as a discrete pupil signal (as a single-object
tracking-by-detection), which these detection rates do not fully describe. For example,
consider two pupil detection algorithms: A1, which detects the pupil correctly every two
frames, and A2, which detects the pupil correctly only through the first half of the data.
Based solely on the pupil detection rate (50% in both cases), these algorithms are identi-
cal. Nonetheless, the former algorithm enables noisy10 eye tracking throughout the whole
data, whereas the latter enables noiseless eye tracking during only the first half of the data.
Which algorithm is preferable is then application dependent, but a method to assess these
properties is required nonetheless.

Recent analyses of widely-used object tracking performance metrics have shown that
most existing metrics are strongly correlated and propose the use of only two weakly-
correlated metrics to measure tracker performance: accuracy and robustness [161], [162].

10Note that the values are not necessarily missing but might be incorrect pupil detections; thus interpola-
tion/smoothing might actually degrade the pupil signal even further.
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Whereas in those works accuracy was measured by average region overlaps, for pupil detec-
tion data sets, only the pupil center is usually available. Thus, we employ the center-error-
based detection rate as accuracy measure. As an indicator of robustness, [161] proposes
the failure rate considering the tracking from a reliability engineering point of view as
a supervised system in which an operator reinitializes the tracker whenever it fails. For
the pupil signal, our formulation differs slightly since there is no operator reinitialization.
Instead, we evaluate the robustness as the reliability

r = e−λt , (3.6)

where λ = 1
MTBF is the failure rate estimated through the Mean Time Between Failures

(MTBF) not accounting for repair time – i.e., periods of no/incorrect pupil detection are
considered as latent faults. In this manner, the reliability is a measure of the likelihood of the
algorithm correctly detecting the pupil for t successive frames. Furthermore, by measuring
the Mean Time To Repair (MTTR) – i.e., the mean duration of periods in which the correct
pupil signal is not available – we can achieve a similar metric in terms of the likelihood for
the algorithm to not detect the pupil correctly for t successive frames. Henceforth, we will
define this metric as the insufficiency (i), evaluated as

i = e−κt , (3.7)

where κ = 1
MTTR . The smaller an algorithm’s insufficiency, the more sufficient it is. It is

worth noticing, that r and i are not true probabilities since the events they measure are not
likely to be independent nor uniformly distributed. Consequently, these metrics only offer a
qualitative and relative measure between algorithms. Thus, we simplify their evaluation by
fixing t = 1. As an illustration, let us return to our initial example considering a sequence
of L frames: A1 yields rA1 = iA1 = e−1/1, whereas A2 yields rA2 = iA2 = e−1/(0.5L). Since
∀L > 2 =⇒ rA1 < rA2 ∧ iA1 < iA2 , we can conclude that A2 is more reliable but less
sufficient w.r.t. A1 for sequences longer than two frames. A quantitative conclusion is,
however, not possible. For the sake of understandability, we further define sufficiency (s) as
the complement of insufficiency such that

s = 1− i. (3.8)

In this manner, higher values are better for all metrics in this section.
We evaluated the four aforementioned algorithms in terms of reliability and sufficiency

using only the data sets from Section 3.1.4. The Closed-Eyes data set was excluded since it
is not realistic from the temporal aspect – i.e., users are not likely to have their eyes closed
for extended periods of time. Furthermore, it is worth noticing that each use case from the
ExCuSe, ElSe, and PupilNet data sets consists of images sampled throughout a video based
on the pupil detection failure of a commercial eye tracker; these use cases can be seen as
videos with a low and inconstant sampling rate. Results aggregated for all images are shown
in Fig. 3.15 and indicate PuRe as the most reliable and sufficient algorithm. Curiously, the
second most reliable algorithm was Świrski, indicating that during use cases in which it
was able to detect the pupil, it produced a more stable signal than ElSe and ExCuSe –
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although its detection rate is much lower relative to the other algorithms for challenging
scenarios. This lower detection rate reflects on the sufficiency, in which Świrski is the worst
performer; ElSe places second, followed by ExCuSe. Furthermore, Fig. 3.16 and Fig. 3.17
details reliability and sufficiency per use case, respectively. In this scenario, PuRe was the
most reliable algorithm in 66.67% of the use cases, followed by Świrski (23.23%), ElSe
(7.07%), and ExCuSe (3.03%). These results demonstrate that PuRe is more reliable not
only when taking into account all images but also for the majority of use cases. This higher
reliability also reflects on PuRe’s longest period of consecutive correct pupil detections,
which contained 859 frames (in LPW/21/12). In contrast, the longest sequence for the
rival was only 578 frames (ExCuSe, also in LPW/21/12). ElSe’s longest period was of 386
frames in LPW/10/8, for which PuRe managed 411 frames. In terms of sufficiency, ElSe
had a small lead with 41.41% of use cases, closely followed by PuRe (40.40%); ExCuSe
and Świrski were far behind, winning 14.14% and 4.04% of use cases, respectively. The
advantage of ElSe here is likely due to its second pupil detection step, which might return
the correct pupil during periods of mostly incorrect detections, fragmenting these periods
into smaller ones.
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Figure 3.15: Reliability and sufficiency for all algorithms based on the sequence of all aggregated
images from the Świrski, ExCuSe, ElSe, LPW, and PupilNet data sets – higher is better [6].
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Figure 3.16: PuRe’s reliability relative to the rival for each use case [6].
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Figure 3.17: PuRe’s sufficiency relative to the rival for each use case [6].
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3.1.7 Run Time

The run time of pupil detection algorithms is of particular importance for real-time usage –
e.g., for human-computer interaction. In this section, we evaluate the temporal performance
of the algorithms across all images from the Świrski, ExCuSe, ElSe, LPW, PupilNet, and
Closed-Eyes data sets. Evaluation was performed on a Intel R© CoreTM i5-4590 CPU @
3.30GHz with 16GB RAM under Windows 8.1, which is similar to systems employed by
eye tracker vendors. Results are shown in Fig. 3.18. All algorithms exhibited competitive
performance in terms of run time, conforming with the slack required for operation with
state-of-the-art head-mounted eye trackers. For instance, the [124] eye tracker, which
provides images at 120 Hz – i.e., a slack of ≈8.33 ms. Henceforth, we will use the notation
µ for the mean value and σ for the standard deviation. Run time wise, ExCuSe was the
best performer (µ = 2.51, σ = 1.11), followed by Świrski (µ = 3.77, σ = 1.77), PuRe
(µ= 5.56, σ= 0.6), and ElSe (µ= 6.59, σ= 0.79). It is worth noticing that ElSe operates on
slightly larger images (346×260 px) w.r.t. PuRe and ExCuSe (320×240 px). Furthermore,
Świrski operates on the original image sizes, but its implementation is parallelized using
Intel Thread Building Blocks [163], whereas the other algorithms were not parallelized. In
contrast to the algorithmic approaches, [149] report run times for their CNN-based approach
of≈ 36ms and≈ 40ms running on a NVidia Tesla K40 GPU and a NVidia GTX 1060 GPU,
respectively. It is worth noticing that these run times are still more than four times larger
than the slack required by modern eye trackers and almost one order of magnitude larger
than the algorithmic approaches running on a CPU.
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Figure 3.18: For PuRe, ElSe, ExCuSe, and Świrski: Run time distribution across all images in the
Świrski, ExCuSe, ElSe, LPW, PupilNet, and Closed-Eyes data sets. Note that these algorithms
were evaluated on a CPU and only Świrski was parallelized. For Vera-Olmos: Run time as reported
in [149], which were obtained with parallelized implementations using GPUs [6].
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3.1 Pupil Detection

3.1.8 Discussion

Evaluation results show that our single-method edge-based approach outperformed even
two-method approaches (e.g., ElSe and ExCuSe). However, there are clear (but uncommon)
cases when an edge-based approach will not suffice due to lack of edge-information in the
image. For instance, extremely blurred images, or if a significant part of the pupil outline
is occluded. These challenges might lead PuRe to 1) detect only a small part of the pupil
outline, which results in a shifted pupil center and an underestimated pupil size, or 2) to
fail. In general, PuRe has three failure modes, which are depicted in Fig. 3.19:

1. Lack of edges: when the pupil outline does not have a contrast strong enough to be
detected by the Canny edge detector or is occluded by eyelids / eyelashes / reflections.

2. Broken edges: when the pupil outline is broken into smaller parts by eyelids / eye-
lashes / reflections, which end up removed by the edge segment selection stage.

3. Deceptive candidate: when another element in the image resembles a pupil more
than the pupil itself (according to the definitions of the confidence metric ψ).

It is worth noticing that PuRe offers a meaningful confidence measure for the detected
pupil, which can be used to identify the great majority of cases in which PuRe fails. Follow-
ing from our analysis in Section 3.1.5, we recommend a threshold of 0.66 for this confidence
measure. Thus, whenever PuRe can not find a pupil, an alternative pupil detection method
can be employed – e.g., ElSe’s fast second step. Nonetheless, care has to be taken not to
compromise specificity through this second step.

Moreover, there are extreme cases in which pupil detection might not be feasible at all,
such as when the bulk of the pupil is occluded due to inadequate eye tracker placement
relative to the eye. For instance, use cases LPW/5/6 and LPW/4/1, for which the best
detection rates were measly 3.45% (by ExCuSe) and 14.15% (by Świrski), respectively.
Sample images throughout these use cases are shown in Fig. 3.20. As can be seen in this
figure, in the former not only the eye is out of focus, but there are lenses obstructing most
of the pupil, whereas in the latter, the pupil is mostly occluded by the eyelid and eye lashes.
In such cases, PuRe’s confidence measure provides a quantitative measure of the extend
to which it can detect the pupil in current conditions: By observing the ratio of confidence
measures above the required threshold during a period11. If this ratio is too small, it can be
inferred that either the pupil is not visible or PuRe can not cope with current conditions. In
the former case, the user can be prompted to readjust the position of the eye tracker in real
time – this is the case for LPW/5/6 (ratioth=0.66 = 0.15) and LPW/4/1 (ratioth=0.66 = 0.54).
In both cases, the confidence measure ratio is useful for researchers to be aware that the
data is not reliable and requires further processing, such as manual annotation. An example
of the cases in which adjusting the eye tracker is not likely to improve detection rates is
use case LPW/3/16 (ratioth=0.66 = 0.65), for which reflections cover most of the image as
seen in Fig. 3.20. The best detection rate for this use case was 31.95% (by PuRe). To

11The period should be significantly larger than expected blink durations since the confidence measure is also
expected to drop during blinks; in this section we report the ratio for the whole use case.
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Lack of edges

Broken edges

Deceptive candidate

Figure 3.19: Illustrative failure cases for PuRe. First column displays the input image, whereas the
second column unveils the resulting edges. The third column shows segments remaining after edge
segment selection (Section 3.1.2.3) using distinct colors per segment. The last column presents the
pupil returned by PuRe, encoding the confidence measure linearly in the overlay color such that red
represents the lowest confidence (ψ = 0) and green the highest (ψ = 1). Notice that, except for the
deceptive candidates, the confidence for failures cases is usually low [6].
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3.2 Pupil Tracking

Figure 3.20: Extreme cases for pupil detection. For LPW/5/6 (top row) and LPW/4/1 (middle row),
the eye tracker can be readjusted to improve detection rates. For LPW/3/16 (bottom row), readjusting
the eye tracker is not likely to improve the conditions for pupil detection. In all cases, researchers
should be aware that the automatic pupil detection is not reliable. PuRe’s confidence measure allows
for users to be prompted in real time for adjustments and provides researchers with a quantitative
metric for the quality of the pupil detection [6].

further support this claim, we measured the correlation between this confidence-measure
(ratioth=0.66) and the pupil detection rate, which resulted in a correlation coefficient of 0.88.

3.1.9 Conclusion

In this section, we have proposed and evaluated PuRe, a novel edge-based algorithm for
pupil detection, which significantly improves on the state-of-the-art in terms of sensitivity,
precision, and specificity by 5.96, 25.05, and 10.94 percentage points, respectively. For the
most challenging data sets, detection rate was improved by more than ten percentage points.
PuRe operates in real-time for modern eye trackers (at 120 fps) and is fully integrated into
EyeRecToo (EyeRecToo) – an open-source state-of-the-art software for pervasive head-
mounted eye tracking. An additional contribution was made in the form of new metrics
to evaluate pupil detection algorithms and a data set containing negative samples in its
majority.

3.2 Pupil Tracking

3.2.1 Related Work

As previously mentioned at the beginning of this chapter, we explicitly make a distinction
between pupil detectors and trackers. PuReST is a pupil tracker, and, thus, we focus
on evaluating it against approaches from the same algorithm class. Nevertheless, PuRe
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3 Pupil Detection and Tracking

was also included in this evaluation as a representative from the detector class and to
allow a cross-comparison between the trackers and detectors. PuRe was chosen since
it is the base for PuReST and also the current best performing real-time detector. For a
recapitulation of PuRe, please consult Section 3.1.2. For the tracker class, we initially
considered Starburst [164], but its detector performance was found to be particularly low
(< 15%, see [1], [3], [50], [165]). Thus, instead we settled for two state-of-the-art methods
with default parameters provided as part of the Pupil (v1.1) software platform [165], which
is officially supported by Pupil Labs [124], to compare against, namely the Pupil Labs 2D
Tracker [124] (Pupil Labs 2D) and Pupil Labs 3D Tracker [124] (Pupil Labs 3D). A brief
description of the algorithms follows:

Pupil Labs 2D: This tracker uses the Pupil Labs pupil detector [124]
(Pupil Labs Detector), a variant on the Świrski detector, to first locate the
pupil outline. This detector uses a center-surround to estimate a coarse location
for the pupil, which is used as Region of Interest (ROI) for the remaining of
the algorithm. Afterwards, the lowest and highest spikes in this ROI’s intensity
histogram are located. Dark areas are defined using an offset from this lowest
spike, and areas with intensity above the highest threshold are considered spectral
reflections. Edges are detected within the ROI, and those outside of the dark areas or
inside spectral reflections are discarded, resulting in selected edges. These selected
edges are extracted into contours and split using a curvature continuity criteria.
Candidate pupil ellipses are found using ellipse fitting, and the final ellipse fit is
found through an augmented combinational search [165]. The tracker stage is
integrated after the selected edges step and tracks the pupil outline by considering
edges that support the pupil outline based on their distance to the outline ellipse12.

Pupil Labs 3D: This tracker builds on top of the Pupil Labs 2D, augmenting it with 3D eye
model information derived similarly to the approach proposed by Swirski et. al [111].
Whenever the evidence from the Pupil Labs 2D tracker is considered weak, con-
straints from competing eye models are used to robustly fit the pupil [166].

3.2.2 Pupil Reconstructor and Subsequent Tracking [7] (PuReST)

PuReST workflow is shown in Fig. 3.21 and consists of three distinct parts orchestrated to
produce a fast and robust pupil tracking algorithm. When no reliable pupil information from
the previous frame is available, PuReST employs PuRe [6] to find a seed pupil estimate.
Otherwise, the search space is spatially constrained to a square ROI centered at the previous
pupil’s center. This ROI’s size can be tuned to cover a precise range of eye movements if
the inter-frame period and eye position w.r.t. the camera are known13 – e.g., by modeling
the pupil movement range [111]. In this work, we take a more straightforward approach by

12We could not find reviewed references to this tracking stage; please consult the strong prior
part in https://github.com/pupil-labs/pupil/blob/v1.1/pupil_src/shared_modules/pupil_
detectors/detect_2d.hpp#L189 for further details.

13Note that one can use the ROI size to trade-off covered range and run time.
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Figure 3.21: Graphical representation of the interaction between the different algorithms that com-
pose PuReST.
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3 Pupil Detection and Tracking

using an adaptive ROI with lateral equal to twice the previous pupil’s major axis. Within
this ROI, two methods attempt to track the previous pupil. The first method’s (the Outline
Tracker) goal is to locate the pupil during fixations, slow smooth pursuits / vestibulo-ocular
reflexes, and micro saccades by evaluating the alignment between the previous pupil’s
outline and the edges lying in a small band around this outline. The second method’s (the
Greddy Tracker) goal is to greedily combine good edge segments to reconstruct and detect
the pupil when it has moved from the previous location – e.g., during saccades and smooth
pursuits. These methods are described in detail in the sequence.

3.2.2.1 Initial Pupil Detection

As previously mentioned, we employ PuRe [6] to perform an initial pupil detection. PuRe
is an edge-based pupil detection method that approaches the task by 1) selecting curved
edge segments that are likely to belong to the pupil outline, 2) conditionally combining
segments pair-wise to construct further candidates, 3) fitting an ellipse to the candidates,
and 4) producing a confidence measure for each candidate based on the ellipse aspect ratio,
angular edge spread w.r.t. the ellipse, and ratio of outline points whose inner-to-outer
contrast supports the hypothesis of the ellipse being a pupil. Naturally, the candidate with
the highest confidence is taken as pupil estimate. In [6], Santini et. al suggest a cut-off
threshold (τcon f idence) of 0.66 for this confidence metric, which we have adopted. Therefore,
whenever a pupil with enough confidence is detected, the subsequent frame pupil detection
is performed with the tracking methods.

3.2.2.2 Shared Tracking Preamble

Since both the Outline Tracker (Outline Tracker) and the Greddy Tracker (Greddy Tracker)
operate on edge images using information from histogram analysis, PuReST starts with
a shared preamble that generates all data common to both methods. The first step of this
preamble is to downscale the ROI image if necessary. We have empirically chosen a maxi-
mum working size of 100×100 px 14. It is worth noticing that when downscaling happens,
it has a denoising effect, and the results must be upscaled to the original size, introducing
an intrinsic error. Afterwards, edges are extracted using a Canny edge operator. The result-
ing edge image is then manipulated with morphological operations to thin and straighten
edges as well as break up orthogonal connections following the procedure described by
Fuhl et. al [1]. Additionally, the histogram analysis establishes two masks: dark and bright.
The dark mask assumes that the pupil is the darkest region in the ROI and tries to estimate
this region. The threshold for this mask is found iteratively by accumulating the histogram
counts – starting at the darkest value – until the accumulated pixel count is larger than the
previous pupil area. The resulting binary image is then morphologically closed to lessen

14This scale was chosen based on run time measurements from three mobile ultra low-power CPUs (Intel R©
CoreTM i7-4510U, i7-4600U, and i5-6300U). Such processors power devices that might be effortlessly
carried around but are powerful enough to run a fully fledged eye tracking framework at high frame rates (≈
120Hz) – e.g., EyeRecToo and Pupil Labs Capture [165]), making them excellent candidates for pervasive
real-time eye tracking platforms.
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spurious regions that might result from small reflections or eyelashes. The bright mask
aims at identifying glints and small reflections. A brightness threshold is first selected by
accumulating histogram counts – starting at the brightest value – until the accumulated pixel
count is larger than 5% of the ROI area. To cover the outskirts of corneal reflections, the
resulting threshold is further decreased by a bias of 5, and the resulting binary image is mor-
phologically dilated. In our implementation, the aforementioned morphological operations
employ an elliptical 7×7 kernel.

3.2.2.3 Outline Tracker

First, edges outside of the dark mask and edges inside the bright mask are removed to lessen
the influence from edges that belong to reflections and near-pupil iris features. The resulting
edge image is then intersected with a mask of the previous pupil’s outline (width=5 px),
and an ellipse is fit15 to the remaining pixels. Afterwards, the alignment ratio between
the intersected edges and the previous pupil’s outline circumference is calculated, akin
to the metric proposed by Prasad and Leung [167]16. If the ratio is below a minimum
alignment threshold (τalign = 0.65), the Outline Tracker gives up. Otherwise, the edge
pixel intersection and alignment ratio procedures are repeated using a new ellipse fit to the
initially intersected edges. The edges resulting from this second iteration are then used to
fit a final pupil outline candidate, and a confidence measure is established following PuRe’s
method.

Note that this procedure might be dangerous: In its ingenuity, it consumes any edges
that lie within the pupil outline enclosing band assuming these edges to belong to the pupil
outline. Hence, the reasoning for eliminating edges belonging to reflections. Nonetheless,
spurious edges from the eyelids and eyelashes might still remain and cause the outline
tracker to attach to these edges. To prevent such behavior, the Outline Tracker keeps track
of the initial pupil seed throughout consecutive outline trackings and breaks the tracking if
the major axis of the estimated pupil is larger than 1.05 times the seed pupil’s major axis.
Consequently, the Outline Tracker does not track continuously dilating pupils by design.

3.2.2.4 Greddy Tracker

The Greddy Tracker starts by clustering the edge pixels into connected segments using the
topological structural analysis proposed by Suzuki et. al [168]. To remove significantly
plain shapes, the segments are approximated with polylines using the Douglas-Pecker
algorithm [169] (ε = 1.5), and approximations with three or less points are discarded. Af-
terwards, good segments are identified. In this context, we define good candidates as those
segments whose majority of pixels fall within the dark mask. The following step gives the
Greddy Tracker its name: this tracker greedily generates all possible segment combinations
without repetition. Therefore, for N initial segments, the number of candidates evaluated by

15Throughout this work, we employed the least-squares ellipse fitting method proposed by Fitzgibbon and
Fisher [154]

16The alignment ratio measures the ratio between edges and ellipse circumference. We saturate this metric at
value one since it might result larger than that due to discretization and the nature of the edge operator.
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the Greddy Tracker is ∑
N
i=1
(N

i

)
. In practice, however, the number of combinations quickly

becomes unfeasible to process in a timely manner. For this reason, we sort the candidates
according to their diameter, which is evaluated as the largest distance between two of the
segment’s points, and use only the largest five segments as seeds for the combination pro-
cess. Subsequently, the convex hull [170] of each candidate is calculated so that straight
lines within curved segments are simplified, and an ellipse is fit to the hull points. A confi-
dence for the candidate is calculated using PuRe’s method. In this process, there are four
candidate discarding mechanisms: 1) if the ellipse fit is not possible, 2) if the ellipse major
axis is smaller than PuRe’s minimum pupil size (pdmin), 3) if the ellipse aspect ratio is
smaller than PuRe’s ratio threshold (Rth), and 4) if the pupil confidence is smaller than
the confidence cut-off threshold (τcon f idence). If the Greddy Tracker finds a pupil, the new
estimate is considered a new pupil seed. Otherwise, PuReST falls back to detecting using
PuRe.

3.2.3 Experimental Evaluation

For this evaluation, we employed five data sets acquired with three distinct head-mounted
eye tracking devices, namely, the Świrski [142], ExCuSe [3], ElSe [1], LPW [4], and
PupilNet [65] data sets. In total, these data sets contain 266,786 realistic and challenging
images, encompassing 99 distinct use cases – i.e., 99 individual eye videos.

3.2.3.1 Pupil Detection Rate

A pupil is considered detected if the algorithm’s pupil center estimate lies within a radius
of n pixels from the ground-truth pupil center. Similar to previous work, we use n = 5 to
account for small deviations in the ground-truth annotation process [1], [3], [4], [6], [149].
As can be seen on the left side of Fig. 3.22, PuReST surpassed other algorithms for all
pixel errors, improving the detection rate at the 5 px mark by 5.44 and 29.92 percentage
points w.r.t. PuRe and the Pupil Labs algorithms, respectively. The right side of this figure
indicates the generality of PuReST, showing that the proposed method reaches detection
rates above 87.62% for the majority of the individual uses cases. Furthermore, Fig. 3.23
contrasts PuReST with the rival (i.e., the best performer from the other algorithms) in a use
case granularity level. At this level, PuReST outperformed other approaches in 81.82% of
use cases, where as PuRe, Pupil Labs 3D, and Pupil Labs 2D were the best performers in
13.13%, 3.03%, and 2.02%, respectively.

3.2.3.2 Run Time

A key requirement for real-time gaze-based applications, such as human-computer inter-
action, is the algorithm run time. In particular, as faster cameras become more accessible,
the challenge of meeting the imposed processing deadline grows. For instance, Pupil Labs
recently released a new camera capable of 200 fps, which corresponds to a slack of 5 ms.
This challenge is further increased by the fact that system resources must be shared to pro-
cess (and sometimes record) video streams from multiple cameras – e.g., two eye cameras

42



3.2 Pupil Tracking

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15

C
um

ul
at

iv
e 

D
et

ec
ti

on
 R

at
e

Pixel Error

PuReST PuRe Pupil Labs 3D Pupil Labs 2D

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U
se

 C
as

e 
D

et
ec

tio
n 

R
at

e 
D

is
tr

ib
ut

io
n 

at
 5

 p
x

PuReST
PuRe Pupil Labs 2D

Pupil Labs 3D

Figure 3.22: On the left, the cumulative detection rate for the aggregated 266,786 images from all
data sets. On the right, the distribution of the detection rate per use case as a Tukey boxplot [155] [7].

and a field camera. We evaluated the algorithms using a Intel R© CoreTM i5-4590 CPU @
3.30GHz with 16GB RAM under Windows 8.1, which is similar to systems employed by
eye tracker vendors. All algorithms are coded in C++. Fig. 3.24 shows the resulting run
time distribution for the evaluated algorithms. PuReST exhibited the fastest average run
time (1.89 ms), reducing the average run time by a factor of 2.74 w.r.t. PuRe (5.17 ms).
The Pupil Labs trackers have a very competitive average run time (Pupil Labs 2D≈2.08 ms
and Pupil Labs 3D≈2.47 ms). Relative to these algorithms, PuReST’s run time reduction
factor is limited to only ≈ 1.1. It is worth noticing that PuRe already struggles and does
not meet the required slack, but PuReST is the fastest algorithm regardless of using PuRe,
indicating that the trackers are responsible for the majority of the detections. In fact, the
Outline Tracker, Greddy Tracker, and PuRe were responsible for 72.55%, 22.47%, and
4.98% of the correctly detected pupils, respectively. In a first glance, this distribution
misleadingly indicates that the Outline Tracker is the main PuReST driver. However, this
distribution is skewed due to the LPW data set, which was collected using a slowly moving
object, resulting in an overwhelming majority of slow smooth pursuits. When excluding this
data set, the distribution is more evenly spread with the Outline Tracker, Greddy Tracker,
and PuRe contributing 49.32%, 40.81%, and 9.87%, respectively. It is worth noticing the
upper bound for run time results for cases in which both trackers fail, and PuRe must be
run; if no pupil is detect to be tracked, run time results similar to PuRe.
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Figure 3.23: PuReST w.r.t. to the rival; each line within a data set represents a distinct use case.
PuReST is the best algorithm in 81.82% of cases, PuRe in 13.13%, Pupil Labs 2D in 3.03%, and
Pupil Labs 2D in 2.02% [6].
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Figure 3.24: Run time distribution across all evaluation images using a Tukey schematic boxplot;
outliers are not shown for the sake of visualization. PuReST has an average run time of µ = 1.88ms
and standard deviation σ = 2.19ms, whereas the others resulted: PuRe (µ = 5.17ms,σ = 0.51ms),
Pupil Labs 2D (µ = 2.08ms,σ = 1.65ms), and Pupil Labs 3D (µ = 2.47ms,σ = 5.14ms) [6].

3.2.4 Conclusion

In this section, we have proposed and evaluated PuReST, a novel algorithm for fast and
robust pupil tracking. The proposed method was evaluated on over 266,000 realistic and
challenging images acquired with three distinct head-mounted eye tracking devices, increas-
ing pupil detection rate by 5.44 percentage points while reducing average run time by a
factor of 2.74 when compared to state-of-the-art pupil detectors. Relative to state-of-the-art
pupil trackers provide by a vendor, PuReST increases detection rate by 29.92 percentage
points while reducing average run time by a factor of 1.1. Overall, PuReST outperformed
other methods in 81.82% of use cases. While this is our first iteration of PuReST, which
uses prior knowledge only from a single past frame, this initial evaluation resulted in a
significant improvement in term of both detection rate and run time. However, the tracking
design space offers a wide range of possibilities, and a significant amount of work remains
for future work. In particular, we find the approach of the Pupil Labs 3D tracker to point
in an interesting direction by attempting to derive and employ a 3D eye model to improve
pupil detection. Furthermore, the applicability and required modifications to more generic
trackers should also be investigated such as Kernelized Correlation Filters [171], [172] and
Tracking-Learning-Detection [173]. Finally, we hypothesize that the tracking can generate
a more stable gaze estimation signal given that prior information is taken into account,
which we plan to evaluate in the near future.
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3.3 Influence on Gaze Signal

In the context of head-mounted eye trackers, robust pupil tracking has been the subject
of considerable research in the past decade as it serves as a foundation for virtually every
competitive eye-tracking framework. For instance, there are several works a) proposing
new algorithmic approaches [1]–[3], [6], [7], [142], [164], [165], [174]–[177], b) proposing
machine-learning approaches [58], [64], [65], [149], [178]–[182], and c) evaluations of
existing methods and dataset contributions [4], [50], [62], [183]. In common, most of this
research has concentrated on evaluating pupil tracking algorithms in terms of runtime and
detection rates – i.e., the capability of an algorithm to correctly estimate the pupil center
w.r.t. an annotated ground-truth up to a certain threshold distance (typically 5 px). The
exceptions here are the works from Świrski et al. [142], which performs the evaluation
based on the Hausdorff distance [184], Perez et al. [183], which also considers image
size, and Santini et al. [6], which additionally proposes a series of metrics for a more
comprehensive pupil tracking evaluation, including reliability, sufficiency, as well as a
confidence metric in combination with an extended binary classification metric to evaluate
true/false positives/negatives rates.

These works, however, consider the pupil tracking as an isolated element, despite the
fact that its deterioration can significantly degrade gaze-estimation calibration [24], au-
tomatic eye movement detection [156], glanced-area ratio estimations [157], eye model
construction [111], human-computer interaction [185], and even lead to wrong medical
diagnosis [158]. For instance, there is no consideration regarding the resulting gaze error
magnitude stemming from the typical 5 px tolerance, which can be expected to be quite
significant depending on camera resolution and eye distance. In this work, we take an
initial step towards evaluating pupil tracking algorithms as a part of a larger head-mounted
eye-tracking system, investigating its influence directly on calibration and gaze estimation.
Our main contributions are:

• Demonstrating that pupil tracking algorithms can easily be augmented with a generic
and meaningful confidence metric with negligible overhead.

• An adaptive quadvariate binocular polynomial regression gaze estimation method
that employs the aforementioned confidence metric to automatically switch between
binocular / monocular mode, significantly improving gaze estimation results for all
evaluated metrics.

• Showing that higher detection rate might not directly translate into higher accuracy
and precision.

• Evidencing that whereas there is little difference in terms of accuracy and availabil-
ity between the investigated pupil detection-by-tracking and tracking-by-detection
methods, detection-by-tracking is significantly more precise.

• We provide the eye-tracking data collected during our study as an open data set to
foster further research at:
www.ti.uni-tuebingen.de/perception
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3.3 Influence on Gaze Signal

3.3.1 Experiment Design

To measure the influence of distinct pupil tracking algorithms on the gaze signal, we de-
signed an experiment to collect eye-tracking data from participants while they gazed at a tar-
get displayed in 49 homogeneously distributed positions of a display unit (center-to-center
distances of approximately 5.4 cm horizontally and 4 cm vertically). These stimuli covered
≈ 30◦ and ≈ 22◦ of the horizontal and vertical visual field, respectively, covering the vast
majority of spatial gaze distribution during unconstrained-head visual behavior [137]. This
data was then post-hoc processed to derive pupil center estimations for distinct state-of-the-
art pupil tracking algorithms. Nine of the positions were used to calibrate the system, and
the remaining forty positions were used for evaluation.

3.3.1.1 Participants

Experiments were managed by an expert with more than three years of experience in con-
ducting mobile and stationary eye tracking experiments. In total, sixteen (13 males, 3
females) healthy adult (Ages: µ = 28.31,σ = 3.9) subjects participated in the experiment.
One participant was excluded due to nystagmus occurrences. Moreover, six of the partici-
pants use eye glasses in their everyday lives; for these participants, we collected data both
with and without glasses on separate trials. We treat these additional trials as independent
observations since the task changes both in terms of pupil tracking and gaze estimation (see
Fig. 3.25), thus making our sample size (16−1+6) twenty one.

Figure 3.25: Examples of two participants with and without glasses gazing at the same position.
Glasses completely change the pupil tracking task difficulty, and the eye cameras must be shifted
to accommodate the glasses, resulting in distinct camera perspectives as well as changes in the eye
tracker geometry.

3.3.1.2 Apparatus and Software

The experiment was conducted using a binocular Pupil eye tracker [124], with eye cam-
eras capturing 480p images at 120 Hz and field camera capturing 720p images at 30 Hz.
EyeRecToo was used to drive the eye tracker and record the data; the evaluation platform
was also derived from this software since it provides modular implementations of multiple
state-of-the-art pupil tracking methods as well as gaze estimation methods. In total, we
investigated all four readily available methods in EyeRecToo: one detection-by-tracking
and three tracking-by-detection methods, namely PuReST, PuRe, ElSe, and ExCuSe. We
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followed the same parameter configurations as [6], [7]. Participants sat in front of a Sam-
sung SyncMaster 2443BW17 color display unit. The gaze was transformed from the eye
tracker to the display coordinate frame through an homography using a set of automati-
cally detected ArUco [186] markers digitally displayed on the lateral areas of the display,
introducing an estimated error smaller than 0.35◦ – inline with reported accuracies in the
literature [187]. During the data collection, a chin rest was used to hold participants in
place at ≈ 65cm from the display; at this distance, one degree of visual angle corresponds
to ≈ 1.1cm on the display. At a first glance, it might seem counterintuitive to use a chin-
rest to investigate gaze estimation using a head-mounted eye tracker. However, a chin rest
does not impact head-mounted eye tracker functionality, only altering participant behavior.
Thus, this allows us to control for several variables during the experiment and focus on
the effects and interactions between the selected gaze estimation method and the distinct
investigated pupil tracking algorithms. For instance, if participants look through the targets
by moving their head instead of their eyes, from the head-mounted eye tracker perspective,
we are measuring a single thing: How well the eye tracker estimates gaze w.r.t. a single
3D position in front of the eye tracker. Thus, by fixating user head position, we actually
maximize the amount of eye poses measured, consequently better characterizing the whole
range of device operation.

3.3.1.3 Task

During the task, participants were instructed to gaze at the center of a CalibMe collection
marker augmented with a small red dot (encompassing about ≈ 0.5◦ of visual angle) and
press any key to start data collection for that position. After 1.5 s, an audible feedback
signaled to the participant that data collection was finished, and the marker automatically
moved to the next position. During this period, approximately 180 samples per position
were collected. For the remainder of this Section, we will refer to each set of samples
per stimuli position as a fixation although no automatic eye movement detection (e.g.,
[66], [188]) was employed. In total, 1029 distinct fixations were collected (49 per trial).
Despite participants being instructed to avoid blinking between the key press and the audible
feedback, we identified 131 out of the 1029 (≈ 12.73%) fixations across all subjects due to
blinks nonetheless18. We performed this identification manually to avoid possible biasing
due to false positives from automated methods such as [61]. These blinks include 117 of the
840 evaluation fixations (189 were used for calibration, i.e., 9 per trial), whose associated
gaze estimations were excluded from the overall evaluation.

3.3.1.4 Metrics

We discuss our experiment’s results in terms of accuracy, precision, and availability. The
per-sample angular offset was estimated based on a) the Euclidean distance between the ex-

17 Width: 520 mm. Height: 320 mm. Resolution: 1920x1200 pixels. Screen refresh rate: 60 Hz. Luminance:
0.08 cd/m2.

18 ≈ 61.1% of the identified fixations were from a single participant that blinked on 42 and 38 fixations of the
trials with and without glasses, respectively.
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pected target position and gaze in display coordinates, and b) participant-to-display distance.
For a given considered period (e.g., a fixation), accuracy and precision were evaluated as
its samples’ angular offset mean and standard deviation, respectively, following [189].

We measure availability as the ratio of valid fixations, where a fixation is considered
valid if and only if more than a threshold percentile thpercentile of its samples are valid.
A sample is considered valid if it has a confidence level larger than a certain confidence
threshold thcon f idence and angular offset smaller than thangle – i.e., true positives reported
by the pupil trackers. Regarding the pupil detection confidence, we employed one of the
measures from PuRe as generic confidence metric and, thus, follow the recommendations
of the original paper: thcon f idence = 0.66 [6]. As for the angular offset threshold, we set
thangle = 5◦ considering typically reported angular offsets for head-mounted eye trackers –
e.g., [53], [97], [131], [190]–[192]. The intuition behind this proposed metric is to measure
signal availability during fixations, for instance, for human-computer interaction.

3.3.2 Analysis and Results

3.3.2.1 Pupil Confidence Augmentation

The original ElSe and ExCuSe implementations do not offer reliable ways of identifying
false pupil detections (although ElSe does offer an unreliable validity threshold parame-
ter) [6]. This leads to a critical nuance when employing their estimates for binocular gaze
estimation. Suppose that, from the two eyes, one has a successful pupil detection, whereas
the other results in a false positive. Intuitively, if the false positive can be identified as
such, it should still be possible to reasonably estimate the gaze based on the valid pupil
alone; on the other hand, if both pupils are used, the gaze signal becomes corrupted. To
investigate this concept, we have evaluated ElSe and ExCuSe in two configurations: a) their
original implementations, in which the confidence of any detected19 pupil is always 1 and
b) augmented versions that use PuRe’s outline contrast ratio [6] as a measure of confidence,
which we shall henceforth refer to as Confidence Augmented Ellipse Selector (ElSe+) and
Confidence Augmented Exclusive Curve Selector (ExCuSe+). We have chosen this con-
fidence method due to its genericity and low overhead, requiring only an estimate of the
ellipse outline and the input image. From these inputs, the outline contrast is measured
by investigating predefined and equally-strided points laying on the pupil outline, and eval-
uating the ratio of points in which the inner intensity is darker than the outer intensity;
for a more detailed elucidation, we refer the reader to the original paper. On average,
one confidence evaluation took ≈ 11.92µs (σ ≈ 2.82µs), negligible w.r.t. the algorithms’
runtime, which is in the order of ms. Furthermore, we developed an additional adaptive
gaze estimation20 method into EyeRecToo that takes advantage of the confidence metric by
combining a) a quadvariate polynomial regression if both detected pupils are considered
valid and b) a monocular bivariate polynomial regression if only one pupil is considered
valid. A pupil confidence validity cut-off threshold of 0.66 was employed following [6]’s
recommendations. This method uses the pupil centers to estimate the horizontal and vertical

19If a pupil does not pass ElSe’s validity threshold, it is simply considered undetected.
20Available at www.ti.uni-tuebingen.de/perception

49

www.ti.uni-tuebingen.de/perception


3 Pupil Detection and Tracking

gaze components independently, and the polynomials’ coefficients are determined using
single value decomposition during calibration. All gaze estimates in the following sections
were obtained using this method.

3.3.3 Accuracy and Precision

For each pupil detection algorithm, we have calculated gaze accuracy and precision for
all non-blink evaluation fixations for all participants, totaling 723 fixations and 123279
samples. The distributions of these aggregations are shown in Fig. 3.26 and Fig. 3.27. Upon
visual inspection, a massive difference between the original ElSe and ExCuSe algorithms
and their augmented versions (ElSe+ and ExCuSe+) is clearly visible in terms of both accu-
racy and precision. These results highlight a) the efficacy of the contributed adaptive gaze
estimation method implementation, b) the importance of having an associated confidence
metric to the pupil tracking algorithm, and c) how pupil tracking algorithms can easily and
effectively be augmented with a generic confidence metric. It is worth noticing here that
despite the considerable difference in terms of gaze estimation accuracy and precision, the
original and augmented versions of ElSe and ExCuSe retain the same pupil detection rate,
evidencing the need to evaluate pupil tracking algorithms in the full context of eye tracking
in opposite to the hitherto approach of focusing solely on detection rates. In fact, ExCuSe+
outperformed ElSe in terms of accuracy and precision despite the former having a lower
detection rate than the latter.
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Figure 3.26: Empirical cumulative distribution function for fixation accuracy at different angular
offset levels. The distribution is cut off at 10◦ to improve visualization. The closer to the top left the
data point, the better.
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Figure 3.27: Empirical cumulative distribution function for fixation precision at different angular
offset levels. The distribution is cut off at 10◦ to improve visualization. The closer to the top left the
data point, the better.

To investigate the performance differences between all the evaluated algorithms more
precisely, we opted to conduct pairwise independent-samples Welch’s t-Tests [193]. Consid-
ering all samples, significant differences are easily spotted, as large outlier angular offsets
can significantly affect the distribution parameters. In fact, in this case we only did not
find significant differences (p< .5) for the following pairs: Accuracy = { (PuRe,ElSe+),
(ElSe+,ExCuSe+), (ElSe+,ElSe), (ExCuSe+,ElSe) } and Precision = { (PuRe,ElSe+) }.
Thus, we also conducted the same tests using a cut-off angular offset threshold of 5◦ to
alleviate effects stemming from outlier samples with large angular offsets. We chose this
threshold based on the fact that all algorithms with a confidence metric seem to plateau
around this range. Per pairwise evaluation, we identified and removed fixation samples that
had an angular offset larger than the threshold for at least one of the algorithms – i.e., each
algorithm pair was compared using exactly the same set of samples. Results for these tests
are reported in Table 3.1. Whereas Fig. 3.26 and Fig. 3.27 suggest that PuReST, the pupil
detection-by-tracking representative, outperforms the other (pupil tracking-by-detection)
algorithms in terms of both accuracy and precision, the results from Table 3.1 do not show
significance in terms of accuracy against PuRe and ElSe. Nevertheless, significance was
found when comparing PuReST with all other algorithms in terms of precision, support-
ing the hypothesis raised by [7] that detection-by-tracking produces a stabler signal than
tracking-by-detection. The results of Table 3.1 also support the aforementioned differences
between the original ElSe and ExCuSe algorithms and their confidence-augmented versions
ElSe+ and ExCuSe+.
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Method 1 Method 2 t P Significance

A
cc

ur
ac

y
PuReST PuRe -0.58 2.82e-01 ns
PuReST ElSe+ -1.51 6.57e-02 ns
PuReST ExCuSe+ -3.00 1.37e-03 **
PuReST ElSe -11.17 1.78e-27 ***
PuReST ExCuSe -14.35 2.48e-41 ***

PuRe ElSe+ -1.14 1.27e-01 ns
PuRe ExCuSe+ -2.75 3.02e-03 **
PuRe ElSe -10.71 1.30e-25 ***
PuRe ExCuSe -15.18 3.71e-45 ***
ElSe+ ExCuSe+ -1.71 4.39e-02 ns
ElSe+ ElSe -10.29 6.93e-24 ***
ElSe+ ExCuSe -13.33 8.78e-37 ***

ExCuSe+ ElSe -6.86 5.97e-12 ***
ExCuSe+ ExCuSe -12.76 3.19e-34 ***

ElSe ExCuSe -5.70 8.02e-09 ***

Pr
ec

is
io

n

PuReST PuRe -2.85 2.22e-03 **
PuReST ElSe+ -11.60 9.25e-29 ***
PuReST ExCuSe+ -10.31 1.58e-23 ***
PuReST ElSe -10.01 1.26e-21 ***
PuReST ExCuSe -6.44 2.47e-10 ***

PuRe ElSe+ -9.71 2.40e-21 ***
PuRe ExCuSe+ -7.57 5.18e-14 ***
PuRe ElSe -10.18 5.47e-22 ***
PuRe ExCuSe -6.05 2.19e-09 ***
ElSe+ ExCuSe+ 2.09 1.84e-02 *
ElSe+ ElSe -7.15 1.61e-12 ***
ElSe+ ExCuSe -3.00 1.46e-03 **

ExCuSe+ ElSe -6.23 4.95e-10 ***
ExCuSe+ ExCuSe -4.94 6.78e-07 ***

ElSe ExCuSe 1.37 8.54e-02 ns

Table 3.1: Results for one-sided pairwise Welch’s t-Tests for accuracy and precision between all eval-
uated algorithms. Significance follows the American Psychological Association (APA) convention:
a) ns⇒ p > .05, b) *⇒ p≤ .05, c) **⇒ p≤ .01, and d) ***⇒ p≤ .001.
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3.3.4 Validity

As previously mentioned in Section 3.3.1.4, we also evaluated the algorithms in terms of
validity. Fig. 3.28 shows how the ratio of valid fixations changes depending on application
requirements (in terms of percentiles of valid fixation samples). In the context of human-
computer interaction, a meaningful threshold for discussion is thpercentile = 95% as this is
the percentile suggested by previous work for a robust and smooth gaze interaction [185]. At
this level, we found only a small difference in the ratio of fixations considered robust enough
for interaction between PuReST (92.7%) and PuRe (91.15%). The remaining algorithms,
however, lagged far behind: ElSe+ (85.20%), ExCuSe+ (78.42%) ElSe (77.18%), and
ExCuSe (66.53%).
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Figure 3.28: Ratio of valid fixations (as defined in Section 3.3.1.4) for each pupil tracking algorithm
based on different percentile (thpercentile) requirements.

3.3.5 Conclusion

In this section, we have investigated the influence of four state-of-the-art pupil tracking algo-
rithms on gaze estimation using three distinct metrics: accuracy, precision, and availability.
We demonstrated that 1) employing a pupil confidence metric in combination with an adap-
tive gaze estimation method can appreciably improve binocular eye-tracking performance
for all metrics, 2) regular pupil tracking methods can be easily augmented with a generic
confidence metric with negligible overhead, and 3) higher detection rates might not directly
translate into higher accuracy and precision – e.g., ExCuSe+ vs ElSe. Furthermore, we
found supporting evidence that pupil detection-by-tracking approaches (e.g., PuReST) sig-
nificantly outperforms tracking-by-detection algorithms (e.g., PuRe, ElSe, ElSe+, ExCuSe,
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and ExCuSe+) in terms of precision although gains in terms of accuracy and availability
are less pronounced.

Currently, we focused our investigation on the real-time algorithms available within
EyeRecToo. As machine-learning methods start becoming more feasible for real-time head-
mounted eye tracking, we intend to extend this analysis with a broader algorithm selection
including such methods. Nevertheless, an important message remains for pupil-tracking
researchers developing algorithmic or machine-learning methods alike: Do not focus solely
on pupil detection rates. In this work, we a) demonstrated that higher detection rates do
not imply better fixation accuracy and precision as well as b) provided a data set that can
be used to compare pupil detection and tracking methods in this regard.
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“ A philosopher once asked, "Are we
human because we gaze at the stars, or
do we gaze at them because we are
human?" Pointless, really..."Do the
stars gaze back?" Now, that’s a
question.”

—Neil Gaiman

4.1 Calibration

A particular aspect of gaze estimation is the calibration step, which is used to produce a
function mapping the position of the user’s eyes to gaze. High-end state-of-the-art mobile
eye tracker systems (e.g., SMI and Tobii glasses [194], [195]) rely on geometry-based
gaze estimation approaches, which can provide gaze estimations without calibration. In
practice, it is common to have at least an one point calibration to adapt the geometrical
model to the user and estimate the angle between visual and optical axis. Additionally,
it has been reported that additional points are generally required to achieve satisfactory
accuracy [123]. Furthermore, such approaches require specialized hardware (e.g., multiple
cameras and glint points), cost in the order of tens of thousands of $USD, and are susceptible
to inaccuracies stemming from lens distortions [196]. On the other hand, mobile eye
trackers that make use of regression-based gaze-mappings require a calibration step but
automatically adapt to distortions and are comparatively low-cost (e.g., a research grade
binocular eye tracker from Pupil Labs is available for $2740 EUR [124]). It is worth
noticing that similar eye trackers have been demonstrated by mounting one eye and one
field camera onto the frames of glasses [25], [197]–[199], yielding even cheaper alternatives
for the more tech-savy users.

In its current state, the calibration step presents some disadvantages and has been pointed
out as one of the main factors hindering a wider adoption of eye tracking technologies [51].
Popular calibration procedures customarily require the assistance of an individual other
than the eye tracker user in order to calibrate (and check the accuracy of) the system. The
user and the aide must coordinate so that the aide selects calibration points accordingly to
the user’s gaze. As a result, current calibration procedures cannot be performed individually
and require a considerable amount of time to collect even a small amount of calibration
points, impeding their usage for ubiquitous eye tracking. Henceforth we will refer to these
methods as N-Points calibrations (N-Points), where N is the amount of calibration points
employed.
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In this section, we propose a novel approach – dubbed Calibrating with Movements
(CalibMe) – that enables users to quickly and independently calibrate the eye tracker based
on the movement of collection markers. We define collection markers as automatically
detected markers meant to dynamically collect large arrays of relationship points between
a user’s eye position and gaze for both calibration and evaluation. These markers can be
contrasted with calibration markers, which are used as reference points in a more static
fashion to collect a small amount of calibration points. We employ a specific ArUco [186]
marker selected based on multiple properties that make it an efficient collection marker,
compared to custom markers employed as calibration markers in previous work. This
allows us to hijack an existing and well established fiducial marker detection method used
for augmented reality and to define Areas of Interest (AOIs) to enable CalibMe without
incurring additional and costly image processing. Employing a collection marker, users are
able to collect a significant amount of eye-gaze relationships for calibration and evaluation
in an unsupervised fashion by moving their heads or the marker while fixating the center
of the marker. We then propose rationalized outliers removal approaches to automatically
eliminate ill-conditioned samples as well as a parameterizable method for the automatic
selection of evaluation points. Effectively, these operations enable the users to quickly
calibrate and assess gaze estimation quality without the assistance of a supervisor1, such as
in the envisioned use cases illustrated in Fig. 4.1. Moreover, the ramifications of allowing
head rotation during calibration are discussed, and different collection movement patterns
are proposed and evaluated. Additionally, the efficacy of CalibMe is compared to a typical
9-Points based on a regular twenty five point grid evaluation. A 9-Points calibration was
selected for evaluation as it presents a reasonable trade-off between accuracy and calibration
time. CalibMe is integrated into EyeRecToo, an open-source data acquisition software for
head-mounted eye trackers, and, thus, readily available. We also provide a companion
Android application that the user can use to display the collection marker and collect eye-
gaze relationships.

4.1.1 Related Work

Whereas there is a large amount of work investigating how to improve regression-based
gaze estimation, previous work has mostly focused on investigating different regres-
sion approaches (e.g., polynomial fit [100], projective transformations [110], neural net-
works [201]) and optimizing their parameters (e.g., polynomial order, number of hidden
neurons). Little attention has been given to improving the calibration procedure, which has
remained largely unmodified since its inception. In general, reference points are placed as
to cover the expected range of visual movements of the subject2. Afterwards, a supervisor
and the subject cooperate to collect calibration points.3. The supervisor is also responsible
for checking that eye features (mainly the pupil center) are detected correctly throughout

1 It is worth noticing that evidence suggests improved gaze estimation accuracy and precision when the
participant has control over eye-gaze relationships collection [200].

2Natural features can also be used as reference points.
3The minimal amount of points is usually determined by mathematical constraints from the regression – e.g.,

the polynomial order.
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Figure 4.1: Illustrations of two envisioned CalibMe use cases. 1a) The user puts his head-worn eye
tracker on, which detects the new user and requests the smart TV to display a collection marker;
the user then fixates the marker and moves his head to collect eye-gaze relationships. 2a) The eye
tracker detects its calibration became invalid (e.g., based on saliency-gaze overlap) and requests the
smartphone to notify the user; the user then moves the smartphone displaying the collection marker
to collect eye-gaze relationships. 1b and 2b) the eye tracker notifies the user that the calibration
has been performed successfully through other smart devices or visual/haptic/audible feedback,
signaling that the system is now ready to use for gaze-based interaction with other devices [24].

the process as well as the gaze estimation accuracy after calibration.

Atypical calibration approaches try to adapt the calibration procedure to their needs.
For instance, Pfeuffer et al. [52] propose using objects moving with a known trajectory
in a display to calibrate a high-range remote eye tracker placed under a screen, reaching
mean accuracies of ≈ 0.6◦ (σ≈ 0.1◦). In a similar stationary scenario, Huang et al. [202]
proposed utilizing interactions events between the user and a computing system to collect
calibration samples, reporting errors of 2.56◦. In a driving scenario, Bernet et al. [203]
employed a custom marker (consisting of two nested black squares) that is automatically
detected, avoiding, thus, the need for the supervisor and user to coordinate. The user then
fixates the custom marker and moves his head in steps of 10 cm exclusively in the horizontal
and vertical directions since the proposed approach does not consider depth changes or head
rotations. Unfortunately, reported results are based on simulations for their custom made
eye tracker, and only the reprojection error for calibration points is given in degrees. In a
distinct subsection (5.1), they report best results for evaluation points with a mean error of
2.22 px (σ = 1.42px) at a distance of 2.5 m for noiseless simulated data; however, there is
not enough information in the subsection to infer these values in terms of degrees. More
similarly to the pervasive scenario, Evans et al. [191] compared two methods of collecting
calibration points in outdoors environments: The first (moving target) consists of the user
following a partner’s thumb with his eyes; the partner then pauses the thumb at five distinct
points, which are used for calibration. The second (head tick) consists of the users fixating
a fixed point and moving their head in ≈ 10◦ steps in an asterisk-like pattern, producing
about 25 to 30 calibration points. The collected points were later employed in an offline
calibration, and both methods exhibited similar accuracies for central points with a mean
error of 0.83◦ (σ not reported), but the head tick approach resulted in better estimations
at points in the periphery. The authors also report that the moving target method was
significantly faster than the head ticks. Pupil Labs employ cocentric circular markers in
their manual marker calibration in a similar fashion to the moving target from [191]; similar
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restrictions also apply as mentioned in their website: “this method is done with an operator
and a subject” [124]4.

It is worth mentioning that some previous works try to counteract calibration degrada-
tion through compensation or recalibration. Hornof et al. [204] employs implicit required
fixation locations to evaluate the gaze estimation and correct systematic errors. Kolakowski
et al. [205] attempt to isolate eye tracker drift based on the corneal reflection gain, which
can then be filtered. Sugano and Bulling [136] use gaze input features and saliency maps
calculated over the field camera images to (re)-calibrate the eye tracker. Lander et al. [206]
perform a recalibration step with a subset of the initial calibration points; afterwards, the
updated positions for calibration points not present in the recalibration are extrapolated.
Binaee et al. [207] employ a set of ground-truth fiducial positions in a virtual environment
to dynamically refine the calibration over time.

4.1.2 On the Selection of Collection Markers

A marker to be employed in the collection of eye-gaze relationships should have the follow-
ing properties:

1. The user should be able to easily locate and distinguish the reference point to be
fixated; for instance, points lying in the intersubsection of lines.

2. Marker detection should be accurate, precise, and require low resources since it must
run in real-time in an embedded system alongside other eye tracking related image
processing algorithms (e.g., pupil detection [1]).

3. Since the field camera moves w.r.t. the marker, small blurring effects are to be
expected. The more robust to blur the marker, the faster the movements allowed, and,
thus, the calibration process. However, one should be aware that the user gaze may
lag behind the marker at higher velocities due to constrains in human smooth-pursuit
capabilities, leading to less accurate gaze-marker relationships.

Hitherto, markers used for calibration follow a similar pattern: They tend to be custom
bitonal, nested and cocentric shapes (see Fig. 4.2a to Fig. 4.2d). While such markers meet
most of the requirements for a collection marker, they require a unique detection process.
In contrast, fiducial markers designed for AOI definition and augmented-reality can meet
these requirements and use a single process to detect a large set of markers. Moreover,
the detection of such markers is already integrated into most eye tracking software as AOI
definition is a common and useful functionality in eye tracking experiments (e.g., ArUco
markers are integrated into EyeRecToo and Pupil Labs’ Capture [67], [124]). Therefore,
we propose repurposing one of these markers to be used as collection marker; within the
set of fiducial markers, it is likely that one exists, such that the stipulated collection marker
requirements are met. In this work, we searched the default predefined ArUco dictionary
used in EyeRecToo (DICT_4X4_250) for such a marker. Based on our requirements, we

4Recently, Pupil Labs added an additional calibration method following the principles of CalibMe; for details,
see https://github.com/pupil-labs/pupil-docs/issues/115
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found marker #128 to be particularly suitable for the task. Furthermore, we increased the
size of the black marker border from the default size to reduce blurring effects, resulting
in the marker used throughout this work (Fig. 4.2e). It is worth noticing that 249 markers
remain for regular use in the set, and, if required, larger dictionaries can be generated
automatically [208], although an appropriate collection marker from the newly generated
set should be chosen following the guidelines from this subsection.

(a) (b) (c) (d) (e)

Figure 4.2: Markers used by Evans et al. [191] (a), Bernet et al. [203] (b), Pupil Lab [124] (c,d),
and the ArUco marker (#128) selected for this work (e) [24].

4.1.3 Rationalized Outliers Removal

Consider a video-based head-mounted eye tracker with one eye camera and one field camera
generating data at a predefined rate of r Hz. For each new eye tracker data incoming
at timestamp (t), a pupil (p) is detected from the eye image, yielding the pupil center
coordinates in the eye image (px, py) as well as its width (pw) and height (ph); similarly, the
collection marker (cm) is detected from the field image, yielding its center coordinates in
the field image (cmx,cmy). Let D = {t, px, py, pw, ph,cmx,cmy} be the data tuple generated
by the eye tracking system every 1/r seconds. The goal of the calibration procedure is
then to collect data tuples containing pupil (px, py) and collection marker center (cmx,cmy)
relationships in order to establish a function mapping pupil to gaze positions – i.e., the point
of regard.

Intuitively, wrongly detected values for these variables will perturb the estimation of this
function’s parameters; thus, one of the supervisor tasks in the regular calibration is to check
that the pupil is being detected correctly before association. For an extensive analysis of
factors that may influence the correct pupil detection, we refer the user to the work by Fuhl
et al. [50]. Additionaly, transient saccading and blinking during collection can be taken into
account by collecting a position for a longer interval and taking the median of the samples.
However, in an unsupervised calibration where the marker position can be constantly chang-
ing w.r.t. the user eye, these procedures are not possible. Thus, alternatives must be found.
A common non-domain-specific approach is applying RANSAC to the fitting in order to
eliminate outliers (e.g., as done by Bernet et al. [203]). Nonetheless, only outliers that
significantly affect the fit are indentified, and, if data is particularly noisy, RANSAC will
nonetheless return a fit. Additionally, randomly selecting subsets of points and selecting
the best fit may not result in a good transformation function at all. Instead, we propose a
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series of rationalized approaches to remove outliers based on domain specific assumptions
regarding head-mounted eye tracking setups, data, and algorithms; these outlier removals
are described in the sequence, and examples are given in Fig. 4.3.

4.1.3.1 Subsequent Pupil Size Ratio

During calibration, pupil size may change due to physiological factors, or the apparent pupil
size in the image may change due to the eye position w.r.t. the camera. Nonetheless, the
pupil size for two subsequent data tuples can be expected to remain largely the same due to
the difference in magnitudes between the camera frame rate and pupil constriction/dilation
speed. Additionally, the apparent size should also remain largely unchanged as the eye
pursues the collection marker since no significant eye movement is elucidated. Thus, signif-
icant changes in pupil size can be attributed to false pupil detections; an example of outliers
detected by this approach are sporadic detections of the iris as pupil – note that the center
of the pupil and iris are not necessarilly at the same location [209].

4.1.3.2 Converging Pupil Position Range

Eye cameras are usually placed such that the whole eye, including canthi, is visible.
Nonetheless, the pupil position is only expected to fall within a certain range within this
image. Certain outliers will evoke pupil detections outside of this range; for instance, when
the user blinks, the pupil detection algorithm may sporadically detect glasses frames, make-
up, or moles as valid pupils. This outlier removal works by assuming the pupil positions
to be normally distributed. Initially, all samples are considered inliers; then, this method
computes the mean (µ) and standard deviation (σ) of all inliers, marking as outliers samples
falling outside of the range µ± 2.7σ (i.e., covering ≈ 99.3% of the distribution). This
process is repeated until the amount of inliers converges.

4.1.3.3 Pupil Detection Algorithm Awareness

Some pupil detection algorithms consist of a main and a fallback method. Such fallback
methods are typically employed when the pupil is in unfavorable positions for detection
and tend to improve the recall of the algorithm (in terms of pupil detections) at the expense
of a loss in accuracy of the pupil coordinate, shape, or orientation. For instance, the fallback
mechanism of ElSe (which is employed in this work) consists of searching for a point
within a dark region and a strong center surround response without providing information
about pupil shape and orientation. Thus, this outlier removal depends on the pupil detection
method used and consists of requiring that the tuple has a valid pupil size to employ samples
solely from the main method.

4.1.4 Automatic Selection of Evaluation Points

One of the main advantages of CalibMe is regarding the high amount of eye-gaze relation-
ships that can be collected in a short period of time. After outliers removal, it is expected
that only valid data tuples are left. While the majority of these samples should go towards
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Figure 4.3: Rationalized outlier removal examples during a calibration of ≈ 21s. Subsequent
pupil size ratio outliers are identified by the letter a, converging pupil position range outliers by b,
and pupil detection algorithm awareness by c. Notice how the pupil position estimate (px, py) is
significantly corrupted by such outliers [24].

calibration in order to improve the regression, enough data tuples are produced that we can
afford to exclude some samples from calibration to evaluate the resulting gaze estimation af-
terwards. In this subsection, we define a parameterizable method to select these evaluation
points automatically.

The proposed selection method is defined by four parameters: the granularity (g), hor-
izontal stride (∆x), vertical stride (∆y), and evaluation point range factor (r f ). According
to the first three parameters, a lattice is built around the center ( fx, fy) of the field image;
the lattice is defined by the points ( fx−g×∆x, fy−g×∆y) and ( fx +g×∆x, fy +g×∆y),
with points laid down at every (∆x,∆y) stride inside this region. Afterwards, an elliptical
area with a horizontal radius of ∆x/r f and vertical radius of ∆y/r f is associated with each
lattice point, resulting in a configuration similar to that of Fig. 4.4. After outliers removal,
for each lattice point the remaining collected tuples are searched to find the tuple lying
inside the associated elliptical region with minimal collection marker center distance from
the lattice point. Each tuple found this way is then selected for evaluation. Afterwards, all
tuples with a collection marker center matching those selected for evaluation are removed;
in this manner, no evaluation point is used in the calibration regression. The resulting
evaluation based on these points yields two metrics: 1) the reprojection error for evaluation
points, which measure the calibration accuracy, and 2) the ratio of lattice points that have
an evaluation point assigned to it, which represents the calibration coverage.

It is worth noticing that the evaluation points are likely to be spatially close to calibration
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x

y

Figure 4.4: Evaluation lattice example (g = 2, ∆x = 7◦, ∆y = 6◦, and r f = 3) on a field of view of
56◦×42◦ [24].

points. The closer these points are, the more biased to superior results the evaluation is
likely to be since the residuals for calibration points are minimized. Nonetheless, contrary
to typical N-Points calibrations, CalibMe collects a large and sparse amount of points for
regression; combined with the low order polynomials commonly used in eye tracking, this
results in the minimization being spread over the interpolation area instead of concentrated
on a few points. Furthermore, even if evaluation points were to be selected independently
from the calibration, these points are likely to fall nearby calibration points if the employed
calibration pattern covers an adequate range of the field image. Moreover, as shown in
the following subsection, collecting evaluation points independently from the calibration
process not only requires a second collection process (and, thus, additional time), but these
points are unlikely to fall on the calibration surface, therefore biasing the evaluation results
to inferior results due to parallax error effects.

4.1.5 On Calibration Movement Patterns

Prior to the analysis of different calibration movement patterns, it is paramount to elucidate
1) how the proposed calibration approach differs from a typical calibration, 2) what is the
effect of allowing free head movements, and 3) how this affects the resulting evaluation. To
illustrate these concepts, consider Fig. 4.5, which shows the side view of a head-mounted
eye tracking setup. Notice that the user’s eye and the head-mounted field camera lie at
different heights, which tends to be the common case5. Typically, the system is calibrated
by employing calibration points in a planar surface (i.e., the calibration plane); within

5For simplicity, we will not include the discrepancies when the camera is unaligned horizontally w.r.t the eye,
but analogous effects result.
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this plane (e.g., the white dot), the gaze estimation is the most accurate. Whereas on
an ideal stationary setup (e.g., a computer screen) this can be expected, it is an unrealistic
expectation for pervasive and mobile scenarios since the interactive objects will rarely lie on
the calibration plane (e.g., the black dot). When the object plane differs from the calibration
plane, the gaze estimation will produce an inaccuracy proportional to the distance between
the calibration plane and object plane because the eye and field camera view the scene from
a different angle, resulting in the parallax error [47], [191]. Moreover, notice that if the
user is only allowed to move his head vertically and horizontally while fixating a stationary
target, the resulting calibration is equivalent to that of a plane. On the contrary, if the user is
allowed to change depths or rotate his head, the result can be seen as a calibration surface
(illustrated as a rotation around the center of the camera in Fig. 4.5). From this, three
conclusions follow:

1. The underlying regression model should take into account that the calibration surface
is not planar. Effectively, this is already the case since most current models employ
curved relationships in order to compensate for lens distortions and eye curvature.

2. Relative to the gaze estimation based on a planar calibration, the gaze estimation
based on a surface calibration may exhibit a larger or smaller parallax error depending
on the object position and surface curvature.

3. Attempting to evaluate a surface calibration on a plane (or vice versa) will bias the
resulting accuracy due to the introduced parallax errors. In fact, this applies for any
two distinct calibration and evaluation surfaces (e.g., two distinct planes).

Eye

Camera

Calibration
Plane

Object
Plane

Parallax

Calibration
Surface

Figure 4.5: Parallax effect illustration between a curved calibration surface, a straight calibration
surface (i.e., a plane), and the object plane [24].
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As previously mentioned, one of the advantages of collecting evaluation points simulta-
neously with the calibration is the fact that the calibration and evaluation points will lie
roughly on the same surface. If evaluation points were to be collected in a separate step, it
is unlikely that the user will be able to reproduce the exact head and eye displacement as the
one performed during calibration. Therefore, the gaze estimation is deteriorated due to the
resulting parallax errors, producing an underestimation of the calibration quality. Hence,
we evaluate the investigated collection movement patterns using the method proposed in
the previous subsection.

Initially, we considered several continuous collection movement patterns for evaluation,
such as a spiral, star, horizontal path, vertical path (shown in Figures 4.6a-d, respectively)
as well as letting the user move freely. However, it quickly became apparent during a pilot
study6 that there are some properties that constitute superior patterns, recalling that the user
must “draw” these patterns with the marker using the view of the field camera as “canvas”:

1. The pattern should have intuitive parameters: While the pattern itself is usually clear
from the illustration, most subjects were confused by parameters – e.g., how many
horizontal lines in pattern Fig. 4.6c should be performed. Curiously, no questions
were asked regarding the parameters of the spiral pattern (Fig. 4.6a).

2. The initial position of the pattern should preferably be in the center to allow starting
in a natural position.

3. The extremeties of the field should be covered without necessitating precise move-
ments from the user.

These criteria eliminated all but the spiral and star patterns; the spiral pattern is original
from this work, whereas the star pattern is similar (albeit without pauses) to the head ticks
pattern employed by Evans et al. [191]. The final form of the new pattern that we proposed
for novices is a spiral movement, starting at the center, going outwards, and then spiraling
back to the center. This is the spiral used in this work unless explicitly mentioned otherwise.

4.1.6 Experimental Evaluation

In this subsection, first the two investigated collection movement patterns are evaluated
against each other using the proposed automatic evaluation point selection. Afterwards, the
best performing one is compared against a typical 9-Points calibration based on the pro-
posed automatic evaluation point selection and a regular twenty five points grid evaluation.

4.1.6.1 Participants, Apparatus, and Metrics

Experiments were managed by an expert with more than one year of experience in con-
ducting mobile and stationary eye tracking experiments. Five adult subjects participants

6During the pilot, the aim of the experiment was explained to five subjects, after which they performed the
free-form movement; the users were then shown illustrations of each pattern in a random order and asked
to perform those movements.
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(a) Spiral (b) Star (c) Hori. Path (d) Vert. Path

Figure 4.6: Examples of movement patterns that can be employed in combination with collection
markers [24].

took part in the evaluation (4 male, 1 female), and two of them wore glasses during the
experiments. The subjects were briefed about the procedure, including in regard to head
velocity and the goal of collecting the marker in multiple locations w.r.t. the field camera.
The subjects were asked to verbally communicate when they were finished performing the
movement, and no instructions were given in regard to the collection duration for each
pattern as to not introduce artificial limits to the collection timing.

The experiment was conducted using a Dikablis Pro eye tracker [160]. This device has
two eye (@60 Hz) and one field (@30 Hz) cameras; data tuples were sampled based on the
frame rate of the field camera. The field camera was equipped with a 1.5× wide turn lens;
camera parameters were estimated for use in the marker pose estimation, but the field image
was not undistorted. CalibMe was integrated into EyeRecToo, which was used to record
and conduct the experiments. Pupil detection was performed using ElSe, and a bivariate
second order polynomial regression was employed for gaze estimation in all cases. The
poster shown in Fig. 4.7 was used as stimuli and placed at a distance of approximately
1.1 m from the participants. This poster was designed for the reference points to cover
about 40◦×30◦ considering that after this range head movements become a regular feature
of gaze shifts [210]. The eight red points in the extremities and the center of marker #128
were used as calibration points for the 9-Points method. Blue dots and the center of marker
#128 were used for the twenty five points evaluation. CalibMe automatic evaluation point
selection configuration was set to match the setup of these evaluation dots (g = 2, ∆x = 7◦,
∆y = 6◦, and r f = 3). The metrics employed in this evaluation are:

Mean Angular Error (ε): evaluated as the mean of the euclidean distances between the
evaluation point coordinates in the field image and the resulting coordinates from the
gaze estimation.

Calibration Time (τ): evaluated as the timestamp difference between the last and first col-
lected calibration tuples.

Pattern Coverage (γ): evaluated as the ratio between lattice points with an associated eval-
uation point and the total count of lattice points (25 in this study); this metric is only
meaningful for CalibMe.
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Figure 4.7: The calibration poster used during experiments and placed at 1.1 m away from the
subjects. The red points cover an area of ≈ 40◦×30◦ and are used for the 9-Points calibration
together with the center of marker #128. Blue points are employed for evaluation together with the
center of marker #128 and lie within the interpolation area of the 9-Points calibration [24].

4.1.6.2 Collection Movement Pattern Comparison

Each participant repeated each pattern three times, and no significant differences between
repetitions were found; a visualization of resulting collection marker coordinates on the
field image for one of the participants is shown in Fig. 4.8.

For the inter pattern comparison, we have aggregated all repetitions. No significant
differences were found between the Spiral and the Star patterns in terms of calibration time
(F(1,28) = 0.690, p = 0.413). However, the Spiral produced significantly larger coverage
(F(1,28) = 34.908, p = 0.0000023). While no significant differences in terms of angular
error were found (F(1,28) = 3.486, p = 0.0724), Fig. 4.9 suggests the Spiral to have a small
advantage over the Star in this regard. Additionally, this figure also exhibits the outcome
in case no outliers removal is performed. Particularly interesting in this case is the single
angular error outlier above 3.5◦. This large error stems not from a bad estimation but from
an outlier selected as evaluation point, demonstrating the importance of performing the
outlier removal before points are automatically selected for evaluation.
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Figure 4.8: Collection marker center coordinates on the field image for one of the subjects when
performing the Spiral (top) and Star (bottom) patterns repetitions [24].
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Figure 4.9: Accuracy for the Spiral and Star movement patterns measured through CalibMe’s auto-
matic evaluation point selection with and without outliers removal [24].

4.1.6.3 CalibMe and 9-Points Calibration Juxtaposition

After performing the previously described experiment, each subject participated in a second
phase, whose aim is to juxtapose calibrations performed with CalibMe against a typical
9-Points calibration in a setup as similar as possible. Initially, the user rested his head
on a chin rest placed at 1.1 m from the calibration poster shown in Fig. 4.7. During this
experiment, subjects were instructed not to communicate verbally in order to minimize
head movements. The user then performed a 9-Points calibration, followed by a twenty five
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points evaluation. The experimenter was responsible for manually selecting the gaze points
in the field camera view. After a point was selected, data tuples were collected for 500 ms,
and the median of the collected pupil coordinates was associated with the gaze position.
Following this step, the system produced an audible feedback so the user knew when to
move to the next point, minimizing the amount of communication between experimenter
and subject, thus making this calibration procedure faster and less error prone. After both
procedures were finished, the experimenter slowly moved the subject’s head away from the
chin rest, moved the chin rest horizontally out of the way of the subject, and then moved
the subject’s head to the initial position by aligning it at a distance with the chin rest. With
the head now free to move, the subject was instructed to perform the Spiral collection
movement pattern.

As shown in Fig. 4.10, this procedure results in two distinct surfaces – 1) Pattern: a
surface formed by the sparse points collected while performing the Spiral pattern, and
2) Poster: a planar surface along the calibration poster (Fig. 4.7). Therefore, a direct
comparison between the regular and the collection method calibrations is biased. If we
evaluate these solely on one of the surfaces, the accuracy of the other will be underestimated
due to parallax errors (and vice-versa). Hence, we juxtapose these by cross-evaluating sets
of calibration points from each surface on sets of evaluation points lying on both surfaces
instead.

Figure 4.10: Surfaces produced by calibrating using a spiral head movement pattern and a regular
9-Points calibration [24].

The following sets of calibration points were analyzed in this manner:

• CalibMe: this set consists of samples collected during the spiral movement, excluding
the tuples selected for evaluation, tuples with collection markers at the same position
as evaluation ones, and outliers identified by CalibMe. These samples lie on the
pattern surface.
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• Outliers: CalibMe without outliers removal.

• 9 Points: the eight (red) calibration points plus the marker center; these samples lie
on the poster surface.

These calibration sets were evaluated on two different evaluation sets:

• Pattern (Reserved): samples lying on the pattern surface that were automatically
reserved for evaluation by CalibMe.

• Poster (25 Points): the twenty four (blue) evaluation points that lie on the poster
surface plus the marker center.

The resulting gaze estimation accuracies from these evaluations are shown in Fig. 4.11.
As expected, both methods exhibit better accuracy when evaluated on their respective cali-
bration surface than in a different one. The gaze estimation error due to the parallax effect
can be noticed when comparing the same calibration set across different evaluation sur-
faces, which shows ≈ 0.7◦ of error in all cases. While this is in line with the expected
error magnitude given our setup, it is worth noticing that part of these errors are contributed
by occasional points that fall outside of the calibration interpolation range, for which the
gaze estimation is expected to have an inferior accuracy. When comparing CalibMe against
the 9-Points calibration evaluated on their respective surfaces, no significant difference
was found in terms of accuracy (F(1,8) = 3.372, p = 0.104). Nonetheless, this figure sug-
gests that CalibMe produces slightly better results, yielding a mean angular error averaged
over all participants of 0.59◦ (σ = 0.23◦) in contrast to 0.82◦ (σ = 0.15◦) for the 9-Points
calibration, attesting for the efficacy of the proposed approach.

While no significant differences were found when comparing CalibMe and its outliers
inclusive counterpart (Outliers), when visually inspecting the figure an anomaly (with a
mean error larger than 4.5◦) is clearly visible in the 25 Points evaluation. By virtue of
CalibMe’s automatic evaluation point selection, we quickly traced this anomaly as a result
of a low coverage and a single pupil detection outlier in the right eye during a blink. This
particular subject had a coverage ratio of 68%, whereas all other subjects had coverages
of at least 80% (µ = 87%). As shown in Fig. 4.12, this subject did not cover the left part
of the 25 points evaluation area, resulting not only in a subpar accuracy, but also in no
polynomial regression constraints in that area. The aforementioned outlier happens to lie in
this unconstrained area, thus significantly skewing the gaze estimation at those points and
artificially amplifying the mean angular error.
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Figure 4.11: Mean angular error evaluated on points lying on the pattern and poster surfaces [24].

Figure 4.12: Collected tuples (yellow circles) and the 25 evaluation points (orange squares) for the
subject with anomalous mean angular error when outliers are considered. Notice how the left side
of the evaluation points are not covered by collected tuples [24].
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4.1.6.4 A Note on Calibration Time

Assuming a qualified and experienced supervisor, the 9-Points calibration time is rather
constant if nothing disrupts the collection (e.g., in case one position must be repeated, the
calibration flow is broken, and calibration time increases significantly). We can model the
optimal time required for such calibrations by summing up 1) the sampling time for each
point, 2) the time for the subject to react to the audible feedback and saccade to the next
target, and 3) the time for the supervisor to react to the saccade and start the next sampling.
Empirically, we found that the time to collect a single points in our setup is ≈ 1.67s – i.e.,
one can expect about 15 s and 42 s to collect nine and twenty five points, respectively.

As previously mentioned, we intentionally did not impose time limitations on the sub-
jects when performing the pattern calibration as to not bias results. Intuitively, the pattern
calibration time depends on the spatial distribution and amount of collected tuples. These
can be mainly determined by two factors: First, the user’s skills and internal mental model
of the system; for instance, the better a user can abstract the marker position w.r.t the cam-
era, the more efficiently he can utilize his collection time. Second, the speed of the marker
relative to the camera/subject; the faster the marker moves, the faster the calibration. How-
ever, several elements influence the latter factor, such as the camera resolution, frame rate,
shutter type, marker detection blur robustness, and human smooth-pursuits physiological
limitations. These elements are further discussed in Section 4.1.7.

Since estimating user’s skills is rather subjective, and finding users of different skill levels
is unpractical, we approach this analysis from an alternative perspective. By downsampling
the data from the previous experiment, we can study the effect of the amount of tuples on the
method’s accuracy. Here, downsampling is performed by using only one tuple in each down
sampling factor (DF) tuples so that spatial distribution is preserved. It is worth noticing
that a reduced amount of samples can compromise the coverage ratio and, thus, limit the
information provided by the automatic evaluation. Therefore, we perform evaluations
against the twenty five points instead. Fig. 4.13 shows the effect of this downsampling in
the mean angular error. It is clear that subjects collected an amount of tuples (µ= 549.8,σ=
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Figure 4.13: Downsampled CalibMe evaluated on the twenty five point grid, showing that down-
sampling by small factors retains accuracy as long as the spatial distribution is preserved [24].
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159.11) much larger than required to reach satisfactory accuracy. Thus, the limiting factor
becomes the spatial distribution of the collected tuples and, consequently, the speed of the
marker relative to the camera/subject. Assuming a conservative DF of two, the proposed
approach already becomes significantly faster than the 9-Points calibration, requiring on
average 10.12 s as shown in Fig. 4.14.
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Figure 4.14: Calibration time for CalibMe, CalibMe downsampled by a factor of two, and the
9-Points calibration [24].

In order to corroborate this time estimate, we conducted a separate experiment with a
user considered experienced enough to have a good mental model of the marker movement
relative to the camera: one of the CalibMe developers. As previously mentioned, a small
amount of collected tuples may compromise the coverage ratio, limiting the amount of
information provided by CalibMe’s automatic evaluation. Therefore, the user first collected
eye-gaze relationships to be used for evaluation by staring into the center of a collection
marker displayed in a cellphone screen and moving the cellphone in a grid pattern, as
shown in Fig. 4.15a. This collection took ≈ 43s, and tuples identified as outliers were
removed from the evaluation set, resulting in 816 evaluation tuples. Afterwards, the user
conducted ten independent CalibMe calibrations by moving the cellphone in spiral patterns,
which were evaluated against the aforementioned evaluation tuples. It is worth noting that
the user opted to perform a single outward spiral instead of the outward-inward pattern
recommended for novices; instances of the resulting patterns can be seem in Figures 4.15b-
4.15d. The average calibration time for these calibrations was 10.68 s (σ = 0.86s), reaching
an average angular error of 0.69◦ (σ = 0.044◦). The individual values for each collection
are shown in Fig. 4.16. The result from this experiment is in line with both the expected
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angular error and calibration time, thus endorsing the time estimate of the downsampling
analysis.

(a) (b) (c) (d)

Figure 4.15: The points used for evaluation (4.15a) and points from three (out of ten) distinct
calibrations performed by the user (4.15b-4.15d) [24].
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Figure 4.16: Calibration time and resulting mean angular error for the ten calibrations performed
by the user; also shown, is the calibration time and mean angular error for the reprojection of the
evaluation points [24].

4.1.7 Limitations

Naturally, the key limitation for CalibMe is in regard of marker and pupil detection. These
tasks face similar challenges such as occlusion, highly skewed viewing angles, poor or irreg-
ular illumination, and motion blur [1], [211]. Nonetheless, there is significant research for
these tasks in pervasive and challenging scenarios (see [50], [211]), and spurious incorrect
detections during calibration can be eliminated through the proposed rationalized outliers
removal methods. In particular, motion blur could be greatly alleviated by the usage of
global-shutter sensors.
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Aside from these detection challenges, human smooth-pursuit physiology imposes a
lower bound on the calibration time. As marker speed increases, the smooth-pursuit gain
(i.e., the ratio between the marker and smooth-pursuit speed) starts deviating significantly
from one [212]. As a result, the marker center may not correspond exactly to the true gaze
position, specially at higher speeds. These periods could potentially be identified based on
real-time eye movement detection algorithms such as I-BDT [66].

4.1.8 Conclusion

In this section, we have introduced CalibMe, consisting of a collection marker that does not
incur any additional processing to common eye tracking systems and a set of techniques to
1) quickly collect eye-gaze relationships for calibration, 2) remove ill-constrained relation-
ship outliers, and 3) automatically reserve tuples for evaluation. As a result, CalibMe allows
eye tracker users to quickly calibrate the system anywhere without supervision, giving feed-
back not only in terms of gaze estimation accuracy, but also on the calibration area coverage
relative to the field camera. The proposed method reached accuracies (µ = 0.59◦,σ = 0.23◦)
commensurable to a 9-Points calibration (µ = 0.82◦,σ = 0.15◦), well within physiological
values, and calibration can be performed in ≈ 10s, thus increasing gaze-based HCI usabil-
ity. Future work includes developing and integrating methods to assess gaze estimation
validity, and extending the proposed approach to 3D gaze estimations based, for instance,
on vergence information [213].

4.2 Gaze Estimation

In contrast to their remote counterparts, video-based head-mounted eye trackers7 provide a
singular perspective from the users’ egocentric point of view, allowing for plural gaze con-
tingency virtually anywhere. We envision a future in which individuals wear miniaturized
versions of such devices on a daily basis not only for digitally intermediated interaction with
all kinds of devices [28]–[34], but also for other added benefits such as preventive health
monitoring [36], self quantization [37], [38], daily and life logging [39], [40], advanced driv-
ing assistance [41], and alternative forms of veillance [45]. In fact, given the current pace
of head-mounted eye-tracking system modularization and miniaturization, the integration
of head-mounted eye-tracking into head-worn hardware – e.g., smart, augmented-reality,
and prescription glasses – seems evident.

Given the aforementioned integration and recent advances in robust pupil tracking in
pervasive scenarios (c.f. [7], [50]), the major remaining challenge hindering a wider adop-
tion of ubiquitous eye-tracking seems to be device slippage. Slippage is characterized by
changes in eye tracker pose (translations or rotations) w.r.t. the calibration pose, thus cor-
rupting the learned mapping function from the eye-camera feature space to gaze in field
camera coordinates: A phenomenon also known as calibration drift [21], [22], [49]. In this
work, we propose Grip, a glint-free and slippage-robust gaze estimation method for video-
based head-mounted eye trackers. The method was evaluated using previously collected

7Head-worn devices capturing images of at least one of the user’s eyes and part of his / her field of view.
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data from a large scale pervasive eye-tracking study, achieving a decrease in average partic-
ipant median angular offset by more than 43% w.r.t. a regular polynomial gaze regression
method.

4.2.1 Background and Related Work

Let us consider a) a rigid-body eye tracker consisting of three cameras (left eye, right eye,
and field), b) that all cameras’ intrinsic and extrinsic parameters are known a priori, and
c) that the eyes are perfect spheres. Our goal, then, is to estimate a 2D gaze point in the
field camera’s image based on the eye images at a particular instant. Geometrically, this
estimation can be achieved as follows:

Monocular gaze estimation: Given that a) the eye center and visual axis can be estimated
w.r.t. its corresponding eye-camera, and b) the transformation from that eye-camera
to field-camera is known, one can derive the user’s 3D gaze vector (origin and
direction) in field-camera coordinates. Projecting this 3D gaze vector to the field
camera’s image plane, yields a 2D line in which the desired 2D gaze estimate lies.
However, without gaze depth information, we cannot infer at which point along this
line exactly8.

Binocular gaze estimation: Similarly to the monocular version, we can estimate a 3D
gaze vector for each eye. An approximation of the 3D gaze point in field camera
coordinates is given by these vectors’ intersection point. Projecting this 3D gaze
point to the field camera’s image plane, yields the desired 2D gaze estimate.

In theory, thus, even if the eye tracker slips, there is no associated calibration drift:
The geometry still works out. In fact, eye-tracking systems operating on this geometrical
principle should be robust to device slippage. This is the case, for example, of the glint-
based Tobii Pro Glasses 2, ÖÖGA [119], [214], and OMG! [215] eye trackers. However,
these systems typically have several other drawbacks, usually requiring a highly controlled
and calibrated setup that can be unattainable in many head-mounted eye-tracking scenar-
ios [111], [216]. They also make use of multiple glints, whose detection is a critical
challenge, particularly in outdoor environments [118]. Moreover, the fixed inter-camera
transformations assumptions mean the systems cameras cannot be adjusted to users’ id-
iosyncrasies nor to capture distinct fields of view. The glints and rigid body also hinder
users from wearing the devices in conjunction with glasses.

So where does the slippage-associated calibration drift come from? Alas, the geomet-
rical solution simplifies the system considerably, restricting attainable system accuracy.
For instance, the eyes are not spheres, seldom the 3D gaze vectors intersect in practice9,
and a calibration10 is still required to estimate the optical-to-visual axes offset. Moreover,

8The exception being if the eye and field camera are aligned, in which case the 3D vector projection resolves
to a 2D point.

9One can use the mean point of the shortest line segment connecting the two 3D vectors instead.
10One calibration point suffices, but more are generally required to achieve satisfactory accuracy [123].
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even if glasses fit under the device and glints / pupil were perfectly detected, lenses refrac-
tion can lead to significant errors [196]. Thus, many eye tracker system designers opt to
trade-off slippage robustness for increased accuracy and flexibility by employing alterna-
tive gaze estimation methods, which oftentimes are not robust to device slippage. In such
cases, multiple approaches have been proposed to mitigate calibration drift, for instance: a)
The classical pupil-glint vector, which is also affected by drift but to a lesser extent [205],
b) Determining camera translation, for example using eyelid templates [217], [218], eye
corner tracking [219], gain values differences [205], and tracking automatically selected
landmarks [220], c) Using saliency maps to detect and correct shifts [136], d) Fast and unsu-
pervised calibration [24], recalibration [206], as well as auto-calibration [202] schemes, and
e) The simplest (and probably most used) approach: Designing the eye tracker to reduce
slippage – e.g., through head straps, cloth clips, helmets, or even facial plastic molds [192],
[221], [222].

4.2.1.1 Glint-Free Geometry

A promising alternative to the aforementioned gaze estimation methods is to learn the
system geometry and intricacies implicitly and map the gaze point directly from the eyes
appearance (e.g., [107]). Moreover, such approaches have the potential to allow for the
replacement of regular image sensors by less power-hungry ones (e.g., multiple low res-
olution image sensors [105] or photosensors [88]). However these systems are still in its
infancy [216], and its not clear whether they are able to operate adequately under continu-
ously changing conditions such as driving or outdoors.

Stereo setups with multiple cameras can be used to estimate the pupil pose [113] at the
cost of added hardware and processing; Tobii Pro Glasses 2 actually use a complex model
based on multiple glints and two cameras per eye. Alternatively, temporal information
can also be exploited to infer eye and pupil poses. An estimation of eye parameters from
iris observations (assuming weak perspective) for model-based gaze estimation is given
in [112]. Assuming full perspective, [111] proposed a novel temporal glint-free approach
to estimate and optimize the eye (as a 3D sphere) from a set of 2D pupil observations
detected in the eye-camera image plane. Afterwards, 3D pupil estimations are derived
as the 3D circle resulting from intersecting the 2D-to-3D pupil unprojection with the eye
sphere. This 3D circle’s normal vector – i.e., the vector passing through the 3D eye and
pupil centers – is used to approximate the optical axis. The Pupil Labs 3D gaze estimation
bases their eye model on this approach, and “using temporal constraints and competing
eye models we can detect and compensate for slippage events when 2d pupil evidence is
strong” [223]. Whereas this approach might work in particular cases, there are three key
outstanding issues.

1. What are the requirements on the observation set to approximate a sufficient eye
model? E.g., how many distinct observations are needed? Is there a minimum
angular range required? If an insufficient model is used during calibration or gaze
estimation, the resulting gaze estimates will be offset.

2. Even if we can determine these sufficiency requirements based on thorough simu-
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lations – e.g., using the works of [108], [109] – how likely is human natural gaze
behavior to conform with them? E.g., while you read this text, your eyes are likely to
move only around the tiny fraction of your field of view that encompasses the text.

3. Assuming that the previous issues are solved, compensation still is not instantaneous
and only valid after the model is replaced by a new sufficient one. This is a significant
issue for cases in which the eye tracker can be expected to move often, such as during
sports [224], and when used by children [225] or by glasses wearers who tend to
periodically adjust their glasses’ position.

4.2.2 Proposed Method: Grip

Our main goal in this work is to provide a glint-free and slippage-robust gaze estimation
method for video-based head-mounted eye trackers that is able to compensate for eye tracker
movement instantaneously. The proposed method does not require any camera parameter to
be known a priori, thus being compatible with commercial and do-it-yourself eye trackers
alike. Our main assumption is that the eye tracker remains a rigid body after calibration.
Nonetheless, the eye tracker cameras can be adjusted as needed prior to calibration, allowing
for the flexibility required to adapt to users’ idiosyncrasies and distinct usage scenarios.

The method consists of two main stages: 1) estimating the instantaneous optical axis di-
rection in eye-camera coordinates, and 2) mapping this optical axis to a 2D gaze point in the
field camera image plane. We have named our method Gaze regression: instantaneous and
pervasive (Grip) alluring to its capability of compensating for slippage instantaneously and
that the mapping function is regressed during calibration. Grip is a hybrid method, combin-
ing a geometrical approach to derive a slippage-robust input feature for a non-geometrical
gaze mapping function.

4.2.2.1 Instantaneous Optical Axis Direction

Our method starts by estimating the optical axis direction w.r.t. the eye camera. Following
the approach of [111], we unproject the 2D pupil detected on the eye camera image plane
to 3D using the circular intersection method of [226]. By considering only solutions that
point towards the camera – since the pupil can only be detected when it is facing the eye
camera – this procedure yields two circles parametrized by their center position (~p), normal
vector (~n) and radius (r):

(~p1, ~n1,r),(~p2, ~n2,r), (4.1)

as illustrated in Fig. 4.17. This ambiguity can be easily resolved by using temporal infor-
mation under the assumption that the eye tracker does not move w.r.t. the eye within a brief
window containing at least two distinct fixations11. For instance, we can disambiguate be-
tween these solutions similarly to Świrski’s model initialization (c.f. [111] Equation (8)). In
practice, this corresponds to a least-squares intersection of lines following the minor radius
of each 2D detected pupil ellipses in the set of samples inside the time window, followed

11The actual window size depends on the camera frame rate, but usually hundreds of milliseconds should
suffice for any modern eye tracker.
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by unprojecting this 2D intersection point at a fixed distance, and picking the solution that
points away from the resulting 3D point (which can be seen as a very rough eye center
estimate). Furthermore, since we are only interested in the optical axis direction, we do not
need to solve the distance-size (~p,r) ambiguity – i.e., whether the 3D circle is large and far
away or small and close to the camera. Thus, this step yields the disambiguated ~n as an
instantaneous optical axis direction estimate, discarding ~p and r.

Optical Axis

Virtual
Image

Virtual
Image

Optical Axis

Figure 4.17: The detected pupil (shown in the camera’s virtual image) is unprojected to 3D, resulting
in four solutions. Solutions pointing away from the camera (~n3 and ~n4) are discarded, but the
remaining two solutions (~n1 and ~n2) are ambiguous because both eye positions generate the same
2D pupil. Further information is required to resolve this ambiguity such as an approximate eye
center location [26].

4.2.2.2 Gaze Mapping

Since we do not know the eye positions, nor pupil positions, nor cameras (intrinsic and
extrinsic) parameters, we cannot directly perform a geometric gaze mapping such as the
3D-to-3D mapping from [97]. Instead, we assume the eye center to be located at the eye-
camera center, which introduces an intrinsic error. In practice, head-mounted eye tracking
eye cameras are within a radius of a few centimeters from the eye center, whereas gaze
points lay at much larger distances. Consequently, the angular offset between our estimated
and the real optical axes is small and can be implicitly learned during calibration, similarly
to the optical-to-visual axis offset.

We then normalize and parameterize the optical axis with origin at the eye camera center
in spherical coordinates such that

~n = (φ,θ,1), (4.2)

resulting in a slippage-robust feature. Unlike the slippage-invariant pure geometrical
solution, the proposed approach can introduce an error up to

arctan
(

d
D

)
, (4.3)

where d is the slippage magnitude and D the gaze point distance, with the introduced error
diminishing the closer the fixated point direction is to the slippage direction. Nonetheless,
given that slippage magnitude tends to be rather small, d�D, and this error can be consid-
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ered negligible for most cases. Therefore, this feature can be used with typical regression
gaze-estimation methods even under the assumption of device slippage.

In this work, we chose to employ a set of two second order polynomial regression meth-
ods to perform the mapping to 2D gaze points considering that typical head-mounted eye
tracking field cameras contain some level of radial distortion. The first (bivariate) polyno-
mial

M = [ 1 φ θ φθ φ2 θ2 φ2θ2 ]T (4.4)

is employed for monocular gaze estimation – e.g., if only a single eye camera is available,
whereas the second (quadvariate) one

B = [ 1 φL θL φLθL φ2
L θ2

L φ2
Lθ2

L φR θR φRθR φ2
R θ2

R φ2
Rθ2

R ]T (4.5)

is employed for binocular gaze estimation, where φL,θL,φR,θR are the optical axis param-
eters for the left and right eye, respectively. Let Cx and Cy be the polynomial coefficients
estimated during calibration per gaze estimation configuration – i.e., left eye monocular,
right eye monocular, and binocular. Thus, the 2D gaze point (g) horizontal (gx) and vertical
(gy) components can be estimated as [

gx

gy

]
=

[
Cx

Cy

]
P , (4.6)

where P = M and P = B for the monocular and binocular cases, respectively.
The rationale behind employing B instead of simply averaging the left and right eye

monocular estimates (as suggested by [47]) is that it provides a more complex model that
allows us to better compensate for parallax errors through eye vergence. The drawback,
naturally, is that it requires significantly more calibration points (13, as compared to 7
for the monocular case) to regress Cx and Cy. Whereas this might be a usability issue
for screen based calibrations, it can be achieved under ten seconds virtually anywhere
by unsupervised users through the CalibMe calibration technique [24]. Moreover, due
to the slippage robustness, calibration should only be required whenever the rigid body
assumption is broken – e.g., if the cameras are moved independently.

4.2.3 Evaluation

To demonstrate the proposed method’s applicability to pervasive real-world scenarios, we
applied it to previously collected data from a large scale unconstrained pervasive eye-
tracking study investigating the gaze behavior of museum visitors [53].

4.2.3.1 Data Collection

Data was collected in parallel throughout five days using four sets of Pupil Labs eye trackers
and Microsoft Surface tablets (carried in a backpack). EyeRecToo was used to drive the
eye trackers, with eye (Pupil Cam2) and field cameras (Pupil Cam1) capturing images
of 400px2 at 60 fps and 720p at 30 fps, respectively. Ten researchers without previous
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head-mounted eye-tracking experience conducted the experiment after receiving a thirty
minutes briefing from an expert with more than three years of experience. Visitors arriving
at the top of the Grand Staircase of the Austrian Gallery Belvedere were invited to join
the experiment only restricted by their consent age (18 or older) and language (English or
German) – i.e., no selection of participants suited for eye tracking was performed. In total
109 subjects (63 females, 46 males) took part in the experiment, averaging 34.86 years of
age (σ = 14.62).

4.2.3.2 Procedure and Stimuli

After donning the backpack and eye tracker assisted by a researcher, each participant stood
on a floor mark approximately 1.16 m from a CalibMe collection marker. This marker
was used to collect ground-truth gaze positions and stood at about the same height as the
exhibition pieces. The researcher then adjusted the scene camera to center the collection
marker and eye cameras to a suitable position. Subsequently, the participant was instructed
on how to perform the ground-truth gaze collection: Keep gaze fixed at the center of
the collection marker while moving their head in a spiral fashion smoothly and slowly.
The researcher then started the recording, controlling when gaze collection started and
stopped. This first gaze collection (henceforth Collection 1) was performed soon after
recording started. Collection 1 was used to calibrate the eye tracker in real time, after
which the participant was asked to gaze at four Post-its R© about 25◦ away from the center
of the calibration marker for the researcher to assess gaze estimation quality. If the gaze
estimation was considered subpar, Collection 1 was repeated and the eye tracker recalibrated.
For reference, one of the participants during Collection 1 is shown in Fig. 4.18.

The participant was then instructed to freely roam through four rooms (containing more
than 30 distinct paintings and sculptures) as he/she wished, and that the researcher would
meet him at the end of the last room. During their visit, participants were allowed to interact
with other visitors.

At the end of the visit, the researcher and participant proceeded to a separate room where:
a) a second gaze collection (henceforth Collection 2) was performed following the same
procedure as Collection 1, b) the subject was interviewed and performed a remembrance
mapping task, and c) the participant answered a questionnaire containing museum-visit
and eye-tracking related questions. After the visit, participants were rewarded with a small
souvenir. Originally, Collection 2 served as a measure of data quality at the end of the
visit. The average interval between the end of Collection 1 and the start of Collection 2 was
18.80 min (σ = 8.83). Given the unconstrained nature and long duration of the experiment,
a large part of participants exhibited errors of varying magnitudes during Collection 2,
many of which can be attributed mostly to eye tracker slippage. Besides the magnitude and
systematic nature of the error for some participants, this attribution can also be inferred
from the field camera videos (e.g., visible active adjustment by the user), gaze signal (e.g.,
abrupt systematic changes), and eye cameras (e.g., by using the eye corners as reference
points for a particular gaze direction).
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Collection
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(w/ Tablet)

 

Eye Tracker
(Pupil)
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Post-Its

Figure 4.18: A (taller than average) participant during Collection 1. Two of the gaze-quality control
Post-Its (to the right side of the collection marker) do not appear in the photo [26].

4.2.3.3 Evaluated Methods

As baseline, we employ a typical binocular polynomial fit (BPF) based on the 2D pupil
center using the same configuration as described in Section 4.2.2.2. In other words, instead
of the spherical coordinates φ and θ, the pupil center x and y coordinates are used. This is a
similar approach to the original gaze estimation method employed during data collection
and gives us a reference for a non-slippage-robust method. Both the baseline (BPF) and
proposed method (Grip) used the same pupil input automatically detected using PuReST
with default parameters. In case one of the pupils had a reported confidence below 0.66,
the methods automatically switched from binocular to monocular mode; this threshold was
selected based on the recommendations from [6]. The methods were calibrated using data
from Collection 1 and evaluated on data from Collection 2.

Additionally, as a reference for a temporal approach, we ran the data through the 3D
processing pipeline of the Pupil Player [124], which includes pupil tracking, calibration,
and gaze estimation. The automatically detected collection marker center positions were
loaded as natural features only for the world frame index in which they were detected – in
contrast to the default [-5,5) index range. The calibration method was set to natural features,
and the calibration and mapping trim marks were set to the start and end of Collection 1
and Collection 2, respectively. For this evaluation, we employed Pupil Player version
1.9.7 and default parameters. Pupil also provides a confidence based on the detected pupils.
We considered only gaze estimates with confidence above a certain threshold. For this

81



4 Calibration and Gaze Estimation

evaluation, we considered two distinct thresholds based on their documentation (Pupilth=0
and Pupilth=0.6): “In our experience useful data carries a confidence value greater than≈0.6.
A confidence of exactly 0 means that we don’t know anything. So you should ignore the
position data” [124].

4.2.3.4 Results

We discarded 31 subjects for various reasons: a) missing recording for one of the collections
(11), b) nystagmus (7) or bright pupil effects (4) during gaze collections, and c) improper
eye camera positioning (9), usually due to difficulties to place the eye tracker over glasses
or adjust the cameras properly for participants with small faces or epicanthic folds. Average
collection time for the remaining 78 participants was 20.92 s (σ = 8.56s). Fig. 4.19 and
Fig. 4.20 shows the spatial distribution of the collection marker center for Collection 1
(calibration) and Collection 2 (evaluation), respectively. It is worth reiterating here that this
marker center was used as ground-truth for gaze position, consequently introducing some
erroneous data in the evaluation – e.g., during blinks or distractions when the user was not
gazing at the marker. Unlike typical eye tracking evaluations that are performed at a few
predefined points, our evaluation encompasses a wide and well distributed range of points
w.r.t. the field camera field of view, providing a realistic accuracy estimation across most
of the device’s operating range.
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Figure 4.19: Calibration points spatial distribution as a 2D histogram w.r.t. the field camera field
of view for all evaluated participants. The small 1D histogram at the top left shows the absolute
distance-to-center distribution (µ = 16.41◦, σ = 8.19◦) [26].
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Figure 4.20: Evaluation points spatial distribution as a 2D histogram w.r.t. the field camera field
of view for all evaluated participants. The small 1D histogram at the top left shows the absolute
distance-to-center distribution (µ = 15.73◦, σ = 8.43◦) [26].

We report our results in terms of angular offset between the automatically detected
collection marker center and each method’s 2D gaze estimate. During collection, blinks,
distractions, and extrapolated12 gaze points are expected, which can significantly impair
average metrics. Thus, to give a better overview of the resulting gaze estimation quality,
we report results not only in terms of participant average (Mean) but also quartiles (Q1, Q2,
Q3). If calibration failed for a participant, these metrics were set to 90◦ to retain the same
amount of participants across methods without perturbing the lower end of these metrics’
distribution; this was the case only for 3 participants with Pupil.

Fig. 4.21 shows the distribution of these four metrics for all participants per evaluated
method. This figure evidences Grip’s superiority across participants, presenting significant
improvements on average and for all quartiles. Relative to the non-slippage-robust gaze
estimation (BPF), Grip exhibited a reduction of the average participant median (Q2) angular
offset by 43.82% (5.66◦ vs 3.18◦).

For approximately the first half of participants with smaller angular offsets, the difference
between Grip and BPF is not that significant: These are likely participants for which the eye
tracker position during Collection 1 and Collection 2 was very similar, thus BPF remains
accurate. It is worth noticing that this does not imply that for such participants BPF is as
accurate as Grip throughout the whole museum visit though. For instance, the eye tracker

12I.e., gaze points outside of the calibration region, which must be extrapolated instead of interpolated.
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Figure 4.21: Distribution of per-participant gaze angular offset Mean, Q1, Q2, and Q3. Calibration
was performed using Collection 1 and evaluation on Collection 2. Whiskers subtend the [0,90] per-
centile range. E.g., considering the 25% samples with smallest offsets (Q1), 90% of the participants
are within an accuracy of 3◦ using the proposed method (Grip), in contrast to 9◦ for the regular
binocular polynomial fit (BPF) [26].

might have slipped soon after Collection 1 but slipped back to a similar position just before
Collection 2. The other half of participants (with larger angular offsets) showcases Grip’s
capability in cases where BPF is no longer reliable. For example, considering Q1 samples,
90% of participants are within an accuracy of 3◦ with Grip, in contrast to 9◦ for BPF.
Similarly, at the more stringent Q3 requirement, Grip retains about 75% of participants
within an accuracy of 5◦, whereas BPF only retains about 50% of participants at the same
accuracy requirement.

To give the reader an idea regarding camera positioning and image quality, examples of
eye images for the 78 evaluated participants are shown in Fig. 4.22. Before including the
results from Pupil in the discussion, it is important to note that its pupil tracking method has
been shown to be significantly outperformed by the one we used (PuReST) [7]13. Despite
the data being recorded with Pupil hardware, we observed that for many participants Pupil’s
pupil detection did not work properly with default parameters14, hence resulting in large

13In fact, it has been shown to be outperformed not only by PuReST, but also by other state-of-the-art pupil
tracking algorithms [2], [7] such as Ellipse Selection by Candidate Filtering [2] (ESCaF), PuRe, ElSe,
ExCuSe, and Świrski.

14Attempts at producing a better set of pupil detection parameters using Pupil Capture’s interface yielded
unsatisfactory results.
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Figure 4.22: Example of eye images for the 78 evaluated participants. For each participant, we
randomly selected the left or right eye recording and then randomly picked a frame from that entire
eye recording. If the pupil was not visible in the image (e.g., because of a blink), another random
frame was taken until the pupil was visible [26].

offsets for a large part of the participants. Therefore, we focus the following discussion only
on the 25% of participants with smallest angular offsets for each metric, considering these
as the participants for which Pupil best performed. As Pupil exhibited better results than
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Pupilth=0, we consider only the former in the following discussion. In this case, Grip still
outperformed Pupil by large margins as shown in Table 4.1: On average, the angular offset
was reduced by ≈1.8◦, whereas the percentage of participants within the same accuracy
as the 25% Pupil angular offset reaches ≈69%. In terms of computation time, Grip incurs
negligible overhead: only a small fraction than the average computation time for pupil
detection. In contrast, the temporal approach (Pupil employs non-linear optimizations
when constructing the eye model, which might incur significant overhead depending on the
number of samples used. Whereas this construction can be done asynchronously and is
only required when the device slips, it could represent an issue for cases when the device is
expected to move often and increases slippage compensation latency.

Metric 25% Participants 25% Pupil
Angular Offset (◦) Equivalent (%)

Grip BPF Pupil Grip BPF

Mean 2.71 2.69 4.51 69.23 48.72
Q1 1.19 1.36 2.31 78.21 47.44
Q2 1.99 1.96 3.75 85.90 53.85
Q3 3.05 3.11 4.90 65.38 48.72

Table 4.1: Angular offset for the best 25% participants for evaluated methods (columns 1-3), and
percentage of participants covered by Grip and BPF (columns 4-5) considering a maximum angular
offset equivalent to Pupil 25% (i.e., column 3). For example, considering the mean, 25% of partici-
pants with Pupil had angular offsets below 4.51◦; in contrast, with the same angular offset threshold,
Grip retained 69.23% of participants.

It is worth noticing the results for the participant with smallest angular offset (i.e., the
lowest whisker), which can be considered the best-case scenario for each method. In this
case, whereas Grip still outperforms Pupil it is outperformed by BPF. This highlights
one of Grip’s drawbacks: If the eye tracker remains stationary w.r.t. the eye center, Grip
is excepted to be less accurate than BPF because the optical axis direction estimation
introduces additional noise due to the 2D-to-3D unprojection (see Section 4.2.4).

Regarding overall accuracy, oftentimes eye-tracking studies only report on the accuracy
of the gaze signal by reiterating a manufacturer provided number – usually below one
degree – that does not correspond to the actual accuracy during real usage. For instance,
real reported offsets are as large as 2◦ [47] even for tower-mounted eye trackers. As detailed
in Section 4.2.4, head-mounted eye trackers have multiple sources of errors, which in
practice reduce overall accuracy, especially when a thorough evaluation across most of
the device’s operating range is considered. It is worth noticing that some studies report
average offsets of 3.6◦ even for high-grade eye trackers with multiple glint sources and
reflection filters [227], whereas other authors consider accuracies within 5◦ as acceptable for
single-glint eye trackers [131]. With Grip, our main goal is to provide slippage robustness
while retaining realistic and usable accuracy. Accuracy requirements highly depend on the
intended use of the collected gaze data. Grip managed to retain ≈75% of participants with
an average and Q3 accuracy within ≈5◦ despite all the challenges involved. This level of
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offsets suffice for many practical applications such as activity recognition [228], attention
analysis [229], gaze-contingent audio guides [53], and assistance mode discrimination in
human-robot shared manipulation [55]. As a reference for the reader, Fig. 4.23 illustrates
various accuracy ranges w.r.t. the field camera view.

35 9

≈ 50°

≈ 90° 

Figure 4.23: Error range overlaid on top of a field camera image (encompassing ≈ 90◦×50◦) for
reference. The circles’ radii represent approximately 1◦, 3◦, 5◦, and 9◦. Figure best viewed in digital
form [26].

4.2.4 Limitations

Despite promising results over a large array of participants in a pervasive and challenging
scenario, Grip has some known limitations, which we discuss in this section.

First, Grip relies on the pupil outline. Thus, its performance is closely tied to the per-
formance of the pupil tracker employed. This means that, if too much of the pupil outline
is occluded, Grip might not be able to cope – e.g., for participants with droopy eye lids or
epicanthic folds. In cases where the outline estimate does not match the real outline, the
estimated optical axis (and thus gaze estimate) will be shifted. Moreover, subpar pupil out-
line contrast (e.g., due to thick lenses or bad camera focus) might result in a significant loss
in precision: Although the pupil center might remain reliable, the pupil outline is unstable,
causing the optical axis estimate to be volatile. This volatility could be lessened through
signal filtering at the expense of partial loss of the non-fixational dynamics – e.g., using
specialized Kalman filters [230] or general-purpose filters [185]. Furthermore, the outline
requirement hinders its usage paired with pupil trackers that track only the pupil center –
e.g., DeepEye [178] and PupilNet [64], [65].

Second, as previously mentioned, the unprojection of the 2D detected pupil ellipse to a
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3D circle also adds noise to the optical axis estimate. Based on the naïve unprojection and
simulations from [111], this appears to introduce a median error of ≈2.5◦ to the optical
axis estimate. Moreover, the optical axis estimate is also affected by refractions from
glasses [196] and the cornea [216]. Nonetheless, the resulting deviations are intrinsically
learned during the calibration to some extent. Thus, contrasting these measurements with
our results is not straightforward due to the non-geometric gaze mapping we employed
and other sources of errors stemming from the realistic and out-of-the-lab scenario. For
instance, head-mounted devices tend to exhibit angular offsets due to other factors such as
parallax error [231], and changes in pupil dilation, which can result in inaccuracies up to
1.5◦ [47]. In particular for the data reported in Section 4.2.3, Collection 1 (calibration) and
Collection 2 (evaluation) were performed in distinct rooms with very distinct illuminations,
which can cause large discrepancies in pupil size.

Third, the pupil unprojection also introduces a further complication: When the optical
axis points towards the camera center such that the projection of the 3D pupil approximates
a 2D circle in the image plane, the optical axis estimate is ill defined [113], [232]. By
construction, this is a gaze position that rarely occurs in practice (unless the user is gazing
close to the eye camera). Nevertheless, we recommend placing the eye cameras eccentric
to the eye primary position [233]. This complication might also present an incompatibility
with eye trackers that make use of hot mirrors to remove parallax (e.g., [234]), as the
primary eye position might often correspond with the ill-defined unprojection region.

4.2.5 Conclusion

In this section, we have proposed and evaluated Grip, a slippage-robust and glint-free
gaze estimation method for head-mounted eye trackers. The proposed method combines a
geometrical approach to derive a slippage-robust input feature for a non-geometrical gaze
mapping function, thus making it a hybrid method. Grip was evaluated with data from
78 participants of a pervasive and unconstrained eye tracking study, showing significant
improvements in multiple metrics when compared to a regular binocular polynomial fit
(BPF) and a temporal eye-model-based gaze estimation approach (Pupil). Despite the
challenging scenario, Grip achieved sufficient accuracy for multiple practical applications,
retaining 90% of participants with a median gaze offset below 4.57◦. Relative to the non-
slippage-robust gaze estimation (BPF), Grip exhibited a reduction of the average participant
median angular offset by 43.82% (5.66◦ vs 3.18◦).

In order for the proposed method to be able to instantaneously compensate for slippage,
we have relaxed the eye-center estimation requirement. Consequently, we did not explore
the application of more complex models designed to improve optical axis estimate accuracy
– e.g., relying on temporal constraints to improve gaze estimation when the detected pupil
is not accurate [111] or compensating for corneal refraction [216]. To take advantage of
such methods, we intend to explore adaptive hybrid approaches that combine instantaneous
and temporal gaze estimation approaches in the future. We envision an approach that is
able to detect instabilities in the eye pose and automatically adapt by switching between
the instantaneous and temporal approaches. In order to realize this vision, we also intend
on investigating the temporal eye model construction design space and elucidate the issues
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raised in Section 4.2.1.
Finally, we intend to investigate alternative methods for the estimation of the optical axis

that are potentially more robust to occlusions of the pupil outline – such as machine-learning
approaches [235]. These approaches can then be employed as a simple drop-in replacement
for the current ellipse unprojection method (described in Section 4.2.2.1) integrated into
Grip.
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“We see in order to move; we move in
order to see.”

—William Gibson

The human visual perception involves mainly six types of eye movements: fixations, sac-
cades, smooth pursuits, optokinetic reflex, vestibulo-ocular reflex, and vergence [236]. The
automatic and correct identification of these eye movements based on the raw eye-position
signal is critical for several applications, such as driver’s activity recognition [41] or detec-
tion of hazard perception during driving [237]), marketing applications, and HCI [238].

Initially, eye-tracking research restrained head movements and employed static stimuli,
such as images and text. In this scenario, the only relevant movements considered were
fixations (in which the eyes are relatively still) and saccades (rapid transitions from one
fixation point to another); thus, early algorithms for the automatic classification of eye
movements focused on segregating only between these two movements. Nowadays, there
is an increasing interest in using dynamic stimuli (e.g., video clips) [239], where an object
of interest moves through the subject’s field of view and is kept on the fovea, producing a
fluent eye motion – which we denominate a smooth pursuit. It is worth noticing that during
these pursuits, minor eye movements such as tremors and microssacades exist, albeit these
minor movements do not show on low-resolution eye-tracking data.

The presence of smooth pursuits disturbs the performance of established event classi-
fication algorithms since these pursuits end up spread over the two classification classes.
Moreover, they also provide valuable information on subject’s health and behavior; for
instance, smooth pursuit impairment and dysfunction have been linked to mental illnesses,
such as schizophrenia [240] and Alzheimer’s disease [241]. Thus, an automatic and efficient
algorithm to distinguish between fixations, saccades, and smooth pursuits is paramount for
eye-tracking research involving dynamic stimuli. Furthermore, some of the possible ap-
plications must be in the form of embedded systems (e.g., driving assistance) and impose
real-time, processing, and energy consumption constrains on the eye-tracking system. To
meet these constraints, typically eye trackers with a lower sample rate are used. Conse-
quently, such an algorithm must not only work in real-time, but also be able to deal with
the low resolution arising from such eye trackers.

In this chapter, we propose a novel algorithm for ternary classification of oculomotor
events. Our main contributions are:

• We propose the Bayesian Decision Theory Identification (I-BDT) algorithm to iden-
tify fixations, saccades, and smooth pursuits in real-time for low-resolution eye track-
ers. Additionally, the algorithm operates directly on the eye-position signal and, thus,
requires no calibration.
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• The proposed algorithm is evaluated relative to manual annotation by a domain expert,
and performance is measured in terms of recall, precision, specificity, and accuracy;
on average, the proposed algorithm scores above 90% on all metrics.

• I-BDT’s performance is compared to that of a state-of-the-art algorithm (Velocitiy
and Dispersion Threshold Identification (I-VDT)), showing a significant improve-
ment in terms of average score and variability.

• Additionally, we openly provide a MATLAB implementation for the I-BDT algorithm
as well as the annotated datasets used for evaluation at www.ti.uni-tuebingen.de/
perception.

5.1 Related Work

In 1991, Sauter et al. [242] proposed using a Kalman filter coupled with a χ2-test to separate
saccades from other eye movements. This approach was later extended as the Attention
Focus Kalman Filter (AFKF) by Komogortsev and Khan [243], using velocity and temporal
thresholds to separate fixations from smooth pursuits. Similarly, several methods use a sim-
ple velocity threshold to isolate saccades, followed by a second step to distinguish between
fixations and smooth pursuits. Such algorithms are typically identified by a name following
the pattern I-V*. Komogortsev and Karpov [244] proposed to distinguish between the re-
maining movements through a second velocity threshold (Velocitiy and Velocity Threshold
Identification (I-VVT)) and through a dispersion threshold combined with a temporal win-
dow (Velocitiy and Dispersion Threshold Identification (I-VDT)). Berg et at. [245] pro-
posed analyzing the ratio between first and second principal components to identify smooth
pursuits (Principal Component Analysis Identification (I-PCA)) on the intuition that fix-
ations would have a ratio close to one. Lopez [246] started a subgroup that uses the
movement pattern to identify smooth pursuits, hence the shared I-VMP prefix; in [246],
Lopez used the standard deviation of the movement directions in a time window to iso-
late fixations (Velocity Movement Pattern Standard Deviation Identification (I-VMPStd)).
Larsson [247] used a Rayleigh test to identify smooth pursuits by rejecting the hypothesis
of uniformity of inter-sample vectors around the unit circle (Velocity Movement Pattern
Rayleigh Identification (I-VMPRay)); more recently, this algorithm was extended with
four different spatial features (dispersion, consistent direction, positional displacement, and
spatial range) in [239].

Tafaj et al. [248] used a Bayesian Mixture Model based on the Euclidean distance
between sequential points to discern fixations from saccades, which was later extended
in [133] with a principal component analysis similar to I-PCA to identify smooth pur-
suits. This method is called the Bayesian Mixture Model Identification (I-BMM). Vi-
dal et al. [249] defined a set of shape features, whose expected range is derived from train-
ing data. A k-nearest neighbors classifier (k = 3) is then used to isolate smooth pursuits
from other movements.

As illustrated in Fig. 5.1, the above methods fall mainly into two classes: threshold-
based and probabilistic methods. While threshold-based algorithms tend to be simpler to
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implement, their major drawback is that they usually depend on the eye movements being
clearly discernible from each other. On the other hand, probabilistic methods work based
on softer decision rules in the form of probabilities, making them more flexible. Hybrid
methods combine insights from physiological limits to define clear thresholds (e.g., only
during saccades the eyes reach velocities above 100 ◦ s [212]) with a probabilistic approach
in other cases. I-BDT, the method proposed in this chapter, falls into the probabilistic group.

I-VVT [244]
I-VDT [244]
I-PCA [245]

I-VMPStd [246]

Larsson [239]
I-BMM [248]

I-VMPRay [247]
AFKF [242]

I-BDT [66]
Vidal [249]

Threshold Probabilistic

Figure 5.1: Algorithms for the automatic identification of smooth pursuits according to a broad
classification based on their underlying mechanisms. The algorithm proposed on this work (I-BDT)
falls within the probabilistic group [66].

Additionally to the previously mentioned algorithms, recently several authors have ap-
plied machine-learning methods for eye movement identification. For instance: Zem-
blys [250] investigated ten different machine learning methods applied to eye movement
detection, Hoppe and Bulling [251] proposed a shallow CNN for ternary eye movement
identification, Zemblys et al. [252] investigated the performance of random-forests for bi-
nary event detection, Bellet et al. [253] achieved human-level saccade detection using deep
learning, and Zemblys et al. [254] proposes a CNN to augment hand-coded data to create
large training data sets to train a second CNN, which is able to classify raw eye-tracking
data into fixations, saccades, and post-saccadic oscillations.

It is worth noticing that most previous work has focused on eye trackers with high sam-
pling rates (i.e., above 250 Hz). However, in dynamic scenarios where a non-intrusive
head-mounted eye tracker is required (e.g., driving assistance), such high sampling rates
are not available. Currently, mostly head-mounted eye trackers present an upper limit of
60 Hz for binocular tracking – e.g., Dikablis Pro, SMI Glasses 2, ASL H7 Optics, Tobii Pro
Glasses 2. The exception is SR Research’s EyeLink II, which has a binocular sampling rate
of 500 Hz. Despite its clear advantage in temporal resolution, this eye tracker is rather intru-
sive, occupying a large part of the subject’s field of view; for comparison, EyeLink II’s eye
cameras measure each approximately 5 cm×5 cm×1 cm whereas Dikablis Pro’s eye cam-

93



5 Eye Movement Identification

eras measure approximately only 2.5 cm×2 cm×1 cm, resulting in a volume difference
of five times. Furthermore, higher sampling rates also incur in higher power consumption,
which might hinder their usage in embedded scenarios.

5.2 Bayesian Decision Theory Identification

5.2.1 Problem Statement

Let S = {si|1 ≤ i ≤ N} be a set of N temporally ordered tuples, each containing two-
dimensional pupil position estimates (xi,yi) and a timestamp (ti) generated by an eye tracker
(i.e., an eye-tracker protocol). The problem, thus, is to classify all periods between two
subsequent tuples according to the set of possible events E = { f ix,sac, pur}, where f ix,
sac, and pur stand respectively for fixation, saccade, and smooth pursuit.

5.2.2 Model

In this work, we propose a Bayesian decision theory approach to solve the stated problem
based on a pair of features derived from S. In other words, given some data D, we are
interested in defining the likelihoods p(D|e) and priors p(e) for each event e ∈ E in order
to calculate the posteriors p(e|D) of these events. Following the naming convention from
[244] and [255], we will hereby refer to this method as the Bayesian Decision Theory
Identification (I-BDT) algorithm.

The first feature derived from S is the estimated eye speed (vi) between two subsequent
tuples, defined as

vi =

√
∆xi

2 +∆yi
2

∆ti
, (5.1)

where ∆xi = xi− xi−1, ∆yi = yi− yi−1, and ∆ti = ti− ti−1.
The second derived feature is the movement ratio ri over the window Wi = {v j|i−Nw <

j ≤ i} of the latest Nw tuples. For simplicity, we define it as the amount of non-zero eye
speed estimates relative to the window size, conveying the idea that the more movement in
the window, the more likely a smooth pursuit is; thus,

ri =
1

Nw
∑

v j∈Wi

[v j > 0] =
1

Nw
∑([Wi > 0]), (5.2)

where [...] is the Iverson bracket notation [256] given by

[X ] =

{
1 if X is true;
0 otherwise.

It is paramount to note that this feature’s definition is heavily dependent on the eye tracker
used to record the data and its temporal and spatial resolution; zero speed may not be an
appropriate representation for fixations. Nevertheless, the intuition behind this feature is
that fixations exhibit little continuous movement, saccades are brief and usually separated
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by fixations, and smooth pursuits tend to exhibit continuous movement during larger pe-
riods of time (see Fig. 5.2). Therefore, ri should be a good smooth pursuit indicator if an

fix
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E
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)
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Figure 5.2: Eye speed compared to manual classification by a domain expert. Fixations (fix) tend
to be mostly still, with only few deviations due to micro eye movements and measurement noise,
whereas saccades (sac) result in brief spikes in the eye speed signal. On the contrary, smooth pursuits
(pur) show a distinct speed pattern during a longer period of time [66].

adequate window size is chosen; this time window should be large enough to encompass
the maximum saccade duration, otherwise misclassification of saccades as pursuits may be
exacerbated. In our model, we use this feature directly as the smooth pursuit likelihood,
i.e.,

p(ri|pur) = ri. (5.3)

Once a smooth pursuit has started, it tends to continue for an arbitrary period; thus, this
should be reflected in one’s belief before any evidence is taken into account. For this reason,
we model the smooth pursuit prior as the mean of previous smooth pursuit likelihoods (i.e.,
the set Li = {p(r j|pur)|i−Nw < j < i}) such that

p(pur) =
1

Nw−1 ∑
p(r j|pur)∈Li

p(r j|pur). (5.4)

Naturally, the joint probability of priors must sum to one. With no further evidence, we
do not have reason to believe either fixations or saccades are more probable, and, thus, we
divide the remaining joint prior probability equally between these movements such that

p( f ix) = p(sac) =
1− p(pur)

2
. (5.5)
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It is worth noticing that if information on the task being performed by the subject is available,
one could improve these priors based on the duration of the current event. For instance,
imagine a task characterized by fixations with a relatively constant duration: after a first
fixation is found, the following events are likely to be fixations until the average fixation
duration is reached. At this point the next event becomes less and less probable to be a
fixation. Such behaviour could be taken into account by adjusting the priors.

The fixational and saccadic likelihoods are deemed to be dependent only on the current
eye speed (vi) feature. This feature can be used to reliably separate high-speed saccades
from other events as it has been shown that no other event can reach a velocity higher than
Vsac, estimated to be around 100 ◦/s [212]. However, the speed spectra of different eye
movements overlap for lower velocities. Nonetheless, it is intuitive that velocities closer
to zero are more likely to stem from fixations whereas velocities closer to Vsac are more
likely to stem from saccades. In fact, [248] have shown that saccades and fixations can
be represented by a mixture model of two Gaussian distributions based on the distance
between sequential points – one Gaussian generating fixations, and another one generating
saccades. Therefore, we assume the eye speed feature to also be generated by two such
Gaussian distributions. Intuitively, saccade likelihood should be at its maximum for speeds
above Vsac. Ideally, fixations would exhibit zero speed; however, as they typically include
small movements, such as microsaccades and tremors, there is a threshold speed Vf ix that
encompasses these combination of movements. Thus, fixation likelihood should be at its
maximum for speeds below Vf ix. In the interval between these thresholds, we assume the
likelihood to be generated by two Gaussian1 distributions, one centered around Vf ix and the
other around Vsac (see Fig. 5.3). Thus,

p(vi| f ix) =

{
N(Vf ix|Vf ix,σ f ix) if vi <Vf ix

N(vi |Vf ix,σ f ix) if vi ≥Vf ix
, (5.6)

and

p(vi|sac) =

{
N(vi |Vsac,σsac) if vi <Vsac

N(Vsac|Vsac,σsac) if vi ≥Vsac
. (5.7)

Having defined the priors and likelihoods for all events, we can calculate the posterior
for each event e ∈ E given the data D = {vi,ri} using Bayes’ Theorem; thus,

p(e|D) =
p(e)p(D|e)

p(D)
, (5.8)

and the period is classified as the event with highest posterior probability. Here, p(D) is
merely a scaling factor that guarantees that the sum of the posterior probabilities sum to
one. It is worth noticing that this model can be extended to include other eye movements in
the future by determining their priors and likelihoods, and taking these into account when
computing p(D).

1Denoted as N(x|µ,σ) = 1
σ
√

2π
e
−(x−µ)2

/
2σ2

96



5.3 Experimental Setup

0
0 Vfix Vsac

L
ik

el
ih

oo
d 

(a
.u

.)

Eye Speed (a.u.)

Fixations
Saccades

Figure 5.3: Resulting fixational and saccadic likelihoods based on the eye speed feature (vi) [66].

5.3 Experimental Setup

5.3.1 Dataset

To evaluate the proposed algorithm, we designed an experiment to cover a wide range of
induced as well as natural eye movements. The induced movements are characterized in
Table 5.1.

Movement Amplitudea/Radiusb (◦) Velocity (◦/s)

Saccadea 6, 11, 14 —
Straight Pursuita 6, 12, 22, 28 10, 20, 30
Circular Pursuitb 6, 8, 14 18, 25, 44

Table 5.1: Induced movements used within the experiment. Degrees are expressed in terms of visual
angle. Straight pursuit amplitudes and velocities were combined such that their durations were within
0.4 and 2 seconds to account for subject latency while keeping pursuit duration realistic. Circular
pursuits were conducted at a constant angular velocity of 180◦/s. Pursuits were separated from other
movements by one second fixations. Saccades were separated from each other by fixations of 0.75
seconds. The directions of the movements were chosen randomly and differ per subject [66].

Prior to the recording, each user was shown a tutorial with detailed on-screen instructions
and examples of movements for each class in Table 5.1. Four datasets were recorded per
subject, and all datasets had a common beginning: first, four dots were shown at 15◦ of
visual angle diagonally from the screen center for five seconds (Fig. 5.4a); subjects were
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instructed to look at these stimuli at will. During this period natural saccades and fixations
are collected; saccades of≈ 20 and 30◦ of visual angle were expected, separated by fixations
of arbitrary duration. Afterwards, a single dot appeared at the screen center for two seconds
(Fig. 5.4b); subjects were instructed to focus on and follow this target. The subsequent
movements differ per dataset and are listed in Table 5.2.

(a) (b)

Figure 5.4: Common stimuli at the beginning of each dataset. In this figure, the color of the targets
was changed from red to yellow to facilitate visualization [66].

Dataset Movements

I Fixations, saccades, and all possible straight pursuits.
II Fixations and saccades. No pursuits.
III Fixations, saccades, and all circular pursuits.
IV Fixations, saccades, straight and circular pursuits.

Table 5.2: Movements distribution per dataset [66].

Targets were red dots (with a width of 1◦ of visual angle) on a dark gray background
displayed using MATLAB (r2013a) and the Psychtoolbox (3.0.12) [257] on a Windows 64-
bit machine. Subjects’ heads were supported by a chin rest at a distance of 300 mm from a
Samsung SyncMaster 2443BW2 color display unit. Ocular dominance was determined using
the Miles test, and data was collected only from the dominant eye using a Dikablis Pro eye
tracker (eye images of 384x288 pixels with a 30 Hz sampling rate) and EyeRec [70] (1.2.2)
running the ExCuSe [3] pupil detection algorithm on a distinct Windows 64-bit machine.
To avoid gaze estimation noise and calibration requirements, we use the pupil position
signal as input; as such, no calibration step was performed. An unjittering function was
applied to this input prior to processing to remove obvious jitter artifacts (e.g., one sample

2 Width: 520 mm. Height: 320 mm. Resolution: 1920x1200 pixels. Screen refresh rate: 60 Hz. Luminance:
0.08 cd/m2.
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spikes [258]). Six adult subjects (age: µ = 31.50, σ = 2.59 years; 4 males, 2 females)
took part in the experiment. Eye location relative to the eye tracker varied greatly between
subjects to exacerbate differences in the input signal and stress the algorithm (see Fig. 5.5).
Two of the subjects wore corrective glasses for myopia (-13 dpt and 1.5 dpt).

Figure 5.5: Example of eye location relative to the eye tracker during experiments. Note the distinct
proximities, positions, and rotations [66].

5.3.2 Baseline and Metrics

The collected data was manually classified by one domain expert in order to identify data
that is not coherent with the stimulus information, e.g., because the subject did not follow
the stimulus as instructed. This manual classification was used as the ground truth.

Nonetheless, it is worth noticing that the manual classification is a subjective task, es-
pecially for data with a temporal resolution where a measurement period may contain a
mixture of the end of a saccade and the beginning of a fixation. For this reason, we pro-
vide our annotated dataset openly to allow for review and potential improvements. Initial
corrective saccades during pursuit onset were classified as saccades, whereas catch-up sac-
cades during pursuit were classified as smooth pursuits. Fixation classifications encompass
small eye tracker noise, drift and microsaccades. Blinks, partial pupil occlusions, and pupil
detection failures were marked as noise and are ignored for performance evaluation; these
represent ≈ 1.76% of samples.

Overall, 18,682 fixations, 1,296 saccades, and 4,143 smooth pursuits were classified. Per-
formance is measured through four metrics per movement class, namely: recall

( T P
T P+FN

)
,

precision
( T P

T P+FP

)
, specificity

( T N
T N+FP

)
, and accuracy

( T P+T N
T P+FP+T N+FN

)
, where T P, FP,

T N, and FN stand for True Positive, False Positive, True Negative, and False Negative,
respectively. Moreover, we compare the performance of the proposed algorithm to that of
the I-VDT algorithm as implemented by [244], [259]; I-VDT was chosen as it can be easily
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adapted to perform online classification on low-resolution eye trackers, and because it has
been shown to exhibit a competitive performance with smaller variability relative to other
algorithms [244], [260]. Additionally, we also provide Cohen’s Kappa [261] values for the
overall classification agreement between the algorithms and the domain expert to account
for agreement merely due to chance.

5.3.3 Algorithm’s Parameters

I-BDT: We have chosen a window size to fit 1.5 times the maximum saccade duration
(80 ms [47]). This value was chosen to fill the minimum size requirement while keeping
the window size to a minimum, thus minimizing the duration of the pursuit detection
onset. For each subject-dataset pair, the Gaussian distributions parameters are derived
from an approximately 15 s of data to demonstrate an online training procedure. Initially,
the Expectation-Maximization algorithm was used to derive a mixture of two Gaussian
distributions based on speed samples from this period (with the smallest positive scalar
supported by the platform added to the estimated covariance matrices to ensure they were
positive definite). The parameters of the Gaussian distribution with the highest mean are
used as parameters for saccades in Equation (5.7). However, due to the low resolution of
the eye tracker, the Gaussian distribution with the smaller mean is heavily biased towards
zero and does not describe fixations adequately; we chose instead to derive the parameters
for Equation (5.6) based on the inherent eye tracker resolution: the minimum dispersion
between two samples larger than zero divided by the inter-sample period was taken as Vf ix,
and σ f ix was set to 2

3Vf ix such that ≈ 99.7% of the distribution values lie within the interval
[0,2Vf ix]. Furthermore, this low resolution also leads to speed samples with null value
during slow smooth pursuits; thus, we have redefined Equation (5.2) as

ri =
1

Nw
∑(smooth([0 <Wi <Vsac ])) (5.9)

where the smooth function applies the following logical substitutions over the entire tem-
poral window{

1x1 → 111 always
1xx1→ 1111 if sample i−1 was classified as a smooth pursuit

,

with x representing a don’t care term. In other words, ri tolerates a single isolated null
speed sample if not currently in a smooth pursuit; otherwise, it is more lenient and tolerates
up to two isolated null speed samples. This redefinition implies the temporal window must
include at least four samples.

I-VDT: In order to get I-VDT’s optimal performance, we give it an advantage by defining
pareto-optimal thresholds that maximize Z1 scores based on the ground truth. First, the Z1
score for saccade classification is evaluated for all the inter-sample velocities that can be
derived from the eye-tracker protocol; the velocity that maximizes this score is chosen as
the velocity threshold. Second, the minimum fixation duration is derived from the ground
truth and is used as the temporal window size threshold (generally around 100 ms). Lastly,
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fixing the previously defined thresholds, the Z1 score for pursuit classification is evaluated
for all the inter-sample dispersions that can be derived from the eye-tracker protocol; the
dispersion that maximizes this score is chosen as the dispersion threshold. If the ground
truth contains no pursuits, the Z1 score for fixation classification is used instead.

5.4 Experimental Results

First we look at an overview that encompasses all datasets and eye movements to show
the overall performance of the proposed algorithm. Afterwards, we analyze our results
for separate movements and datasets to provide a comprehensive understanding on the
I-BDT behavior. Results are reported using boxplots (a box is drawn between the first and
third quartiles, a horizontal line represents the median value, and whiskers extend to the
minimum and maximum values). Ideally, the value for all metrics should be as close to one
as possible. The method introduces no delays, and the average time required to classify
a new sample was 0.44 ms, thus attesting for the real-time capabilities of the proposed
approach.

5.4.1 Overall Results

Table 5.3 and Fig. 5.6 indicate the high performance of the I-BDT algorithm. It is clear
that not only I-BDT presents better scores throughout all metrics relative to I-VDT, it also
exhibits less variability. Moreover, the high Cohen’s kappa score indicates that the inter-
rater agreement between expert and algorithm was not due to chance. Note that, in its
current form, the algorithm seems to favor precision instead of recall; this is true for smooth
pursuits (which can sometimes be misclassified as fixations, specially during onset) and
saccades (which are rarely misclassified as smooth pursuits); however, fixations are very
seldom misclassified but tend to encompass other movements in its class more often.

I-BDT I-VDT

Recall µ = 91.42%, σ = 9.52% µ = 87.67%, σ = 14.73%
Precision µ = 95.60%, σ = 5.29% µ = 89.57%, σ = 8.05%
Specificity µ = 95.41%, σ = 7.02% µ = 92.10%, σ = 11.21%
Accuracy µ = 96.95%, σ = 2.54% µ = 94.65%, σ = 4.50%

Table 5.3: Average algorithm performance per dataset per subject per movement class (n = 3×6×
3+1×6×2 = 66) [66].

5.4.2 In-depth Analysis

We start our in-depth analysis by looking at the algorithms performance per dataset for
fixations. Fig. 5.7 shows that the algorithm scores highly for the recall and precision metrics
for this class, consistently above 90%, and generally above 95%. However, since fixations
are the prevalent class in all datasets, false positives are drowned in the larger number of
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Figure 5.6: Overall algorithm performance. Recall, precision, specificity, and accuracy per dataset
per subject per movement class (n = 3× 6× 3+ 1× 6× 2 = 66). Cohen’s kappa per dataset per
subject (n = 4×6 = 24) [66].

true positives; as a result, it is of great importance to look at the specificity when evaluating
fixation classification performance. In this case, I-BDT scored above 80% reliably. It is
plain that the specificity for dataset II is well above the others, which suggests that the
false positives are mostly misclassified smooth pursuits. This is supported by evidence that
slow smooth pursuits are the ones being misclassified; specificity for dataset I is almost
consistently lower than for dataset III and IV, presumably due to dataset I always including
the slowest smooth pursuits. Likewise, specificity for dataset IV is only sometimes lower
than that of dataset III because dataset IV only randomly includes the slowest smooth
pursuits.

As can be seen in Fig. 5.8 and Fig. 5.9, specificity for both saccades and smooth pursuits
classification is persistently high (> 95%). However, similarly to how precision can be
misleading for the performance evaluation of fixation classification, specificity can be
deceptive for saccades and smooth pursuits classification as false positives get masked
by the larger amount of true negatives. Thus, we analyze saccade and smooth pursuit
classification through the recall and precision metrics.

Fig. 5.8 shows that saccade classification is very precise (> 90%) in the majority of
cases. While the proposed algorithm also displayed a good recall (mostly above 80%), it
is clear that some saccades are being misclassified; these are usually saccades surrounded
by noise, which the algorithm ends up interpreting as a high movement ratio and, thus,
classifying as smooth pursuits. This effect also leads to the I-VDT algorithm outperforming
I-BDT for saccade recall for dataset II. Since this dataset contains no smooth pursuits, there
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Figure 5.7: Performance metrics per dataset for fixations [66].

is a clear velocity threshold separating the remaining movements, and, thus, I-VDT can
clearly distinguish between them. I-BDT, however, is still affected by saccades surrounded
by noise, on average classifying 2.18% of the samples as smooth pursuits. In contrast,
dataset III exposes one of the I-VDT weaknesses as it contains smooth pursuits with higher
speeds (i.e., 44 ◦/s); as a result, smooth pursuit and saccade speeds overlap, yielding the
misclassification of some high-speed pursuits and decreasing saccade classification preci-
sion.

Regarding smooth pursuit classification performance, Fig. 5.9 highlights the consistent
good precision (> 80%) through all datasets, scoring above 90% in the great majority
of cases. I-BDT exhibits good recall (> 85%) for datasets III and IV. As mentioned
previously, for dataset I there is a struggle to classify slow smooth pursuits, resulting in the
smaller recall for this dataset. Furthermore, it is worth noticing that I-BDT cannot reach
maximum recall by design; since the algorithm relies on a temporal window to consider
smooth pursuits, there is an onset period after the smooth pursuit has started until I-BDT
starts classifying samples as such.

Fig. 5.10 illustrates I-BDT’s smooth pursuit classification relative to that of a domain
expert. Notice how the algorithm detects a false short smooth pursuit sequence at the be-
ginning due to a saccade surrounded by noise. In an offline version, such misclassifications
could be eliminated, for example, by using a minimum duration threshold for smooth pur-
suits; the one in question, has a duration of approximately only 100 ms. Moreover, it is
possible to perceive the onset period for the smooth pursuit detection at the beginning of
each smooth pursuit; this onset period could also be dealt with in an offline version by
employing a similar detection technique but reversing the order of the samples. Further-
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Figure 5.8: Performance metrics per dataset for saccades [66].

more, notice that during the second smooth pursuit the eye speed quickly switches between
zero and close to zero values, misleading the algorithm, which does not detect the whole
slow pursuit successfully. Thus, we do not advise the usage of I-BDT as is for very slow
smooth pursuits when using low-resolution eye trackers; higher resolutions should allevi-
ated this problem, but further investigation is required. It is worth noticing that, despite this
weakness, low-resolution eye trackers are more appealing for embedded use in dynamic
scenarios because these systems are cheaper, less computationally intensive, and consume
less power than their high-resolution counterparts.

Comparing our results to those of related work is relatively complicated, mainly due
to the lack of openness regarding algorithms and datasets, and due to differences in eye-
tracking systems and metrics used for evaluation. Regarding dataset, eye-tracking system,
and online constraints, our work is most similar to [249]. Our dataset design was heavily
influenced by the dataset used in [262] and [263]; the main differences are 1) smooth
pursuits in this work are not restricted to horizontal and vertical directions, and 2) we chose
not to include short smooth pursuits (e.g., amplitude of 2◦ and velocity of 30 ◦/s) as their
durations are smaller than an acceptable latency for the subject to start tracking the target.

In their work, [249] report an accuracy for smooth pursuit detection up to 92% whereas, in
this work, I-BDT reached an average accuracy of 94.98%, ranging from 90.57% to 98.19%.
It is worth noticing that accuracy alone does not allow us to completely evaluate algorithm
performance [264]. Unfortunately, the machine learning-based classifier presented in [249]
is not available for evaluation on our dataset, nor is their dataset available for evaluation
with other algorithms. Thus, a direct comparison of both methods could not be performed.

[239] use a subset of the dataset from [263]; however, their algorithm is designed for
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Figure 5.9: Performance metrics per dataset for smooth pursuits. Dataset II contains no smooth pur-
suits in the ground truth; thus, the resulting performance metrics are irrelevant and not reported [66].

offline analysis of high-resolution eye-tracking data. Thus, it cannot be applied to low-
resolution eye trackers such as the one used in this work – mainly due to the preliminary
segmentation stage relying on hypothesis testing, which would require a long time interval
from the low-resolution eye tracker to be statistically significant (363 ms compared to the
22 ms used in their work). Nonetheless, their static image dataset can to some extent be com-
pared to dataset II (in the sense that both do not contain smooth pursuits inducing elements).
Similarly, their video and moving dot datasets can be compared to datasets I, III, and IV.
Since their algorithm uses the same mechanism as I-VDT to separate saccades from other
eye movements, their algorithm performance in this regard is clear. Thus, we briefly draw
a parallel between their results for smooth pursuit and fixation classification and our results.
Table 5.4 reports recall and specificity values from I-BDT mean results from this work,
as well as best case results from [239] – to pick a best case scenario, we utilize the max-
imum value independent from which expert (1 or 2) was used as ground truth. Although
I-BDT seems to provide better performance despite working under harder constraints, a
fair and valid conclusion could only be drawn from similar experiments. Nonetheless, it
is worth noticing that such an experiment is possible as I-BDT could be applied to the
datasets from [239] (e.g., by coalizing the data into a lower resolution or applying I-BDT
with adapted parameters). Unfortunately, neither dataset nor algorithm implementation
from [239] were available at the time of writing.

105



5 Eye Movement Identification

False pursuit Missing slow pursuit0

E
ye

 S
pe

ed
 (

a.
u.

)

Time (a.u.)

Algorithm Pursuits
Ground Truth Pursuits

Figure 5.10: I-BDT smooth pursuit classification compared to that of a domain expert, accompanied
by the eye-speed signal. A wrongly detected smooth pursuit and a partially detected slow smooth
pursuit are highlighted. Moreover, notice the onset period required by the algorithm to classify the
smooth pursuits [66].

Recall Specificity
I-BDT Larsson I-BDT Larsson

Static
Fixation 0.985 ≈0.93 0.977 ≈0.98
Pursuit N/A ≈0.75 N/A ≈0.97

Dynamic
Fixation 0.986 ≈0.90 0.859 ≈0.85
Pursuit 0.822 ≈0.80 0.984 ≈0.95

Table 5.4: Performance comparison between I-BDT and [239]. Static represents the average per-
formance for dataset II compared to the best performance for the images dataset. Dynamic repre-
sents the average performance for datasets I, III, and IV compared to the best performance for the
videos/moving dot datasets [66].
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5.5 Conclusion

In this chapter, we have proposed and evaluated a novel algorithm for the real-time identifi-
cation of fixations, saccades, and smooth pursuits. Since the algorithm operates directly on
the eye-position signal, it requires no calibration step. The proposed algorithm displayed
higher and more consistent performance than a state-of-the-art algorithm, demonstrating the
capability of I-BDT to provide meaningful ternary classification. Moreover, an open-source
MATLAB implementation of the algorithm is provided.

One of the main difficulties during evaluation, was the lack of open annotated datasets.
The manual coding of eye movements is a subjective, laborious, and time-consuming task;
thus, having to create one from scratch is far from ideal. In an effort to allow for review and
to kick-start an open-access benchmark for the evaluation of eye movement identification
algorithms, we provide our annotated datasets openly at www.ti.uni-tuebingen.de/
perception.

For future work, we are interested in analyzing additional features for I-BDT to further
improve its performance as well as evaluating the algorithm with higher-resolution eye
trackers. Moreover, an important step to enable the fully automation of eye movements
classification is a reliable detection of blinks, which the proposed algorithm does not take
into account at the moment. Furthermore, we are intent on developing solutions to account
for head movements in order to reliably distinguish smooth pursuits from vestibulo-ocular
reflexes.
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6 Apotheosis: The EyeRec Project

“The whole is greater than the sum of
its parts.”

—Aristotle

On one hand, a platform is as good as the methods that it integrates. On the other,
regardless of how extraordinary a method’s performance might be, its usefulness is quite
limited if users cannot easily take advantage of it. This symbiotic relationship is the key
driver behind the EyeRec project, whose aim is to provide a high-usability, transparent, and
hardware agnostic platform for real-time pervasive head-mounted eye tracking, offering
effortless integration for new eye-tracking methods.

High-usability in the sense that it is straightforward and requires minimum interaction
for non-expert and non-technical users to use. This means we strive to provide robust and
parameterless1 methods. Transparent in terms of being open source so users can know and
choose which methods are used. Hardware agnostic meaning that EyeRec development is
not guided by the requirements of a particular eye tracker, supporting a whole plethora of
both specialized and Do-It-Yourself (DIY) devices instead. Real-time operation so users
can utilize it for online gaze-based applications, such as HCI. Pervasive in a manner that
it can be utilized in out-of-the-lab scenarios with an unsupervised and quick calibration
procedure. Finally, effortless integration to the extent that we try and offer a clear and
simple interface for common eye tracking tasks, allowing developers to simply encapsulate
their methods within these interfaces and take advantage of the rest of the infrastructure
and methods offered by the platform.

The aim of this chapter is to contextualize and give a brief overview of the EyeRec project.
First a bit of history behind its origins and related work are introduced in Section 6.1.
Henceforth, we use the term EyeRec to refer to the set of individual interfaces and method
implementations that can easily be reusable within any eye-tracking software, whereas
EyeRecToo refers to the software distribution integrating these methods and interfaces to-
gether with other required components to construct a fully functional eye tracking platform.
Section 6.2 briefly dwells into the software architecture of EyeRecToo; afterwards, it in-
troduces the EyeRec interfaces and how these connect into EyeRecToo. For more in-depth
information, we refer the reader to the main repository hosted by the University of Tübin-
gen (https://atreus.informatik.uni-tuebingen.de/santini/EyeRecToo) or the
author’s personal repository (https://github.com/tcsantini/EyeRecToo).

1Technically speaking, methods that do not require the user to tune parameters.
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6 Apotheosis: The EyeRec Project

6.1 Origins

“ EyeRec is a data acquisition software for head-mounted eye trackers. Its main raison d’être
is to provide an open platform to replace the data acquisition functionality from eye-tracker
vendors software, which typically are expensive and closed-source. Thus, if something is not
working properly, you can fix it yourself instead of relying on the vendor to fix it; for instance,
if the pupil detection algorithm does not suit your needs. ”

—Excerpt from the first EyeRec distribution README

The vast majority of eye tracking users employ the accompanying software to their hard-
ware. At first glance, this is a natural and well motivated decision: Theoretically, vendors
should known their hardware exactly and, thus, know which constrains and assumptions are
valid, allowing them to fully optimize their system. In practice, however, this is not always
the case. For instance, companies: a) have a limited amount of resources and must choose
carefully where to invest these resources, b) do not usually design and manufacture all their
components – e.g., cameras are usually COTS, c) must take hardware costs into account,
and d) are sometimes divided into separate entities with different priorities, making it hard
to tend to user feedback adequately2. One should also be careful not to over-estimate the
scientific competence of the vendors [47]. Additionally, commercial software presents other
issues such as:

High cost: vendors usually must have a (justifiably) high markup on both software and
hardware because of the small volume of sales in the eye-tracking market. Whereas
most research users from academia and industry are able to afford these systems, it
is a significant hindrance for small companies, third-world universities, and regular
users. With the recent interest in eye tracking for accessibility [265], gaming [266],
as well as virtual and augmented reality [267], the eye-tracking industry has seen a
surge in interest that might decrease associated costs as evidenced by the release of
low-cost remote eye trackers such as the EyeTribe and Tobii 4C.

Lack of transparency: most vendors consider their methods a vital component of their sys-
tems and, thus, keep these behind closed doors. This is particularly pertinent for eye
movement research, where the system might actually hide (or even produce) events of
interest, making some methods improper for certain research questions [121], [268].
Many vendors also filter the gaze signal, which can significantly alter results, but do
not provide any information on how the filter works [47].

Lack of robustness and third-party access: given their limited resources, vendors often
follow the Pareto principle3, covering only a small set of possibilities that cover a

2A good example here is Tobii, which, despite offering the best eye-tracking solutions in the opinion of this
author, has a big flaw in the fact that the user facing branch (Tobii Pro) has little influence over the branch
that develops the technology (Tobii Tech).

3A misnomer for the “vital few and trivial many” concept [269], [270].
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majority of the users. This results in a lack of robustness, evidenced by the lack of
eye-tracking systems that actually work with glasses and outdoors. From a business
perspective, this is understandable but excludes a significant part of the population
and applications nonetheless [53]. While some companies might be willing to im-
plement a customer’s property or functionality [47], this is often on a case-by-case
basis and largely dependent on the customer size and effort required to implement
the request. A possible solution then would be to allow users to plug-in their own
methods so that researchers and other interested parties could improve such aspects;
this, unfortunately, does not seem to happen in practice.

Aside from commercial software solutions, open-source solutions also exist [91], [165],
[197]–[199], [214], [215], [271]–[277], mostly stemming from academia. Some notable
mentions are: a) The Haytham Gaze Tracker [277], an open-source video-based eye
tracker suited for head-mounted or remote setups that is currently in beta and offers some
truly interesting functionality for interaction with computer screens, including head-gesture
and blink recognition. b) The ITU Gaze Tracker [199], [273], a framework for open-
source eye tracking using off-the-shelf components, such as web and video cameras, sup-
porting both head-mounted and remote setups; some of its developers later went on to create
the EyeTribe [278], which was later acquired by Oculus VR [127]. c) Pupil [124], [165],
which started as a master thesis at the MIT [279] and developed into a commercially-driven
(and most successful open-source solution to date) framework for open-source eye tracking
under Pupil Labs GmbH [124], offering a handy plugin system4. For a more in-depth list
of available eye tracking solutions, we refer the reader to the COGAIN’s list [280]. With
existing open-source solutions available, the reader might be wondering if developing yet
another one is not just another case of Not Invented Here Syndrome (NIHS) or standards
proliferation – see Fig. 6.1 for a quirky explanation of the latter.

Figure 6.1: An XKCD Comics’ illustration of standards proliferation, courtesy of Randall
Munroe [281].

4https://docs.pupil-labs.com/#plugin-guide
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In fact, one of this author’s main usability complains with Pupil is exactly in this regard:
For instance, developing in-house Graphical User Interfaces (GUIs) frameworks and de-
vice interface protocol specification5, instead of relying on well-established components.
Existing solutions also exhibit other problems such as guiding development towards a par-
ticular device, general licensing disagreements, use of language-specific containers, all of
which contribute to non-adoption. EyeRec does not aim to be a one-size-fit-all solution;
that would be a fallacy. Instead, EyeRec focus on head-mounted devices, trying to meet the
requirements highlighted in the beginning of this chapter by:

1. using a camera-agnostic interface for handling different eye trackers,

2. providing a set of readily available methods for eye tracking, allowing for a straight-
forward method replacement (e.g., if a pupil detection method does not perform
well for a participant) as well as method comparison for research or benchmarking
purposes,

3. employing language-agnostic data formats, allowing for immediate data access re-
gardless of which language and operating system the user favors, and

4. encapsulating functionality in a modern and cross-platform application framework
(Qt), which provides portability, increased usability, and allows developers to focus
resources on the eye-tracking aspect instead of already solved GUI and cross-platform
development issues.

6.1.1 A Trace of the Past

Aside from technical aspects, it is worth preserving a bit of EyeRec’s history to understand
how it got to the its current state and where it is going. Let us go back to EyeRec’s be-
ginning back in 2015. At that time, we were working on improving pupil detection for an
industrial cooperation project. While the focus was on pupil detection, we quickly realized
one thing: How could we actually integrate this new method into the eye tracker’s vendor
software for real-time operation? As it turned out, there was no viable option, so we started
looking into open-source alternatives, hoping to find a project a) in which to integrate our
newly developed methods, and b) that we could adapt to our industry partner’s requirements.
Much to our dismay, none of the available alternatives could even access the eye tracker
we were interested in, nor were our usability expectations met. There was, however, one
internal project in our research group – developed by Thomas Kübler and which would later
blossom into Smart Ocular Motility Analysis [9] (SOMA) – whose implementation was
able to access the eye tracker’s cameras 6. This project’s code base served as foundation for
the development of the very first EyeRec incarnation7 [70]. This name was suggested by
Wolfgang Fuhl, who also contributed the first pupil detection algorithm (ExCuSe). Many of

5E.g., see https://github.com/pupil-labs/pyglui and https://github.com/pupil-labs/pyndsi
6Through the VideoMan [282] library
7The original repository has been archived but is still accessible at https://atreus.informatik.
uni-tuebingen.de/santini/EyeRec/.
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the design decisions were taken to satisfy the industrial partner’s requirements, leading this
version to little flexibility – for instance, only monocular eye trackers were supported, and
selecting an eye tracker was clumsily done through editing a text file. Nevertheless, many
lessons were learned from the development of the original version. These lessons translated
into a much more flexible and streamlined second-generation: EyeRecToo8 [67]. For this
version, major architectural changes happened, and the whole infrastructure was rewrit-
ten from scratch9 – with only the integrated pupil detection and gaze estimation methods
withstanding this revamp. Some of the major improvements included a) the replacement
of the old camera backend replacement by the QMediaService10 infrastructure, and b) the
integration of CalibMe. The former lead to a streamlined and uniform method to add
support for new devices: Simply implementing a QMediaServiceProviderPlugin11, giving
device access not only to EyeRecToo, but also to other Qt-based applications. This also
included the implementation of the uvcengine12, which enables access to UVC-compliant
devices, including the Pupil eye trackers. Since then, many small improvements (e.g., better
video containers) as well as larger additions (e.g., the development and integration of PuRe,
PuReST, and Grip) have contributed to turning EyeRecToo into a real alternative to users
who are unsatisfied with the performance of existing eye-tracking platforms.

6.2 Architecture and Interfaces

EyeRecToo is built around widgets that provide functionality and configurability to the
system. It was designed to work from a single camera configuration (e.g., a single eye
camera to study eye movements or single field camera for egocentric video studies) to a large
array of cameras (e.g., stereo eye cameras and multiple field cameras). Whereas it focus
on mono or binocular head-mounted eye trackers (with a field camera), it also foresees the
existence of other data input devices in the future – e.g., an Inertial Measurement Unit (IMU)
for head-movement estimation [283]. This is achieved by assuming there is no hardware
synchronization between input devices, employing a built-in software synchronizer instead.

Each input device is associated with an input widget. Input widgets register with the
synchronizer, read data from the associated device, timestamp the incoming data according
to a global monotonic reference clock, possibly process the data to extend it (e.g., pupil
detection and marker detection), and save the resulting extended data, which is also sent
to the synchronizer. The synchronizer’s task is then to store the latest data incoming from
the input widgets (according to a time window specified by the user) and, at predefined
intervals, generate a DataTuple with timestamp t containing the data from each registered
input widget with timestamp closest in time to t, thus synchronizing the input devices
data13. The resulting DataTuple is then forwarded to the calibration/gaze estimation, which

8Available at https://atreus.informatik.uni-tuebingen.de/santini/EyeRecToo/.
9 We chose to add the Too suffix to indicate to users that this is a completely different program, rather than

just an updated version of the original.
10http://doc.qt.io/qt-5/qmediaservice.html
11http://doc.qt.io/qt-5/qmediaserviceproviderplugin.html
12https://atreus.informatik.uni-tuebingen.de/santini/uvcengine
13In case the input devices are hardware-synchronized, one can use a delayed trigger based on any of the input
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complements the tuple with gaze data. The complete tuple is then stored (data journaling),
broadcasted through UDP (data streaming), and exhibited to the user (GUI update). This
results in a modular and easily extensible design that allows one to later reconstruct events
as they occurred during run time; this architecture is depicted in Fig. 6.2.

Figure 6.2: In the asynchronous section of EyeRecToo, input devices generate data (d), which are
processed independently by the input widgets. These widgets then augmented the input stream
based on the input widget type (e.g., with the detected pupil location), resulting in the extended data
(dL,dR,dF ). These are are timestamped (ti, t j, tk), stored to disk, and forwarded to the synchronizer
(Sync) by the respective input widget. The synchronizer generates data tuples of synchronized data
based on the timestamps, which the gaze estimation widget uses to derive a gaze estimation (g). The
gaze estimate is then added to the data tuple and forwarded to the journaling, streaming and GUI
update stages. Adding new input devices to the system is achieved through adding a custom input
widget.

6.2.1 Input Widgets

Currently two input widgets are implemented in the system: the eye camera input widget,
and the field camera input widget. These run in individual threads with highest priority
in the system. The eye camera input widget is designed to receive close-up eye images,
allowing the user to select during run time the input device, region of interest (ROI) in which
eye feature detection is performed, image flipping, as well as pupil detection and tarcking
algorithms. The field camera input widget is designed to capture the user’s egocentric
view, allowing the user to select during run time the input device, image undistortion,

devices to preserve synchronization.
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image flipping and fiducial marker detection. Additionally, camera intrinsic and extrinsic
parameter estimation is built-in. Currently, ArUco markers are supported. Both widgets
store the video (as fed to their respective image processing algorithms) as well as their
respective detection algorithm data and can be used independently from other parts of the
system (e.g., to detect pupils in eye videos in an offline fashion).

6.2.2 Gaze Estimation Widget

This widget provides advanced calibration and gaze estimation methods, including two
methods for calibration (supervised / unsupervised). The supervised calibration is a typical
eye tracker calibration, often referred to as natural features calibration, which requires
a human supervisor to coordinate with the user and select points of regard that the user
gazes during calibration. The unsupervised calibration method is a implementation of the
CalibMe method described in Chapter 4. Moreover, functionalities to save and load data
tuples (both for calibration and evaluation) are implemented, which allows developers to
easily prototype new calibration and gaze estimation methods based on existing data.

6.2.3 Interfaces

Throughout this section, we will omit the functions’ signatures and simply refer to them
solely by name a) for the sake of readability, and b) since these signatures might change in
the near future. To further improve readability, functions shall be highlighted as foo()
and classes as Foo .

EyeRec currently supports interfaces that allow users to easily extend pupil detection,
pupil tracking, and gaze estimation functionality. This is achieved through C++ abstract su-
perclasses containing pure virtual functions related to the desired functionality (e.g., pupil
detection) as well as functions providing shared functionality (e.g., the generic confidence
measure introduced in Section 3.1.2). Naturally, to introduce a new method to the architec-
ture, one simply creates a subclass inheriting from the appropriate superclass, implementing
all pure virtual functions. Similarly, each method is identifiable by requiring the developer
to implement a description() pure virtual function. These interfaces are provided by
the PupilDetectionMethod , PupilTrackingMethod , and GazeEstimationMethod
abstract superclasses.

In the context of EyeRecToo, classes deriving from these methods can be regis-
tered in the system within EyeImageProcessor (pupil detection and tracking) and
GazeEstimation (gaze estimation). EyeImageProcessor lives inside of the eye cam-

era input widget, whereas GazeEstimation lives inside of the gaze estimation widget.
After registering new classes, EyeRecToo automatically handles attaching the method to
the GUI’s list of available methods, calls the appropriate class’ methods if so selected by
the user, and integrates the results into the rest of the framework.

Pupil detection is accessible through the detect() and detectWithConfidence()
functions. The former interface provides access to the as-is implementation, whereas
the latter augments the result with a generic pupil confidence metric. Developers
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wishing to integrate new methods provide the implementation encapsulated in the
implDetect() function. EyeRec includes implementations for ExCuSe, ElSe, and

PuRe.

Pupil tracking is accessible through the detectAndTrack() function, which automati-
cally switches between pupil detection and tracking based on the pupil confidence
metric. Users can choose any mix of pupil detection and tracking algorithms. De-
velopers wishing to integrate new methods provide the implementation encapsulated
in the track() function. If their method also provides a indispensable detection
stage, they can override the virtual detect() function instead of allowing the user
to pick any pupil detection algorithm. Unless the detection stage is indispensable,
we highly recommend developers to integrate the detection stage as a pupil detection
method instead. For finer control over the switching between detection and track-
ing, detectAndTrack() is marked virtual, allowing developers to override it if so
desired. EyeRec includes a implementation for PuReST.

Gaze estimation functionality is accessible through two functions: calibrate() and
estimate() . Developers wishing to integrate new methods provide the implemen-

tation encapsulated in the calibrate() and implEstimate2d() functions. A
barebones implementation produces a gaze estimate for each eye camera indepen-
dently. The interface then takes care of deriving a binocular gaze estimate and deter-
mining the appropriate gaze estimate (i.e., monocular left eye, monocular right eye,
or binocular) based on user preference and input validity (e.g., pupil confidence and
camera availability). Developers can obtain finer control over binocular gaze estima-
tion by overriding the virtual estimateBinocular2d() function. EyeRec includes
implementations for Grip, homographies, as well as monocular and binocular ver-
sions of bivariate and quadvariate polynomial regressions of multiple polynomials.
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“In theory, there is no difference
between theory and practice. But, in
practice, there is.”

—Walter J. Savitch

In this chapter, we demonstrate the applicability and effectiveness of EyeRecToo and
the methods introduced in this thesis through a large-scale fully-unconstrained mobile eye
tracking study. In particular, it is worth highlighting the following aspects:

• Real-time performance using a mobile and light-weight processing unit, including
data acquisition, processing, and storage.

• Broad participant coverage, allowing for over one hundred participants from over
thirty distinct nationalities between 18 and 66 years old without any a) selection of
participants suited for eye tracking nor b) parameter adjustment.

• High usability, enabling data collection by multiple unexperienced experimenters.

• Low cost, allowing us to collect data with four systems in parallel at a fraction of the
price of typical commercial eye tracking systems.

Here, we focus on system design and usability. For results regarding gaze estimation
performance, please refer to Section 4.2.3.

7.1 Motivation

Pervasive mobile eye tracking provides a rich data source to investigate human natural
behavior [284], [285], which provides a higher degree of ecological validity than traditional
in-the-lab controlled experiments, specially when combined with natural environments, In
the context of museums, there is strong evidence that ecologically valid testing in natural
conditions (e.g., in museum conditions) is paramount for experimental aesthetics [286],
and object authenticity (e.g., photographs vs real objects) has a positive impact on subjects’
attention [287]. Moreover, eye tracking provides significantly more detailed insights than
traditional timing-and-tracking or external observer approaches [287] – e.g., see Fig. 7.1
and Fig. 7.2. Previous works using mobile eye trackers in museums have investigated
the difference in eye movements between children and adults [286] and how expertise
influences viewing behavior of domestic textiles [288], as well as performed exploratory
studies [285], [287], [289], [290]. However, many of these works are either constrained
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(e.g., subjects observe paintings only from a fixed position), have very short durations, or
do not discuss the accuracy of the eye trackers, which is known to still suffer from multiple
issues such as drift and parallax errors [47]. In this Section, we present in detail the eye
tracking system used in a large scale fully-unconstrained study in the Austrian Gallery
Belvedere, providing useful information for system designers. This study is described in
detail in Section 7.3 and is part of a larger experiment, whose aim is to investigate how
visitors perceive artworks in relation to distinct museological settings1.

Figure 7.1: Eye-tracking enabled insights. Eye tracking reveals the trajectory of fixations (i.e., the
scanpath) as the visitor attends to Giovanni Segantini’s The Evil Mothers. These scanpaths provide
key insights into the human cognitive process and are also useful for distinguishing a subject’s
expertise level [291]. Figure best visualized in digital form [53].

1Combinations of artworks, spacial placement, additional textual information, etc.
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Figure 7.2: Eye-tracking enabled insights. Whereas an external observer might be tempted to
consider that the visitor is gazing at the face from Gustav Klimt’s portrait of “Amalie Zuckerkandl”
because of its saliency, eye tracking reveals the visitor’s true fixation position, suggesting an analysis
of the painting details along Amalie’s dress. Figure best visualized in digital form [53].

7.2 Eye-Tracking System

When designing the eye-tracking system, one of our goals was to make the system as general
as possible while maintaining real-time and pervasive in-device eye tracking functionality.
This includes being accessible for users with glasses, which represent about 30 percent of
the young adult population [292], without the need for them to remove their glasses – e.g.,
as required by Tobii and SMI glasses. This is particularly critical with the ever growing
myopia epidemic; for instance, in East and Southeast Asia, myopia prevalence reaches
over 80% of the young adult population [293]. A direct result from these requirements
is that the resulting system can be easily calibrated and used in real-time in an individual
fashion, enabling future gaze-based human-computer interaction applications [22] – e.g.,
gaze-activated audio guides. Research wise, the developed system also allows an experi-
menter to check pupil detection and gaze estimation accuracy in real time without the need
of additional devices and available network, allowing for significant improvement in data
quality as well as a much simpler and cheaper experimental setup. In comparison, other
mobile eye-tracking systems commonly require a separate recording unit and a separate
control device for the experimenter – e.g., Dikablis, SMI, and Tobii glasses [160], [194],
[195].

7.2.1 Hardware

We employed a binocular Pupil [124], [165] (Pupil) head-mounted eye tracker (2x Pupil
Cam2 eye cameras; 1x Pupil Cam1 scene camera). This device was paired with a Microsoft
Surface Pro 42 tablet running Windows 10.1, a USB 3.0 hub, and a slide presenter. Through
this slide presenter, experimenters could toggle the recording, calibration, and view of all
cameras, allowing for a seamless remote-control experience without direct tablet interaction.
Since the subjects were free to roam, it was necessary to find a comfortable and lightweight
method for carrying the hardware components. Our initial candidate was a backpack de-
signed for this tablet and provided as part of the Dikablis Wireless system [160]. However,

2Configured with a Intel R© CoreTM i5-6300U
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Figure 7.3: Subject contemplating Wilhelm Bernatzik’s Pond while wearing the eye tracking system
during the experiment. Notice the remote-control receiver and the eye tracker cable near the left and
right shoulders, respectively [53].

aside from the steep price (350 EUR each), the protective mesh hampered air flow and made
it impossible to use the tablet’s touch screen without opening the backpack. Thus, we built
our own solution out of a biking hydration backpack, each costing less than 9 EUR [294].
This was easily achieved by removing a cutout from the backpack canvas as well as parts
of the side fabric; the tablet was then inserted into the backpack with a cardboard piece and
two Styrofoam bars separating the tablet from the backpack side that stays in contact with
the user’s back. This solution allowed for a decent amount of airflow and tablet interaction,
while keeping the warmth of the tablet away from the subject. Furthermore, two apertures
(originally designed for the water reservoir straws) located at the seams of the backpack
straps provided ideal places to run the eye tracking cable and place the remote-control
receiver. The complete system (see Fig. 7.3) weighs less than 1 kg with a total cost of about
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3197 EUR – contributed mostly by the eye tracker (2150 EUR) and tablet (1015 EUR); user
feedback is reported in Section 7.4. Thanks to this small cost, we were able to conduct the
experiment with four systems simultaneously; in contrast, solutions provided by vendors
typically cost more than our four systems combined. An additional benefit enabled by mul-
tiple systems is the ability of running simultaneous measurements within groups, allowing
for the exploration of collaborative learning and social engagement [290]. It is worth noting
that this social aspect adds to the ecological validity of museum-related experiments as
approximately 75 to 95 percent of visits are done in groups.

7.2.2 Software

Although the Pupil eye tracker manufacturer provides a software solution (Pupil [124]
(Pupil Capture) and Pupil [124] (Pupil Player)), we opted to use EyeRecToo instead. One
of the main reasons for this decision was the difficulty in calibrating outside of the lab in
natural environments with Pupil Capture and its manual marker calibration3. Additionally,
the pupil detection we experienced seems to be bimodal, either working relatively well
or not at all. EyeRecToo on the other hand provides a robust marker detection (through
ArUco [186] (ArUco)) and an advanced calibration method called CalibMe, which uses
a target moving w.r.t. the scene camera for calibration (see Section 7.3). Furthermore,
EyeRecToo also provides PuRe and PuReST, which significantly outperforms the methods
available in Pupil (as shown in Chapter 3).

7.2.3 Advice for System Designers

Pervasive robust video-based eye tracking remains not only challenging, but also compu-
tationally expensive. Since embedded devices are required to allow for mobility, handling
three4 camera streams, image processing, and data recording is not trivial. In particular, one
of the biggest challenges we found was performance throttling mechanisms – e.g., to stay
within thermal constraints [295]. Such mechanisms are present virtually in every powerful
modern system on chip. For instance, the Intel Extreme Tuning Utility [296] reports four
different throttling mechanisms for the device employed in this work: Thermal, power limit,
current limit, and motherboard VR thermal throttling. While some of these mechanisms are
activated to keep the device within thermal constraints or because the battery can no longer
supply enough current, the end result is more or less the same: A significant performance
drop. Practitioners should be aware of such behavior and test during longer periods of
operation to assure that performance requirements are within the expected range. Failing
to do so might result in severe frame dropping during field experiments; it is worth noting
that EyeRecToo provides a useful performance monitoring widget, which allows one to
monitor frame dropping. Furthermore, when developing mobile systems such as ours, it
is important to minimize single points of hardware failure, such as USB connections.

3 Pupil seems to be aware of this issue since modifications to the marker were made recently; see:
https://github.com/pupil-labs/pupil/releases/tag/v1.2

4The actual number of cameras might change depending on the eye tracker. For instance, a monocular one
has two cameras, whereas Tobii glasses has five.
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During our initial in-the-lab tests, we noticed that the connection between the USB hub
and the eye tracker cable would spuriously stop working because of cable movement; a
simple solution with Velcro was promptly arranged to make sure the connection remained
tight even during harsh movements. In contrast, we experienced connection issues with the
Pupil USB clip only a single time, during the field experiment. Finally, it is also important
to be aware of operating system specific requirements and caveats. For Windows 10.1,
we found the following worth of mention5: 1) disabling the Connected Standby feature6,
which allows for a more extensive customization of advanced power settings, 2) disable
sleeping/hibernation options, 3) disable USB selective suspend setting, 4) disable Turn off
hard disk after, 5) uninstall Microsoft OneDrive, 6) disable the Windows search index ser-
vice, 7) disable the Windows updater service after every reboot. The latter three items are
necessary to prevent Windows from running CPU intensive tasks during experiments.

7.3 Data Collection

7.3.1 Participants

Visitors arriving at the top of the Grand Staircase of the Austrian Gallery Belvedere were
invited to join the experiment. The only requirements for a participant to take part was
their consent (thus requiring them to be 18 or older) and ability to speak either English
or German. The experiment took place from the 22nd to 28th of January 2018, with data
being collected during five of these days. In total 109 subjects (63 females) took part in our
experiment averaging 34.86 years of age (σ = 14.62).

7.3.2 Procedure

Upon accepting to take part in the experiment, the subject received and read a consent form
containing experiment instructions. Afterwards, an experimenter assisted the subject to don
the eye-tracking system (see Section 7.2 for details). The subject was then asked to stand
on a floor mark approximately 1.16 m away7 from a CalibMe collection marker that stood
at about the same height as the paintings in the gallery. The experimenter adjusted the scene
camera to center the collection marker, and then proceeded to adjust the eye cameras to a
suitable position. Subsequently, the user was instructed on how to perform the calibration
by always gazing at the central intersection of the collection marker while moving his head
in a spiral fashion smoothly and slowly. The experimenter then started the recording and
the subject calibration procedure, controlling when the eye tracker calibration started and
stopped. After calibration, the subject was asked to gaze at four Post-its R© about 25◦ away
from the marker center so the experimenter could check the gaze estimation quality. It

5Please note that most of these informations came from extensive interactions with Microsoft Support. These
changes are provided as part of a detailed documentation of our system without warranty of any
kind. In no event shall the authors be liable for any claim, damages or other liability.

6registry: HKEY_LOCAL_MACHINE\System\CurrentControlSet\Power\CsEnabled=0
7Calibration distance was selected to minimize parallax error for the expected viewing range from 0.5 m to

3 m.
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is worth noting that the experiment was conducted by ten experimenters without previous
experience with head-mounted eye trackers, which prior to the experiment had a half hour
instruction session with an eye-tracker expert with about three years of experience. The
participant was then instructed to freely roam through four rooms (containing more than
30 distinct paintings and sculptures) as he/she wished, and that the experimenter would
meet him at the end of the last room. At the end of the visit, the experimenter and subject
proceeded to a separate room where: 1) a second calibration was performed, 2) the subject
was interviewed and performed a remembrance mapping task, and 3) the subject answered
a questionnaire containing museum-visit and eye-tracking related questions. After the
experiment, participants were rewarded with a small souvenir.

7.4 Usability Results

For the usability analysis, we have included all participants. Since the museum-visit-related
questionnaire and interview already lasted a considerable amount of time, we opted to in-
clude only seven eye-tracking-related questions as to not overload subjects. Participants
were asked “Please indicate how much you agree with the following statement:” for each
of the statements listed in Fig. 7.4. This figure also shows the distribution of the subjects’
feedback8. Q1 addresses one of the main issues with eye tracking: The calibration, which
has been considered one of the main factors hindering eye tracking adoption [51] and is
often considered of poor usability, experienced as difficult, and described as tedious [52].
In this regard, CalibMe was perceived by ≈ 92% of users as easy to follow, even when
instructed by non-experienced experimenters. Q2, Q3, and Q4 address comfort and ob-
trusiveness [290], [298]. Feedback from these questions show that 1) the small-footprint
3D-printed eye tracker produced by Pupil has a good comfort rating (agreed by > 84%
participants) without limiting visibility – agreed by > 86% of participants, and 2) the whole
system is perceived as comfortable while maintaining mobility, real-time gaze estimation
capability, and good autonomy (≈ one and a half hour of recording and processing). Q5
and Q6 probe the implications of head-mounted eye tracking for the ecological validity of
data collected with such devices: Even with the unobtrusiveness of the system, 31.5% of
participants feeling moderately observed and 6.48% observed. Nonetheless, 76.1% of the
participants felt that the eye tracking equipment did not interfere with their art perception.

8Originally the answers were formatted in a “Not at all” to “Very much” seven point Likert [297] scale. To
facilitate visualization, we have coalesced the range [2-3] and [5-6] into single agreement/disagreement
items.
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Figure 7.4: Distribution of participant’s answers to the eye-tracking usability questionnaire. For
the top two questions (in green), the more the subjects agree, the better. For the remaining four
questions (in red), the more they disagree, the better [53].
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Additionally, we also inquired the subjects at which point in time they forgot about the
eye-tracking equipment, with the majority reporting they forgot it within two minutes into
the experiment as shown in Fig. 7.5. Nevertheless, a significant part (33.94%) reported that
they never forgot about the device, possibly because the head-mounted eye tracker used
still is too salient in the subjects’ field of view. This suggests that further improvements are
still needed to make eye trackers less conspicuous.
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Figure 7.5: Distribution of counts regarding at which point in time participants forgot about the
device during the experiment [53].

7.5 Gaze Estimation Results

As previously mentioned, for gaze estimation performance, we refer the reader to Sec-
tion 4.2.3. At the time of data collection, the real-time gaze estimation of the system was
that of the BPF since Grip had not yet being developed. Thus, results in Section 4.2.3 are
from post processing. Nevertheless, Grip adds no signficant time constraints and, thus, the
most recent version of EyeRecToo can be used with it in real-time.

7.6 Conclusion

In this chapter, we presented in detail the eye tracking system used in a large scale fully-
unconstrained study in the Austrian Gallery Belvedere. Our usability results show that
whereas the calibration and comfort of the system is already at an acceptable level, fur-
ther improvements are necessary to make head-mounted eye trackers more inconspicuous.
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These findings lead us to develop the inconspicuous and modular head-mounted eye track-
ers (Proposed) [25] shown in Fig. 7.6, reducing field of view occlusion by ≈ 66% w.r.t. to
the smallest commercial offer.
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Figure 7.6: Top left shows an user’s right eye field of view. The subsequent images demonstrate the
evolution of head-mounted eye trackers, highlighting the occlusion visually and quantitatively for
distinct eye trackers. Each eye tracker’s occlusion rate (shown in %) was calculated as the ratio of
pixels occluded by the eye tracker and the pixels visible in the field of view (non-grey area).

From an accuracy point of view, the eye tracker slipped for the great majority of the
participants, resulting in high angular gaze offset errors. This showed us that even with a
light-weight eye tracker, slippage is mostly inevitable. This prompted us to investigate an
slippage-robust solution, which resulted in the development of Grip, introduced in Chap-
ter 4.2.

Currently, future work focuses on how to automatically produce semantic mapping from
the scene camera images – i.e., to give a semantic meaning to the image region surrounding
the gaze estimate. We are currently investigating approaches to achieve this mapping.
For instance, by employing keypoints (such as ORB [299] and BRIEF [300]) or by using
convolutional neural networks (CNNs) for segmentation (such as Mask R-CNN [301])
to determine each painting/statue’s pose and identification, allowing us to map fixations
relative to the scene camera to objects of interest. Similarly, by using state-of-the-art
CNNs for face detection [302] and recognition [303], it is also possible to estimate social
interaction, an approach that can be easily extended to other social environments – e.g.,
classrooms [54]. Furthermore, the object-of-interest’ pose can also provide meaningful cues
such as interaction distance range. Although we did not measure participant willingness
to wear the eye-tracking system, anecdotally we did not experience negative responses
from the visitors towards the system. Nonetheless, this is a further usability question that
should be considered in the future. Moreover, since traditional gaze-based interaction
techniques (e.g., dwell time [49]) might prove insufficient for such dynamic scenarios,
multimodal interfaces should be considered. Finally, it is worth considering remote gaze-
sensing solutions, such as EyePliance [304], which might offer a less intrusive solution to
map visitors’ attention.
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8 Final Remarks

“Know when you’re finished, and when
you are, put your pencil or your
paintbrush down. All the rest is only
life.”

—Stephen King

Ubiquitous wearable eye tracking holds immeasurable potential to further advance our
understanding of the human mind and revolutionize the way we interact with our devices.
This thesis presents a significant move in this direction, contributing several key steps in
multiple areas of eye-tracking technology towards this goal.

In their 2010 large scale review [23], Hansen and Ji concluded that “The tendency to
produce mobile and low-cost systems may increase the ways in which eye tracking tech-
nology can be applied to mainstream applications, but may also lead to less accurate gaze
tracking. While high accuracy may not be needed for such applications, mobile systems
must be able to cope with higher noise levels than eye trackers indoors use”. The novel
pupil detection (PuRe) and tracking (PuReST) methods contributed by this thesis deal di-
rectly with this increased noise level aspect of pervasive eye tracking. The methods herein
developed provide robust real-time estimates not only for pupil center but also for its outline.
Through this improved outline estimation, we were able to develop a novel slippage-robust
and glint-free gaze estimation method (Grip) that has been demonstrated to outperform
state-of-the-art and commercial solutions in the presence of slippage during real and large-
scale unconstrained eye tracking for a large number of users. Combined with the proposed
fast and unsupervised calibration method (CalibMe), this set of methods tackles the three
major challenges presented in Section 1.1. Thus, this work enables unsupervised ubiquitous
wearable eye tracking for a large portion of the population without the need for complex
specialized hardware, allowing for hardware-agnostic solutions and easing the integration
of eye-tracking into head-worn devices. Moreover, included in this large portion of the
population are users with glasses, which have so far been relegated by the majority of
commercial head-mounted eye-tracking systems.

This work however goes beyond novel methods and significant improvements over the
state of the art. It contributes an open-source framework for wearable ubiquitous eye
tracking (EyeRec), which allows researchers to a) easily prototype and integrate new eye-
tracking methods, b) combine these methods with the remaining functionality required to
achieve an eye-tracking system, and c) evaluate the combinations and interactions between
a large gamma of eye-tracking methods. Moreover, these methods are readily available for
non-technical users using multiple commercial and DIY eye trackers through EyeRecToo
and have been proven through a large-scale fully-unconstrained eye tracking study.
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