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1. Introduction 
1.1 Custom trays 
Impression trays are used for supporting, confining and controlling impression materials 

while recording oral impressions. According to the fabrication method, impression trays 

are classified as stock trays and custom trays [1]. Stock trays are pre-made with a 

variety of sizes and shapes. According to the form of each patient’s dental arch, the 

appropriate stock tray must be selected to achieve the best fit. Even so, the limited sizes 

and shapes of stock tray cannot fully meet clinical requirements because of intersubject 

variations of patients. Essential modifications of stock trays are usually performed for a 

better fit [2], such as adjusting the flange angle for a wide dentition and adding 

baseplate wax to extend the tray border for a deep vestibule. In contrast, custom trays 

have a better fit than stock trays since they are individually fabricated according to each 

patient’s dentition and dental arch [3]. Since no additional modification is needed for 

custom trays after fabrication, custom trays are more manageable for dentists. The 

polymerization-induced shrinkage of elastomeric impression material is proportional to 

the impression thickness [4]. By providing a uniform thickness of impression material, 

custom trays minimize the inaccuracy of the final impressions, thus ensuring the 

precision of the working models and prostheses [5]. Compared to the stock tray, less 

impression material is used by the custom tray due to its more compatible size [6]. The 

saved expense of impression material may compensate for the cost of custom tray 

fabrication to some extent. In addition, streamline-designed custom trays can reduce the 

discomfort of patients, and appropriate flange extension of custom trays would 

minimize the tissue distortion.  

 

Despite the abovementioned advantages, the frequency of utilizing custom trays is 

limited by some critical factors. In conventional techniques, custom trays need to be 

fabricated by technicians in a dental laboratory. The fabricating process is complex with 

quite a few steps, namely recording primary impression, perfusing primary cast, 
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blocking undercuts, marking relief areas and tray border, adapting relief wax, adapting 

wax spacer, making tissue stops, applying separating medium, adapting tray material on 

wax spacer, fabricating tray handle, trimming margin extension and molding tray border 

[7]. 
 

In addition to the need for specific equipment and materials, the fabricating process also 

takes a long time, which often results in more visits of patients. Unlike the reusable 

stock trays, custom trays are usually discarded after impression taking since they are 

designed only for an individual patient. The extra labor, economy and time costs on 

fabrication become the disadvantages of custom trays [8], which make custom trays less 

frequently used [4,9]. With the rapid development of digital technology in dentistry, 

computer-aided design (CAD) and additive manufacturing (AM) has shown promise to 

overcome these disadvantages and provide a feasible solution. 

 

1.2 CAD and AM of custom trays 

1.2.1 CAD 
For dentistry, CAD is the term to describe designing dental products using a software 

system. First appeared in the 1980s [10], the early dental CAD software systems were 

mainly developed for dental prostheses, such as crowns, veneers, inlays, and bridges, 

but seldom for custom trays. The possible reason might be the initial computer-aided 

manufacturing (CAM) technique was based on subtractive manufacturing (SM), and to 

mill a bulky custom tray might induce a large amount of material wasted, thus 

significantly increasing the cost. With the application of AM in dentistry, newly 

developed CAD systems have added the function of custom tray design, such as 3shape 

and Zirkonzahn. To date, only a few studies are related to the custom trays fabricated by 

CAD and AM. Even so, attractive advantages of CAD/AM-fabricated custom trays have 

been reported. Huang et al. used a novel CAD method to design custom trays for 

maxillectomy patients, the result showed the impressions recorded by the 

CAD/AM-fabricated custom trays and by conventally fabricated ones did not 
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statistically differ in thickness, but the thickness of the former was more even [11]. 

Chen et al. indicated the custom trays fabricated by CAD and AM for edentulous jaws 

showed better accuracy compared to the hand-made ones. They concluded CAD and 

AM are efficient to produce custom trays with reliable reproducibility and accuracy [8]. 

Through comparing the fabrication time, Wei et al. found that using CAD and AM to 

fabricate custom trays would consume less time than using conventional technique and 

improve the efficiency both in clinical and laboratory process [12]. A clinical evaluation 

from Sun et al. demonstrated impressions recorded by CAD/AM-fabricated custom 

trays had better thickness distribution than those recorded by conventionally fabricated 

custom trays [13]. Since the CAD process has a high degree of freedom, custom trays 

can be designed to explore novel impression techniques. For example, by CAD, custom 

trays can be modified to equip a Gothic arch, by this design the centric relation could be 

recorded during the impression taking [2,14], or to accommodate a 3D-printed splinting 

framework to record impression for edentulous jaw with multiple implants [15]. 

 

1.2.2 AM 

Longly, CAM in dentistry is based on SM [16], which works through removing 

unwanted materials away from a material block until the final product is manufactured. 

The manufacturing process of SM is numerically controlled by a computer so that 

sophisticated dental products could be accurately manufactured with consistent quality 

[16]. In recent years, the explorations of AM for dental applications is fastly growing 

due to its unique advantages over SM: (1) AM is able to manufacture complex 

structures that are difficult for SM, such as hollow interior sections; (2) AM only uses 

the materials that are needed for manufacturing, rather than cutting materials away and 

discarding them, therefore there is almost no material wasted [17]. 

 

The concept of AM, also termed three-dimensional (3D) printing, was first introduced 

by Chuck Hull in the 1980s [18]. Being the opposite of subtractive manufacturing, AM 
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joins materials together to construct a 3D object. The printing process is achieved by a 

layering method: materials are selectively hardened within each layer, and successive 

layers are sequentially accumulated in the vertical axis [19]. 

 

In dentistry, there are many applications that need to be customized, such as trays, 

dentures, appliances, splints, surgical guides, abutments, and even implants. With the 

developments of 3D-printing technologies and available materials, increasing 

3D-printed products are being explored for dental applications [20]. For custom tray 

fabrication, 3D printing seems promising due to its high resolution, rapid manufacturing 

and low waste of raw material. 

 

1.2.3 Digital workflow of fabricating custom trays using CAD and AM 

Using CAD and AM to fabricate custom trays primarily consists of three processes, 

namely data acquisition, data processing, and AM. A typical digital workflow for 

custom tray fabrication is shown in Figure 1. The purpose of data acquisition is to 

acquire a digitized primary cast, on which a custom tray can be designed. This process 

can be achieved by direct intraoral scanning or by indirect primary cast scanning. 

Afterward, the acquired data is then transmitted to a computer for data processing. With 

the help of CAD software, custom trays are designed on the digitized primary cast. The 

conventional procedure that needs to be manipulated by dental technicians is carried out 

virtually on a computer screen, such as blocking undercuts and marking tray border. By 

following the step-by-step instructions, dentists and dental technicians are able to create 

and modify the digital custom tray model easily and intuitively. The design can be 

highly customized to adjust details according to clinical requirements, such as 

modifying flange extension and controlling the distance from the custom tray to oral 

tissues.  

 

After designing, the data of custom tray need to be saved as standard tessellation 
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language (SLT) format and then submitted to a 3D-printing preparing software. Most 

3D printers in the market have their corresponding 3D-printing preparing software, only 

a small fraction of 3D-printing preparing software is embedded in the 3D printers. 

Unlike CAD software, 3D-printing preparing software does not have the function of 

designing or modifying the original data. However, it helps to build supporting 

materials and set printing parameters, such as layer thickness, layout, printing direction. 

According to the determined layer thickness, the digitized custom tray is automatically 

sliced into horizontal layers in the 3D-printing preparing software. The cross-section of 

each layer represents the pattern that would be solidified by the 3D printer. After 

preparing, the STL data of custom tray will eventually be translated into printing 

language that can be identified by the 3D printer. Compared with the conventional 

manual technique, the digital workflow of custom trays simplifies the fabrication 

process and saves the cost of labor and time.  

 

 

Figure 1: A typical digital workflow of fabricating custom tray. 
 

1.2.4 Available AM technologies and materials for custom tray fabrication 

For over 30 years, varieties of AM technologies and materials have been developed. 

Common AM technologies include stereolithography (SLA), fused filament fabrication 

(FFF), digital light processing (DLP), Polyjet, selective laser melting (SLM), and 
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selective laser sintering (SLS) [16,21], and the available 3D-printing materials include 

polymers, metals, and ceramics [22]. For custom tray fabrication, polymer seems a 

suitable material due to the relatively low cost. In the following sections, three common 

polymer-printing AM technologies and the corresponding tray materials investigated in 

the present study will be briefly introduced. 

 

1.2.4.1 FFF 

FFF, also known as fused deposition modeling (FDM), is an extrusion-deposition based 

AM technology. The basic working principle relies on the melting and solidification of 

thermoplastic materials [23].  

 

 
Figure 2: The working principle of FFF. 

 

As illustrated in Figure 2, a thermoplastic polymer filament is continuously fed into the 

extrusion head from the material coil by the drive wheels. Inside the extrusion head, a 

heated liquifier is used to melt the polymer filament. When the molten polymer is being 

extruded out from the nozzle tip, the numerically controlled extrusion head moves 
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horizontally in X- and Y-axis to draw a cross-section of a specific layer. Due to the acute 

decrease of temperature, the extruded molten polymer is immediately solidified on the 

build platform. Once a layer is completed, either the build platform moves down or the 

extrusion head moves up in Z-axis to start a new layer. This process is repeated until the 

final product is constructed. Each time the distance moved in Z-axis equals to the layer 

thickness, which can be pre-determined in the 3D-printing preparing software. 

Increasing the layer thickness can decrease the resolution, accelerate the printing 

process and enhance the surface roughness. For FFF printers, the layer thickness 

approximately ranges from 0.10 mm to 0.33 mm, which is relatively higher than the 

photopolymerization AM technologies, such as SLA and DLP, resulting in the printed 

parts have a lower manufacturing accuracy and rougher surfaces [24]. For some 

engineering applications, the FFF-generated roughness needs to be eliminated by 

finishing processes [25].  

 

However, for custom tray fabrication, FFF seems feasible due to the following reasons: 

FFF is a cost-effective technology that can be easily afforded by most dental clinics 

[26,27]; The accuracy of FFF is acceptable since the accuracy requirement of custom 

tray is not extremely high; In addition, the FFF-printed rough surfaces are beneficial for 

the bonding between the custom trays and the impression/adhesive systems [28].  

 

1.2.4.2 SLA 

Stereolithography or SLA is an early photopolymerization AM technology, the principle 

of which is based on the photochemical reaction: the photoinitiator react to the 

ultraviolet (UV) light, linking monomers and oligomers together to form a rigid 

network.  
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Figure 3: The working principle of SLA. 

 

As shown in Figure 3, a movable build platform is immersed in the photocurable liquid 

resin. Between the build platform and the resin tank bottom, a tiny initial distance is 

remained. The laser beam emitted from the projector is reflected by a numerically 

controlled scanning mirror and passes through the transparent bottom, curing the 

focused liquid resin immediately. Through the rotation of the scanning mirror, the laser 

beam is guided to draw the cross-section of a layer. Once a layer is solidified, the build 

platform ascends by a distance equals to the layer thickness so that the uncured liquid 

resin can be refilled between the bottom and the previously solidified layer. This process 

is repeated until the final 3D object is printed.  

 

SLA is deemed a relatively slow AM technology because the laser spot can only cure a 

small area [18]. The curing time can be one or two minutes for a layer, and several 

hours or even several days for a whole object [16]. After printing, the formed part needs 

to be washed to remove the uncured resin on its surface, and to be post-cured to enhance 

conversion rate [21]. The irritating resin monomer may cause skin sensitization, so the 

operator needs corresponding protections. In addition, SLA is relatively expensive 

because of the costly resin and the printing device. Nevertheless, SLA is still considered 

the gold standard because of the attractive advantages: complex and sophisticated 

structures can be built with high resolution, and the printed smooth surfaces do not 
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usually need finishing [21,29,30].  

 

1.2.4.3 DLP 

Being the “sister technology” of SLA, DLP is also a photopolymerization AM 

technology that works similarly except for the light curing process [18]. Instead of 

curing a small area and drawing the cross-section of a layer, the DLP laser cures a 

whole layer at a time. This improvement greatly improves the printing efficiency and 

shortens the printing time. To explain the working principle of DLP in detail, a 

schematic is shown in Figure 4. 

 

 

Figure 4: The working principle of DLP. 
 

In a DLP 3D printer, the laser beam is reflected by a numerically controlled optical 

component named digital micromirror device (DMD). Being a chip developed by Texas 
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Instruments in 1987 [31], DMD has over a million tiny mirrors arrayed rectangularly on 

its surface. Each micromirror has a dimension less than 8 μm ×8 μm and corresponds to 

a pixel. When the DMD is working, a tiny voltage converted from the digital signal can 

generate an electrostatic force, which rotates each micromirror plus or minus 12 degrees, 

turning the laser beam on or off. The turned-on laser beam is reflected into the lens, 

passes through the transparent bottom, and cure the liquid resin. Meanwhile, the 

turned-off laser beam is reflected elsewhere. In this way, the pattern of a layer is 

reflected onto the liquid resin, thus a whole layer is cured at a time. Since the 

micromirrors are very small, the DLP-printed parts have a relatively high resolution and 

smooth surfaces [32]. Compared to that of SLA, the printing speed of DLP has been 

greatly improved. However, the cost of DLP also increases because of the sophisticated 

optic system. 

 

1.2.4.4 Conventional and 3D-printing custom tray materials 

Conventionally, a variety of materials are available for custom tray fabrication, such as 

heat-activated, thermoplastic, autopolymerizing, and light-curing resins [33]. For 

fabricating custom trays, the materials should be rigid and dimensionally stable to 

ensure the accuracy of impressions [34]. Autopolymerizing resins were regarded as a 

less ideal tray material because of their unavoidable polymerization-induced shrinkage 

and residual stress relaxation [35]. It was suggested that using autopolymerizing resins 

to fabricate custom trays should be at least 24 hours before impression taking [36]. 

Thermoplastic resins were once recommended for their convenience. However, their 

thermoplasticity may result in insufficient material strength and possible deformation 

[37]. Studies indicated light-curing resins were better for custom tray fabrication since 

they were stiff and showed a low degree of polymerization-induced shrinkage. Wirz et 

al. suggested that light-curing resin trays can be directly used after fabrication, the 

additional storage time for polymerization completion was unnecessary [38]. Therefore, 

in the present study, a conventional light-curing resin, Zeta Tray LC, was used as the 
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reference tray material. 

 

Currently, a variety of 3D-printing polymers can be used for custom tray fabrication, 

some of which are already commercially available. However, research on these new 

3D-printing custom tray materials is still lacking. In this study, three 3D-printing custom 

tray materials were selected for investigation due to their rigidity and dimensional 

stability, i.e. Dental LT, FREEPRINT tray, and Polylactide (PLA), which are available 

for SLA, DLP, and FFF, respectively. Although the detailed components of each 

material are hidden because of commercial interest, the basic information of the 

investigated materials was found and introduced in Table 1. 
 

Table 1: Conventional and 3D-printing custom tray materials in this study. 

Tray material Corresponding 
technique Component Solidifying method 

Dental LT SLA (Meth)acrylate 
based UV light: 405 nm 

FREEPRINT 
tray DLP (Meth)acrylate 

based UV light: 378 - 388 nm 

PLA FFF Polylactic Acid Cooling below melting 
point (150 °C) 

Zeta Tray LC Conventional 
method 

(Meth)acrylate 
based UV light: 350 – 400 nm 

 

In addition to rigidity and dimensional stability, another significant requirement of 

custom tray materials is to provide sufficient retention for the impression. Therefore, the 

bonding between custom tray materials and impression/adhesive systems is crucial, 

which will be introduced in the following sections. 

 

1.3 Bonding between custom trays and impression/adhesive systems 
The precise fitness is one of the critical factors that determine the long-term clinical 
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success of oral restorations [39]. Thus, an accurate impression is of great importance to 

correctly replicate the oral tissues. During the impression taking, the flowable 

impression material enters the undercuts of teeth and soft tissues, which, after setting, 

resists the removal of impression from oral tissues [40]. If the bond strength between 

the custom tray and the impression is insufficient, detachment is liable to happen 

between the two during withdrawing the impression, resulting in the deformation of the 

impression, inaccuracy of the subsequent model, and even failure of the final prosthesis 

[41]. In addition to withstanding the removal force, the bonding between the impression 

and the tray was thought to ensure the uniform polymerization-induced shrinkage of the 

impression, thus further improving the accuracy [33]. 

 

To improve the bonding between tray and impression, either mechanical retention or 

chemical adhesion can be utilized. The factors that influence the bonding have been 

thoroughly researched in previous studies, including impression materials, adhesives, 

custom tray materials, and surface treatments. In the following sections, an overview of 

these factors will be given. 

 

1.3.1 Impression materials 
Among the various impression materials that are commercially available, the 

rubber-based elastomeric impression materials are generally preferred due to their 

accurate reproducibility, dimensional stability, and convenient manipulation [33,42]. 

Comparisons in bond strength between different elastomeric impression materials and 

custom tray materials have been well investigated. Generally, despite the different 

experimental conditions, polyether (PE) impression materials showed the highest bond 

strength, followed by the polysulfide (PS) impression materials, while the bond strength 

of condensation silicone (C-silicone) impression materials was the lowest [40,43–45]. 

However, a study from MacSween et al. exceptionally indicated that PE showed lower 

bond strength when compared to PS [46]. The bond strength of addition silicone 

(A-silicone) impression materials, or vinyl polysiloxane (VPS) [47], was reported 
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inconsistently. Most of the related studies indicated the bond strength of VPS was 

comparable to that of PE [39,43,45,48] and higher than that of PS [33,43,45]. However, 

exceptions can be found in the result reported by Marafie et al., stating that the bond 

strength of VPS was lower than that of PE [49], and that found by MacSween et al., 

who claimed the bond strength of VPS and PS was similar [46].  

 

The bond strength depends on not only the type of elastomeric impression material but 

also the formulation provided by the manufacturer. Even for the same type of 

elastomeric impression material, significant difference in bond strength could be found 

among impressions provided by different manufacturers [40,45,46,50]. In clinical 

practice, choosing the type of elastomeric impression materials is mainly based on the 

indications. For instance, PE is more suitable for cases with poor moisture control. 

Other factors such as costs may also affect the choice of dentists. Therefore, the bonding 

properties of elastomeric impression materials do not seem to be the most important 

factor in material selection. At present, PS and C-silicone have become increasingly 

unpopular because of certain disadvantages, while PE and VPS are still commonly in 

use. Recently, a new elastomeric impression material, Vinylsiloxanether (VSXE), was 

marketed as a product having both the advantages of A-silicone and PE. Therefore, in 

the present study, VPS, PE, and VSXE were selected for investigation. 

 

1.3.2 Adhesives 

Since there is usually no chemical adhesion between elastomeric impression materials 

and tray materials [51,52], adhesives are recommended to be applied onto the inner 

surfaces of the tray to improve the impression retention [42]. Previous studies indicated 

that using tray adhesive could significantly increase the bond strength, accuracy, and 

consistency of the impressions [44,45,53–55]. Since little information is available 

regarding the chemical composition of the tray adhesive of elastomeric impression 

materials [56], the detailed working principle of the adhesive is still unclear. Studies 
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indicated that the solvent of the adhesive could slightly dissolve and swell the outermost 

polymer surface [43,44] so that the solute of the adhesive could penetrate into the 

superficial molecular networks [49]. Therefore, the bond strength between custom trays 

and elastomeric impression materials is related to the chemical compatibility between 

the adhesives and the tray materials [48]. 

 

The adhesive and impression material are usually regarded as an impression/adhesive 

system when they are supplied by the same manufacturer. However, there are also 

universal adhesives available in the market. Comparisons in the bond strength between 

manufacturer-supplied and universal adhesives were performed repeatedly but the 

results were not conclusive. Ramdev et al. indicated the tensile bond strength of two 

manufacturer-supplied adhesives was higher than that of a universal adhesive [57]. 

However, Peregrina et al. [50] and Ashwini et al. [41] reported the universal adhesives 

had higher tensile bond strength than the manufacturer-supplied ones. Furthermore, 

through exchanging manufacturer-supplied adhesives of two A-silicone impression 

materials, Bindra et al. found the bond strength increased significantly [58], Payne et al. 

stated that no statistical difference in bond strength was observed [48], while Yi et al. 

indicated the bond strength became significantly lower [42]. 

 

In addition, the adhesive drying time was also reported to strongly affect the bond 

strength. Generally, from the start of adhesive application, the bond strength seemed to 

rise with the increase of adhesive drying time in the initial period [39,40,42], after 

which the bond strength might reach the maximum value and tended to be stable [40,42]. 

However, when the drying time was exceedingly prolonged, such as to 7 days, the bond 

strength could slightly decrease [59]. To achieve the highest bond strength, the optimum 

adhesive drying time was recommended by each manufacturer. Therefore, for 

standardization, this study utilized the manufacturer-recommended adhesive for each 

investigated impression material, and the adhesive drying time was strictly obeyed 
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according to manufacturer’s instruction. 

 

1.3.3 Custom tray materials 

As described in section 1.3.2, the surface chemistry of the custom tray material 

determines its solubility in the adhesive solvent and affects the bond strength. 

Previously, the comparisons in bond strength were mainly performed between 

autopolymerizing and light-curing resins. Dixon et al. [59] and Abdullah et al. [33] 

indicated the VPS impression/adhesive system exhibited significantly higher bond 

strength to the light-curing resin than to the autopolymerizing acrylic resin. However, 

this conclusion was contradictory to that reported by Kumar et al. [56] and Peregrina et 

al. [50], both studies found the light-curing and autopolymerizing resin did not differ in 

bond strength with VPS impression/adhesive system. Ashwini et al. investigated the 

bond strength of light-curing and autopolymerizing resin to three VPS 

impression/adhesive systems. Interestingly, the light-curing resin showed higher bond 

strength to two VPS impression/adhesive systems, but no significant difference was 

observed in bond strength between light-curing and autopolymerizing resin with the 3M 

ESPE VPS impression/adhesive system [41]. In addtition, Payne et al. found two 

thermoplastic tray materials showed significant difference in bonding with PE and VPS 

impression/adhesive system [48]. Chai et al. compared the bond strength of 

autopolymerizing resin and polystyrene with VPS, PS, PE, and C-silicone 

impression/adhesive system, the results indicated polystyrene had higher bond strength 

to VPS but lower bond strength to PS and C-silicone, while no statistical difference 

were found in bond strength between the two tray materials with PE [43]. 

 

In the author’s recent publication, the bond strength of three FFF custom tray materials 

with a C-silicone impression/adhesive system was measured and compared to that of a 

conventional light-curing resin. All investigated FFF custom tray materials showed 

good chemical compatibilities with the adhesive of the C-silicone system [28]. However, 
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the research on the compatibility between other 3D-printing custom tray materials and 

impression/adhesive systems remains untouched. 

 

1.3.4 Surface treatments 

In addition to the surface chemistry, the surface topography of the tray material also 

plays a vital role in the bonding between impressions and trays. The internal surface of 

the custom tray was suggested to be roughened to increase the adhesive retention [40]. 

Payne et al. roughened the tray material surface by the tungsten carbide bur, the result 

showed the bond strength of the tray material to a VPS impression/adhesive system 

significantly increased after surface preparation [60]. Craig et al. stated that roughening 

the custom tray surface by silicone carbide paper could significantly enhance the bond 

strength [61]. The study of Davis et al. exhibited that the acrylic resin abraded with 

silicon carbide paper adhered significantly better with a PS impression/adhesive system 

than the acrylic resin polymerized against wax [40]. Maruo et al. [39] and Payne et al. 

[48] found that the surface topography of the tray material significantly affected the 

bonding between the custom trays and the impression systems. However, the variance in 

bond strength depended on the tray-impression material combinations. 

 

It should be noted that none of the abovementioned studies had examined the surface 

topography of the tray material before and after surface treatments, so it is not clear how 

these surface treatments influenced the surface roughness and which roughness 

parameter is related to the impression retention. The author’s recent publication initially 

explored this field and found gritblasting could decrease the surface roughness of 

FFF-printed custom tray materials, thus weakening its bonding with the impression 

material. The result indicated that the roughness parameter valley fluid retention index 

(Svi) might be related to the bonding between the impression material and the tray 

material [28]. For further confirmation, this study selected the 3D roughness parameters 

that might be related to the bonding for investigation (Table 2). 
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Table 2: 3D roughness parameters that might be related to the bonding. 

Parameter Type Formula Description 

Arithmetic mean 
height (Sa) Height 𝑆𝑆𝑎𝑎 =

1
𝐴𝐴
� │Z(𝑥𝑥,𝑦𝑦)│dx 𝑑𝑑𝑦𝑦
𝐴𝐴

 

Sa is the most commonly used 3D roughness 
parameter defined as the average of the absolute 
value of the surface height.  

Skewness (Ssk) Height 𝑆𝑆𝑠𝑠𝑠𝑠 =
1
𝑆𝑆𝑞𝑞3
�
1
𝐴𝐴
� 𝑍𝑍3(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦
𝐴𝐴

� 

Ssk describes the symmetry of the topography height 
distribution. Negative skewness indicates the 
existence of relatively deep valleys for fluid 
retention. 

Core void 
volume (Vvc) Functional 

Vvc = Vv(10%) − Vv(80%); 

Vv(mr) = k� [Smc(mr) − Smc(q)]dq
100%

mr
 

Vvc represents the void volume of the core section. A 
larger Vvc value indicates better fluid retention in the 
core zone. 

Dales void 
volume (Vvv) Functional Vvv = k� [Smc(mr) − Smc(q)]dq

100%

80%
 

Vvv represents the void volume of the valley section. 
A larger Vvv value indicates better fluid retention in 
the valley zone. 

Developed 
interfacial area 
ratio (Sdr) 

Hybrid Sdr =
∑∑𝐴𝐴𝑖𝑖𝑖𝑖 − 𝐴𝐴

𝐴𝐴
× 100% 

Sdr is the roughness parameter which is used to 
measure the surface complexity and provides 
correlations in adhesion applications. 
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1.4 Research aim 
With the above background the present study aimed to evaluate the bonding of three 

3D-printing custom tray materials (Dental LT, FREEPRINT tray, and PLA ), which 

were respectively printed by three AM technologies (SLA, DLP, and FFF), to three 

elastomeric impression/adhesive systems (VSXE, VPS, and PE) by peel test. The peel 

bond strength of the 3D-printed custom tray materials was compared with that of a 

conventional light-curing resin (Zeta Tray LC). Through scanning electron microscopy 

(SEM) analyses and roughness measurements, the surface topographies of the four tray 

materials were investigated qualitatively and quantitatively. Additionally, the failure 

modes after peeling were microscopically studied.  

 

It was hypothesized that:  

(1) The type of tray materials has no influence on the peel bond strength;  

(2) The type of impression/adhesive systems has no influence on the peel bond strength. 
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2. Materials and Methods 

2.1 CAD of Test Blocks 

The test block was designed in a CAD software (OpenSCAD, 2015.03-2 Windows, 

http://www.openscad.org/). The geometrical shape of the test block was designed to 

simulate the peeling action of the custom tray during the impression taking [28]: A 

cuboid base was designed with the dimension of 25.4 mm × 25.4 mm × 6 mm (Figure 

5a). A cuboid handle with the dimension of 25.4 mm × 13 mm × 7 mm was added onto 

the top surface of the base at 45 degrees (Figure 5b). A cuboid connector was added to 

connect the base and handle (Figure 5c). At last, a centered hole was designed on the 

handle with a diameter of 0.5 mm (Figure 5d). 

 

 

Figure 5: CAD of the test blocks in OpenSCAD. (a) The cuboid base; (b) A cuboid 
handle was added onto the top surface of the base with 45 degrees; (c) A connector was 
used to connect the base and the handle; (d) A centered hole was added on the handle 
with a diameter of 0.5 mm. 

http://www.openscad.org/
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2.2 AM of test blocks 

2.2.1 Printing test blocks using FFF 
The designed test block data were saved as STL file format and transferred to a 

3D-printing preparing software (MakerBot Print 3.4, MakerBot Industries, NY, USA). A 

raft layer was created to support the test blocks with a margin width of 5 mm. The 

printing layer thickness and infill density were set to 100 μm and 100% respectively. 

The balanced print mode was selected to ensure accuracy. The printing layout and build 

direction on the build platform are shown in Figure 6. 

 

 
Figure 6: The printing direction and layout of the FFF-printed test blocks. Twenty 
samples were printed on the supporting raft layer with a margin width of 5 mm. 
 
After setting the printing parameters, test blocks were printed with PLA (PLA Precision 

Material, MakerBot Industries, NY, USA) (Figure 7b) by a FFF 3D printer (Replicator+, 

MakerBot Industries, NY, USA) (Figure 7a). Twenty test blocks were printed each time 
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for 23 hours. After printing, the raft layer was removed, and the FFF-printed test blocks 

were collected for the subsequent peel bond strength test (Figure 8). 

 

 
Figure 7: The FFF 3D printer and printing material. (a) The FFF 3D printer 
“Replicator+”; (b) The spool of PLA filament. 
 

 

Figure 8: The FFF-printed test block (white scale: 10 mm). 
 



2. Materials and Methods 

22 
 

2.2.2 Printing test blocks using SLA 

The STL file of the test block was preprocessed in a 3D-printing preparing software 

(PreForm 2.18.0, Formlabs, Somerville, USA). The layer thickness was set to 100 μm.  

Figure 9 shows the direction and layout for printing. Since in the preliminary test, the 

test blocks printed with supporting materials were liable to be deformed, all the samples 

were set to be printed directly on the build platform of the SLA 3D printer. 

 

 

Figure 9: The printing direction and layout of the SLA-printed test blocks. Twelve 
specimens were set to be printed directly on the printing platform without supporting 
material. 
 

After preparing, test blocks were printed with a light-curing resin (Dental LT Clear 

Resin, Formlabs, Somerville, USA) (Figure 10b) by an SLA 3D printer (Form 2, 

Formlabs, Somerville, USA) (Figure 10a). Twelve test blocks were printed each time for 

2 hours and 20 minutes. 
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Figure 10: The SLA 3D printer and printing material. (a) The SLA 3D printer “Form 2”; 
(b) The light-curing resin “Dental LT Clear Resin”. 
 

After printing, the build platform, with the printed test blocks still attached, was washed 

in a post-cleaning device (Form Wash, Formlabs, Somerville, USA) (Figure 11a) filled 

with isopropyl alcohol (Isopropanol 100%, SAV LP GmbH, Flintsbach am Inn, 

Germany) (IPA) for 5 minutes to remove the uncured liquid resin. Afterward, the test 

blocks were dried in air and removed from the build platform after ensuring the washed 

surface had no uncured resin. To achieve the optimal performance of Dental LT, the 

washed test blocks were then exposed to 405 nm light emitted from 13 multi-directional 

light-emitting diodes (LEDs) at 80 °C for 20 minutes in a post-curing device (Form 

Cure, Formlabs, Somerville, USA) (Figure 11b). After post-curing, the test blocks were 

collected (Figure 12) and stored in black plastic bags for light-sensitive sample storage 

(Whirl-Pak black bags, Nasco, Milton, USA). 
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Figure 11: Post-processing devices of the SLA 3D printer. (a) Post-cleaning device 
“Form Wash”; (b) Post-curing device “Form Cure”. 
 

 
Figure 12: The SLA-printed test block (white scale: 10 mm). 
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2.2.3 Printing blocks using DLP 
The STL file of the designed test block was sent to a 3D-printing preparing software 

(Netfabb premium 2019.0, AUTODESK, San Rafael, USA). It was known from the 

preliminary test that printing samples directly on the build platform, printing samples in 

the center of the platform, high printing speed and excessive samples per print would 

result in the deformation of the printed test block. Therefore, the number of test blocks 

per print was reduced to six. All test blocks were laid in the outermost positions of the 

platform to minimize peeling force (Figure 13). The build style was chosen as Dental 

Gentle Vat Deflection Feedback System (VDFS) 3 mm to reduce the printing speed. 

 

 
Figure 13: The printing direction and layout on the build platform in Netfabb. 

 

To anchor the test blocks, a supporting grid with supporting materials was added on the 

build platform, the width of the supporting material on the test blocks was set to 0.5 mm 

(Figure 14). All test blocks were Z-compensated for better accuracy of the holes. 
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Figure 14: The supporting grid and supporting materials of the test block. 
 

The print job file was created by Netfabb and sent to a DLP 3D printer (SOLFLEX 170, 

W2P Engineering, Vienna, Austria) (Figure 15a). Before printing, the custom tray 

material (FREEPRINT tray, DETAX, Ettlingen, Germany) (Figure 15b) was evenly 

mixed by a self-developed roller mixer (Figure 15c). For each print, six test blocks were 

printed with the layer thickness of 100 μm for about 53 minutes. 
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Figure 15: The DPL 3D printer, printing material, and self-developed roller mixer. (a) 
The DLP 3D printer “SOLFLEX 170”; (b) The custom tray material “FREEPRINT 
tray”; (c) The self-developed roller mixer. 
 

After printing, the uncured resin was allowed to drip for 10 minutes. The printed parts 

were then removed from the build platform and pre-cleaned in a vessel filled with IPA 

(Isopropanol 100%, SAV LP GmbH, Flintsbach am Inn, Germany) using an ultrasonic 

cleaner (Ulsonix Proclean 10.0M ECO, Expondo, Berlin, Germany) for 3 minutes. Next, 

the DLP-printed test blocks were carefully removed from the supporting material and 

ultrasonically cleaned with IPA for another 3 minutes. After the cleaning process, the 

test blocks were dried by compressed air and post-cured in a flash-light polymerization 
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device (Otoflash G171, VOCO, Cuxhaven, Germany) (Figure 16) with 2 × 2000 flashes 

under protective nitrogen. The post-processed test blocks were then collected (Figure 17) 

and stored in black plastic bags. 

 

 
Figure 16: The flash-light polymerization device “Otoflash G171”. 

 

 

Figure 17: The DLP-printed test block (white scale: 10 mm).  
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2.3 Fabrication of reference test blocks 

2.3.1 CAD and AM of molds used for fabricating wax spacer and reference test 
block 
All molds were designed in a CAD software (OpenSCAD, 2015.03-2 Windows, 

http://www.openscad.org/) and analyzed in a 3D-printing preparing software (Netfabb 

premium 2019.0, AUTODESK, San Rafael, USA).  

 

As shown in Figure 18a, the mold of wax spacer was designed as a 25.4 mm × 25.4 mm 

square frame with one side deficient. To ensure the firmness, the lateral wall thickness 

was set to 2.3 mm and the height was set to 6 mm (Figure 18b). 

 

 
Figure 18: The mold of wax spacer. (a) The original prototype designed in OpenSCAD; 
(b) The mold size of wax spacer. 
 

As shown in Figure 19, the mold of reference test block was the negative imprint of the 

test block designed in Section 2.1. However, since the custom tray was fabricated on the 

wax spacer in the conventional technique, the molds of reference test block also 

reserved an extra space with 1.25 mm in height to allow the conventional light-curing 

resin polymerize against baseplate wax. The total height of the mold base was 7.25 mm, 

the height of 1.25 mm at the bottom was reserved for the baseplate wax, and the height 

of the upper 6 mm was the same as the height of the test block base. 

http://www.openscad.org/
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Figure 19: Molds of reference test block reserved 1.25 mm height for the baseplate wax, 
so the total height of the mold base was set to 7.25 mm. The reference custom tray 
material could polymerize against the 1.25 mm thick baseplate wax and maintain the 
base height of 6 mm. 
 

Considering the difficulty of removing the fabricated reference test block out of the 

mold, five molds were designed. The mold in Figure 20a had a cylinder so that the 

fabricated reference test block would have a hole in the center of the handle. However, 

the cylinder might increase the difficulty of removing the light-cured reference test 

block out from the mold. In order to reduce the removal resistance, minor modifications 

were made according to the design in Figure 20a. In Figure 20b, the upper border of the 

mold was deleted. In Figure 20c, 20d and 20e, the cylinder design was removed. 

Compared to the mold designed in Figure 20c, the design in Figure 20d removed the 

upper border, and the design in Figure 20e further removed a portion of the posterior 

border, so that the fabricated test block could be held by finger during removal. 

Reducing the mold structure would make the fabricated test block easier to be removed, 

but the fabrication accuracy would also decrease at the same time. Therefore, it was 

necessary to select an optimal mode design that could enable the removal of fabricated 
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reference test block and maintain its maximum accuracy. 

 

 
Figure 20: Five CAD-designed molds of reference test block. (a) The design with the 
centered cylinder; (b) The design with the centered cylinder, without the upper border. 
(c) The design with upper border, without the centered cylinder; (d) The design without 
the centered cylinder and the upper border; (e) The design without the centered cylinder 
and the upper border, a portion of the posterior border was removed. 
 

With the above purpose, a pilot test was conducted. All CAD-designed molds of 

reference test block and the mold of wax spacer were printed by the SLA printer (Form 

2, Formlabs, Somerville, USA) with a light-curing material (Grey V4, Formlabs, 

Somerville, USA). The layer thickness was set to 50 μm. After printing, the molds were 

post-cleaned by Form Wash with IPA for 15 minutes and then post-cured by Form Cure 

at 60 °C for 60 minutes. After postprocessing, the supporting materials were removed, 

and the molds were collected. A conventional light-curing resin (Lichtwachs, Wegold 

Edelmetalle, Wendelstein, Germany) was applied into each printed mold to fabricate the 

reference test block. After light curing, the solidified test blocks could not be removed 

out from the molds designed in Figure 20a and 20b (Figure 21a), and excessive removal 
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force could result in mold fracture (Figure 21b). In contrast, the reference test blocks 

could be removed out from the molds designed in Figure 20c, 20d and 20e. By 

inspection, the test block fabricated by the mold designed in Figure 20c was found to 

possess the best accuracy (Figure 22). Therefore, the mold design in Figure 20c was 

selected to fabricate the reference test blocks in this study. 

 

 

Figure 21: The cured test blocks cannot be removed from the molds with cylinder 
design. (a) The test block firmly remained in the mold designed in Figure 20a; (b) 
Excessive removal force resulted in the mold fracture, the cylinder remained in the test 
block (red arrow) (white scale: 10 mm). 
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Figure 22: The cured test blocks could be removed from the molds without cylinder 
design. The test block fabricated by the mold designed in Figure 20c showed the best 
accuracy (middle). The red circles showed the inaccurate parts of the other two test 
blocks. (white scale: 10 mm). 
 

2.3.2 Fabrication process of reference test block 

The wax spacer was cut from the base plate wax (Modellierwachs rosa special, OMNI 

DENT, Rodgau Nieder-Roden, Germany) using a scalpel guided by the mold of wax 

spacer (Figure 23). 

 

 

Figure 23: Fabrication of the wax spacer (white scale: 10 mm). 
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Next, the wax spacer was adapted at the bottom of the mold. A thin layer of vaseline 

was evenly applied to the inner walls of the mold (Figure 24). 

 

 
Figure 24: Vaseline was applied onto the inner walls of the mold. 

 

A layer of a conventional light-curing custom tray material (Zeta Tray LC, Zhermack, 

Marl, Germany) was adapted into the mold against the wax spacer. A UV-light device 

(Dentacolor XS, Kulzer, Hanau, Germany) was used to cure the first resin layer for 3 

minutes (Figure 25a). Afterward, the light-curing resin was adapted into the mold layer 

by layer until the mold was fully filled. Another UV-light device (LML2000, Wilde, 

Walluf, Germany) was used to cure the subsequently adapted resin for 4 minutes in 

atmospheric pressure and another 4 minutes in vacuum (Figure 25b). 
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Figure 25: The UV-light curing of the reference test block. (a) The first resin layer was 
cured by the UV-light device “Dentacolor XS”; (b) Rest of the resin layers were cured 
by the UV-light device “LML2000”. 
 

After UV-light curing, the reference test blocks were removed out from the mold. The 

outline of the centered hole was delineated using a marker pen guided by a premade 

locating paper (Figure 26). 
 

 
Figure 26: Marking the centered hole (white scale: 10 mm). 

 

Then, the marked reference test block was fixed on a universal vice (Quick-action vice 

3410000, Wolfcraft, Kempenich, Germany) (Figure 27a). A drilling machine (B 13S, 

Wörner, Denkendorf, Germany) equipped with a 4.5 mm drill bit was used to drill the 
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centered hole of each reference test block (Figure 27c). The quill travel was set to 49 

mm, and the drilling speed was set to 488 revolutions per minute (Figure 27b). 
 

 
Figure 27: Drilling the centered hole of the reference test block. (a) Reference test block 
was fixed on a universal vice; (b) The parameter setting of the drilling machine “B 13S”; 
(c) The centered hole was being drilled. 
 

After drilling, the debris was cleaned by compressed air. According to the normal 

clinical procedure, the wax residual of each reference test block was cleaned thoroughly 

by a steam jet cleaner (D-S 100 A, Harnisch + Rieth, Winterbach, Germany) and dried 

in air. The reference test blocks were then collected (Figure 28) and stored in black 

plastic bags. 
 



2. Materials and Methods 

37 
 

 

Figure 28：The fabricated reference test block. 
 

2.4 CAD and AM of carrier 
To ensure a reproducible impression depth of each test block in peel test, a carrier was 

designed using a CAD software (OpenSCAD, 2015.03-2 Windows, 

http://www.openscad.org/) (Figure 29a). The carrier consisted of three parts. Two lateral 

cubes with the dimension of 15.7 mm × 21 mm × 5.3 mm (Figure 29b) were connected 

by an upper sheet. The central part of the sheet had a dimension of 25.4 mm × 19.75 

mm × 2 mm, and the two lateral wings of the sheet had a dimension of 15.9 mm × 10 

mm × 2 mm (Figure 29c). The distance between the two cubes was 25.8 mm, which is 

slightly larger than the length of the test block base (25.4 mm) so that the carrier could 

accommodate the test block (Figure 29d). 

 

http://www.openscad.org/
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Figure 29: CAD of the carrier. (a) The CAD model of the carrier; (b) Two lateral cubes 
of the carrier; (c) Upper sheet of the carrier; (d) The central void part of the carrier 
could accommodate the test block base. 
 

The CAD-designed carrier data were saved as STL file and sent to a 3D-printing 

preparing software (PreForm 2.18.0, Formlabs, Somerville, USA) for the SLA printer 

(Form 2, Formlabs, Somerville, USA). The printing direction and layout on the build 

platform are shown in Figure 30. Supporting materials were automatically generated by 

Preform with a height of 10 mm. The layer thickness was set to 50 μm. The carriers 

were printed using an engineering resin (Gery V4, Formlabs, Somerville, USA) which 

is suitable for repeatedly handling. 
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Figure 30: The printing direction and layout of the carrier. 

 

Four carriers were printed each time for 2 hours and 47 minutes. The carriers were 

post-cleaned by IPA in Form Wash for 15 minutes and then exposed to 405 nm light at 

60 °C for 30 minutes in Form Cure. Finally, the supporting materials were removed and 

the printed carriers were collected (Figure 31). 
 

 

Figure 31: The SLA-printed carrier (white scale: 10 mm). 

 

2.5 SEM analysis 
In order to analyze the surface topography of the 3D-printed custom tray materials, one 

sample of each material group was sputtered by a sputter coater (SCD 050, BAL-TEC, 
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Pfaeffikon, Switzerland) and observed in an SEM (Leo 1430, Zeiss, Jena, Germany). 

Photos of the sputter coater and the SEM system are shown in Figure 32 and Figure 33 

respectively. 

 

 

Figure 32: Sputter coater “BAL-TEC SCD 050”. 
 

 
Figure 33: SEM system “Zeiss LEO 1430”. 
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For sample preparation, the handle of each test block was firstly removed by a saw, so 

that the test block could be fixed on holders with the test surfaces placed horizontally 

upwards. Since the test blocks were made from non-conductive polymers, liquid silver 

paint (Silberleitlack, Plano, Wetzlar, Germany) was applied to connect the holder and 

the test surface of each sample. After drying for 30 minutes, all samples were placed in 

the chamber of the sputter coater (Figure 34a). The chamber of the sputter coater was 

then purged with Argon to replace air and pumped down to the working pressure of 0.05 

mbar. With the current of 61 mA, Au-Pd alloy (SCD 050, BAL-TEC, Luebeck, 

Germany) was sputtered onto the test surface of each sample for 120 seconds to form a 

20 nm thick Au-Pd coating (Figure 34b). 

 

 
Figure 34: Sample sputtering before SEM analysis. (a) The test surface and holder were 
connected with liquid silver paint to conduct electricity; (b) Au-Pd coating was 
sputtered on the test surface of each sample. 
 

Afterward, the sputtered samples were placed in the chamber of the SEM. The air 

pressure in the chamber was pumped down to vacuum. At the acceleration voltage of 10 

kV, representative images of the test surfaces were taken with the magnification of 100 

×, 500 ×, 1000 ×, and 2000 ×. 
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2.6 Roughness measurement 

The tilt of test blocks was firstly corrected by a leveling device (Schliffpresse, Leitz, 

Wetzlar, Germany) so that the test surface could be horizontally upward (Figure 35a). 

Seven samples of each tray material were measured by a profilometer (S6P, Mahr, 

Goettingen, Germany) (Figure 35b). The profilometer was equipped with a stylus, 

whose diameter and angle were 2 µm and 90°, respectively. When the profilometer 

performed a surface topography measurement, the stylus tip moved in contact with the 

measured surface to physically trace surface profiles. In an area of 3 mm x 3 mm on the 

test surface, 121 profiles with a length of 3 mm were recorded.  

 

 
Figure 35: Devices used for roughness measurement. (a) The leveling device “Leitz 
Schliffpresse”; (b) The profilometer “Mahr S6P”. 
 

After measuring, the data were analyzed in a roughness analysis software 

(MountainsMap Universal 7.3, Digital Surf, Besancon, France). The measured area was 

leveled in the software to correct tilt again. The roughness of the profiles was then 

filtered from waviness and form by a Robust Gaussian Filter (ISO 16610-71) with the 

cut-off value of 0.6 mm. Five three-dimensional roughness parameters that might be 
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able to disclose the correlations between the surface roughness and the peel bond 

strength were calculated, i.e., Sa, Ssk, Vvc, Vvv, and Sdr. Finally, the three-dimensional 

views of the test surfaces were reconstructed to visualize the surface topographies. 

 

2.7 Peel bond strength test 
The present study investigated the peel bond strength between three selected 

3D-printing custom tray materials (Dental LT, FREEPRINT tray, and PLA), which were 

respectively printed by three AM technologies (SLA, DLP, and FFF), and three 

commonly used impression/adhesive systems (VSXE, VPS, and PE). A conventional 

light-curing resin was investigated as the reference custom tray material. Therefore, 

there were 12 groups with 144 samples in total (n = 12) (Figure 36). 
 

 
Figure 36: Grouping of peel bond strength test. 

 

To retain the impression material, a universal adaptor was prepared as the following 
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steps. First, three screws were inserted into the adaptor (Figure 37a). The filling material, 

addition-vulcanising vinyl-polysiloxane (Dublisil 30, Dreve Dentamid, Unna, Germany), 

was then filled in the universal adaptor by a mixing device (Dosper evo, Dreve 

Dentamid, Unna, Germany) to the pre-marked line, which was 3 mm from the top edge 

of the adaptor (Figure 37b). After 45 minutes of setting, the filling material polymerized 

and was thus fixed by the screws. The reserved 3 mm thick space above the filling 

material would be used to retain the impression material and standardize its thickness. 
 

 

Figure 37: Preparation of the universal adaptor. (a) Three screws were inserted into the 
adaptor; (b) The filling material was 3 mm from the top edge of the adaptor (white scale: 
10 mm). 
 
Test blocks of each material group were cleaned by a steam jet machine (D-S 100 A, 

Harnisch + Rieth, Winterbach, Germany) and dried in air. Vaseline was applied to the 

surrounding walls around the test surface (Figure 38a). Afterward, the carrier was 

bonded to each test block by molten adhesive wax (Supradent–Wachs, Oppermann, 

Bonn, Germany) to construct a text complex (Figure 38b). The adhesive was then 

smeared on the test surface and dried in air (Figure 38c). With the use of an automatic 

mixing unit (Pentamix 2, 3M ESPE, Seefeld, Germany), the impression material was 
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uniformly dispensed in the adaptor, and the excessive impression material was removed 

by a dental mixing knife. 

 

 

Figure 38: Preparation of the test block. (a) Vaseline was applied to the surrounding 
walls around the test surface; (b) The carrier and the test block were bonded by molten 
adhesive wax to construct a test complex; (c) A thin layer of the adhesive was smeared 
on the test surface (white scale: 10 mm). 
 

Next, the test complex was placed in the center of the adaptor with impression material 

underneath at 23 °C room temperature and then fixed by a custom-made loading device 

in a 37 °C incubator (B 6200 (I), Heraeus, Hanau, Germany) (Figure 39b). A 

perpendicular weight of 1.4 kg was applied onto the center of the test complex to mimic 

the compressive force during the impression taking. Since the two lateral cubes of the 

carrier contacted the border of the adaptor, a reproducible impression depth of each test 

block was standardized (Figure 39a). The controlled temperature of 23 °C and 37 °C 

was used to simulate the extraoral and intraoral environment respectively. The adhesive 

drying time, extraoral working time, and intraoral set time of each impression/adhesive 

system were strictly executed according to the manufacturer’s instructions (Table 3). 
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Figure 39: The impression setting in the peel bond strength test. (a) The test complex 
was fixed by a custom-made loading device with a perpendicular weight of 1.4 kg; (b) 
The custom-made loading device was enclosed in a 37 °C incubator to simulate the 
intraoral temperature. 
 

Table 3: Impression/adhesive systems used in the present study. 

Trade name Identium Heavy 
(5:1) 

Flexitime Heavy 
Tray Dynamix 

Impregum Penta H 
Duo Soft 

Chemical 
component 

Vinylsiloxanether 
(VSXE) 

Vinyl Polysiloxane 
(VPS) Polyether (PE) 

Impression type Type 1, Heavy body Type 1, Heavy body Type 1, Heavy body 

Adhesive Identium Adhesive Universal Adhesive Polyether Adhesive 

Manufacturer 
Kettenbach, 
Eschenburg, 

Germany 

Kulzer, Hanau, 
Germany 

3M Deutschland, 
Neuss, Germany 

Adhesive drying 
time 5 min 2 min 1 min 

Impression 
working time 

(23 °C) 
2 min 2 min 2:30 min 

(continued) 
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(continued) 
Impression 

intraoral set time 
(37 °C) 

2:30 min 2:30 min 3:30 min 

Total set time 4:30 min 4:30 min 6 min 

 
After impression setting, the carrier was removed. With the separating effect of vaseline, 

the excessive impression material around the test block was effortlessly detached and 

cut off by a sharp scalpel, making the bonding only exist between the test surface and 

the impression material. The adaptor was then fixed in a universal testing machine 

(Z010, Zwick, Ulm, Germany) (Figure 40a). A tensile load at a crosshead speed of 300 

mm/min was applied to the test block through a hook connected with a metal wire to 

produce a peeling force between the test block and the impression material (Figure 40b). 

The force and distance were dynamically recorded by the universal testing machine 

until the failure between the test block and the impression material occurred (Figure 

40c).  

 

 
Figure 40: Peel bond strength test. (a) The universal testing machine; (b) A tensile load 
at a crosshead speed of 300 mm/min was applied to the test block; (c) The test block 
was detached from the impression material after peeling. 
 

The force and distance data were then transferred to an analysis software (OriginPro 8, 
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OriginLab, Northampton, USA) to plot the force-distance curve. The width and length 

of each test surface were measured by a digital caliper (DIGI-MET, PREISSER, 

Gammertingen, Germany). The area of each test surface was calculated by Equation (1):  

A = W × L (1) 

where A is the area (m2), W represents the width (m), and L represents the length (m) of 

each test surface. The formula of line peel bond strength was given by Equation (2): 

σ1 = F/W (2) 

where σ1 is the line peel bond strength (N/m), F is the force at failure (N), and W is the 

width (m) of each test surface. The areal peel bond strength of each test block was 

determined by Equation (3): 

σ2 = F/A (3) 

where σ2 is the areal peel bond strength (Pa), F is the force at failure (N), and A 

represents the area (m2) of each test surface. 

 

2.8 Failure mode analysis 
After peeling, test surfaces were examined using a microscope (M400, Wild, Heerbrugg, 

Switzerland) with 6.3 × and 32 × magnification. The failure mode was recorded as 

adhesive failure, mixed failure, and cohesive failure. The definition of each failure 

mode used in this study is shown in Table 4.  

 

Table 4: Classification and definition of the failure mode. 
Failure mode Definition 

Adhesive failure The detachment occurred between the 
impression material and the test block. 
No impression material residual could 
be found on the test block after peeling. 
 

(continued)  
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 (continued)  
Mixed failure The detachment occurred partly between 

the impression material and the test 
block, and partly within the impression 
material. Punctiform or flaky impression 
material residuals can be found on the 
peeled test surface. 
 

Cohesive failure The detachment occurred within the 
impression material. A large lump of 
integrated impression material could be 
found on the peeled surface of the test 
block. 

 

To identify the rupture site of adhesive failure, the peeled test surfaces and impressions 

were further inspected and compared microscopically. The possible rupture sites were 

pre-classified as: at the adhesive-impression material interface, at the adhesive-tray 

material interface, and within the adhesive layer. 

 

2.9 Statistical analysis 
All data were first checked for normal distribution. The mean differences in roughness 

parameters including Sa, Ssk, Vvc, Vvv, and Sdr among the four custom tray materials 

were determined using one-way analysis of variance (ANOVA) followed by Tukey’s 

range test for multiple comparisons. A two-way ANOVA was performed to examine the 

effect of tray material and impression/adhesive system on peel bond strength. In the 

following simple main effect analysis, Tukey’s test was conducted for post hoc 

comparisons. GraphPad Prism (Prism 6.01 for Windows, GraphPad Software, San 

Diego, USA) was used for all statistical analyses. Differences were considered to be 

statistically significant when the p value was less than 0.05.  
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3. Results 

3.1 SEM 
As shown in Figure 41, the SLA-printed Dental LT test block exhibited a relatively 

smooth and flat surface except for some scratches with no specific direction. At higher 

magnifications, it was observed that the scratches were mainly composed of irregular 

micro ridges and prominences. 

 

 
Figure 41: SEM images of the test surface of the SLA-printed Dental LT test block. (a) 
100 × magnification; (b) 500 × magnification; (c) 1000 × magnification; (d) 2000 × 
magnification. 
 

On the surface of the DLP-printed FREEPRINT tray test block, a surface texture 

composed of numerous regular valleys and peaks was clearly observed (Figure 42), the 

direction of which was consistent with the printing direction of the test block on the 3D 

printer’s build platform. The SEM images with 1000 × and 2000 × magnifications 

further showed the microroughness structures: the peaks consisted of fibrous polymer 

strips, on which small particles could be found. Presumably, the formed microroughness 
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structures were related to the chemical polymerization of the resin. 
 

 

Figure 42: SEM images of the test surface of the DLP-printed FREEPRINT tray test 
block. (a) 100 × magnification; (b) 500 × magnification; (c) 1000 × magnification; (d) 
2000 × magnification. 
 

Similarly, a wavy surface was observed on the FFF-printed PLA test block (Figure 43). 

However, the surface texture direction of the FFF-printed test block was perpendicular 

to the printing direction, and the diameter of the FFF-printed peak (170 μm) was 

significantly greater than that of the DLP-printed one (80 μm). The high-magnification 

SEM images showed that the PLA-printed peaks were semispherical and smooth, on 

which few microroughness structures could be observed. 
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Figure 43: SEM images of the test surface of the FFF-printed PLA test block. (a) 100 × 
magnification; (b) 500 × magnification; (c) 1000 × magnification; (d) 2000 × 
magnification. 
 
As Figure 44 indicates, the conventional light-curing resin, Zeta tray LC, showed a 

plane surface with few peaks. Numerous irregular pores, pits, and fissures were 

observed with uneven sizes, which ranged approximately from 10 μm to 100 μm. Some 

of these recessed structures existed alone, while the others were connected, resulting in 

the formation of the larger cracks. The 1000 × and 2000 × magnified SEM images 

showed that spheres with a diameter from 2 μm to 20 μm were embedded in the surface. 

The wax residual was cleaned thoroughly by the steam and could not be found. The 

pores and pits were formed by the interruption of the plane surface, in which irregular 

walls could be observed. However, the SEM failed to detect the bottom of the valley, 

signifying the pores and pits possessed a certain depth. 
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Figure 44: SEM images of the test surface of the conventionally light-cured Zeta tray 
LC test block. (a) 100 × magnification; (b) 500 × magnification; (c) 1000 × 
magnification; (d) 2000 × magnification. 
 

3.2 Roughness measurement 

As shown in Figure 45, the Sa value of the PLA group was the highest and statistically 

higher than that of the other three material groups, followed by the FREEPRINT tray 

and the reference group, which did not statistically differ. The Dental LT group showed 

the lowest Sa value, which was significantly lower than that of the other groups. The 

PLA group had the highest standard deviation (2.65), indicating that the consistency in 

Sa value among the PLA samples was relatively low. 
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Figure 45: Mean (standard deviation) Sa values of all material groups (n = 7). * 
represents a statistically significant difference. 
 

As Figure 46 indicates, the mean Ssk values of the four investigated material groups 

were all negative. Among them, the Ssk value of the reference group was the lowest, 

which statistically differed from that of the other material groups. Then came the Dental 

LT group, whose Ssk value was statistically lower than that of the PLA and the 

FREEPRINT tray group. The Ssk values of the PLA and the FREEPRINT tray group 

were similar and close to zero, statistically significant difference could not be observed 

between them. With a standard deviation of 0.81, the Dental LT samples showed a 

relatively high degree of dispersion in Ssk. 



3. Results 

55 
 

 
Figure 46: Mean (standard deviation) Ssk values of all material groups (n = 7). * 
represents a statistically significant difference. 
 

As illustrated by Figure 47, the PLA group exhibited the highest Vvc value, which 

showed significant difference with that of any other material group, followed by the 

FREEPRINT tray group, whose Vvc value was approximately half of that of the PLA 

group but statistically higher than that of the Dental LT and the reference group. The 

mean Vvc value of the reference group was slightly higher than that of the Dental LT 

group, but no statistically significant difference could be found between them. 
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Figure 47: Mean (standard deviation) Vvc values of all material groups (n = 7). * 
represents a statistically significant difference. 
 

As shown in Figure 48, the Vvv values of the PLA and the reference group were 

significantly higher than that of the Dental LT and the FREEPRINT tray group. 

Statistical differences could not be observed both between the PLA and the reference 

group and between the Dental LT and the FREEPRINT tray group. Compared with 

other material groups, the standard deviation of the PLA group was relatively high 

(0.0006). 
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Figure 48: Mean (standard deviation) Vvv values of all material groups (n = 7). * 
represents a statistically significant difference. 
 

As Figure 49 indicates, the statistical analysis result of Sdr was similar to that of Sa: the 

PLA group showed the highest Sdr value, which was significantly higher than that of 

the other groups. Then came the FREEPRINT tray and the reference group, between 

which no statistical difference could be found. The Dental LT group exhibited the 

lowest Sdr value, which statistically differed from that of the other groups. The Sdr 

values of the FREEPRINT tray group showed a relatively high degree of dispersion, 

which was presented by the standard deviation of 3.27. 
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Figure 49: Mean (standard deviation) Sdr values of all material groups (n = 7). * 
represents a statistically significant difference. 
 

The 3D-reconstructed surface topographies of the four material groups are shown in 

Figure 50. The surface of the Dental LT test block (Figure 50a) was relatively smooth 

with no evident texture. In contrast, waveforms in presence of peaks and valleys could 

be easily identified on both surfaces of the FREEPRINT tray and the PLA test block 

(Figure 50b and 50c). By comparing the two wavy surfaces, it was found that the 

DLP-printed FREEPRINT tray surface was flatter with a more uniform peak-to-valley 

distance ranged from 10 μm to 20 μm, while the FFF-printed PLA surface had a larger 

undulation, and the distance between the peaks and valleys ranged from 30 μm to 70 μm. 

Besides, the directions of the two surface textures were opposite and perpendicular to 

each other. The conventionally fabricated reference test block presented a porous 
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surface without textures (Figure 50d). The pores had irregular sizes and shapes with 

depths ranging from about 20 μm to 80 μm. Few peaks could be observed on the 

reference surface, and if any, their heights were less than 10 μm. 

 

 
Figure 50: 3D-reconstructed surface topographies of the test blocks (15% vertical 
amplification). (a) Dental LT; (b) FREEPRINT tray; (c) PLA; (d) Reference. 
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3.3 Peel bond strength test 

The profile of the peeling force-distance curve was found to be mainly affected by the 

impression/adhesive system and the failure mode. Figure 51 shows the representative 

curves of adhesive failure of each group. For peeling from the VSXE and VPS 

impression/adhesive systems, the curves ascended rapidly from the beginning point. 

After reaching the peak, the detachment between the test block and the impression 

occurred. The curves then dropped immediately and sharply until the universal testing 

machine automatically stopped. 

 

 
Figure 51: Representative peeling force-distance curves of adhesive failure of each 
tray-impression material combination. 
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However, for peeling from the PE impression/adhesive system, the curves dropped 

gently after the first peak, and a fluctuated plateau with a distance of about 2 mm was 

observed. Such plateau could hardly be found in the curves of VSXE and VPS 

impression/adhesive systems, or only a few tenths of a millimeter if any. 
 

As shown in Figure 52, the curves of mixed failure showed a similar profile to that of 

the adhesive failure. However, it was found in some curves that the plateau was 

extended so that it could be identified more easily, such as the FREEPRINT tray-VPS 

combination in Figure 52, but such finding was not general. 

 

 
Figure 52: Representative peeling force-distance curves of mixed failure of each 
tray-impression material combination. 
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In contrast, the curves of cohesive failure exhibited a significant difference (Figure 53). 

After reaching the first peak, the curves dropped rapidly until the valley point, where the 

rupture started to occur within the impression. Afterward, the curves rose slowly, 

exceeded the first peak, and then fell gently, during which no obvious peak could be 

observed, and the failure site was always inside the impression material. In this study, 

cohesive failures only could be found in the Dental LT-VSXE, PLA-VSXE, and 

reference-VSXE groups. 
 

 
Figure 53: Representative peeling force-distance curves of cohesive failure of each tray 
material-VSXE combination. 
 

Table 5 gives the mean and standard deviation of line and areal peel bond strength of 

each group. The results of two-way ANOVA indicated that type of tray materials, type 

of impression/adhesive systems, and their interaction were statistically significant 

(Table 6). The results of the following simple main effect analysis were illustrated in 

Figure 54 and 55, respectively. The line and areal peel bond strength showed similar 

statistical results since if the length of each test block was standardized, they should 

only differ in a scale factor. However, in this study, the accurate length of each test 

block was measured by a digital caliper, and the length values had slight differences in 

decimal places. To be rigorous, the line and areal peel bond strength were shown 

separately but not in a figure with two Y-axes.  
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Table 5: Mean (standard deviation) line peel bond strength (N/m) and areal peel 
bond strength (kPa) of each group (n = 12). 

 VSXE VPS PE 

Dental LT 
1809.73 (152.86) N/m 

71.05 (6.08) kPa 
1680.53 (277.63) N/m 

66.05 (10.83) kPa 
1175.43 (126.46) N/m 

46.11 (5.02) kPa 

FREEPRINT 
tray 

1835.51 (151.91) N/m 
71.20 (5.91) kPa 

1714.17 (228.90) N/m 
67.63 (9.10) kPa 

1206.19 (125.04) N/m 
47.77 (4.94) kPa 

PLA 
1911.82 (159.42) N/m 

75.31 (6.27) kPa 
2173.24 (312.86) N/m 

85.87 (12.35) kPa 
1324.605 (140.74) N/m 

52.21 (5.47) kPa 

Reference 
1880.79 (246.32) N/m 

74.31 (9.81) kPa 
2034.85 (149.47) N/m 

80.34 (5.91) kPa 
1199.56 (284.48) N/m 

47.10 (11.10) kPa 

 
Table 6: Two-way ANOVA of peel bond strength. 

 SS DF MS F (DFn, DFd) P value 
Interaction 934897 6 155816 F (6, 132) = 3.6 0.0023 
IASa 1.371e+007 2 6.856e+006 F (2, 132) = 159.9 < 0.0001 
TMb 1.407e+006 3 468992 F (3, 132) = 10.9 < 0.0001 
Residual 5.660e+006 132 42883   

a. IAS = Impression/adhesive system 
b. TM = Tray material 

 

As Figure 54 indicates, the four custom tray materials did not statistically differ in peel 

bond strength with VSXE and PE. However, for the bonding with VPS, the peel bond 

strength of PLA and reference was statistically higher than that of Dental LT and 

FREEPRINT tray. Statistical difference in peel bond strength with VPS could not be 

found either between PLA and reference or between Dental LT and FREEPRINT tray.  
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Figure 54: Peel bond strength of each tray-impression material combination (grouped by 
impression/adhesive system, box plot, n = 12). + represents the mean value of each 
group. (a) Line peel bond strength; (b) Areal peel bond strength. 
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Figure 55: Peel bond strength of each tray-impression material combination (grouped by 
tray material, box plot, n = 12). + represents the mean value of each group. (a) Line peel 
bond strength; (b) Areal peel bond strength. 
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As illustrated by Figure 55, for the bonding to Dental LT, FREEPRINT tray and 

reference, VSXE and VPS showed significantly higher peel bond strength than PE, but 

no statistical difference could be found between them. For the bonding to PLA, VPS 

showed the highest peel bond strength, which was statistically higher than that of VSXE 

and PE, followed by VSXE, whose peel bond strength statistically differed from the 

lowest strength of PE. 

 

3.4 Failure mode 

By inspecting the peeled surfaces of test blocks microscopically, it was found that 

adhesive failure was the most common failure mode and existed in all groups. As shown 

in the low-magnification images of Figure 56, no impression material residuals could be 

observed on the peeled surfaces of adhesive failure. In the high-magnification images, it 

can be seen that a thin layer of adhesive remained. The surface texture of PLA and 

FREEPRINT tray became blurred or disappeared since the adhesive was filled in the 

texture valleys. 
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Figure 56: Representative light-microscopical images of test surfaces that adhesively 
failed after peeling (6.3 × and 32 × magnification). 
 

As figure 57 indicates, mixed failure was found in all groups except the FREEPRINT 

tray-PE combination. In addition to the remained adhesive, small dots or pieces of 

impression material residuals could be found on the peeled surfaces. 
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Figure 57: Representative light-microscopical images of test surfaces that mixedly 
failed after peeling (6.3 × and 32 × magnification). 
 

In this study, cohesive failure was the rarest and only existed in those VSXE groups, i.e., 

Dental LT-VSXE, PLA-VSXE, and reference-VSXE group (Figure 58). The failure 

occurred within the impression material, causing a large lump of impression material 

was torn off and integrally remained on the peeled surfaces. 
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Figure 58: Representative light-microscopical images of test surfaces that cohesively 
failed after peeling (6.3 × and 32 × magnification). 
 

Figure 59 illustrates the constituent ratio of failure mode of each group. For VSXE and 

VPS impression/adhesive systems, the mixed failure ratios of PLA (66.67%) and 

reference (58.33%) were significantly higher than that of Dental LT (16.67%) and 

FREEPRINT tray (8.33%). Cohesive failures only occurred in those VSXE groups, and 

the cohesive failure ratios of PLA (16.67%) and reference (16.67%) were slightly higher 

than that of Dental LT (8.33%) and FREEPRINT tray (0%). For PE impression/adhesive 

system, the failure modes of the four tray material groups were similar dominated by 

adhesion failure, whose ratios ranged from 83.33% to 100%. 



3. Results 

70 
 

 
Figure 59: Constituent ratio of failure mode of each group (n = 12). 

 

In this study, the rupture site of adhesive failure in all groups was partly within the 

adhesive layer, and partly at the adhesive-impression material interface, but never at the 

adhesive-tray material interface. A typical example is given in Figure 60. On the peeled 

surfaces of impression and tray material, numerous symmetrical geometry patterns 

could be found (Figure 60a and 60b, red dotted frame). At high magnification, these 

geometry patterns presented to be defective on the impression surface and raised on the 

tray material surface (Figure 60c and 60d). The bottom of the defect on the impression 

surface was the exposed impression material (Figure 60c, red arrow), while the 

corresponding raised pattern on the tray material surface was the adhesive that was 

integrally remained and highly transparent, indicating in these areas, the rupture site was 

at the adhesive-impression material interface. In areas outside the geometry patterns, 

remained adhesive could be found on both sides, which appeared granular on the 

impression surface (Figure 60c, green arrow) and frosted on the tray material surface 
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(Figure 60d, green arrow), demonstrating the rupture site was within the adhesive layer. 

 

 
Figure 60: Representative light-microscopical images of adhesive failure between the 
VSXE impression and the Dental LT tray material (6.3 × and 32 × magnification). (a) 
VSXE impression surface after peeling; (b) Dental LT surface after peeling; (c) The 
detachment between adhesive and impression material resulted in the defect on the 
peeled impression surface, exposing the subjacent impression material (red arrow). The 
rupture within the adhesive layer led the adhesive remain on the peeled impression 
surface (green arrow); (d) The adhesive debonded with impression material integrally 
remained on the peeled tray material surface, which presented to be raised and highly 
transparent (red arrow). The ruptured adhesive remained on the peeled tray material 
surface and presented to be frosted (green arrow). 
 

The above results indicated that both the tray materials and the impression/adhesive 

systems had an impact on the peel bond strength. The tray materials influenced the 

bonding physically but not chemically.  

 

Therefore, both null hypotheses were rejected. 
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4. Discussion 

In this study, the layer thickness of all 3D-printed test blocks was standardized to 100 

microns, and all test blocks were printed in the same direction. However, differences 

were found in surface topographies among test blocks manufactured by each 3D 

printing technology. The SEM images and 3D reconstructed surface topographies 

indicated that the SLA-printed Dental LT test block had the best surface finish. Despite 

some tiny scratches, no distinct surface texture could be observed. This is due to the 

working principle of SLA. The SLA 3D printer used in this study solidified the pattern 

of each layer by a 140-micron laser spot, whose direction was precisely guided by two 

numerically controlled motors, namely galvanometers. Due to the tininess of the laser 

spot and the accuracy of the guidance, good XY resolution was achieved within each 

layer, and almost no unfilled areas were found between the solidified layers (Figure 61). 

 

In contrast, since the molten plastic flow cannot fully fill the area between each layer, 

the surface of FFF-printed PLA test block possessed a clear surface texture, which 

consisted of numerous peaks and valleys. The void space between two adjacent peaks 

was the unfilled area between two FFF-deposited layers (Figure 61). Thus, the 

orientation of the FFF-printed surface texture was perpendicular to the build direction of 

the test block [28]. 

 

 
Figure 61: Coronal section of SLA- and FFF-printed layers. The unfilled areas existed 
between the FFF-printed layers. 
 

Both the DLP-printed FREEPRINT tray test block and the FFF-printed PLA test block 
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showed a wavy surface, but the texture orientations of the two were opposite and 

perpendicular to each other (Figure 42, 43, 50b and 50c). The surface texture orientation 

of the FREEPRINT tray test block was along the build direction of the test block. As 

introduced in Section 1.2.4.2, the DLP 3D printers project the laser beam into the image 

of each layer, thus solidifying a whole layer at a time. The projected image of each layer 

is pixelated by the DMD, which is made of over a million rectangular micromirrors. 

Each micromirror represents a pixel. As shown in Figure 62, since each pixel is 

rectangular, the pixelation process can turn the edge from straight to stepped. The 

stepped edge of each layer successively accumulates along the build direction, 

eventually generating the DLP-printed surface texture, whose orientation is therefore 

the same as the build direction. Since the micromirrors are very small, the amplitude 

and wavelength of the DLP-printed surface texture are significantly lower than that of 

the FFF-printed one. 
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Figure 62: The generation of DLP-printed surface texture. The pattern of each layer is 
pixelated by the DMD. During this process, the edge could be turned from straight to 
stepped. Successive stepped edges accumulate layer by layer along the build direction, 
generating the observed surface texture on the test block. The orientation of the 
DLP-printed surface texture is the same as the build direction of the test block. 
 

The reference tray material investigated in this study is a conventional light-curing resin, 

namely Zeta tray LC. Few peaks and numerous pores could be observed on its surface. 

The size and depth of the irregular pores varied greatly, from 10 μm to 100 μm and 20 

μm to 80 μm, respectively. In engineering, this type of surface topography is suitable for 

wearing since the existence of pores and valleys improves the lubricant retention ability. 

As for bonding with impression/adhesive systems, it means more adhesive and 

impression material might be retained on the surface. It should be noted that not all 

conventional light-curing resins have a porous surface topography. For instance, another 

light-curing resin, Lichtwachs, exhibited a surface without pores. Instead, various 



4. Discussion 

75 
 

semi-spherical prominences were observed [28]. Presumably, the possible reason might 

be the different ingredients of the light-curing resins lead to the difference in radical 

polymerization.  

 

In previous bonding studies, the tray material surfaces were usually post-processed to 

standardize the roughness and eliminate the difference in surface topography. Examples 

can be found by polishing the tray material surface using silicon carbide paper [41,50,56] 

or white diamond [43]. However, the roughness standardization might lead to deviations 

from clinical practice, since differences in surface topography do exist among trays 

made by different materials and methods, and such differences are likely to affect the 

bonding with the impression/adhesive system. In the present study, the surface 

topographies of all tray materials were not standardized. The AM tray materials were 

printed, post-cleaned and post-cured in strict accordance with the manufacturers’ 

instructions, while the conventional light-curing was allowed to polymerize against wax 

sapcer and cleaned by steam to simulate the laboratory conditions. Therefore, the 

surface topographies of all tray materials were in the state before clinical use, so the 

peel bond strength measured in this study was thought to be more clinically relevant. 

Instead of standardizing roughness, this study evaluated the surface topography of tray 

materials and analyzed its effect on the bonding with impression/adhesive systems. 

 

The roughness parameters provide quantitative analysis for the surface topography. 

However, due to the complexity of surface topography, each roughness parameter can 

only provide limited information. Therefore, to find the parameter that is most related to 

the bonding becomes the main concern. Xu et al. indicated that Svi might be related to 

the bonding between custom trays and impression/adhesive systems [28]. Svi is a 

functional parameter defined in EUR 15178 EN [62]. However, in the new ISO 25178-2 

standard, Svi has been replaced by Vvv since Vvv can provide the same type of 

information, and it is more sensitive to different roughness levels [63]. Therefore, this 
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study investigated the surface topographies of all tray materials using the improved and 

updated 3D roughness parameters, i.e. Sa, Ssk, Vvc, Vvv and Sdr. 

 

Sa is the most commonly used 3D roughness parameter which provides the 

amplitude-related information, that is, the average of the vertical distance of each point 

to the centered plane [64]. The results of Sa in this study indicated the four materials 

exhibited three levels of surface height: the highest for PLA, followed by FREEPRINT 

tray and reference, which did not statistically differ, and the lowest for Dental LT.  

 

Ssk assesses the symmetry bias of surface topography about the centered plane. This 

parameter has no units and can be positive, negative or zero. A negative Ssk value 

indicates that the height distribution is skewed above the centered plane, where the 

surface exhibits few peaks and relatively deep valleys [65]. The more negatively Ssk 

skews, the more asymmetrical surface height distribution is. In the present study, all of 

the four investigated tray materials showed negative Ssk values. Among them, 

FREEPRINT tray and PLA showed slight skewness, whose Ssk values were close to 

zero. Dental LT had a moderate negative skewness and exhibited a certain degree of 

asymmetry. The reference surface was highly negatively skewed, signifying the lack of 

peaks and the existence of deep valleys, which could be further confirmed by the 

3D-reconstructed surface topography (Figure 50d). It should be noted that Ssk can only 

assess the degree of bias. To further characterize the fluid retention ability of all tray 

materials, functional parameters Vvc and Vvv are required. 

 

The 3D roughness parameters Vvc and Vvv evaluate the void volume of the material 

surface [63]. If the material ratio from 0% to 100% corresponds to surface height from 

the highest peak to the deepest valley, then according to the default value of ISO 

25178-2, Vvc represents the void volume between two cutting planes at the heights that 

respectively correspond to 10% and 80% material ratio, while Vvv is the void volume 
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between two planes that correspond to 80% and 100% material ratio, respectively 

(Figure 63). Therefore, Vvc evaluates the void volume at the core zone, and Vvv 

assesses the void volume at the valley zone. Larger Vvv and Vvc values indicate that 

the material surface can retain more fluid in the corresponding area. 

 

 

Figure 63: The schematic of Vvc and Vvv. 
 

Because of the good surface finish, the Vvc and Vvv values of Dental LT were the 

lowest among the four investigated tray materials. The Vvc value of FREEPRINT tray 

was significantly higher than that of Dental LT due to the existence of surface texture, 

but the Vvv values of the two did not statistically differ. In contrast, due to the greater 

surface texture, the Vvc and Vvv values of PLA were the highest among the four groups. 

The reference material had a low Vvc value and a high Vvv value, indicating that the 

valleys on its surface were relatively narrow. 

 

The 3D roughness parameter Sdr is a measure of surface complexity, which is unit-less 

and usually given as a percentage. For a surface with perfect smoothness, the Sdr equals 

to 0%. In this study, the results of Sdr were similar to that of Sa, indicating that the two 

parameters might have some degree of correlation, but this inference needs further study 

to confirm. 
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In the present study, a profilometer equipped with a stylus was utilized for roughness 

measurement. When the measurement was being performed, the stylus tip kept in 

contact with the sample surface and moved transversely across the test area to record a 

profile [24]. Limited by its diameter, the stylus tip could not fully enter every pit and 

fissure on the test surface, resulting in the reduction in accuracy of the results. The use 

of optical scanning instruments can compensate this shortcoming and improve the data 

accuracy for future studies. 

 

Different test methods were utilized in previous studies to investigate the bonding 

between tray materials and impression/adhesive systems, including tensile test, shear 

test, and peel test. Although the tensile test is utilized by most of the studies 

[44,57,60,66], the peel test is thought to be more clinically relevant [45]. For instance, if 

the tray is withdrawn by a tensile force which is perpendicularly applied on the center of 

the tray, tensile stress will be produced in the central area, and shear stress will be 

generated between the walls of the tray and the impression material. However, in 

clinical situation, removing the tray from oral cavity is usually achieved by applying an 

upward or downward force to the tray handle, which would cause the initial detachment 

between impression and oral tissues always occur at either front or back side [28]. 

Therefore, the peel test modality is considered to be closer to the process of impression 

removal. For the above reasons, the present study utilized peel test for investigation. To 

focus more on clinical application and mimicry, the test blocks geometry was designed 

as the molded tray, and the peel test was different from a systematic fashion. 

 

For a typical peel test, the peel strength is calculated by the average load per unit width 

of the bonding line, where the angle of separation can be different degrees, and the unit 

of peel strength is N/m or lb/in. However, the previous relevant peeling studies utilized 

the areal peel strength to investigate the bonding between tray materials and 
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impression/adhesive systems. Grant et al. compared the tensile and peel bond strength 

of nine impression/adhesive systems to an acrylic resin, in their study the peel bond 

strength was calculated using the areal stress with the unit of lb/in2 or kg/cm2 [45]. 

MacSween et al. measured the peel bond strength of five impression/adhesive systems 

to a perforated or non-perforated acrylic resin, in their study the unit of the peel bond 

strength was kg/cm2 [46]. In addition, Tjan et al. [54] cited the study of Grant et al., and 

the peel bond strength was expressed by lb/in2. It was also found that a recently 

published paper cited the data of MacSween et al., whose unit was transformed from 

kg/cm2 to MPa so that it could be compared with their results of tensile bond strength 

[56]. The reason for the previous studies using areal stress might be due to the 

experimental stress transmission was different from that in a standard peel test. Unlike 

the typical peel test (Figure 64a), the impression material from which the test block was 

peeled off was elastic. When the test block was being peeled, the impression material 

could be slightly deformed to cause energy stored, and stress might be transmitted to the 

remaining bonded interface through the elastic impression material, resulting in the peel 

force applied not only to the bonding line but also to the bonding area (Figure 64b).  

 

 
Figure 64: Comparison of peel tests. (a) An example of standard peel test: a film is 
peeled from a rigid object; (b) The peel test performed between test block and elastic 
impression. 
 

The above analysis could be further supported by the force-distance curves of the peel 
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test in this study. It is known that the force-distance curve of a standard peel test would 

have a fluctuated plateau after the first peak. However, in the force-distance curves of 

the VSXE and VPS groups, such plateaus could only maintain a few tenths of a 

millimeter, and then the peeling passed into a catastrophic failure by complete 

disruption of the compound. Presumably, the highly elastic impression materials stored 

a lot of energy at the entire interface, and the release of the stored energy caused the 

peeling force transmitted to the bonding area. The force-distance curves of the PE 

groups had a relatively obvious plateau, which maintained a distance of about 2 mm, 

indicating the peeling behavior of the PE groups was more typical. This might be due to 

the fact that PE is the most rigid elastomeric impression material [67], whose high 

elastic modulus [68] and low flexibility resulted in the reduced storage and release of 

energy during the peeling process. In addition, it was observed in the peel bond test that 

the adhesive of PE had a higher elongation. The PE adhesive that was pulled into 

filaments but still bonded to both impression and tray material could be found behind 

the peeling frontier (Figure 65), which may also contribute to the extension of the 

plateau in the force-distance curve of the PE groups. 

 

 
Figure 65: The adhesive of PE has a high elongation, which leads to the adhesive to be 
pulled into filament behind the peeling frontier. 
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A similar experimental design can be found in the study reported by Leung et al. [69], 

who claimed the test method was a cleavage test rather than a peel test. As mentioned in 

their article, cleavage test and peel test are similar, but the main difference between the 

two is that the adherend in a peel test is elastic, while that in a cleavage test is rigid. 

However, for the bonding between tray and impression material, the latter is a highly 

elastic adherend which would undergo unavoidable deformation during the test. 

Therefore, it is controversial to regard the test method as a cleavage test. The present 

study holds the view that the term of the test method should be peel test, although it is 

different from a systematic fashion. For the peel test in this study, undoubtedly, the 

highest stress occurs primarily at the bonding line. However, due to the elasticity of 

impression material, the peel stress is also thought to be related to the bonding area. 

Therefore, both line and areal stress were used to characterize the peel bond strength. 

For analyzing the areal peel stress, since the force is applied at the edge of the test block, 

the stress is unevenly distributed onto the bonding area. It is difficult to use a single 

formula to express the areal stress, nor did the early studies give any available equation 

[45,46]. Leung et al. [70] tried to develop a mathematic model, but the derivation 

process seems unconvincing. To accurately analyze the areal peel stress, Finite Element 

Analysis (FEA) might be a reasonable method, but this is beyond the scope of the 

present study. Therefore, the areal peel stress in this study was directly characterized by 

the most commonly used force-area formula, namely F/A. 

 

In previous studies, different crosshead speeds have been utilized to investigate the 

bonding between the tray materials and impression/adhesive systems. The used 

crosshead speeds ranged from as low as 5 mm/min [71] to as high as 508 mm/min [43]. 

Table 7 shows the crosshead speeds used in the related studies. The effect of crosshead 

speed on the bond strength is controversial. Wilson et al. compared the tensile bond 

strength at crosshead speeds of 10 mm/min and 60 mm/min, and Ellam et al. calculated 
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the bond strength at crosshead speeds of 60 mm/min and 500 mm/min. Both studies 

claimed the bond strength increased with the increase of crosshead speed [72,73, quoted 

in 58]. However, Chai et al. reported the bond strength measured at crosshead speeds of 

127 mm/min and 508 mm/min did not statistically differ [43]. Bindra et al. repeated the 

experiments of the above three studies, but their conclusions were opposite to that of 

each study [58]. Nevertheless, since the strain rate may influence the bond strength, 

setting a crosshead speed that is close to the material application would be more 

meaningful. In this study, the crosshead speed was set to 300 mm/min, which was 

thought to be a speed close to the clinical impression removal [28]. 

 

Table 7: Different crosshead speeds used in the related studies. 
Authors Year Type of bond strength Crosshead speed 
Grant et al. [45] 1988 Peel 25.4 mm/min 
Davis et al. [40] 1976 Tensile 508 mm/min 
Chai et al. [43] 1991 Tensile 127, 508 mm/min 
Dixon et al. [71] 1993 Tensile 5 mm/min 
Bindra et al. [58] 1997 Tensile and shear 10, 60, 150, 300, 500 mm/min 
 
According to manufacturer’s instructions, the impression set time is divided into 

working time at 23 °C (room temperature) and intraoral set time at 37 °C, but most of 

the relevant studies were performed only at room temperature and ignored the 

simulation of the intraoral temperature. However, since the tray and impression 

materials have different coefficients of thermal expansion, the 14 °C thermal difference 

between intraoral and extraoral environment may result in the inconsistent volume 

contraction of the two after the impression removal. This inconsistency in volume 

contraction may further cause the generation of stress at the tray-impression interface. 

Therefore, the compatibility in thermal-induced volume change between tray and 

impression materials may be an important factor that affects the bonding, but this 

speculation has not been explored and needs further investigation. In this study, the 

intraoral temperature was simulated during impression setting, which was thought to be 
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an improvement of previous test methods and closer to clinical practice. Therefore the 

obtained results might be more clinically relevant. However, all laboratory studies 

cannot fully duplicate the real clinical situation. For instance, this study did not consider 

the intraoral moisture, which is one of the experimental limitations. 

 

Since few studies utilized peel test to investigate the bonding between tray and 

impression materials, and the early studies did not give the formula used for calculating 

areal peel stress, the available data for parallel comparison are limited. The VPS 

impression/adhesive system showed generally higher peel bond strength in all tray 

material groups than the PE, which was supported by the results reported by MacSween 

et al. [46] and Grant et al. [45]. However, the tensile bond strength of VPS and PE was 

generally reported to be similar [39,43,45,48], indicating that the PE might have 

reduced resistance to peeling load. The line peel stress of VSXE, VPS and PE ranged 

between 1810-1911 N/m, 1681-2173 N/m and 1175-1325 N/m respectively, which were 

generally higher than that of a C-silicone impression/adhesive system (379-671 N/m) 

investigated in the author’s previous publication [28], and higher than that of an alginate 

impression/adhesive system (1077 N/m) reported by Lung et al. [70], indicating that 

acceptable peel bond strength might have been achieved in all experimental groups. 

 

When the impression-adhesive-tray bonding system is subjected to separation force, 

failure is most likely to occur at the weakest structures, which include within the 

impression material, at the adhesive-impression material interface, within the adhesive, 

and at the adhesive-tray material interface. In previous studies, the terms of failure 

mode were used loosely without clear definition and classification. For instance, Chai et 

al. defined adhesive failure as the failure occurred at the adhesive-impression material 

interface or adhesive-tray material interface [43], but they may neglect the fact that 

adhesive failure might result from the rupture within the adhesive. Davis et al. described 

cohesive failure as the failure appeared within the impression material [40]. However, 
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when only tiny amounts of impression material residuals were observed on the 

debonded tray material surface, Nicholson et al. equalized it as a cohesive failure [53, 

quoted in 43], whereas Kawamura et al. categorized it as a mixed failure [74, quoted in 

43]. Therefore, to clarify the terms of failure modes, the present study made a 

categorization which may help future studies in standardization. 

 

 
Figure 66: Categorization of failure modes between tray and impression material. 

 

As shown in Figure 66, for adhesive failure, no impression material residuals can be 

found on the debonded tray material surface, the rupture site can be at the adhesive-tray 

material interface, within the adhesive, at the adhesive-impression material interface, a 

mixing of any two sites, or a mixing of the three. Concerning mixed failure, tiny 

amounts of impression material residuals present in dots or flakes can be found on the 

tray material surface after detachment, only a small portion of rupture site is inside the 

impression material. With regard to cohesive failure, a relatively large lump of 

integrated impression material can be observed on the detached tray material surface, 

the rupture mostly occurs within the impression material. 
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In this study, the failure mode of PE impression/adhesive system was mostly adhesive 

failure. This finding was similar to that reported by MacSween et al. [46], who indicated 

that the failure mode of PE impression/adhesive system was pure adhesive failure in 

peel test, but contradictory with that reported by Grant et al. [45], who found that PE 

impression/adhesive system failed cohesively. The failure modes of VSXE and VPS 

impression/adhesive systems varied with tray materials, the mixed failure ratios of PLA 

and reference were significantly higher than those of Dental LT and FREEPRINT tray. 

In previous studies, the failure mode of VPS impression/adhesive system was reported 

to be adhesive failure by Grant et al. [45] and cohesive failure by MacSween et al. [46]. 

Since VSXE is a relatively new elastomeric impression material, its relevant bonding 

study is still lacking. 

 

Accurate identification of the rupture site in adhesive failure was longly considered 

difficult [45]. Previous studies usually roughly reported the rupture site as a single mode. 

The present study provided a reliable method for the precise identification, that is, 

comparatively examining both detached impression and tray material surfaces 

microscopically. The results showed that the rupture site of adhesive failure in all 

groups was not a single mode, but a mixing of two modes (partly at 

adhesive-impression material interface and partly within the adhesive). However, the 

rupture at the adhesive-tray material interface was never observed, indicating the actual 

peel bond strength between tray material and adhesive was higher than what has been 

measured. Since the bonding between the adhesive and impression material provided by 

the same manufacturer are almost pre-determined to be good, it is reasonable to 

conclude all the investigated tray materials achieved good chemical compatibility with 

the adhesives and satisfied the requirements of clinical success. The results of two-way 

ANOVA indicated that tray material had a statistically significant effect on the peel 

bond strength. If the chemical factor of tray material is excluded, it is therefore the 

surface topography of the tray materials affected the peel bond strength. The previous 
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study showed the roughness parameter Vvv might be related to the peel bond strength 

[28]. However, in this study, Vvv could only be related to the peel bond strength of 

those VPS groups, while other investigated roughness parameters showed no correlation 

to the bonding. The possible reason is speculated as follows: Vvv evaluates the ability 

of fluid retention in the valley zone. Since PLA and reference had higher Vvv values 

than Dental LT and FREEPRINT tray, the impression material can be better retained on 

their surfaces. Even so, higher Vvv values may not directly result in higher mixed 

failure ratios, because the failure modes may also be affected by the tear strength of the 

three investigated impression materials. PE may have the highest tear strength because 

the detachment between PE and PLA or between PE and reference occurred outside the 

PE impression material. Since the failure modes between PE and the four tray materials 

were mainly adhesive failure and did not show a significant difference, the peel bond 

strength between PE and the four tray materials did not statistically differ. VPS may 

have a lower tear strength, which caused the debonding between VPS and PLA and 

between VPS and reference occur partly inside the VPS impression material. Therefore, 

for peeling from VPS, the mixed failure ratios of PLA and reference group were 

significantly higher than those of Dental LT and FREEPRINT tray group, so was the 

peel bond strength. VSXE may have the lowest tear strength, in addition to the high 

mixed failure ratios found in the PLA and reference group, cohesive failures were also 

observed. However, the peeling force required for debonding may not significantly 

increase due to the low tear strength of VSXE, so the peel bond strength of PLA and 

reference group were slightly higher than that of Dental LT and FREEPRINT tray group 

but with no statistically significant difference. 

 

The minimum clinically required bond strength between tray and impression is 

unknown [33,46,60,75]. Also, the force needed for impression removal was reported 

inconsistently, values as low as 19.9 N to 36.3 N [76] or as high as 224.3 N to 514.0 N 

[77] have been reported. In the clinical situation, the actually required impression 
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removal force might be determined by various factors, such as the size and number of 

undercuts, the rigidity of impression and tray material, the tray removal method, and the 

angulation of dental implants [48,70,76]. Nevertheless, it would be prudent to choose a 

tray-impression combination with the optimum bond strength to avoid the possible 

detachment. The results of this study indicated that for the VSXE and PE 

impression/adhesive systems, choosing any of the four tray materials could achieve 

similar peel bond strength, but for the bonding with the VPS impression/adhesive 

system, PLA or reference might be a better choice (Figure 54). For Dental LT, 

FREEPRINT tray, and reference tray material, selecting the VSXE or VPS 

impression/adhesive systems may generate higher peel bond strength than choosing PE. 

However, for PLA, the best choice in bonding might be the VPS impression/adhesive 

system (Figure 55).  

 

Accurately locating the rupture site may contribute to the future reinforcement of the 

weakest structure in the impression-adhesive-tray bonding system. For instance, the 

bonding between FREEPRINT tray and PE failed adhesively with the rupture sites 

found partly at the adhesive-impression interface, and partly within the adhesive, 

attempts should be focused on strengthening the adhesive and its bonding with the 

impression to increase the bond strength. In this study, all tray materials have achieved 

good chemical compatibility with the adhesives, but the reduced surface roughness 

(Vvv) may decrease the peel bond strength, especially in bonding with the VPS 

impression/adhesive system. Therefore, roughening the tray material surface, especially 

increasing the Vvv value, may increase the bond strength with VPS, but this needs 

further investigation. 
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5. Conclusion 

The present study assessed the bonding between three 3D-printing custom tray materials 

(Dental LT, FREEPRINT tray, and PLA ), which were respectively manufactured by 

three AM technologies (SLA, DLP, and FFF), and three elastomeric 

impression/adhesive systems (VSXE, VPS, and PE) by peel test. The peel bond strength 

of the 3D-printing custom tray materials was compared with that of a conventional 

light-curing resin (Zeta Tray LC). Through SEM analyses and roughness measurements, 

the surface topographies of the four tray materials were investigated qualitatively and 

quantitatively. Additionally, the failure mode and rupture site of each group were 

inspected microscopically to study the chemical compatibilities between the tray 

materials and the adhesives, and to disclose the possible correlations between the tray 

surface roughness and the peel bond strength. The SEM analyses and roughness 

measurements showed each investigated tray material had a featured surface topography. 

Dental LT showed a smooth surface with the best surface finish. Due to the working 

principle of DLP and FFF, surface textures could be found on both surfaces of 

FREEPRINT tray and PLA, but the texture orientations of the two were opposite and 

perpendicular to each other. The reference light-curing resin exhibited a porous surface 

with numerous valleys and few peaks. The result of peel test indicated the four tray 

materials did not statistically differ in peel bond strength with VSXE and PE, but PLA 

and reference showed higher peel bond strength with VPS than Dental LT and 

FREEPRINT tray. For bonding with Dental LT, FREEPRINT tray and reference, the 

peel bond strength of VSXE and VPS showed no significant difference, but both were 

higher than that of PE. For bonding with PLA, VPS showed the highest peel bond 

strength, followed by that of VSXE, and the peel bond strength of PE was the lowest. 

The failure mode depended on both tray material and impression/adhesive system. For 

peeling from VSXE and VPS, the mixed failure ratios of PLA and reference were higher 

than those of Dental LT and FREEPRINT tray. For peeling from PE, the failure modes 

of the four tray materials were all mostly adhesive failure. Cohesive failures could only 
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be found in the VSXE groups. The rupture site of adhesive failure in all groups was 

partly at the adhesive-impression material interface, and partly within the adhesive, but 

never at the adhesive-tray material interface, indicating good chemical compatibility 

between the 3D-printed tray materials and the adhesives were achieved. The surface 

topographies of the tray materials influenced the peel bond strength. However, since the 

peel bond strength was also affected by the impression material, no direct correlations to 

the peel bond strength were achieved by the investigated roughness parameters except 

Vvv, which could be partly related, especially in the VPS groups.  

 

To sum up, the 3D-printed tray materials could be good alternatives to the conventional 

light-curing resin when the VSXE or PE impression/adhesive system is used. For 

bonding with the VPS impression/adhesive system, PLA seems an ideal tray material, 

whereas Dental LT and FREEPRINT tray may need further surface roughening. 
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6. Summary 

The present study aimed to evaluate the bonding between three 3D-printing custom tray 

materials and three elastomeric impression/adhesive systems by peel test. The peel bond 

strength of the 3D-printed custom tray materials was compared with that of a 

conventional light-curing resin.  

 

CAD-designed test blocks were printed by stereolithography (SLA), digital light 

processing (DLP), and fused filament fabrication (FFF) using the corresponding tray 

materials Dental LT, FREEPRINT tray, and polylactide (PLA), and the reference test 

blocks were conventionally fabricated with a light-curing resin (n = 12). Through SEM 

analyses and roughness measurements, the surface topographies of the four tray 

materials were investigated qualitatively and quantitatively. The force at failure in the 

peel test was recorded to calculate the bond strength between each tray material and 

impression/adhesive system. The failure mode and rupture site were identified by 

comparatively examining the peeled surfaces of tray and impression material using a 

microscope. 

 

The result showed that Dental LT had a smooth surface with the best surface finish. 

Surface textures could be found on both surfaces of FREEPRINT tray and PLA, but the 

texture orientations of the two were opposite and perpendicular to each other. The 

reference light-curing resin exhibited a porous surface with numerous valleys and few 

peaks. The four tray materials did not statistically differ in peel bond strength with 

VSXE and PE, but PLA and reference showed higher peel bond strength with VPS than 

Dental LT and FREEPRINT tray. For bonding with Dental LT, FREEPRINT tray and 

reference, the peel bond strength of VSXE and VPS showed no significant difference, 

but both were higher than that of PE. For bonding with PLA, VPS showed the highest 

peel bond strength, followed by that of VSXE, and the peel bond strength of PE was the 

lowest. For peeling from VSXE and VPS, the mixed failure ratios of PLA and reference 
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were higher than those of Dental LT and FREEPRINT tray. For peeling from PE, the 

failure modes of the four tray materials were all mostly adhesive failure. Cohesive 

failures could only be found in the VSXE groups. The rupture site of adhesive failure in 

all groups was partly at the adhesive-impression material interface and partly within the 

adhesive, but never at the adhesive-tray material interface. 

 

In summary, a good chemical compatibility between the 3D-printed tray materials and 

the adhesives was achieved. The surface topographies of the tray materials influenced 

the peel bond strength, but only the roughness parameter dales void volume (Vvv) could 

be partly related to the peel bond strength. The 3D-printed tray materials could be good 

alternatives to the conventional light-curing resin when the VSXE or PE 

impression/adhesive system is used. For bonding with VPS impression/adhesive system, 

PLA seems an ideal tray material, whereas Dental LT and FREEPRINT tray may need 

further surface roughening. 
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7. Zusammenfassung 

Die vorliegende Studie zielte darauf ab, die Verbindung zwischen drei mittels additiver 

Fertigungsverfahren hergestellten individuellen Abformlöffeln und drei 

Abform-Elastomeren im Abzugstest zu untersuchen. Die Haftfestigkeit der Materialien 

für den 3D-Druck wurde mit der eines herkömmlichen lichthärtenden Polymers 

verglichen. 

 

CAD-gestaltete Testblöcke wurden mittels Stereolithographie (SLA), digitaler 

Lichtverarbeitung (DLP) und Fused Filament Fabrication (FFF) unter Verwendung der 

entsprechenden Löffelmaterialien Dental LT, FREEPRINT tray und Polylactid-Filament 

(PLA) und der Referenztestblöcke gedruckt bzw. konventionell mit einem 

lichthärtenden Polymer (n = 12) hergestellt. Durch REM-Analysen und 

Rauheitsmessungen wurden die Oberflächentopografien der vier Materialien qualitativ 

und quantitativ untersucht. Die Kraft beim Versagen im Abzugstest wurde aufgezeichnet, 

um die Haftfestigkeit zwischen jedem Löffelmaterial und dem Abform-/Klebstoffsystem 

zu berechnen. Die Versagensart und die Bruchstelle wurden durch vergleichende 

Untersuchung der abgezogenen Oberflächen der Prüfkörper und des Abformmaterials 

unter Verwendung eines Mikroskops identifiziert. 

 

Das Ergebnis zeigte, dass Dental LT eine glatte Oberfläche mit der besten 

Oberflächengüte hatte. Oberflächentexturen waren auf beiden Oberflächen von 

FREEPRINT tray und des PLA-Filaments zu finden, die Texturorientierungen der 

beiden Gruppen waren jedoch entgegengesetzt und rechtwinklig zueinander. Das 

lichthärtende Referenzharz zeigte eine poröse Oberfläche mit zahlreichen Tälern und 

wenigen Peaks. Die vier Löffelmaterialien unterschieden sich nicht statistisch in der Ab-

ziehfestigkeit von VSXE und PE, aber PLA und die Referenz zeigten eine höhere 

Schälfestigkeit mit VPS als die mit Dental LT und FREEPRINT tray. Bei der 

Verbindung mit Dental LT, FREEPRINT tray und dem Referenzmaterial zeigte die 
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Haftfestigkeit von VSXE und VPS keinen signifikanten Unterschied, beide waren 

jedoch höher als die von PE. Für das Verbinden mit dem PLA-Material zeigte VPS die 

höchste Abziehfestigkeit, gefolgt von der von VSXE, und die Abziehfestigkeit von PE 

war die niedrigste. Beim Abschälen von VSXE und VPS waren die gemischten 

Versagensraten bei PLA und der Referenz höher als bei Dental LT und FREEPRINT 

tray. Beim Ablösen von PE waren die Versagensarten der vier Löffelmaterialien 

überwiegend adhäsives Versagen. Kohäsive Ausfälle konnten nur in den 

VSXE-Gruppen gefunden werden. Die Bruchstelle des Klebstoffversagens lag in allen 

Gruppen teilweise an der Grenzfläche zwischen Klebstoff und Abdruckmaterial und 

teilweise innerhalb des Klebstoffs, jedoch niemals an der Grenzfläche zwischen 

Klebstoff und Probe. 

 

Zusammenfassend wurde eine gute chemische Kompatibilität zwischen den 

3D-gedruckten Abformmaterialien und den Klebstoffen erzielt. Die 

Oberflächentopografien der Löffelmaterialien beeinflussten die Haftfestigkeit der 

Schälverbindung, jedoch konnte nur der Rauheitsparameter (Vvv) teilweise mit der 

Haftfestigkeit der Schälverbindung in Zusammenhang gebracht werden. Die 3D-ge-

druckten Löffelmaterialien könnten eine gute Alternative zum herkömmlichen 

lichthärtenden Polymer sein, wenn das VSXE- oder PE-Abform-/Klebstoffsystem 

verwendet wird. Für das Verkleben mit dem VPS-Abform-/Klebstoffsystem scheint 

PLA ein ideales Löffelmaterial zu sein, wohingegen die Dental LT- und FREEPRINT 

tray Materialien möglicherweise eine weitere Oberflächenaufrauung erfordern. 
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Statistical analysis tables 

Table 8: Shapiro-Wilk normality test of Sa (n = 7). 
 Dental LT FREEPRINT 

tray PLA Reference 

W 0.930 0.833 0.838 0.924 
P value 0.547 0.085 0.094 0.498 
Sum 11.590 45.050 78.140 30.040 

 
Table 9: Shapiro-Wilk normality test of Ssk (n = 7). 

 Dental LT FREEPRINT 
tray PLA Reference 

W 0.932 0.858 0.980 0.884 
P value 0.565 0.146 0.960 0.242 
Sum -8.475 -2.149 -2.827 -20.920 

 
Table 10: Shapiro-Wilk normality test of Vvc (n = 7). 

 Dental LT FREEPRINT 
tray PLA Reference 

W 0.960 0.861 0.900 0.913 
P value 0.822 0.156 0.333 0.416 
Sum 0.015 0.057 0.106 0.019 

 
Table 11: Shapiro-Wilk normality test of Vvv (n = 7). 

 Dental LT FREEPRINT 
tray PLA Reference 

W 0.925 0.947 0.915 0.895 
P value 0.509 0.699 0.428 0.303 
Sum 0.003 0.004 0.012 0.013 
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Table 12: Shapiro-Wilk normality test of Sdr (n = 7). 
 Dental LT FREEPRINT 

tray PLA Reference 

W 0.887 0.846 0.830 0.937 
P value 0.257 0.113 0.080 0.611 
Sum 11.260 64.420 113.500 57.060 
 
 

Table 13. Shapiro-Wilk normality test of line peel strength (n = 12). 
  W P value Sum 

VSXE Dental LT 0.921 0.291 21717 
 FREEPRINT tray 0.905 0.184 22026 
 PLA 0.974 0.950 22942 
 Reference 0.899 0.153 22569 

VPS Dental LT 0.871 0.067 20166 
 FREEPRINT tray 0.931 0.395 20570 
 PLA 0.955 0.709 26079 
 Reference 0.968 0.891 24418 

PE Dental LT 0.882 0.092 14105 
 FREEPRINT tray 0.887 0.107 14474 
 PLA 0.915 0.249 15895 
 Reference 0.948 0.608 14395 

 
 

Table 14. Shapiro-Wilk normality test of areal peel strength (n = 12). 
  W P value Sum 

VSXE Dental LT 0.919 0.276 852.6 
 FREEPRINT tray 0.900 0.158 854.5 
 PLA 0.976 0.959 903.7 
 Reference 0.904 0.179 891.7 

VPS Dental LT 0.870 0.066 792.6 
 FREEPRINT tray 0.930 0.382 811.6 
 PLA 0.955 0.713 1030.0 
 Reference 0.971 0.923 964.1 

PE Dental LT 0.886 0.104 553.4 
 FREEPRINT tray 0.890 0.119 573.3 
 PLA 0.914 0.243 626.6 
 Reference 0.948 0.610 565.2 
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Table 15: One-way ANOVA of Sa. 
 SS DF MS F  P value 

Between groups 340.1 3 113.4 41.78 < 0.0001 
Within groups 65.12 24 2.713   

Total 405.2 27    

 
Table 16: Tukey’s multiple comparisons test of Sa (n = 7). 

  Mean Diff. 95% CI of diff. P value 
Dental LT FREEPRINT tray -4.780 -7.209 to -2.351 < 0.0001 

 PLA -9.507 -11.940 to -7.078 < 0.0001 
 Reference -2.636 -5.065 to -0.207 0.0299 

FREEPRINT tray PLA -4.727 -7.156 to -2.298 < 0.0001 
 Reference 2.144 -0.285 to 4.573 0.0971 

PLA Reference 6.871 4.443 to 9.300 < 0.0001 

 
Table 17: One-way ANOVA of Ssk. 

 SS DF MS F  P value 
Between groups 32.39 3 10.80 41.78 < 0.0001 
Within groups 6.258 24 0.2607   

Total 38.65 27    

 
Table 18: Tukey’s multiple comparisons test of Ssk (n = 7). 

  Mean Diff. 95% CI of diff. P value 
Dental LT FREEPRINT tray -0.904 -1.657 to -0.151 0.0145 

 PLA -0.807 -1.560 to -0.054 0.0325 
 Reference 1.778 1.025 to 2.531 < 0.0001 

FREEPRINT tray PLA 0.097 -0.656 to 0.850 0.9843 
 Reference 2.682 1.929 to 3.435 < 0.0001 

PLA Reference 2.585 1.832 to 3.338 < 0.0001 

 
Table 19: One-way ANOVA of Vvc. 

 SS DF MS F  P value 
Between groups 7.695e-004 3 2.565e-004 74.55 < 0.0001 
Within groups 8.257e-005 24 3.441e-006   

Total 8.520e-004 27    
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Table 20: Tukey’s multiple comparisons test of Vvc (n = 7). 
  Mean Diff. 95% CI of diff. P value 

Dental LT FREEPRINT tray -0.006 -0.009 to -0.003 < 0.0001 
 PLA -0.013 -0.016 to -0.010 < 0.0001 
 Reference -0.001 -0.003 to 0.002 0.8920 

FREEPRINT tray PLA -0.007 -0.010 to -0.004 < 0.0001 
 Reference 0.005 0.003 to 0.008 < 0.0001 

PLA Reference 0.012 0.010 to 0.015 < 0.0001 

 
Table 21: One-way ANOVA of Vvv. 

 SS DF MS F  P value 
Between groups 1.268e-005 3 4.226e-006 29.82 < 0.0001 
Within groups 3.401e-006 24 1.417e-007   

Total 1.608e-005 27    

 
Table 22: Tukey’s multiple comparisons test of Vvv (n = 7). 

  Mean Diff. 95% CI of diff. P value 
Dental LT FPta -1.676e-004 -7.226e-004 to 3.875e-004 0.8384 

 PLA -1.378e-003 -1.933e-003 to -8.228e-004 < 0.0001 
 Reference -1.468e-003 -2.023e-003 to -9.128e-004 < 0.0001 

FPta PLA -1.210e-003 -1.765e-003 to -6.552e-004 < 0.0001 
 Reference -1.300e-003 -1.855e-003 to -7.452e-004 < 0.0001 

PLA Reference -9.000e-005 -6.451e-004 to 4.651e-004 0.9695 
a. FPt = FREEPRINT tray 

 

Table 23: One-way ANOVA of Sdr. 
 SS DF MS F  P value 

Between groups 750.9 3 250.3 49.25 < 0.0001 
Within groups 122.0 24 5.082   

Total 872.9 27    
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Table 24: Tukey’s multiple comparisons test of Sdr (n = 7). 
  Mean Diff. 95% CI of diff. P value 

Dental LT FPta -7.594 -10.920 to -4.270 < 0.0001 
 PLA -14.610 -17.930 to -11.280 < 0.0001 
 Reference -6.543 -9.867 to -3.219 < 0.0001 

FPta PLA -7.011 -10.340 to -3.687 < 0.0001 
 Reference 1.051 -2.273 to 4.376 0.8189 

PLA Reference 8.063 4.739 to 11.390 < 0.0001 
a. FPt = FREEPRINT tray 

 

Table 25: Tukey’s multiple comparisons test of line peel strength among tray 
materials under each impression/adhesive system level (simple main effect analysis, 
n = 12). 

   Mean Diff. 95% CI of diff. P value 
VSXE Dental LT FPta -25.8 -245.8 to 194.2 0.9901 

  PLA -102.1 -322.1 to 117.9 0.6231 
  Reference -71.1 -291.0 to 148.9 0.8350 
 FPta PLA -76.3 -296.3 to 143.7 0.8034 
  Reference -45.3 -265.3 to 174.7 0.9502 
 PLA Reference 31.0 -188.9 to 251.0 0.9830 

VPS Dental LT FPta -33.6 -253.6 to 186.3 0.9786 
  PLA -492.7 -712.7 to -272.7 < 0.0001 
  Reference -354.3 -574.3 to -134.3 0.0003 
 FPta PLA -459.1 -679.0 to -239.1 < 0.0001 
  Reference -320.7 -540.7 to -100.7 0.0013 
 PLA Reference 138.4 -81.6 to 358.4 0.3616 

PE Dental LT FPta -30.8 -250.7 to 189.2 0.9835 
  PLA -149.2 -369.2 to 70.8 0.2951 
  Reference -24.1 -244.1 to 195.8 0.9919 
 FPta PLA -118.4 -338.4 to 101.6 0.5012 
  Reference 6.6 -213.4 to 226.6 0.9998 
 PLA Reference 125.0 -94.9 to 345.0 0.4530 

a. FPt = FREEPRINT tray 
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Table 26: Tukey’s multiple comparisons test of line peel strength among 
impression/adhesive systems under each tray material level (simple main effect 
analysis, n = 12). 

   Mean Diff. 95% CI of diff. P value 
Dental LT VSXE VPS 129.2 -71.2 to 329.6 0.2810 

  PE 634.3 433.9 to 834.7 < 0.0001 
 VPS PE 505.1 304.7 to 705.5 < 0.0001 

FPta VSXE VPS 121.3 -79.1 to 321.7 0.3258 
  PE 629.3 428.9 to 829.7 < 0.0001 
 VPS PE 508.0 307.6 to 708.4 < 0.0001 

PLA VSXE VPS -261.4 -461.8 to -61.0 0.0068 
  PE 587.2 386.8 to 787.6 < 0.0001 
 VPS PE 848.6 648.2 to 1049.0 < 0.0001 

Reference VSXE VPS -154.1 -354.5 to 46.3 0.1663 
  PE 681.2 480.8 to 881.6 < 0.0001 
 VPS PE 835.3 634.9 to 1036.0 < 0.0001 

a. FPt = FREEPRINT tray 
 
Table 27: Tukey’s multiple comparisons test of areal peel strength among tray 
materials under each impression/adhesive system level (simple main effect analysis, 
n = 12). 

   Mean Diff. 95% CI of diff. P value 
VSXE Dental LT FPta -0.2 -8.8 to 8.5 > 0.9999 

  PLA -4.3 -12.9 to 4.4 0.5768 
  Reference -3.3 -11.9 to 5.4 0.7612 
 FPta PLA -4.1 -12.8 to 4.6 0.6068 
  Reference -3.1 -11.8 to 5.6 0.7875 
 PLA Reference 1.0 -7.7 to 9.7 0.9905 

VPS Dental LT FPta -1.6 -10.2 to 7.1 0.9645 
  PLA -19.8 -28.5 to -11.2 < 0.0001 
  Reference -14.3 -23.0 to -5.6 0.0002 
 FPta PLA -18.2 -26.9 to -9.6 < 0.0001 
  Reference -12.7 -21.4 to -4.0 0.0012 
 PLA Reference 5.5 -3.1to 14.2 0.3484 

PE Dental LT FPta -1.7 -10.3 to 7.0 0.9592 
  PLA -6.1 -14.8 to 2.6 0.2628 
  Reference -1.0 -9.6 to 7.7 0.9910 
 FPta PLA -4.4 -13.1 to 4.2 0.5433 
  Reference 0.7 -8.0 to 9.3 0.9970 
 PLA Reference 5.1 -3.5 to 13.8 0.4184 

a. FPt = FREEPRINT tray 
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Table 28: Tukey’s multiple comparisons test of line peel strength among 
impression/adhesive systems under each tray material level (simple main effect 
analysis, n = 12). 

   Mean Diff. 95% CI of diff. P value 
Dental LT VSXE VPS 5.0 -2.9 to 12.9 0.2942 

  PE 24.9 17.0 to 32.8 < 0.0001 
 VPS PE 19.9 12.1 to 27.8 < 0.0001 

FPta VSXE VPS 3.6 -4.3 to 11.5 0.5328 
  PE 23.4 15.5 to 31.3 < 0.0001 
 VPS PE 19.9 12.0 to 27.8 < 0.0001 

PLA VSXE VPS -261.4 -461.8 to -61.0 0.0053 
  PE 587.2 386.8 to 787.6 < 0.0001 
 VPS PE 848.6 648.2 to 1049.0 < 0.0001 

Reference VSXE VPS -6.0 -13.9 to 1.9 0.1695 
  PE 27.2 19.3 to 35.1 < 0.0001 
 VPS PE 33.3 25.4 to 41.1 < 0.0001 

a. FPt = FREEPRINT tray 
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